

Drupal 7 Development by Example
Beginner's Guide

Follow the creation of a Drupal website to learn, by example,
the key concepts of Drupal 7 development and HTML 5

Kurt Madel

 BIRMINGHAM - MUMBAI

Drupal 7 Development by Example
Beginner's Guide

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, nor Packt Publishing,
and its dealers and distributors will be held liable for any damages caused or alleged
to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2012

Production Reference: 1160512

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84951-680-8

www.packtpub.com

Cover Image by Asher Wishkerman (wishkerman@hotmail.com)

Credits

Author

Kurt Madel

Reviewers

Nedo Laanen

Danny Pfeiffer

James Roughton

Ronald J. Simon

Reid Braswell

Acquisition Editor

Sarah Cullington

Lead Technical Editor

Joanna Finchen

Technical Editor

Lubna Shaikh

Project Coordinator

Alka Nayak

Proofreaders

Aaron Nash

Mario Cecere

Indexer

Rekha Nair

Production Coordinator

Prachali Bhiwandkar

Cover Work

Prachali Bhiwandkar

About the Author

Kurt Madel is a Senior Manager and developer for Captech Consulting in Richmond, VA.
He has worked on open source CMS projects for over six years. Kurt contributes regularly to
Drupal.org, and is the maintainer of several modules. In addition to Drupal, Kurt has been
doing Java EE development since 2000, and has focused on mobile web development over
the last two years. When he is not writing or programming, Kurt enjoys cycling and spending
time with his wife and four boys.

About the Reviewers

Nedo Laanen graduated from college in 2003, where he studied Applied Mathematics and
Computer Science. First, he worked as a Novell Engineer, and later made the switch to Linux
and Open Source technology. In 2011, Nedo started his own one-man company, providing
services based on Linux and Open Source technology. At the moment, he is working as a
freelance Linux Engineer at Morpho in Haarlem.

Nedo was also a reviewer on the following Packt publishing books:

�� The GIMP 2.6 Cookbook

�� Drupal 7 – Social Networking

Danny Pfeiffer started off his career as a developer, after which he transitioned to working
as a contractor doing information architecture and usability work for Fortune 500 companies
across the country. This experience, while sometimes dry, underscored the importance of
architecture and proper planning as part of the overall project cycle.

With over 10 years of web development experience, Danny has amassed a tremendous
wealth of knowledge, dating back to the days of tables, iFrames, and server side includes.
These days, he focuses primarily on building dynamic websites and applications using the
latest technologies, HTML5, CSS3, AJAX, PHP, MySQL, and of course, Drupal.

In 2007, Danny had drawn enough boxes and arrows, and decided to apply that experience
towards a new venture, focused exclusively on Drupal development. He and his brother,
Mike, started Denver-based Rehab Creative and enjoy continually introducing new clients
and staff to the exciting world of Drupal.

James Roughton, MS, CSP, CRSP-R, CHMM-R, CIT, CET, Six Sigma Black Belt,
jr@gotsafety.net, received his Bachelor of Science degree in Business Administration
from Christopher Newport College, and his Masters in Safety Science degree from Indiana
University of Pennsylvania (IUP).

James is also a published author. Two of his most notable books include, Developing an
Effective Safety Culture: A Leadership Approach and Job Hazard Analysis: A Guide for
Voluntary Compliance and Beyond. He is currently working on a new book Developing an
Effective Safety Culture: Implementing Safety Through Human Performance Improvement,
which is to be completed by December 31 2012.

In addition, he is looking to develop a new book on social media that will outline all of the
useful productivity tools on the Internet, such as dropbox, evernote, Google alerts, Google
reader, and so on, that he has found. Based on his experience and presentations, these
elements are not considered as a part of social media, and therefore, are not usually on
the radar as productivity tools and he wants to change this perception.

As he sees it, there is the need for a more practical, down-to-earth guidance that weaves
together the numerous techniques and methods necessary for understanding the social
media in a different light. His goal is to help individuals get from point A (having a strong
professional expertise but limited knowledge of social networking) to point B (where they
can use your new knowledge to enhance and broadcast their message to their intended
audience more effectively).

This idea was formed from his personal vision and research:

To live my life with PURPOSE and the PASSION to help others succeed.

You can follow James on the following sites:

�� Social Media website: http://www.jamesroughton.com/

�� Safety-related website: http://www.safetycultureplus.com

�� YouTube video feed!: http://www.youtube.com/user/
MrJamesroughton/feed

�� Facebook: http://www.facebook.com/james.roughton

�� Twitter: http://twitter.com/jamesroughton

�� LinkedIn: http://www.linkedin.com/in/jamesroughtoncsp

Ronald J. Simon has been working with the development of shared information and
database design dating back to the days before the Internet, and has worked in many
different areas of information management and writing documentation to support users.

Ron is also an Adjunct Instructor for Grand Valley State University, and has worked in the
legal field in Document Management and Security. Ron has been an editor for the book
Drupal 7 Social Networking.

Currently, Ron is evaluating a major program rollout for a large retail chain. He is also the
owner of RJS Designs, which is a small business consulting company.

I would like to thank both of my parents for teaching me how to learn and
have fun at the same time.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
�� Fully searchable across every book published by Packt

�� Copy and paste, print and bookmark content

�� On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Table of Contents
Preface	 1

Chapter 1: Getting Set up	 9
Installing an Apache, MySQL, and PHP stack	 9

Mac OS X AMP stack	 10
Time for action – downloading the latest version of MAMP	 10

Windows AMP stack	 12
Time for action – downloading the latest version of XAMPP	 12

PHP configuration	 14
Time for action – modifying php.ini settings	 15

MySQL configuration	 15
Time for action – modifying the MySQL my.cnf settings	 15
Time for action – creating an empty MySQL database	 16
Installing Git	 18
Time for action – installing Git for Mac OS X	 18
Time for action – installing Git for Windows	 19
Installing Drush	 20
Time for action – installing Drush for Mac OS X	 21
Time for action – installing Drush for Windows	 21
Installing Drupal 7	 22
Time for action – installing Drupal 7	 22
Installing the Aptana Studio IDE	 27
Time for action – installing the Aptana IDE	 27
Time for action – creating a new Aptana Studio PHP project	 27

Drupalize Aptana Studio 	 30
Time for action – setting up the Drupal content type associations	 30
Time for action – installing the Drupal-specific Aptana formatter profile	 32
Drupal.org from a developer's perspective	 34
Summary	 35

Table of Contents

[ii]

Chapter 2: Custom Content Types and an Introduction
to Module Development	 37

Creating custom Recipe content type	 38
Time for action – creating a custom Recipe content type	 38
Developing a custom module	 45
Time for action – developing a custom module	 47
Quick introduction to Views	 53
Time for action – installing the Views module	 53
Time for action – creating a recipe block listing with Views	 54
Introducing the Devel module	 58
Time for action – installing the Devel Generate content module	 58
Time for action – generating content with the devel_generate module	 59
Summary	 60

Chapter 3: HTML5 Integration for Drupal 7 and More Module Development	 61
First things first—changing our DOCTYPE	 63
Time for action – installing the HTML5 Tools module	 64
HTML5, RDFa, and Microdata	 65
Time for action – installing the Microdata module	 66
Time for action – configuring Microdata for our Recipe content type 	 68

Drupal development and the Drupal community	 72

Time for action – creating issues in Contrib modules' issue queues	 73
Time for action – adding Microdata mappings
for Recipe number_integer fields	 74
NutritionInformation module	 75
Time for action – developing a custom module for
a compound NutritionInformation field	 76
Time for action – updating the Recipe content type
to use the NutritionInformation field	 85
Summary	 86

Chapter 4: Introduction to Drupal 7 Theme Development	 87
Creating a sub-theme	 88
Time for action – installing a base theme	 88
Time for action – creating a sub-theme and setting it as our default theme 	 90
Time for action – creating a sub-theme and setting
as default theme with Drush	 93
Time for action – configuring our Omega-based sub-theme	 96
Manage the display for a content type	 97
Time for action – using the Manage Display page to update
the display of our custom Recipe content type	 98

Table of Contents

[iii]

Drupal 7 Render Arrays	 99
Time for action – implementing hook_preprocess_node	 100
An introduction to the Drupal 7 field group module	 104
Time for action – creating the wrapper with display suite	 104
Summary	 107

Chapter 5: Enhancing the Content Author's User Experience	 109
Developing a custom block for adding content	 109
Time for action – developing a custom block for adding recipes	 110
Introduction to the WYSIWYG module	 116
Time for action – installing and configuring the Wysiwyg module	 116

A new recipe	 122
Time for action – deleting all Devel-generated recipe content 	 123
Time for action – adding my Cannellini Cumin Chicken Chili recipe	 124
Developing a custom contenteditable module	 126
Time for action – developing an HTML5 contenteditable module	 126
Summary	 144

Chapter 6: Adding Media to our Site	 145
Introduction to the Media module	 146

Working with dev versions of modules	 146
Time for action – using Drush to install a dev version of the Media module	 147

Enhancing the Recipe content type with a Media field	 148
Time for action – adding a Media field to our Recipe content type	 148

A new Recipe for our site	 154
Custom image styles and inline Media for WYSIWYG	 155

Creating a custom image style	 156
Time for action – adding a custom image style through
the image styles administrative page	 156
Time for action – creating a programmatic custom image style	 159
Time for action – configuring Media-based images to use
our custom small image style for our Recipe content type	 164

Inline Media with WYSIWYG	 165
Time for action – configuring WYSIWYG inline Media for
the basic page content type	 165
Integrating the Colorbox and Media modules	 168
Time for action – installing the Colorbox module	 168

Introduction to the Colorbox File module and Drupal sandboxing	 170
Drupal developer community: Drupal sandbox	 170
Revisit the sandbox Colorbox File module	 171

Table of Contents

[iv]

Time for action – checking out the Colobrbox File sandbox project
with Git, and testing it with the latest Media module	 172

Drupal issue queues and enhancing the Colorbox File module	 174
Time for action – applying and testing the patch for the Colorbox File module	 175
Summary	 178

Chapter 7: How Does it Taste – Getting Feedback	 179
Introduction to the Drupal contact form	 179
Time for action – enabling and configuring the core contact form	 180
Adding descriptive help text to our contact form	 182

Using custom code to add help text to the contact form	 182
Time for action – adding help text to our site contact form	 182

Adding contact help text with no code	 183
Time for action – creating a contact form with help text,
with the Webform module	 183
A more in-depth look at the Webform module	 187
Time for action – using hook_form_FORM_ID_alter to modify
our Webform-based contact form	 188
Time for action – using hook_form_BASE_FORM_ID_alter
to make our Webform emailfield code more generic	 193
Time for another recipe	 197
Colorbox File enhancements	 199
Time for action – enhancing the Colorbox File module
with field-based captions	 202
Rating recipes with Fivestar	 215
Time for action – installing and configuring the Fivestar module	 215
Time for action – creating a custom Fivestar widget	 217
Summary	 219

Chapter 8: Recipe Lists and More with Views	 221
Views revisited – advanced configuration	 221

Random top rated recipe block	 222
Time for action – building a random top rated recipe block with views	 222

Taxonomy-based View with tabs	 225
Time for action – creating a cuisine vocabulary to organize recipes	 226
Time for action – creating a Recipes by cuisine type Views block	 227
Time for action – installing and using the Views Field View
module for our Recipe by Cuisine Type View	 231

Tabbed Views display	 239
Time for action – developing a Views style plugin for Semantic tabs	 241
Time for another Recipe	 251

Table of Contents

[v]

Promoting the Colorbox File module as a full project	 253
Introduction to the Coder module	 253

Time for action – installing and using the Coder module	 253
Commit changes to Colorbox File sandbox	 255

Time for action – committing Colorbox File module changes
to Drupal Git Repository	 256
Summary	 258

Chapter 9: Rotating Banners and Project Promotion	 259
Rotating banner with Views Slideshow	 259
Time for action – installing the Views Slideshow module 	 260

Custom Drush commands	 261
Time for action – creating a custom Drush command to install
the jQuery Cycle plugin	 261

Creating a rotating banner with Views Slideshow	 265
Time for action – creating a banner using the Views Slideshow module	 265

Enhance the appearance of our rotating banner with a pager and CSS	 270
Time for action – updating the front banner view to include a slideshow pager	 271
Time for another recipe	 279
Promoting a sandbox project to a full project	 281
Time for action – implementing hook_uninstall for the Colorbox File module	 282
Time for action – uninstalling and renaming the Colorbox
File module	 284
Time for action – promoting the Media Colorbox module to be
a full project on Drupal.org	 287
Summary	 294

Chapter 10: Test Your Code with SimpleTest	 295
What is SimpleTest?	 296

SimpleTest in Drupal Core	 296
SimpleTest web interface	 296
Test files structure for modules	 297

The SimpleTest class	 298
Unit Testing with the Drupal SimpleTest module	 300
Functional or web testing with Drupal SimpleTest	 301

Time for another recipe	 302
Writing our own SimpleTests	 304
Time for action – creating a unit test case for the D7Dev duration formatter	 304
Time for action – creating a web test case for the D7Dev duration formatter	 308
Summary	 315

Table of Contents

[vi]

Chapter 11: Introduction to the Features Module
and Configuration Management	 317

Introduction to the Features module	 317
Using Features to manage configuration	 318

Drupal components that can be managed with Features	 319

Time for action – installing the Features module	 323
Adding a new Feature	 324

Time for action – creating a Recipe content type feature	 324
Managing updates to Feature components	 333

Time for action – updating our Recipe content type feature	 334
Features for sharing Drupal components	 338

Summary	 338

Pop quiz Answers	 339

Index	 341

Preface
This book is a hands-on, example-driven guide to programming Drupal websites. Discover
a number of new features for Drupal 7 through practical and interesting examples while
building a fully functional recipe sharing website. Learn about web content management,
multi-media integration, and new features for developers in Drupal 7.

With this book you will:

�� Learn to build cutting edge websites with Drupal 7

�� Discover important concepts for HTML5 and why it's time to start
building websites with HTML5, if you haven't already

�� Learn the important patterns for JavaScript and AJAX in Drupal 7

�� Realize interesting ways to integrate multi-media with Drupal 7

�� Find out how becoming more involved with the Drupal development
community can help you build better websites

�� Set up a development environment, and learn to use Git and Drush

�� Uncover how much fun it can be to build websites with Drupal 7

What this book covers
Chapter 1, Getting Set up, walks through setting up a Drupal development environment
before diving into Drupal development.

Chapter 2, Custom Content Types and an Introduction to Module Development, will explain
how to configure Drupal content types and begin Drupal development with an introduction
to creating custom Drupal modules.

Chapter 3, HTML5 Integration for Drupal 7 and More Module Development, will continue with
some Drupal development examples, and show how we can integrate HTML5 with Drupal 7.

Preface

[2]

Chapter 4, Introduction to Drupal 7 Theme Development, will explain about custom theme
development and Drupal 7 render arrays.

Chapter 5, Enhancing the Content Author's User Experience, will configure WYSIWYG for
Drupal 7 and show how we can improve the content author user experience with some
custom development examples.

Chapter 6, Adding Media to our Site, will explain how the Drupal 7 Media module makes
multi-media integration for Drupal better than ever, keeping in mind that a site without
any multimedia is just text.

Chapter 7, How Does it Taste – Getting Feedback, will show some ways to provide visitor
site interaction in Drupal as one way to extend the amount of time a visitor spends on
your site is to provide ways for them to interact with it.

Chapter 8, Recipe Lists and More with Views, will show some of the more advanced
features of the Views module, and find out why Views is the most popular contrib module
on drupal.org.

Chapter 9, Rotating Banners and Project Promotion, will show how to use Views to display
images in a compelling way, because the Views module offers a lot more than just displaying
some fields.

Chapter 10, Test Your Code with SimpleTest, will test the custom code that you have written.

Chapter 11, Introduction to the Features Module and Configuration Management, will show
how the Features module can help us manage the code that you have written for the Drupal
site that you created.

What you need for this book
Programs/applications:

�� MAMP 2.0.5: http://www.mamp.info/downloads/releases/
MAMP_MAMP_PRO_2.0.5.zip

�� XAMPP 1.7.7: http://www.apachefriends.org/download.php?xampp-
win32-1.7.7-VC9.7z

�� Homebrew: https://github.com/mxcl/homebrew/wiki/installation

�� Git for Mac (just use Homebrew from above to install it): brew install git

�� msysgit, Git for Windows: http://code.google.com/p/msysgit/downloads/
detail?name=Git-1.7.9-preview20120201.exe&can=2&q=

�� Drush for Mac: brew install drush

Preface

[3]

�� Drush Windows Installer (easy way to get Drush working on Windows):
http://drush.ws/sites/default/files/attachments/Drush-5.x-dev-
2012-02-21-Installer-v1.0.13.msi

�� Drupal 7.12: git clone http://git.drupal.org/project/
drupal.git d7dev

�� Aptana Studio 3 IDE: http://www.aptana.com/products/studio3/download

�� drupal_aptana_formatter_profile.xml (provides Drupal code formatting for
Aptana Studio): http://drupalcode.org/sandbox/kmadel/1249414.git/
blob_plain/HEAD:/drupal_aptana_formatter_profile.xml

�� Google Chrome: https://www.google.com/chrome

Drupal contributed modules (Drush was used to install all contributed modules):

�� Chaos tool suite (ctools) 7.x-1.0-rc1

�� Coder 7.x-1.0

�� Colorbox 7.x-1.x-dev (2011-Oct-10)

�� Devel 7.x-1.2

�� Elements 7.x-1.2

�� Entity API 7.x-1.0-rc1

�� Features 7.x-1.0-beta6

�� Field group 7.x-1.1

�� File entity (fieldable files) 7.x-2.0-unstable3

�� Fivestar 7.x-2.x-dev (2012-Feb-16)

�� HTML5 Tools 7.x-1.1

�� Libraries API 7.x-1.0

�� Media 7.x-2.0-unstable3

�� media_youtube 7.x-1.0-beta1

�� Microdata 7.x-1.0-alpha4

�� Omega Tools 7.x-3.0-rc4

�� Views 7.x-3.3

�� Views Field View 7.x-1.0-rc1

�� Views Slideshow 7.x-3.0

�� Voting API 7.x-2.6

�� Webform 7.x-3.16

�� Wysiwyg 7.x-2.1

Preface

[4]

Drupal Contributed theme:

�� Omega: Responsive HTML5 Base Theme 7.x-3.1

JavaScript Libraries:

�� ckeditor: http://ckeditor.com/download

�� colorbox: http://jacklmoore.com/colorbox/colorbox.zip

�� jquery.cycle: http://malsup.github.com/jquery.cycle.all.js

Who this book is for
This book is for people who have some experience building websites and who want to learn
to do so with Drupal 7. You should have experience with HTML markup, CSS, and jQuery.
Experience with previous versions of Drupal would be helpful, but is not necessary.

Conventions
In this book, you will find several headings appearing frequently.

To give clear instructions of how to complete a procedure or task, we use:

Time for action – heading
1.	 Action 1

2.	 Action 2

3.	 Action 3

Instructions often need some extra explanation so that they make sense, so they are
followed with:

What just happened?
This heading explains the working of tasks or instructions that you have just completed.

You will also find some other learning aids in the book, including:

Preface

[5]

Pop quiz – heading
These are short multiple-choice questions intended to help you test your own understanding.

Have a go hero – heading
These practical challenges and give you ideas for experimenting with what you have learned.

You will also find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: " You may notice that we used the Unix command
rm to remove the Drush directory rather than the DOS del command."

A block of code is set as follows:

* Fine Tuning
#
key_buffer = 16M
key_buffer_size = 32M
max_allowed_packet = 16M
thread_stack = 512K
thread_cache_size = 8
max_connections = 300

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

* Fine Tuning
#
key_buffer = 16M
key_buffer_size = 32M
max_allowed_packet = 16M
thread_stack = 512K
thread_cache_size = 8
max_connections = 300

Any command-line input or output is written as follows:

cd /ProgramData/Propeople

rm -r Drush

git clone --branch master http://git.drupal.org/project/drush.git

Preface

[6]

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "On the Select Destination
Location screen, click on Next to accept the default destination.".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to
develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from
your account at http://www.packtpub.com. If you purchased this book elsewhere,
you can visit http://www.packtpub.com/support and register to have the files
e-mailed directly to you.

Preface

[7]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you
find any errata, please report them by visiting http://www.packtpub.com/support,
selecting your book, clicking on the errata submission form link, and entering the details
of your errata. Once your errata are verified, your submission will be accepted and the
errata will be uploaded to our website, or added to any list of existing errata, under the
Errata section of that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works, in any form, on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

1
Getting Set up

In this chapter, we will focus on setting up a development environment, so
that you can begin writing the code for a Drupal-powered website, and we
will explore some other aspects of what it means to be a Drupal developer.

In this chapter, we will:

�� Install and configure the settings for a web server, PHP, and the MySQL database

�� Install and use Git

�� Install and use Drush

�� Install Drupal 7

�� Install the Aptana IDE, and set up a PHP-based Drupal project

�� Explore http://drupal.org/ from a developer's perspective

So let's get started and get a Drupal development environment set up so we can move onto
some cool development examples in the following chapters.

Installing an Apache, MySQL, and PHP stack
Although you can use a number of different web servers and databases, we are going to
use the commonly used combination of Apache, MySQL, and PHP, often referred to as the
*AMP stack.

Getting Set up

[10]

Mac OS X AMP stack
For Mac OS X, we will use the MAMP package to install an AMP stack.

The instructions for setting up a development environment for Mac OS X are
very similar to setting a development environment for a Linux distribution. They
are both Unix-based operating systems. If you aren't already tied to a particular
Linux distribution, and would like to set up a development environment in Linux,
then I highly recommend the Ubuntu distribution (distro). There are excellent
directions on setting up a Drupal development environment, available at
http://groups.drupal.org/node/6261, and if you don't already have
Ubuntu installed, there is a Quickstart virtual machine available as
part of the Drupal Quickstart project. More information can be found at
http://drupal.org/project/quickstart.

Time for action – downloading the latest version of MAMP
1.	 First, download MAMP from http://www.mamp.info/en/downloads/index.

html. Once MAMP has completed downloading, double-click on the downloaded
.zip file, expand the 64bit folder, and then double-click the MAMP.pkg file. This will
launch the MAMP installer as shown in the following screenshot:

http://www.mamp.info/en/downloads/index.html

Chapter 1

[11]

2.	 Next, click on Continue on this screen and the next screen, then click on Continue,
and click on Agree to agree to the terms of the software license agreement, and
then click on Continue once again on the next screen. It is important on the next
screen to click on the Customize button, and on the very next screen, un-check the
MAMP Pro 2.0.1 checkbox.

3.	 After that, click on Install. After the installation completes, click on Close. Go to
your Applications folder and the MAMP folder, and double-click on the MAMP
application. After the Apache and MySQL servers have started, you will see the
following MAMP start screen load in your default web browser:

Getting Set up

[12]

Windows AMP stack
For Windows, we will use XAMPP.

This is a disclaimer of sorts. I do most of my Drupal development on
Mac OS X. I also believe that developing on a Unix-based operating
system, such as OS X, is a better fit for Drupal development, as
there are many development-oriented aspects of Drupal that either
depend on Unix or are Unix-centric. From cron to Unix-based
permissions, a lot of documentation on http://drupal.org/
will be biased towards the Unix operating systems.

Time for action – downloading the latest version of XAMPP
1.	 First, download XAMPP from http://www.apachefriends.org/en/

xampp-windows.html. Scroll down the page until you get to the XAMPP
for Windows section, and click on the Zip download. After the xampp-win32-
1.7.4-VC6.zip file has completed downloading, right-click on it and select
Extract All…, enter C:\ as the destination, and click on Extract. Note that the
extraction process will take a few minutes.

WAMP (http://www.wampserver.com/en/) is also a good
choice for setting up an AMP stack on Windows.

http://www.apachefriends.org/en/xampp-windows.html
http://www.apachefriends.org/en/xampp-windows.html

Chapter 1

[13]

2.	 Now, navigate to the C:\xampp directory, and double-click on the xampp-control
application to start the XAMPP Control Panel Application:

3.	 Inside the XAMPP Control Panel Application, click on the Start buttons next to
Apache and MySQL. Now, open up your favorite web browser, navigate to http://
localhost, and you should see something similar to the following screenshot:

http://localhost/

Getting Set up

[14]

4.	 There is one last step with XAMPP before we move on; we need to set the admin
password for MySQL. In your favorite web browser, open http://localhost/
security/index.php:

5.	 Enter the new password as root, and click on the Password changing button to
submit the change. You should see the following message:

The root password was successfully changed. Please restart MYSQL
for loading these changes!

What just happened?
Congratulations! You now have a working AMP stack installed.

PHP configuration
Drupal 7 recommends PHP version 5.3. The latest version of MAMP includes PHP version
5.3.6 (it also includes PHP version 5.2.13, and allows you to switch between them). The latest
version of XAMPP for Windows includes PHP version 5.3.5. Although this version of PHP
meets the requirements of Drupal 7, there are some PHP-related settings that need to be
tweaked before we install Drupal, to ensure that things will run smoothly.

Chapter 1

[15]

Time for action – modifying php.ini settings
Mac OS X: Use your favorite text editor to open the php.ini file located at /Applications/
MAMP/bin/php/php5.3.6/conf. If you are using Apple's TextEdit application, then
I recommend that you take a look at Smultron - http://www.peterborgapps.com/
smultron/, which is inexpensive and available in the Mac App Store. Other favorite text
editors for the Mac include TextMate - http://macromates.com/ and Coda - http://
panic.com/coda/, among many others.

Windows: Use your favorite text editor to open the php.ini file located at C:\xampp\php.
I like Sublime Text and Notepad++.

Navigate to the Resource Limits section, and edit the settings to match the following values:

max_execution_time = 60;
max_input_time = 120;
memory_limit = 128M;
error_reporting = E_ALL & ~E_NOTICE

Drupal 7 is a bit slower in some ways than Drupal 6. So, it is important that you make these
changes to the php.ini file for your Drupal 7 development site to run smoothly.

MySQL configuration
Although it is possible to run Drupal 7 on several different databases, including some
NoSQL databases (such as MongoDB), we will use the most commonly used database,
MySQL. For Drupal 7, MySQL version 5.0.15 or higher is recommended, and both of the
AMP stacks chosen for Mac OS X and Windows include MySQL versions higher than
that. Now, let's tweak some MySQL configuration settings to ensure a smooth running
development environment.

Time for action – modifying the MySQL my.cnf settings
Mac OS X: MAMP does not use a my.cnf file by default. So you must copy the file at
/Applications/MAMP/Library/support-files/my-medium.cnf to /
Applications/MAMP/conf/my.cnf (notice the new name of the file).

Windows: For XAMMP, open the my.ini file located at C:\xampp\mysql\bin.

You may want to make a back-up copy of this file before you begin to edit it.

Getting Set up

[16]

Open the my.cnf/my.ini file in your text editor, and find and edit the following settings to
match these values:

* Fine Tuning
#
key_buffer = 16M
key_buffer_size = 32M
max_allowed_packet = 16M
thread_stack = 512K
thread_cache_size = 8
max_connections = 300

One of the real gotchas for the Drupal MySQL configuration is the max_allowed_packet
setting. This has always been a source of bewildering errors in the past for myself and
many other Drupal developers that I know, and it is a setting that is specifically mentioned
on the http://drupal.org/requirements#database page, under the Database
server section.

When you are ready to take your site live, there are
some excellent performance tuning tips available on
drupal.org at http://drupal.org/node/2601.

Time for action – creating an empty MySQL database
Before we can install Drupal, we need to create a new and empty MySQL database.

Both MAMP and XAMPP include phpMyAdmin—a web-based administration tool
for MySQL. We will use phpMyAdmin to create an empty database for Drupal.

Mac OS X: With MAMP running, open your favorite web browser, and go to
http://localhost:8888/phpMyAdmin.

Windows: With XAMPP running, open your favorite web browser, and go to
http://localhost/phpmyadmin/.

http://drupal.org/requirements#database
http://drupal.org/requirements#database
http://localhost:8888/phpMyAdmin
http://localhost:8888/phpMyAdmin
http://localhost/phpmyadmin/
http://localhost/phpmyadmin/

Chapter 1

[17]

You will see the following screen:

The default page of phpMyAdmin includes a form for creating a database as shown. Enter the
name d7dev for your database, and click on Create. You will then see the following screen:

Getting Set up

[18]

What just happened?
You have installed a fully-functional AMP stack that has been configured specifically for Drupal,
and you have created an empty MySQL database as a preliminary step for installing Drupal.

Installing Git
Git is a source control and versioning software that has become very popular over the last
few years. In February of 2011, drupal.org migrated from the outdated CVS versioning
system to Git. The migration to Git has enabled a completely new way for Drupal developers
to interact with drupal.org, and we will highlight this enhanced interaction throughout
the book. However, we will also immediately start using Git to facilitate setting up a Drupal
development environment. So, if you don't already have Git installed on your computer, let's
get it set up.

Time for action – installing Git for Mac OS X
To install Git for the Mac, we are going to use Homebrew (an open source package manager
for Mac OS X) with installation instructions available at https://github.com/mxcl/
homebrew/wiki/installation.

1.	 Once you have Homebrew installed, installing Git is as easy as opening up
the Terminal application (in /Applications/Utilities), and typing
the following command:

brew install Git

2.	 Type the following to see if it worked:

Git version

Downloading the example code

You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

http://drupal.org/
http://drupal.org/
http://drupal.org/
https://github.com/mxcl/homebrew/wiki/installation
https://github.com/mxcl/homebrew/wiki/installation

Chapter 1

[19]

Time for action – installing Git for Windows
For Windows, we are going to use msysgit available at http://code.google.com/p/
msysgit/downloads/list.

1.	 Download the most recent version of the full installer for the official Git, currently
Git-1.7.6-preview20110708.exe, and then double-click on the downloaded
file link to begin the installation process.

2.	 Click on Next, and then click Next again on the GNU General Public License screen.

3.	 On the Select Destination Location screen, click on Next to accept the
default destination.

http://code.google.com/p/msysgit/downloads/list

Getting Set up

[20]

4.	 On the Select Components screen, accept the defaults again, and click on Next.

5.	 On the Adjusting your PATH Environment screen, select Run Git and included
Unix tools from the Windows Command Prompt as this will allow Git to work with
Drush, which we will cover next.

What just happened?
You have installed the Git version control system—a tool that will greatly facilitate interaction
with the existing contributed code at Drupal.org.

Installing Drush
Drush, a portmanteau of the words Drupal and shell, is a command line utility that
facilitates the management of a Drupal environment from your favorite shell (the Terminal
application on Mac OS X and the Command Prompt application on Windows). For example,
installing a contributed module on drupal.org could be as easy as running the following
commands from the command line:

drush dl modulename

drush en -y modulename

http://drupal.org/
http://drupal.org/

Chapter 1

[21]

Time for action – installing Drush for Mac OS X
To install Drush for Mac, we are going to use Homebrew again. With Homebrew, installing
Drush is as easy as opening up the Terminal application (in /Applications/Utilities),
and typing the following command:

brew install drush

Time for action – installing Drush for Windows
Installing Drush for Windows is a bit more involved than it is for Mac OS X. We will be
following the directions available at http://drush.ws/sites/default/files/
attachments/Drush%20Installation%20Guide.pdf for installing Drush on Windows.

1.	 Download the Drush installer from http://drush.ws/drush_windows_
installer, and follow the instructions in the Drush Installation Guide PDF.
On the Custom Setup screen, make sure that you select to install the cwRsync
Optional Components and Register Environment Variables, as shown in the
following screenshot:

http://drush.ws/sites/default/files/attachments/Drush Installation Guide.pdf
http://drush.ws/sites/default/files/attachments/Drush Installation Guide.pdf
http://drush.ws/drush_windows_installer
http://drush.ws/drush_windows_installer

Getting Set up

[22]

2.	 After the installation has completed we are going to use Git to update Drush to a
newer version because the version included with the Drush Installer has some issues
(as of July 2011). Open the Command Prompt application for Windows and enter
the following commands:

cd /ProgramData/Propeople

rm -r Drush

git clone --branch master http://git.drupal.org/project/drush.git

You may notice that we used the Unix command rm to remove the
Drush directory rather than the DOS del command. When we
installed Drush with the Windows installer, we also enabled several
Unix commands for Windows, including rm.

3.	 By using Git, you will now be able to easily keep your Drush installation up-to-date.
To check if it is out of date, you can just run git status.

What just happened?
You have installed Drush - a very powerful tool that eases the management of a Drupal
development environment from the command line.

Installing Drupal 7
All right, now we are getting somewhere. Now that we have created a database, installed
Git, and installed Drush, we have everything in place to install Drupal 7.

Time for action – installing Drupal 7
We are going to use a combination of Drush and Git to install Drupal.

1.	 Mac OS X: Open up the Terminal application, and type the following command:

cd /Applications/MAMP/htdocs

Windows: Open the Drush command prompt application, and type the
following command:

cd /xampp/htdocs

Chapter 1

[23]

2.	 Now, we are going to use Git to locally clone the Drupal core Git repository
into a new d7dev folder (this will take a few minutes, or so, depending on
your network bandwidth):

$ git clone http://git.drupal.org/project/drupal.git d7dev

Cloning into d7dev...

remote: Counting objects: 131301, done.

remote: Compressing objects: 100% (36527/36527), done.

remote: Total 131301 (delta 98528), reused 119725 (delta 88369)

Receiving objects: 100% (131301/131301), 38.73 MiB | 554 KiB/s,
done.

Resolving deltas: 100% (98528/98528), done.

$ cd d7dev

3.	 Next, we want to use Git to switch to the latest Drupal 7 release. First, we will
list all of the available releases:

$ git tag -l 7.*

7.0

~

7.1

7.10

7.11

7.12

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

Getting Set up

[24]

4.	 From this list (I removed all of the alpha, rc, and unstable releases), you will see
that the latest release is 7.12, but you should substitute whatever the latest release
may be for you, and use that in the following Git command:

$ git checkout 7.12

Note: checking out '7.12'.

You are in 'detached HEAD' state. You can look around, make
experimental

changes and commit them, and you can discard any commits you make
in this

state without impacting any branches by performing another
checkout.

If you want to create a new branch to retain commits you create,
you may

do so (now or later) by using -b with the checkout command again.
Example:

 git checkout -b new_branch_name

HEAD is now at 4d4080b... Oops. Not yet. ;) Revert "Back to 7.13-
dev."

By using Git, we are linking your download of Drupal to drupal.org's
Git repository for your local core Drupal install. This will facilitate an
easy update process for future Drupal core updates.

5.	 Next, we are going to go through the web-based installation process to set up Drupal.

Mac OS X: Open http://localhost:8888/d7dev/ in your web browser.

Windows: Open http://localhost/d7dev/ in your web browser.

http://localhost:8888/d7dev/install.php

Chapter 1

[25]

You should see the following screen:

6.	 Select the Standard profile, and click on Save and Continue.

7.	 On the Choose language screen, select your language, and click on Save
and Continue.

8.	 On the Database configuration screen, select MySQL. Enter d7dev for the
database name, and root as the database username and password. Click on
Save and Continue.

For a local development site, it is quite convenient to use the root
MySQL user. However, for a live/production site, you should always
create a unique MySQL user and password for your Drupal database.

Getting Set up

[26]

9.	 On the Configure site screen, enter the following values (the e-mail address doesn't
have to be real, but must appear valid):

�� Site name: d7dev

�� Site e-mail address: a valid email address

�� Username: admin

�� E-mail address: same as used for Site e-mail

�� Password and Confirm password: admin (this is only a development
environment, so keep it simple)

10.	 Fill out the rest of the form, and click on Save and continue. Your Drupal site
installation is complete. So click on the Visit your new site link to see the site.

What just happened?
You used Git to get a brand new Drupal 7 site up and running. In the coming chapters, you
will see how useful Git, along with Drush, can be for day-to-day Drupal development.

Chapter 1

[27]

Installing the Aptana Studio IDE
Aptana Studio is an Integrated Development Environment (IDE) that supports PHP
development. An IDE combines many useful tools for development in one application - from
a syntax-aware text editor to integrated debugging, and version control.

Time for action – installing the Aptana IDE
Go to http://www.aptana.com/products/studio3/download, and download the
correct version of the Aptana Studio IDE for your operating system. Double-click on the file
once it has completed downloading, and follow the installer directions to install Aptana Studio.

By no means should you feel like you have to use Aptana Studio. There
are a number of other good IDEs out there, and you may already be
using a different IDE or may just be happy using your favorite text
editor. However, I will be using Aptana Studio throughout the book, so
it may be easier to follow along if you are also using Aptana Studio.

Time for action – creating a new Aptana Studio PHP project
Upon opening Aptana Studio for the first time, you should see the following screen:

http://www.aptana.com/products/studio3/download

Getting Set up

[28]

1.	 Click on the Create Project button, select PHP Project, and click on Next. At this
point, you will see the New PHP Project window:

2.	 You must uncheck the Use default location checkbox, and browse to your new
Drupal 7 install location. For Windows, it is C:\xampp\htdocs\d7dev, and for
Mac OS X, it is /Applications/MAMP/htdocs/d7dev. After you have selected
the location of your new Drupal 7 installation, click on Finish.

Chapter 1

[29]

You will now have a project listing as shown in the following screenshot:

What just happened?
You have set up an IDE and have created a Drupal 7 project. Now, we are ready to start doing
some Drupal development!

Getting Set up

[30]

Drupalize Aptana Studio
Now that you have a new project pointing to your d7dev Drupal installation, let's take a
look around. In your project folder, go to the modules/aggregator folder, and open
the aggegrator.module and aggegrator.pages.inc files. You will notice that the
aggregator.module file does not have any syntax coloring, while the aggegrator.
pages.inc file does. Aptana is not set up to recognize the Drupal-specific file types, such
as *.module and *.install, as PHP files. Also, there are some simple formatting-related
settings that don't follow the Drupal coding standards as specified at http://drupal.org/
coding-standards.

Time for action – setting up the Drupal content type
associations

Content type associations are used in Eclipse-based IDEs, so that the correct file editor is
used for a specific set of file types. The PHP editor is typically only associated with the .php
and .inc file suffixes, but for the Drupal development, we will also want the .install and
.module suffixes associated with the PHP editor.

1.	 In Aptana Studio open up the Preferences menu; for Windows, it is under Window |
Preferences, and for Mac OS X, it is under Aptana Studio 3 | Preferences. Navigate
to General | Content Types.

2.	 Expand the Text section in the Content types list, scroll down to PHP Source, and
select it.

3.	 Click on the Add… button.

4.	 Type *.install for the new Content type association, and click on OK.

Chapter 1

[31]

5.	 Repeat steps 4 and 5 by substituting *.module for the new Content
type association.

6.	 Your final configuration should look similar to the following screenshot:

Getting Set up

[32]

Time for action – installing the Drupal-specific Aptana
formatter profile

The Aptana formatter profile will align the Aptana Studio PHP formatting with the Drupal
coding standards (as outlined at http://drupal.org/coding-standards) as much
as possible.

1.	 In your web browser, go to http://drupalcode.org/sandbox/
kmadel/1249414.git/blob/HEAD:/drupal_aptana_formatter_profile.
xml, right-click on the drupal_aptana_formatter_profile.xml link, select
Save as… or Save link as… (depending on your browser), and click on Save.

2.	 In Aptana Studio, open up Preferences, and go to Aptana | Formatter.

3.	 Click on the Import… button, navigate to and select the file downloaded in the first
step, and click the Open button.

Chapter 1

[33]

4.	 The Active profile: will now show that it is using the Drupal Profile [built-in]. Click on
OK to save the settings.

5.	 For the settings to take effect, you will have to quit and then re-open Aptana Studio.

What just happened?
You have customized Aptana Studio for Drupal development, and the code we write will
be following the Drupal coding standards to the degree that is possible with automatic
Eclipse-based formatting.

Getting Set up

[34]

Drupal.org from a developer's perspective
If you are new to the Drupal development, the first thing that you should understand
is that being a good Drupal developer means being a part of the Drupal community.
Drupal development is very much an open source process, and, as such, it is a community
driven process.

Drupal.org has numerous resources to assist developers of all experience levels. However,
before we can take advantage of all of these resources, you need to be a member of
drupal.org. So, if you haven't already joined drupal.org, now is the time to do so at
http://drupal.org/user/register. Once you are a member, and have logged in to
drupal.org, you will see two primary tabs - Drupal Homepage and Your Dashboard:

As we move forward with the Drupal 7 development, we will return to your drupal.org
dashboard on many occasions to keep a track of issues of the contributed modules that we
are using. We will also utilize the new sandbox development feature that Drupal has added
as part of the migration to Git. Before Drupal switched to Git, a lot of developers hosted
their projects on GitHub as well as in the Drupal CVS-based repository. Working with CVS on
day-to-day development of code became more and more tedious as compared to using new
tools, such as Git. In addition to the numerous developer assets provided by drupal.org, you
will find a number of Git related documentation and tools. We will find in the chapters to
come how important Git is as a tool for using and contributing Drupal code. The following is
a screenshot of one of my Git-enabled sandbox projects on drupal.org:

http://Drupal.org/
http://Drupal.org/
http://drupal.org/
http://drupal.org/
http://drupal.org/
http://drupal.org/

Chapter 1

[35]

Make sure that you know the answers to the following questions before you continue.

Pop quiz – PHP and MySQL configuration for Drupal
1.	 What is the biggest MySQL configuration 'gotcha' in regards to Drupal?

a.	 Setting max_connections to 300

b.	 Setting max_allowed_packet to 16M

c.	 Setting innodb_buffer_pool_size to 300M

Summary
You have reached the end of Chapter 1! You should now have a working Drupal 7 website
and an Aptana Studio IDE-based PHP project to begin doing custom Drupal development.
I know that we haven't actually written any code yet, so I am excited to get started with
some cool development examples in the next chapter. However, this chapter has given us
some tools and configuration tweaks to make the development process much easier and
more fun. Now, we are ready to begin developing for Drupal in earnest.

2
Custom Content Types and an

Introduction to Module Development

The ability to easily define custom content types is a core feature of Drupal,
and what makes Drupal a great system for managing web content. However,
prior to Drupal 7, the contributed CCK module was required to create custom
fields on content types. Now, field-able content types are baked right into
Drupal 7core.

This chapter will walk you through the content types included with Drupal core, and the
creation of a custom Recipe content type. Content type creation will include an overview
of the different field types available in Drupal 7. However, the more interesting aspect of
this chapter will include an initial introduction to module development. We will develop a
custom module to provide a custom field formatter for a field type, provided by the Drupal
core field module. If you don't already know what a field formatter is or what a field type is,
don't worry about it. They will be explained when we walk through the example. Finally, we
will have a brief introduction to the most popular contributed Drupal module - Views - and
begin to explore how the Devel module (http://drupal.org/project/devel) makes
Drupal development easier.

In this chapter we will:

�� Define a custom content type

�� Introduce module development with the creation of a custom field formatter

�� Give a quick introduction to the Views module

�� Use the Devel module to automatically generate content for development purposes

Custom Content Types and an Introduction to Module Development

[38]

Creating custom Recipe content type
In this section, we are going to explore the creation of a custom recipe content type. As
we make our way through each chapter, we will build a website to showcase recipes, and
this Recipe content type will server as the foundation for our Drupal 7 recipe website.
But before we get started, I would like to introduce you to a new administrative feature
introduced with Drupal 7: the administrative toolbar. The administrative toolbar was born
out of the d7UX project (http://www.d7ux.org/). The d7UX project for Drupal 7 focused
on improving the user experience for frequent Drupal administrative tasks. Throughout
this book, I will be directing you to the administrative or admin toolbar. For more in-depth
documentation on the new administrative toolbar for Drupal 7, see http://drupal.org/
documentation/modules/toolbar.

Time for action – creating a custom Recipe content type
The admin toolbar is pictured in the next screenshot, and we will use it to initiate the
creation of a new content type.

1.	 Click on Structure in the admin toolbar, and then click on Content types.

2.	 On the Content types screen, click on the Add content type link.

3.	 Enter Recipe as the Name.

Chapter 2

[39]

4.	 Enter A simple recipe content type based on the schema.org base
HTML5 Microdata schema for Recipes at: http://schema.org/Recipe/.
for the Description.

5.	 For the Title field label, enter name.

The reason for changing the default text for the Title field label from Title
to name, is because we are going to model our Recipe content type from
the HTML5 Microdata-based spec defined at http://schema.org/
Recipe. This will provide a semantic definition of our content for enhanced
search results (Google, Yahoo, and Microsoft are some of the major backers
of schema.org). If you would like to learn more about Microdata, please
see the W3C spec at http://www.w3.org/TR/html5/microdata.
html, or read the in-depth article at http://diveintohtml5.org/
extensibility.html.

6.	 Click on the Save and add fields button (for now we will go with the default content
type configuration for everything else).

Custom Content Types and an Introduction to Module Development

[40]

7.	 Next, delete the Body field that is automatically added to our content type, by
clicking on the delete link, and then confirming by clicking on the Delete button
on the next screen.

8.	 Now, we will add some new fields to our Recipe content type. We will use the Recipe
schema property names as our field names. The first property listed in the table at
http://schema.org/Recipe/ is description. In the Add new field input, type
description. Next to the field_ prefix label in the Name column, once again type
description. Select Long text from the Select a field type drop-down, Text area
(multiple rows) as the widget, and click on the Save button. On the next screen,
click on the Save field settings button.

Chapter 2

[41]

9.	 On the RECIPE SETTINGS page, enter A short description of the item. as the
Help text. Accept the rest of the default settings, and then click on the Save settings
button at the bottom of the page.

10.	 Now, we will move on to the image property. We are going to use an existing field
for this property. In the Add existing field section, enter image for the Label. Select
Image: field_image (Image) from the Field to share drop-down, and click on the
Save button.

11.	 Click on the Save field settings button to accept the default settings on the FIELD
SETTINGS page.

12.	 On the next page, click on the Save settings button to accept the default settings
for RECIPE SETTINGS and IMAGE FIELD SETTINGS.

13.	 The datePublished and author properties will be captured by the core Drupal
node properties, and we will be skipping the rest of the Properties from
CreativeWork for now.

14.	 For the cookTime property, the settings will be—label: cookTime, name:
field_cooktime, type: Integer, widget: Text field (the default).

15.	 Click on Save, and accept the default settings on the next page, by clicking on the
Save field settings button.

16.	 On the next page, enter The time it takes to actually cook the dish in
minutes. as the Help text, enter minute|minutes as the Suffix under RECIPE
SETTINGS, and click on the Save settings button.

17.	 Along with cookingMethod, we will be skipping the nutrition, recipeCategory,
recipeCuisine, and totalTime properties for now. We will add these properties
later on in the book.

Custom Content Types and an Introduction to Module Development

[42]

18.	 For the ingredients property, the settings will be—label: ingredients, name:
field_ingredients, type: Text, widget: Text field (the default). Click on the
Save button. On the next screen, accept the default setting of 255 for Maximum
length, and click on the Save field settings button.

19.	 On the RECIPE SETTINGS page, enter An ingredient used in the recipe. as
the Help text, and Unlimited for the Number of values. Accept the rest of the
default settings, and click on the Save settings button at the bottom of the page.

20.	 For the prepTime property, the settings will be—label: prepTime, name:
field_preptime, type: Integer, widget: Text field (the default). Click on
Save, and accept the default settings on the next page by clicking on the Save
field settings button. On the next page, enter The length of time it takes
to prepare the recipe in minutes. as the Help text, and minute|minutes
as the Suffix under the RECIPE SETTINGS. Click on the Save settings button.

21.	 For the recipeInstructions property, the settings will be—label:
recipeInstructions, name: field_recipeinstructions (uppercase letters
are not allowed for field names), type: Long text, widget: Text area (multiple
rows). Click on Save, and accept the default settings on the next page by clicking
on the Save field settings button. On the next page, enter The steps to make the
dish. as the Help text under the RECIPE SETTINGS page, and click on the Save
settings button.

22.	 For the recipeYield property, the settings will be—label: recipeYield, name:
field_recipeyield, type: Text, widget: Text field (the default). Click on the
Save button. On the next screen, accept the default setting of 255 for Maximum
length, and click on the Save field settings button.

23.	 On the RECIPE SETTINGS page, enter The quantity produced by the recipe
(for example, number of people served, number of servings, and so
on). as the Help text. Accept the rest of the default settings, and click on the Save
settings button at the bottom of the page.

Chapter 2

[43]

24.	 You should now have a Manage Fields screen for our Recipe content type that looks
similar to the following screenshot:

What just happened?
Now that we have created the new Recipe content type and modified its fields, let's create a
new recipe by clicking on the Add content link in the shortcut bar, and then click on the link
for Recipe. Here is my recipe for Awesome Sauce that you may use, but you are welcome to
add any recipe you like:

�� Name: Awesome Sauce

�� Description: A deliciously sweet and spicy sauce that makes everything you
put it on that much awesomer. A little goes a long way...

Custom Content Types and an Introduction to Module Development

[44]

�� Ingredients:

�� One ghost pepper (optional)

�� Two habanero peppers

�� Three Thai peppers

�� Four jalapeno peppers

�� Four garlic cloves

�� Three cups of rice vinegar

�� One tea spoon of fish sauce

�� One cup of sugar

�� recipeInstructions:

1.	 Remove the stems from the peppers.

2.	 Add the peppers and garlic to a food processor, and blend until pureed.

3.	 Add vinegar, sugar, fish sauce, and puree to a small saucepan, and bring to a
simmer over low heat.

4.	 Simmer sauce for 20 to 30 minutes, until the sugar has completely dissolved.

5.	 Remove the saucepan from the burner, and let stand for 10 minutes.

6.	 Your Awesome Sauce is ready to serve, or it can be refrigerated for up to
three weeks.

Thai peppers and fish sauce are typically available in most Asian markets.
Ghost peppers are typically considered to be the hottest pepper in the
world, and may be left out for those that have a little less tolerance for
heat, or if you aren't able to find them.

�� Yield: 12 Servings

�� prepTime: 10 minutes

�� cookTime: 30 minutes

Chapter 2

[45]

When you are done, you will have a recipe page that looks similar to the following screenshot:

What just happened?
We created a custom Recipe content type, and added a recipe to the site.

Developing a custom module
Although the integer field type seems to be the best choice for the duration-related fields
(cookTime and prepTime) in our Recipe content type, it would be nice if 60 minutes was
displayed as 1 hour, and 90 minutes was displayed as 1 ½ hours. One way we can make this
happen is to develop a custom module to create a custom field formatter that will display
the duration related fields of cookTime and prepTime as hours, instead of minutes.

Custom Content Types and an Introduction to Module Development

[46]

Module development is an important building block of the Drupal CMS, and it is helpful to
understand that, generally speaking, there are three different types of Drupal modules:

1.	 A core module is any module that comes pre-packaged with Drupal.

2.	 A contrib or contributed module is any module that is available to download from
http://drupal.org/download, and is not part of the Drupal core.

3.	 A custom module is basically any module that is not a core or contrib module, and
is the type of module we will be developing in this chapter. Sometimes, a custom
module will be contributed to Drupal.org, but there are many custom modules that
will be so specific to your Drupal site that it does not make sense to share them as
contrib modules. We will be developing a custom module to format our duration-
related Recipe content type fields.

Now that we know what type of module we are developing, there are some minimum
requirements for Drupal module development that we need to understand, so that our
custom module is correctly recognized as a module by Drupal. A custom module requires
two files in a folder of the same name, which is placed in a modules directory, located
somewhere within the sites directory. Typically, custom and contrib modules are placed in
the sites/all/modules directory, but they may also be placed in a sites/{name_of_
site}/modules (a sub-site directory) directory for multi-site Drupal installations, where
you would like them to only be available to those particular sites. More importantly, the two
required files for a functional Drupal module are as follows:

�� The .info file: This is a configuration file that allows you to specify certain
defined properties—some required and some optional, which provide
information for Drupal to process/handle the custom module

�� The .module file: This is the file that will have all of the PHP code for our
custom module

When developing the custom code that interacts with the existing Drupal core module code
or contrib module code, you will typically use a Drupal programming mechanism referred
to as a hook. A hook provides a way to inject your custom code into the processing of the
existing code. A list of the core field.module-related hooks is available at: http://api.
drupal.org/api/drupal/modules--field--field.api.php/7.

In the case of the custom module that we are going to develop, we will be implementing two
hooks from the core field.module:

1.	 hook_field_formatter_info: This hook informs Drupal that our custom module
has a field formatter.

2.	 hook_field_formatter_view: This hook is called by Drupal as part of the
rendering process, for any field with our custom formatter applied to it.

Chapter 2

[47]

Time for action – developing a custom module
Now we are ready to develop a custom Drupal module for our d7dev site!

1.	 Open Aptana Studio.

2.	 In the sites/all/modules directory, create a new folder named custom,
and then create a new folder named d7dev within that folder.

3.	 Now, in the d7dev folder create two new files – d7dev.info and
d7dev.module, by right-clicking on the d7dev folder and selecting
New file from the contextual menu.

4.	 Open the d7dev.info file, and add the required info file properties of
name, description, and core, and add the optional package property
as displayed in the following code snippet:

name = d7dev
description = Custom module for misc custom functionality.
core = 7.x
package = Custom

files[] = d7dev.module

Although the package property is an optional property, adding it will
make the management and organization of modules easier to maintain,
as any custom module that you develop and associate to the Custom
package will be organized as such on the Modules administrative screen.

Now, we will turn our attention to the module file. Any time that you implement a hook in
your code, you just replace the prefix hook with the name of your module, so the two hooks
that we will be implementing will become the d7dev_field_formatter_info and the
d7dev_field_formatter_view functions. We can use the code from the core Drupal
number.module (part of the field module) as a starting point for developing the code for
these two hooks.

1.	 In Aptana Studio, open the number.module file located in the d7dev/modules/
field/modules/number directory.

2.	 For our first hook, find the number_field_formatter_info function,
copy the first 15 lines of the code, and paste them at the top of our custom
\d7dev.module file.

3.	 Replace the 'number' part of the function name with d7dev.

Custom Content Types and an Introduction to Module Development

[48]

4.	 Remove the comma on line 16.

If you don't see any line numbers in your editor in Aptana Studio, right-click on
the left margin area of the Aptana Studio PHP editor screen, and select Show Line
Numbers in the displayed dialog-box. See the following screenshot for reference:

5.	 Close the array being returned, with a right parentheses and a semi-colon.

6.	 Next, close the function with a right curly bracket.

7.	 Then, remove the settings sub-array.

8.	 Next, rename the 'label' from Default to Duration.

9.	 Finally, rename the formatter from number_integer to d7dev_integer_
duration.

At this point, your code should look similar to the following:

<?php
/**
 * Implements hook_field_formatter_info().
 */
function d7dev_field_formatter_info() {
 return array(
 'd7dev_integer_duration' => array(
 'label' => t('Duration'),
 'field types' => array('number_integer'),
)
);
}

Chapter 2

[49]

Now, we will move on to the second hook that we will be implementing.

1.	 Copy the number_field_formatter_view function from the number.module,
and paste it after our d7dev_field_formatter_info function.

2.	 Once again, rename the function to reflect our module name.

3.	 Next, in the switch statement, remove the case statements for number_integer
and number_decimal.

4.	 Rename the case for number_unformatted to match the name for our custom
formatter – d7dev_integer_duration.

5.	 Now, we will add some simple math to convert the integer-based field to hours and
minutes, with the following code at the top of the foreach loop:

//some simple math to covert the duration minutes to hours and the
//remainder as minutes
$hours = floor($item['value']/60); //divide by minutes in 1 hour
//and get floor

$minutes = $item['value']%60; //use the modulus to get the //
remainder of minutes

6.	 Next, we want to convert the remainder of minutes to a fraction of an hour, but
we will first need to add the following helper function to get the greatest common
denominator of our remainder minutes over 60:

//simple helper function to get gcd of minutes
function gcd($a, $b) {
 $b = ($a == 0)? 0 : $b;
 return ($a % $b)? gcd($b, abs($a - $b)) : $b;
}

7.	 Now, we can convert our remainder of minutes to a fraction of an hour with the
greatest common denominator, and format the results to be returned as the markup
for our custom formatter:

//get greatest common denominator of minutes to convert to //
fraction of hours
$minutes_gcd = gcd($minutes, 60);

//⁄ is the html entity for the fraction separator, and we //
use the sup and sub html element to give
//the appearance of a fraction

Custom Content Types and an Introduction to Module Development

[50]

$minutes_fraction = '<sup>' . $minutes/$minutes_gcd .
 '</sup>⁄_{' . 60/$minutes_gcd . '}';

$markup = $hours > 0 ? $hours . ' and ' . $minutes_fraction . '
 hours' : $minutes_fraction . ' hours';

//finally, return our formatted value as the markup for this field
//formatter
$element[$delta] = array('#markup' => $markup);

8.	 When you are done, the d7dev_field_formatter_view function should look
similar to the following:

/**
 * Implements hook_field_formatter_view().
 */
function d7dev_field_formatter_view($entity_type, $entity, $field,
 $instance, $langcode, $items, $display) {
 $element = array();
 $settings = $display['settings'];

 switch ($display['type']) {

 case 'd7dev_integer_duration':
 foreach ($items as $delta => $item) {
 //some simple math to covert the duration minutes to hours
 //and the remainder as minutes

//divide by minutes in 1 hour and get floor
 $hours = floor($item['value']/60);

//use the modulus to get the remainder of minutes
 $minutes = $item['value']%60;

//get greatest common denominator of minutes to convert to
fraction of hours
 $minutes_gcd = gcd($minutes, 60);

//⁄ is the html entity for the fraction separator, and we //
use the sup and sub html element to give the appearance of a //
fraction
 $minutes_fraction = '<sup>' . $minutes/$minutes_gcd .
 '</sup>⁄_{' . 60/$minutes_gcd . '}';

Chapter 2

[51]

 $markup = $hours > 0 ? $hours . ' and ' . $minutes_
fraction . ' hours' : $minutes_fraction . ' hours';

//finally, return our formatted value as the markup for this field
//formatter
 $element[$delta] = array('#markup' => $markup);
 }
 break;
 }

 return $element;
}

We are not quite done. Now that we have created a custom formatter, we need to use it.
We need to enable our new module by clicking on Modules in the Admin toolbar.

1.	 Now, on the Modules admin screen, scroll down to the Custom section, and check
the ENABLED checkbox next to our d7dev module.

2.	 Earlier we used our new custom formatter with our Recipe content type fields. We
need to click on Configuration in the Admin toolbar, click on Performance under the
DEVELOPMENT section, and then click the Clear all caches button.

Drupal caches the field formatters that are available for a given field type, and we
must clear this cache in order for our new custom formatter to be available in the
upcoming steps.

3.	 Now, with our new module enabled, select Structure in our administrative toolbar,
and then select Content Types.

4.	 On the Content types screen, select manage display for our Recipe content type.

Custom Content Types and an Introduction to Module Development

[52]

5.	 Now, for the two duration related fields, cookTime and prepTime, select Duration
as the FORMAT, and click on the SAVE button.

6.	 Now, view the Recipe content item that we created earlier, and you will see
something similar to the following screenshot:

Chapter 2

[53]

What just happened?
We have created a custom module that will allow us to format our Recipe content duration
fields the way we want – integers converted to hours and fractions of hours.

Quick introduction to Views
It is with good reason that the Views module is the most-installed Drupal 7 contributed
module. The Views module offers a very unique way to create custom 'views' of your content
that is powerful, flexible, and easier than ever with the new version of Views for Drupal 7. In
later chapters, we will dive deeper into custom development for Views, but for now, we will
just use Views to quickly create a block, listing all of the site's Recipe content to be displayed
on the front page.

A block refers to one of the primary site components of a Drupal site.
For the most part, any content on a Drupal page that is not part of the
content item or node being displayed, is usually a block. Drupal core
includes a number of system blocks, and the Views module allows you
to create views as blocks. If you are not familiar with blocks, take a
second to familiarize yourself with the blocks administrative page at
/admin/structure/block.

Time for action – installing the Views module
We are going to use Drush to download and install the Views module. Start by opening
a Command Prompt for Windows or Terminal for Mac. Change to your d7dev project
directory, and type the following command:

C:\xampp\htdocs\d7dev>drush dl views

Project views (7.x-3.3) downloaded to [success]

C:/xampp/htdocs/d7dev/sites/all/modules/views.

Project views contains 2 modules: views, views_ui.

It is worth mentioning that Drupal 7 added the ability to install and
update modules that are hosted on Drupal.org, directly with the
administrative UI. You should definitely check it out. But once you
begin custom development for Drupal, and start using Drush, you
will find it to be an indispensable time saver.

Custom Content Types and an Introduction to Module Development

[54]

You will see that Views includes two modules: views and views_ui. We want both
the modules, so to save typing an extra Drush command, we will enable the views_ui
module, and Drush will automatically take care of enabling all module dependencies – in
this case, views and ctools. When prompted to download the unmet dependencies,
type y, and hit Enter.

C:\xampp\htdocs\d7dev>drush en views_ui

The following projects have unmet dependencies:

views_ui requires ctools

Would you like to download them? (y/n): y

Project ctools (7.x-1.0-rc1) downloaded to [success]

C:/xampp/htdocs/d7dev/sites/all/modules/ctools.

The following extensions will be enabled: views_ui, ctools, views

Do you really want to continue? (y/n): y

ctools was enabled successfully. [ok]

views_ui was enabled successfully. [ok]

views was enabled successfully. [ok]

So now that you have the most popular Drupal module downloaded and enabled, let's create
a Views block of recipes to be displayed on the front page.

Time for action – creating a recipe block listing with Views
We will see just how easy the new Views modules makes it to display a list of recipes on our
d7dev site.

1.	 If you aren't already logged into your site, log in as admin, click on the Structure
link in the Admin toolbar, and click on the Views link in the subsequently loaded
Structure menu page.

Chapter 2

[55]

2.	 On the next screen, the Views listing pages, click on the Add new view link near the
top of the page.

3.	 Next, you will see the new creation wizard page for Views 3. Enter Recipe List as
the View name.

4.	 Select Recipe as the of type dropdown.

5.	 Uncheck the Create a page checkbox.

6.	 Check the Create a block checkbox.

Custom Content Types and an Introduction to Module Development

[56]

7.	 Accepting all of the default values for creating a block, your page should look similar
to the following screenshot. If everything is entered correctly, click on the Save &
exit button.

Now, we need to configure our d7dev site, so that our Recipe List Views-based block shows
up on the front page.

1.	 Click on the Structure link in the Admin toolbar, and select Blocks.

2.	 On the next page, scroll to the bottom of the page, and click on the configure
link for the View: Recipe List block (the block we just created with Views).

3.	 Leave the Block title field blank because that way, the title will default to the
title we added above in the Views creation wizard.

4.	 Under REGION SETTINGS, select Sidebar second from the Bartik (default
theme) dropdown.

Chapter 2

[57]

5.	 Under the Visibility settings and the Pages tab, select Only the listed pages radio
button under Show block on specific pages, and enter <front> in the text area.
Check that your screen should look similar to the following screenshot, and click on
Save block.

Custom Content Types and an Introduction to Module Development

[58]

What just happened?
You have now created a Views-based block of recipes, and configured it so that it will only
be displayed on the front page. Now, when you visit the front page of our d7dev site at
http://localhost/d7dev/, you will have a nice Recipe List block on the right side of
the page.

Introducing the Devel module
So, in the previous section, we saw how easy it was to create a custom Views-based block
for displaying a list of the recipes on the front page. One thing that you will notice right away
is that there is only one recipe showing up, because, so far, we have only created one. You
may also recall that when we created the Recipe List block with Views, we left the setting
for Items per page at the default value of 5. Now, it would be nice to be able to test that
setting, without needing to manually create four more recipe items. Enter the Devel module
- http://drupal.org/project/devel. The Devel module includes a number of sub-
modules that makes Drupal development easier; and the one we are interested in to help us
out with content creation for development purposes is the devel_generate module.

Time for action – installing the Devel Generate content module
Using Drush to install modules should start becoming somewhat routine at this point. We
will use Drush to download and install the Devel module to include its devel_generate
sub-module.

Chapter 2

[59]

C:\xampp\htdocs\d7dev>drush dl devel

Project devel (7.x-1.2) downloaded to [success]

C:/xampp/htdocs/d7dev/sites/all/modules/devel.

Project devel contains 3 modules: devel_generate, devel, devel_node_
access.

C:\xampp\htdocs\d7dev>drush en devel_generate

The following extensions will be enabled: devel_generate, devel

Do you really want to continue? (y/n): y

devel_generate was enabled successfully. [ok]

devel was enabled successfully. [ok]

Now, with the devel_generate module enabled, we are going to generate some Recipe
content, so that we can test the number of items in our Recipe List block.

Time for action – generating content with the devel_generate
module

Now, with the devel_generate module enabled, we are going to generate some Recipe
content, so that we can test the number of items in our Recipe List block view.

1.	 First, click on the Configuration link in the admin toolbar, and then click on the
Generate content link under the DEVELOPMENT section.

2.	 On the Generate content page, uncheck all of the Content types checkboxes,
except for the one for Recipe.

Custom Content Types and an Introduction to Module Development

[60]

3.	 Stick with the default values for all of the rest of the settings, and click on the
Generate button at the bottom of the page.

4.	 Now, navigate to the home page, and you will see the Recipe List block fully populated.

What just happened?
Although this is a very simple example of using the devel_generate module, being able
to generate content can be a big time saver when testing custom code that requires
multiple content items. We just used the devel_generate module to generate some
dummy content, based on our custom Recipe content type, and now our Recipe List block
on the home page should look similar to the following screenshot:

Summary
In this chapter, we have explored some fundamental Drupal concepts around content
types and fields, and had a quick introduction to the Views and Devel modules. But more
importantly, we have started doing Drupal development by developing a module that
provides a custom field formatter for integer fields. In the chapters to come, we will continue
to build on our module development skills, and eventually learn what it takes to develop a
contrib module versus a custom module.

3
HTML5 Integration for Drupal 7 and

More Module Development

HTML5 is not exactly new on the technology scene. If you have done any
mobile web development, then you will certainly know how prevalent HTML5 is
becoming. Even though there is an active initiative around HTM5 for Drupal 8
(http://drupal.org/community-initiatives/drupal-core/html5),
the adoption of HTML5 was not far enough along to be included as part of
Drupal 7 core.

HTML5 is one of the main ingredients of many of the upcoming development
examples in this book.

In this chapter, we will explore some of the different modules and options for using HTML5
with Drupal 7, and we will enhance our custom-developed d7dev module to include certain
HTML5 features.

Modules are a key element of what makes Drupal so attractive for both developers and
non-developers. The multitude of available contributed modules makes Drupal attractive
to non-developers looking for certain features, while the ease of module development and
integration of such modules, with Drupal core, and other contributed modules, is what
makes Drupal popular with developers.

HTML5 Integration for Drupal 7 and More Module Development

[62]

Evidence of this popularity is displayed by the availability of almost 10,000 contributed
modules on http://drupal.org/project/modules/. Therefore, in addition to updating
our existing module with the HTML5 features, we will continue the development emphasis
on module development. We are going to develop a new compound field module.

This chapter, with its HTML5-driven code examples, will serve as a foundation for many of
the code examples in the following chapters.

Chapter 3

[63]

First things first—changing our DOCTYPE
The DOCTYPE of our content may seem like an odd thing to be mentioning at this point.
However, since HTML5 will be a major concept and building block for the rest of this book,
it is important to get off to a good start. This all starts with the HTML5 DOCTYPE.

Drupal 7 defaults to an XHTML DOCTYPE:
<!DOCTYPE html PUBLIC "-//W3C//DTD
XHTML+RDFa 1.0//EN" "http://www.w3.org/
MarkUp/DTD/xhtml-rdfa-1.dtd">

Whereas the HTML5 DOCTYPE is much simpler:
<!DOCTYPE html>

The HTML5 DOCTYPE is fully supported by all modern browsers,
so at this point, there is not a good reason for not using it.

The DOCTYPE is hardcoded in the html.tpl.php file, and can be overridden in any theme,
by creating your own version of that template file. However, we aren't currently using a
custom theme (that's coming in the next chapter), and we don't want to modify any of the
core themes (see the following information box for an explanation of why you shouldn't
modify or hack core). So, there is a simple solution: the contrib HTML5 Tools module.

Do not hack core. This is a phrase that you will come across
time and time again, as you do more and more custom Drupal
development. The basic idea behind the phrase is that Drupal
provides so many ways to modify the behavior of a Drupal site
without modifying any core modules, themes or other files,
that you will only cause yourself unnecessary grief in regards
to upgrading core, and dealing with possible core issues if you
start modifying core. An in-depth explanation of why it is a bad
practice to hack core can be found at http://drupal.org/
best-practices/do-not-hack-core.

HTML5 Integration for Drupal 7 and More Module Development

[64]

Time for action – installing the HTML5 Tools module
The HTML5 Tools module (http://drupal.org/projects/html5_tools) will provide
an HTML5-compliant DOCTYPE and will provide support for other HTML5 features.

Once again, we will use Drush to download and enable the module.

C:\xampp\htdocs\d7dev>drush dl html5_tools

Project html5_tools (7.x-1.1) downloaded to [success]

C:/xampp/htdocs/d7dev/sites/all/modules/html5_tools.

C:\xampp\htdocs\d7dev>drush en html5_tools

The following projects have unmet dependencies:

html5_tools requires elements

Would you like to download them? (y/n): y

Project elements (7.x-1.2) downloaded to [success]

C:/xampp/htdocs/d7dev/sites/all/modules/elements.

The following extensions will be enabled: html5_tools, elements

Do you really want to continue? (y/n): y

elements was enabled successfully. [ok]

html5_tools was enabled successfully. [ok]

In addition to providing an HTML5-compliant DOCTYPE (that is enabled, by default, just
by enabling the module), the HTML5 Tools module, and its dependent Elements module
(http://drupal.org/projects/elements), a number of other HTML5 features
provided by the HTML5 Tools module include the following:

�� Overrides Drupal core forms with HTML5 counterparts

�� Simplifies the head markup for HTML5 specified style, javascript,
and meta tags

�� Uses the new HTML5 time element for content and comments publication dates

For a more comprehensive listing and explanation of what the HTML5 Tools modules
does, take a look at the administrative configuration page for HTML5 Tools by selecting
Configuration from the Admin toolbar, and selecting the HTML5 Tools link from the
Markup section.

Chapter 3

[65]

HTML5, RDFa, and Microdata
As we discussed in the previous chapter, one aspect of HTML5 is semantic markup, or
the ability to describe your content in a meaningful way with a vocabulary, and apply
the vocabulary to the markup of your content. Drupal 7 has such a semantic capability
baked right into core, and it is called RDFa. However, the way that RDFa is integrated
with Drupal 7 is not HTML5-compliant. Furthermore, although RDFa will be supported
by HTML5, the HTML5 Microdata specification (http://dev.w3.org/html5/md/)
was specifically designed with HTML5 in mind, and there is a Microdata module for
Drupal 7 (http://drupal.org/project/microdata).

HTML5 Integration for Drupal 7 and More Module Development

[66]

So, let us enhance our d7dev Recipe content type with some HTML5 Microdata that will
make it semantically identified as an http://schema.org/Recipe item.

This section is not intended to start a flame war, and is not trying to
make the point that Microdata is better than RDFa. Or, that Drupal
7 made a big mistake by including the XHTML flavor of RDFa instead
of HTML5 RDFa or Microdata. The HTML5 version of RDFa, and for
that matter Microdata, didn't even exist when the new feature set for
Drupal 7 was frozen. The point of this section is that things change
in the web world between major Drupal releases, and sometimes
those changes need to be addressed sooner rather than later. This is
the real point of this section: showing how easy it is to adapt Drupal
to the latest and the greatest new web standards. The Microdata
schema that we are going to associate with our Recipe content type is
part of the schema.org project that is backed by Google, Yahoo, and
Microsoft. If you would like to learn more about Microdata, you can
find an excellent introduction to understanding and using Microdata
at: http://diveintohtml5.org/extensibility.html.

Time for action – installing the Microdata module
Once again, we are going to use Drush to download and install the Microdata module. Start
by opening a Command Prompt for Windows or Terminal for Mac, change to your d7dev
working folder, type the following commands, and you should see the following responses:

C:\xampp\htdocs\d7dev>drush dl microdata

There is no recommended release for project microdata.

Choose one of the available releases:

 [0] : Cancel

 [1] : 7.x-1.x-dev - 2012-Feb-24 - Development

 [2] : 7.x-1.0-alpha4 - 2012-Feb-22 - Supported

2

Chapter 3

[67]

Project microdata (7.x-1.0-alpha4) downloaded to [success]

C:/xampp/htdocs/d7dev/sites/all/modules/microdata.

C:\xampp\htdocs\d7dev>drush en microdata

The following projects have unmet dependencies:

microdata requires entity

Would you like to download them? (y/n): y

Project entity (7.x-1.0-rc1) downloaded to [success]

C:/xampp/htdocs/d7dev/sites/all/modules/entity.

The following extensions will be enabled: microdata, entity

Do you really want to continue? (y/n): y

entity was enabled successfully. [ok]

microdata was enabled successfully. [ok]

Drush will actually modify the database of your Drupal installation
when running certain commands, such as drush en. In order for
Drush to modify the correct database, you must run the Drush
command within the root Drupal install folder of your Drupal
site. Otherwise, you would have to include which specific Drupal
instance you would like Drush to modify with the –r argument:
drush -r /Applications/MAMP/htdocs/d7dev

What just happened?
We have now installed the Microdata module and the Entity module as its dependency.
Now that we have installed the Microdata module, let us put it to use, before we move
on to some more development examples. We will configure our Recipe content type and
its fields to utilize the functionality of the Microdata module.

HTML5 Integration for Drupal 7 and More Module Development

[68]

Time for action – configuring Microdata for our Recipe
content type

1.	 Navigate to the Structure | Content Types page, and select the edit link for
our Recipe content type.

2.	 On the Recipe content type edit page, select the Microdata settings tab, and
you will see a screen similar to the following, only without values in the Field
property(s) input:

3.	 Type http://schema.org/Recipe as the value for the Item Type field, and
name as the value for the Itemprop(s) for title field field. Click on the Save
content type button.

4.	 Now, click on the Home button at the far left of the Admin toolbar, and select any
of the Recipe content items from our Recipe List block on the right side of the page.

5.	 Next, right-click anywhere on the recipe item page, and select View source (IE) or
View Page Source from your browser's menu.

Chapter 3

[69]

6.	 In the source view of our page, scroll down to approximately line 182, and look for
the following markup. You will see that the Microdata itemscope and itemtype
attributes have been set on the enclosing DIV of our recipe content node:

<div id="node-51" class="node node-recipe node-promoted node-full
 clearfix" itemid="/d7dev/node/51" itemscope=""
 itemtype="http://schema.org/Recipe">.

7.	 However, if you inspect the HTML source any further, you will notice that none
of the fields of our Recipe content node have any Microdata attributes applied to
them. For example, the DIV wrapper for our description field will look as follows:

<div class="field field-name-field-description field-type-text-
long field-label-above">

8.	 As previously mentioned in this chapter, the Microdata module supports the ability
to specify the itemProp values for any text field type. So, from the Admin toolbar,
select Structure | Content types, and select the manage fields link for our Recipe
content type.

9.	 Click on the edit link for the description field, and scroll down to the Description
Microdata Mapping section on the description field edit page. Referring to the
http://schema.org/Recipe definition, we will set the Field property(s) input
to description, as shown in the following screenshot:

The node id will most likely not be exactly the same in your environment,
so look for a DIV element with the class as specified previously.

HTML5 Integration for Drupal 7 and More Module Development

[70]

10.	 Click on the Save settings button to save the updated configuration for the
description field.

11.	 Now, we will repeat the same steps for the rest of the text fields for our Recipe
content type, setting Field property of each under the Description Microdata
Mapping section accordingly:

ingredients ingredients

recipeInstructions recipeInstructions

recipeYield recipeYield

12.	 Now, to test the output of the Microdata module, we will once again click on the
Home button at the far left of the Admin toolbar, and select any of the recipe
content items from our Recipe List block on the right side of the page.

13.	 Next, right-click anywhere on the recipe item page, and select View source (IE) or
View Page Source from your browser's menu.

14.	 In the source view of our page, scroll down to approximately line 191, and look for
the following markup:

<div class="field field-name-field-description
 field-type-text-long field-label-above">
 <div class="field-label">
description:
</div>
<div class="field-items">
 <div class="field-item even" itemprop="description">

What just happened?
We enhanced our Recipe content type with Microdata metadata.

Earlier in its development, the Microdata module did not support the Drupal core
number_integer field type, the field type that we used for the prepTime and
cookTime fields of our Recipe content type. In order to provide the ability to enable
the Microdata field properties for the cookTime and prepTime integer fields on our
Recipe content type, we just need to implement the hook_field_info_alter hook,
just as the Microdata module did for image and text fields.

Chapter 3

[71]

The latest release of the Microdata module at the time of the publishing of this book,
7.x-1.0-alpha4, actually included support for integer fields. Therefore, you will not
need to add the following code to your custom d7dev module; rather, this code example
illustrates the power of the Drupal community at work, by showing how local changes can
eventually make their way back into core and the contributed module code.

Take a close look at this screenshot, and you will see that at one point, the Microdata
module only supports field mappings for the image field and text fields. So, in order to add
support for the number_integer field, all we would have to do is implement the hook_
field_info_alter hook just as the Microdata module. But for the number_integer
field, the code would look something as follows:

/**
 * Implements hook_field_info_alter().
 */
function d7dev_field_info_alter(&$info) {
 $info['number_integer']['microdata'] = TRUE;
}

That is all it would take to add the Microdata support for core integer fields.

HTML5 Integration for Drupal 7 and More Module Development

[72]

Drupal Shortcut Bar

There are many Drupal core hooks that require you to clear the Drupal
cache in order for them to take effect. The hook_field_info_alter
hook is such a hook, and it can get somewhat tiresome navigating to the
Performance administrative page over and over again, when testing some
new code. Luckily, Drupal 7 added the administrative UX component called
the shortcut bar. The shortcut bar allows you to create a shortcut link
to any administrative page. So, we can use this functionality to add the
Performance settings page to our shortcut bar. Click on the plus icon next to
the Performance heading, and it will show up as a link in your shortcut bar.

And notice after you add it, there is a minus icon next to the Performance
heading. Therefore, you can easily remove the shortcut if you decide you
don't use it much anymore, or your shortcut bar is getting crowded.

Anytime that you find yourself going to a certain administrative
configuration page over and over, you should add it to your shortcut bar.

Drupal development and the Drupal community
As discussed in Chapter 1, Getting Set up, being a good Drupal developer means being aware
of and active in the Drupal community. We have an opportunity to share this small bit of
code we wrote with the Drupal community by adding an issue to the Microdata project
issue queue (http://drupal.org/project/issues/microdata), suggesting that the
Microdata module should add support for the core number field. This will not only help
other Drupal users who would like this capability, it will also be custom code that we will no
longer have to support by ourselves if it gets added to the Microdata module.

Chapter 3

[73]

Time for action – creating issues in Contrib modules' issue
queues

I am going to follow my own advice, and walk you through the process of adding an issue to
a Drupal module's issue queue.

1.	 Open a browser, log into http://drupal.org, and navigate to http://drupal.
org/project/issues/microdata.

2.	 Click on the Create new issue link under the Issues for Microdata heading.

3.	 Next, fill out all of the fields for Create Issue form. Here is a screenshot of the issue
that I submitted for adding support for number field types:

4.	 After you are done filling out the form, click on the Save button at the bottom of
the page.

HTML5 Integration for Drupal 7 and More Module Development

[74]

What just happened?
We created an issue in the Microdata module issue queue, and if we follow up with the
issue at http://drupal.org/node/1291634, we will see that the module maintainer
has actually implemented our feature request issue.

Time for action – adding Microdata mappings for Recipe
number_integer fields

Now that the Microdata supports the number_integer fields, we will update all of our
Recipe content type number_integer fields with a Microdata mapping.

1.	 Now, go back to the field settings page for the cookTime field, and you will see
that we now have the Field property(s) input. So, go ahead and enter cookTime
in that field.

Chapter 3

[75]

2.	 Now, once again we will navigate to a Recipe content item page, and view the HTML
source. The cookTime field will look as follows:

<div class="field field-name-field-cooktime field-type-number-
 integer field-label-above">
 <div class="field-label">cookTime: </div>
 <div class="field-items">
 <div class="field-item even" itemprop="cookTime">
 84 and
 ¹⁴⁄
 ₁₅ hours
 </div>
 </div>
</div>

3.	 Finally, go back to the Recipe content type manage fields screen, and repeat the
previous steps for the prepTime field.

What just happened?
We enabled the Microdata support for the number_integer fields of our Recipe
content type.

Now, all of the fields of our current Recipe content type fields are associated with Microdata
properties. With the help of the contributed Microdata module, adding Microdata support
for our cookTime and prepTime Recipe fields was a straightforward task.

NutritionInformation module
One of the http://schema.org/Recipe properties that we did not include with our
Drupal Recipe content type is the NutritionInformation property. The reason for that
is because the NutritionInformation property is itself an itemType from http://
schema.org, and as such is made up of a number of its own individual properties. In order
to add NutritionInformation to our custom Recipe content type, we are going to need
to create a custom Drupal compound field module that is based on the specification at
http://schema.org/NutritionInformation.

HTML5 Integration for Drupal 7 and More Module Development

[76]

Time for action – developing a custom module for a compound
NutritionInformation field

Rather than adding the code to create this compound field to our existing module, we are
going to create a new module, as it is possible that it is something that could be useful to the
Drupal community as a whole, and we may want to eventually contribute it to drupal.org.

1.	 In Aptana Studio, create a new folder named nutritioninfo in the /sites/
all/modules/custom directory.

2.	 Create the .module, .info, and .install files with the same name as the
folder - nutritioninfo, and you should have a folder that looks similar to
the following screenshot:

3.	 Now, open the nutrtioninfo.info file and add the following configuration:

name = Nutrition Information Field
description = Defines a nutrition information field type based on
the Microdata spec at http://schema.org/NutritionInformation
core = 7.x
package = Fields

4.	 I always find that development is easier when you are able to look at an example.
So, we are going to use Drush to download the contributed Address Field module
(http://drupal.org/project/addressfield) to use as an example for our
own compound field module:

The Address Field module is a good example of a compound field
module. So, the code from that module will provide some good
examples for implementing our own compound field module.

Chapter 3

[77]

C:\xampp\htdocs\d7dev>drush dl addressfield-7.x-1.0-beta2

Project addressfield (7.x-1.0-beta2) downloaded to [success]

C:/xampp/htdocs/d7dev/sites/all/modules/addressfield.

Project addressfield contains 2 modules: addressfield_example,
addressfield.

5.	 So, now that we have downloaded the Address Field module, let's take a look at its
code. In Aptana Studio, open the addressfield.module, and addressfield.
install files located at /sites/all/modules/addressfield.

6.	 Next, we are going to use the following code from the addressfield.install
file as a starting point for our nutritioninfo.install file.

<?php

/**
 * Implements hook_field_schema()
 */
function addressfield_field_schema() {
 $columns = array(
 'country' => array(
 'description' => 'Two letter ISO country code of this
address.',
 'type' => 'varchar',
 'length' => 2,
 'not null' => FALSE,
 'default' => '',
),

7.	 Now, we will rename the function to nutritioninfo_field_schema, so that
our hook_field_schema code looks as follows:

<?php

/**
 * Implements hook_field_schema()
 */
function nutritioninfo_field_schema() {
 $columns = array(
 'country' => array(
 'description' => 'Two letter ISO country code of this
address.',
 'type' => 'varchar',
 'length' => 2,

HTML5 Integration for Drupal 7 and More Module Development

[78]

 'not null' => FALSE,
 'default' => '',
),
);

 return array(
 'columns' => $columns,
);
}

8.	 The hook_field_schema hook (http://api.drupal.org/api/drupal/
modules--field--field.api.php/function/hook_field_schema/7)
allows us to define a database schema for storing our custom field information,
and is automatically detected by Drupal, as long as it is in the .install file of our
module. Now, we need to replace the country column as specified by the code we
copied from the addressfield_field_schema function and add columns for the
rest of the properties defined at http://schema.org/NutritionInformation.

9.	 After adding the column specifications for all of the NutritionInformation
properties, our nutritioninfo_field_schema function will look as follows:

/**
 * Implements hook_field_schema()
 */
function nutritioninfo_field_schema() {
 $columns = array(
 'calories' => array(
 'description' => 'The number of calories.',
 'type' => 'varchar',
 'length' => 255,
 'not null' => FALSE,
 'default' => '',
),
 'carbohydrate_content' => array(
 'description' => 'The number of grams of carbohydrates.',
 'type' => 'varchar',
 'length' => 255,
 'not null' => FALSE,
 'default' => '',
),
 'cholesterol_content' => array(
 'description' => 'The number of milligrams of cholesterol.',
 'type' => 'varchar',

Chapter 3

[79]

 'length' => 255,
 'not null' => FALSE,
 'default' => '',
),
 'fat_content' => array(
 'description' => 'The number of grams of fat.',
 'type' => 'varchar',
 'length' => 255,
 'not null' => FALSE,
 'default' => '',
),
 'fiber_content' => array(
 'description' => 'The number of grams of fiber.',
 'type' => 'varchar',
 'length' => 255,
 'not null' => FALSE,
 'default' => '',
),
 'protein_content' => array(
 'description' => 'The number of grams of protein.',
 'type' => 'varchar',
 'length' => 255,
 'not null' => FALSE,
 'default' => '',
),
 'saturated_fat_content' => array(
 'description' => 'The number of grams of saturated fat.',
 'type' => 'varchar',
 'length' => 255,
 'not null' => FALSE,
 'default' => '',
),
 'serving_size' => array(
 'description' => 'The serving size, in terms of the number
of volume or mass.',
 'type' => 'varchar',
 'length' => 255,
 'not null' => FALSE,
 'default' => '',
),
 'sodium_content' => array(
 'description' => 'The number of milligrams of sodium.',

HTML5 Integration for Drupal 7 and More Module Development

[80]

 'type' => 'varchar',
 'length' => 255,
 'not null' => FALSE,
 'default' => '',
),
 'sugar_content' => array(
 'description' => 'The number of grams of sugar.',
 'type' => 'varchar',
 'length' => 255,
 'not null' => FALSE,
 'default' => '',
),
 'trans_fat_content' => array(
 'description' => 'The number of grams of trans fat.',
 'type' => 'varchar',
 'length' => 255,
 'not null' => FALSE,
 'default' => '',
),
 'unsaturated_fat_content' => array(
 'description' => 'The number of grams of unsaturated fat.',
 'type' => 'varchar',
 'length' => 255,
 'not null' => FALSE,
 'default' => '',
),
);

 return array(
 'columns' => $columns,
);
}

We reformatted the NutritionInformation schema property
names to be all lower case instead of camel case, as lowercase with
underscores is in line with Drupal coding standards. An overview of
Drupal coding standards is available at http://drupal.org/
coding-standards, and we will take a more in-depth look at Drupal
coding standards in Chapter 8, Recipe Lists and More with Views.

Chapter 3

[81]

10.	 Now we are going to move onto the nutritioninfo.module file and will open the
addressfield.module to look at it implementation of hook_field_info. And once
again, we will copy the contents of the addressfield function and paste it into our
nutritioninfo.module file and modify it so that it looks like the following:

/**
 * Implements hook_field_info()
 */
function nutritioninfo_field_info() {
 $fields = array();

 $fields['nutritioninfo'] = array(
 'label' => t('Nutrition Information'),
 'description' => t('A field type used for storing nutrition
information as defined by the Microdata spec at http://schema.org/
NutritionInformation.'),
 'settings' => array(),
 'instance_settings' => array(),
 'default_widget' => 'nutritioninfo_standard',
 'default_formatter' => 'nutritioninfo_default',);

 return $fields;
}

11.	 Now, we are going to implement two more hooks that are required by Drupal 7, when
defining a custom field – hook_field_validate and hook_field_is_empty:

/**
 * Implements hook_field_validate().
 */
function nutritioninfo_field_validate($entity_type, $entity,
$field, $instance, $langcode, $items, &$errors) {
 //at this point we will not validate anything, but will revisit
}

/**
 * Implements hook_field_is_empty().
 */
function nutritioninfo_field_is_empty($item, $field) {
 //the nutrition field is empty if all of its properties are
empty
 return empty($item['calories'])
 && empty($item['carbohydrate_content'])

HTML5 Integration for Drupal 7 and More Module Development

[82]

 && empty($item['cholesterol_content'])
 && empty($item['fat_content'])
 && empty($item['fiber_content'])
 && empty($item['protein_content'])
 && empty($item['saturated_fat_content'])
 && empty($item['serving_size'])
 && empty($item['sodium_content'])
 && empty($item['sugar_content'])
 && empty($item['trans_fat_content'])
 && empty($item['unsaturated_fat_content']);
}

12.	 Next, we need to tell Drupal how to handle our compound field on the node edit
form. We will add hook_field_widget_info to make Drupal aware of our
custom widget, and then hook_field_widget_form to actually add the form
components to the node form:

/**
 * Implements hook_field_widget_info()
 */
function nutritioninfo_field_widget_info() {
 $widgets = array();

 $widgets['nutritioninfo_standard'] = array(
 'label' => t('Nutrition Information form'),
 'field types' => array('nutritioninfo'),),
);

 return $widgets;
}

/**
 * Implements hook_field_widget_form()
 */
function nutritioninfo_field_widget_form(&$form, &$form_state,
$field, $instance, $langcode, $items, $delta, $element) {
 $settings = $form_state['field'][$instance['field_name']]
[$langcode]['field']['settings'];

 $fields = array(
 'calories' => t('Calories'),
 'carbohydrate_content' => t('Carbohydrate Content'),
 'cholesterol_content' => t('Cholesterol Content'),

Chapter 3

[83]

 'fat_content' => t('Fat Content'),
 'fiber_content' => t('Fiber Content'),
 'protein_content' => t('Protein Content'),
 'saturated_fat_content' => t('Saturated Fat Content'),
 'serving_size' => t('Serving Size'),
 'sodium_content' => t('Sodium Content'),
 'sugar_content' => t('Sugar Content'),
 'trans_fat_content' => t('Trans Fat Content'),
 'unsaturated_fat_content' => t('Unsaturated Fat Content'),
);

 foreach ($fields as $key => $label) {
 $value = isset($items[$delta][$key]) ? $items[$delta][$key] :
'';
 $element[$key] = array(
 '#attributes' => array('class' => array('edit-nutrition-
field'), 'title' => t('')),
 '#type' => 'textfield',
 '#size' => 3,
 '#maxlength' => 3,
 '#title' => $label,
 '#default_value' => $value,
 '#prefix' => '<div class="nutrition-field nutrition-' .
$key . '-field">',
 '#suffix' => '</div>',
);
 }
 return $element;
}

13.	 Now, we need to add some hooks for formatting our compound field, when
displaying a content item. We will need to add two more hooks for that: hook_
field_formatter_info and hook_field_formatter_view:

/**
 * Implements hook_field_formatter_info()
 */
function nutritioninfo_field_formatter_info() {
 return array(
 'nutritioninfo_default' => array(
 'label' => t('Default'),
 'field types' => array('nutritioninfo'),
),

HTML5 Integration for Drupal 7 and More Module Development

[84]

);
}

/**
 * Implements hook_field_formatter_view().
 */
function nutritioninfo_field_formatter_view($entity_type, $entity,
$field, $instance, $langcode, $items, $display) {
 $element = array();

 switch ($display['type']) {
 case 'nutritioninfo_default':
 $headers = array(
 t('Calories'),
 t('Carbohydrate Content'),
 t('Cholesterol Content'),
 t('Fat Content'),
 t('Fiber Content'),
 t('Protein Content'),
 t('Saturated Fat Content'),
 t('Serving Size'),
 t('Sodium Content'),
 t('Sugar Content'),
 t('Trans Fat Content'),
 t('Unsaturated Fat Content'),
);

 $element[0]['#markup'] = theme('table', array('header' =>
$headers, 'rows' => $items));
 break;
 }
 return $element;
}

14.	 All right, now it is time to enable our new module. Open up our d7dev Drupal site
in your favorite browser, and click on the Modules link in the Admin toolbar. Scroll
down to the Fields section, and check the checkbox next to our new Nutrition Info
Field module.

Chapter 3

[85]

15.	 Finally, scroll to the bottom of the page, and click on the Save configuration button.

What just happened?
That was some serious development. We created a fairly complex custom module, and now
have a field that offers a more complete Recipe content type.

Time for action – updating the Recipe content type to use the
NutritionInformation field

Now, let's put our new module to use and add our new compound field to our Recipe
content type, using our new custom nutritioninfo field for the NutrionInformation
property of the http://schema.org/Recipe definition.

1.	 Go to the Manage Fields configuration page for the Recipe content type:
http://localhost/d7dev/#overlay=admin/structure/types/
manage/recipe/fields.

2.	 Now, add a new field with the following settings—label: nutrition, name:
field_nutrition_information, type: Nutrition Information, widget:
Nutrition Information form (the default), and click on the Save button.

HTML5 Integration for Drupal 7 and More Module Development

[86]

3.	 There is nothing to set for Field Settings, so just click on the Save field settings
button. On the Recipe Settings screen, enter Nutrition information about
the recipe for the Help text, and then click on the Save button at the bottom
of the screen.

4.	 Next, click on the Find content link in the Shortcuts toolbar, and click on the Edit
link for the first Recipe content item in the list.

5.	 Towards the bottom of the node edit form, you will see inputs for our new
compound field.

Summary
In this chapter, we began looking at ways to support HTML5 in Drupal 7, and integrated
it with our d7dev site in a few different ways – with existing contributed modules and
with code that we wrote ourselves. We learned about some of the differences between
Microdata and RDFa, and did some extensive module development. We developed a custom
compound field module, based on the Microdata specification at http://schema.org/
NutritionInformation, allowing us to enhance our Recipe content type. However, at
this point, our Nutrition Information Field module is still a bit rough around the edges. In
the next chapter, we will introduce some more code examples, and clean up some of those
rough edges.

4
Introduction to Drupal 7

Theme Development

With regards to a recipe for food, good presentation provides a very important
foundation for good taste. It is no different with a website; visitors are not
going to want to explore more if they are put off by the initial presentation of
the site.

Making a Drupal-based website look good starts with the theme you use. But,
there is no need to build a theme completely from scratch. There are over 280
themes for Drupal 7 available on http://drupal.org/project/themes.
You could very well just download a theme that you thought looked nice, tweak
it here and there, and be done with it. However, there are a number of themes
that offer features beyond the immediate look and feel, and are intended to be
sub-themed. These types of themes are referred to as base themes.

You can get a quick start with your own custom theme development by using a base
theme. This chapter will show you how to quickly and easily create a custom theme by
utilizing Drupal's base theme capabilities, and we will explore some simple code examples
for theme customization. Finally, the chapter will walk you through the new theme-related
concept for Drupal 7 of 'Render Arrays', with code examples to introduce the use of the
Drupal 7 hook_preprocess_node in our new custom theme.

Finally, we will see how the contrib Field group module can replace the need for some
custom code.

Introduction to Drupal 7 Theme Development

[88]

Creating a sub-theme
Drupal has an extendible theming capability that allows you to sub-theme an existing theme.
The sub-theme will inherit the resources (JavaScript, CSS, and template.php functions)
of its parent theme. So, rather than downloading a contrib theme from http://drupal.
org/project/themes, and hacking away at it, you can approach the custom theme
development in the same way you approach custom module development – don't hack
core or contrib modules. In other words, don't hack contrib themes! There are a number of
contrib themes that are self-described base themes. A base theme is a theme that is meant
to be extended and customized. The AdaptiveTheme (http://drupal.org/project/
adaptivetheme) and Omega (http://drupal.org/project/omega) themes appear
to be excellent choices for an HTML5-capable base theme for Drupal 7. They are also both
excellent examples of a responsive theme.

If you have never heard the term responsive design or responsive grid,
then you may be asking what does it mean to be a responsive theme?
Responsive web design has been an emerging concept in web design
for the last few years. With the steadily-increasing amount of mobile
browsing, how your website is presented on mobile devices cannot be
ignored. Many will go as far to say that when designing a website, you
should design it for mobile first. Responsive web design builds on that,
and on the idea that a website should adapt as much as possible to the
device on which it is being viewed.

We will go with the Omega theme as our base theme, as it has some features that we
will explore later in this chapter. So, now let's install the Omega theme, and then create
a sub-theme based on Omega.

Omega is one of two recommended themes on the HTML5 Tools module
page (http://drupal.org/project/html5_tools), and thus
a good sign that it is a solid choice for an HTML5 base theme. If you
recall, we installed the HTML5 Tools module in the previous chapter.

Time for action – installing a base theme
Just as you can use Drush to download and enable a contrib module, you can also use Drush
to download and install a contrib theme.

1.	 Now, using Drush we will download and enable the Omega theme:

C:\xampp\htdocs\d7dev>drush dl omega

Project omega (7.x-3.0) downloaded to [success]

Chapter 4

[89]

C:/xampp/htdocs/d7dev/sites/all/themes/omega.

Project omega contains 5 themes: starterkit_omega_xhtml,
starterkit_omega_html5,

 starterkit_alpha_xhtml, omega, alpha.

C:\xampp\htdocs\d7dev>drush en omega

The following extensions will be enabled: omega

Do you really want to continue? (y/n): y

omega was enabled successfully. [ok]

C:\xampp\htdocs\d7dev>

2.	 Next, open up our d7dev site in your favorite browser, and click on the Appearance
link in the Admin toolbar. Open the Appearance administrative page, and you will
see that the newly downloaded Omega theme is available and enabled:

Now that was easy, and it is time to create our own sub-theme based on the Omega
base theme.

Introduction to Drupal 7 Theme Development

[90]

Time for action – creating a sub-theme and setting it as our
default theme

The typical way of creating a sub-theme is a completely manual process of copying and
renaming certain files and directories. There are instructions in the Omega theme project
for creating a sub-theme.

1.	 First, from within Aptana Studio, navigate to the starterkits directory of the
newly installed Omega theme located at /sites/all/themes/omega/.

2.	 We are going to create a sub-theme based on the omega-html5 starter theme.
So, right-click on the omega-html5 directory, and click on Copy from the menu.

3.	 Next, right-click on the /sites/all/themes directory, and click on Paste.

4.	 Now, you will need to rename the directory to the name of our new custom
sub-theme. So, right-click on the /sites/all/themes/omega-html5
directory, click on Rename, and type d7dev_theme in the input.

5.	 Next, you will have to rename some files and update some settings. We will start
by renaming the starterkit_omega_html5.info file to d7dev_theme.info.

Chapter 4

[91]

6.	 Next, we will rename all of the CSS files that start with the text YOURTHEMENAME
in the /sites/all/themes/d7dev_theme/css directory, by replacing
YOURTHEMENAME with d7dev_theme. Our new d7dev_theme directory should
look similar to the following screenshot:

7.	 Now, we will need to edit the newly renamed d7dev_theme.info file, so that the
first six lines look as follows:

name = D7Dev Theme
description = A sub-theme based on the Omega base theme to use as
theme-related development examples.
core = 7.x
engine = phptemplate
screenshot = screenshot.png
base theme = omega

8.	 Next, delete the following lines from the d7dev_theme.info file as instructed by
the Omega comments:

; IMPORTANT: DELETE THESE TWO LINES IN YOUR SUBTHEME

hidden = TRUE
starterkit = TRUE

Introduction to Drupal 7 Theme Development

[92]

9.	 Finally, at the very bottom of the d7dev_theme.info file, delete the following
configuration as it does not pertain to our custom module:

; Information added by drupal.org packaging script on 2011-08-23
version = "7.x-3.0"
core = "7.x"
project = "omega"
datestamp = "1314088930"

10.	 Now, open our d7dev site in your favorite browser, and click on the Appearance link
in the Admin toolbar, then scroll down to the DISABLE THEMES section, and click on
the Enable and set default link under our new D7Dev Theme:

What just happened?
In this section, we created a new sub-theme and set it as the default theme for our d7dev
site. To reinforce what a timesaving development tool Drush can be, we will use Drush to
duplicate our effort of creating a sub-theme from the Omega base theme. Typically, you
would have to follow the manual process we walked through previously.

Chapter 4

[93]

However, the Omega developer(s) have created a Drupal module that adds Drush integration
for sub-theme generation. Now, you may be asking yourself—Why did we walk through
the manual process of creating a sub-theme? The answer to that question is simple—most
modules are not integrated with Drush, so you should know how to do it manually. But,
the Omega module is integrated with Drush, so we are going to take advantage of Omega's
Drush integration.

Before version 3 of Drush, Drush had a set of Drupal theme-specific commands.
Those commands have been removed, but commands exist with the same basic
functionality. Here are the mappings of the old commands to the current Drush
4.x that allow you to accomplish the same thing:

Drush 3 Drush 4

theme-enable pm-enable

theme-disable pm-disable

theme-info pm-info

theme-list pm-list –type=theme

theme-list-enabled pm-list –tupe=theme –
status=enabled

theme-set-default vset theme_default

theme-set-admin vset admin_theme

theme-status status theme

Time for action – creating a sub-theme and setting as default
theme with Drush

1.	 Before we can use Drush to generate the Omega-based sub-theme, we will need to
disable the previously created d7dev_theme theme, and then delete the /sites/
all/themes/d7dev_theme directory.

2.	 Once again, in our d7dev site, click on the Appearance link on the Admin toolbar,
and click on the Set default link for the Bartik theme. We must set a new default
theme before we can disable our D7Dev theme.

Introduction to Drupal 7 Theme Development

[94]

3.	 Now, with the D7Dev theme no longer the default theme, you will be able to disable
it by clicking on the Disable link.

4.	 In Aptana Studio, expand the /sites/all/themes folder, right-click on the
d7dev_theme folder, and select Delete.

5.	 Next, we will download and enable the Omega Tools module (http://drupal.org/
project/omega_tools) that adds Drush integration for the Omega base theme:

C:\xampp\htdocs\d7dev>drush dl omega_tools

Project omega_tools (7.x-3.0-rc3) downloaded to
[success]

C:/xampp/htdocs/d7dev/sites/all/modules/omega_tools.

C:\xampp\htdocs\d7dev>drush en omega_tools

The following extensions will be enabled: omega_tools

Do you really want to continue? (y/n): y

omega_tools was enabled successfully. [ok]

6.	 We will now use Drush to generate a new sub-theme based on the Omega theme.

C:\xampp\htdocs\d7dev>drush omega-subtheme "D7Dev Theme"
--starterkit=starterkit_omega_html5

You have successfully created the theme D7Dev Theme. [status]

Chapter 4

[95]

7.	 Next, use Drush to enable our new sub-theme:

C:\xampp\htdocs\d7dev>drush en d7dev_theme

The following extensions will be enabled: d7dev_theme

Do you really want to continue? (y/n): y

d7dev_theme was enabled successfully. [ok]

8.	 Finally, we will use Drush to set our new sub-theme module as our D7Dev
default theme.

C:\xampp\htdocs\d7dev>drush vset theme_default d7dev_theme

theme_default was set to d7dev_theme. [success]

9.	 If you revisit the Appearance configuration page, you will now see that our
new D7Dev Theme is set as the default theme for our site:

Introduction to Drupal 7 Theme Development

[96]

What just happened?
We used Drush with the help of the Omega Tools module to create an Omega sub-theme,
and to set it as our d7dev default theme.

Time for action – configuring our Omega-based sub-theme
After you close the Appearance administrative screen, you will notice a few features of
the Omega base theme that are useful for debugging theme development. First, the
Omega theme is a grid-based theme (if you don't know what a grid-based theme is,
then take a look at http://960.gs/), and includes the ability to highlight the columns
and gutters of the grid being used. Secondly, it includes outlines of blocks representing
the position of all the regions for our theme. Finally, there is a RESIZE ME widget
at the bottom-right corner of the page that serves to highlight the Omega theme's
responsiveness to different screen sizes.

Chapter 4

[97]

These debugging features may become useful at some point with some custom theme
development, but, for now, we just want to disable these debugging features.

1.	 Once again, click on the Appearance link in the Admin toolbar.

2.	 Once the Appearance admin page has loaded, click on the Settings link for our
D7Dev theme.

3.	 Next, click on the Debugging tab, and uncheck the checkboxes for Enable the
debugging (placeholder) block for the selected roles. and Enable the grid overlay
for the selected roles..

4.	 Finally, scroll to the bottom of the page, and click on the Save configuration button.

What just happened?
We disabled the Omega theme's debugging features. Now when you visit a non-admin page
of our d7dev site, you will see that the Omega theme debugging features are gone.

Manage the display for a content type
Drupal provides an easy way to manage how the fields for a content type are displayed. The
Manage Display administrative page allows you to drag-and-drop fields to reorder them,
select how and if labels are displayed, and provides extended format settings for specific field
formatters (such as providing the ability to select an image style for the image formatter).

Introduction to Drupal 7 Theme Development

[98]

Time for action – using the Manage Display page to update the
display of our custom Recipe content type

If you go to a page of one of the Recipes that was generated by the Devel module, then you
will see that every field has a label, the image is a bit larger than you might like, and the
fields just aren't organized in a way that we like. To clean up the way our Recipe pages look,
we are going to revisit the manage display page for our Recipe content type.

1.	 Click on the Structure link in the Admin toolbar, and click on the Content types link.

2.	 Next, click on the manage display link for our Recipe content type.

3.	 Click on the Label drop-down for the image field, and select <Hidden>.

4.	 Next, we are going to apply a different image style setting to our image field, by
clicking on the format settings button. On format settings, click on the Image style
drop down, select medium, and click on the Update button.

The following screenshot shows the extended format settings available for the core
image formatter:

1.	 Now, drag the prepTime field above the cookTime field, and recipeYield under
cookTime.

Chapter 4

[99]

2.	 Next, select Inline from the Label drop-down for the prepTime, the cookTime, and
the recipeYield fields.

3.	 The Manage Display screen for our Recipe content type should now look similar to
the following screenshot:

4.	 Now, click on the Save button, and close the Manage Display screen. You will see
our new layout for our Recipe content type.

What just happened?
We used the Content types manage display screen for our Recipe content type to customize
how the fields are displayed.

Drupal 7 Render Arrays
In the case of our Recipe content type, it would be nice to wrap the prepTime, cookTime,
and recipeYield fields with a border, and display that box inline with the image field. The
manage display settings are not going to help us accomplish this, so it is time for some
more custom development, and an introduction to Render Arrays. Render Arrays are a
new page-building data structure introduced in Drupal 7 to make it easier for developers
to manipulate the content of a Drupal page as late as possible in the rendering process.
Render Arrays will allow us to manipulate the output of the core modules without hacking
html fragments or writing complicated CSS. In this case, we will modify the Render Array
of our Recipe nodes.

Introduction to Drupal 7 Theme Development

[100]

Time for action – implementing hook_preprocess_node
We are going to implement the hook_preprocess_node hook. However, rather than
adding it to a module, we are going to add it to our custom d7dev_theme.

The template.php file is the place where you would typically add
custom code to override theme-able output to include implementations of
preprocess nodes. The hook_preprocess_node hook provides a way
to manipulate the Render Array of a node before it is themed as HTML.

1.	 In Aptana Studio, open the template.php file in the /sites/all/themes/
d7dev_theme directory.

2.	 Read the contents of the template.php file, and you will learn that the Omega
base theme provides a custom way of handling certain aspects of adding custom
functionality to your Omega based sub-theme. Specifically, it allows us to have more
organization for any preprocess or process related functions that we develop.

3.	 Now, right-click on the /sites/all/themes/d7dev_theme/preprocess
directory, select New, and click on File.

4.	 Enter preprocess-node.inc for the file name.

5.	 With the preprocess-node.inc file opened, type in the following code:

<?php

/**
 * Implements hook_preprocess_node().
 */
function d7dev_theme_alpha_preprocess_node(&$vars) {
 // custom functionality here
}

6.	 Although we know we want to manipulate a Render Array, we are not exactly sure
what the structure of that Render Array looks like. Once again, we will get a little
help from the devel module by using the dpm() function to print out the $var
variable in a collapsible display. This will allow us to explore the make up of the
Render Array for our Recipe nodes. Add the following line of code to our d7dev_
theme_alpha_preprocess_node function:

dpm($vars['content']);

Chapter 4

[101]

In order for the output of the dpm() function to be displayed, we must empty the Drupal
cache. We will use the shortcut to the Performance administrative page that we created in the
previous chapter to quickly navigate to the administrative page for clearing the Drupal cache.

1.	 Load our d7dev site, and click on the Performance link that we added to the
Shortcut bar, then click on the Clear all caches button.

2.	 Then, load a Recipe page in your favorite browser, and reload the page once more,
and you will see the output of the dpm() function:

3.	 Okay, so now we have an idea of what we are working with. You can expand and
explore all of the Render Array values for our Recipe node.

4.	 Now we are going to add a #prefix for field_preptime and a #suffix to the
field_recipeyield. So, our complete implementation of hook_preprocess_
node will look as follows:

<?php

/**
 * Implements hook_preprocess_node().
 */
function d7dev_theme_alpha_preprocess_node(&$vars) {
 //add a prefix to first field to be part of the box
 $vars['content']['field_preptime']['#prefix'] =
 '<div class="time-yield-wrapper">';

Introduction to Drupal 7 Theme Development

[102]

 //close the box by adding a suffix to the last field to be part
 //of the box
 $vars['content']['field_recipeyield']['#suffix'] = '</div>';
}

5.	 Go back to our Recipe node page, and reload it twice. You will notice that nothing
seems to have changed. However, if you view the source of the page, you will see
the div based wrapper that we added:

<div class="time-yield-wrapper">

<div class="field field-name-field-preptime field-type-number-
 integer field-label-inline clearfix">
 <div class="field-label">prepTime: </div>
 <div class="field-items">
 <div class="field-item even">
 111 and ⁷⁄₁₂ hours
 </div>
 </div>
</div>

<div class="field field-name-field-cooktime field-type-number-
 integer field-label-inline clearfix">
 <div class="field-label">cookTime: </div>
 <div class="field-items">
 <div class="field-item even" itemprop="cookTime">
 84 and ¹⁴⁄₁₅ hours
 </div>
 </div>
</div>

<div class="field field-name-field-recipeyield field-type-text
 field-label-inline clearfix">
 <div class="field-label">recipeYield: </div>
 <div class="field-items">
 <div class="field-item even" itemprop="recipeYield">
 wU2t7ZsYijSHvCToof6Qd...
 </div>
 </div>
 </div>
</div>

Chapter 4

[103]

6.	 Now, we need to add some CSS to our custom theme to make the new markup
look the way we want. So, in Aptana Studio, open the global.css file located
in the /sites/all/themes/d7dev_theme/css folder.

7.	 Enter the following CSS rules:

/* styles for Recipe content type */
body.node-type-recipe div.field-name-field-image{
 float:left;
}

body.node-type-recipe div.time-yield-wrapper{
 float:left;
 margin-left: 20px;
 border: 1px solid #777;
 padding: 10px;
}

body.node-type-recipe div.field-name-field-ingredients{
 clear:left;
}

8.	 Now, go back and reload the Recipe node, and it should looking something similar
to the following screenshot:

Introduction to Drupal 7 Theme Development

[104]

What just happened?
We used the hook_preprocess_node core hook to modify the Render Array of our
recipe node content, and were able to wrap a number of fields to display them in a
cohesive manner.

An introduction to the Drupal 7 field group module
The field group module (http://drupal.org/project/field_group) was introduced
with Drupal 7 to replace similar functionality that was part of the Content Construction Kit
(CCK) module for Drupal 6. For Drupal 7, much of the CCK module was added to core as the
field and field_ui core modules. However, there were two major areas of functionality
offered by the CCK module that were not migrated to Drupal 7 core, and those were user/
node reference fields and field groups. The field group module enables you to add groups to
wrap fields for the node edit form, and through the manage display admin screen of a given
content type.

In this section, we are going to once again undo something that we have already done, and
redo it another way. In order to illustrate that writing the custom code is not always the
best route to take to achieve certain functionality for our site, we are going to replace our
custom implementation of hook_preprocess_node with the built-in capabilities of the
field group module.

Time for action – creating the wrapper with display suite
We are going to once again undo something that we have already done, and redo it another
way. In order to illustrate that writing the custom code is not always the best route to take to
achieve certain functionality for our site, we are going to replace our custom implementation
of hook_preprocess_node with the built-in capabilities of the field group module.

1.	 Once again, we must start by undoing what we have already done. So, in Aptana
Studio, open the preprocess-node.inc file in our /sites/all/themes/
d7dev_theme/preprocess directory.

2.	 Put a /* before our d7dev_theme_alpha_preprocess_node function and a */
after it. This is referred to as "commenting out the code", so this function will not
execute.

Chapter 4

[105]

3.	 Next, we will use Drush to download and enable the field group module.

C:\xampp\htdocs\d7dev>drush dl field_group

Project field_group (7.x-1.1) downloaded to [success]

C:/xampp/htdocs/d7dev/sites/all/modules/field_group.

C:\xampp\htdocs\d7dev>drush en field_group

The following extensions will be enabled: field_group

Do you really want to continue? (y/n): y

field_group was enabled successfully. [ok]

4.	 Now, click on the Structure link in the Admin toolbar, click on the Content types
link, and then on the Content types admin page, click on the manage display link
for our Recipe content type.

5.	 Next, we are going to create a field group to replace the time_yield wrapper from
our d7dev_theme_preprocess_node function. In the Add new group row, fill out
the fields to match the following screenshot, and click on the Save button:

6.	 Now, drag our new Time Yield Wrapper custom field group above the prepTime
field. Finally, drag the prepTime, cookTime, and recipeYield fields, so that they
are indented under our Time Yield Wrapper field group, as shown in the following
screenshot, and click on the Save button.

Introduction to Drupal 7 Theme Development

[106]

7.	 Now, click on the format settings button (the button with the cog icon under the
FORMAT column, as pointed out in the previous screenshot) for our newly-added
Time Yield Wrapper field group, and set it up to match the following screenshot
(with the key fields highlighted), and click on the Update button:

8.	 We will add the same CSS class that we used in our custom d7dev_theme_
preprocess_node function – time-yield-wrapper – and we will now see
how the HTML output for our recipe page is very similar to what was produced
with our custom code:

<div class="field-group-format group_time_yield field-group-div
 group-time-yield time-yield-wrapper speed-fast effect-none">
 <div class="field field-name-field-preptime field-type-number-
 integer field-label-inline clearfix">
 <div class="field-label">prepTime: </div>
 <div class="field-items">
 <div class="field-item even">

Chapter 4

[107]

 125 and ⁵⁄₁₂ hours
 </div>
 </div>
 </div>

 <div class="field field-name-field-cooktime field-type-number-
 integer field-label-inline clearfix">
 <div class="field-label">cookTime: </div>
 <div class="field-items">
 <div class="field-item even" itemprop="cookTime">
 157 and ¹⁄₆ hours
 </div>
 </div>
 </div>

 <div class="field field-name-field-recipeyield field-type-text
 field-label-inline clearfix">
 <div class="field-label">recipeYield: </div>
 <div class="field-items">
 <div class="field-item even" itemprop="recipeYield">
 5 servings
 </div>
 </div>
 </div>
</div>

What just happened?
We replaced the functionality of some custom code that we wrote with the existing
functionality of a contrib module.

Summary
In this chapter, we have made a few steps towards enhancing the appearance of our d7dev
site, and introduced you to some Drupal development concepts around theming. With the
addition of an Omega-based sub-theme, our site has the ability to be responsive to the
myriad mobile devices that are an ever growing percent of traffic for websites.

We have also introduced the field group module, a contrib module that actually reduces
the need to develop custom code for some simple layout needs. But, more importantly, we
have seen how there is always more than one way to accomplish something within Drupal.
This highlights a very important aspect of writing code: the only bug-free code is code that
is never written in the first place. Nevertheless, there are still plenty of interesting code
examples to come in the remaining chapters.

5
Enhancing the Content

Author's User Experience

The core admin and authoring UI in Drupal 7 is greatly improved from Drupal 6,
but there are still a number of enhancements that could really improve the user
experience (UX) for content authors. This chapter will walk you through easy
ways to enhance the content authoring UX to include an introduction to the
fundamental Drupal construct known as blocks. Finally, the chapter will walk
through the code for integrating a truly inline What You See Is What You Get or
WYSIWYG editor through the HTML5 contenteditable attribute
(http://dev.w3.org/html5/spec/Overview.html#editing-0), and
explore some of the new JavaScript and AJAX paradigms for Drupal 7.

Developing a custom block for adding content
Please excuse the pun, but the Drupal blocks component has always been a key building
block of Drupal web sites. The Drupal 6 hook_block() - http://api.drupal.org/
api/drupal/developer--hooks--core.php/function/hook_block/6, has
been replaced with several new Drupal 7 blocks hooks. The details of these changes are
documented at http://api.drupal.org/api/drupal/modules--block--block.
api.php/7. However, the primary changes were the addition of hook_block_info()
and hook_block_view(). In the rest of this section, we are going to learn about custom
block development for Drupal 7, and see how it can help us enhance the content author
UX for our d7dev site.

Enhancing the Content Author's User Experience

[110]

Sometimes, it is nice to have a streamlined process for creating and editing content. This is
especially true when you have a site that has quite a few content types, but only a subset of
those are used by most of your site's content authors. In the case of our d7dev site, we may
want to open up the ability to add recipes to the site for any authenticated user, but don't
want to overwhelm them with the default Add content page.

We would like to streamline the process for adding the recipe content by creating a custom
block with an Add recipe link that replicates the Recipe link on the Add content page. We
will be able to place this block on every page, so that creating a new recipe will always just
be one click away. To accomplish this, we are going to create a new administratively focused
d7dev_admin module that implements the Drupal 7 hooks: hook_block_info() and
hook_block_view().

Time for action – developing a custom block for adding recipes
Now we will use the new Drupal 7 block hooks to add a custom block with a link to create
new recipe content.

1.	 First, open Aptana Studio, and navigate to the /sites/all/modules/custom
folder in the Project Explorer tab of the Web perspective. Right-click on the custom
folder, select New and then Folder as shown in the following screenshot. Then,
enter d7dev_admin as the name of the folder, and click on the Finish button.

Chapter 5

[111]

2.	 Next, we are going to create the necessary files for creating a Drupal module
in our new d7dev_admin folder, by right-clicking on the folder, selecting New
| File, entering the specified file name for each, a d7dev_admin.info file
and a d7dev_admin.module file, and clicking on the Finish button. When
you have finished, your d7dev_admin directory should look similar to the
following screenshot:

Enhancing the Content Author's User Experience

[112]

3.	 Now, open the d7dev_admin.info file in the Aptana editor, and enter the
following configuration:

�� name: d7dev Admin

�� description: Custom module for enhancing the content
author UX

�� core: 7.x

�� package: Administration

4.	 Now, it is time to move on to the d7dev_admin.module file. To start, we must
provide some standard Drupal module code, as follows:

<?php

/**
 * @file
 * d7dev Admin module.
 *
 */

5.	 Now, we are ready to add our implementation of hook_block_info(). An
associative array must be defined for each block defined by a custom module. For
each block, an associative array-based description that contains the info key-value
pair is required. In addition to the required info key-value, we will also be specifying
the optional cache key-value. The other available optional key-value pairs for
block descriptions are available here: http://api.drupal.org/api/drupal/
modules--block--block.api.php/function/hook_block_info/7.

/**
* Implements hook_block_info().
*
* Define all blocks provided by the module.
*/
function d7dev_admin_block_info() {
 //Define an associative array for each block, in this case just
..//one:
 $blocks['add_recipe_content'] = array(

 // info: (requried) The name of the block.
 'info' => t('Add Recipe Content'),

Chapter 5

[113]

 // cache: (optional) Same for every user on every page where
....//it is visible.
 'cache' => DRUPAL_CACHE_GLOBAL,

);

 return $blocks;
}

6.	 Next, we will add the implementation of hook_block_view():

/**
* Implements hook_block_view().
*
* Return a rendered or renderable view of a block.
*/
function d7dev_admin_block_view($delta = '') {
 //$delta: what block to render as defined in hook_block_info.
 switch ($delta) {
 case 'add_recipe_content':
 // The default localized title of the block, in this case
 //NULL
 $block['subject'] = NULL;

 // The content of the block's body.
 $block['content'] = d7dev_admin_contents($delta);
 break;
 }
 return $block;
}

7.	 In the d7dev_admin_contents function, we will define a simple render array that
builds a link to the Create Recipe page for the add_recipe_content block delta.

/**
 * Function that generates the content for d7dev_admin blocks.
 */
function d7dev_admin_contents($delta = '') {
 //additional blocks may be added, so base this on the block
$delta
 switch ($delta) {
 case 'add_recipe_content':
 //just a simple reander array with a link
 $add_recipe_link = array(

Enhancing the Content Author's User Experience

[114]

 '#theme' => 'link',
 '#text' => t('Add Recipe'),
 '#path' => 'node/add/recipe',
 '#options' => array(
 'attributes' => array(),
 //REQUIRED:
 'html' => FALSE,
),
);
 return $add_recipe_link;
 }
}

8.	 Now that we have defined the necessary hooks for implementing a custom block,
we will use Drush to enable our new d7dev_admin module.

C:\xampp\htdocs\d7dev>drush en d7dev_admin

The following extensions will be enabled: d7dev_admin

Do you really want to continue? (y/n): y

d7dev_admin was enabled successfully. [ok]

9.	 Next, we need to configure our new Add Recipe block for our d7dev site. Open our
d7dev site in your favorite browser, click on the Structure link in the Admin toolbar,
and select the Blocks link.

10.	 Scroll to the bottom of the Blocks administrative screen, and click on the configure
link for our custom Add Recipe Content block.

11.	 On the Add Recipe Content block settings page, select Sidebar Second for the
D7Dev Theme (default theme) drop-down in the REGION SETTINGS section. Then,
click on the Roles vertical tab, select authenticated user under Show block for
specific roles, and click on the Save block button.

Chapter 5

[115]

12.	 Now, go to http://localhost/d7dev/, and you will notice a new Add Recipe
link at the top-right of the page.

Enhancing the Content Author's User Experience

[116]

What just happened?
We have explored the block-related hooks for Drupal 7, and created a custom block that
displays a link for adding the recipe content.

It is worth mentioning that the Drupal core block module provides
the capability to create blocks through the Add block link on the
Blocks administrative screen (admin/structure/block).
Once you click on the Add block link, you will be presented with
a page to add a new custom block, and the form will include a
Block body field where you can enter any arbitrary HTML or even
include a link to add a new recipe content item.

Introduction to the WYSIWYG module
Now that authenticated users can easily add the recipe content to our d7dev site, we will
turn our attention to the Create Recipe form itself. What if a content author wants to add
some basic formatting, such as bold or italics? A typical content author may not be expected
to write the actual HTML markup for their content.

A common component of most-managed web content solutions, such as Drupal, is a
WYSIWYG type interface for text area input fields. Drupal does not provide such a capability
as part of core, but the excellent contrib Wysiwyg module (http://drupal.org/
project/wysiwyg) fills this need quite nicely.

The Wysiwyg module is actually a WYSIWYG framework that allows you to easily plug in any
of the numerous WYSIWYG plugins that it supports.

Time for action – installing and configuring the Wysiwyg module
We will now enhance the content author UX by enabling WYSIWYG for the content edit form.

1.	 Once again, we will use Drush to install the module.

C:\xampp\htdocs\d7dev>drush dl wysiwyg

Project wysiwyg (7.x-2.1) downloaded to [success]

C:/xampp/htdocs/d7dev/sites/all/modules/wysiwyg.

C:\xampp\htdocs\d7dev>drush en wysiwyg

The following extensions will be enabled: wysiwyg

Do you really want to continue? (y/n): y

wysiwyg was enabled successfully. [ok]

Chapter 5

[117]

2.	 Next, click on the Configuration in the Admin toolbar, and then click on the
Wysiwyg profiles link in the CONTENT AUTHORING section.

3.	 On the Wysiwyg profiles settings page you will notice that the INSTALLATION
INSTRUCTIONS section is expanded by default. This is because no editor library has
been installed—on subsequent visits to this page, you will notice that it is collapsed
by default. For this example, we are going to install the CKEditor editor library. So,
right-click on the Download link for CKEditor, and select Open in a new tab.

4.	 On the CKEditor Download page, click on the Download zip link, and close the tab.

5.	 Now, as per the Wysiwyg module editor library installation instructions, in Aptana
Studio, right-click on the /sites/all/ folder and select New | Folder, enter
libraries for the name, and click on the Finish button.

Enhancing the Content Author's User Experience

[118]

6.	 Next, extract the downloaded ckeditor zip file to our newly created libraries folder
at C:\xampp\htdocs\d7dev\sites\all\libraries\. It should look similar to
the following screenshot.

7.	 Now, refresh the Wysiwyg profiles settings page in your browser, select CKEditor
3.x.x… from the EDITOR drop-down for the Full HTML text format in INPUT
FORMAT, and click on the Save button.

Chapter 5

[119]

8.	 You will now notice that there are Edit and Delete links for the Full HTML text
format in INPUT FORMAT. Click on the Edit link and on the CKEditor profile for
Full HTML settings page, expand the BUTTONS AND PLUGINS section, check the
checkboxes as shown in the following screenshot, and click on the Save button.

Enhancing the Content Author's User Experience

[120]

9.	 Now, go back to the Configuration page, and the click on the Text formats link, right
above the Wysiwyg profiles link.

10.	 On the Text formats settings page, drag the Full HTML text format to the very top,
above the Filtered HTML format, and click on the Save changes button. This will
make the Full HTML text format, the default format wherever we have configured
text areas fields to use filtered text.

11.	 Next, click on the configure link for the Full HTML text format, check the
authenticated user checkbox under Roles, and scroll down and click on the Save
configuration button. We want both administrators and authenticated users to be
able to use the Full HTML text format.

12.	 Now, we are ready to configure our Recipe content type to use the WYSIWYG-enabled
text format. Click on Structure in the Admin toolbar, then click the Content types link,
and then click on the manage fields link for our Recipe content type.

13.	 Click on the edit link in the OPERATIONS column for the description field. Then, on
the description field settings page, scroll down to the Text processing section, select
the radio labeled Filtered text (user selects text format), scroll to the bottom of the
form, and click on the Save settings button. Repeat for the recipeInstructions field.

14.	 Now, we are ready to test out our new WYSIWYG-enabled text format. Click on
the Find content link in the Shortcuts bar, and select the edit link for the first
recipe listed.

15.	 Now, scroll down the description field, and you will see a WYSIWYG-enabled
text area:

Chapter 5

[121]

What just happened?
We installed the Wysiwyg module, and enabled WYSIWYG for the text area fields of our
Recipe content type.

Pasting text into a WYSIWYG text area

Pasting text from applications, such as Microsoft Word, can wreak
havoc on the markup that is saved in a WYSIWYG text area. For
example, if you were to paste the first sentence of this tip with the
title into our CKEditor WYSIWYG-enabled text area, then the HTML
source markup would look similar to the following code:

<p></p>
<dir></dir>

<p dir="LTR" align="LEFT">

 Pasting Text into a WYSIWYG Text Area

</p>

Enhancing the Content Author's User Experience

[122]

<p>

 Pasting text from applications like
Microsoft Word can wreak
 havoc on the markup that is saved in a
WYSIWYG text area.

</p>

Wow, not pretty! But don't worry, there is a simple fix that forces
all the text to be copied into any of our sites CKEditor WYSIWYG-
enabled text format to only copy external text as plain text, even
when you paste from Microsoft Word. Copy
the following function into our d7dev_admin.module:

/**
* Implementation of hook_wysiwyg_editor_
settings_alter().
*/
function d7dev_admin_wysiwyg_editor_settings_
alter(&$settings, &$context) {
 if($context['profile']->editor ==
'ckeditor') {
 $settings['forcePasteAsPlainText'] = TRUE;
 }
}

Now, clear the cache, go back, edit that same recipe, delete
everything in the description field, and re-paste the first sentence
and header for this tip. The HTML source markup should now look
similar to the following code:

<p>Pasting Text into a WYSIWYG Text Area

Pasting text from applications like Microsoft
Word can wreak havoc on the markup that is
saved in a WYSIWYG text area.</p>

A new recipe
At this point, our site is starting to take shape, as we continue to do more development
related to the look and feel of our site. Now, it becomes important to have real content, so
that we can get a better idea of what will look good and what will not look good. From now
on, in this chapter, we will be adding one of my own personal recipes, so that we have some
real content. Before we add this recipe, we are going to remove all of the recipe content that
we generated with the devel module.

Chapter 5

[123]

Time for action – deleting all Devel-generated recipe content
Before we add real recipe content we are going to remove all of the devel generated content.

1.	 Open our d7dev site, and click on the Content link in the Admin toolbar.

2.	 Next, scroll down to the SHOW ONLY ITEMS WHERE section, select Recipe from the
type drop-down in the, and click on the Filter button.

3.	 After the content list is filtered for Recipe content, check the checkbox next to the
TITLE column, select Delete selected content from the UPDATE OPTIONS drop-down,
and click on the Update button.

4.	 Scroll to the bottom of the Are you sure you want to delete these items page, and
click on the Delete button.

5.	 The only recipe that should be left is the recipe for Awesome Sauce. If that is not
the case, then delete any remaining devel-generated Recipe content items.

Enhancing the Content Author's User Experience

[124]

Time for action – adding my Cannellini Cumin Chicken
Chili recipe

1.	 Open up our d7dev site.

2.	 Click on our Add Recipe link, and enter the following recipe:

�� name: Cannellini Cumin Chicken Chili

�� description: This spicy, creamy white chili is just the ticket on
those first cool days for Fall

�� recipeYield: Six to Eight servings

�� prepTime: 20 minutes

�� cookTime: 150 minutes

�� ingredients:

Two pounds of boneless chicken breasts

One large sweet onion, diced

Four cloves of garlic

One yellow bell pepper

Three large jalapeno peppers

Half cup of fire roasted diced green chiles

One table spoon of chopped cilantro

Three table spoons of olive oil

Chapter 5

[125]

Three 15.5 oz cans of cannellini (alubias) beans

Two table spoons of cumin powder

One table spoons of chili powder

One table spoons of oregano

One table spoons of crushed read pepper

Two whole bay leaves

salt

pepper

Four cups of chicken broth

Three-fourth cup half & half

One table spoons of sugar

One cup of shredded Colby cheese

One cup of sour cream

�� instructions:

1.	 Preheat oven to 350 degrees.

2.	 Heat olive oil in a large Dutch oven over medium heat for
two minutes.

3.	 Season chicken breasts with a pinch of salt and pepper.

4.	 Place chicken breasts in the Dutch oven, turn heat up slightly, and
cook each side for five to seven minutes, until lightly browned.

5.	 Place chicken in a baking dish, cover with aluminum foil, and bake
at 350 degrees for 30 minutes, or until the internal temperature
of the largest chicken breast reaches 180 degrees.

6.	 Add diced onion to the Dutch oven and sauté for five minutes,
stirring frequently.

7.	 Add diced jalapeno and diced yellow pepper. Then, add garlic
pressed through garlic press, and add ½ jalapeno by pressing
through garlic press. Sauté for two minutes, stirring frequently.

8.	 Add green chilies and cannellini beans. Then, add chicken broth,
stir until combined, and reduce heat to low.

9.	 Add the cumin, bay leaves, oregano, chili powder, crushed red
pepper, and sugar.

10.	 Add salt and pepper to taste.

11.	 Add half and half, stir until combined, and continue to simmer
over low heat.

Enhancing the Content Author's User Experience

[126]

12.	 Remove the chicken from the oven, and set aside to cool for
10 minutes.

13.	 Pull the chicken apart into bite size pieces, and add it to the
Dutch oven.

14.	 Simmer over low heat for two hours, stirring regularly.

15.	 To serve, fill bowl, sprinkle liberally with shredded cheese,
and top with a dollop of sour cream.

3.	 Click on the Save button, and enjoy some Cannellini Cumin Chicken Chili.

Developing a custom contenteditable module
In this section, we are going to develop a module that provides a field formatter for text
fields that allows in-place editing of text fields through the HTML5 contenteditable attribute.

See http://blog.whatwg.org/the-road-to-
html-5-contenteditable for a good summary of
the contenteditable attribute.

The contenteditable attribute value of true indicates that the HTML element it is applied to
is editable. However, to make this truly useful, we will need to explore a way of saving the
edited content asynchronously. In doing so, we will explore some new JavaScript and AJAX
development concepts in Drupal 7.

Time for action – developing an HTML5 contenteditable module
1.	 Open Aptana Studio, and navigate to the /sites/all/modules/custom folder in

the Project Explorer tab of the Web perspective. Right-click on the custom folder,
select New, and select Folder. Enter html5_contenteditable as the name of the
folder, and click on the Finish button.

2.	 Now, we need to create the necessary files for our contenteditable module:
contenteditable.info and contenteditable.module.

3.	 Next, add some of the basic configuration information to the contenteditable.
info file:

�� name: HTML5 contentEditable

�� description: "Uses a custom formatter to allow you to make some fields
editable from the display through the HTML5 contentEditable attribute."

�� package: Fields

�� version: "7.x-1.x-dev"

Chapter 5

[127]

�� dependencies[]: entity

�� core: 7.x

4.	 Now, we will turn our attention to the contenteditable.module file, and
start by adding the code for the first hook that we will implement: hook_field_
formatter_info:

/**
 * Implementation of hook_field_formatter_info().
 */
function contenteditable_field_formatter_info() {
 return array(
 'contenteditable' => array(
 'label' => t('contentEditable'),
 'field types' =>
 array('text','text_long','text_with_summary','list_text'),
 'settings' => array(
 'fallback_format' => NULL,
),
),
);
}

5.	 Basically, we are creating a new contenteditable field formatter for all the text field
types. Now, we will add some settings for our new formatter with hook_field_
formatter_settings_form:

/**
 * Implements hook_field_formatter_settings_form().
 */
function contenteditable_field_formatter_settings_form($field,
 $instance, $view_mode, $form, &$form_state) {
 //This gets the view_mode where our settings are stored
 $display = $instance['display'][$view_mode];
 //This gets the actual settings
 $settings = $display['settings'];
 $element = array();

 //had an issue when using this formatter in a View, results in a
 //Fatal error: undefined function field_ui_formatter_options()
 if (!function_exists(field_ui_formatter_options)) {
 module_load_include('inc', 'field_ui', 'field_ui.admin');
 }

 //fallback formatter

Enhancing the Content Author's User Experience

[128]

 // Get the list of formatters for this field type, and remove
 //our own.
 $formatters = field_ui_formatter_options($field['type']);
 unset($formatters['contenteditable']);
 $element['fallback_format'] = array(
 '#type' => 'select',
 '#title' => t('Fallback formatter'),
 '#options' => $formatters,
 '#description' => t('Select formatter to be used for users
that don\'t have permission to edit the field.'), //helper text
 '#default_value' => $settings['fallback_format'],
);

 return $element;
}

The field_formatter_settings_form hook, introduced with the new Field
API for Drupal 7, allows you to add any number of form-driven settings to a field
formatter. In this case, we are adding a setting that will allow the site administrators
to select what formatter should be used for the field when a user does not have
permission to edit the field. The field_ui_formatter_options function allows
us to retrieve all of the available formatters for the current field, and then use those
as the options to select from for the value of this setting after removing our own
contenteditable formatter.

The Drupal 7 core image field uses hook_field_formatter_
settings_form to select the image style settings to be used
for displaying the image field, and whether to wrap the image
with a link to the content (the parent content item of the image)
or to the image file (the original non-resized image). With Drupal
6, the CCK ImageField (http://drupal.org/project/
imagefield) module provided several formatters to achieve
the same functionality, and each formatter had to be listed for
every possible image cache setting (replaced by image style for
Drupal 7). The end result was that Drupal 6, with ImageField
and ImageCache (http://drupal.org/project/
imagecache) modules, had 12 formatters to accomplish what
Drupal 7 does with one.

6.	 Now, we need to do some Drupal field house keeping. The custom settings for
our field formatter will not be accessible unless we implement hook_field_
formatter_settings_summary.

/**
 * Implements hook_field_formatter_settings_summary().
 */

Chapter 5

[129]

function contenteditable_field_formatter_settings_summary($field,
 $instance, $view_mode) {
 $display = $instance['display'][$view_mode];
 $settings = $display['settings'];
 $formatter_type =
 field_info_formatter_types($settings['fallback_format']);
//get label of fallback formater for summary info
 $summary = t('Fallback format: @fallback_format format (Select
 format to be used when not in edit mode.)', array(
 '@fallback_format' => $formatter_type['label'],
));
// we use t() for translation and placeholders to guard against
 //attacks
 return $summary;
}

Our contenteditable_field_formatter_settings_summary function will
display the currently selected fallback formatter, and it will trigger Drupal to expose
the link to the formatter settings form.

7.	 Ok, now it is time to get to our formatter's output with the implementation of
hook_field_formatter_view:

/**
 * Implements hook_field_formatter_view().
 */
function contenteditable_field_formatter_view($entity_type,
$entity, $field, $instance, $langcode, $items, $display) {
 // See if access to edit this field is restricted,
 //if so, use the default formatter.
 if (!entity_access('update', $entity_type, $entity) ||
 !field_access('edit', $field, $entity_type, $entity)) {
 // Can't edit.
 return contenteditable_fallback_formatter($entity_type,
 $entity, $field, $instance, $langcode, $items, $display);
 }
 $element = array();
 foreach ($items as $delta => $item) {
 $element[$delta] = array('#markup' => '<div
 contentEditable="true" data-tooltip="click to edit"
 data-nid="' . $entity->nid . '" data-fieldname="' .
 $field['field_name']. '">'
 . $item['value'] . '</div>');
 }

 return $element;
}

Enhancing the Content Author's User Experience

[130]

8.	 Basically, we are just wrapping the field with a div element that has the
contentEditable attribute set to true. We are also adding some custom
data attributes that we will utilize later in the JavaScript for this module. You
may also notice the call to the contenteditable_fallback_formatter
function when access to edit the field is restricted. That function doesn't exist
yet, so we need to write it:

/**
 * Format a field using the fallback formatter of the
contenteditable field.
 */
function contenteditable_fallback_formatter($entity_type, $entity,
$field, $instance, $langcode, $items, $display) {
 // Set the fallback formatter.
 $display['type'] = $display['settings']['fallback_format'];
 $formatter_type = field_info_formatter_types($display['type']);
 $display['module'] = $formatter_type['module'];

 // Clone the entity to avoid messing with it.
 $cloned_entity = clone $entity;

 return field_view_field($entity_type, $cloned_entity,
$field['field_name'], $display, $langcode);
}

Our contenteditable_fallback_formatter function sets the type and
module for the display of the element based on our custom fallback_format
setting, and uses the core field_view_field function to generate the correct
output.

9.	 Now, we are at a point where we can test what we have done so far. Open up our
d7dev site, and click on the Modules link in the Admin toolbar. We will use Drush
to enable our custom contenteditable module:

C:\xampp\htdocs\d7dev>drush en contenteditable

The following extensions will be enabled: contenteditable

Do you really want to continue? (y/n): y

wysiwyg was enabled successfully. [ok]

10.	 We can now configure the description field on our Recipe content type to use our
HTML5 contentEditable formatter. In the Admin toolbar, click on the Structure
link, then the Content types link, and then the manage display link for our Recipe
content type.

Chapter 5

[131]

11.	 On the manage display configuration page for our Recipe content type, click on
the FORMAT drop-down, select contentEditable, and click on the settings
button to see the output of our contenteditable_field_formatter_
settings_form function:

12.	 For now, just leave the Fallback formatter set to Default. Click on the Cancel
button, and click on the Save button at the bottom of the page.

13.	 So, let's see what this formatter looks like. Click on the Content link in the Admin
toolbar, and click on the link for the Cannellini Cumin Chicken Chili recipe that we
added earlier in this chapter.

14.	 You will notice that the description for the recipe reads: This spicy, creamy white
chili is just the ticket on those first cool days for Fall. Double-click on the word for
and type of to replace it inline. Notice the changed text, and the active text cursor
in the following screenshot:

15.	 Now, refresh the page in your browser, and you will notice that the text reverts back
to the word for.

Enhancing the Content Author's User Experience

[132]

16.	 Browsers that support the contentEditable property, don't do anything to
automatically save the edited value. As you can see in the informative screenshot
from caniuse.com, there is excellent browser support for the contentEditable
attribute—there is even support for it with iOS 5:

However, to save the edited value of our contentEditable enabled elements
and for other usability enhancements, we will need to enhance our HTML5
contentEditable module with some Drupal 7 JavaScript and AJAX functionality.

17.	 In Aptana Studio, right click on the /sites/all/modules/custom/
contenteditable folder, and add the new contenteditable.js file.

18.	 Now, we are ready to begin writing the necessary JavaScript for our module. But,
first, you should understand that jQuery has been namespaced for Drupal 7, so
the $ global variable no longer refers to the jQuery object. The following code will
associate the $ variable with the jQuery object within our local function:

(function ($) {

})(jQuery);

Namespacing jQuery for Drupal7 allows for better compatibility
with other JavaScript libraries. For more information about this
change for Drupal 7, see http://drupal.org/update/
modules/6/7#javascript_compatibility.

Typically, with jQuery you would use $(document.ready(function(){}); to
ensure that the DOM is fully loaded before your JavaScript attempts to manipulate
elements or bind behaviors. However, Drupal provides a wrapper for this functionality,
and adds some additional features with the Drupal.Behaviors object.

Chapter 5

[133]

19.	 So, we will now extend the Drupal.Behaviors object for our contenteditable
module:

var self = Drupal.behaviors.contenteditable = {

};

20.	 For Drupal 7, the Drupal.Behaviors object has two handlers or methods:
attach and detach. The attach handler is required, so we will add that now.

attach: function (context) {
 // Make sure it was initialized.
 if (!self.initialized) {
 self.init();
 }
 // Bind handlers and prevent elements from being processed
 //again.
 $('div[contenteditable]', context)
 .once('contenteditable')
 .bind('focusin', self.focusin)
 .bind('focusout', self.focusout);
}

Note the use of the once method. The jQuery once plug-in (http://plugins.
jquery.com/project/once) has been integrated with Drupal 7, and makes
it much simpler for the JavaScript developers to ensure that behaviors are only
applied to an element once. Prior to using the jQuery once plugin, our code may
have looked something similar to the following:

attach: function (context) {
 // Make sure it was initialized.
 if (!self.initialized) {
 self.init();
 }
 // Bind handlers and prevent elements from being processed
 //again.
 $('div[contenteditable]', context)
 .not('.contenteditable-processed')
 .addClass('contenteditable-processed')
 .bind('focusin', self.focusin)
 .bind('focusout', self.focusout);
}

The code uses jQuery to add and remove a certain class, and tests for the presence
of that class with a selector to accomplish the same thing as the once plugin.

Enhancing the Content Author's User Experience

[134]

21.	 You may also notice that we made a call to the three methods that haven't been
defined yet: self.init, self.focusin, and self.focusout. We will now add
the code for those three methods after our attach method:

,
init: function() {
 // Create controls, store reference and bind handlers.
 var $controls = self.constructControls().add('<button>', { 'id':
 'contenteditableCancel', 'text': Drupal.t('Cancel'), click:
 self.hideControls, 'data-tooltip': 'cancel edit'})

 .add('<button>', { 'id': 'contenteditableSave', 'text':
 Drupal.t('Save'), click: self.submitHandler, 'data-tooltip':
 'save changes'});

 self.controls = $('<div id="contenteditableButtons"
 class="contenteditable_buttons"></div>').append($controls)
 .appendTo('body');

 self.initialized = true;
 self.currentField = null;
 },
 focusin: function(e) {
 // Move the controls to right before the element we're editing,
 //but only when focusing in on a new field, otherwise do
 //nothing.
 if(self.currentField != $(this).data('fieldname')){
 self.active = $(this);
 $(this).addClass('contenteditableActive');
 self.currentField = self.active.data('fieldname');
 var $clone = self.controls.clone(true);
 self.controls.remove();
 self.controls = $clone;
 self.controls.hide().insertBefore(self.active).fadeIn('slow');
 }
},
focusout: function(e) {
 // TODO: handle removing the controls
}

The init method sets up the controls that will be defined in our
contenteditable.module. These will include some basic WYSIWYG controls,
such as the ability to style the text of the contenteditable element as bold, italic,
and/or underline.

Chapter 5

[135]

The focusin method actually takes care of showing the controls for the currently
focused contenteditable element. The focusout method is just a placeholder for
some possible future enhancements; it serves as a visual reminder that there may
be room for improvement.

22.	 Now, we will add the code for two other methods called in the init method: self.
constructControls and self.submitHandler.

,
constructControls: function() {
 if (!Drupal.settings || !Drupal.settings.contenteditableButtons)
 {
 throw new Error('Control settings not found.');
 }

 // Go over the settings object, construct the controls and
 //return them as 1 jQuery collection.
 var $buttons = $();
 $.each(Drupal.settings.contenteditableButtons, function(i, el) {
 var $el = $(el.wrapper, el.attributes).bind(el.event,
 el.handler ? eval('(' + el.handler + ')') :
 self.commandHandler);

 $buttons = $buttons.add($el);
 });
 return $buttons;
},
submitHandler: function(e) {
 // If they manage to press the button before an element was set
 //as active,
 // or there are no controls, throw an exception, otherwise, post
 //the data.
 if (!self.active) {
 throw new Error('Active element not found.');
 }
 if (!self.controls) {
 throw new Error('Failed to hide controls: reference not
 found.');
 }

 // Display a saving message indicator.
 $('<div id="contenteditableSaving"
 class="messages"></div>').insertBefore(self.active);

Enhancing the Content Author's User Experience

[136]

 var $title;
 var text = Drupal.t('Saving');
 var dots = '';
 $title = $('#contenteditableSaving').text(text);
 var id = setInterval(function () {
 dots = (dots.length > 10) ? '' : dots + '.';
 $title.text(text + dots);
 }, 500);

 //disable contenteditable on active element until the ajax call
 //is complete
 self.active.attr('contenteditable', 'false');
 // Hide the controls and trigger the hide helper
 self.controls.slideUp('slow', self.hideControls);
 var ajax_data = {
 'field_value': self.active.html(),
 'nid': self.active.data('nid'),
 'fieldname': self.active.data('fieldname')
 }
 $.ajax({
 type: 'POST',
 url: Drupal.settings.basePath + 'contenteditable/ajax',
 dataType: 'json',
 data: ajax_data,
 success: self.successHandler
 });
}

The constructControls code binds either the yet to be defined commandHandler
or a handler specified by the controls configuration in our module, to an event
specified by our modules controls configuration. The submitHandler hides
the attached controls for the associated contenteditable element, and then
uses jQuery ajax to POST the updated element value and additional data to the
contenteditable/ajax path as JSON.

If you are not familiar with the term Asynchronous JavaScript
And XML (AJAX) and/or with jQuery, then I recommend that
you read through the jQuery documentation for the ajax()
function at http://api.jquery.com/jQuery.ajax/.

23.	 Now, switch back to contenteditable.module, and we will add the code that
will define the controls to be set up by the constructControls code:

Chapter 5

[137]

/**
* Hook and helper function to add the controls to Drupal.settings
*
*/
function _contenteditable_add_controls() {
 $buttons = array(
 'bold' => array(
 'wrapper' => '<button>',
 'event' => 'click',
 'attributes' => array(
 'html' => 'B',
 'data-command' => 'bold',
 'alt' => 'bold',
 'data-tooltip' => t('bold'),
),
),
 'italic' => array(
 'wrapper' => '<button>',
 'event' => 'click',
 'attributes' => array(
 'html' => '<i>i</i>',
 'data-command' => 'italic',
 'alt' => 'italic',
 'data-tooltip' => t('italic'),
),
),
 'underline' => array(
 'wrapper' => '<button>',
 'event' => 'click',
 'attributes' => array(
 'html' => '<u>u</u>',
 'data-command' => 'underline',
 'alt' => 'underline',
 'data-tooltip' => t('underline selected text'),
),
),
);
 //hook to add controls
 $additional_controls =
 module_invoke_all('contenteditable_add_controls');
 if (is_array($additional_controls)) {
 $buttons = array_merge($buttons, $additional_controls);
 }
 return $buttons;
}

Enhancing the Content Author's User Experience

[138]

In addition to the $buttons array that contains the necessary information for
the constructControls function, we have also added our very own hook that
will allow other modules to add their own controls. The module_invoke_all
function will execute all implementations of our hook_contenteditable_add_
controls. You may notice that we haven't actually written any code yet that calls
this _contenteditable_add_controls function. We will do that when we
integrate contenteditable.js with our module.

24.	 Next, we will add the following implementation of hook_menu, so that our module
will respond to requests to the contenteditable/ajax path, as used in our
submitHandler previously:

/**
 * Implementation of hook_menu().
 */
function contenteditable_menu() {

 $items['contenteditable/ajax'] = array(
 'title' => t('contenteditable AJAX'),
 'type' => MENU_CALLBACK,
 'page callback' => 'contenteditable_ajax',
 'access arguments' => array('access content'),
);

 return $items;
}

25.	 Drupal's hook_menu allows you to register paths, and specify a page callback to tell
Drupal how to handle the response for those paths. In this case, we are registering
the path from our submitHandler in contenteditable.js with a page callback
of contenteditable_ajax. So now we will define that function:

/**
 * Callback for the contenteditable_menu hook
 */
function contenteditable_ajax () {
 // Retrieve the slider value
 $field_value = $_POST['field_value'];
 $nid = (int)$_POST['nid'];
 $field_name = $_POST['fieldname'];
 $node = node_load($nid);
 $node->{$field_name} =
 array('und'=>array(array('value'=>$field_value)));
 node_save($node);
 // Return json

Chapter 5

[139]

 $json_output = array();
 $json_output['nid'] = $nid;
 $json_output['fieldname'] = $field_name;
 $json_output['msg'] = t('The field value has been updated.');
 drupal_json_output($json_output);
}

The contenteditable_ajax function gets the values from the POST data set by
specifying POST for the type option of the $.ajax call in our submitHandler.
This data is used to load the parent node of the contenteditable field, update
the value of the field, and then save the node with the updated field value. We then
create an array() of data to send back to the client as JSON, by passing the array
to the drupal_json_output function.

26.	 Now, add the code for the call to self.commandHandler in
constructControls:

,
 commandHandler: function(e) {
 // Executes commands attached to the controls.
 var $this = $(this),
 cmd = $this.data('command')
 cmdValue = $this.attr('cmdValue') || null,
 returnValue = document.execCommand(cmd, false, cmdValue);
 if (returnValue) {
 return returnValue;
 }
 }

The commandHandler code takes care of executing the actual commands that are
activated by the user through the document.execCommand method, which is a
part of the HTML Editing APIs specification (see http://dev.w3.org/html5/
spec/Overview.html#editing-apis).

27.	 Next, we need to add the code for the call to self.successHandler and self.
hideContros in the submitHandler:

,
successHandler: function(data, status, xhr) {
//remove saving indicator
$('#contenteditableSaving').remove();
// Highlight the edited element and show a status message.
var $el = $('div[data-nid="' + data['nid'] + '"][data-
 fieldname="' + data['fieldname'] + '"]'),
 $success = $('<div id="contenteditableSuccess" class="messages
 status">' + data['msg'] + '</div>').insertBefore($el);

Enhancing the Content Author's User Experience

[140]

$el.effect('highlight', {}, 3000);
$success.delay(2000).slideUp('slow', function() {
 $(this).remove(); });

//re-enable contenteditable on active element so it may be re-
//edited
self.active.attr('contenteditable', 'true');
},
hideControls: function() {
 // Move the controls back to the end of the body element.
 if (!self.controls) {
 throw new Error('Failed to hide controls: reference not
 found.');
 }
 self.active.removeClass('contenteditableActive');
 var $clone = self.controls
 .removeAttr('style').clone(true).appendTo('body');

 self.controls.remove();
 self.controls = $clone;
 //unset self.currentField so that the same field may be re
 //-edited
 self.currentField = null;
}

The successHandler is called by the jQuery $.ajax function, if it succeeds in
asynchronously updating the field ,and inserts a dynamic success message before
the contenteditable element being updated. The hideControls code hides the
controls associated with the contenteditable element.

28.	 Now, we will update our module code to include the contenteditable.js when
the contenteditable_field_formatter_view function is called. Switch back
to the contenteditable.module file in Aptana Studio, and add the following
code above the return statement return $element in the contenteditable_
field_formatter_view function:

 //use the #attached property to add the JavaScript and CSS
 $path = drupal_get_path('module', 'contenteditable');
 $element['#attached'] = array(
 'js' => array(
 $path . '/contenteditable.js' => array(),
 // JavaScript settings may use the 'data' key.
 array(
 'type' => 'setting',

Chapter 5

[141]

 'data' => array('contenteditableButtons' =>
 _contenteditable_add_controls()),
),
),
 'css' => array(
 $path . '/contenteditable.css' => array(),
),
 //add system library, used by the successHandler method of
 //our JavaScript
 'library' => array(
 array('system', 'effects.highlight'),
),
);

Here, we are revisiting the use of render arrays that we introduced in the previous
chapter. We are using the #attached property to add our JavaScript file, custom
JavaScript settings, CSS, and a system library. In order to add the contenteditable.
js and contenteditable.css files, we get the path to our module with the
drupal_get_path function, and append it to the names for those files. The settings
are added by calling our module's private _contenteditable_add_controls
function. I am not going to go over the CSS in detail, but here are the contents for the
contenteditable.css file:

[contenteditable]:hover {
 outline: 1px dotted #CCC;
}

div.contenteditable-processed.contenteditableActive{
	 box-shadow: 0 0 5px rgba(81, 203, 238, 1);
}

/*buttons css*/
div.contenteditable_buttons{
 display: none;
 -webkit-appearance: none;
 -moz-border-radius: 11px;
 -webkit-border-radius: 11px;
 -moz-background-clip: padding;
 -webkit-background-clip: padding;
 border-radius: 11px;
 background: #DDD url(images/button.png) repeat-x;
 background: -webkit-gradient(linear, left top, left bottom,
 color-stop(0, white), color-stop(1, #DDD));

Enhancing the Content Author's User Experience

[142]

 background: -moz-linear-gradient(top center, white 0%, #DDD
 100%);
 border: 1px solid;
 cursor: pointer;
 color: #333;
 font: bold 12px/1.2 Arial, sans-serif;
 outline: 0;
 overflow: visible;
 padding: 3px 10px 4px;
 text-shadow: white 0 1px 1px;
 width: auto;
 border-color: #DDD #BBB #999;
 width:240px;
}

/*buttons for format plugin*/
#contenteditableSave,
#contenteditableCancel{
 float: right;
}

#contenteditableButtons button{
	 margin: 0 2px;
}

/*override line height*/
#contenteditableButtons a:link, a:visited{
 line-height:0;
}

#contenteditableButtons button:hover:after{
 content: attr(data-tooltip);
 position: absolute;
 white-space: nowrap;
 background: -webkit-gradient(linear, left top, left bottom,
 color-stop(0, #FFFFCC), color-stop(0.9, #FFFFCC));
 background: -moz-linear-gradient(top center, #FFFFCC 0%, #FFFFCC
 90%);
 padding: 3px 7px;
 color: #777;
 border-radius: 3px; -moz-border-radius: 3px; -webkit-border-
 radius: 3px;

Chapter 5

[143]

 margin-left: -30px;
 margin-top: -30px;
}

[contenteditable="true"]:not(.contenteditableActive):hover:after{
 content: attr(data-tooltip);
 position: relative;
 right:-100%;
 background: -webkit-gradient(linear, left top, left bottom,
 color-stop(0, #FFFFCC), color-stop(0.9, #FFFFCC));
 background: -moz-linear-gradient(top center, #FFFFCC 0%, #FFFFCC
 90%);
 padding: 3px 7px;
 color: #777;
}

#contenteditableSaving{
 background-color: #FFFCE5;
 color: #840;
 font-weight: bold;
 font-size: 16px;
 border-color: #ED5;
}

29.	 Now, we are ready to test what we have done. Load the d7dev site in your browser,
click on the Content link in the Admin toolbar, and click on the link for the Cannellini
Cumin Chicken Chili recipe that we added earlier in this chapter.

30.	 Once again, click on the word for in the description. You will right away notice
a few differences.

Enhancing the Content Author's User Experience

[144]

31.	 Now, delete the word for and type in of, and click on the Save button. Once you see
the message that the field was successfully updated, refresh the page, and you will
see that the value sticks.

What just happened?
Wow, that was some pretty serious module development. We created a fairly complex
module that allows us to make text fields editable inline using the HTML5 contentEditable
attribute, and we were introduced to some key Drupal 7 development concepts around
JavaScript, AJAX, and a number of new hooks.

Summary
In this chapter, we have seen how easy it can be to enhance the UX for content authors. In
some cases, it was as easy as adding and configuring additional contrib modules. We also
learned some fairly advanced development that allowed us to offer a unique authoring
experience for Drupal 7, and we learned a lot about how to integrate custom JavaScript
with Drupal 7, as well as a bit about AJAX for Drupal 7.

In the next chapter, we are going look at some ways to enhance our d7dev site with images,
by introducing the Media module, and developing another custom module to display the
Media module-managed images in a lightbox.

6
Adding Media to our Site

A text-only site is not going hold the interest of visitors; a site needs some
pizzazz and some spice. One way to add some pizzazz to your site is to add
some multi-media content, such as images, video, audio, and so on. But,
we don't just want to add a few images here and there; in fact, we want an
immersive and compelling multi-media experience that is easy to manage,
configure, and extend. The new Media (http://drupal.org/projects/
media) module for Drupal 7 will enable us to easily add the multi-media
content to our d7dev site. The Media module is quickly becoming the de facto
contributed module for managing multi-media content in Drupal 7, and it offers
a solid foundation for the future of multi-media in Drupal. In this chapter, we
will discover how to integrate the Media module to add images to our d7dev
site, and will explore compelling ways to present images to the users. This
will include taking a look at the integration of a lightbox type UI element for
displaying the Media module-managed images, and learning how we can
leverage the Drupal development community to make improvements to the
existing code.

The following topics will be covered in this chapter:

�� Configuring the Media module

�� Adding Media fields to your content types

�� Code Example: Image styles for Drupal 7

�� Displaying Media in a lightbox through a custom field formatter

�� Using Drupal Sandbox projects, and applying patches

Adding Media to our Site

[146]

Introduction to the Media module
Prior to Drupal 7, integrating multi-media content with your Drupal site has been a
mishmash concoction of contrib modules and configuration. Many solutions for integrating
images into content only offered part of a total solution, requiring you to piece together
a number of modules to get exactly what you wanted. Before Drupal 7, you couldn't even
include an image with your content without adding a contrib module. The Image module
for Drupal 6 (http://drupal.org/pojrect/image) filled the gap nicely, and several
modules were introduced that allowed you to "insert" the Image module images in a
WYSIWYG text area. Eventually, a CCK-based ImageField module (http://drupal.org/
project/imagefield) was introduced, and you were able to have field-based images.
In addition to the Image and ImageField modules, some other image-related modules for
Drupal 6 included the ImageCache module (http://drupal.org/project/imagecache)
to dynamically generate resized versions of the images, and the Insert module (http://
drupal.org/project/insert) that enabled the inline insertion of ImageField images
within a WYSIWYG-enabled text area.

Features provided by the Drupal 6 ImageCache and Insert modules are duplicated quite
nicely by Drupal 7 core and the Drupal 7 Media module. Drupal 7 includes the addition of
the new core image module, so that an image field is available with a core install. In addition
to field-based images, the Drupal 7 core image module includes much of the functionality
that was included with the Drupal 6 Image, ImageAPI, and ImageCache modules. Even
though this was a great improvement, the core image module does not include the ability to
insert images inline in the WYSIWYG text area. The Media module for Drupal 7 does provide
the capability to insert images inline within a WYSIWYG text area, and it offers many other
features that would have required a number of different modules for Drupal 6.

Working with dev versions of modules
There are times when you come across a module that introduces some major new
features and is fairly stable, but not quite ready for use on a live/production website,
and is therefore only available as a dev version. This is a perfect opportunity to provide a
valuable contribution to the Drupal community. Just by installing and using a dev version
of a module (in your local development environment of course), you are providing valuable
testing for the module maintainers. Of course, you should enter an issue in the project's
issue queue if you discover any bugs, or would like to request any additional features.
Also, using a dev version of a module presents you with the opportunity to take on some
custom Drupal development. However, it is important that you remember that a module is
released as a dev version for a reason, and is most likely not stable enough to be deployed
to a public facing site.

Chapter 6

[147]

Our use of the Media module in this chapter is an excellent example of living on the edge
with dev. The Media module has two major releases for Drupal 7, and the second release
includes some massive refactoring of the code, and those large code changes are only
available as a dev release. One of the major changes between the 1.x and 2.x versions of
the Media module is the removal of the file entity code that has been moved into its own
module, and requires the installation of the File Entity module (http://drupal.org/
project/file_entity) in order to enable the Media module.

One thing to note in regards to Drush is that, by default, Drush will only download official
module releases, so we need to get the exact version of the module we would like to
download with Drush. Then, we will be able to download the dev release, and enable it
with Drush, as we have already done with other contrib modules.

Time for action – using Drush to install a dev version of the
Media module

We are going to use Drush to download the dev release of the Media module, so that we can
add some multi-media content to our d7dev site.

1.	 Open the Terminal (Mac OS X) or Command Prompt (Windows) application, and
go to the root directory of our d7dev site.

2.	 The second version of the Media module is dependent on the File Entity module.
So, we will use Drush to download and enable that module.

$ drush dl file_entity-7.x-2.x-dev

Project file_entity (7.x-2.x-dev) downloaded to /Users/kurt/
htdocs/d7dev/sites/all/modules/file_entity. [success]

$ drush en file_entity

The following extensions will be enabled: file_entity

Do you really want to continue? (y/n): y

file_entity was enabled successfully. [ok]

3.	 Next, we will use Drush to get the release information for the Media module.

$ drush rl media

------- RELEASES FOR 'MEDIA' PROJECT -------

 Release Date Status

 7.x-2.x-dev 2011-Nov-23 Development

 7.x-2.0-unstab 2011-Oct-12 Supported

 le2

 7.x-1.x-dev 2011-Nov-21 Development

 7.x-1.0-rc2 2011-Oct-12 Supported, Security, Recommended

Adding Media to our Site

[148]

4.	 Now, with the release information, we will see the exact version of the Media
module that we are interested in: 7.x-2.x-dev. So, download and enable the
2.x dev version of the Media module with Drush.

$ drush dl media-7.x-2.x-dev

Project media (7.x-2.x-dev) downloaded to /Users/kurt/htdocs/
d7dev/sites/all/modules/media.		 [success]

Project media contains 3 modules: mediafield, media_internet,
media.

$ drush en media

The following extensions will be enabled: media

Do you really want to continue? (y/n): y

media was enabled successfully. [ok]

5.	 The Media module is now enabled for our d7dev site.

What just happened?
We enabled the Media module, and learned how to install a dev release with Drush.
We have also learned that it is can be useful to us, and the greater Drupal community,
to explore a dev release of a module.

Enhancing the Recipe content type with a Media field
Now that we have enabled the Media module for our d7dev site, let's enhance our Recipe
content type with a Media field.

Time for action – adding a Media field to our Recipe
content type

We will use the manage fields administrative page to add a Media field to our d7dev Recipe
content type.

1.	 Open up our d7dev site in your favorite browser, click on the Structure link in the
Admin toolbar, and then click on the Content types link.

Chapter 6

[149]

2.	 Next, on the Content types administrative page, click on the manage fields link for
our Recipe content type.

3.	 Now, enter Media as the label for the Add new field input type. Next to the
field_ prefix label in the Name column, type media, and select File from the
Select a field type dropdown and Media file selector as the widget, and click
the Save button. On the next screen, click on the Save field settings button.

4.	 On the RECIPE SETTINGS page, enter Associate multimedia files with the
recipe. as the Help text, and then check the Upload, Library, and View Library
checkboxes under the Enabled browser plugins section.

Adding Media to our Site

[150]

5.	 Next, enter jpg and png as the Allowed file extensions for uploaded files, and
enter recipe/media as the File directory. Then, accept the rest of the default
settings, and click on the Save settings button at the bottom of the page.

Although the Media module supports other media types besides images, such as
video and audio, we are only going to work with images for now. The File directory
setting will allow us to maintain some order for our d7dev public files director:
/sites/default/files. .

6.	 So, let's add some media to a recipe. Click on the Find content link in the Shortcuts
bar, and click on the edit link for the Cannellini Cumin Chicken Chili recipe.

7.	 Now, scroll down to the new Media field that we have added, click on the Select
media button, and you will see a Media browser dialog pop up:

Chapter 6

[151]

8.	 Feel free to explore the Library and View Library tabs of the media browser.
However, for now, we are just going to focus on the Upload tab. Click on the
Choose File button, and select a recipe photo to upload.

9.	 Next, click on the Add another item button below the Media field, and add another
image. Repeat until all nine chili images have been uploaded, scroll to the bottom of
the screen, and click on the Save button.

10.	 Now, if you scroll to the bottom of the page for the Cannellini Cumin Chicken
Chili recipe, you will see that by default the media field is formatted as a generic
file—that is, as a file icon with a link.

11.	 Let's change the formatter, and layout to something more visually appealing. Click
on the Structure link in the Admin toolbar, then click on the Content types link and
the manage display link for our Recipe content type.

Adding Media to our Site

[152]

12.	 Drag the Media field above the image field, and move the image field to the
Hidden section.

13.	 Next, select <Hidden> for the LABEL and Rendered file for the FORMAT for the
Media field. Once you select Rendered file for the FORMAT, you will notice that a
FORMAT setting button appears. We will click on the FORMAT settings button to
change the View mode from Default to Preview, and click on the Update button for
the Format settings. Finally, click on the Save button at the bottom of the screen.

14.	 Reload our Cannellini Cumin Chicken Chili recipe page, and you will see a small
version of the media images we uploaded, but they are all stacked on top of each
other. So, we will add the following CSS just under the style for article.node-
recipe div.field-name-field-image in the /sites/all/themes/d7dev/
css/global.css file, to lay out the media field images in more of a grid:

article.node-recipe div.field-name-field-media div.file{
 float:left;
 margin: 0 5px 5px 0;
 box-shadow: 0 5px 5px -3px black;
}

Chapter 6

[153]

15.	 Once again, reload our Cannellini Cumin Chicken Chili recipe page, and you should
see something similar to the following:

What just happened?
We added and configured a Media-based field for our Recipe content type.

Adding Media to our Site

[154]

A new Recipe for our site
As promised in the previous chapter, here is a new recipe for this chapter: Thai Basil Chicken.
Add it to your d7dev site, if you would like to have more real content to use as an example,
and feel free to try the recipe out!

�� name: Thai Basil Chicken

�� description: A spicy, flavorful version of one of my favorite Thai dish.

�� recipeYield: Four servings

�� prepTime: 25 minutes

�� cookTime: 20 minutes

�� ingredients:

�� One pound boneless chicken breasts

�� Two tablespoons of olive oil

�� Tthree tablespoons of soy sauce

�� Two tablespoons of fish sauce

�� Two large sweet onions, sliced

�� Five cloves of garlic

Chapter 6

[155]

�� One yellow bell pepper

�� One green bell pepper

�� Four to eight Thai peppers (depending on the level of hotness you want)

�� One-third cup of dark brown sugar dissolved in one cup of hot water

�� One cup of fresh basil leaves

�� Two cups Jasmin rice

�� instructions:

1.	 Prepare the Jasmine rice according to the directions.

2.	 Heat the olive oil in a large frying pan over medium heat for
two minutes.

3.	 Add the chicken to the pan and then pour on soy sauce.

4.	 Cook the chicken until there is no visible pinkness; approximately
eight to ten minutes.

5.	 Reduce heat to medium low.

6.	 Add the garlic and fish sauce, and simmer for three minutes.

7.	 Next, add the Thai chilies, onion, and bell pepper, and stir to combine.
Simmer for two minutes.

8.	 Add the brown sugar and water mixture. Stir to mix, and then cover. Simmer
for five minutes.

9.	 Uncover, add the basil, and stir to combine.

10.	 Serve over rice.

Custom image styles and inline Media for WYSIWYG
As mentioned previously, the Media module offers a number of compelling features out of
the box. This enables you to do more with less, and it does a lot more by itself than many of
the image integration solutions for Drupal 6, and even the core image module with Drupal 7.
One of those features is to allow the insertion of images into a WYSIWYG-enabled text area.

Adding Media to our Site

[156]

Creating a custom image style
Before we configure inline Media for the WYSIWYG module, we are going to create a custom
image style to use when we add an inline image to a WYSIWYG text area. Image styles for
Drupal 7, part of the core Image module, is a replacement for the Drupal 6 contrib Image
Cache, Image Field, and Image modules. In my opinion, Image Styles is a much better
name than Image Cache. Regardless of the name, we are now going to configure a custom
image style for our d7dev site. The core image module provides four default image styles:
thumbnail, medium, large, and square thumbnail, as seen in following the Image style
configuration page:

We are going to add a fifth custom image style, an image style that will resize our images
somewhere between the 100x75 thumbnail style and the 220x165 medium style. We will
walk through the process of creating an image style through the Image style administrative
page, and walk through the process of programmatically creating an image style.

Time for action – adding a custom image style through the
image styles administrative page

First, we will use the Images styles administrative page to create a custom image style.

1.	 Open our d7dev site in your favorite browser, click on the Configuration link in the
Admin toolbar, and click on the Image styles link under the Media section.

Chapter 6

[157]

2.	 Once the Image styles administrative page has loaded, click on the Add style link.

3.	 Next, enter small for the Style name of our custom image style, and click on the
Create new style button.

4.	 Now, we will add the one and only EFFECT for our custom image style by selecting
Scale from EFFECT options, and then clicking on the Add button.

5.	 On the Add Scale effect page, enter 160 for the width, 120 for the height, leave
the Allow Upscaling checkbox unchecked, and click on Add effect button.

Adding Media to our Site

[158]

6.	 Finally, just click on the Update style button on the Edit small style administrative
page, and we are done. We now have a new custom small image style that we will
be able to use to resize images for our site.

What just happened?
Ok, so we saw how easy it is to add a custom image style with the administrative UI. Now,
we are going to see how to add a custom image style by writing some code. The advantage
of having code-based custom image styles is that it will allow us to utilize a source code
repository, such as Git, to manage and deploy our custom image styles between different
environments. For example, it would allow us to use Git to promote image styles from our
development environment to a live production website. Otherwise, the manual configuration
that we just did would have to be repeated for every environment.

Chapter 6

[159]

Time for action – creating a programmatic custom image style
Now, we will see how you add a custom image style with code.

1.	 The first thing we need to do is delete the small image style that we just created. So,
open our d7dev site in your favorite browser, click on the Configuration link in the
Admin toolbar, and then click on the Image styles link under the Media section.

2.	 Once the Image styles administrative page has loaded, click on the delete link for
the small image style that we just added.

3.	 Next, on the Optionally select a style before deleting small page, leave the default
value for the Replacement style select list to No replacement, just delete, and click
on the Delete button.

4.	 Now that we have cleared the way to replace our custom image styles
programmatically, open the d7dev.module file located at /sites/all/modules/
d7dev in Aptana Studio.

5.	 The Drupal 7 core Image API includes a hook for programmatically creating custom
image styles: hook_image_default_styles. We are going to implement the
image_default_styles hook in our d7dev.module by adding the following
code after our d7dev_field_formatter_view function.

/**
 * Implements hook_image_default_styles().
 */
function d7dev_image_default_styles() {

}

Adding Media to our Site

[160]

6.	 Now, the next part is pretty easy. We are going to take a look at the Drupal 7 API
documentation for hook_image_default_styles at http://api.drupal.
org/api/drupal/modules--image--image.api.php/function/hook_
image_default_styles/7. Scroll down to the Code section of the page, and
copy all of the code between the function curly brackets.

7.	 Next, paste the code into our new d7dev_image_default_styles function,
changing the name of the style from mymodule_preview to small, the width
to 160, the height to 120, set upscale to 0, and delete the image_desaturate
array. The final function should look similar to the following code:

/**
 * Implements hook_image_default_styles().
 */
function d7dev_image_default_styles() {
 $styles = array();

 $styles['small'] = array(

Chapter 6

[161]

 'effects' => array(
 array(
 'name' => 'image_scale',
 'data' => array(
 'width' => 160,
 'height' => 120,
 'upscale' => 0,
),
 'weight' => 0,
),
),
);

 return $styles;
}

The name of our custom style, small, is provided as the key of the $styles array.
Then, for each effect that we want to add to our image style, we pass in an effect
configuration array, specifying the effect we want to use as the name key, and then
passing in a data array as the settings for the effect. In the case of the image_scale
effect that we are using here, we pass in the width, height, and upscale settings.
Finally, the value for the weight key allows us to specify the order that the effects
should be processed in, and although it is not very useful when there is only one
effect, it becomes important when there are multiple effects.

8.	 Now, we will need to clear the cache for our d7dev site by going to Configuration,
clicking the Performance link, and then clicking on the Clear all caches button.
Then, go back to the Image styles administrative page, and you will see our
programmatically created small image style.

You could also use Drush to clear the Drupal cache. The Drush cc
command will accomplish the same thing as clicking on the Clear
all cache button on the Performance administrative page.

Adding Media to our Site

[162]

When we created our custom image style through the administrative UI, Custom
was listed as the value for the SETTINGS column, and there was a link to delete the
image style in the OPERATIONS column. Now, with our programmatic image, Default
is listed in the SETTINGS column, and there is no delete link in the OPERATIONS
column. In order to remove an image style provided by a module, you would need to
disable the module. Therefore, if you are coding custom image styles, you may want
to place them in their own module, so that you can disable them without disabling
other features of the module. You won't be able to modify the effects without being
forced to override the default; or in the case with our small custom image style,
modifying the code of our d7dev_image_default_styles.

The programmatic approach for creating custom image styles is straightforward, and
I feel that it is almost as easy as doing it through the administrative UI. However, for
more complex custom image styles, the biggest issue may be figuring out the correct
names to use for all of the available effects. We already saw two effect names in
the code that we copied from the API documentation for hook_image_default_
styles: image_scale and image_desaturate. The best, and only place that
I am aware of to find all of the available image style effects available in the core
image module is in the actual code. Open /modules/image/image.effects.
inc in Aptana Studio, and you will see all of the available core image style effects
listed in the image_image_effect_info. To see what data settings are available
for a given effect, you must find the function that is specified as the effect callback
for each $effects array. Here is a list of effects, and the available data settings
available for those effects based on the code in the image.effects.inc file:

Effect name Effect data settings

image_resize width: An integer representing the desired
width in pixels.

height: An integer representing the
desired height in pixels.

image_scale width: An integer representing the desired
width in pixels.

height: An integer representing the
desired height in pixels.

upscale: A Boolean specified as 0 or
1, indicating that the image should be
upscaled, if the dimensions are larger than
the original image.

Chapter 6

[163]

Effect name Effect data settings

image_scale_and_crop width: An integer representing the desired
width in pixels.

height: An integer representing the
desired height in pixels.

image_crop width: An integer representing the desired
width in pixels.

height: An integer representing the
desired height in pixels.

anchor: A string describing where the crop
should originate in the form of XOFFSET-
YOFFSET. XOFFSET is either a number
of pixels or left, center, right", and
YOFFSET is either a number of pixels or
top, center, bottom.

image_desaturate No data settings.

image_rotate degrees: The number of (clockwise)
degrees to rotate the image.

random: A Boolean, captured as 0 or 1,
indicating that a random rotation angle
should be used for this image. The angle
specified in degrees is used as a positive
and negative maximum.

bgcolor: The background color to use for
exposed areas of the image. Use web-style
hex colors (#FFFFFF for white, #000000
for black). Leave blank for transparency on
image types that support it.

Adding Media to our Site

[164]

Time for action – configuring Media-based images to use our
custom small image style for our Recipe content type

Now that we have a custom image style, let's put it to use.

1.	 Open up our d7dev site in your favorite browser, click on the Configuration link in
the Admin toolbar, and click on the File types link under the Media section.

2.	 Now, on the File types administrative page, click on the manage file display link for
the Image file type.

3.	 On the Manage File Display page, click on the button for the Small display.

4.	 Next, select our custom small image style for the Image style select list for the
Image Display settings, and click on the Save configuration button.

5.	 Now, load the Cannellini Cumin Chicken Chili recipe to see our custom image
style in action.

Chapter 6

[165]

What just happened?
We created a custom image style with some custom code. We then configured our Recipe
content type to use our custom image style for images added to the Recipe Media field.

Inline Media with WYSIWYG
Now, we are ready to look at how easy it is to enable inline images in a WYSIWYG text area
with the Media module.

Time for action – configuring WYSIWYG inline Media for the
basic page content type

We are going to take advantage of the Media module's WYSIWYG integration.

1.	 Open up our d7dev site in your favorite browser, click on the Configuration
link in the Admin toolbar, and then click on the Wysiwyg profiles link under
Content authoring.

2.	 On the Wysiwyg profiles administrative page, click on the Edit link for the Full
HTML INPUT FORMAT.

Adding Media to our Site

[166]

3.	 Expand the BUTTONS AND PLUGINS section, check the Media browser checkbox,
and click on the Save button at the bottom of the form.

4.	 Next, we will create a Basic page content item, and add some inline media through
the WYSIWYG editor. Click on the Add content link in the Shortcuts bar, and select
the link for adding a Basic page.

5.	 Now we will create a page that will tell the visitors what our d7dev site is about. We
will enter About d7dev as the Title, and then add the following text for the Body:

The d7dev site is the companion website for the Drupal 7
Development by Example for Beginners book. The website will
showcase recipes for Drupal development and recipes for your
belly. And all of this is done within the context of creating an
HTML5 Drupal 7 site.

Chapter 6

[167]

6.	 Next, click on the Add media icon in the WYSIWYG toolbar, and the Media browser
will appear.

7.	 Click on the Library tab of the Media browser, select one of the photos we have
already uploaded, and click on the Submit button.

Adding Media to our Site

[168]

8.	 Next, on the Embedding screen, select small as the Current format, and click on
the Submit button.

9.	 Finally, click on the Save button at the bottom of the Create Basic page form.

What just happened?
We enabled the ability to add the Media module-based fields to content through the
WYSIWYG editor.

Integrating the Colorbox and Media modules
So, the Media module has given us a nice interface for adding, browsing, and displaying media
files. However, the images are taking up quite a bit of room. Let's create a pop-up gallery or
lightbox, and show only one image. When someone clicks on an image, a lightbox will pop up,
and will allow the user to cycle through larger versions of all of the associated images.

Drupal has a few different modules that offer an integrated lightbox solution for formatting
sets of images. The following page, although somewhat outdated, offers a good overview
of the different lightbox modules available for Drupal. Out of the whole bunch, I prefer the
Colorbox module.

Time for action – installing the Colorbox module
Before we can display Media-based images in a Colorbox, we need to install and enable
the module.

1.	 Open the Mac OS X Terminal or Windows Command Prompt, and change to our
d7dev directory: Mac: /Applications/MAMP/ or Windows: C:\XAMPP\
htdocs\d7dev.

Chapter 6

[169]

2.	 Next, use Drush to download and enable the current dev release of the Colorbox
module (http://drupal.org/project/colorbox).

$ drush dl colorbox-7.x-1.x-dev

Project colorbox (7.x-1.x-dev) downloaded to [success]

/Users/kurt/htdocs/d7dev/sites/all/modules/colorbox.

$ drush en colorbox

The following extensions will be enabled: colorbox

Do you really want to continue? (y/n): y

colorbox was enabled successfully. [ok]

3.	 The Colorbox module depends on the Colorbox jQuery plugin available from
http://jacklmoore.com/colorbox/. The Colorbox module includes a
Drush task that will download the required jQuery plugin to the /sites/all/
libraries directory.

$ drush colorbox-plugin

Colorbox plugin has been downloaded to sites/all/libraries
[success]

4.	 Now, we will take a look at the Colorbox formatter. Click on the Structure link in the
Admin toolbar, click on the Content types link, and click on the manage display link
for our Recipe content type.

5.	 Next, click on the FORMAT select list for the image field, and you will see an option
for Colorbox. Next, click on the FORMAT select list for the Media field, and you will
see that there is not an option for Colorbox.

As you can see, the Colorbox module does not work with the Media module out of
the box.

Adding Media to our Site

[170]

What just happened?
We installed the Colorbox module, and discovered that it only supports Image fields. In the
next section, we will explore how we might make the Colorbox module work with the Media-
based fields.

Introduction to the Colorbox File module and Drupal sandboxing
The Colorbox module for Drupal 7 only has a formatter for the core image field, so it will not
work with the Media-based fields. The content of a Media module-based field may be an
image, but it is still wrapped as a file type entity, as it needs to be able to support a number
of different file types.

Shortly after the initial release of the Media module, I downloaded it and gave it a test drive.
I wanted to compare its capabilities to some multimedia features that I was adding to a
Drupal 6 site I was working on at the time. I quickly discovered, as we did previously, that
there was no lightbox integration. So, I scratched my own itch, and wrote a custom file field
formatter that leveraged the Colorbox module, and then shared the code with the Drupal
community by creating a sandbox project.

Drupal developer community: Drupal sandbox
Although not a Drupal 7-specific feature, the ability to create a sandbox or an experimental
project was introduced shortly after the release of Drupal 7. Anyone with a drupal.org
account can utilize the drupal.org Git repository to share and maintain any experimental or
concept type code with the Drupal community.

Drupal.org users will be able to search for your sandboxed module, enter bugs and feature
requests in the drupal.org provided issue queue, and download/checkout your sandboxed
code. The key differences between a sandbox project and a full project is that sandbox
projects cannot have releases, or in other words, you can only download the code with
Git (as you can see from the following screenshot, there are no links to directly download
the project), and the code is not included in the drupal.org automated security tests. Also,
sandbox projects prominently display the information stating that the code is experimental;
basically 'use at your own risk'.

Chapter 6

[171]

The really cool thing about sandbox projects is that they make it very easy to share your
code, and give you the opportunity to easily explore other Drupal developers' ideas. As
other users find and start using your code, you may get some feedback, which serves
as a "proving grounds" for your code. This process is an integral part of the evolution
of a sandbox project to becoming a full-fledged contrib project. There is an excellent
documentation on sandbox projects available at http://drupal.org/node/1011196.

Revisit the sandbox Colorbox File module
So, I scratched my own itch and created a module that would allow displaying the
Media-based fields in a lightbox. However, since last spring I have not paid as much
attention to the issue queue for the module as I should have, and haven't even tested
the code against the second version of the Media module. So, based on the needs at
hand, I believe that it is time for us to revisit my sandbox code for the Colorbox
File module.

Adding Media to our Site

[172]

Time for action – checking out the Colobrbox File sandbox
project with Git, and testing it with the latest Media module

Now that we have installed the Colorbox module, we will install a module that integrates it
with the Media module.

1.	 If you visit the drupal.org page for a sandbox project, you will notice a Version
control link next to the View link. We will use Git to check out a copy of the
Colorbox File module.

In subsequent chapters, the code of the Colorbox File module
will be transformed, the module itself will be renamed, and
it will become a full Drupal project. By the time you read
this chapter, there will no longer be a Colorbox File sandbox
project. Therefore, rather than using Git to clone the sandbox
project with: git clone --branch master http://
git.drupal.org/sandbox/kmadel/1084984.git
colorbox_file, you will need to clone the current project,
and switch to the last commit before the changes for this book.

2.	 Open Terminal (Mac OS X) or a Command Prompt (Windows), change to our d7dev
/sites/all/modules directory, and run the following command:

git clone --branch master http://git.drupal.org/project/media_
colorbox.git colorbox_file

Chapter 6

[173]

git checkout -b colorboxFile
fa74c354432310befde64c1e4e1b205c657d7c71

Next, we will use Drush to enable the Colorbox File module:

drush en colorbox_file

The following extensions will be enabled: colorbox_file

Do you really want to continue? (y/n): y

colorbox_file was enabled successfully. [ok]

3.	 Open our d7dev site in your favorite browser, click on the Structure link in the
Admin toolbar, then Content types, and then click on the manage display link for
our Recipe content type.

4.	 Click on the FORMAT select for the Media field, and you will see that there is now
an option for Colorbox file; select it.

5.	 Now, you will see a different set of options available for the FORMAT configuration.
Click on the cog button, and select medium for Node image style and large for
Colorbox image style, then click on the Update button:

6.	 Next, click on the Save button at the bottom of the Recipe MANAGE DISPLAY page.

7.	 Now, we are ready to see if this experimental code works. Click on the Content
link in the Admin toolbar, then click on the link for the Cannellini Cumin Chicken
Chili recipe.

Adding Media to our Site

[174]

8.	 Click on the first Media field image for the recipe. What do you know - it works!

What just happened?
We installed the sandboxed Colorbox File, and enabled it for the Media field on our
custom Recipe content type. Now, we can easily add images to our d7dev content
with Colorbox support.

Drupal issue queues and enhancing the Colorbox File module
Even though the Colorbox File formatter is functional, I am not crazy about the user
experience. Users have to individually click on each image to have it displayed in the
Colorbox. Now, before we just go and try to figure out how to implement this new
functionality for the Colorbox File module, we should check the module's issue queue at
http://drupal.org/project/issues/1084984?status=All&categories=All.
Someone may have requested the same feature, and someone may have even already
implemented a fix.

If you look through all of the issues for the Colorbox File module, you will see the following
issue: Image field gallery, per page/post/field options (http://drupal.
org/node/1165198):

Hey maybe it's me but the option doesn't work where it takes all images on the
page to click through. Is that easy to implement? Thanks in advance. Keep up the
good work!

Chapter 6

[175]

Basically, @sanderjp is requesting the same functionality that I described previously. As you
read through the individual posts for that issue, you will see that no one really has come up
with something that works. Eventually, you will come across the following intriguing post
from @jide (http://drupal.org/user/146088):

Hi, I just posted #1296186: Complete rewrite of the module (http://drupal.org/
node/1296186), a complete rewrite of the module, you might want to have a
look at it.

@jide does not specifically state that he has a solution for the issue, but his post is
intriguing enough to read through and see what his "Complete rewrite of the module"
entails. If you read through the issue summary of @jide, you will see that he has added
support for Colorbox galleries: "It also takes care of gallery settings." Exactly what we
want for our Recipe pictures! After reading through the rest of the comments on that
issue, I believe it is worth taking the time to apply the patch attached to the following
issue comment: http://drupal.org/node/1296186#comment-5103976.

Time for action – applying and testing the patch for the Colorbox
File module

So, now let's learn how you go about patching Drupal code.

1.	 First, we need to download the patch (http://drupal.org/files/colorbox_
file_overhaul-2.patch) to the same directory that we checked out the
Colorbox File module to: d7dev/sites/all/modules/colorbox_file.

2.	 Next, we will use Git to apply the patch to the Colorbox File code:

$ git apply -p0 colorbox_file_overhaul-2.patch

colorbox_file_overhaul-2.patch:59: trailing whitespace.

colorbox_file_overhaul-2.patch:99: trailing whitespace.

colorbox_file_overhaul-2.patch:324: trailing whitespace.

warning: 3 lines add whitespace errors.

Adding Media to our Site

[176]

Note: the trailing whitespace warnings are not a major concern, and are just a
matter of some extra spaces on what are otherwise empty lines.

Applying patches to the contrib and core modules requires
a certain amount of developer vigilance on your part. You
must ensure that you are aware of all patches that you may
have applied to a module before you apply any updates to
that module. When an update becomes available for a module
you should check to see if the patch that you applied has been
added to the updated code. If it hasn't, then you need to test
the application of the patch to the new updated code in your
development environment, before using on a live site.

3.	 With the patch applied, we are ready to test it on our d7dev site. But, first delete the
patch file from the d7dev/sites/all/modules/colorbox_file directory, as
we wouldn't want to accidentally check that file into our Git branch.

4.	 Next, we have to clear our site cache by clicking on the Performance link in the
Shortcuts bar, and clicking on the Clear all caches button.

5.	 Now, we will have to revisit the display settings for our Recipe content type to re-
associate the Colorbox File formatter with the Media field. In the Admin toolbar,
click on the Structure link, then click on the Content types link, and click on the
manage display link for our Recipe content type.

6.	 Select Colorbox file as the FORMAT for the Media field, and you will notice that
there is an updated set of FORMAT settings.

7.	 Now, we will configure the FORMAT settings for the updated Colorbox file formatter.
Click on the FORMAT settings cog button, select Small for File view mode, Large for
Colorbox view mode, and keep the defaults of 500x400 for Dimensions and Per
post gallery for Gallery (image grouping), and then click the Update button.

Chapter 6

[177]

8.	 Finally, click on the Save button for the Recipe MANAGE DISPLAY page, and return
to the page for the Cannellini Cumin Chicken Chili recipe.

9.	 Once again, click on the first image for our Media field, and once the Colorbox
loads, you will notice that it now includes buttons to cycle through all of the images
for the field.

Adding Media to our Site

[178]

What just happened?
We were able to add the features we desired, without writing any code. Instead, we
leveraged the Drupal developer community and issue queues to add the functionality.

Summary
In this chapter, we have looked at several ways to spice up our d7dev site with multi-media,
and learned some new ways of interacting with and leveraging the drupal.org developer
community. In the next chapter, we will revisit the Colorbox File module with some
enhancements, and we will add some features to our d7dev site that will enable visitors to
our site to provide feedback and interact with our site's content.

7
How Does it Taste – Getting Feedback

Up until this point, there haven't been any compelling or interesting ways for
the users to interact with our d7dev site. This chapter will show you how to add
a contact form, and how to set up and integrate the Fivestar module with the
custom Recipe content type to include a custom Fivestar ratings widget.

This chapter will walk through the code that adds support for HTML5 form elements with
the Webforms module, and show how that code can be shared with the Drupal community
as a whole (at least those that are using the HTML5 Tools module).

We will also revisit the Colorbox File module that we installed in the previous chapter. We
will make some enhancements to the code (an advanced real world example), and we walk
through the process of working with patches.

Introduction to the Drupal contact form
A very simple contact form is included with Drupal core, but not enabled by default. The
core contact form provides a good starting point to introduce some interactive features
to our d7dev site.

How Does it Taste – Getting Feedback

[180]

Time for action – enabling and configuring the core
contact form

We will configure the core contact form, so that anonymous visitors to our site will be able to
provide feedback about the site.

1.	 Once again, we will use Drush to enable the module, but we don't need to
download it as it is a core module.

C:\xampp\htdocs\d7dev>drush en contact

The following extensions will be enabled: contact

Do you really want to continue? (y/n): y

contact was enabled successfully. [ok]

2.	 Now, open up our d7dev site in your favorite browser, and click on the Modules link
in the Admin toolbar. Scroll down to the module named Contact under the Core
group; you will notice that it is enabled. Then, click on the Permissions link under
the OPERATIONS column.

3.	 On the People | Permissions page, you will notice that the Use the side-wide
contact form is only enabled for the ADMINISTRATOR role by default. Check the
boxes for the ANONYMOUS and AUTHENTICATED roles, scroll to the bottom of the
screen, and click on the Save permissions button.

4.	 Next, log out and navigate to http://localhost/d7dev/contact. You will see
a simple contact form, as shown in the following screenshot:

Chapter 7

[181]

5.	 Let's look at the HTML source of this form. Look for the input with id edit-mail,
and you will notice that it uses the email input type because of the HTML5 Tools
module that we installed in Chapter 3, HTML5 Integration for Drupal 7 and More
Module Development.

<input type="email" id="edit-mail" name="mail" value="" size="60"
 maxlength="255" class="form-text form-email required">

What just happened?
We enabled a simple contact form to get feedback from the visitors to our d7dev site.
Since we had already enabled the HTML5 Tools module in Chapter 3, HTML5 Integration
for Drupal 7 and More Module Development, the form includes support for the HTML5
email input type.

How Does it Taste – Getting Feedback

[182]

Adding descriptive help text to our contact form
The core Contact module provides a decent out-of-the-box contact form for our site. But,
what if we wanted to customize it a bit? Say, for example, that we wanted to add some help
text to explain to the users why they should fill out the form. As we have seen in the previous
chapters, there are usually multiple ways to accomplish customizations like this with Drupal.
We are going to cover two different Drupal development recipes for creating an enhanced
contact form for our d7dev site.

Using custom code to add help text to the contact form
The first approach will involve writing custom code by implementing a Drupal hook.

Time for action – adding help text to our site contact form
We will use the dpm function from the Devel module to help us get started with the first
approach, then we will utilize the core hook_form_FORM_ID_alter hook to alter the
core contact form. We will be adding this code to the template.php file of our custom
d7dev_theme for the purpose of demonstrating adding code in a Drupal theme versus a
custom module. If we wanted to ensure that these customizations would be available across
all themes, then we would want to add the code to a custom module.

1.	 In Aptana Studio, open the template.php file in our custom theme at /sites/
all/themes/d7dev_theme.

2.	 Next, switch over to the browser with the core contact form loaded, and find the ID
of the form element.

3.	 Now, add the following code to the template.php file, and replace the FORM_ID
portion of the hook function name with the form id we found in step 2:

/**
* Implements hook_form_FORM_ID_alter ().
*/
function d7dev_theme_form_contact_site_form_alter(&$form,
 &$form_state, $form_id) {
 $form['#prefix'] = t("Please fill out the following form if you
 have any questions about the d7dev site.");
}

When there are uppercase portions of a hook function name, it is an
indicator that that part of the hook name needs to be substituted
with a form id or some other identifying variable.

Chapter 7

[183]

4.	 Next, reload the contact page, and you will see the descriptive text that we added.

What just happened?
We used the hook_form_FORM_ID_alter hook to add some descriptive test to the core
contact form.

Adding contact help text with no code
For the second recipe, we are going to download and enable another contrib module, the
Webform module (http://drupal.org/project/webform). The Webform module
offers quite a few advanced features compared to what is available with the core contact
form, to include the ability to add descriptive text without writing any code. We will use the
Webform module to replace the core contact form.

Time for action – creating a contact form with help text, with the
Webform module

We are going to install the Webform module, and use it to create a contact form for our
d7dev site.

1.	 First, we need to install the Webform module. Open the Terminal (Mac OS X) or
Command Prompt (Windows) application, and change to the root directory of our
d7dev site.

2.	 Use Drush to download and enable the Webform module.

$ drush dl webform

Project webform (7.x-3.15) downloaded to /Applications/MAMP/
htdocs/d7dev/sites/all/modules/webform.[success]

$ drush en webform

The following extensions will be enabled: webform

Do you really want to continue? (y/n): y

webform was enabled successfully. 		 [ok]

Now that we have installed the Webform module, we need to create a new
Webform-based contact form.

How Does it Taste – Getting Feedback

[184]

3.	 Open up our d7dev site in your favorite browser. Click on the Add content link in the
Shortcuts bar, and click the Webform link.

4.	 Enter Contact Form as the Title, enter the same help text from the previous
approach as the Body: Please fill out the following form if you have any
questions about the d7dev site, then click on the Save button.

5.	 After you click on the Save button, the Webform module will load a Form
components configuration page for our newly created Contact Form.

6.	 We will now add all of the same fields that are part of the core contact form to our
Contact Form Webform.

7.	 For the first field, enter Your name as the LABEL, select Textfield as the TYPE,
check the MANDATORY checkbox, and click on the Add button.

8.	 Next, on the Edit component page for the Your name field, enter Please enter
your first and last name. as the Description text, and click on the Save
component button at the bottom of the form.

9.	 For the next field, enter Your e-mail address as the LABEL, select E-mail as the
TYPE, check the MANDATORY checkbox, and click on the Add button.

10.	 Next, on the Edit component page for the Your e-mail address field, check the
User email as default checkbox, enter Please enter your e-mail address.
as the Description text, and then click on the Save component button at the
bottom of the form.

Chapter 7

[185]

11.	 For the first field, enter Subject as the LABEL, select Textfield as the TYPE,
check the MANDATORY checkbox, and click on the Add button.

12.	 Next, on the Edit component page for the Subject field, leave the Description field
empty, and click the on the Save component button at the bottom of the form.

13.	 For the first field, enter Message as the LABEL, select Textarea as the TYPE, check
the MANDATORY checkbox, and click on the Add button.

14.	 Next, on the Edit component page for the Message field, leave the Description field
empty, and click on the Save component button at the bottom of the form.

When you are done, our Contact Form Edit components configuration should look
similar to the following screenshot:

15.	 Now, click on the Form settings button, scroll down and expand the ADVANCED
SETTINGS section, and enter Send message for the Submit button text field.

We are now ready to take a first look at our new Webform-based contact form.

How Does it Taste – Getting Feedback

[186]

16.	 Click on the VIEW tab for our new Contact Form, and you will see a contact form
that is very similar to the one provided by the Drupal 7 core.

The Webform based contact form is not exactly the same as the contact form provided
by core, and it is slightly more difficult to set up. But, it does provide a simple way to add
descriptive help text without writing any custom code. Later, in this chapter, we will explore
ways to make our Webform contact form match the core contact form exactly.

It is important to note that installing the Webform module may be overkill if your site's form
needs do not extend beyond one simple contact form. If you need more than a couple of
custom forms on your site, then installing the Webform module is highly recommended.

What just happened?
We covered two different approaches for creating a contact form, so that we could add
descriptive help text to it. One approach was based on the custom code to modify the core
contact module, and the other approach involved installing and configuring another contrib
module. We also got an overview of the Webform module.

Chapter 7

[187]

A more in-depth look at the Webform module
As we saw in the previous section, our Webform-based contact form is very similar to the
core contact form. However, it doesn't include the checkbox to allow visitors to have a copy
of the e-mail sent to them, and it doesn't live at the /contact path. Most importantly,
especially in regards the underlying HTML5 theme of this book, the Your e-mail address
field is of type text, and not of type email as it is with the core contact form.

<input class="email form-text required" type="text" id=
 "edit-submitted-your-e-mail-address" name=
 "submitted[your_e_mail_address]" value="admin@localhost.org"
 size="60" maxlength="128">

The HTML5 Tools module that we installed in Chapter 3 uses hook_form_FORM_ID_alter
to override the input type of the core contact form. Open the /sites/all/modules/
html5_tools/html5_tools.module file, and scroll down to approximately line 336.
The #type of the mail field of the contact form is changed from a core textfield to an
emailfield (a non-core field provided by the Elements modules that we also installed in
Chapter 3):

/**
* Implements hook_form_FORM_ID_alter().
*/
function html5_tools_form_contact_site_form_alter(&$form,
 &$form_state) {
 // Modify the user registration field to use an email field.
 if (variable_get('html5_tools_override_contact_forms', 1) &&
 $form['mail']['#type'] == 'textfield') {
 $form['mail']['#type'] = 'emailfield';
 }
}

There is no reason why we can't do something similar for our Webform contact form's
e-mail field.

How Does it Taste – Getting Feedback

[188]

Time for action – using hook_form_FORM_ID_alter to modify
our Webform-based contact form

The first thing we need to do in order to use this hook is to get the FORM_ID of our
Webform-based contact form. The hook_form_FORM_ID_alter core hook is executed
for a specific form based on the ID of the form. To find the ID of our Webform-based
contact form, we will once again turn to the trusty Devel module.

1.	 Open up our d7dev site in your favorite browser, click on the Find content link
in the Shortcuts bar, and click on the Contact Form of TYPE Webform.

2.	 Once the Webform content has loaded, click on the Devel tab.

3.	 Next, on the DEVEL overlay, click on the Render link, and expand the top row
with the text (Array, 14 elements).

4.	 Now, expand the webform (Array, 7 elements) row, then expand the #form element,
and find the value for the #form_id element:

Chapter 7

[189]

Okay, so now that we have the form id - webform_client_form_56, we are ready
to start writing some code.

5.	 In Aptana Studio, open the d7dev.module file located at /sites/all/modules/
d7dev/.

6.	 Add the following code after the d7dev_image_default_styles function that
we added in the previous chapter.

/**
 * Implements hook_form_FORM_ID_alter().
 */
function d7dev_form_webform_client_form_56_alter(&$form,
 &$form_state, $form_id) {

}

Note that we replaced the FORM_ID of the hook function name with the form ID
that we retrieved previously, using the Devel module.

Before we start writing the code to convert the Webform e-mail field from a
textfield to an emailfield, we are going to use the Devel module to check that
our hook is being executed when we load our Webform-based contact form.

How Does it Taste – Getting Feedback

[190]

7.	 We are going to use the Devel dd() function to ensure that the hook we added
is firing, and as an extra benefit, we will see the complete structure of the $form
parameter. Add the following code to the top of the d7dev_form_webform_
client_form_56_alter function, so that your function look similar to the
following code:

function d7dev_form_webform_client_form_56_alter(&$form, &$form_
state, $form_id) {
 dd($form, 'd7dev_form_webform_client_form_56_alter');

}

The dd() function is similar to the dpm() function that was
introduced in Chapter 2, Custom Content Types and an Introduction
to Module Development. However, the dd() function prints out to
a file, drupal_debug.txt, located in the Drupal Temporary
directory configured at http://localhost/d7dev/admin/
config/media/file-system.

8.	 Now, in Terminal (Mac OS X) or the Command Prompt (Windows), change to the
Drupal temporary directory - /Applications/MAMP/tmp/php for Mac OS X or
C:\XAMPP\... for Windows, and type the following command:

$ tail -f drupal_debug.txt

9.	 Next, refresh the Webform contact form in your browser, then switch back to the
Terminal/Command Prompt, and you should see the dump of the $form parameter.

d7dev_form_webform_client_form_56_alter: Array

(

 [#attached] => Array

...

So, now that we know that our hook is being fired, it is time to write the code to
convert the e-mail textfield to an emailfield. We will examine the output of
the dd() function to figure out what part of the $form array we need to change.

10.	 In the Terminal/Command Prompt, scroll down to the [submitted] array, and
within that array, find the [your_e_mail_address] array.

[your_e_mail_address] => Array

 (

 [#type] => textfield

...

Chapter 7

[191]

11.	 Now, within the array, find the [#webform_component] array, and note the value
of the [type] property.

[#webform_component] => Array

 (

 [nid] => 56

 [cid] => 2

 [pid] => 0

 [form_key] => your_e_mail_address

 [name] => Your e-mail address

 [type] => email

...

12.	 In Aptana Studio, add the following code before the dd() function we added
previously. The code will use the ['#webform']['type'] value to figure out what
form fields need to be modified to use emailfield in place of textfield.

 //loop through all of the webform fields
 foreach($form['submitted'] as &$field) {
 //if the webform_component type is set and is email,
 //then this is a field we want to change
 if(isset($field['#webform_component']['type'])
 && $field['#webform_component']['type'] == 'email') {
 $field['#type'] = 'emailfield'; //set the field type to
emailfield
 }
 }

13.	 Now, refresh the contact form page, switch over to the dd() output in the Terminal/
Command Prompt, and find the updated e-mail field output.

[your_e_mail_address] => Array

 (

 [#type] => emailfield

 [#title] => Your e-mail address

...

14.	 Sure enough, the [#type] is now emailfield instead of textfield, but we
need to look at the actual HTML output.

<input class="email form-text form-email required" type="email"
 id="edit-submitted-your-e-mail-address"
 name="submitted[your_e_mail_address]"
 value="admin@localhost.org" size="60" maxlength="128">

How Does it Taste – Getting Feedback

[192]

15.	 Finally, now that we know everything is working correctly, be sure to remove
the dd() function from our code. You should always be vigilant about removing
any Devel functions used for testing, as you never want to deploy those types of
development functions to a live site. Our final code will look similar to the following
code:

/**
 * Implements hook_form_FORM_ID_alter().
 */
function d7dev_form_webform_client_form_56_alter(&$form,
 &$form_state, $form_id) {
 //loop through all of the webform fields
 foreach($form['submitted'] as &$field) {
 //if the webform_component type is set and is email,
 //then this is a field we want to change
 if(isset($field['#webform_component']['type'])
 && $field['#webform_component']['type'] == 'email') {
 $field['#type'] = 'emailfield'; //set the field type to
 emailfield
 }
 }
}

What just happened?
We used a core hook, hook_form_FORM_ID_alter, to override the input type of the
e-mail field for our Webform-based contact form from text type to email type.

The reason why we added this code to our d7dev module is, because it is the type of code
that is not a good candidate for re-use on other Drupal sites or sharing with the Drupal
community, and all of our site-specific hook implementations and other non-theme site
specific code is placed in this module. The FORM_ID that we needed to use, webform_
client_form_56, is specific to this site. So, our implementation of the hook would be
useless for any other site.

However, we should investigate making our code more generic, so that it will be reusable.
Before we make the effort to make our Webform emailfield replacement code reusable,
we should:

1.	 Try to understand if it will be useful to us in the short term to be able to reuse this
functionality across multiple Webform-based forms or multiple Drupal sites.

Chapter 7

[193]

2.	 Review the issue queue for the HTML5 Tools module to see if anyone has requested
or implemented a similar solution. For the purpose of this example, we will answer
yes for the first part, and if you search the HTML5 Tools issue queue (http://
drupal.org/project/issues/html5_tools) for the word Webform, then
you will find that there is indeed a feature request to have a Webform support
added to the HTML5 Tools module: Webform module (http://drupal.org/
node/1312992).

Hi,

is there any support with the Werbform module?

So, what can we do to make our code more generic? It turns out that Drupal 7 added a new
form related hook, hook_form_BASE_FORM_ID_alter, that will provide a straightforward
solution so that we can make our Webform emailfield enhancement work for all Webform-
based forms on any site. The concept of a BASE_FORM_ID is what makes this possible,
and to find out what BASE_FORM_ID to use for a given module, you just need to find and
examine the module's implementation of hook_forms.

Time for action – using hook_form_BASE_FORM_ID_alter to
make our Webform emailfield code more generic

We will introduce another Drupal form-related hook to enable the emailfield across all
Webform generated forms.

1.	 In Aptana Studio, open the webform.module file found at /sites/all/
modules/webform, and locate its hook_forms implementation:

/**
 * Implements hook_forms().
 *
 * All webform_client_form forms share the same form handler
 */
function webform_forms($form_id) {
 $forms = array();
 if (strpos($form_id, 'webform_client_form_') === 0) {
 $forms[$form_id]['callback'] = 'webform_client_form';
 }
 return $forms;
}

We are looking for the function being set as the callback of all Webform-based
forms, and in this case, it is webform_client_form.

How Does it Taste – Getting Feedback

[194]

Now that we know what BASE_FORM_ID to use, we are ready to implement hook_
form_BASE_FORM_ID_alter. But, we aren't going to put it in our d7dev module.
Since we want to make this reusable on other sites and make it available to the
Drupal community as a whole, we are going to add it to the HTML5 Tools module.
Typically, you wouldn't add code to a core or contrib module, but in this case, we
plan on contributing the code back to the Drupal community. So, it is ok to modify
the html5_tools.module file directly.

2.	 This is going to be pretty simple to start. We are going to cut the d7dev_form_
webform_client_form_56_alter function that we just added, and paste it
into the /sites/all/modules/html5_tools/html5_tools.module file at
approximately line 355. Then we will rename the function to html5_tools_form_
webform_client_form_alter:

/**
 * Implements hook_form_FORM_ID_alter().
 */
function html5_tools_form_webform_client_form_alter(&$form,
&$form_state, $form_id) {
 //loop through all of the webform fields
 foreach($form['submitted'] as &$field) {
 //if the webform_component type is set and is email,
 //then this is a field we want to change
 if(isset($field['#webform_component']['type'])
 && $field['#webform_component']['type'] == 'email') {
 $field['#type'] = 'emailfield'; //set the field type to
emailfield
 }
 }
}

3.	 Now, refresh the Webform-based contact form in the browser, and inspect the
source of the e-mail field to ensure that its input type is still set to email.

Although the hook is working as expected, we aren't done yet. At least not for code
that we want to share on drupal.org. If you take a look at the html5_tools_form_
contact_personal_form_alter function right above the one we just added in
the html5_tools.module file, you will see that the html5_tools_override_
contact_forms variable is tested to see if it has been set to 0. That variable is
exposed as a configuration option on the HTML5 Tools configuration page
(http://localhost:d7dev/admin/config/markup/html5-tools). We
should expose a similar configuration option for Webform email fields.

Chapter 7

[195]

4.	 Open the html5_tools.admin.inc file located in /d7dev/sites/all/
module/html5_tools, and add the following code at line 110:

 if (module_exists('webform')) {
 $form['html5_tools_webform_forms'] = array(
 '#type' => 'fieldset',
 '#title' => t("Override Webform fields with their HTML5
counterparts"),
 '#collapsible' => FALSE,
);
 $form['html5_tools_webform_forms']['html5_tools_override_
webform_email'] = array(
 '#type' => 'checkbox',
 '#default_value' => variable_get('html5_tools_override_
webform_email', 1),
 '#title' => t('E-mail field'),
 '#description' => t('Modify the Webform email textfield to an
email field.'),
);
 }

The code follows the pattern already used by the HTML5 Tools module, creating a
variable that allows site administrators to disable/enable HTML5 e-mail input types
for the Webform module, and defaults to being turned on.

5.	 Reload the HTML5 Tools configuration page, and you should see the following
content at the bottom of the page:

6.	 Now that we have added a configurable variable, we need to add a check for that
variable to our html5_tools_form_webform_client_form_alter function.

/**
 * Implements hook_form_FORM_ID_alter().
 */
function html5_tools_form_webform_client_form_alter(&$form,
 &$form_state, $form_id) {
 //Modify Webform email type fields ot use an email field
 if (variable_get('html5_tools_override_webform_email', 1)
 && isset($form['submitted'])) {
 //loop through all of the webform fields

How Does it Taste – Getting Feedback

[196]

 foreach($form['submitted'] as &$field) {
 //if the webform_component type is set and is email,
 //then this is a field we want to change
 if(isset($field['#webform_component']['type'])
 && $field['#webform_component']['type'] == 'email') {
 $field['#type'] = 'emailfield'; //set the field type to
 emailfield
 }
 }
 }
}

7.	 Now to test that it works, uncheck the E-mail field checkbox for overriding the
Webform e-mail textfield, then load our Webform contact form, and inspect
the HTML for the e-mail field. It is of type text, so the configuration we added is
working.

8.	 Now, go back to the HTML5 Tools configuration page, and check the E-mail field
checkbox to re-enable our emailfield replacement code.

9.	 We now have the code that we will be usable across multiple Webform forms and
across multiple Drupal sites. But, how do we get this code into the hands of other
Drupal users, and better yet, have it maintained as part of the HTML5 Tools module.
To share this code, we are going to create a patch.

10.	 Before we can create a patch the Drupal 7/Git way, we need to check out the HTML5
Tools project with Git to a new directory.

$ git clone --branch 7.x-1.x http://git.drupal.org/project/html5_
tools.git

Cloning into html5_tools...

remote: Counting objects: 232, done.

remote: Compressing objects: 100% (153/153), done.

remote: Total 232 (delta 149), reused 114 (delta 77)

Receiving objects: 100% (232/232), 41.30 KiB, done.

Resolving deltas: 100% (149/149), done.

11.	 Next, we need to make the same changes that we just made for our d7dev site to
the code we just cloned with Git.

12.	 Now that we have updated the code, we are ready to create our patch. Following
the drupal.org guidelines at http://drupal.org/node/707484, run the
following command:

$ git diff > webform_support-1312992-8.patch

Chapter 7

[197]

13.	 Next, we will comment on the issue at http://drupal.org/node/1312992, and
upload our patch with our comments, making sure that the status of the issue is set
to needs review.

What just happened?
Not only did we update our code so that it will work across all Webform-based forms and
any number of Drupal sites, but we also helped the Drupal community. We learned how to
create a patch. We will check back in the HTML5 Tools forum in a chapter or two to see how
the Drupal community responds to our patch.

Time for another recipe
Just in case you were getting hungry, we are going to add a new recipe. Let's add it now
so that we have something delicious to eat as we work our way through the rest of this
challenging chapter! The recipe for this chapter is Garlic Cashew Chicken with Edamame
and Carrots. Enjoy!

How Does it Taste – Getting Feedback

[198]

�� name: Garlic Cashew Chicken with Edamame and Carrots.

�� description: A savory dish with an Asian flair. The cashews give this dish a bit of
sweetness, while the edamame really helps make it filling. The carrots and onions
provide a nice crunch.

�� recipeYield: Four servings.

�� prepTime: 20 minutes.

�� cookTime: 20 minutes.

�� ingredients:

�� one pound of boneless chicken breasts—sliced

�� Two tablespoons of olive oil

�� one cup of soy sauce

�� Eight cloves of garlic

�� Five lg pieces of crystallized ginger

�� One tablespoon of red pepper flakes

�� Half cup vegetable broth

�� Five carrots, sliced on the bias

�� One large sweet onion, sliced lengthwise

�� One cup of cashews, coarsely chopped

�� Two tablespoons of rice vinegar

�� Two cups of Jasmine rice

�� instructions:

1.	 Add the sliced chicken to a large bowl, and stir in half cup of soy sauce.

2.	 Press the ginger and garlic through the garlic press, and mix with the
chicken soy sauce mixture.

3.	 Mix in the red pepper flakes with the chicken soy sauce mixture.

4.	 Prepare Jasmine rice according to directions.

5.	 Heat the olive oil in a large frying pan over medium heat for two minutes.

6.	 Add the chicken soy sauce mixture to the pan, and increase the heat to
medium high.

7.	 Cook the chicken until there is no visible pinkness, and most of the liquid
has reduced, for approximately 8 to 10 minutes.

Chapter 7

[199]

8.	 Pour in half cup of vegetable broth, and stir to mix.

9.	 Reduce the heat to medium low.

10.	 Add the edamame and carrots, stir together, and simmer for three minutes.

11.	 Add the other four garlic cloves using a garlic press and the sliced onions,
and simmer for three minutes.

12.	 Finally, add the cashews, rice vinegar, the ½ cup of soy sauce, stir to mix,
and then cover. Simmer for five minutes.

13.	 Serve over rice.

Colorbox File enhancements
We added the Colorbox File module to our d7dev site in the previous chapter to display the
images (and eventually other media types). However, one thing that I know I would like for
our recipe-related media is to have customizable captions for images that will be displayed
in the Colorbox overlay. Currently, the Colorbox File module displays the word Media as the
caption for all media content displayed in the Colorbox overlay for our Recipe content type,
as shown in the following screenshot:

How Does it Taste – Getting Feedback

[200]

Before we just start coding away, we will take a look at the Colorbox File issue queue
(http://drupal.org/project/issues/1084984?status=All&categories=A
ll), and see if there are any feature requests in the Colorbox File issue queue requesting
functionality similar to what we have described. The issue at the URL http://drupal.
org/node/1085174: Image's title not displaying in Colorbox, is definitely related to what
we want to do with captions. The issue summary certainly seems clear enough:

I realize that the title of the images doesn't show in the Colorbox. Did I do
something wrong? Or is the feature not implemented?

Again, before we begin writing the custom code, we need to have a clear understanding of
what we want the title of the media file to be, in order to begin to understand why it isn't
showing up in this case, or why the caption defaults to Media for all the Recipe media field
images on our d7dev site. If you scroll down to comment #4 of that same issue (http://
drupal.org/node/1085174#comment-4816758), you will see that @NicolasH suggests
adding a setting to the Colorbox File formatter that would allow you to select a "field to use
as the colorbox title". Again, it may sound straightforward, but it really isn't that simple. It
is not simple because the Media module-based fields are derived from file entities, and just
as Drupal allows you to have multiple content types (node entities) with different fields, a
Drupal site can have multiple file type entities, each having a different set of fields.

Drupal 7 didn't just add the ability to add fields to the nodes
or content types. Drupal 7 introduced the concept of field-able
entities. So, the node of the node-centric dominated development
of Drupal 6 just became another entity in Drupal 7. Other
entities included with Drupal 7 core include taxonomy, users, and
comments, but not files. The Media module provided the initial
motivation to turn the Drupal file object into a full-fledged field-able
entity. Originally, the file entity code was part of the Media module
itself, but has been pulled out into the separate File Entity module
(http://drupal.org/project/file_entity).

The File types configuration page of the File Entity module illustrates the concept of
field-able entities as shown in the following screenshot (http://localhost/d7dev/
admin/config/media/file-types). There is a manage fields link for each file
(entity) type.

Chapter 7

[201]

It would be very difficult to provide a user interface for the Colorbox file formatter settings
form that would allow site administrators to select a different caption field for each of the
file types. The following screenshot illustrates the limited amount of usable UI space we are
working with for the field formatter settings:

How Does it Taste – Getting Feedback

[202]

A site administrator may want to use a field called title for the Image file type, but
use a field called caption for the Video file type. This illustrates how quickly something
seemingly as simple as adding a caption or a title attribute to a Media field can become
quite complex.

Rather than using the Colorbox File formatter settings to set the field to use as the caption
for each file type, how about if we add a setting to the file types field settings configuration
for all possible fields that would be used as a caption—pretty much just fields of type text,
as other field types don't make much sense as a caption. Don't worry if this sounds a bit
confusing at this point; it will make more sense as we walk through the code together.

Time for action – enhancing the Colorbox File module with field-
based captions

So, where do we begin to implement this proposed approach and complete the associated
feature request? We will start by modifying the field settings form for all file type associated
text fields. This is where you will be able to configure that a field's value should be used
as the value for the Colorbox caption for a given file type. We will use a hook that we used
earlier in this chapter, hook_form_FORM_ID_alter, to modify the form used to configure
text fields for all file types. In order to do that, we need to figure out what FORM_ID we need
to use as part of the function name for that hook, and we will again turn to the Devel module
to help us with this.

1.	 First, we will add a new text field to the Image file type. Open up our d7dev site in
your favorite browser, click on the Configuration link in the Admin toolbar, and click
on the File types under the Media section. Then, click on the manage fields link for
the Image file type.

2.	 Now, enter Caption as the value for the Add new field input type. Next to field_
prefix label in the Name column, type caption, and select Text from the Select a
field type dropdown, Text field as the WIDGET, and click the Save button.

3.	 On the next screen, we are going to accept the default value of 256 for the
Maximum length, but before we click on the Save field settings button, we are
going to add the following code at the bottom of colorbox_file.module and
save it:

function colorbox_file_form_alter(&$form, &$form_state) {
 dsm($form, 'colorbox_file_form_alter');
}

Chapter 7

[203]

4.	 Again, we want to use hook_form_FORM_ID_alter, but we don't know what we
need to replace FORM_ID with yet. So, click on the Save field settings button, and on
the field settings page we will see the Devel dsm function output.

5.	 Expand the top row with the text …(Array, 21 elements), and find the value for the
#form_id key: field_ui_field_edit_form | (Callback) field_ui_field_edit_form();.

6.	 The value of the #form_id key is the value that we want to replace FORM_ID
placeholder with, for our implementation of hook_form_FORM_ID_alter. So, we
will rename the colorbox_file_form_alter function that we added by adding
that form ID, field_ui_field_edit_form, in between the form and alter parts
of the hook function name.

/**
 * Implements hook_form_FORM_ID_alter().
 */
function colorbox_file_form_field_ui_field_edit_form_alter(&$form,
&$form_state) {

Now that we have plugged in the correct form ID, our form_FORM_ID_alter hook
will only be executed for forms with the ID field_edit_form. However, we also
only want this hook to be executed for file type entities and text fields. Therefore,
we need to figure out what we can use to identify a field_edit_form form as
being for a text field on a file entity.

How Does it Taste – Getting Feedback

[204]

7.	 Expand the #instance property of the dsm output, and expand the widget property.
You will see the value of widget=>type is text_field and the value of entity_type
is file:

8.	 Next, add the following code to our colorbox_file_form_field_ui_field_
edit_form_alter function, so that we will only alter field edit forms for text fields
of file type entities (we don't want this option to be available for text fields on other
entity types):

 //only want this option to appear for text fields on file
entities
 if ($form['#instance']['entity_type'] == 'file' &&
$form['#instance']['widget']['type'] == 'text_textfield') {

 }

9.	 Now, within the if block we just added, we are going to add a new checkbox to
the form that will allow the site administrators to identify the current field being
edited as the field to use as the Colorbox caption for the parent file type of the field.
We will also add a fieldset element to wrap the checkbox, and provide some
additional information:

// Create the fieldset tab.
$form['colorbox_file'] = array(

Chapter 7

[205]

 '#type' => 'fieldset',
 '#title' => t('Colorbox Caption Field'),
 '#description' => t('Set field to be used as the Colorbox
 caption.
 Note: Selecting this text field as the Colorbox caption field
 will replace an previously checked field for this file
 type.'),
 '#tree' => TRUE,
);

$form['colorbox_file']['caption_field'] = array(
 '#type' => 'checkbox',
 '#title' => t('Use field as Colorbox caption'),
);

10.	 Refresh the edit form for the Caption field we are adding, scroll down towards the
bottom, and you should see our new fieldset with the checkbox we just added:

Now, we need to actually save the value of this checkbox in order to use its value
when outputting a Colorbox File-formatted field. The Drupal variable_set
function provides a straightforward and easy way to save this type of information.
Basically, the variable_set function takes a name and value, and saves it to the
variable table of our site's Drupal database. We will save the value of the Colorbox
caption checkbox, but first we need to add a new submit function to the field_
edit_form form, so that a custom function that we add to the colorbox.module
code will be executed when this form is submitted.

11.	 Before we write the code that will save the value of the Colorbox caption checkbox,
we need to associate a custom submit function with the field_ui_field_edit_
form form that will allow us to act on the submitted form. Add the following code
after the form array for the checkbox:

//additional submit function to process the caption_field checkbox
value
$form['#submit'] = array_merge($form['#submit'], array('colorbox_
file_form_field_ui_field_edit_form_submit'));

How Does it Taste – Getting Feedback

[206]

12.	 When this form is submitted, the colorbox_file_form_field_ui_field_
edit_form_submit function will be called. We could have called that function
anything that we wanted, but it makes sense to name it so that it is understood
what it is being used for. So, now we need to implement the colorbox_file_
form_field_ui_field_edit_form_submit function:

/**
 * Custom submit handler for the field_ui_field_edit_form altered
form.
 */
function colorbox_file_form_field_ui_field_edit_form_submit($form,
 &$form_state) {
 if ($form['colorbox_file']['caption_field']) {
 $bundle = $form['instance']['bundle']['#value'];
 variable_set('colorbox_file_' . $bundle . '_caption_field_
name', $form['#field']['field_name']); }
}

Let's examine the colorbox_file_form_field_ui_field_edit_form_
submit function above. The if statement will only be true if the Colorbox caption
checkbox is checked. If it isn't checked, then we don't need to do anything. We are
only going to allow one field per file type to be specified as the field to use for the
Colorbox caption. So, if the checkbox is checked, we will persist the value using the
variable_set function with a name that is unique for the current file type (we are
able to extract the current file type name from $form['instance']['bundle']
['#value'] — a bundle is synonymous with the type of file), and in this case it
will be image. If a new text field were later added to this file type and selected to be
the Colorbox caption field, then the previous variable would just be overwritten.

Now that we have covered how the selected Colorbox caption field gets saved, we
need to actually display the contents of that field in the actual Colorbox overlay.
Since we know that a Colorbox caption is currently being displayed, albeit the same
caption for all media items for our Recipe media field, we will start by examining
how the current caption is being set. The theme_colorbox_file function of
the colorbox_file.theme.inc file located at d7dev/sites/all/modules/
colorbox_file/, sets the title attribute of the image that is the trigger for
opening the Colorbox overlay.

function theme_colorbox_file($variables) {
...
 $caption = $variables['title'];

...

Chapter 7

[207]

 return theme('link', array(
 'text' => drupal_render($variables['item']),
 'path' => $variables['path'],
 'options' => array(
 'html' => TRUE,
 'attributes' => array(
 'title' => $caption,
 'class' => 'colorbox-file',
 'rel' => $gallery_id,
),
),
));
}

The Colorbox module defaults to using the title attribute of the image used to
trigger the Colorbox overlay as the caption in the overlay. Theme functions, such as
this one, are either associated to render the array through the #theme property or
executed directly with a call to the theme() function. In the case of the Colorbox
File module, the theme_colorbox_file function is associated with the #theme
property of the render array. The colorbox_file_field_formatter_view
function in the colorbox_file.module sets the #theme property of the render
array, as shown in the following code:

/**
 * Implements hook_field_formatter_view().
 */
function colorbox_file_field_formatter_view($entity_type, $entity,
$field, $instance, $langcode, $items, $display) {
....
$element[$fid] = array(
 '#theme' => 'colorbox_file',
 '#item' => $build[$fid]['file'],
 '#entity_id' => $id,
 '#field' => $field,
 '#display_settings' => $display['settings'],
 '#langcode' => $langcode,
 '#path' => 'colorbox_file/' . $fid . '/' .
 $display['settings']['colorbox_view_mode'] . '/' .
 $langcode,
 '#title' => isset($instance['label']) ? $instance['label']
 : NULL,
);

How Does it Taste – Getting Feedback

[208]

You will also notice that the value being used for the #title property is
the $instance['label'] (as long as it is not null). The value of the
$instance['label'] is actually the label of the Recipe content field_media
field, or in this case "Media". All of the properties of this render array will be
available in the $variables parameter passed into the theme_colorbox_file
function in colorbox_file.theme.inc. However, these render array properties
will only be available for the function specified by #theme property if they have
already been specified as one of the variables in the hook_theme implementation
that registered that theme function. Basically, you just need to know that the
variables that you want to make available in a theme function must be specified in
a hook_theme function. The colorbox_file_theme function does just that.

/**
 * Implements hook_theme().
 */
function colorbox_file_theme() {
 return array(
 'colorbox_file' => array(
 'variables' => array(
 'item' => array(),
 'entity_id' => NULL,
 'field' => array(),
 'display_settings' => array(),
 'langcode' => NULL,
 'path' => NULL,
 'title' => NULL,
),
 'path' => drupal_get_path('module', 'colorbox_file'),
 'file' => 'colorbox_file.theme.inc',
),
);
}

The variables array entries will be passed through to the theme_colorbox_
file function when set on the render array in the colorbox_file_field_
formatter_view function. In addition to the current variables being passed
through to theme_colorbox_file, we know that we want to also pass the value
of the configured Colorbox caption field through to the theme_colorbox_file, so
that it can actually be displayed.

13.	 Add 'colorbox_file_caption' => NULL, after the 'title' => NULL entry
in colorbox_file_theme.

Chapter 7

[209]

14.	 Now, scroll down to the colorbox_file_field_formatter_view function, and
we will add code to check if the Colorbox caption variable is set for the current file
entity type. If it is set, then we will set the value of the render array caption variable
to the value we will retrieve from the current file entity's caption field. Just replace
the foreach loop in the colorbox_file_field_formatter_view function
with the following code:

foreach (element_children($build) as $fid) {
 $colorbox_caption_var_name = 'colorbox_file_' .
 $build[$fid]['#bundle'] . '_caption_field_name';
//added for chapter 7

 $colorbox_caption_field_name =
 variable_get($colorbox_caption_var_name);
//added for chapter 7

 $colorbox_field_caption_value = isset($build[$fid]['#file']
 ->{$colorbox_caption_field_name}['und'][0]) ?
 $build[$fid]['#file']->
 {$colorbox_caption_field_name}['und'][0]['value'] :
 NULL;
//added for chapter 7

 $element[$fid] = array(
 '#theme' => 'colorbox_file',
 '#item' => $build[$fid]['file'],
 '#entity_id' => $id,
 '#field' => $field,
 '#display_settings' => $display['settings'],
 '#langcode' => $langcode,
 '#path' => 'colorbox_file/' . $fid . '/' .
 $display['settings']['colorbox_view_mode'] . '/' .
 $langcode,
 //chapter 7 note: this is where Media is being added as the
 //title attribute
 '#title' => isset($instances['label']) ? $instances['label'] :
 NULL,
 '#colorbox_file_caption' =>
 $colorbox_field_caption_value,//added for chapter 7
);
}

How Does it Taste – Getting Feedback

[210]

You will see that if the Colorbox caption field is set - $build[$fid]['#file']-
>{$colorbox_caption_field_name}['und'][0], then we will set the
colorbox_file_caption render array property to the value of that field,
otherwise it will be null. Also note that we are specifically targeting the first value
of the field, ['und'][0], as we are not including support for displaying the text of
multi-valued fields beyond the first value.

15.	 Next, open the colorboxfile.theme.inc file and replace the line: $caption =
$variables['title']; with the following switch statement:

//added the following switch for chapter 7
 switch ($settings['colorbox_caption']) {
 case 'title':
 $caption = $variables['title'];
 break;
 case 'mediafield':
 $caption = $variables['colorbox_file_caption'];
 break;
 default:
 $caption = '';
 }

This code will conditionally set the $caption based on the value of
$settings['colorbox_caption'], and if we look a bit further up in the
function, we will see that $settings are being populated with the display_
settings render array property from the colorbox_file_field_formatter_
view function. $settings = $variables['display_settings'];.
display_settings refers to the formatter settings values exposed by the
colorbox_file_field_formatter_settings_form function, but there is no
colorbox_caption setting, so we will add it now, otherwise the $caption would
always be an empty string.

16.	 At the end of the if ($display['type'] == 'colorbox_file') { block
in the colorbox_file_field_formatter_settings_form function, add
the following code:

$caption = array(
 'title' => t('Title text'),
 'mediafield' => t('File Type text field'),
 'none' => t('None'),
);
$element['colorbox_caption'] = array(
 '#title' => t('Caption'),

Chapter 7

[211]

 '#type' => 'select',
 '#default_value' => 'title',
 '#options' => $caption,
 '#description' => t('Title will use the label of your Media
 field and File Type text field will use the value of a
 specified text field for the file type being displayed.'),
);

The $caption array provides the values for the select options we will be displaying
in the formatter settings form for the Colorbox File formatter. Next, similar to the
way hook_theme works regarding render array properties and theme functions, we
must register our colorbox_caption formatter setting with our implementation
of hook_field_formatter_info.

17.	 In the colorbox_file_field_formatter_info function, add the following as
an entry to the settings array, and we will also set the default value:

 'colorbox_caption' => 'title',

18.	 Next, in order to provide an accurate summary of the selected formatting
options, add the following code to the colorbox_file_field_formatter_
settings_summary function at the bottom of the if ($display['type'] ==
'colorbox_file') { block of code:

 $caption = array(
 'title' => t('Title text'),
 'mediafield' => t('File Type text field'),
 'none' => t('None'),
);
 if (isset($settings['colorbox_caption'])) {
 $summary[] = t('Colorbox caption: @type', array('@type' =>
$caption[$settings['colorbox_caption']]));
 }

This is not necessary to make everything work, but allows a site administrator to
get a quick summary of how the formatter has been configured without opening
the formatter settings form. Now, we are ready to test our field-based caption code
for the Colorbox File formatter by saving the Caption field for the Image file type
with the Use field as Colorbox caption checkbox checked. Then, we will manage
the display of our Media-based imaged field on our Recipe content type, to use that
field as a caption.

How Does it Taste – Getting Feedback

[212]

19.	 Return to the field edit form, check the Use field as Colorbox caption for our new
Caption text field on the Image file type, and click on the Save settings button.

20.	 Next, click on the Structure link in the Admin toolbar, then click on the Content
types link, and the manage display link for our Recipe content type.

Looking at the entry for our Media field, you will see the formatter settings summary
that we just added. The Colorbox caption is set to Title text - the default we specified
in our colorbox_file_field_formatter_info function.

21.	 To change the Colorbox caption setting, click on the formatter settings cog button.

The Format settings form now includes the Caption select list that we added to the
colorbox_file_field_formatter_settings_form function.

Chapter 7

[213]

22.	 Select File Type text field from the Caption select list, then click on the Update
button, and click on the Save button on the Recipe MANAGE DISPLAY page.

You will notice that the formatter summary has been updated to reflect the selection
of File Type text field as the Colorbox caption. Now that we have configured this field
to use the Caption field of the Image file type as the caption in the Colorbox overlay,
we need to actually populate the new Caption field on some Image file entities.

23.	 Click on the Find content link in the Shortcuts bar, then click on the Files tab.

24.	 Next, click on the Edit link in the OPERATIONS column for the image titled
6808_07_white_chili_2.jpg.

How Does it Taste – Getting Feedback

[214]

25.	 Enter Spices for Cannellini Cumin Chicken Chili as the value for the
Caption, then click on the Save button.

26.	 Now, click on the Content tab of the Find content page, and click on the Cannellini
Cumin Chicken Chili link.

27.	 Next, click on the second image in the first row of thumbnails, and you will see the
new caption that we just added:

Chapter 7

[215]

What just happened?
That may have seemed like a lot of work for a caption, and was perhaps some of the most
advanced development so far in this book. However, we explored a number of important
facets for Drupal 7 field-related development, and in doing so, improved a module in a way
that will be useful to the Drupal community as a whole.

Rating recipes with Fivestar
Now that we have enhanced the Colorbox File module with configurable captions, we will
turn our attention back to enhancing the user interaction for the site. One great way to get
visitors to interact with a website is to allow them to review and rate content; in this case,
recipes. The Fivestar module makes it easy to enable and integrate a ratings system into our
d7dev site, and will allow the site visitors to rate our recipes.

Time for action – installing and configuring the Fivestar module
We will now set up the Fivestar module, so that visitors to our d7dev site will be able to rate
the recipes.

1.	 Use Drush to download and enable the Fivestar module.

$ drush dl fivestar

Project fivestar (7.x-2.0-alpha1) downloaded to /Users/kurt/
htdocs/d7dev/sites/all/modules/fivestar. [success]

$ drush en fivestar

The following projects have unmet dependencies:

fivestar requires votingapi

Would you like to download them? (y/n): y

Project votingapi (7.x-2.4) downloaded to /Users/kurt/htdocs/
d7dev/sites/all/modules/votingapi. [success]

The following extensions will be enabled: votingapi, fivestar

Do you really want to continue? (y/n): y

fivestar was enabled successfully. [ok]

votingapi was enabled successfully. [ok]

Note that the Voting API module was also installed as a dependency of
the Fivestar module.

How Does it Taste – Getting Feedback

[216]

2.	 Now, we will configure our Recipe content type to use the Fivestar module. Open
up our d7dev site in your favorite browser, click on the Structure link in the Admin
toolbar, then click on the Content types link, and click on the manage fields link for
our Recipe content type.

3.	 Scroll down to the Add new field section to add a new field. Enter rating as the
value for the Add new field input type. Next to field_ prefix label in the Name
column, type rating, select Fivestar Rating from the Select a field type dropdown
and Stars (rated while viewing) as the widget, and click on the Save button.
On the next screen, click on the Save field settings button.

4.	 On the RECIPE SETTINGS page, enter 'If you have tried this recipe,
please take the time to rate it.' as the Help text. Leave 5 as the value
for the Number of stars select list, and click on the Save settings button.

5.	 Next, load one of the recipes that we have added to our d7dev site, and you will see
the following new Fivestar ratings widget:

What just happened?
We just added a compelling interactive feature to our d7dev site. Although it was a very
easy process to add the Fivestar ratings to our Recipe content type, there is nothing all that
compelling or unique about the appearance of the Fivestar widget. Sometimes, custom
development is about aesthetics, or sometimes a good reason for custom development is
as simple as creating a certain look and feel for you site. Wouldn't it be cool to have a hot
pepper as the rating widget icon instead of one of the default widget icons that comes with
the Fivestar module? It would give our d7dev site that extra little bit of awesomeness.

The Fivestar module depends on the Voting API module. This is an
excellent example of modular code reuse with Drupal. In addition to
the Fivestar module, there are a number of other contrib modules
that utilize the Voting API module.

Chapter 7

[217]

Time for action – creating a custom Fivestar widget
The Fivestar module documentation provides a recipe for creating custom rating widgets.
The documentation is available at http://drupal.org/node/234391 – Creating and
Contributing a Fivestar Widget Set. We are going to follow those simple instructions to create
a custom Thai pepper widget for rating recipes on our d7dev site.

1.	 First, we are going to implement the Fivestar module hook_fivestar_widgets
hook, so that we will be able to place our custom Fivestar widget inside our d7dev
module. In Aptana Studio open the fivestar.module file in the sites/all/
modules/fivestar folder.

2.	 Find the fivestar_fivestar_widgets function, and copy the entire function
(including the comments).

3.	 Open our d7dev.module in the sites/all/modules/custom/d7dev folder, and
paste the fivestar_fivestar_widgets function that we just copied after the
d7dev_image_default_styles function.

4.	 Next, rename the function by replacing fivestar with d7dev, and modify the call
to drupal_get_path, so that it will get the path for our d7dev module instead of
the Fivestar module. When you are done, you code should look as follows:

function d7dev_fivestar_widgets() {
 $widgets_directory = drupal_get_path('module', 'd7dev') .'/
widgets';
 $files = file_scan_directory($widgets_directory, '/\.css$/');

 $widgets = array();
 foreach ($files as $file) {
 if (strpos($file->filename, '-rtl.css') === FALSE) {
 $widgets[$file->uri] = drupal_ucfirst(str_replace('-color',
'', $file->name));
 }
 }
 return $widgets;
}

5.	 Now create a new folder called thaipeppers under the sites/all/modules/
custom/d7dev/widgets directory.

How Does it Taste – Getting Feedback

[218]

6.	 Next copy the thaipepper.png and delete.png images from the Chapter 7 code
download to that folder.

7.	 Now, we will copy the CSS files from the sites/all/modules/fivestar/
widgets/flames widget folder to our thaipeppers folder, rename them to
thaipeppers.css and thaipeppers-rtl.css, and you will have a folder that
looks similar to the one shown in following screenshot:

The flames rating widget is the same dimensions as our thaipeppers widget, so it
serves as a good starting point.

8.	 Open the thaipeppers.css and thaipeppers-rtl.css files and replace all
instances of the flames text with thaipeppers, and replace all instances of flame.
png with thaipepper.png. The rest of the CSS will work "as is" since the flames
widget is the same dimensions as our thaipeppers widget and our cancel image,
delete.png, has the same name as the cancel image for the flames ratings widget.

9.	 Now, we will configure our Recipe content type to use our new thaipeppers
widget. Open up our d7dev site in your favorite browser, click on the Structure link
in the Admin toolbar, then click the Content types link, and click on the manage
display link for our Recipe content type.

10.	 Next, click on the formatter settings cog button for the ratings field.

11.	 On the Fivestar formatter settings form expand STAR DISPLAY OPTIONS, and you
will see our new widget. Select it and click on the Update button:

Chapter 7

[219]

12.	 Now, while we are on the manage display page, drag the rating field so that it is
above the description field, and click on the Save button.

13.	 Finally, view the Cannellini Cumin Chicken Chili recipe, and you will see our new
thaipeppers Fivestar widget in action.

What just happened?
We created a distinctively unique thaipeppers Fivestar ratings widget to use for the rating
recipes on our d7dev site. The process was straightforward, and shows that sometimes,
adding a unique flare to a Drupal site doesn't take much development at all.

Summary
In this chapter, we have added some new features that will provide a way for visitors to
interact with our d7dev site, and we enhanced some of those interactive features with
HTML5. We also re-visited the Colorbox File module that was introduced in the previous
chapter, and made some modifications to it that allow more control around how captions
are displayed in the Colorbox overlay.

In the next chapter, we will re-visit the Views modules that we introduced in Chapter 2, and
take a look at some of the more advanced programming aspects around the Views module.
We will also walk through the process of sharing our changes for the Colorbox File module
with the community to include learning the process for promoting Drupals sandbox projects
to a full project.

8
Recipe Lists and More with Views

This chapter will give you an in-depth introduction to the Views module, and
introduce some of the new Views 3 plugin architecture. We will dive into some
more advanced features of Views available in the Views 3 UI, and include an
introduction to taxonomy-based Views. We will then develop a Views 3 style
plugin to display our new Recipes view as semantic tabs.

We also revisit the Colorbox File module as we prepare it for full project status
on drupal.org.

The following topics will be covered in this chapter:

�� Advanced Views configuration

�� Introduction to Drupal Taxonomy

�� Custom Views Style plugin

�� Drupal.org project promotion

Views revisited – advanced configuration
Back in Chapter 2, Custom Content Types and an Introduction to Module Development, we
had a quick introduction to Views 3, and saw how easy it is to create a view with the new
Views wizards user interface. The new wizard-based creation for new views makes it very
easy to get started with Views, but does not include many of the more advanced Views 3
configuration options. Even on the standard Views edit page, those advanced configuration
options are hidden away, so as not to overwhelm those that are new to Views. The beginning
of this chapter will explore many of those advanced configuration options available with
Views 3. Views configuration can get complex pretty quickly. So, in a way, advanced Views
configuration is not any less complex than some of the PHP code we have written.

Recipe Lists and More with Views

[222]

Random top rated recipe block
The home page is still a bit plain and boring. We are going to use Views to create a block that
will randomly showcase one of the top-rated recipes on the site. This will involve using Views
filters and sort settings.

Time for action – building a random top rated recipe block
with views

We are going to go beyond the basic Views wizard view creation user interface, and learn
some more advanced Views features and configuration.

1.	 Open our d7dev site in your browser, click on the Structure link in the Admin
toolbar, and click on the Views link.

2.	 Click on the Add new view link at the top of the Views page.

3.	 Enter Random Top Rated Recipe as the View name.

4.	 Select Recipe for the of type options.

5.	 Uncheck the Create a page checkbox, and check the Create a block checkbox.

6.	 Select fields for the Display format of options, and enter 1 for the Items per page.
Your Add a new view form should now look similar to the following screenshot:

Chapter 8

[223]

7.	 Next click on the Continue & edit button, as we want to configure some more
advanced options that are not available as a part of the basic block creation wizard.

Now, we are going to add the Recipe content fields that we want to display in this
block. Remember, this block is going to be displayed on our d7dev site's front page,
so we want to make it visually appealing. Note that the Title field is already included
by default.

8.	 Click on the add button for FIELDS, select Filter by Content, then scroll down the
list, select the checkbox for Content: image, select the Content: rating field, and
click on the Add and configure fields button. Notice that Views shows you what
node or content types the fields are associated with.

9.	 For the Configure field settings for the image field, uncheck the Create a label
checkbox, select square_thumbnail as the Image style, and click on the Apply
(all displays) button.

10.	 For the Configure field settings for the rating field, uncheck the Create a label
checkbox, expand the STAR DISPLAY OPTIONS, select our Thaipeppers ratings
widget from last chapter, uncheck the checkbox for exposing the field for voting,
and click on the Apply (all displays) button.

Now that we have added the fields, we are going to modify how we will filter and
sort the query results for this view.

11.	 For sorting, we will first remove the default sort property of Post date (desc) by
clicking on it, and then clicking on the Remove button.

12.	 Next, click on the add button for SORT CRITIERIA, select Global for the Filter, select
the Global: Random, then click on the Add and configure sort criteria button.

13.	 All of the default values are fine on the Configure sort criterion form. So, just click
on the Apply (all displays) button.

Now, we will configure the FILTER CRITERIA. We will leave the default criteria
(only showing recipes that are published) and add an additional filter.

14.	 Click on the add button for FILTER CRITERIA, type rating in the Search input,
select Content: rating (field_rating:rating), and click on the Add and
configure filter criteria button.

Recipe Lists and More with Views

[224]

15.	 On the Configure filter criterion form, select Is greater than as the Operator and
enter 3 as the Value, and click on the Apply (all displays) button. Feel free to
experiment with these values, but for now, we are only going to show the recipes
that have been rated 4 Thai peppers or higher.

16.	 When you are finished, your Views configuration should look similar to the
following screenshot:

17.	 Next, click the Save button for our new Random Top Rated Recipe View.

Now, we need to configure this new Views-based block to show up on the
front page.

18.	 Click on Structure in the Admin toolbar, and click on the Blocks link.

19.	 Scroll down towards the bottom of the Blocks configuration page, and click on the
configure link for the View: Random Top Rated Recipe block that we just created.

20.	 Enter Top Recipe for Block title, and select Sidebar Second under the REGIONS
SETTINGS for our D7Dev Theme.

21.	 Next, under the Pages tab, select Only the listed pages, enter <front> in the Show
block on specific pages text area, then click on the Save block button.

Chapter 8

[225]

22.	 Now, click on the home icon in the Admin toolbar, and you will see our new
Views-based block.

What just happened?
We used Views and leveraged some advanced configuration options to display the Fivestar
module ratings field with the image and title of the top most recent recipes. Saw how easy it
can be to make our d7dev site more interesting, by adding a dynamic Views-based block?

Taxonomy-based View with tabs
In this section, we are going to add another Views-based block to our front page. However,
this will be a Taxonomy-based View instead of the Content-based Views that we have created
so far.

Taxonomy refers to the organization of information. As we learned in the previous chapter,
taxonomy is a field-able entity. The Taxonomy module is a core module, and it allows you to
create vocabularies of terms to associate to other entity types, so that they can be organized.

So, before we can get started with the View we want to create, we need to add a new
Taxonomy vocabulary with terms, and associate those terms to our recipe content. We are
going to add a vocabulary for organizing recipes by type of cuisine.

Recipe Lists and More with Views

[226]

Time for action – creating a cuisine vocabulary to organize
recipes

Before we can create a Taxonomy-based view, we need to create a Drupal Taxonomy
vocabulary.

1.	 Open our d7dev site in your browser, click on the Structure link in the Admin
toolbar, and click on the Taxonomy link.

2.	 On the Taxonomy configuration page, click on the Add vocabulary link.

3.	 Enter Type of Cuisine for the Name input, and click on the Save button.

Now, we will add some terms for our new vocabulary.

4.	 Click on the add terms link for our new Type of Cuisine vocabulary.

5.	 Enter American for the Name of our first term, and click on the Save button.

6.	 Repeat the process, and add the terms Asian and Thai.

Now, we are going to add a taxonomy field to our Recipe content type.

7.	 Click on the Structure link in the Admin toolbar, click on the link for Content types,
and click on the manage fields link for our Recipe content type.

8.	 Scroll down to the Add new field section. Enter recipeCuisine as the LABEL,
recipe_cuisine for the NAME, select Term reference for the FIELD, select Select
list as the WIDGET, and click on the Save button.

9.	 On the FIELD SETTINGS page, select Types of Cuisine as the Vocabulary, and click on
the Save field settings button.

Chapter 8

[227]

10.	 Once the field EDIT form loads, select Unlimited for the Number of values and enter
recipeCuisine for the Field property(s), which is a property of the http://
schema.org/Recipe microdata schema that we are using for our Recipe
content type, then click on the Save settings button.

11.	 Click on the Find content link in the Shortcuts bar, then click on the edit link for the
Cannellini Cumin Chicken Chili recipe, scroll down to our new recipeCuisine field,
select American, and click on the Save button. Repeat the process for selecting
Asian for the Cashew Chicken with Edamame, Thai and Asian for the Thai Basil
Chicken, and Asian for the Awesome Sauce recipe.

What just happened?
We got a quick introduction to Drupal Taxonomies, and created a vocabulary to organize the
d7dev recipes by type of cuisine.

Now that we have added a new vocabulary for associating Recipe content to types of cuisine,
we are ready to use this in a new Views-based block. We are going to create a Views-based
block that displays our d7dev site's newest recipe entries by cuisine type. In addition to
that, we are going to sort the list of recipes by the cuisine type with the least number of
associated recipes. This will help promote cuisine types with fewer recipes. Finally, we want
a tab-based user interface with a tab for each cuisine type, and the contents of that tab to
be the five most recent recipes for that cuisine type. Don't worry if it sounds a bit confusing
right now, we will walk through it step by step.

Time for action – creating a Recipes by cuisine type Views block
We have created a new vocabulary and associated it to our Recipe content type. Now, we
will learn how to use a custom vocabulary with a view.

1.	 Click on the Structure link in the Admin toolbar, click on the Views link, and click on
the Add new view link.

2.	 On the Views wizard page, enter Recipes by Cuisine as the View name, select
Taxonomy terms for the Show select list, and select Type of Cuisine for the of
type select list.

3.	 This is our first non-content (node-based) view.

4.	 Uncheck the Create a page checkbox, and check the Create a block checkbox.

Recipe Lists and More with Views

[228]

5.	 Leave the remaining default settings as they are, and click on the Continue &
edit button.

Views automatically added the Taxonomy term Name field, but we also want to
display the most recent recipes associated to each of those cuisine terms. However,
if you click on the add button for FIELDS, you will notice that there is no Content
field available. We will use the Views RELATIONSHIPS configuration to add a
relationship between the Recipe content and the taxonomy terms we are showing.

6.	 Click on the add button for RELATIONSHIPS, select the Taxonomy term: Content using
recipeCuisine relationship, and click on the Add and configure relationships button.

7.	 On the next screen, the default configuration settings for this relationship are fine.
So, just click on the Apply (all displays) button.

8.	 Now, click on the FIELDS add button and voila, there are content fields available.
Type title into the Search input, select it and click on the Add and configure
fields button.

Notice that there is a Relationship select list for the field configuration. All content
fields on a taxonomy terms-based view require a relationship. So, this will default to
the first relationship listed.

Chapter 8

[229]

9.	 Uncheck the Create a label checkbox, as we only want to display the title itself. We
will leave the Link this field… checkbox checked, so that users will have the ability to
navigate to the full recipe. Click on the Apply (all displays) button.

Now, if you scroll down to the bottom of the Views configuration page, you will see
a preview of this Views output, and you will see that we are displaying cuisine type
term names and recipe titles, but we want to group the recipe titles by term names.

10.	 Next, under the FORMAT section, click on the Settings link for Format (as shown in
the following screenshot), then select Taxonomy term: Name for the Grouping field.

11.	 Now, our recipes are grouped by cuisine type term name. Therefore, listing the term
name in each result under the group heading is a bit redundant, so click on the FIELDS
Taxonomy term: Name link, check the Exclude from display checkbox and uncheck
the Link this field… checkbox, then click on the Apply (add displays) button.

12.	 Now, we will add a sort criterion to display the grouped terms with the most recent
recipes first. Click on the add button for SORT CRITERIA, type date in the Search
field, select the Content: Post date field, then click on the Add and configure sort
criteria button.

13.	 Select Sort descending on the criterion configuration screen, and click on the Apply
(all displays) button.

The preview for this View should now look similar to the following screenshot:

14.	 Next, click on the Save button for this View.

Recipe Lists and More with Views

[230]

What just happened?
We have created a Views-based block of recipes displayed by the cuisine type name.

Although everything appears ok on the surface, there is a problem with the groupings
and the limits for our new view. We wanted to display three cuisine types and five recipes
per cuisine type, but the view we created is only limiting the total number of rows being
returned. If we were to add one more recipe, then that recipe would be displayed. However,
the sixth-oldest recipe would drop off, and if the newly added recipe happened to be of
type Thai or Asian, then the American grouping would disappear. So, we would only be
left with two groups of cuisine types. It turns out that this is a rather complex problem to
solve with SQL, but there is a contrib module that will allow us to get the exact results that
we want. The Views Field View module (http://drupal.org/project/views_field_
view) enables a Global Views field that allows you to embed another View as a field of a
parent view, sort of like a set of Russian Dolls. For actual production use, however, do note
that there are some pretty serious performance implications for using this approach, as there
will be a total of four SQL queries instead of one. So, you will definitely want to make sure
you understand Views caching and Drupal caching in general before you use an approach like
this on a production site.

There is a good summary of why Views caching is beneficial to
your Drupal site available at http://2bits.com/caching/
overcoming-long-views-rendering-time-drupal-
sites.html. By default, Views caching is enabled, but you should
disable it when doing active Views development (and remember to
re-enable it for your live site). To disable Views caching, click on the
Structure link in the Admin Toolbar, click on the Views link, then click
on the Settings tab, as shown in the following screenshot. On the
Views Settings page, click on the Advanced link, check the Disable
views data caching check box, and click on the Save configuration
button at the bottom of the screen.

Chapter 8

[231]

Time for action – installing and using the Views Field View
module for our Recipe by Cuisine Type View

By installing and using the Views Field View module, we will learn how there are a
number of Views related contrib modules that extend the features and capabilities
of the Views module.

1.	 First, we need to install the View Field View module. Open the Terminal (Mac OS X)
or Command Prompt (Windows) application, and change to the root directory of our
d7dev site.

2.	 Use Drush to download and enable the Views Field View module:

$ drush dl views_field_view

Project views_field_view (7.x-1.0-rc1) downloaded to /Users/kurt/
htdocs/d7dev/sites/all/modules/views_field_view. [success]

$ drush en views_field_view

The following extensions will be enabled: views_field_view

Do you really want to continue? (y/n): y

views_field_view was enabled successfully. [ok]

Now, before we can modify our Recipes by Cuisine view, you need to understand
how the Views Field View functionality is going to work. Basically, we will remove
the recipe title field and add a Global: View field. The Global: View field will allow
us to specify another view to use as the contents of the field, rather than a field on
our Recipe content type. It will also allows us to pass any other field available for our
view as an argument to pass as a contextual filter to the other view being used as
the contents of the field. I know it sounds pretty complicated, and that is why we are
going to walk through it together, nice and slow. To start with, we will need to add a
new view to use as the Views Field View. Basically, we want a list of recipes ordered
by descending post date, so we will use the Views Field View field to display the
contents of our Recipe List view inside the rows of our Recipes by Cuisine view.

3.	 Click on the Structure link in the Admin toolbar, then click on the Views link, and
click on the edit button for our Recipe List View.

4.	 At the top of the next page, click on the Add button, then click on the Page link.

Recipe Lists and More with Views

[232]

5.	 Next, click on the Page 2 link for the Display name, enter Recipe Cuisine Page
for the Name, and click on the Apply button.

Also, the content for this view is a bit on the light side, so we will add a few fields
and choose a different image style for the recipe image being displayed.

6.	 Click on the add button for FIELDS, select Content for the Filter, scroll down and the
select the Content: rating and Content: description fields, then click on the Add and
configure fields button.

7.	 For both the new fields, uncheck the Create a label checkbox, and set the For select
to All displays (except overridden). For the rating field, be sure to expand the STAR
DISPLAY OPTIONS, select our Thaipeppers widget, and uncheck the Expose this
Fivestar field… checkbox.

8.	 Now that we have added some new fields, we want to rearrange them. Click on the
drop-down arrow of the FIELDS add button, and select rearrange.

9.	 Next, on the Rearrange fields screen, move the Content: rating field above the
Content: description field, and click on the Apply (all displays) button.

10.	 Now, click on the Content: image field link under the FIELDS section, select small
from the Image style select list, and click on the Apply (all displays) button.

Next, we need to adjust the pager settings for this view.

11.	 Under the PAGER options, click on the Full link, select This page (override) for the
For select, select Display a specified number of items, and click on the Apply (this
display) button.

You may have noticed that when saving the Views settings, the button
to save your settings is typically labeled Apply (all displays). However, in
the last step (step 11) the button is labeled Apply (this display). As we
have already seen, Views allows multiple displays for any given view and
our Recipe List view has three displays: one Block display and two Page
displays. As you can see in the following screenshot, Views allows you
to share the configuration for certain settings for all the displays of the
view or to override the settings for the current display being modified.

Chapter 8

[233]

12.	 On the Pager options form, enter 2 for Items per page, and click on the Apply (this
display) button.

Now, only two recipes will be displayed with no pager. This will allow us to test that
only two of the three Asian recipes show up under the Asian Cuisine Type grouping.
We can set it back to five after we test that it is working for two.

13.	 Now, since we are using a Page display type for this View, we have to set the Path.
Under PAGE SETTINGS click on the link next to Path:, enter recipes/%, and click on
the Apply button.

The % is a placeholder for the cuisine type term argument that will be passed in by
our Recipes by Cuisine view to this view. So, we are now ready to add a contextual
filter that will limit the results to those with same term as being passed in for the
Recipe by Cuisine view. Basically, this view will only be executed if an argument
is passed to it, and the Views Field View field that we will add to our Recipes by
Cuisine view will allow us to configure what field gets passed as an argument.

14.	 Expand the Advanced section on the right side of the page, and click on the add
button for the CONTEXTUAL FILTERS.

15.	 Enter recipeCuisine in the Search field, select Content: recipeCuisine (field_recipe_
cuisine), and click on the Add and configure contextual filters button.

Recipe Lists and More with Views

[234]

16.	 On the next screen, it is very important that we only apply this contextual filter
for This page (override). Then, select Provide default value for the WHEN THE
FILTER VALUE IS NOT IN THE URL select list, select Taxonomy term ID from URL
as the Type, check the Load default filter from node page, that's good for related
taxonomy blocks checkbox, and click on the Apply (this display) button.

17.	 Save the view, and return to the Views list page.

18.	 Now click on the edit link for our Recipes by Cuisine view.

19.	 Next, click on the (field_recipe_cuisine) Content: Title link in the FIELDS section,
and click on the Remove button.

This field will no longer be needed as it is going to be replaced with the output of
the Views Field View-based field. Now, we will add the Term ID field that we will use
to pass as an argument to Recipe List View.

20.	 Click on the FIELDS add button, filter by Taxonomy term, select Taxonomy term:
Term ID, and click on the Add and configure field button.

Chapter 8

[235]

21.	 Configure the field by checking the Exclude from display checkbox, then click on
the Apply (all displays) button.

We exclude this field from being displayed, as we only need it to pass as an
argument. It does not need to be displayed.

22.	 Once again, click on the FIELDS add button, filter by Global, select Global: View,
and click on the Add and configure fields button.

23.	 Uncheck the Create a label checkbox. Then, under VIEW SETTINGS, select
recipe_list as the View, Recipe Cuisine Page as the Display, and click on the
Apply (all displays) button.

Now, we need to set what field to use from this view to pass as an argument to
the contextual filter that we created on the Recipe Cuisine Page display of the
Recipe List view.

24.	 Expand REPLACEMENT PATTERNS, copy the [tid] pattern, paste it into the
Arguments input, and click on the Apply (all displays) button.

Recipe Lists and More with Views

[236]

Now our Recipes by Cuisine view preview will look something similar to the
following sceenshot:

We are getting close, but this is still not quite what we are looking for, because the
Asian recipes are being duplicated. Basically, the way that Grouping works for Views
is that a query is run to get all of results based on the filters and sort criteria, and
then the Views uses the PHP code to do the grouping as opposed to using the SQL
GROUP BY clause.

25.	 Under the Advanced section, click on the Use aggregation link, check the Aggregate
checkbox, and click on the Apply (all displays) button.

Chapter 8

[237]

26.	 Now, if you look at the (field_recipe_cuisine) Content: Post date (desc) sort
criterion that we added, you will notice a new Aggregation settings links. Click on
that link, select Maximum for the Aggregation type, and click on the Apply button.

Now we are really close, but the Asian recipes come before the Thai recipe, even
though Thai Basil Chicken is the newest recipe for my local d7dev site. Remember,
when cuisine types share a recipe that is the most recent recipe, we want to show
the cuisine type that has the least total number of recipes before the cuisine type
with more recipes. To do that, we will need to add another sort criterion.

27.	 Click on the SORT CRITERIA add button, enter nid as the Search input text, select
the Content: Nid field, and click on the Add and configure sort criteria button.

28.	 Select Count as the Aggregation type, and click on the Apply and continue button.

29.	 The sort criterion configuration is good as is, so just click on the Apply
(add displays) button.

30.	 Now, scroll down to the View preview, and you will see that the Thai cuisine
type is listed first.

31.	 Finally, click on the Save button.

Now that our Recipes by Cuisine view is displaying the information the way we want,
it is time to add the new block to the front page.

Recipe Lists and More with Views

[238]

32.	 Click on the Structure link in the Admin toolbar, and click on the Blocks link.

33.	 Scroll down until you see the View: Recipes by Cuisine block, and click on the
configure link for it.

34.	 Select Sidebar Second for our D7Dev theme, select to display it only on listed pages,
enter <front> as the only path to display it for, and click on the Save block button.

35.	 Next, click on the home icon in the Admin toolbar, and you will see our new Recipe
by Cuisine block on the right side of the page.

What just happened?
With the help of the Views Field View module, we have created a view that displays the
information we want to display. However, the groups are still not displayed as tabs.

Chapter 8

[239]

Tabbed Views display
In order to make the Recipes by Cuisine block more visually appealing, and to more
efficiently utilize the viewable area of our d7dev front page, we want to display each cuisine
type as a tab, and have only the recipes for the active tab be visible. We are going to use
a JavaScript-based approach for displaying our groups of recipes by cuisine in a tabbed
interface. Take a look at the jQuery UI tabs page (http://jqueryui.com/demos/tabs/),
and you will see an example of how we would like Recipe by Cuisine block to look.

The reason I am pointing out jQuery UI tabs is because Drupal 7 includes the jQuery UI
JavaScript library (Drupal 7 includes version 1.8.7 of the jQuery UI library along with version
1.4.4 of the jQuery library). So, it makes a lot of sense to use a JavaScript widget for tabs
that is already available to us as part of the core Drupal 7 install. However, the markup that
is currently being generated for our Recipe by Cuisine View will be fairly difficult to integrate
with the JavaScript of jQuery UI tabs, because jQuery UI tabs is set up to handle the tabs and
the tab content in separate HTML containers. Take a look at the example markup from the
jQuery UI tabs page in the previous screenshot to see what I mean.

<div id="tabs">

 Tab 1
 Tab 2
 Tab 3

 <div id="tabs-1">
 Tab Content 1
 </div>
 <div id="tabs-2">
 Tab Content 2
 </div>
 <div id="tabs-3">
 Tab Content 3
 </div>
</div>

Recipe Lists and More with Views

[240]

The markup that Views is generating for our Recipes by Cuisine View is more semantic. In
that, it keeps the group titles with the associated content (Views actually generates a lot
more markup than this, so please take a look at the source output for our Recipes by Cuisine
View in your browser). Basically, a simplified version of what Views generates for the default
format of Unformatted list is closer to the following:

<div>
 <h3>Tab 1</h3>
 <div>
 Tab Content 1
 </div>
 <h3>Tab 2</h3>
 <div>
 Tab Content 2
 </div>
 <h3>Tab 3</h3>
 <div>
 Tab Content 3
 </div>
</div>

Therefore, if we want to use jQuery UI tabs, then we would have to modify the markup that
Views is generating for our Recipes by Cuisine View. Views has a plugin architecture based on
the CTools module, and one type of plugin that Views supports is a style plugin.

Views offers a number of extension points for other modules. Other
Views plugin types include display, row, argument default, argument
validator, access, query, cache, exposed form, pager, and localization.
It would take an entire book to offer documented examples for these
plugins, and examples for the other extension points of Views – handlers
and lifecycle hooks. However, this example of creating a custom style
plugin will provide a good introduction to Views development.

A Views style plugin would allow us to generate exactly the type of markup that is typically
used with jQuery UI tabs. However, since we are going to write a custom plugin for Views
anyways, why write one for creating tabs that aren't very semantic and are limited in regards
to progressive enhancement. For example, if someone viewed the Recipes by Cuisine block
on our d7dev site with JavaScript turned off in their browser, then the cuisine type group
titles would be listed separately from the recipe content being grouped by them. I am not
going to go on a semantic HTML rant or anything like that, however, the idea of better
semantics and progressive enhancement fits nicely with the HTML5 sub-theme of this book.

Chapter 8

[241]

Although HTML5 is not necessarily synonymous with progressive enhancement, the two
are often used together quite effectively (similar to how JSON is not synonymous with AJAX,
but often used together). Another good reason to build a semantic tabs style plugin for
Views is because there are already a number of jQuery UI tab-based style plugins for Views
to include Quick Tabs (http://drupal.org/project/quicktabs) and Views UI Tabs
(http://drupal.org/sandbox/recrit/1236298).

Time for action – developing a Views style plugin for
Semantic tabs

We are going to create a new module for our introduction to plugins for Views 3. Who
knows, maybe someday we will contribute it to drupal.org.

1.	 Open Aptana Studio, and navigate to the sites/all/modules/custom folder in
our d7dev project.

2.	 Right-click on the custom folder ,and create a new folder named views_
semantic_tabs – the name of our new module.

3.	 Now, right-click on that folder, create a new file name views_semantic_tabs.
info, and enter the following information:

name = Views Semantic Tabs
description = Provides a Views style plugin for displaying grouped
fields in semantic tabs.
core = 7.x
package = Views

files[] = views_semantic_tabs_style_plugin.inc

; Module dependencies
dependencies[] = views

All Views development starts with the hook_views_api hook that is required so
that Views knows what version of the Views API the module is using. Although there
is only one version of Views for Drupal 7, version 3, this is still required. Also notice
that we specify the location of the views_semantic_tabs_style_plugin.
inc file. This is because modules must declare any code files that contain class or
interface declarations, and as we will find out shortly that file will contains a class.

Recipe Lists and More with Views

[242]

4.	 Right-click on the views_semantic_tabs folder we just created, create a new file
named views_semantic_tabs.module, and then add the following code to that
file:

<?php

/**
 * Implementation of hook_views_api().
 */
function views_semantic_tabs_views_api() {
 return array(
 'api' => 3,
);
}

Now, we are going to implement hook_views_plugins. This hook will register
our custom plugin with Views. However, Views uses convention over configuration
regarding this special hook, and requires that this hook be placed in a specifically
named file: MODULENAME.views.inc.

5.	 Right-click on the views_semantic_tabs folder, create a file named views_
semantic_tabs.views.inc, and add the following code:

<?php

/**
 * Implements hook_views_plugins
 */
function views_semantic_tabs_views_plugins() {
 $module_path = drupal_get_path('module', 'views_semantic_tabs');
 return array(
 'style' => array(
 // Views style plugin for semantic tabs.
 'views_semantic_tabs' => array(
 'title' => t('Semantic Tabs'),
 'help' => t('Displays grouped rows as semantic tabs with
jQuery.'),
 'handler' => 'views_semantic_tabs_style_plugin',
 'uses row plugin' => TRUE,
 'uses grouping' => TRUE,
 'uses options' => TRUE,
 'type' => 'normal',
 'theme' => 'views_semantic_tabs',),
),
);
}

Chapter 8

[243]

Our implementation of hook_views_plugins provides the display name or title
of our plugin, along with some descriptive help text. It also provides several other
properties that tell Views what features our plugin is going to implement, and the
file that contains the implementations. The handler property specifies the name of
the file that will actually implement the Views plugin; in this case, a style plugin,
and the uses… properties lets Views know exactly what our handler will implement.

6.	 Right-click on our views_semantic_tabs folder, and create a file named
views_semantic_tabs_style_plugin.inc.

We are going to start with some code from the Views module to give us a head start
on the code for our handler.

7.	 In Aptana Studio, navigate to the sites/all/modules/views/plugins folder,
open and copy the contents of the views_plugin_style_default.inc file,
and paste them into our views_semantic_tabs_style_plugin.inc file. Then,
modify the code so that it looks similar to the following code:

<?php
/**
 * @file
 * Contains the semantic tabs style plugin.
 */

/**
 * Semantic tabs style plugin to render rows decorated as tabs and
 * using the grouping field as the tab title.
 *
 * @ingroup views_style_plugins
 */
class views_semantic_tabs_style_plugin extends views_plugin_style
{

 /**
 * Options form
 */
 function options_form(&$form, &$form_state) {
 parent::options_form($form, $form_state);
 $form['grouping']['#required'] = TRUE;
 $form['grouping']['#description'] = t('Grouping is required
for this style.');
 }
}

Recipe Lists and More with Views

[244]

The first thing that might jump out to you is that this code looks a bit different
than all of the code that we have written so far. Notice that this is a PHP class
that extends the views_plugin_style class.

This example provides a good introduction to Object-Oriented
Programming (OOP) with PHP and Drupal. Views leverages a number of
PHP's OOP constructs to include the class and extend constructs.
View's use of OOP provides a striking contrast to the procedural hook-
based approach, typically seen with Drupal development (although that
is slowly changing, just look at the new database abstraction layer for
Drupal 7, http://api.drupal.org/api/drupal/includes-
-database--database.inc/group/database/7), based
on PHP Data Objects. A short and simple summary of the difference
between the two approaches is that a child class has the ability to
extend and override its parent class, while with a procedural hook the
parent hook has the control and is able to override and extend the
output of its children hooks.

Basically, by extending the views_plugin_style class, our class only has
to implement the methods where we need to modify the functionality of
the base plugin style class. Also notice the use of parent:: construct:
parent::options_form($form, $form_state). The parent:: construct
allows us to access the output of the class we are extending, and manipulate that
output. In this case, we are making the $form['grouping'] field required, and
modifying its description. Note: We know that grouping will be available because we
configured it in our views_semantic_tabs_views_plugin hook implementation

Now, we want take a look back at the views_plugin_style class that we are
extending and look at its render method. Remember, we don't want to rearrange
the output of the group headings and the grouped content.

8.	 Enter the following code after our options_form method:

/**
* Render the display in this style.
*/
function render() {
 $output = parent::render();

 /* set up JavaScript and CSS for tabs */
 drupal_add_js(drupal_get_path('module', 'views_semantic_tabs')
 .'/js/jquery.tabs.js');

 drupal_add_js(drupal_get_path('module', 'views_semantic_tabs')
 .'/js/views-semantic-tabs.js');

Chapter 8

[245]

 drupal_add_css(drupal_get_path('module', 'views_semantic_tabs')
 .'/css/tabs.css');

 $view_settings['display'] = $this->view->current_display;
 $view_settings['viewname'] = $this->view->name;

 $views_semantic_tabs_id = 'views-semantic-tabs-'. $this->view->
 name .'-'. $this->view->current_display;

 drupal_add_js(array('views_semantic_tabs' => array
 ($views_semantic_tabs_id => $view_settings)), 'setting');

$output = '<dl>' . $output . '</dl>';
 return $output;
}

Notice that, at the very top of our render method, we get the output of the parent
class, and the rest of the code is for setting up the necessary JavaScript and CSS that
will turn our markup into beautiful semantic tabs. We will write the
views-semantic-tabs.js ourselves, but the jquery.tabs.js and tabs.
css will come from a jQuery plugin that I found on github and forked, and can be
downloaded from
https://github.com/kmadel/lightweight-semantic-jquery-tabs/
downloads. The jquery.tabs.js plugin does require a specific markup structure,
but it is more semantic and does not require manipulating the order of the output,
rather only the markup that wraps the output. Here is a simplified example of the
type of markup we want our Views style plugin to generate:

<dl>
 <dt>Tab 1</dt>
 <dd>
 Tab Content 1
 </dd>
 <dt>Tab 2</dt>
 <dd>
 Tab Content 2
 </dd>
 <dt>Tab 3</dt>
 <dd>
 Tab Content 3
 </dd>
</dl>

Recipe Lists and More with Views

[246]

The semantic nature of the definition list element is discussed
in several excellent articles to include http://www.
maxdesign.com.au/articles/definition/ and
http://arcnerva.com/blog/web-development/
semantic-html-definition-lists-dl-dt-dd/.

9.	 Download the lightweight-semantic-jquery-tabs project from github, unzip
it, copy the jquery.tabs.js file to a new js folder, and copy the tabs.css file
to a new css folder, both in our views_semantic_tabs folder.

Before we create the views-semantic-tabs.js file, we will look at the theming
of the $output in our render method. The $output in our extension to the
render method is actually the rendered markup that is generated by the theme that
we specified in the views_semantic_tabs_views_plugins. When the views_
plugin_styles parent executes its render method, it includes the following code
for each grouped set of results:

 $output .= theme($this->theme_functions(),
 array(
 'view' => $this->view,
 'options' => $this->options,
 'rows' => $rows,
 'title' => $title)
);

$this->theme_functions() returns an array of theme functions/templates to
process the array, and this includes the theme template that we specified in our
views_semantic_tabs_views_plugins. The only additional output we need to
add to extending the render method is to wrap the entire output in a dl element.

10.	 Right-click on the views_semantic_tabs folder, and create a new folder named
theme to match the theme path property in views_semantic_tabs_views_
plugins.

11.	 Next, right-click on the new theme folder, create a new file named
views-semantic-tabs.tpl.php, and add the following code to that file:

<?php
/**
 * @file views-semantic-tabs.tpl.php
 * Default simple view template to display a list of rows as
semantic tabs.
 *
 * @ingroup views_templates
 */

Chapter 8

[247]

?>
<?php if (!empty($title)): ?>
 <dt><?php print $title; ?></dt>
<?php endif; ?>
 <dd>
 <?php foreach ($rows as $id => $row): ?>
 <?php print $row; ?>
 <?php endforeach; ?>
 </dd>

First, you need to understand that this template will be used for each tab. This is why
we had to wrap the final $output with the dl element in the render method of our
style plugin class. We are wrapping $title (which is the output for field we specified
to use for grouping) with the dt element, and the $rows output (which is the content
for the tab) is wrapped with the dd element, as required by the jquery.tabs.js
jQuery plugin we are using to generate the tabs.

Now, we are ready to create the views-semantic-tabs.js file.

12.	 Right-click on the js folder we created, create a new file named
views-semantic-tabs.js, and add the following JavaScript code to that file:

(function ($) {

 Drupal.behaviors.views_semantic_tabs = {
 attach: function(context, settings) {
 $.each(settings.views_semantic_tabs, function(id) {
 var viewname = this.viewname;
 var display = this.display;

/* the selectors we have to play with, will be unique per
 View instance*/
 var displaySelector = '.view-id-'+ viewname +'
 .view-display-id-'+ display +' .view-content dl';

 $(displaySelector, context)
 .once('views_semantic_tabs').tabs();
 });
 }
};

})(jQuery);

Now, this isn't a full introduction to JavaScript and jQuery, but we will walk through
this code and explain some Drupal 7-specific JavaScript concepts.

Recipe Lists and More with Views

[248]

First, notice how the entire block of JavaScript code is wrapped with
(function ($) { … })(jQuery);. This is a new JavaScript namespacing
feature of Drupal 7, and allows other JavaScript libraries to be used with Drupal
with less likelihood of conflicts.

Next, we will look at the Drupal.behaviors object. It provides a mechanism for
attaching JavaScript functionality or behaviors to page elements. It also ensures
that the Document Object Model (DOM) is ready for manipulation, similar to the
jQuery .ready() method, but the Drupal.behaviors approach is more useful
for AJAX-related JavaScript, because behaviors can be fired whenever new DOM
elements are added to the document. Also, a new settings parameter was added,
so that the settings that we added with the drupal_add_js function in our Views
style plugin will be passed in directly to our JavaScript rather than being accessed
through the global Drupal.settings object, as was the case for Drupal 6.

Finally, look at the code where we are actually applying the tabs() method to
the rendered output of our Views style plugin. Drupal 7 adds a built in support for
jQuery once the plugin that ensures that the tabs will only be applied to an element
once. In Drupal 6, the additional custom JavaScript would have to written to manage
this – usually something along the lines of checking for a CSS class that would be
dynamically applied to elements as they are processed.

Now that we have completed all of the code, our views_semantic_tabs folder
should look similar to the following screenshot:

Chapter 8

[249]

Now, we are ready to test our new Views style plugin by applying it to our Recipes by
Cuisine view, but first we will need to enable our new module. We could use Drush
for this, but I would like to enable custom modules in the browser so that I see my
new module.

13.	 Open our d7dev site in your browser, click on the Modules link in the Admin toolbar,
and scroll down to the Views section of the modules.

14.	 You should see our new Views Semantic Tabs module listed along with the other
Views modules that we have installed.

15.	 Check the checkbox to enable our new module, and click on the Save
configuration button.

16.	 Next, click on the home link in the Admin toolbar, then click on the contextual
links button for our Recipes by Cuisine view, and click on the Edit view link.

17.	 Scroll down to our Recipes by Cuisine view, and click on its edit link.

Recipe Lists and More with Views

[250]

18.	 Under FORMAT, click on the Unformatted list link.

The view style settings form now includes our new Views style plugin: Semantic Tabs.

19.	 Select our Semantic Tabs style, and click on the Apply (all displays) button.

20.	 Next, on the Style options screen, select Taxonomy term: Name as Grouping field,
and click on the Apply (all displays) button. Notice that Grouping field is required
as we specified in our plugin class.

21.	 Now, click on the Save button to save our changes to the view.

You should now have a Recipe by Cuisine view block that looks similar to the
following screenshot:

Chapter 8

[251]

What just happened?
Although this example was fairly complex, the actual code is pretty straightforward once
you get your head wrapped around some of the development concepts for Views 3 plugins.
Not only were we able to create a custom Views style plugin that will enhance the display of
content on our d7dev site, but we also learned some OOP PHP, and wrote some code that
may be useful to others.

Time for another Recipe
Here is a little bit of spicy Americana for you – Kurt's Classic Chili. Add it to the d7dev site,
and checkout the Recipes by Cuisine view from the previous section (the secret ingredient
is the bay leaves).

Recipe Lists and More with Views

[252]

�� name: Kurt's Classic Chili.

�� description: There is nothing like a warm bowl of chili on a cold winter day.
The homemade chili powder really gives this dish a distinct and delicious flavor.

�� recipeYield: Eight servings

�� prepTime: 30 minutes

�� cookTime: 60 minutes

�� ingredients:

�� One pound of ground beef

�� Two tablespoon of olive oil

�� One large sweet onion, chopped

�� Six cloves garlic, crushed

�� Eight ancho peppers, dried

�� Eight guajillo peppers, dried

�� Two tablespoon of molasses

�� One tablespoon of cocoa powder

�� Six oz lager beer

�� Three tablespoon of cumin

�� Half cup beef broth

�� Two cups tomato sauce

�� One large yellow bell pepper, diced

�� One large jalapeno pepper, diced

�� One cup light kidney beans

�� One cup dark kidney beans

�� Three Bay leaves

�� instructions:

1.	 Combine dried peppers in a food processor, and process for two minutes.

2.	 Add crushed garlic, molasses, and cocoa powder, and process for
two minutes.

3.	 Add oil to a large Dutch oven over medium low heat, and heat up for three
to four minutes.

4.	 Turn the heat to medium, add onions and cook, stirring frequently, until it
just starts to caramelize for about four to eight minutes.

Chapter 8

[253]

5.	 Add ground beef to onions, stirring frequently until meat is browned for
about eight minutes.

6.	 Combine the dried chilies mixture with ground beef and onions, and sauté
for three to four minutes.

7.	 Add beer and stir to loosen any browned bits from bottom of Dutch oven,
and simmer over medium heat for five minutes.

8.	 Add tomato sauce and cumin, and stir until combined. Simmer for
five minutes.

9.	 Add diced pepper, kidney beans, and bay leaves. Reduce heat to low
and simmer, stirring occasionally, for 30 minutes

Promoting the Colorbox File module as a full project
Over the last few chapters, we have put a lot of effort into the Colorbox File project. It
seems that it would make a lot of sense to make these enhancements available to the
Drupal community as a whole. But, before we do that, there are a few things we need
to do to ensure so that the module is as useful as possible for the Drupal community.

Drupal has coding standards that are strictly enforced when promoting any code for the first
time. A good overview of coding standards for Drupal is available at http://drupal.org/
coding-standards. Before any code is contributed to drupal.org, it should be checked
to make sure that it conforms to Drupal's coding standards. Thankfully this is pretty easy,
because as pointed out on the page mentioned previously, there is a Coder module that
provides an automated process for checking standards compliance of your code.

Introduction to the Coder module
The Coder module is a very useful module for Drupal developers. It basically scans your
custom Drupal code, and will tell you if anything is not formatted correctly, according to
Drupal coding standards.

Time for action – installing and using the Coder module
As we have seen in previous chapters, with our use of the Devel module, there are Drupal
contrib modules that assist with development. Now, we will install and learn about another
such module.

1.	 First, we need to install the Coder module. Open the Terminal (Mac OS X) or
Command Prompt (Windows) application, and change to the root directory of our
d7dev site.

Recipe Lists and More with Views

[254]

2.	 Use Drush to download and enable the Coder module.

$ drush dl coder

Project coder (7.x-1.0) downloaded to /Users/kurt/htdocs/d7dev/
sites/all/modules/coder.	 [success]

Project coder contains 3 modules: coder_upgrade, coder_review,
coder.

$ drush en coder_review

The following extensions will be enabled: coder, coder_review

Do you really want to continue? (y/n): y

coder was enabled successfully. [ok]

coder_review was enabled successfully. [ok]

Note that there are three modules that are part of the Coder project. At this point,
we are only interested in the Code Review (code_review) module, so we will
enable that one and its dependencies. Remember, Drush will handle enabling any
dependencies for a module; in this case the main coder module. So, we can save a
little bit of time by specifically enabling the coder_review module with Drush.

3.	 Open up our d7dev site in your favorite browser, click on the Configuration link in
the Admin toolbar, then click on the Coder link in the DEVELOPMENT section.

4.	 Most of the default settings for REVIEWS are good, but we want to select minor
(most) for the show warnings at or above the severity warning level setting.

Chapter 8

[255]

5.	 We also only want to run a Coder review against the Colorbox File module. So, scroll
down and expand the SELECT SPECIFIC MODULES section, and select the checkbox
for the colorbox_file module, then click on the Run reviews button.

6.	 Next, in Aptana Studio, open the colorbox_file.module and colorbox_file.
theme.inc files, make all of the changes identified by the Code Review module,
and save the files.

7.	 Now, back in the browser, expand the SELECTION FORM section and click on the
Run reviews button again.

This time, the Coder Review module did not find any warnings.

What just happened?
We learned how to use the Coder Review module to simplify the process of making sure our
code adheres to the Drupal coding standards, and in doing so, we added a new tool to our
Drupal development tool box. You should always check your code with the Coder Review
before sharing it on drupal.org.

Commit changes to Colorbox File sandbox
Now that we have cleaned up the code for the Colorbox File module, it is time to make those
changes available for all of the Drupal community.

Please note that you will not be able to follow along in this
section, as the code will have already been committed, and
you don't actually have the permission to commit the code
to someone else's sandbox repository.

Recipe Lists and More with Views

[256]

Time for action – committing Colorbox File module changes to
Drupal Git Repository

In order to make the changes we made to the Colorbox File module available on Drupal.org,
we need to commit our changes to the existing Colorbox File sandbox repository.

1.	 First, I will open the Terminal (Mac OS X) application, and change to my colorbox_
file directory with the changes we made.

If you ran the git status command in that directory before I committed the
changes here, you would see the following output:

$ git status

On branch master

Changes not staged for commit:

(use "git add <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working
directory)

#

#	 modified: colorbox_file.info

#	 modified: colorbox_file.module

#

Untracked files:

(use "git add <file>..." to include in what will be committed)

#

#	 README.txt

#	 colorbox_file.js

#	 colorbox_file.pages.inc

#	 colorbox_file.theme.inc

no changes added to commit (use "git add" and/or "git commit -a")

The git status command tells us that we have two files that have changed, and
four files that are untracked or new.

2.	 Now, I will add and commit the new and updated files to my local repository.

$ git add -A

You have new mail in /var/mail/kurt

Kurt-MacBook-Pro:colorbox_file kurt$ git commit -m "Issue #1296186
by jide, 1291618 by oxyc, and changed and enhancements by kmadel:
Changes include support for all entity types, entity based fields
as colorbox caption."

Chapter 8

[257]

[master ecd0b10] Issue #1296186 by jide, 1291618 by oxyc, and
changed and enhancements by kmadel: Changes include support for
all entity types, entity based fields as colorbox caption.

 6 files changed, 486 insertions(+), 183 deletions(-)

 create mode 100644 README.txt

 create mode 100644 colorbox_file.js

 rewrite colorbox_file.module (79%)

 create mode 100644 colorbox_file.pages.inc

 create mode 100644 colorbox_file.theme.inc

3.	 Next, I will push the committed changes to the repository on drupal.org.

$ git push -u origin master

...

To kmadel@git.drupal.org:sandbox/kmadel/1084984.git

 fa74c35..ecd0b10 master -> master

Branch master set up to track remote branch master from origin.

What just happened?
This is all it took to make all of the new Colorbox File code available on drupal.org (through
git only). If you visit the repository viewer page for that sandbox (http://drupalcode.
org/sandbox/kmadel/1084984.git), you will see the push that I just made.

Now, all I need to do is update the issues mentioned in my commit message (the –m
argument for the commit command), and everyone who is interested in the Colorbox
File module will know that the changes are available.

Recipe Lists and More with Views

[258]

Summary
In this chapter, we have learned a lot about Views and have seen how Views allows you
to add interesting components to your site through a web-based user interface. We also
learned that Views offers a powerful development platform for custom extensions.

We were introduced to the Coder module, and we used it to clean up the code for the
Colorbox File module. We then pushed those changes to the Colorbox File sandbox Drupal
repository for others to use.

In the next chapter, we are going to add some visually-striking banner components that will
leverage the Views development from this chapter, and show off all the beautiful photos of
the recipes on the d7dev site. We will also revisit the Colorbox File module, and walk through
the process of promoting sandbox projects to full projects on drupal.org.

9
Rotating Banners and

Project Promotion

In this chapter we are going to enhance the appearance of our d7dev site's
front page with a rotating banner. We are going to introduce another Views
style plugin that will provide an interactive rotating banner, so that we can
highlight the images of the recipes on our d7dev site.

We are also going to revisit the Colorbox File module, and walk through the
process of promoting a sandbox project to a full project on Drupal.org.

The following topics will be covered in this chapter:

�� Creating and styling a rotating banner with the Views Slideshow module

�� Creating a custom Drush command

�� Creating a .install file for the Colorbox File module

�� Promoting the Colorbox File module from a sandbox project to a full project

Rotating banner with Views Slideshow
We will examine an approach that is based on a Views plugin and predominantly consists
of Views configuration. Customization of the Views plugin output will be handled with
custom CSS.

Rotating Banners and Project Promotion

[260]

The Views Slideshow module is an excellent example of a Views style plugin, and it provides
much more functionality than just rotating banners. Basically, the Views Slideshow module
wraps the jQuery Cycle plugin as a Views style plugin, but it does so with a sub-module,
which is the views_slideshow_cycle module. The views_slideshow module is more
than a Views style plugin. It is itself a plugin framework for integrating different jQuery
slideshow plugins with Views, and also provides a default implementation based on the
jQuery Cycle plugin.

Time for action – installing the Views Slideshow module
Before we build a rotating banner with Views, we need to install the Views Slideshow module.

1.	 Open the Terminal (Mac OS X) or Command Prompt (Windows) application, and
change to the root directory of our d7dev site.

2.	 Use Drush to download and enable the Views Slideshow module.

$ drush dl views_slideshow

Project views_slideshow (7.x-3.0) downloaded to /Users/kurt/
htdocs/d7dev/sites/all/modules/views_slideshow.
 [success]

Project views_slideshow contains 2 modules: views_slideshow_cycle,
views_slideshow.

$ drush en views_slideshow_cycle

The following projects have unmet dependencies:

views_slideshow_cycle requires libraries

Would you like to download them? (y/n): y

Project libraries (7.x-1.0) downloaded to /Users/kurt/htdocs/
d7dev/sites/all/modules/libraries. [success]

The following extensions will be enabled: libraries, views_
slideshow, views_slideshow_cycle

Do you really want to continue? (y/n): y

libraries was enabled successfully. [ok]

views_slideshow was enabled successfully. [ok]

views_slideshow_cycle was enabled successfully. [ok]

Chapter 9

[261]

What just happened?
Views Slideshow consists of two modules: the base views_slideshow module and the
views_slideshow_cycle module. We only need to tell Drush to install the views_
slideshow_cycle module, because Drush will automatically install any dependencies
belonging to the same parent module; in this case, the views_slideshow module will
automatically be enabled by Drush. Also, notice how Drush prompted us to download
other unmet dependencies; in this case, the libraries module. The Libraries API
module (http://drupal.org/project/libraries) provides a common repository
for sharing things, such as jQuery plugins, across modules, so that each module that may
need something like the jQuery Cycle plugin doesn't need to install its own copy.

Custom Drush commands
We are not quite ready to begin using the Views Slideshow module because, as mentioned
above, it requires the jQuery Cycle plugin. You may recall from Chapter 6, Adding Media to
our Site, that the Colorbox module included a Drush task that downloaded the Colorbox
JavaScript plugin to the sites/all/libraries/colorbox folder. We are going to use
code from the Colorbox module as a starting point to create a similar Drush task to download
the Views Slideshow required jQuery Cycle plugin to the sites/all/libraries/jquery.
cycle folder. You will find that there is a lot of existing code that can serve as a good starting
point for your own custom code.

Time for action – creating a custom Drush command to install
the jQuery Cycle plugin

Now, let's learn how you can integrate Drush with a Drupal module to make certain install
tasks easier.

1.	 In Aptana Studio, create a new folder named drush in the d7dev/sites/all/
modules/views_slideshow folder.

2.	 Next, copy the colorbox.drush.inc file from the modules/colorbox
folder to the drush folder we just created, and rename it to views_slideshow.
drush.inc.

Rotating Banners and Project Promotion

[262]

3.	 Open the views_slideshow.drush.inc file in Aptana Studio, and modify the
first eleven lines so they look as follows:

<?php

/**
 * @file
 * drush integration for views_slideshow.
 */

/**
 * The jQuery Cycle plugin URI.
 */
define('JQUERY_CYCLE_DOWNLOAD_URI',
 'https://github.com/downloads/malsup/cycle/jquery
 .cycle.all.latest.js');

We are updating some of the comments to reflect that this is for the Views
Slideshow module, and changing the name of the constant and location for
downloading the jQuery Cycle plugin.

4.	 Next, we are going to rename the hook_drush_command to views_slideshow_
drush_command, and update the $items array. The final function should look
similar to the following code:

function views_slideshow_drush_command() {
 $items = array();

 // the key in the $items array is the name of the command.
 $items['jquery-cycle-plugin'] = array(
 'callback' => 'drush_jquery_cycle_plugin',
 'description' => dt("Downloads the jQuery Cycle plugin."),
 'bootstrap' => DRUSH_BOOTSTRAP_DRUSH, // No bootstrap.
 'arguments' => array(
 'path' => dt('Optional. A path where to install the jQuery
 Cycle plugin. If omitted Drush will use the default
 location.'),
),
 'aliases' => array('jcycle'),
);

 return $items;
}

Chapter 9

[263]

5.	 Now, we will update hook_drush_help.

function views_slideshow_drush_help($section) {
 switch ($section) {
 case 'drush:jquery-cycle-plugin':
 return dt("Downloads the jQuery Cycle plugin from https://
github.com/downloads/malsup/cycle, default location is sites/all/
libraries.");
 }
}

6.	 Next, delete the commented out drush_colorbox_post_pm_enable function.

7.	 Now, add the following code after the JQUERY_CYCLE_DOWNLOAD_URI constant to
create another PHP constant that we will use in the next step.

define('JQUERY_CYCLE_FILE_NAME', 'jquery.cycle.all.js');

8.	 Rename the drush_colorbox_plugin function to drush_jquery_cycle_
plugin, and update the code:

/**
 * Command to download the jQuery Cycle plugin.
 */
function drush_jquery_cycle_plugin() {
 $args = func_get_args();
 if (!empty($args[0])) {
 $path = $args[0];
 }
 else {
 $path = 'sites/all/libraries/jquery.cycle';
 }

 // Create the path if it does not exist.
 if (!is_dir($path)) {
 drush_op('mkdir', $path);
 drush_log(dt('Directory @path was created', array('@path' =>
 $path)), 'notice');
 }

 // Set the directory to the download location.
 $olddir = getcwd();
 chdir($path);

Rotating Banners and Project Promotion

[264]

 $filename = basename(JQUERY_CYCLE_DOWNLOAD_URI);

 // Remove any existing jQuery Cycle plugin file
 if (is_file(JQUERY_CYCLE_FILE_NAME)) {
 drush_op('unlink', JQUERY_CYCLE_FILE_NAME);
 drush_log(dt('An existing jQuery Cycle plugin was overwritten
 at @path', array('@path' => $path)), 'notice');
 }

 // Download the jQuery Cycle JavaScript file
 if (!drush_shell_exec('wget ' . JQUERY_CYCLE_DOWNLOAD_URI)) {
 drush_shell_exec('curl -O ' . JQUERY_CYCLE_DOWNLOAD_URI);
 }

 //rename the jQuery Cycle JavaScript file to jquery.cycle.all.js
 drush_op('rename', $filename, JQUERY_CYCLE_FILE_NAME);

 // Set working directory back to the previous working directory.
 chdir($olddir);

 if (is_dir($path)) {
 drush_log(dt('jQuery Cycle plugin has been downloaded to @
path', array('@path' => $path)), 'success');
 }
 else {
 drush_log(dt('Drush was unable to download the jQuery Cycle
 plugin to @path', array('@path' => $path)), 'error');
 }
}

We modified the $path variable to include the name of the folder where the Views
Slideshow module looks for the jQuery Cycle plugin. Next, we removed the check for
the unzip dependency and all of the unzip-related code, because the jQuery Cycle
plugin that we are downloading is not zipped. Then, we replaced the COLORBOX_
DOWNLOAD_URI constant with the constant that we created for the jQuery Cycle
plugin URI. Finally, we added some code to rename the downloaded file to the name
that the Views Slideshow uses.

Chapter 9

[265]

9.	 Open the Terminal (Mac OS X) or Command Prompt (Windows) application,
change to the root directory of our d7dev site, type drush, and in the resulting
list of Drush commands you should see our new jquery_cycle_plugin
command under other commands.

10.	 Now, use Drush to download the jQuery Cycle plugin for the Views Slideshow module.

$ drush jquery-cycle-plugin

jQuery Cycle plugin has been downloaded to sites/all/libraries/
jquery.cycle [success]

What just happened?
We created a custom Drush command to make it super-easy to download the jQuery Cycle
plugin, a required JavaScript library for the Views Slideshow module.

Creating a rotating banner with Views Slideshow
Again, the Views Slideshow module is a Views style plugin. We are going to create a block-
based view that will use this style plugin to turn our recipe images into a rotating banner that
we will be able to display on the front page of our d7dev site.

Time for action – creating a banner using the Views Slideshow
module

Now that we have installed and set up the Views Slideshow module, it is time for us to build
a Views-based rotating banner.

1.	 Open our d7dev site in your browser, click on the Structure link in the Admin
toolbar, and click on the Views link.

2.	 We are creating a new view. So, click on the Add new view link at the top of the
Views List page.

3.	 Enter Front Banner as the View name, and select Recipe for the of type. We
are going to create our rotating banner as a block, so uncheck the Create a page
checkbox and check the Create a block checkbox.

Rotating Banners and Project Promotion

[266]

4.	 Next, select Slideshow of fields for the Display format. Check that the Add new
view form looks similar to the following screenshot, and click on the Continue &
edit button:

Now, we need to decide what fields we want to display in the banner. The Content:
Title field has been added by default. But, we obviously want to display an image in
the rotating banner.

5.	 Click on the add button for FIELDS, select Content: image, and click on the Add and
configure fields button.

6.	 Next, in the Configure field form, uncheck the Create a label checkbox, select large
as the Image style, and click on the Apply (all displays) button.

Now, if you scroll down to the Auto preview area of the Views edit page, you will
see a working slideshow that looks something similar to the following screenshot:

Chapter 9

[267]

Also, if you wait, you will see that the Awesome Sauce recipe is displayed even
though it doesn't have an image associated with it. We will add a filter to our
view, so that only recipes with a Content: image field will be displayed in the
rotating banner.

7.	 Click on the add button for FILTER CRITERIA, select the first Content: image
(field_image:fid) filter, and click on the Add and configure filter criteria button.

Rotating Banners and Project Promotion

[268]

8.	 On the Filter criteria form, select Is not empty (NOT NULL) from the Operator
select list, and click on the Apply (all displays) button.

Now, if you look at the preview, you should no longer see the Awesome Sauce
recipe. You will notice that the Content: Title field is above the image, but I think
it would look better underneath the image. We will rearrange the fields to place
the Content: Title field under the Content: image field.

9.	 Click on the drop-down for the FIELDS add button, and select rearrange.

10.	 Now, just drag the Content: Title field under the Content: image field, and click on
the Apply (all displays) button.

Now, we are ready to see how our new Views Slideshow banner looks on the
front page.

11.	 Click on the Save button for our new view, click on the Structure link in the Admin
toolbar, and click on the Blocks link.

12.	 Scroll down until you find the View: Front Banner block that we just created, and
click on its configure link.

13.	 Next, in the block configuration form, type in <none> as the Block title, select
Content as the region to display the block for our D7Dev Theme, select Only the
listed pages, and enter <front> as the only page to display it on:

Chapter 9

[269]

14.	 Click on the Save block button. On the Blocks configuration page, drag the View:
Front Banner block above the Main page content block in the Content regions,
and click on the Save blocks button at the bottom of the screen.

15.	 Now, navigate to the front page of our d7dev site to see what our new Views
Slideshow rotating banner looks like.

What just happened?
We created a rotating banner block with the Views Slideshow style plugin, and added the
block to the front page of our d7dev site.

Rotating Banners and Project Promotion

[270]

Have a go hero – creating a new image style for the images in our rotating
recipe banner

In Chapter 6, we were introduced to image styles for Drupal 7. Add a new image style
named front_banner that will scale our recipe images to be no wider than 680 pixels
and cropped to 410 pixels in height, and apply it to the Content: image field of our Front
Banner view. This will create a more consistent look for our rotating banner as it won't
change the size from slide to slide. When you are done, the Front Banner should look
similar to the following screenshot:

Enhance the appearance of our rotating banner with a pager
and CSS
Our new rotating banner works fine, but we can easily improve its appearance with some
custom CSS. We are going to add custom CSS to our theme to tweak the appearance of the
rotating banner, but first, we are going to add a pager that will show how many slides there
are and the current slide.

Chapter 9

[271]

Time for action – updating the front banner view to include a
slideshow pager

We are going to enhance our Views rotating banner with a pager.

1.	 Open our d7dev site in your browser, mouse over our new rotating banner, click on
the contextual links widget, and click on the Edit view link.

2.	 Next, we need to add a field to our view for the Views Slideshow plugin to use
as a pager. Click on the FIELDS add button, then type global in the Search input,
select the Global: View result counter field, and click on the Add and configure
fields button.

3.	 Now, on the Configure field form, uncheck the Create a label checkbox, check the
Exclude from display checkbox, and click on the Apply (all displays) button.

Views will now add a field consisting of an integer starting with 1, incremented for
each result, and included with each result as a hidden field that won't be displayed.
Now, we will take our first look at the format settings for the Slideshow format that
we have been using for this view. We didn't need to look at this until now, because
up until now, we have only been using the default settings.

4.	 Click on the Settings slink for the Slideshow format.

The first thing you will notice about the Style options form for the Slideshow plugin
is that it has a lot more configurable settings than our Views Semantic Tabs module
from the previous chapter.

Rotating Banners and Project Promotion

[272]

5.	 Scroll down to the Bottom Widgets settings, check the Pager checkbox, under the
Pager fields select the Global: View result counter field that we just added, and click
on the Apply (all displays) button.

6.	 Now, click on the Save button for the view, and take a look at the updated rotating
recipe banner.

Chapter 9

[273]

Not quite the visually striking pager we were looking for, but if you click any of the
numbers, you will notice that the slide will change to that paged item. So, although
the pager works, it doesn't look all that great. Let us see what we can do about the
way it looks by adding some custom CSS to our d7dev theme.

We are going to use the Google Chrome browser for the next few steps
of this recipe. I know that there are a number of browsers to choose
from, but the Chrome browser offers one of the best DOM inspectors
of any browser, the inspector, and other development tools are built-in
to the browser (no extra plugin to install, such as Firebug on Firefox),
and it is my opinion that Chrome has the best browser-integrated
developer tools. Better yet, Chrome is available for Windows and
Mac OS X. Download Chrome from http://www.google.com/
chrome. Of course, you are welcome to use another browser, but the
following steps were written with Chrome in mind.

Rotating Banners and Project Promotion

[274]

7.	 Open the front page of our d7dev site in Chrome, right-click on our rotating banner,
and select Inspect Element from the contextual menu that pops up.

8.	 In the Elements inspector, find the div with the class views-slideshow-
controls-bottom, and expand it.

The purpose of using the browser DOM inspector to make these
changes is to expedite CSS code changes. You will see the outcome
of these changes instantly in your browser, and when you are done,
you will be able to copy those changes to the appropriate CSS file
to make them permanent.

9.	 Select div with the class views-slideshow-pager-fields, so that it is
highlighted, then click inside the element.style curly brackets in the Styles
inspector, and type in float: right;.

Chapter 9

[275]

10.	 Now, enter the following CSS below the float: right style that we just added:

position: relative;
bottom: 40px;

11.	 Next, in Aptana Studio, open our global.css file located at d7dev/sites/all/
themes/d7dev_theme/css.

12.	 Scroll to the bottom of the file, and add the following style:

/* Front Banner styels */
div.views-slideshow-pager-fields{
 float: right;
 position: relative;
 bottom: 44px;
 width: 300px;
 text-align: right;
 z-index: 100;
}

Rotating Banners and Project Promotion

[276]

13.	 Now, back in Chrome, expand the views-slideshow-pager-fields div, find
div with the class views-slideshow-pager-field-item, add the following
styles to the global.css file for the div.views-slideshow-pager-field-
item selector, and refresh the front page in Chrome:

div.views-slideshow-pager-field-item{
 display: inline-block;
 background-color: #999;
 width: 10px;
 height: 10px;
 text-indent: -9999px;
 border: 2px solid #CCC;
 -moz-border-radius: 4px;
 border-radius: 8px;
 margin-left: 4px;
 cursor: pointer;
}

div.views-slideshow-pager-field-item:hover,
div.views-slideshow-pager-field-item.active{
 background-color: #BF0000;
}

Now, you should have a pager that looks similar to the following screenshot
(outlined in white just to highlight it):

Chapter 9

[277]

Now, we need to do something about the recipe title. It gets a bit lost underneath
the recipe image on the left side. We are going to increase the font size and position
it above the pager, but on the left side of the image, and add a background that is
slightly transparent.

14.	 Right-click on a recipe title, and select Inspect Element.

15.	 Highlight the div above the anchor element with the class views-field-title.
In Aptana Studio, create a new style in the global.css file for div.views-
field-title, refresh the page in Chrome, and add the following CSS to the div.
views-field-title selector under the Matched CSS Rules:

16.	 Add the following CSS (as seen in Chrome) to the div.views-field-title
selector in Aptana Studio:

 position: relative;
 bottom: 80px;
 background-color: rgba(201,13,5,0.5);
 height: 40px;
 padding: 8px 0 0 12px;
 margin: 0 4px;

Now the background looks good, but the red title text gets lost in it.

17.	 Add the following CSS to our global.css file after the div.views-field-title
style:

div.views-field-field-image{
 border: 4px solid #CCC;
}

div.views-field-title {
 position: relative;

Rotating Banners and Project Promotion

[278]

 bottom: 80px;
 background-color: rgba(201,13,5,0.5);
 height: 40px;
 padding: 8px 0 0 12px;
}

div.views-field-title a{
 font-size: 26px;
 color: #CCC;
 -webkit-text-fill-color: #CCC;
 -webkit-text-stroke-width: 1px;
 -webkit-text-stroke-color: #FFF;
}

div.views-field-title a:hover{
 color: #FFF;
 -webkit-text-fill-color: #FFF;
 text-decoration: none;
}

18.	 Refresh the front page in Chrome, and you will see that the recipe titles are much
easier to read. However, notice that the pager has been pushed down off the image.

19.	 In Aptana Studio, modify the bottom property of the div.views-slideshow-
pager-fields selector from 44px to 70px.

Refresh the front page in Chrome again, and you will notice that our rotating banner
is looking pretty good. However, the CSS that we have added to global.css has
affected other recipe title fields on the page. We need to find a parent selector for
our rotating banner, so that the CSS we have just added will only affect the recipe
titles for our rotating banner.

20.	 In Chrome, right-click on the recipe image in our rotating banner, select Inspect
Element, and scroll up in the Elements inspector until you find a div with the class
view-id-front_banner. Copy that class name and append it, along with a .
prefix, to all of the CSS selectors that we have added for our rotating banner in the
global.css file. So, for example,
div.views-field-title will become .view-id-front_banner
div.views-field-title.

21.	 Once you have appended that class to all of the front banner styles, refresh the
front page in Chrome.

Our rotating banner should look the same as it did before. But now, all of the other
recipe titles on the front page should look as they did before we added the front
banner styles to the global.css file.

Chapter 9

[279]

What just happened?
We added a pager to our rotating banners, and although we did not write much custom
PHP code, we saw how a little bit of Views configuration with the right contrib module,
Views Slideshow, and how some creative CSS can be combined to great effect.

Time for another recipe
Here is a hearty and tasty soup for a cold winter day. Just about anyone, with just about
any dietary restrictions, should be able to enjoy this healthy and delicious soup.

Rotating Banners and Project Promotion

[280]

�� name: Potato Leek Soup (Vegan)

�� cuisineType: European

�� description: This healthy yet still creamy soup will really stick to
your ribs and warm you up on a cold day.

�� recipeYield: Ten servings

�� prepTime: 30 minutes

�� cookTime: 45 minutes

�� ingredients:

�� Five to six large russet potatoes, peeled and quartered

�� Four leeks, cleaned and thinly sliced

�� One large sweet onion, diced

�� Four tablespoon vegan butter

�� One tablespoon olive oil

�� Six cups vegetable broth

�� One cup plain soy milk

�� Sea salt

�� Freshly ground black pepper

�� One tablespoon rice vinegar

�� Two teaspoon crushed red pepper

�� One-fourth cup parsley, finely chopped

�� instructions:

1.	 Melt vegan butter in a large Dutch oven over medium heat.

2.	 Once the butter melts, add diced onion and sauté until it just starts
to caramelize.

3.	 Add the finely sliced leeks and sauté over medium heat for ten minutes,
stirring every minute or so.

4.	 Add diced potatoes and sauté with leeks and onions for ten minutes.

5.	 Add the olive oil and stir to combine.

Chapter 9

[281]

6.	 Add vegetable broth and plain soy milk, stir to combine, bring to a boil
over medium-high heat, and reduce the heat to low.

7.	 Simmer over low heat for 15 minutes.

8.	 Using an emersion hand blender, blend the soup into a smooth puree.

9.	 Stir in vinegar and crushed red pepper.

10.	 Stir in sea salt and freshly ground black pepper to taste.

11.	 Stir in fresh parsley and enjoy.

Promoting a sandbox project to a full project
Although we committed our Colorbox File changes to the sandbox Git repository, and in
doing so made the code available to anyone who wants to use it, using Git is a barrier for
many people who aren't developers, and just want to download a module, configure it, and
use it. A sandboxed module will also deter people from trying your module, because they
may not trust a module that is not a full project (and Drupal includes a big warning at the top
of all sandboxed module pages). I will walk you through the process to promote the Colorbox
File module to a full Drupal.org project, and then, I will create a release that can be easily
downloaded without Git.

You won't actually be able to execute the following instructions as
a project can only be promoted to a full project once. If you don't
already have the ability to promote to full projects, it is a fairly lengthy
process to get the initial permission to promote projects on drupal.
org. The process for your first full project promotion is quite different
than the process to promote successive projects to full projects. The
process for gaining the ability to promote projects is documented at
http://drupal.org/node/1011698.

At this point, I will only create a dev release until the community has had an opportunity
to test it. Once there has been some feedback, I will create a full release. Before we begin,
I have decided to rename the module from Colorbox File to Media Colorbox, and there is
some work involved with making that happen. Although the module is not dependent on the
Media module, it is more aligned with the concepts of the Media module, and will probably
be more easily discovered if it is clearly associated with the Media module.

Rotating Banners and Project Promotion

[282]

To rename the module, we have to disable and uninstall the module, and before we uninstall
the module, we need to write some "house keeping" code to do a little bit of Drupal clean
up. You may recall from Chapter 6, that we used the variable_set function to store the
Colorbox caption field settings in the Drupal variable table.

When someone uninstalls this module, for whatever reason, we don't want to leave the
unneeded data in the variable table because there is no reason to keep the data and it
is bad practice. Drupal core provides a hook that is specifically for this type of clean up:
hook_uninstall.

Time for action – implementing hook_uninstall for the Colorbox
File module

The hook_uninstall function must be implemented in a module's .install file per
the documentation available at http://api.drupal.org/api/drupal/modules--
system--system.api.php/function/hook_uninstall/7.

1.	 In Aptana Studio, right-click on the colorbox_file folder at d7dev/sites/
all/modules, and create a new file named colorbox_file.install.

2.	 Open the colorbox_file.install file, and add the following code:

<?php

/**
 * @file
 * Uninstall function for the colorbox file module.
 */

Chapter 9

[283]

/**
 * Implements hook_uninstall().
 */
function colorbox_file_uninstall() {
 //Remove all colorbox_file varialbes
 db_delete('variable')->condition('name', 'colorbox_file_%',
 'LIKE')->execute();
}

We know that we prefixed all of the variables for the colorbox_file module with
that same name: colorbox_file. The db_delete function will delete all the rows
in the variable table where the name column value begins with colorbox_file_.

The db_delete function (http://api.drupal.org/
api/drupal/includes--database--database.inc/
function/db_delete/7) is a new function for Drupal 7 core. It is
part of the completely rewritten database API for Drupal 7. Previously
with Drupal 6, this code would have had to be written in a manner
similar to the following:

db_query("DELETE FROM {variable} WHERE name
LIKE %s", "colorbox_file_%");

In Drupal 6, you actually wrote the SQL that was going to be executed.
The new database API for Drupal 7 abstracts the grammar of queries,
and makes it a bit easier to create Drupal database drivers for other
databases, besides the MySQL database. There are contrib modules
that provide drivers for Microsoft SQL Server - http://drupal.
org/project/sqlsrv, and the Oracle Database -
http://drupal.org/project/oracle.

What just happened?
With a modest level of effort, we improved the Colorbox File module by removing unneeded
records from the variable table when it was uninstalled, and we made the module more
compliant with the accepted Drupal coding standards.

Rotating Banners and Project Promotion

[284]

Time for action – uninstalling and renaming the Colorbox
File module

Now that we have implemented the hook_uninstall function for the Colorbox File
module, we are ready to test that it works and then move forward with renaming the
module to Media Colorbox.

1.	 Open the Terminal (Mac OS X) or Command Prompt (Windows) application, change
to the root directory of our d7dev site, and type the following command:

$ drush dis colorbox_file

The following extensions will be disabled: colorbox_file

Do you really want to continue? (y/n): y

colorbox_file was disabled successfully. [ok]

$ drush pm-uninstall colorbox_file

The following modules will be uninstalled: colorbox_file

Do you really want to continue? (y/n): y

colorbox_file was successfully uninstalled. [ok]

First, we disabled the colorbox_file module with the dis command, and
uninstalled the module with the pm-uninstall command. The code we added to
the new colorbox_file_uninstall function will get called when that command
is executed. If you refresh the contents of the variable table, you will see that there
are no longer any colorbox_file_ variables:

2.	 Now, in Aptana Studio, rename the colorbox_file folder to media_colorbox,
and rename all of the files in the folder to begin with media_colorbox instead of
colorbox_file. When we are done, the folder and contained files should look
similar to the following:

Chapter 9

[285]

3.	 Next, we need to rename all the function names and all references to Colorobox
File and colorbox_file in the code. Rather than walking through each instance
of renaming the function names, variable names, and documentation, replace
the existing files with the media_colorbox files from the code download for
this chapter.

4.	 Now that we have renamed everything, we need to test that everything still works.
We will enable the newly named media_colorbox module with Drush:

$ drush en media_colorbox

The following extensions will be enabled: media_colorbox

Do you really want to continue? (y/n): y

media_colorbox was enabled successfully. [ok]

5.	 Now, we need to test the changes that were made. In your favorite browser, click on
the Configuration link in the Admin toolbar, then click on the File types link under
the Media section, and click on the manage fields link for the Image file type.

6.	 On the MANAGE FIELDS page for the Image file type, click on the edit link for the
Caption field.

7.	 On the Caption field edit page, scroll down to the COLORBOX CAPTION FIELD
setting, check the Use field as Colorbox caption checkbox, and click on the Save
settings button.

8.	 Now, click on the Structure link in the Admin toolbar, then click on the Content
types link, and click on the manage display link for our Recipe content type.

9.	 On the MANAGE DISPLAY page for our Recipe content type, select the Media
Colorbox FORMAT for the Media field, and click on the format settings button.

Rotating Banners and Project Promotion

[286]

10.	 Configure the Media Colorbox Format settings, so that they match the following
screen shot. Click on the Update button, and click on the Save button.

11.	 Now, we need to make sure that it works. Click on the Find content link in the
Shortcuts bar, click on the link for the Cannellini Cumin Chicken Chili recipe, and
click on the image of the spices for the media field (the second image in the first
row), and you should see something similar to the following screenshot:

Chapter 9

[287]

What just happened?
We renamed the Colorbox File module to the Media Colorbox module, and we tested the
module to make sure that it still works after the non-trivial amount of files, functions and
variables that were renamed.

Time for action – promoting the Media Colorbox module to be a
full project on Drupal.org

Now that we have finished renaming the Colorbox File module to Media Colorbox, we are
ready to promote it to full project status on Drupal.org.

1.	 First, we need to push the updated code to the sandbox repository. Executing the
git status command at the command line in the media_colorbox directory
(d7dev/sites/all/modules/media_colorbox), will return the following status
information:

On branch master

Changes not staged for commit:

(use "git add/rm <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working
directory)

#

modified: README.txt

deleted: colorbox_file.info

deleted: colorbox_file.js

deleted: colorbox_file.module

deleted: colorbox_file.pages.inc

deleted: colorbox_file.theme.inc

#

Untracked files:

(use "git add <file>..." to include in what will be committed)

#

media_colorbox.info

media_colorbox.install

media_colorbox.js

media_colorbox.module

media_colorbox.pages.inc

media_colorbox.theme.inc

Rotating Banners and Project Promotion

[288]

2.	 Next, execute the following git commands to remove the old files, add the new files,
commit the changes, and push the committed changes to the sandbox repository:

$ git add -A

$ git commit -m "renamed"

[master 99fc324] renamed

 9 files changed, 114 insertions(+), 93 deletions(-)

 delete mode 100644 colorbox_file.info

 delete mode 100644 colorbox_file.js

 create mode 100644 media_colorbox.info

 create mode 100644 media_colorbox.install

 create mode 100644 media_colorbox.js

 rename colorbox_file.module => media_colorbox.module (72%)

 rename colorbox_file.pages.inc => media_colorbox.pages.inc (73%)

 rename colorbox_file.theme.inc => media_colorbox.theme.inc (82%)

$ git push -u origin master

Counting objects: 11, done.

Delta compression using up to 2 threads.

Compressing objects: 100% (9/9), done.

Writing objects: 100% (9/9), 5.04 KiB, done.

Total 9 (delta 1), reused 0 (delta 0)

To kmadel@git.drupal.org:sandbox/kmadel/1084984.git

 3baa11c..99fc324 master -> master

Branch master set up to track remote branch master from origin.

3.	 Next, we will open up the Drupal.org page for the sandboxed Colorbox File module.

Chapter 9

[289]

4.	 To start the process for promoting a sandbox module to a full project, you just need
to click on the Promote to full project link.

5.	 On the Promote page, I will check both checkboxes, enter media_colorbox as the
short name, and click next the Promote to full project button.

6.	 The next page asks if I am sure that I want to promote the module, and I am sure, so
I will click next the Promote button:

Rotating Banners and Project Promotion

[290]

7.	 Now, it is no longer a sandbox project and Drupal provides some important
instructions regarding the remote repository for the project. The git command
in the following screenshot needs to be executed before any new changes can be
pushed to the remote repository, because Drupal moved it to a new location for
full projects and to match the new short project name.

Chapter 9

[291]

8.	 You may notice that although the short project name was changed to media_
colorbox, the title of the module is still Colorbox File. We can click on the Edit link
to modify the project title and description for the Media Colorbox project page.

Rotating Banners and Project Promotion

[292]

After updating the project name and description, the project will reflect the new
name and the updated description.

Now, we need to create a dev release for the Media Colorbox module, so that it is
easier to download and install. Drupal provides instructions on the Version control
page of a full project page for creating a branch for a dev release with git (These
instructions are only displayed for module maintainers).

9.	 Executing the following git commands on our local Media Colorbox repository will
create a new dev branch.

git checkout -b 7.x-1.x

git push -u origin 7.x-1.x

10.	 Now that we have a new dev branch in the Media Colorbox repository, we will be
able to add a dev release to the project. On the View page of the Media Colorbox
module, there is a Add new release link below the Project information. Clicking on
that link will bring us to Create Project release page.

Chapter 9

[293]

11.	 The Create Project release page lists only one Git release tag or branch to select
from, the dev branch we just created, so we just need to click on the Next button.

12.	 On the Create Project release details page, we will enter some Release notes, and
click on the Save button; the other fields will already be filled because this is the first
dev release.

Rotating Banners and Project Promotion

[294]

We have successfully promoted the Media Colorbox module to full project status,
and have created an initial dev release.

Drupal.org will automatically generate tar.gz and zip files, and attach them to
the project, but it may take as long as 12 hours for a dev release (official non-dev
releases are published within five minutes). Until then, only an unpublished release
node will appear on the Releases for Media Colorbox page.

Summary
In this chapter, we learned more about the Views module, and have seen how a good Views
plugin, along with some custom CSS, enabled us to create a very appealing rotating banner
component for our d7dev site.

We learned that Drush has some hooks of its own, and saw how easy it is to add a simple
Drush integration enhancement to the Views Slideshow module that will save others a bit of
time when they install the module.

We also learned a bit about the Drupal .install file and how to use it to clean up after
ourselves when our module is uninstalled. Finally, we learned how a module is promoted
from a sandbox project to a full project.

In the next chapter, we are going to be introduced to SimpleTest. SimpleTest is a custom
functional testing framework that was a contributed module for Drupal 6, and has been
added to core for Drupal 7. After an overview of SimpleTest in core, we will write some of
our own SimpleTest tests to test some of the code we have written in previous chapters.

10
Test Your Code with SimpleTest

There never seems to be enough time in the day to write additional code for
testing your code. I have to admit that I am not a test first developer by nature.
However, I do understand the importance and value that tests provide. Tests
can be written and run whenever we add new functionality to our code. This
will quickly let us know if our changes break any of the previously existing
functionality. Drupal 7 includes a testing framework called SimpleTest that
makes writing tests for Drupal easier.

The following topics will be covered in this chapter:

�� An introduction to the SimpleTest testing framework for Drupal 7

�� An overview of how SimpleTest is used with Drupal core

�� Code Examples: Writing our own SimpleTest test cases

Test Your Code with SimpleTest

[296]

What is SimpleTest?
SimpleTest (http://www.simpletest.org/) is a PHP test framework similar to the JUnit
test framework for Java. The purpose of the SimpleTest PHP framework is to make it easier to
write unit tests and functional tests for PHP code.

A unit test is intended to test the smallest testable part of an
application from the programmer's perspective.

A functional test (also known as black-box testing) is intended
to test a component against a design or specification from a
user's perspective. Functional tests are sometimes referred to
as web tests in PHP and more specifically Drupal.

SimpleTest (http://drupal.org/project/simpletest) for Drupal is a Drupal-specific
testing API that is modeled after the SimpleTest PHP framework. It is integrated with Drupal
in order to make writing functional or web tests much easier than using the SimpleTest PHP
framework by itself. Drupal SimpleTest was first introduced as a contributed module for
Drupal 5, and was initially dependent on the SimpleTest PHP framework. However, as of the
6.2-x release of the SimpleTest module it is no longer dependent on any external libraries.
Beginning with Drupal 7, the SimpleTest module was added to core.

Although the Drupal SimpleTest framework supports unit testing, it is primarily focused on
functional or web testing.

SimpleTest in Drupal Core
As mentioned previously, SimpleTest was added as a core module to Drupal 7. It was also
used extensively to develop Drupal core for the Drupal 7 release. Take a look into any of the
core modules, and you will see one or more .test files. It has been noted by many core
developers that Drupal 7 development was much quicker because of the use of SimpleTest.
Anytime any major changes were made to the core code base, all of the core tests could be
run to see if the new code broke any existing functionality. Without the SimpleTest test cases,
it would have taken a person or persons hours, days, or even weeks to identify the same
issues that are quickly identified by the SimpleTest test cases. You can see how continuously
running these tests against any changes in your code, especially a code base as large as Drupal
core, can speed up development. But, we first have to actually write the tests for our code!

SimpleTest web interface
The SimpleTest web interface for Drupal 7, located at admin/config/development/
testing, enables you to run the test cases included with any installed module.

Chapter 10

[297]

The tests are organized by groups specified in the test case definition (similar to the way
that modules are organized by the package property in a modules .info file), and the
Testing configuration screen enables you to run all available tests, run all of the tests for the
selected test group or run individual test cases. The output for running the NODE SAVE test
should look similar to the following screenshot (unless you wrote some code that broke the
core Node module):

Test files structure for modules
There is some inconsistency regarding where the test files should be located within the
module folder. Documentation on drupal.org (http://drupal.org/node/394888) states:

All tests for a module are to be placed in a central test file in root of a
module directory.

Test Your Code with SimpleTest

[298]

However, if you take a look at the directory structure of the core file and node modules, you
will see the inconsistency. The core test file, node.test, for the node module is in the base
node folder (even though there is also a test sub-folder). But, for the file module, the core
test file, file.test, is placed in the test sub-folder:

Although the documentation specifies placing the .test file at the root of the module
directory, it makes a lot of sense to create a folder to keep a clean and organized module
structure. The most important (and required) thing is that the module .info file specifies
the location correctly. If the .test file isn't listed in the .info file, then it won't be useable
regardless of where it is located. If you look at contributed modules that have tests, you will
see a mixture of the .test file location much as we see here with core modules.

The SimpleTest class
SimpleTest is an OOP (recall the introduction to Object Oriented Programming for Drupal
in Chapter 8, Recipe Lists and More with Views) framework with a base abstract class
DrupalTestCase. The SimpleTest framework includes two base concrete classes that are
to be extended by module-specific test cases:

1.	 DrupalUnitTestCase: This class cannot interact with the Drupal database nor call
any functions that require a database. The DrupalUnitTestCase class does not
enable any modules by default; all modules must be manually enabled.

2.	 DrupalWebTestCase: This class installs a temporary Drupal test environment that
includes a database, and is stood up and torn down every time tests are run. It also
enables the core modules.

Chapter 10

[299]

All SimpleTest-based test classes will typically include the following two functions:
getInfo and setUp.

The getInfo function
The getInfo function provides Drupal with the required information about the test. It
consists of an array with the following properties:

�� name: The name of the test as it will show up in the Drupal Testing
configuration page.

�� description: The description of the test, is displayed along with the
name on the Drupal Testing configuration page.

�� group: The group of tests this test case should fall under. This is usually
the name of the module, but sometimes there are groups that contain
tests for multiple modules.

The setUp function
The setUp function creates an initial starting state for a test. The DrupalUnitTestCase
and DrupalWebTestCase, each have their own distinct version of the setUp function. In
the case of web test cases, it will actually install a standalone Drupal test environment, and
a custom test case will extend the function to include custom code to create any Drupal
objects needed to run the test case. The setUp function for the DrupalUnitTestCase
class does not install a temporary Drupal environment.

The setUp function is also used to enable any non-core modules needed to run the test
case. By default, the only modules that are enabled for DrupalWebTestCase are the core
modules. If you are testing a custom module, then you will need to, at the very least, enable
that module.

Test functions
Test functions are the heart of a SimpleTest test case and where the actual test logic will
be added. An extended SimpleTest class may have any number of test functions. The test
functions, in turn, may do additional function-specific setup, and will make assertions about
what is being tested.

Test assertions
Test assertions are the actual tests of SimpleTest. DrupalUnitTestCase and
DrupalWebTestCase share a common set of assertion functions defined in the
DrupalTestCase class. In addition to those shared assertions, DrupalWebTestCase
includes a number of additional assertions that are specific to testing the web functionality
of Drupal.

Test Your Code with SimpleTest

[300]

Unit Testing with the Drupal SimpleTest module
Although typically used for functional testing, the SimpleTest framework does support
writing unit tests. Unit tests are created by extending the DrupalUnitTestCase class
provided by the SimpleTest module. As the primary focus of the SimpleTest module is for
functional or web test cases, it should be noted that there is not one unit test included with
Druapl core. But, the examples module (http://drupal.org/project/examples) does
include a unit test example.

The examples module (http://drupal.org/project/
examples) for developers is a great resource for code examples. It
offers the example code for most of the major APIs and unique code
constructs that are part of Drupal 7, to include writing a unit test with
the SimpleTest framework. If you haven't already, I highly recommend
that you download the examples module from the URL provided.

Take a look at the following SimpleTest code example from the examples module:

class SimpletestUnitTestExampleTestCase extends DrupalUnitTestCase {

 public static function getInfo() {
 return array(
 'name' => 'Simpletest Example unit tests',
 'description' => 'Test that simpletest_example_empty_mysql_date
 works properly.',
 'group' => 'Examples',
);
 }

 function setUp() {
 drupal_load('module', 'simpletest_example');
 parent::setUp();
 }

 /**
 * Call simpletest_example_empty_mysql_date and check that it
 returns correct
 * result.
 *
 * Note that no environment is provided; we're just testing the
 correct
 * behavior of a function when passed specific arguments.
 */
 public function testSimpletestUnitTestExampleFunction() {

Chapter 10

[301]

 $result = simpletest_example_empty_mysql_date(NULL);
 $message = t('A NULL value should return TRUE.');
 $this->assertTrue($result, $message);

 $result = simpletest_example_empty_mysql_date('');
 $message = t('An empty string should return TRUE.');
 $this->assertTrue($result, $message);

 $result = simpletest_example_empty_mysql_date('0000-00-00');
 $message = t('An "empty" MySQL DATE should return TRUE.');
 $this->assertTrue($result, $message);

 $result = simpletest_example_empty_mysql_date(date('Y-m-d'));
 $message = t('A valid date should return FALSE.');
 $this->assertFalse($result, $message);
 }
}

Notice how this SimpletestUnitTestExampleTestCase class extends
DrupalUnitTestCase. Once again, SimpleTest test cases for Drupal are typically extensions
of one of the two concrete classes (sometimes a complex module may have its own base
test class that extends one of the core concrete test classes). Then, within that class, there
will always be a getInfo function and usually a setUp function (especially in the case of
a web test case). The getInfo function provides the SimpleTest framework with required
information about the test, and the setUp function provides the initial state of a test. The
setUp function for a web test will typically be much more involved than it is for a SimpleTest
unit test, as you can see in the code that the setUp function is only loading a module and
executing the parent setUp function.

Functional or web testing with Drupal SimpleTest
The examples module also has an example of a functional test.

class SimpletestExampleTestCase extends DrupalWebTestCase {
 protected $privileged_user;

 public static function getInfo() {
 return array(
 'name' => 'Simpletest Example',
 'description' => 'Ensure that the simpletest_example content
 type provided functions properly.',
 'group' => 'Examples',
);
 }

Test Your Code with SimpleTest

[302]

 public function setUp() {
 parent::setUp('simpletest_example'); // Enable any modules
 required for the test
 // Create and log in our user. The user has the arbitrary
 //privilege
 // 'extra special edit any simpletest_example' which the code
 //uses
 // to grant access.
 $this->privileged_user = $this->drupalCreateUser(array('create
 simpletest_example content', 'extra special edit any "
 simpletest_example'));
 $this->drupalLogin($this->privileged_user);
 }

 // Create a simpletest_example node using the node form
 public function testSimpleTestExampleCreate() {
 // Create node to edit.
 $edit = array();
 $edit['title'] = $this->randomName(8);
 $edit["body[und][0][value]"] = $this->randomName(16);
 $this->drupalPost('node/add/simpletest-example',
 $edit, t('Save'));
 $this->assertText(t('Simpletest Example Node Type @title has
 been created.', array('@title' => $edit['title'])));
 }

...

}

Notice that this functional test extends the DrupalWebTestCase class rather than the
DrupalUnitTestCase class. This test also includes the getInfo and setUp functions
as did the previous unit test case example. Although there is not much more setUp code
versus the unit test example, you will notice that the setUp function for this functional
test case calls a function that will interact with the database: drupalCreateUser. The
DrupalUnitTestCase class does not support any interaction with the database.

Time for another recipe
We will switch things up a bit, and have some desert. This rich and creamy Chocolate Joe-Joe
ice cream should satisfy chocolate lovers and cookie lovers alike.

Chapter 10

[303]

�� name: Chocolate Joe-Joe Ice Cream

�� cuisineType: American

�� description: This rich and creamy chocolate ice cream includes delicious
Joe-Joe cookies.

�� recipeYield: Eight servings

�� prepTime: 20 minutes

�� cookTime: 150 minutes

�� ingredients:

�� Two cups heavy cream

�� One cup whole milk

�� One cup cocoa powder

�� Three-fourth cup brown sugar

�� Three-fourth cup granulated sugar

�� One tablespoon vanilla extract

Test Your Code with SimpleTest

[304]

�� One pinch salt

�� One cup coarsely chopped Joe-Joe cookies (may substitute Oreos)

�� One tablespoon crushed red pepper

�� instructions:

1.	 Combine brown sugar, granulated sugar, and salt in a large mixing bowl.

2.	 Pour milk into sugar mixture, and use electric mixer to beat until
sugar is dissolved.

3.	 Slowly add heavy cream, using a whisk to thoroughly combine with
the sugar mixture.

4.	 Add vanilla and whisk to combine.

5.	 Add cocoa powder, and stir with whisk until completely combined.

6.	 Pour the mixture into an air-tight container, and place it in the freezer
for one hour.

7.	 Take the mixture out of the freezer, and pour it into ice cream machine.

8.	 Mix for 30 minutes or a bit longer if it doesn't start to thicken.

9.	 Pour the mixture into an air-tight container, and place it in the freezer
for two hours.

10.	 Before serving, remove it from freezer and let sit for ten minutes
at room temperature.

Writing our own SimpleTests
We are going to write a SimpleTest test for the duration integer field formatter that we
developed back in Chapter 2, Custom Content Types and an Introduction to Module
Development. We will start by creating a unit test case, and create a web test case.

Time for action – creating a unit test case for the D7Dev
duration formatter

If you recall, the duration formatter (d7dev_integer_duration) is defined in the d7dev
module. The GCD function used in the d7dev_field_formatter_view function is a
perfect candidate for a unit test, as it is completely self-contained, and does not depend on
any external modules nor database interaction.

1.	 Expand the sites/all/modules/custom/d7dev folder in Aptana Studio, then
right-click on that folder, and create a new folder named tests.

Chapter 10

[305]

2.	 Next, right-click on the newly created tests folder, and create a new file named
d7dev.test.

3.	 Now, open up the d7dev.info file, and add the following file setting:

files[] = tests/d7dev.test

Remember, it doesn't matter where you place your test files within a module
as long as the location is correctly specified in the .info file.

4.	 Switch back to the d7dev.test file, and add the following code:

<?php

/**
 * @file
 * Tests for d7dev.module.
 */

/**
 * Unit test for d7dev_integer_duration formatter
 */
class DurationFormatterUnitTestCase extends DrupalUnitTestCase{

}

Along with some documentation, you can see that we are extending the
DrupalUnitTestCase class.

5.	 Next, we will add the necessary getInfo function:

 public static function getInfo() {
 return array(
 'name' => 'Duration formatter unit test',
 'description' => 'Unit test the gcd function for the
 duration formatter.',
 'group' => 'D7Dev'
);
 }

As discussed previously, the getInfo function returns an array that will register our
test case with Drupal, and control what is displayed on the Testing configuration page.

Test Your Code with SimpleTest

[306]

6.	 Now we will add the setUp function:

 function setUp() {
 parent::setUp('d7dev');
 }

Not much to it, we are just telling the SimpleTest framework to load the d7dev
module, so that we will be able to call its GCD function in our test function.
Now that we have the test defined and set up it, is time to create a test function.

7.	 Add the following test function after the setUp function:

 /**
 * Test greatest common denominator function.
 */
 function testNumberDurationField() {
 $gcdResult = gcd(40, 60);//expect this to be 20
 //use assertEqual to check if we get the expected value
 $this->assertEqual(20, $gcdResult, t('Greatest common
 denominator for 60 and 40 is @result.', array('@result' =>
 $gcdResult)));
 }

First, we are calling the GCD function from d7dev.module. Then, we use the
assertEqual function from the base DrupalTestCase class to test or assert that
the outcome of the GCD function is equal to the expected result of 20. Now, we are
ready to run the tests in the browser.

8.	 Load the d7dev site in your browser, click on the Configuration link in the Admin
toolbar, then click on the Performance link under the Development section.

9.	 On the Performance administrative screen, click on the Clear all caches button.

Our Drupal environment will not pick up our new tests until we clear the caches.

10.	 Next, click on the Configuration link in the Admin toolbar, then click on the Testing
link under the Development section.

11.	 On the Testing administrative screen, scroll down to and expand the D7Dev group
that we specified in the getInfo function of our test case, and you will see the new
unit test case we added.

Chapter 10

[307]

12.	 Now, select the checkbox for our Duration formatter unit test, then scroll down
and click on the Run tests button. You will see the following output on the Test
result screen:

Note that the test ran in only 0 seconds and under RESULTS, there was 1pass.
We only made one assertion in our unit test, so we will only have one result.

13.	 Next, expand the DURATION FORMATTER UNIT TEST section, and you will see
a detailed summary of the test we just ran.

What just happened?
We created our first SimpleTest test, a simple unit test for our custom duration field formatter.

Now that we have created a simple unit test for our custom field formatter, we will now
create a web test case.

Test Your Code with SimpleTest

[308]

Time for action – creating a web test case for the D7Dev
duration formatter

The d7dev_integer_duration formatter is a perfect candidate for a web test case.

1.	 In Aptana Studio, open the d7dev.test file, and add the following code after
the unit test case we just added:

/**
 * Web test for d7dev_integer_duration formatter.
 */
class DurationFormatterWebTestCase extends DrupalWebTestCase {

}

Rather than extending DrupalUnitTestCase, we are extending the
 DrupalWebTestCase class.

2.	 Now, we will add some global variables and the required getInfo function:

 protected $field;
 protected $instance;
 protected $test_user;

 public static function getInfo() {
 return array(
 'name' => 'Duration formatter web test',
 'description' => 'Test the creation and display of number
 field with duration formatter.',
 'group' => 'D7Dev'
);
 }

Again, the getInfo settings will be displayed on the Testing configuration page.
The global variables defined above the getInfo function will be used throughout
the test case.

3.	 Next, the necessary setUp code to execute our web test case, is as follows:

 function setUp() {
 parent::setUp('d7dev');
 $this->test_user = $this->drupalCreateUser(array('access
content','create article content'));
 $this->drupalLogin($this->test_user);
 }

Chapter 10

[309]

In addition to loading the d7dev module, we are creating a test user, and then
logging into the Drupal test environment installed by the parent setUp function
code with that test user. The drupalCreateUser and drupalLogin functions
are provided by the DrupalWebTestCase class that we are extending, and are not
available in a DrupalUnitTestCase. The drupalCreateUser takes an array of
permissions to be applied to our test user for interaction with our test case, and we
log that user in with the drupalLogin function.

4.	 Now that we have a logged in user, we can start doing stuff with that user. Add the
following test function below our setUp function:

 /**
 * Test the d7dev_integer_duration formatter output.
 */
 function testNumberDurationField() {

}

5.	 The first thing we will have our test user do is create a new number_integer field
on the article content type to include applying our custom duration formatter.

 // Create a field with the d7dev_integer_duration formatter.
 $this->field = array(
 'field_name' => drupal_strtolower($this->randomName()),
 'type' => 'number_integer',
);
 field_create_field($this->field);
 $this->instance = array(
 'field_name' => $this->field['field_name'],
 'entity_type' => 'node',
 'bundle' => 'article',
 'widget' => array(
 'type' => 'number',
),
 'display' => array(
 'default' => array(
 'type' => 'd7dev_integer_duration',
),
),
);
 field_create_instance($this->instance);

Test Your Code with SimpleTest

[310]

Note the use of the randomName function (wrapped with the drupal_strtolower
function) that is used as the value for the field_name. The randomName function
belongs to the DrupalTestCase class, so it is available for both unit test cases and
web test cases. Then, we set the default display to d7dev_integer_duration,
so that this field will use our custom formatter. Finally, we use the field_create_
instance function to create the field we defined. The field_create_instance
function is a function in the core field module, and even though we didn't explicitly
enable the field module in our test case setUp function, it is available because the
DrupalWebTestCase class setUp function enables all core modules.

6.	 Next, we need to have the test user create a new article content item, set the value
of the number_integer field we just added, and then save the new article.

 // Display creation form.
 $this->drupalGet('node/add/article');
 $langcode = LANGUAGE_NONE;

 // Submit a integer value; formatted it should become '1 and
 3/4'.
 $value = '105';
 $edit = array(
 'title' => $this->randomName(),
 "{$this->field['field_name']}[$langcode][0][value]" =>
 $value,
);
 $this->verbose('$edit: ' . var_export($edit, TRUE));
 $this->drupalPost(NULL, $edit, t('Save'));

First, we used the drupalGet function (a DrupalWebTestCase function) to load
the add article form. We then created a $edit array that will set the value for our
number_integer to 105, and we also set the title field as it is a required field
for a node form. Then, before we call the drupalPost function to save the new
article node, we make use of the verbose function. The verbose function will create
a link to a page that will output the resulting $edit array, and will allow us to see
that the number_integer field we added has the correct value of 105.

7.	 Now, it is just a matter of asserting that our custom formatter is formatting the
number_integer field with a value of 105 correctly:

 //the d7dev_integer_duration should convert the integer to
 //hours and fraction of an hour
 $this->assertRaw('1 and ³⁄₄',
 t('Value formatted correctly.'));

Chapter 10

[311]

The assertion that we will use is the assertRaw function (again, a
DrupalWebTestCase class specific function). The assertRaw function
returns true if the raw (or HTML fragment) text being passed into the
function is found in the HTML source of the page being loaded. Now, we
are ready to run our web test case.

8.	 Load the d7dev site in your browser, click on the Configuration link in the Admin
toolbar, then click on the Performance link under the Development section.

9.	 On the Performance administrative screen, click on the Clear all caches button.
Anytime that you add another test case to your .test file, you will have to clear the
caches, so that it is picked up by Drupal.

10.	 Next, click on the Configuration link in the Admin toolbar, and click on the Testing
link under the Development section.

11.	 On the Testing administrative screen, scroll down to and expand the D7Dev group
that we specified in the getInfo function of our test case, and you will see the new
web test case we added.

12.	 Now, select the checkbox for our Duration formatter unit test, then scroll down and
click on the Run tests button. First, you will notice that it took a good deal longer
for this test case to run than it took for our unit test case. Then, you will see the
following output on the Test result screen:

Test Your Code with SimpleTest

[312]

13.	 This web test case took much longer than the unit test that we wrote. That is
mainly due to the fact that the setUp function for the DrupalWebTestCase
basically does a Drupal install every time you run a test case that extends that class
(the installed test Drupal environment is temporary as it is "torn" down by the
DrupalWebTestCase tearDown function). Also notice that there were 14 passes
even though we only made one literal assertion in our test case:

$this->assertRaw('1 and ³⁄₄',
 t('Value formatted correctly.'));.

Many of the DrupalWebTestCase functions will make their own assertions.

14.	 Expand the DURATION FORMATTER WEB TEST link to view the detailed results of
our web test case.

Chapter 10

[313]

Basically, enabling of modules with the setUp function, successful creation of
certain objects (in this case, the creation of a role, permissions, and a user with the
drupalCreateUser function), gets, and posts of actual pages with drupalGet
and drupalPost, and of course any explicit assertion, such as assertRaw, will
result in a SimpleTest pass or a fail. Also, besides our explicit call to the verbose
function, many of the parent test case functions (the test case we are extending) will
generate a Verbose message—basically, anytime there is any type of HTML markup
generated, there will be a verbose message.

15.	 Right-click on the first Verbose message link to open it in a new tab, and you will see
the actual physical output that these test functions are generating in the temporary
test Drupal install created by the setUp function of DrupalWebTestCase.

Test Your Code with SimpleTest

[314]

First, notice the actual URL of the page ends with sites/default/files/
simpletest/verbose/DurationFormatterWebTestCase-1.html. But,
also notice that the verbose output includes an ending URL, and in this case,
it is http://d7dev.local:8888/user. Remember, the setUp function of
DrupalWebTestCase actually installs a temporary Drupal test environment and
tears it down after the test case has completed. So, any time there is verbose output
to be generated, it is actually a static representation of the page written as an HTML
fragment to the files directory. Next, notice the Previous and Next links at the top of
the page. These links will allow us to navigate through all of the verbose output for
the current test case.

16.	 Click on the Next link, and continue to click on it until you get to sites/default/
files/simpletest/verbose/DurationFormatterWebTestCase-5.html.

Chapter 10

[315]

In addition to displaying the actual output within the default theme, the verbose
output also includes the PHP array that was posted to create the new article node
by the call to drupalPost. You can see for yourself that our duration field formatter
formatted the test integer field correctly.

What just happened?
We created a functional (or web) test case for our d7dev module that will test that the
duration field formatter will properly format an integer field, and learned how web test
cases are processed by the Drupal SimpleTest framework.

Summary
In this chapter, we have learned about unit testing, web or functional testing with the
SimpleTest framework, and how to write tests for own custom Drupal code. To learn even
more about what you can and can't do with SimpleTest test cases in Drupal, I recommend
reading through the SimpleTest source code, specifically the classes defined in the
drupal_web_test_case.php file. The code is very well documented, and available in
any Drupal 7 install.

In the next chapter, we are going to take a look at another useful tool for developing and
managing configuration between sites—the Features module.

11
Introduction to the Features Module

and Configuration Management

In this chapter, we are going to introduce you to the Features module, and
show how it can be used to not only share Drupal components with other
Drupal users' sites, but also to manage certain aspects of Drupal configuration
between different environments of the same site (a development site versus a
live site, for example).

The following topics will be covered in this chapter:

�� An introduction to the Features module

�� An introduction to the concept of Drupal configuration management

�� Using the Features module to create a reusable Recipe content type module

�� Using Features to manage the updated configuration between two environments
of the same site

Introduction to the Features module
The Features module (http://drupal.org/project/features) allows you to export
certain Drupal site components (such as Content Types, Image styles, or Views, among
many others) as code that is dynamically generated by the Features module, and added to
a generated module or Feature. These Features-generated modules can then be installed
and enabled on other sites to make those custom components instantly available without
repetitive, and sometimes extensive, manual configuration, or the need to write any
custom code.

Introduction to the Features Module and Configuration Management

[318]

For example, we may want to share our Recipe content type and recipe-related Views for
use with other sites. The Features module would allow us to do this quite easily. Although
the Features module was originally developed with the intent of sharing Drupal components
with other Drupal users' sites, many Drupal developers quickly began using the Features
module to manage the configuration of Drupal components between different environments
of the same Drupal site.

Using Features to manage configuration
Again, the Features module was not initially developed with the intent of using it to manage
configuration between environments. But, it has become one of the best options available
for Drupal 7 configuration management between site environments. It should be noted that
the vast majority of the configuration for a Drupal site is maintained as data in the Drupal
database. At some point, you are going to want to deploy your Drupal 7 site from your local
development environment to a publicly accessible host. Even if you intend on hosting your
publicly-available Drupal 7 site yourself, it is a best practice to keep all active development
separate from the live or publicly available version of your site. You never know when some
code you are writing or some new module you want to try out may break your entire site. So,
it is always best to test any and all changes in a local development environment. However,
one of the biggest hurdles in maintaining two or more environments (in many cases there
will be three or four different environments for one Drupal site—development, integration,
QA, and production) for the same Drupal site is managing configuration between those
sites. Since any configuration that is done using the Drupal web-based administrative UI is
persisted to the Drupal database; managing that configuration involves figuring out how to
get the necessary configuration data from the database of one site/environment to another
site/environment.

Some options for managing configuration between different Drupal site environments include:

�� Migrating or synchronizing databases between environments:

Migrating/synchronizing databases between environments may work fine if there
is just one person developing and adding content to the site, and it is an excellent
way to initially set up a new environment (for example, when setting up a live/
production site for the first time). However, this approach becomes especially
difficult to manage if there are multiple developers, or when administrators are
directly configuring the live site and/or content authors are directly adding content
to the live site. The development and production databases will quickly become
out of sync, and it will become very difficult to merge changes between the
development database and the live database.

Chapter 11

[319]

�� Manually updating configuration between environments:

Not only is this a tedious process for managing configuration between
environments, but also it is prone to errors, and may result in a lot of headaches
when you try to figure out why something doesn't look right or isn't working
as expected between environments. Just go back and take a look at Chapter 2,
Custom Content Types and an Introduction to Module Development, and see how
many steps were involved to create the Recipe content type. In addition to a single
custom content type, suppose you had three or four additional custom content
types, several Views, and a few custom image styles. That would be a lot of custom
configuration to manage manually.

�� Writing custom code for all configuration changes:

We could have written custom code to create our D7Dev Recipe content type in a
custom module rather than using the Drupal administrative UI. Enabling the module
would enable the custom content type, and we would be able to use that content
type across environments or sites by installing and enabling the custom module. If
we wanted to add an additional field to that content type, then we would update
the code of the Recipe content type module, and update that module in the other
environments or sites. However, the Features module will generate all of the code
needed to programmatically generate a content type that was created with the
Drupal administrative UI. It only takes a few clicked checkboxes and button clicks. If
you want to add a field, then you would use the Drupal administrative UI to add it,
and then use the Features to update that feature. So, rather than writing a bunch
of custom code to create a complex content type, why not let the Features module
generate the code for us.

Managing configuration between different environments for a Drupal
site has been recognized as an important capability to improve the
Drupal platform. For Drupal 8, a core configuration management
initiative has been announced, making the addition of configuration
management to Drupal core a primary goal of the next major Drupal
release. If you are interested in learning more about the Configuration
Management Initiative for Drupal 8, then check out http://groups.
drupal.org/build-systems-change-management/cmi.

Drupal components that can be managed with Features
There are two distinct categories of Drupal components that can be managed with
the Features module: Drupal components supported by Features directly and Drupal
components that are supported by additional Features-related modules.

Introduction to the Features Module and Configuration Management

[320]

Features supported components
The Features module includes custom code to support some of these components, and many
more are supported by the excellent CTools integration that the Features module includes.

�� Content types: Selecting a content type as a component of a feature will
automatically include all the fields associated with that content type and Taxonomy
vocabularies referenced by any Term reference field (although in the case of a Term
reference field, Features will not include the vocabulary terms).

�� Fields: Although individual fields may be selected as a component of a feature, fields
are automatically added as dependencies when creating features with content type
components, and are not typically added manually.

�� Image styles: Custom image styles are available as components to be exported as
features. You may recall from Chapter 6, Adding Media to our Site, that we created
an image style with custom code. You may find that it is easier to use Features to
create custom image styles. If you use the Image styles administrative UI to create
a new image style and add it as a component to a feature, then you will find that
the Features generated code is very similar to the custom code that we wrote in
Chapter 6.

�� Text formats: There is typically not as much configuration involved with text input
filters as there is for content types or Views, but it is definitely easier to add any
custom text format filter configuration to an easily-managed Features generated
module, than it is to remember what text format filter changes you made in your
development site that need to be manually configured when you are ready to
launch the live version of your site.

�� Menus: On large sites, menu entries can become quite extensive and tedious
to manage manually. This is an especially useful Features component when
developing custom code for displaying menus that more than one developer may
be working on.

�� Taxonomies: Although useful for exporting custom vocabularies that are associated
to Term reference fields of an exported content type, the taxonomy Features
component does not include the terms associated with the exported vocabularies.

�� Views: Custom Views are an excellent candidate for a Features module. Just take a
look back at Chapter 8, Recipe Lists and More with Views, to see how many steps
might be needed to configure some more complex Views. Attempting to manually
duplicate that configuration in any number of additional environments would be
tedious to say the least. It should be noted that Views actually includes the ability
to export the configuration for a custom view. However, this is exported as text,
and must be managed manually between sites. Having a Views-based Features
module that only needs to be installed and enabled as a module is a much more
straightforward process.

Chapter 11

[321]

�� Roles and permissions: The ability to manage the configuration of roles and
permissions on a simple site may not be all that useful. However, once you start
modifying a number of permissions and adding more than a couple custom roles
to your site, you will quickly come to appreciate the ability to manage this type of
configuration with a Features-generated module.

�� Again, every Drupal component that you are able to add to a Features module is
that much less manual configuration that is necessary to manage between sites
or environments.

When managing configuration between environments with the
Features module, it is important to be cognizant of any possible
interdependencies between your custom Features modules. If at all
possible, all of your Features modules should be self-contained and
should not share common components between different Features
modules. You should also try to minimize the number of components
in any one given Features module. It is much easier to manage and
maintain several custom Features module with no interdependencies
and a limited number of components, than it is to manage just a few
monolithic Features with a spider web of interdependencies.

Drupal components supported with additional modules
There are a number of contributed modules that were developed to add Features
capabilities for unsupported components, or enhance support for some components already
supported. The following list is not complete, but rather covers some of the components
supported by Features add-on modules that I have found useful.

�� Core Blocks: The Features module by itself does not support core blocks. The Features
Extra module (http://drupal.org/project/features_extra) enables
the ability to export custom block configuration as a feature. Another solution to
managing blocks' configuration with Features is to use the Context module (http://
drupal.org/project/context) for managing blocks layout to replace the core
Blocks module with the Boxes module (http://drupal.org/project/boxes).
Both the Context and Boxes modules have excellent Features support.

�� Content: Typically, you wouldn't want to manage content between environments
or different sites with Features. However, there are some cases where there is core
content for a site that will be exactly the same between environments. Another
interesting way that you may want to take advantage of a content type-based
Features module is to populate a development environment with content from your
live site to enable better testing of new features in development. The UUID Features
Integration module (http://drupal.org/project/uuid_features) adds the
ability to add specific content nodes as components of a feature.

Introduction to the Features Module and Configuration Management

[322]

Drupal 7 core modules and Drupal 7 contributed modules have introduced a
concept of a machine name (the concept of a machine name was part of some
Drupal 6 contributed modules, but was only introduced to core with Drupal 7).
A machine name will be guaranteed to be unique for a single Drupal instance
and a particular type of component. For example, you can't have two taxonomy
vocabularies with the same machine name or two Views with the same machine
name on the same site. This uniqueness is not guaranteed across different sites.

UUIDs are meant to provide a unique identifier across any and all Drupal
instances of a given component across sites. A UUID makes it possible to copy
unique components or entities between sites, and ensure that they do not
collide with the system identifier of an already existing entity of the same type.
That is why something like a node ID would not work. As an example, suppose
you have two sites, and you would like to share content from one site with the
other. You have created 10 nodes on the site where you want to add content
from the other site, but the site from which you want to add content only has
five nodes. The node ID of the nodes on your content origination site are 1 to 5,
and the node ID of the nodes on the target site are 1-10. So, you could import
those nodes and force a new node ID of 11 to 15 on them, but then there would
be no way of updating those nodes with any changes that may occur on the
origination site. A UUID would not only enable the initial export and import of
nodes forms one site to another (that is the easy part), but it would also allow
for on-going updates of the imported node of a target site based on any changes
that may have been applied to the shared node on the originating site.

�� Vocabulary terms: Many times, you will have a vocabulary with terms that are not
meant to be manipulated by anyone, but administrative users. Or, you may have a
custom view that uses a particular vocabulary term as the value for a term-based
filter. These types of vocabularies are excellent candidates for managing as Features-
generated modules. This extended Features functionality is provided by the UUID
Features Integration module.

�� Variables: Any variables that are in the Drupal variables table can be added as a
component to a Features-generated module by installing the Strongarm module
(http://drupal.org/project/strongarm).

In addition to these components, there are a number of contributed modules that include
custom Features support to enable easy management of configuration, and the creation of
shareable Features utilizing the functionality of those contributed modules. A list of some of
these modules is available at http://drupal.org/taxonomy/term/11478.

Chapter 11

[323]

Time for action – installing the Features module
Now, we will install the Features modules so that we can learn how to utilize it to help with
Drupal configuration management.

1.	 Open the Terminal (Mac OS X) or Command Prompt (Windows) application, and
change to the root directory of our d7dev site.

2.	 Use Drush to download and enable the Features module,

$ drush dl features

Project features (7.x-1.0-beta6) downloaded to /Applications/MAMP/
htdocs/d7dev/sites/all/modules/features. [success]

$ drush en features

The following extensions will be enabled: features

Do you really want to continue? (y/n): y

features was enabled successfully. [ok]

3.	 Now, open our d7dev site in your browser, and click on the Structure link in the
Admin toolbar, then click on the Features link, and you will see the following
Features administrative screen for managing Features.

Introduction to the Features Module and Configuration Management

[324]

Typically, to enable a feature, you just select the checkbox of the feature on the Features
MANAGE administrative screen, and click on the Save settings button. However, you will
notice that you are not able to select the Features Tests feature checkbox in this screenshot.
This is because that feature depends on the strongarm module that we mentioned, and we
have not installed or enabled that module for our D7Dev site. The Features module is not
only able to determine the external dependencies of a given feature, but it is also able to
enforce the validation of those dependencies.

What just happened?
We enabled the Features module, and explored the administrative page for managing Features.

Adding a new Feature
Now, we are going to create our first D7Dev-specific feature, and enable that feature in a
new live environment for our D7Dev site. We are going to create a Features module that
will allow us to manage the configuration of our custom Recipe content type between a
development and live environment.

Time for action – creating a Recipe content type feature
Now that we have installed the Features module, we are ready to create our first feature.

1.	 Open our d7dev site in your browser, and click on the Structure link in the Admin
toolbar, then click on the Features link.

2.	 Once the Features MANAGE page loads, click on the CREATE FEATURE tab.

3.	 On the CREATE FEATURE page, enter D7Dev Recipe content type as the Name,
Content type for entering recipes. as the Description, and 7.x-1.0-beta1
as the Version.

4.	 Next, select Content types: node from the Edit components select list, check
the checkbox for our custom Recipe content type, and click on the Download
feature button.

Chapter 11

[325]

Notice the Auto-detected dependencies automatically included by the Features
module. The Features module automatically included all of the fields that we
created for the Recipe content type: the custom field groups, the vocabulary we
associated with the recipe cuisine field, and all of the modules that the Recipe
content type depends on (mainly for field formatters we specified on the MANAGE
DISPLAY screen for our Recipe content type).

5.	 Next, we will use the following command to un-tar and copy the d7dev_recipe_
content_type feature from your browser's download folder to a newly created
sites/all/modules/d7dev_features folder in our d7dev site (the path to your
downloaded feature may vary, so please check).

Introduction to the Features Module and Configuration Management

[326]

6.	 Open the Terminal (Mac OS X) or Command Prompt (Windows) application, and
change to the root directory of our d7dev site.

$ cd /Applications/MAMP/htdocs/d7dev/

$ mkdir sites/all/modules/d7dev_features

$ tar -C /Applications/MAMP/htdocs/d7dev/sites/all/modules/d7dev_
features/ -xvf ~/Downloads/d7dev_recipe_content_type-7.x-1.0-
beta1.tar

x d7dev_recipe_content_type/d7dev_recipe_content_type.features.
field.inc

x d7dev_recipe_content_type/d7dev_recipe_content_type.field_group.
inc

x d7dev_recipe_content_type/d7dev_recipe_content_type.features.inc

x d7dev_recipe_content_type/d7dev_recipe_content_type.features.
taxonomy.inc

x d7dev_recipe_content_type/d7dev_recipe_content_type.info

x d7dev_recipe_content_type/d7dev_recipe_content_type.module

$

7.	 Now, we are going to use Drush to enable the recipe feature for our D7Dev site.

$ cd /Applications/MAMP/htdocs/d7dev/

$ drush en d7dev_recipe_content_type

The following extensions will be enabled: d7dev_recipe_content_
type

Do you really want to continue? (y/n): y

d7dev_recipe_content_type was enabled successfully. [ok]

$

Even though enabling our d7dev_recipe_content_type
feature will not change or add anything to our Recipe content
type, we still enable it so that any future changes to our custom
Recipe content type will result in the feature state being
overridden, signifying the need to update the feature.

Chapter 11

[327]

8.	 Before we create a new Drupal site for a live environment, we are going to add and
commit the feature we just copied to our d7dev Git repository:

$ cd /Applications/MAMP/htdocs/d7dev/

$ git add -A

$ git commit -m 'add recipe content type feature'

[master 8903cd1] add recipe content type feature

 13 files changed, 1039 insertions(+), 166 deletions(-)

 create mode 100644 sites/all/modules/d7dev_features/d7dev_recipe_
content_type/d7dev_recipe_content_type.features.field.inc

 create mode 100644 sites/all/modules/d7dev_features/d7dev_recipe_
content_type/d7dev_recipe_content_type.features.inc

 create mode 100644 sites/all/modules/d7dev_features/d7dev_recipe_
content_type/d7dev_recipe_content_type.features.taxonomy.inc

 create mode 100644 sites/all/modules/d7dev_features/d7dev_recipe_
content_type/d7dev_recipe_content_type.field_group.inc

 create mode 100644 sites/all/modules/d7dev_features/d7dev_recipe_
content_type/d7dev_recipe_content_type.info

 create mode 100644 sites/all/modules/d7dev_features/d7dev_recipe_
content_type/d7dev_recipe_content_type.module

$

Now we will create a live environment for our D7Dev site by using
Git to clone a copy of our D7Dev site.

$ cd /Applications/MAMP/htdocs/

$ git clone /Applications/MAMP/htdocs/d7dev/ d7live

Cloning into d7live...

done.

$

By adding and committing the d7dev_recipe_content_type feature to our
D7Dev site Git repository before we used Git to clone it to our new D7Live site,
we now have that feature available to be enabled in the D7Live site, once it is up
and running.

Introduction to the Features Module and Configuration Management

[328]

9.	 Once the Git clone process is complete, follow the instructions from Chapter 1,
Getting Set up, for creating a database, substituting the name d7live for d7dev,
then visit the new site at http://localhost/d7live/. You should see the
default Drupal 7 setup screen:

10.	 Complete the setup process just as we did in Chapter 1, once again, ensuring that
you substitute the d7live database for the d7dev database, and name the site
D7Live.

11.	 Next, open the Terminal (Mac OS X) or Command Prompt (Windows) application,
change to the root directory of our new d7live site, and use Drush to download and
enable the Features module for our d7live site.

$ drush dl features

Project features (7.x-1.0-beta6) downloaded to /Applications/MAMP/
htdocs/d7dev/sites/all/modules/features. [success]

$ drush en features

The following extensions will be enabled: features

Do you really want to continue? (y/n): y

features was enabled successfully. [ok]

Chapter 11

[329]

12.	 Next, enter the drush command within the d7live folder; you will see that there are
a set of Features-specific Drush commands available.

$drush

All commands in features: (features)

 features-add (fa) Add a component to a feature module.

 features-diff (fd) Show the difference between the default and
overridden state of a feature.

 features-export (fe) Export a feature from your site into a
module.

 features-list (fl, List all the available features for your si
te.

 features)

 features-revert (fr) Revert a feature module on your site.

 features-revert-all Revert all enabled feature module on your
site.

 (fr-all, fra)

 features-update (fu) Update a feature module on your site.

 features-update-all Update all feature modules on your site.

 (fu-all, fua)

13.	 Next, in your browser, click on the Structure link of the Admin toolbar of the new
D7Live site, and click on the Features link. You will see the D7Dev Recipe content
type feature in a Disabled STATE.

Introduction to the Features Module and Configuration Management

[330]

14.	 Click on the Disabled link in the STATE column, and you will see an overview screen for
the feature that includes a table of dependency with a status of Enabled or Disabled.

15.	 Now, with the Mac OS X Terminal application or the Windows Command Prompt, we
will use Drush to enable d7dev_recipe_content_type, and all of the required
but disabled dependencies.

Theoretically, it should be as easy as enabling d7dev_recipe_content_type
and relying on Drush to enable the necessary dependencies. However, there is an
issue with the order in which Drush enables the dependent modules. Specifically, as
shown in the following code snippet, the media module is enabled before the views
module, resulting in the following error:

 $ drush en d7dev_recipe_content_type

The following extensions will be enabled: nutritioninfo, colorbox,
media_colorbox, media, votingapi, fivestar, file_entity, field_
group, features, ctools, views, d7dev, entity, contenteditable,
d7dev_recipe_content_type

Do you really want to continue? (y/n): y

Drush command terminated abnormally due to an unrecoverable error.
[error]

Chapter 11

[331]

Error: Call to undefined function views_get_enabled_views() in /
Applications/MAMP/htdocs/d7live/sites/all/modules/media/media.
module, line 1054

$

16.	 Therefore, we will use Drush to enable the media module along with its
dependencies, and enable our recipe feature.

$ drush en media

The following extensions will be enabled: views, ctools, file_
entity, media

Do you really want to continue? (y/n): y

ctools was enabled successfully. [ok]

file_entity was enabled successfully. [ok]

media was enabled successfully. [ok]

views was enabled successfully. [ok]

$ drush en d7dev_recipe_content_type

The following extensions will be enabled: nutritioninfo, colorbox,
media_colorbox, votingapi, fivestar, field_group, features, d7dev,
entity, contenteditable, d7dev_recipe_content_type

Do you really want to continue? (y/n): y

colorbox was enabled successfully. [ok]

contenteditable was enabled successfully. [ok]

d7dev was enabled successfully. [ok]

d7dev_recipe_content_type was enabled successfully. [ok]

entity was enabled successfully. [ok]

fivestar was enabled successfully. [ok]

media_colorbox was enabled successfully. [ok]

nutritioninfo was enabled successfully. [ok]

votingapi was enabled successfully. [ok]

field_group was enabled successfully. [ok]

features was enabled successfully. [ok]

$

Introduction to the Features Module and Configuration Management

[332]

17.	 Now that the recipe feature is enabled, return to our D7Live site in your browser,
click on the Structure link in the D7Live Admin toolbar, then click on the Features
link. On the Features MANAGE page, you will see that our D7Dev Recipe content
type feature is enabled.

The D7Dev Recipe content type feature is enabled, but notice that the STATE is
specified as Overridden.

This is one of the few, but nagging issues with some exported Features components.
In this case, not only does the exported type_of_cuisine vocabulary not include
the terms that we added for our D7Dev site, the Features module has marked it as
OVERRIDDEN. In many cases, as in this one, there is not a clear reason why this is
the case.

18.	 Next, in the Admin toolbar, click on the Structure link, click on the Content types
link, and you will see our Recipe content type listed.

19.	 Now, on the Content types administrative page, click on the manage fields link for
our Recipe content type, and you will see that all of the fields that we added to our
D7Dev Recipe content type are there.

Chapter 11

[333]

What just happened?
The Features module enabled us to add the Recipe content type that we manually configured
for our D7Dev site to our new D7Live site, without writing any code or doing any manual
configuration. In addition to that, the feature can be version-controlled for deployment
between the two environments of our D7Dev site, and can even be shared with other Drupal
users' sites as long as they have all of the dependent modules (but remember, some of those
dependent modules are custom modules that we have created in this book, so we would have
to share those modules in addition to sharing the Recipe content type feature).

Managing updates to Feature components
The true power of using Features to manage configuration between site environments
is highlighted by the Features update process. We are going to add a new vocabulary to
categorize our D7Dev recipes by Dietary Consideration (Vegetarian, Vegan, Gluten-free, and
so on), and add a new taxonomy field to our Recipe content type. We will then see how the
Features module enables the migration of this configuration from our development site to
our live site through the generated code.

Introduction to the Features Module and Configuration Management

[334]

Time for action – updating our Recipe content type feature
Now, we will be updating our Recipe content type feature.

1.	 Open our d7dev site in your browser, and click on the Structure link in the Admin
toolbar, then click on the Taxonomy link.

2.	 Next, on the Taxonomy administrative page, click on the Add vocabulary link.

3.	 Enter Dietary Consideration as the Name, 'Allows categorization of
recipes based on dietary considerations such as gluten-free or
vegan.' as the Description, uncheck the Handle as an item in microdata checkbox,
and click on the Save button.

4.	 At this point, we won't worry about adding any terms to our new vocabulary. So,
click on the Structure link in the Admin toolbar, then click on the Content types link,
then the manage fields link for our Recipe content type.

5.	 Scroll down the MANAGE FIELDS page to the Add new field row. Enter recipeDiet
as the Label, recipe_diet as the Field name, select Term reference as the field
type, select Autocomplete term widget (tagging) as the field widget, and click
on the Save button.

Chapter 11

[335]

6.	 On the FIELD SETTINGS page, select Dietary Consideration as the Vocabulary, and
click on the Save field settings button.

7.	 Next, on the recipeDiet field EDIT page, scroll down to the Number of values select
list in the RECIPEDIET FIELD SETTINGS section and select Unlimited, and then click
the Save settings button.

8.	 Now, open the Terminal (Mac OS X) or Command Prompt (Windows) application,
change to the root directory of our d7dev site, and use the Features Drush fu
command to update our d7dev_recipe_content_type feature.

$ cd /Applications/MAMP/htdocs/d7dev/

$ drush fu d7dev_recipe_content_type

Module appears to already exist in sites/all/modules/d7dev_
features/d7dev_recipe_content_type

Do you really want to continue? (y/n): y

Created module: d7dev_recipe_content_type in sites/all/modules/
d7dev_features/d7dev_recipe_content_type [ok]

$

Now, the new dietary_consideration vocabulary and the new field_
recipe_diet field are part of our recipe feature on our d7dev development
environment.

9.	 Next, we need to add and commit it to the d7dev Git repository, so that we can use
Git to pull those changes into the d7live environment.

$ cd /Applications/MAMP/htdocs/d7dev/

$ git add -A

$ git commit -m 'added recipeDiet term reference field'

[master 1c16903] added recipeDiet term reference field

 4 files changed, 120 insertions(+), 0 deletions(-)

$ cd ../d7live

$ git pull

remote: Counting objects: 21, done.

remote: Compressing objects: 100% (11/11), done.

remote: Total 11 (delta 8), reused 0 (delta 0)

Unpacking objects: 100% (11/11), done.

From /Applications/MAMP/htdocs/d7dev

Introduction to the Features Module and Configuration Management

[336]

 8903cd1..1c16903 master -> origin/master

Updating 8903cd1..1c16903

Fast-forward

 .../d7dev_recipe_content_type.features.field.inc | 74
++++++++++++++++++++

 .../d7dev_recipe_content_type.features.inc | 10 +++

 ...d7dev_recipe_content_type.features.taxonomy.inc | 32
+++++++++

 .../d7dev_recipe_content_type.info | 4 +

 4 files changed, 120 insertions(+), 0 deletions(-)

$

10.	 Now that the updated recipe feature code has been pulled into our d7live
environment, we can use the Features Drush fr or features-revert command
to revert the database configuration to what is represented by the updated recipe
features code.

$ cd /Applications/MAMP/htdocs/d7dev/

$ drush fr d7dev_recipe_content_type

Note: The features-revert command will overwrite any database configuration
related to the d7dev_recipe_content_type feature. We could also revert the
feature on our d7dev site to ensure that the feature is the same between the d7dev
and d7dev live sites.

11.	 Next, open our d7dev site in your browser, click on the Structure link in the
Admin toolbar, click on the Features link, then click on the Overridden STATE
link for our D7Dev Recipe content type feature. You will see that the feature
now includes the new field and the new vocabulary that we had added in our
D7Dev development environment.

Chapter 11

[337]

What just happened?
We used the Features module to manage configuration changes to our Recipe content type
between our development and live environments. All of the changes are actually maintained
as versioned code in the Git repositories associated with each of our site environments, and
if we need to, we could easily revert to a different version of our Recipe content type without
any manual configuration.

We also discovered some very useful Features Drush commands that make it very easy to
manage Features-based configuration from the command line.

Introduction to the Features Module and Configuration Management

[338]

Features for sharing Drupal components
The idea of using the Features module to create self-contained packages of reusable Drupal
components is popular enough that there is a category dedicated to it on the Modules
search page (http://drupal.org/project/modules) on Drupal.org.

Note, however, that not all of the 51 modules categorized as belonging to the Features
Package category are actually features. A number of modules that extend the capabilities
of the Features module are also included, such as the UUID Features Integration module
that we mentioned earlier in the chapter.

Summary
In this chapter, we have learned about some of the advantages of using the Features module
to manage configuration between different environments of a Drupal site. The Features
module generates modules and makes it easy to manage Drupal components, like our Recipe
content type, between environments as version controlled code. This alleviates the necessity
of duplicating the steps of manually configuring a number of Drupal components between
sites, and as your development environment becomes more complicated and the number of
Drupal components becomes more numerous, this will be a huge time saver.

Pop quiz Answers

Chapter 1, Getting Set up
Pop quiz – PHP and MySQL configuration for Drupal

1 b

Index
Symbols
$.ajax function 140
$form parameter 190
#attached property 141
#form_id key 203
-m argument 257
.info file 46
.module file 46
*AMP stack 9

A
AdaptiveTheme 88
Add button 185
Address Field module 76
administrative toolbar 38
advanced configuration, Views module

random top rated recipe block 222
AJAX 136
ajax() function 136
Appearance link 93
Aptana formatter profile

installing 32, 33
Aptana Studio IDE

installing 27
PHP project, creating 27-29

assertEqual function 306
assertRaw function 311
Asynchronous JavaScript And XML. See AJAX
attach method 134
Awesome Sauce recipe 43, 44

B
banner appearance

improving, CSS used 270-279
improving, pager used 270-279

base themes 87
black-box testing. See functional test
block 53
Blocks link 268
browser DOM inspector

using 274

C
cc command 161
CCK 104
Clear all caches button 176
Code Review 254
Coder module 253
Colobrbox File Sandbox

checking, Git used 172-174
hook_uninstall, implementing 282
Media Colorbox promotion,

on Drupal.org 287-294
promoting, to full project 281-284, 287
renaming, to Media Colorbox 284-287
uninstalling 284-287

Colorbox
installing 168-170
integrating, with media module 168

Colorbox File
about 199-202
enhancing, field-based captions used 202-214

[342]

colorbox_file_field_formatter_info
function 211, 212

colorbox_file_field_formatter_view
function 207, 209

colorbox_file_form_alter function 203
colorbox_file_form_field_ui_field_

edit_form_submit function 206
colorbox_file module 255
Colorbox File module

about 170, 253
Drupal code, patching 175-178
installing 253-255
issues, dealing with 174, 175
using 253-255

Colorbox File sandbox
changes, committing 256, 257

colorbox_file_theme function 208
colorbox_file_uninstall function 284
Colorbox-media module integration

module, installing 168-170
commit command 257
configuration management,

Features module used
about 318
options 318, 319
Recipe content type feature, creating 324-332
Recipe content type feature, updating 334-337

Content
Content Title field 266

content, adding
custom block, developing 109-115

Content Construction Kit. See CCK
contenteditable_ajax function 139
contenteditable attribute 109
contentEditable attribute 132, 144
contenteditable_field_formatter_settings_form

function 131
contenteditable_field_formatter_settings_

summary function 129
contenteditable_field_formatter_view

function 140
contentEditable property 132
content generation

devel_generate module, using 59, 60
contextual links button 249
contributed module 46

Create Project release details page 293
CTools integration 320
cuisine 225
custom block

developing, for adding recipes 110-115
custom Drush commands

creating, for jQuery Cycle plugin
installation 261-265

custom image style
adding, image styles administrative

page used 156-158
Media-based images, configuring 164, 165
programmatic custom image style, creating

159-163
custom module

about 45, 46
developing 47-53

custom recipe content type
about 38
creating, steps 38-44

D
d7dev_admin_contents function 113
D7Dev duration formatter

unit test case, creating 304, 306
web test case , creating 308, 312-315
web test case, creating 308, 310

d7dev_field_formatter_view function 50
d7dev_form_webform_client_form_56_alter

function 190
d7dev_image_default_styles function 217
d7dev_recipe_content_type feature 326
D7Dev Recipe content type feature 332
d7dev_theme_alpha_preprocess_node

function 104
d7dev_theme_preprocess_node

function 105, 106
db_delete function 283
dd() function 190
del command 22
Delete button 123
descriptive help text

adding, custom code used 182
custom help text without code, adding 183
Webform module, using 183-186

[343]

Devel dd() function 190
Devel-generated recipe content

deleting 123-126
devel_generate module, using

for content generation 59, 60
Devel module

about 37, 58
Generate content module, installing 58, 59
using, for content generation 59, 60

Devel tab 188
dev version, of media module

installing, Drush used 147, 148
working with 146, 147

Disable link 94
dis command 284
distribution (distro) 10
DOCTYPE

about 63
HTML5 Tools module, installing 64
in Drupal 7 63

document.execCommand method 139
Document Object Model. See DOM
dpm() function 101
Drupal

community 72
feature 37
issue, creating in issue queue 73, 74
shortcut bar 72

Drupal 7
about 200
hook_block_info() 110
hook_block_view() 110
Render Arrays 99
installing 22-26

Drupal 7 blocks 109
Drupal 7 field group module

about 104
wrapper with display suite, creating 104-107

Drupal 7 Theme development
Content Type Display, managing 97
Drupal 7 field group module 104
Drupal 7 Render Arrays 99
sub-theme, creating 88

drupal_add_js function 248

Drupal contact form
about 179-181
core form, configuring 180, 181
core form, enabling 180, 181
descriptive help text, adding 182
Help Text adding, custom code used 182

Drupal Core
SimpleTest 296
SimpleTest web interface 296

drupalGet function 310
drupal_get_path function 141
Drupalize Aptana Studio

about 30
Aptana formatter profile, installing 32, 33
content type associations, setting up 30, 31

drupal_json_output function 139
drupalLogin function 309
Drupal modules

contributed 46
core module 46
custom module 46

Drupal.org
about 34, 35
Drupal Homepage tab 34
Git-enabled sandbox project 34, 35
Your Dashboard tab 34

drupalPost function 310
Drupal sandbox 170, 171
Drupal sandboxing 170
Drupal SimpleTest

using, for functional testing 301, 302
Drupal SimpleTest module

unit testing 300, 301
Drupal supported components,

with add-on modules
content 321
core blocks 321
variables 322
vocabulary terms 322

DrupalTestCase class 299
DrupalUnitTestCase class 299
Drush

installing 20
installing, for Mac OS X 21
installing, for Windows 21, 22

[344]

Drush 3
theme-specific commands 93

Drush 4
theme-specific commands 93

drush_colorbox_plugin function 263
drush command 329
Drush command 54
dsm function 203

E
Edit view link 249, 271
Embedding screen 168
examples module 300

F
Features module

about 317, 318
Drupal components, managing 319
Drupal components, sharing 338
installing 323, 324
using, for configuration management 318

features-revert command 336
Features supported components

content types 320
fields 320
image styles 320
menus 320
roles and permissions 321
taxonomies 320
text formats 320
views 320

field managing, Content Type
custom Recipe content type displaying,

managing 98, 99
field_ui_formatter_options function 128
field_view_field function 130
File Entity module 147
final function 160
Find content link 150, 286
fivestar_fivestar_widgets function 217
Fivestar module

about 215
configuring 215, 216
custom Fivestar widget, creating 217-219
installing 215, 216

focusin method 135
focusout method 135
format settings button 106
format setting slink 271
form id 182
FORM_ID of the hook function 189
fu command 335
functional test

about 296
Drupal SimpleTest, using 301, 302

G
Generate button 60
getInfo function

about 299
description property 299
group property 299
name property 299

Git
about 18
installing, for Mac OS X 18
installing, for Windows 19, 20

git commands 292
git status command 256, 287
Google Chrome browser

downloading 273
using 273

H
handler property 243
hook 46
hook_block() 109
hook_block_info() 109
hook_block_view() 109
hook_field_info_alter hook 72
hook_form_FORM_ID_alter hook 182, 183
hooks 144
hooks, field.module

hook_field_formatter_info 46
hook_field_formatter_view 46

hook_theme function 208
hook_uninstall function

about 284
implementing, for Colobrbox File Sandbox 282

hook_views_api hook 241

[345]

HTML5
about 61, 62
for Drupal 8 61

HTML5 contenteditable module
developing 126-144

HTML5 Microdata specification 65
HTML5 Tools module

installing 64, 65

I
IDE 27
ImageCache 146
image_crop effect 163
image_desaturate effect 163
ImageField 128, 146
Image module 146
image_resize effect 162
image_rotate effect 163
image_scale_and_crop effect 163
image_scale effect 162
Image Styles 156
ingredients property 42
init method 134
inline media

configuring, for basic page
content type 165-168

installation, Features module
Recipe content type feature, creating 333
steps 323, 324

installing
Aptana Studio IDE 27-29
Drupal 7 22-26
Drupalize Aptana Studio 32, 33
Drush 20
Drush, for Windows 21, 22
Git 18
Git, for Mac OS X 18
Git, for Windows 19, 20
Views Slideshow module 260

Integrated Development Environment. See IDE

J
jquery_cycle_plugin command 265
jQuery Cycle plugin installation

custom Drush command, creating 261-264

jQuery .ready() method 248
jQuery UI tabs page 239

L
Libraries API module 261
lightbox 145

M
Mac OS X AMP stack

about 10
latest MAMP version, downloading 10, 11

manage display link 176
manage display screen 99
Media 145
media_colorbox module 285
Media field

adding, to Recipe content type 148-153
media module

about 146
dev versions, working with 146, 147
integrating, with Colorbox 168
recipe 154, 155
Recipe content type, enhancing 148

method
document.execCommand 139
focusout 135

Microdata module
configuring, for Recipe content type 68-71
installing 66, 67
mapping, adding to Recipe number_integer

fields 74
Microdata module for Drupal 7 65
module_invoke_all function 138
modules 61
Modules search page 338
MySQL configuration

about 15
empty MySQL database, creating 16, 17
my.cnf settings, modifying 15, 16

N
number_field_formatter_view function 47, 49
NutrionInformation property 85
nutritioninfo_field_schema function 78

[346]

NutritionInformation module
about 75
custom module, developing 76-85

NutritionInformation property 75

O
Object-Oriented Programming. See OOP
Omega 88
OOP 244
options_form method 244

P
package property 47
PHP configuration

about 14
 php.ini settings, modifying 15

pm-uninstall command 284
prepTime property 42
private _contenteditable_add_controls

function 141
Promote button 289
Promote to full project button 289

Q
Quickstart 10
Quick Tabs 241

R
random top rated recipe block

about 222
building, views used 222-225

RDFa 65
recipes 197, 198, 251, 252, 279, 280, 302-304
Recipe content type

Media field, adding 148-153
Recipe content type feature

creating 324-333
updating 334-337

recipeInstructions property 42
recipeYield property 42
Releases for Media Colorbox page 294
Render Arrays

about 99
hook_preprocess_node, implementing 100-104

render method 246
responsive design 88
Responsive web design 88
rm command 22
rotating banner

building, Views Slideshow
module used 260, 261, 265, 270

Run reviews button 255

S
Save button 250
Save field settings button 335
setUp function 299
shortcut bar 72
SimpleTest

about 296
class 298
for Drupal 296
in Drupal Core 296
writing 304

SimpleTest class
DrupalUnitTestCase 298
DrupalWebTestCase 298
getInfo function 299
setUp function 299
Test assertions 299
Test functions 299

SimpleTest, in Drupal Core
SimpleTest web interface 296, 297
test files structure, for modules 297, 298

SimpleTest web interface 296, 297
SimpleTest, writing

unit test, creating 304-307
web test case, creating 308-315

Strongarm module 322
Structure link 332
Style options screen 250
submit function 205
sub-theme

about 88
base theme, installing 88, 89
creating 90-92
default theme, setting as 90-92
Omega-based sub-theme, configuring 96, 97
setting as default theme, with Drush 93-96

[347]

T
Tabbed Views display

about 239, 240, 241
Views style plugin, developing 241-251

tabs() method 248
tar.gz file 294
Taxonomy 225
Taxonomy-based View

cuisine vocabulary, creating 226, 227
recipes creating, cuisine type Views

block used 227-230
Views Field View module, installing 231-238
Views Field View module, using 231-238

Taxonomy module 225
template.php file 100, 182
Test assertions 299
test function 299, 306
text-only 145
theme_colorbox_file function 206-208
theme() function 207

U
unit test 296
unit testing

Drupal SimpleTest module, using 300, 301
user experience (UX) 109
UUID 322
UUID Features Integration module 321

V
variable_set function 205
Verbose message link 313
View Field View module 231
Views

about 53
advanced configuration 221
installing 53

Views edit page 221
Views module

about 37
advanced configuration 221
recipe block listing, creating 54-58

views_plugin_style class 244
Views Slideshow module

about 260
banner, creating 265-270
custom Drush commands 261
installing 260
rotating banner, creating 265

Views style plugin 240
Views UI Tabs 241
Voting API module 216

W
WAMP 12
Webforms module

about 179, 183, 187
contact form, modifying 188-192
contact form with help text, creating 183-186
emailfield code, enhancing 193-196
hook_form_FORM_ID_alter, using 188-192

web testing
Drupal SimpleTest, using 301, 302

web tests 296
Windows AMP stack

about 12
latest XAMPP version, downloading 12-14

WYSIWYG module
about 116
configuring 116-122
custom image style, creating 156
inline media 165
installing 116-122
text, pasting into 121

Z
zip file 294

Thank you for buying
Drupal 7 Development by Example Beginner's Guide

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're
using to get the job done. Packt books are more specific and less general than the IT books
you have seen in the past. Our unique business model allows us to bring you more focused
information, giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licences, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get
some additional reward for your expertise.

Drupal 7
ISBN: 978-1-84951-286-2 Paperback: 416 pages

Create and operate any type of website quickly and
efficiently

1.	 Set up, configure, and deploy a Drupal 7 website

2.	 Easily add exciting and powerful features

3.	 Design and implement your website's look
and feel

4.	 Promote, manage, and maintain your live website

Drupal 7 Theming Cookbook
ISBN: 978-1-84951-676-1 Paperback: 364 pages

Over 95 recipes that coverall aspects of customizing
and developing unique themes

1.	 Spice up your Drupal themes

2.	 A complete update for Drupal 7, with added
information for the Field API, Views, and Panels

3.	 Part of Packt's Cookbook series with lots of practical
recipes for solving the most common theming
problems

Please check www.PacktPub.com for information on our titles

Drupal 7 Multi Sites Configuration
ISBN: 978-1-84951-800-0 Paperback: 100 pages

Run multiple website from a single instance of
Drupal 7

1.	 Prepare your server for hosting multiple sites

2.	 Configure and install several sites on one instance
of Drupal

3.	 Manage and share themes and modules across the
multi-site configuration

Drupal 7 Mobile Web Development Beginner's Guide
ISBN: 978-1-84951-562-7 Paperback: 338 pages

Transform your existing Drupal site into one that
is completely compatible with mobile and tablet
devices

1.	 Follow the example of a 'Mom & Pop' restaurant
site to make the transition to a mobile site easier

2.	 Prototype a distributed team workflow with GIT
version control

3.	 Implement audio, video, charting and mapping
solutions that work on Mobile, Tablet, and Desktop
browsers

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Set up
	Installing an Apache, MySQL, and PHP stack
	Mac OS X AMP stack

	Time for action – downloading the latest version of MAMP
	Windows AMP stack

	Time for action – downloading the latest version of XAMPP
	PHP configuration

	Time for action – modifying php.ini settings
	MySQL configuration

	Time for action – modifying the MySQL my.cnf settings
	Time for action – creating an empty MySQL database
	Installing Git
	Time for action – installing Git for Mac OS X
	Time for action – installing Git for Windows
	Installing Drush
	Time for action – installing Drush for Mac OS X
	Time for action – installing Drush for Windows
	Installing Drupal 7
	Time for action – installing Drupal 7
	Installing the Aptana Studio IDE
	Time for action – installing the Aptana IDE
	Time for action – creating a new Aptana Studio PHP project
	Drupalize Aptana Studio

	Time for action – setting up the Drupal content type associations
	Time for action – installing the Drupal-specific Aptana
formatter profile
	Drupal.org from a developer's perspective
	Summary

	Chapter 2: Custom Content Types and an Introduction to Module Development
	Creating custom Recipe content type
	Time for action – creating a custom Recipe content type
	Developing a custom module
	Time for action – developing a custom module
	Quick introduction to Views
	Time for action – installing the Views module
	Time for action – creating a recipe block listing with Views
	Introducing the Devel module
	Time for action – installing the Devel Generate content module
	Time for action – generating content with the devel_generate module
	Summary

	Chapter 3: HTML5 Integration for Drupal 7 and More Module Development
	First things first—changing our DOCTYPE
	Time for action – installing the HTML5 Tools module
	HTML5, RDFa, and Microdata
	Time for action – installing the Microdata module
	Time for action – configuring Microdata for our Recipe
content type
	Drupal development and the Drupal community

	Time for action – creating issues in Contrib modules' issue queues
	Time for action – adding Microdata mappings for Recipe number_integer fields
	NutritionInformation module
	Time for action – developing a custom module for a compound NutritionInformation field
	Time for action – updating the Recipe content type to use the NutritionInformation field
	Summary

	Chapter 4: Introduction to Drupal 7
Theme Development
	Creating a sub-theme
	Time for action – installing a base theme
	Time for action – creating a sub-theme and setting it as our default theme
	Time for action – creating a sub-theme and setting as default theme with Drush
	Time for action – configuring our Omega-based sub-theme
	Manage the display for a content type
	Time for action – using the Manage Display page to update the display of our custom Recipe content type
	Drupal 7 Render Arrays
	Time for action – implementing hook_preprocess_node
	An introduction to the Drupal 7 field group module
	Time for action – creating the wrapper with display suite
	Summary

	Chapter 5: Enhancing the Content
Author's User Experience
	Developing a custom block for adding content
	Time for action – developing a custom block for adding recipes
	Introduction to the WYSIWYG module
	Time for action – installing and configuring the Wysiwyg module
	A new recipe

	Time for action – deleting all Devel-generated recipe content
	Time for action – adding my Cannellini Cumin Chicken
Chili recipe
	Developing a custom contenteditable module
	Time for action – developing an HTML5 contenteditable module
	Summary

	Chapter 6: Adding Media to our Site
	Introduction to the Media module
	Working with dev versions of modules

	Time for action – using Drush to install a dev version of the Media module
	Enhancing the Recipe content type with a Media field

	Time for action – adding a Media field to our Recipe
content type
	A new Recipe for our site

	Custom image styles and inline Media for WYSIWYG
	Creating a custom image style

	Time for action – adding a custom image style through the image styles administrative page
	Time for action – creating a programmatic custom image style
	Time for action – configuring Media-based images to use our custom small image style for our Recipe content type
	Inline Media with WYSIWYG

	Time for action – configuring WYSIWYG inline Media for the basic page content type
	Integrating the Colorbox and Media modules
	Time for action – installing the Colorbox module
	Introduction to the Colorbox File module and Drupal sandboxing
	Drupal developer community: Drupal sandbox
	Revisit the sandbox Colorbox File module

	Time for action – checking out the Colobrbox File sandbox project with Git, and testing it with the latest Media module
	Drupal issue queues and enhancing the Colorbox File module

	Time for action – applying and testing the patch for the Colorbox File module
	Summary

	Chapter 7: How Does it Taste – Getting Feedback
	Introduction to the Drupal contact form
	Time for action – enabling and configuring the core
contact form
	Adding descriptive help text to our contact form
	Using custom code to add help text to the contact form

	Time for action – adding help text to our site contact form
	Adding contact help text with no code

	Time for action – creating a contact form with help text, with the Webform module
	A more in-depth look at the Webform module
	Time for action – using hook_form_FORM_ID_alter to modify our Webform-based contact form
	Time for action – using hook_form_BASE_FORM_ID_alter to make our Webform emailfield code more generic
	Time for another recipe
	Colorbox File enhancements
	Time for action – enhancing the Colorbox File module with field-based captions
	Rating recipes with Fivestar
	Time for action – installing and configuring the Fivestar module
	Time for action – creating a custom Fivestar widget
	Summary

	Chapter 8: Recipe Lists and More with Views
	Views revisited – advanced configuration
	Random top rated recipe block

	Time for action – building a random top rated recipe block
with views
	Taxonomy-based View with tabs

	Time for action – creating a cuisine vocabulary to organize recipes
	Time for action – creating a Recipes by cuisine type Views block
	Time for action – installing and using the Views Field View module for our Recipe by Cuisine Type View
	Tabbed Views display

	Time for action – developing a Views style plugin for
Semantic tabs
	Time for another Recipe
	Promoting the Colorbox File module as a full project
	Introduction to the Coder module

	Time for action – installing and using the Coder module
	Commit changes to Colorbox File sandbox

	Time for action – committing Colorbox File module changes to Drupal Git Repository
	Summary

	Chapter 9: Rotating Banners and
Project Promotion
	Rotating banner with Views Slideshow
	Time for action – installing the Views Slideshow module
	Custom Drush commands

	Time for action – creating a custom Drush command to install the jQuery Cycle plugin
	Creating a rotating banner with Views Slideshow

	Time for action – creating a banner using the Views Slideshow module
	Enhance the appearance of our rotating banner with a pager
and CSS

	Time for action – updating the front banner view to include a slideshow pager
	Time for another recipe
	Promoting a sandbox project to a full project
	Time for action – implementing hook_uninstall for the Colorbox File module
	Time for action – uninstalling and renaming the Colorbox
File module
	Time for action – promoting the Media Colorbox module to be a full project on Drupal.org
	Summary

	Chapter 10: Test Your Code with SimpleTest
	What is SimpleTest?
	SimpleTest in Drupal Core
	SimpleTest web interface
	Test files structure for modules

	The SimpleTest class
	Unit Testing with the Drupal SimpleTest module
	Functional or web testing with Drupal SimpleTest

	Time for another recipe
	Writing our own SimpleTests
	Time for action – creating a unit test case for the D7Dev
duration formatter
	Time for action – creating a web test case for the D7Dev
duration formatter
	Summary

	Chapter 11: Introduction to the Features Module and Configuration Management
	Introduction to the Features module
	Using Features to manage configuration
	Drupal components that can be managed with Features

	Time for action – installing the Features module
	Adding a new Feature

	Time for action – creating a Recipe content type feature
	Managing updates to Feature components

	Time for action – updating our Recipe content type feature
	Features for sharing Drupal components

	Summary

	Pop quiz Answers
	Index

