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1 PRECALCULUS REVIEW

1.1 Real Numbers, Functions, and Graphs

Preliminary Questions
1. Give an example of numbers a and b such that a < b and |a| > |b|.

solution Take a = −3 and b = 1. Then a < b but |a| = 3 > 1 = |b|.
2. Which numbers satisfy |a| = a? Which satisfy |a| = −a? What about |−a| = a?

solution The numbers a ≥ 0 satisfy |a| = a and | − a| = a. The numbers a ≤ 0 satisfy |a| = −a.

3. Give an example of numbers a and b such that |a + b| < |a| + |b|.
solution Take a = −3 and b = 1. Then

|a + b| = | − 3 + 1| = | − 2| = 2, but |a| + |b| = | − 3| + |1| = 3 + 1 = 4.

Thus, |a + b| < |a| + |b|.
4. What are the coordinates of the point lying at the intersection of the lines x = 9 and y = −4?

solution The point (9, −4) lies at the intersection of the lines x = 9 and y = −4.

5. In which quadrant do the following points lie?

(a) (1, 4) (b) (−3, 2) (c) (4, −3) (d) (−4, −1)

solution
(a) Because both the x- and y-coordinates of the point (1, 4) are positive, the point (1, 4) lies in the first quadrant.
(b) Because the x-coordinate of the point (−3, 2) is negative but the y-coordinate is positive, the point (−3, 2) lies in
the second quadrant.
(c) Because the x-coordinate of the point (4, −3) is positive but the y-coordinate is negative, the point (4, −3) lies in
the fourth quadrant.
(d) Because both the x- and y-coordinates of the point (−4, −1) are negative, the point (−4, −1) lies in the third quadrant.

6. What is the radius of the circle with equation (x − 9)2 + (y − 9)2 = 9?

solution The circle with equation (x − 9)2 + (y − 9)2 = 9 has radius 3.

7. The equation f (x) = 5 has a solution if (choose one):

(a) 5 belongs to the domain of f .
(b) 5 belongs to the range of f .

solution The correct response is (b): the equation f (x) = 5 has a solution if 5 belongs to the range of f .

8. What kind of symmetry does the graph have if f (−x) = −f (x)?

solution If f (−x) = −f (x), then the graph of f is symmetric with respect to the origin.

Exercises
1. Use a calculator to find a rational number r such that |r − π2| < 10−4.

solution r must satisfy π2 − 10−4 < r < π2 + 10−4, or 9.869504 < r < 9.869705. r = 9.8696 = 12337
1250 would

be one such number.

Which of (a)–(f) are true for a = −3 and b = 2?

(a) a < b (b) |a| < |b| (c) ab > 0

(d) 3a < 3b (e) −4a < −4b (f)
1

a
<

1

b

In Exercises 3–8, express the interval in terms of an inequality involving absolute value.

3. [−2, 2]
solution |x| ≤ 2

(−4, 4)
5. (0, 4)

solution The midpoint of the interval is c = (0 + 4)/2 = 2, and the radius is r = (4 − 0)/2 = 2; therefore, (0, 4)

can be expressed as |x − 2| < 2.

[−4, 0]7. [1, 5]
solution The midpoint of the interval is c = (1 + 5)/2 = 3, and the radius is r = (5 − 1)/2 = 2; therefore, the
interval [1, 5] can be expressed as |x − 3| ≤ 2.

(−2, 8) 1
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In Exercises 9–12, write the inequality in the form a < x < b.

9. |x| < 8

solution −8 < x < 8

|x − 12| < 8
11. |2x + 1| < 5

solution −5 < 2x + 1 < 5 so −6 < 2x < 4 and −3 < x < 2

|3x − 4| < 2In Exercises 13–18, express the set of numbers x satisfying the given condition as an interval.

13. |x| < 4

solution (−4, 4)

|x| ≤ 9
15. |x − 4| < 2

solution The expression |x − 4| < 2 is equivalent to −2 < x − 4 < 2. Therefore, 2 < x < 6, which represents the
interval (2, 6).

|x + 7| < 2
17. |4x − 1| ≤ 8

solution The expression |4x − 1| ≤ 8 is equivalent to −8 ≤ 4x − 1 ≤ 8 or −7 ≤ 4x ≤ 9. Therefore, − 7
4 ≤ x ≤ 9

4 ,

which represents the interval [− 7
4 , 9

4 ].

|3x + 5| < 1In Exercises 19–22, describe the set as a union of finite or infinite intervals.

19. {x : |x − 4| > 2}
solution x − 4 > 2 or x − 4 < −2 ⇒ x > 6 or x < 2 ⇒ (−∞, 2) ∪ (6, ∞)

{x : |2x + 4| > 3}21. {x : |x2 − 1| > 2}
solution x2 − 1 > 2 or x2 − 1 < −2 ⇒ x2 > 3 or x2 < −1 (this will never happen) ⇒ x >

√
3 or x < −√

3 ⇒
(−∞, −√

3) ∪ (
√

3, ∞).

{x : |x2 + 2x| > 2}
23. Match (a)–(f) with (i)–(vi).

(a) a > 3 (b) |a − 5| <
1

3

(c)

∣∣∣∣a − 1

3

∣∣∣∣ < 5 (d) |a| > 5

(e) |a − 4| < 3 (f) 1 ≤ a ≤ 5

(i) a lies to the right of 3.

(ii) a lies between 1 and 7.

(iii) The distance from a to 5 is less than 1
3 .

(iv) The distance from a to 3 is at most 2.

(v) a is less than 5 units from 1
3 .

(vi) a lies either to the left of −5 or to the right of 5.

solution

(a) On the number line, numbers greater than 3 appear to the right; hence, a > 3 is equivalent to the numbers to the right
of 3: (i).

(b) |a − 5| measures the distance from a to 5; hence, |a − 5| < 1
3 is satisfied by those numbers less than 1

3 of a unit from
5: (iii).

(c) |a − 1
3 | measures the distance from a to 1

3 ; hence, |a − 1
3 | < 5 is satisfied by those numbers less than 5 units from

1
3 : (v).

(d) The inequality |a| > 5 is equivalent to a > 5 or a < −5; that is, either a lies to the right of 5 or to the left of −5: (vi).

(e) The interval described by the inequality |a − 4| < 3 has a center at 4 and a radius of 3; that is, the interval consists
of those numbers between 1 and 7: (ii).

(f) The interval described by the inequality 1 < x < 5 has a center at 3 and a radius of 2; that is, the interval consists of
those numbers less than 2 units from 3: (iv).

Describe

{
x : x

x + 1
< 0

}
as an interval.

25. Describe {x : x2 + 2x < 3} as an interval. Hint: Plot y = x2 + 2x − 3.

solution The inequality x2 + 2x < 3 is equivalent to x2 + 2x − 3 < 0. In the figure below, we see that the graph of

y = x2 + 2x − 3 falls below the x-axis for −3 < x < 1. Thus, the set {x : x2 + 2x < 3} corresponds to the interval
−3 < x < 1.
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−4 −3 −2 −2

2
4
6
8

10

y

x
1 2

y = x2 + 2x − 3

Describe the set of real numbers satisfying |x − 3| = |x − 2| + 1 as a half-infinite interval.27. Show that if a > b, then b−1 > a−1, provided that a and b have the same sign. What happens if a > 0 and b < 0?

solution Case 1a: If a and b are both positive, then a > b ⇒ 1 > b
a ⇒ 1

b
> 1

a .

Case 1b: If a and b are both negative, then a > b ⇒ 1 < b
a (since a is negative) ⇒ 1

b
> 1

a (again, since b is negative).

Case 2: If a > 0 and b < 0, then 1
a > 0 and 1

b
< 0 so 1

b
< 1

a . (See Exercise 2f for an example of this).

Which x satisfy both |x − 3| < 2 and |x − 5| < 1?29. Show that if |a − 5| < 1
2 and |b − 8| < 1

2 , then |(a + b) − 13| < 1. Hint: Use the triangle inequality.

solution

|a + b − 13| = |(a − 5) + (b − 8)|
≤ |a − 5| + |b − 8| (by the triangle inequality)

<
1

2
+ 1

2
= 1.

Suppose that |x − 4| ≤ 1.

(a) What is the maximum possible value of |x + 4|?
(b) Show that |x2 − 16| ≤ 9.

31. Suppose that |a − 6| ≤ 2 and |b| ≤ 3.

(a) What is the largest possible value of |a + b|?
(b) What is the smallest possible value of |a + b|?
solution |a − 6| ≤ 2 guarantees that 4 ≤ a ≤ 8, while |b| ≤ 3 guarantees that −3 ≤ b ≤ 3. Therefore 1 ≤ a + b ≤ 11.
It follows that

(a) the largest possible value of |a + b| is 11; and
(b) the smallest possible value of |a + b| is 1.

Prove that |x| − |y| ≤ |x − y|. Hint: Apply the triangle inequality to y and x − y.33. Express r1 = 0.27 as a fraction. Hint: 100r1 − r1 is an integer. Then express r2 = 0.2666 . . . as a fraction.

solution Let r1 = 0.27. We observe that 100r1 = 27.27. Therefore, 100r1 − r1 = 27.27 − 0.27 = 27 and

r1 = 27

99
= 3

11
.

Now, let r2 = 0.2666. Then 10r2 = 2.666 and 100r2 = 26.666. Therefore, 100r2 − 10r2 = 26.666 − 2.666 = 24 and

r2 = 24

90
= 4

15
.

Represent 1/7 and 4/27 as repeating decimals.35. The text states: If the decimal expansions of numbers a and b agree to k places, then |a − b| ≤ 10−k . Show that the
converse is false: For all k there are numbers a and b whose decimal expansions do not agree at all but |a − b| ≤ 10−k .

solution Let a = 1 and b = 0.9 (see the discussion before Example 1). The decimal expansions of a and b do not

agree, but |1 − 0.9| < 10−k for all k.

Plot each pair of points and compute the distance between them:

(a) (1, 4) and (3, 2) (b) (2, 1) and (2, 4)

(c) (0, 0) and (−2, 3) (d) (−3, −3) and (−2, 3)

37. Find the equation of the circle with center (2, 4):

(a) with radius r = 3.
(b) that passes through (1, −1).

solution

(a) The equation of the indicated circle is (x − 2)2 + (y − 4)2 = 32 = 9.
(b) First determine the radius as the distance from the center to the indicated point on the circle:

r =
√

(2 − 1)2 + (4 − (−1))2 = √
26.

Thus, the equation of the circle is (x − 2)2 + (y − 4)2 = 26.

Find all points with integer coordinates located at a distance 5 from the origin. Then find all points with integer
coordinates located at a distance 5 from (2, 3).

39. Determine the domain and range of the function

f : {r, s, t, u} → {A, B, C, D, E}
defined by f (r) = A, f (s) = B, f (t) = B, f (u) = E.

solution The domain is the set D = {r, s, t, u}; the range is the set R = {A, B, E}.
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Give an example of a function whose domain D has three elements and whose range R has two elements. Does a
function exist whose domain D has two elements and whose range R has three elements?

In Exercises 41–48, find the domain and range of the function.

41. f (x) = −x

solution D : all reals; R : all reals

g(t) = t443. f (x) = x3

solution D : all reals; R : all reals

g(t) = √
2 − t

45. f (x) = |x|
solution D : all reals; R : {y : y ≥ 0}

h(s) = 1

s

47. f (x) = 1

x2

solution D : {x : x 	= 0}; R : {y : y > 0}

g(t) = cos
1

t

In Exercises 49–52, determine where f (x) is increasing.

49. f (x) = |x + 1|
solution A graph of the function y = |x + 1| is shown below. From the graph, we see that the function is increasing
on the interval (−1, ∞).

x
−3 −2 −1

1

2

1

y

f (x) = x351. f (x) = x4

solution A graph of the function y = x4 is shown below. From the graph, we see that the function is increasing on
the interval (0, ∞).

x
−2 −1 1 2

12

4

8

y

f (x) = 1

x4 + x2 + 1

In Exercises 53–58, find the zeros of f (x) and sketch its graph by plotting points. Use symmetry and increase/decrease
information where appropriate.

53. f (x) = x2 − 4

solution Zeros: ±2
Increasing: x > 0
Decreasing: x < 0
Symmetry: f (−x) = f (x) (even function). So, y-axis symmetry.

2

−2

−4

4

y

x
−2 −1 1 2

f (x) = 2x2 − 4
55. f (x) = x3 − 4x

solution Zeros: 0, ±2; Symmetry: f (−x) = −f (x) (odd function). So origin symmetry.

5

−5
−10

10

y

x
−2 −1 1 2
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f (x) = x357. f (x) = 2 − x3

solution This is an x-axis reflection of x3 translated up 2 units. There is one zero at x = 3√2.

10

−10
−20

20

y

x
−2 −1 1 2

f (x) = 1

(x − 1)2 + 1

59. Which of the curves in Figure 26 is the graph of a function?

(A)

x

y

(B)

x

y

(C)

x

y

(D)

x

y

FIGURE 26

solution (B) is the graph of a function. (A), (C), and (D) all fail the vertical line test.

Determine whether the function is even, odd, or neither.

(a) f (x) = x5 (b) g(t) = t3 − t2

(c) F(t) = 1

t4 + t2

61. Determine whether the function is even, odd, or neither.

(a) f (t) = 1

t4 + t + 1
− 1

t4 − t + 1
(b) g(t) = 2t − 2−t

(c) G(θ) = sin θ + cos θ (d) H(θ) = sin(θ2)

solution

(a) This function is odd because

f (−t) = 1

(−t)4 + (−t) + 1
− 1

(−t)4 − (−t) + 1

= 1

t4 − t + 1
− 1

t4 + t + 1
= −f (t).

(b) g(−t) = 2−t − 2−(−t) = 2−t − 2t = −g(t), so this function is odd.

(c) G(−θ) = sin(−θ) + cos(−θ) = − sin θ + cos θ which is equal to neither G(θ) nor −G(θ), so this function is
neither odd nor even.

(d) H(−θ) = sin((−θ)2) = sin(θ2) = H(θ), so this function is even.

Write f (x) = 2x4 − 5x3 + 12x2 − 3x + 4 as the sum of an even and an odd function.63. Determine the interval on which f (x) = 1

x − 4
is increasing or decreasing.

solution A graph of the function is shown below. From this graph we can see that f (x) is decreasing on (−∞, 4) and
also decreasing on (4, ∞).

−2

−2

0

−4

−6

2

4

6

2 4 6 8 10
x

y
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State whether the function is increasing, decreasing, or neither.

(a) Surface area of a sphere as a function of its radius

(b) Temperature at a point on the equator as a function of time

(c) Price of an airline ticket as a function of the price of oil

(d) Pressure of the gas in a piston as a function of volume

In Exercises 65–70, let f (x) be the function shown in Figure 27.

1 2 3 4
0

1

2

3

4

x

y

FIGURE 27

65. Find the domain and range of f (x)?

solution D : [0, 4]; R : [0, 4]

Sketch the graphs of f (x + 2) and f (x) + 2.67. Sketch the graphs of f (2x), f
( 1

2x
)
, and 2f (x).

solution The graph of y = f (2x) is obtained by compressing the graph of y = f (x) horizontally by a factor of 2 (see

the graph below on the left). The graph of y = f ( 1
2x) is obtained by stretching the graph of y = f (x) horizontally by a

factor of 2 (see the graph below in the middle). The graph of y = 2f (x) is obtained by stretching the graph of y = f (x)

vertically by a factor of 2 (see the graph below on the right).

y

x

1

2

3

4

1 2 3 4

f (2x)

y

x

1

2

3

4

2 4 6 8

f (x/2)

y

x

2

4

6

8

1 2 3 4

2 f (x)

Sketch the graphs of f (−x) and −f (−x).
69. Extend the graph of f (x) to [−4, 4] so that it is an even function.

solution To continue the graph of f (x) to the interval [−4, 4] as an even function, reflect the graph of f (x) across
the y-axis (see the graph below).

−2−4
x

2 4

y

1

2

3

4

Extend the graph of f (x) to [−4, 4] so that it is an odd function.
71. Suppose that f (x) has domain [4, 8] and range [2, 6]. Find the domain and range of:

(a) f (x) + 3 (b) f (x + 3)

(c) f (3x) (d) 3f (x)

solution

(a) f (x) + 3 is obtained by shifting f (x) upward three units. Therefore, the domain remains [4, 8], while the range
becomes [5, 9].
(b) f (x + 3) is obtained by shifting f (x) left three units. Therefore, the domain becomes [1, 5], while the range remains
[2, 6].
(c) f (3x) is obtained by compressing f (x) horizontally by a factor of three. Therefore, the domain becomes [ 4

3 , 8
3 ],

while the range remains [2, 6].
(d) 3f (x) is obtained by stretching f (x) vertically by a factor of three. Therefore, the domain remains [4, 8], while the
range becomes [6, 18].

Let f (x) = x2. Sketch the graph over [−2, 2] of:

(a) f (x + 1) (b) f (x) + 1

(c) f (5x) (d) 5f (x)

73. Suppose that the graph of f (x) = sin x is compressed horizontally by a factor of 2 and then shifted 5 units to the
right.

(a) What is the equation for the new graph?

(b) What is the equation if you first shift by 5 and then compress by 2?

(c) Verify your answers by plotting your equations.
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solution
(a) Let f (x) = sin x. After compressing the graph of f horizontally by a factor of 2, we obtain the function g(x) =
f (2x) = sin 2x. Shifting the graph 5 units to the right then yields

h(x) = g(x − 5) = sin 2(x − 5) = sin(2x − 10).

(b) Let f (x) = sin x. After shifting the graph 5 units to the right, we obtain the function g(x) = f (x − 5) = sin(x − 5).
Compressing the graph horizontally by a factor of 2 then yields

h(x) = g(2x) = sin(2x − 5).

(c) The figure below at the top left shows the graphs of y = sin x (the dashed curve), the sine graph compressed
horizontally by a factor of 2 (the dash, double dot curve) and then shifted right 5 units (the solid curve). Compare this last
graph with the graph of y = sin(2x − 10) shown at the bottom left.

The figure below at the top right shows the graphs of y = sin x (the dashed curve), the sine graph shifted to the right
5 units (the dash, double dot curve) and then compressed horizontally by a factor of 2 (the solid curve). Compare this last
graph with the graph of y = sin(2x − 5) shown at the bottom right.

−1

1
y

x
−6 −4 −2 642

−1

1
y

x
−6 −4 −2 642

−1

1
y

x
−6 −4 −2 642

−1

1
y

x
−6 −4 −2 642

Figure 28 shows the graph of f (x) = |x| + 1. Match the functions (a)–(e) with their graphs (i)–(v).

(a) f (x − 1) (b) −f (x) (c) −f (x) + 2

(d) f (x − 1) − 2 (e) f (x + 1)

75. Sketch the graph of f (2x) and f
( 1

2x
)
, where f (x) = |x| + 1 (Figure 28).

solution The graph of y = f (2x) is obtained by compressing the graph of y = f (x) horizontally by a factor of 2

(see the graph below on the left). The graph of y = f ( 1
2x) is obtained by stretching the graph of y = f (x) horizontally

by a factor of 2 (see the graph below on the right).

x
−1

2

4

6

−2−3 1 2 3

y

f (2x)

x
−1

2

4

6

−2−3 1 2 3

y

f (x/2)

Find the function f (x) whose graph is obtained by shifting the parabola y = x2 three units to the right and four
units down, as in Figure 29.

77. Define f (x) to be the larger of x and 2 − x. Sketch the graph of f (x). What are its domain and range? Express f (x)

in terms of the absolute value function.

solution

x
−1

1

2

1 2 3

y

The graph of y = f (x) is shown above. Clearly, the domain of f is the set of all real numbers while the range is {y | y ≥ 1}.
Notice the graph has the standard V-shape associated with the absolute value function, but the base of the V has been
translated to the point (1, 1). Thus, f (x) = |x − 1| + 1.

For each curve in Figure 30, state whether it is symmetric with respect to the y-axis, the origin, both, or neither.
79. Show that the sum of two even functions is even and the sum of two odd functions is odd.

solution Even: (f + g)(−x) = f (−x) + g(−x)
even= f (x) + g(x) = (f + g)(x)

Odd: (f + g)(−x) = f (−x) + g(−x)
odd= −f (x) + −g(x) = −(f + g)(x)
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Suppose that f (x) and g(x) are both odd. Which of the following functions are even? Which are odd?

(a) f (x)g(x) (b) f (x)3

(c) f (x) − g(x) (d)
f (x)

g(x)

81. Prove that the only function whose graph is symmetric with respect to both the y-axis and the origin is the function
f (x) = 0.

solution Suppose f is symmetric with respect to the y-axis. Then f (−x) = f (x). If f is also symmetric with respect
to the origin, then f (−x) = −f (x). Thus f (x) = −f (x) or 2f (x) = 0. Finally, f (x) = 0.

Further Insights and Challenges

Prove the triangle inequality by adding the two inequalities

−|a| ≤ a ≤ |a|, −|b| ≤ b ≤ |b|

83. Show that a fraction r = a/b in lowest terms has a finite decimal expansion if and only if

b = 2n5m for some n, m ≥ 0.

Hint: Observe that r has a finite decimal expansion when 10Nr is an integer for some N ≥ 0 (and hence b divides 10N ).

solution Suppose r has a finite decimal expansion. Then there exists an integer N ≥ 0 such that 10Nr is an integer,

call it k. Thus, r = k/10N . Because the only prime factors of 10 are 2 and 5, it follows that when r is written in lowest
terms, its denominator must be of the form 2n5m for some integers n, m ≥ 0.

Conversely, suppose r = a/b in lowest with b = 2n5m for some integers n, m ≥ 0. Then r = a

b
= a

2n5m
or

2n5mr = a. If m ≥ n, then 2m5mr = a2m−n or r = a2m−n

10m
and thus r has a finite decimal expansion (less than or

equal to m terms, to be precise). On the other hand, if n > m, then 2n5nr = a5n−m or r = a5n−m

10n
and once again r has

a finite decimal expansion.

Let p = p1 . . . ps be an integer with digits p1, . . . , ps . Show that

p

10s − 1
= 0.p1 . . . ps

Use this to find the decimal expansion of r = 2
11 . Note that

r = 2

11
= 18

102 − 1

85. A function f (x) is symmetric with respect to the vertical line x = a if f (a − x) = f (a + x).

(a) Draw the graph of a function that is symmetric with respect to x = 2.

(b) Show that if f (x) is symmetric with respect to x = a, then g(x) = f (x + a) is even.

solution

(a) There are many possibilities, one of which is

x
−1

1

2

54321

y

y = |x − 2|

(b) Let g(x) = f (x + a). Then

g(−x) = f (−x + a) = f (a − x)

= f (a + x) symmetry with respect to x = a

= g(x)

Thus, g(x) is even.

Formulate a condition for f (x) to be symmetric with respect to the point (a, 0) on the x-axis.

1.2 Linear and Quadratic Functions

Preliminary Questions
1. What is the slope of the line y = −4x − 9?

solution The slope of the line y = −4x − 9 is −4, given by the coefficient of x.

2. Are the lines y = 2x + 1 and y = −2x − 4 perpendicular?

solution The slopes of perpendicular lines are negative reciprocals of one another. Because the slope of y = 2x + 1
is 2 and the slope of y = −2x − 4 is −2, these two lines are not perpendicular.

3. When is the line ax + by = c parallel to the y-axis? To the x-axis?

solution The line ax + by = c will be parallel to the y-axis when b = 0 and parallel to the x-axis when a = 0.

4. Suppose y = 3x + 2. What is �y if x increases by 3?

solution Because y = 3x + 2 is a linear function with slope 3, increasing x by 3 will lead to �y = 3(3) = 9.
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5. What is the minimum of f (x) = (x + 3)2 − 4?

solution Because (x + 3)2 ≥ 0, it follows that (x + 3)2 − 4 ≥ −4. Thus, the minimum value of (x + 3)2 − 4 is −4.

6. What is the result of completing the square for f (x) = x2 + 1?

solution Because there is no x term in x2 + 1, completing the square on this expression leads to (x − 0)2 + 1.

Exercises
In Exercises 1–4, find the slope, the y-intercept, and the x-intercept of the line with the given equation.

1. y = 3x + 12

solution Because the equation of the line is given in slope-intercept form, the slope is the coefficient of x and the
y-intercept is the constant term: that is, m = 3 and the y-intercept is 12. To determine the x-intercept, substitute y = 0
and then solve for x: 0 = 3x + 12 or x = −4.

y = 4 − x
3. 4x + 9y = 3

solution To determine the slope and y-intercept, we first solve the equation for y to obtain the slope-intercept form.

This yields y = − 4
9x + 1

3 . From here, we see that the slope is m = − 4
9 and the y-intercept is 1

3 . To determine the

x-intercept, substitute y = 0 and solve for x: 4x = 3 or x = 3
4 .

y − 3 = 1
2 (x − 6)

In Exercises 5–8, find the slope of the line.

5. y = 3x + 2

solution m = 3

y = 3(x − 9) + 2
7. 3x + 4y = 12

solution First solve the equation for y to obtain the slope-intercept form. This yields y = − 3
4x + 3. The slope of the

line is therefore m = − 3
4 .

3x + 4y = −8In Exercises 9–20, find the equation of the line with the given description.

9. Slope 3, y-intercept 8

solution Using the slope-intercept form for the equation of a line, we have y = 3x + 8.

Slope −2, y-intercept 3
11. Slope 3, passes through (7, 9)

solution Using the point-slope form for the equation of a line, we have y − 9 = 3(x − 7) or y = 3x − 12.

Slope −5, passes through (0, 0)
13. Horizontal, passes through (0, −2)

solution A horizontal line has a slope of 0. Using the point-slope form for the equation of a line, we have y − (−2) =
0(x − 0) or y = −2.

Passes through (−1, 4) and (2, 7)
15. Parallel to y = 3x − 4, passes through (1, 1)

solution Because the equation y = 3x − 4 is in slope-intercept form, we can readily identify that it has a slope of 3.
Parallel lines have the same slope, so the slope of the requested line is also 3. Using the point-slope form for the equation
of a line, we have y − 1 = 3(x − 1) or y = 3x − 2.

Passes through (1, 4) and (12, −3)
17. Perpendicular to 3x + 5y = 9, passes through (2, 3)

solution We start by solving the equation 3x + 5y = 9 for y to obtain the slope-intercept form for the equation of a
line. This yields

y = −3

5
x + 9

5
,

from which we identify the slope as − 3
5 . Perpendicular lines have slopes that are negative reciprocals of one another, so

the slope of the desired line is m⊥ = 5
3 . Using the point-slope form for the equation of a line, we have y − 3 = 5

3 (x − 2)

or y = 5
3x − 1

3 .

Vertical, passes through (−4, 9)
19. Horizontal, passes through (8, 4)

solution A horizontal line has slope 0. Using the point slope form for the equation of a line, we have y − 4 = 0(x − 8)

or y = 4.

Slope 3, x-intercept 6
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21. Find the equation of the perpendicular bisector of the segment joining (1, 2) and (5, 4) (Figure 11). Hint: The midpoint

Q of the segment joining (a, b) and (c, d) is

(
a + c

2
,
b + d

2

)
.

Q

(1, 2)

(5, 4)

Perpendicular
bisector

x

y

FIGURE 11

solution The slope of the segment joining (1, 2) and (5, 4) is

m = 4 − 2

5 − 1
= 1

2

and the midpoint of the segment (Figure 11) is

midpoint =
(

1 + 5

2
,

2 + 4

2

)
= (3, 3)

The perpendicular bisector has slope −1/m = −2 and passes through (3, 3), so its equation is: y − 3 = −2(x − 3) or
y = −2x + 9.

Intercept-Intercept Form Show that if a, b 	= 0, then the line with x-intercept x = a and y-intercept y = b

has equation (Figure 12)

x

a
+ y

b
= 1

23. Find an equation of the line with x-intercept x = 4 and y-intercept y = 3.

solution From Exercise 22, x
4 + y

3 = 1 or 3x + 4y = 12.

Find y such that (3, y) lies on the line of slope m = 2 through (1, 4).
25. Determine whether there exists a constant c such that the line x + cy = 1:

(a) Has slope 4 (b) Passes through (3, 1)

(c) Is horizontal (d) Is vertical

solution

(a) Rewriting the equation of the line in slope-intercept form gives y = − x
c + 1

c . To have slope 4 requires − 1
c = 4 or

c = − 1
4 .

(b) Substituting x = 3 and y = 1 into the equation of the line gives 3 + c = 1 or c = −2.
(c) From (a), we know the slope of the line is − 1

c . There is no value for c that will make this slope equal to 0.
(d) With c = 0, the equation becomes x = 1. This is the equation of a vertical line.

Assume that the number N of concert tickets that can be sold at a price of P dollars per ticket is a linear function
N(P ) for 10 ≤ P ≤ 40. Determine N(P ) (called the demand function) if N(10) = 500 and N(40) = 0. What is the
decrease �N in the number of tickets sold if the price is increased by �P = 5 dollars?

27. Materials expand when heated. Consider a metal rod of length L0 at temperature T0. If the temperature is changed
by an amount �T , then the rod’s length changes by �L = αL0�T , where α is the thermal expansion coefficient. For
steel, α = 1.24 × 10−5 ◦C−1.

(a) A steel rod has length L0 = 40 cm at T0 = 40◦C. Find its length at T = 90◦C.
(b) Find its length at T = 50◦C if its length at T0 = 100◦C is 65 cm.
(c) Express length L as a function of T if L0 = 65 cm at T0 = 100◦C.

solution
(a) With T = 90◦C and T0 = 40◦C, �T = 50◦C. Therefore,

�L = αL0�T = (1.24 × 10−5)(40)(50) = 0.0248 and L = L0 + �L = 40.0248 cm.

(b) With T = 50◦C and T0 = 100◦C, �T = −50◦C. Therefore,

�L = αL0�T = (1.24 × 10−5)(65)(−50) = −0.0403 and L = L0 + �L = 64.9597 cm.

(c) L = L0 + �L = L0 + αL0�T = L0(1 + α�T ) = 65(1 + α(T − 100))

Do the points (0.5, 1), (1, 1.2), (2, 2) lie on a line?
29. Find b such that (2, −1), (3, 2), and (b, 5) lie on a line.

solution The slope of the line determined by the points (2, −1) and (3, 2) is

2 − (−1)

3 − 2
= 3.

To lie on the same line, the slope between (3, 2) and (b, 5) must also be 3. Thus, we require

5 − 2

b − 3
= 3

b − 3
= 3,

or b = 4.
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Find an expression for the velocity v as a linear function of t that matches the following data.

t (s) 0 2 4 6

v (m/s) 39.2 58.6 78 97.4

31. The period T of a pendulum is measured for pendulums of several different lengths L. Based on the following data,
does T appear to be a linear function of L?

L (cm) 20 30 40 50

T (s) 0.9 1.1 1.27 1.42

solution Examine the slope between consecutive data points. The first pair of data points yields a slope of

1.1 − 0.9

30 − 20
= 0.02,

while the second pair of data points yields a slope of

1.27 − 1.1

40 − 30
= 0.017,

and the last pair of data points yields a slope of

1.42 − 1.27

50 − 40
= 0.015

Because the three slopes are not equal, T does not appear to be a linear function of L.

Show that f (x) is linear of slope m if and only if

f (x + h) − f (x) = mh (for all x and h)

33. Find the roots of the quadratic polynomials:

(a) 4x2 − 3x − 1 (b) x2 − 2x − 1

solution

(a) x = 3 ± √
9 − 4(4)(−1)

2(4)
= 3 ± √

25

8
= 1 or −1

4

(b) x = 2 ± √
4 − (4)(1)(−1)

2
= 2 ± √

8

2
= 1 ± √

2

In Exercises 34–41, complete the square and find the minimum or maximum value of the quadratic function.

y = x2 + 2x + 5
35. y = x2 − 6x + 9

solution y = (x − 3)2; therefore, the minimum value of the quadratic polynomial is 0, and this occurs at x = 3.

y = −9x2 + x
37. y = x2 + 6x + 2

solution y = x2 + 6x + 9 − 9 + 2 = (x + 3)2 − 7; therefore, the minimum value of the quadratic polynomial is
−7, and this occurs at x = −3.

y = 2x2 − 4x − 7
39. y = −4x2 + 3x + 8

solution y = −4x2 + 3x + 8 = −4(x2 − 3
4x + 9

64 ) + 8 + 9
16 = −4(x − 3

8 )2 + 137
16 ; therefore, the maximum value

of the quadratic polynomial is 137
16 , and this occurs at x = 3

8 .

y = 3x2 + 12x − 5
41. y = 4x − 12x2

solution y = −12(x2 − x
3 ) = −12(x2 − x

3 + 1
36 ) + 1

3 = −12(x − 1
6 )2 + 1

3 ; therefore, the maximum value of the

quadratic polynomial is 1
3 , and this occurs at x = 1

6 .

Sketch the graph of y = x2 − 6x + 8 by plotting the roots and the minimum point.
43. Sketch the graph of y = x2 + 4x + 6 by plotting the minimum point, the y-intercept, and one other point.

solution y = x2 + 4x + 4 − 4 + 6 = (x + 2)2 + 2 so the minimum occurs at (−2, 2). If x = 0, then y = 6 and if

x = −4, y = 6. This is the graph of x2 moved left 2 units and up 2 units.

−4 −3 −2 −1

2

4

6

8

10

y

x

If the alleles A and B of the cystic fibrosis gene occur in a population with frequencies p and 1 − p (where p

is a fraction between 0 and 1), then the frequency of heterozygous carriers (carriers with both alleles) is 2p(1 − p).
Which value of p gives the largest frequency of heterozygous carriers?
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45. For which values of c does f (x) = x2 + cx + 1 have a double root? No real roots?

solution A double root occurs when c2 − 4(1)(1) = 0 or c2 = 4. Thus, c = ±2.

There are no real roots when c2 − 4(1)(1) < 0 or c2 < 4. Thus, −2 < c < 2.

Let f (x) be a quadratic function and c a constant. Which of the following statements is correct? Explain
graphically.

(a) There is a unique value of c such that y = f (x) − c has a double root.

(b) There is a unique value of c such that y = f (x − c) has a double root.

47. Prove that x + 1
x ≥ 2 for all x > 0. Hint: Consider (x1/2 − x−1/2)2.

solution Let x > 0. Then

(
x1/2 − x−1/2

)2 = x − 2 + 1

x
.

Because (x1/2 − x−1/2)2 ≥ 0, it follows that

x − 2 + 1

x
≥ 0 or x + 1

x
≥ 2.

Let a, b > 0. Show that the geometric mean
√

ab is not larger than the arithmetic mean (a + b)/2. Hint: Use a
variation of the hint given in Exercise 47.

49. If objects of weights x and w1 are suspended from the balance in Figure 13(A), the cross-beam is horizontal if
bx = aw1. If the lengths a and b are known, we may use this equation to determine an unknown weight x by selecting w1
such that the cross-beam is horizontal. If a and b are not known precisely, we might proceed as follows. First balance x

by w1 on the left as in (A). Then switch places and balance x by w2 on the right as in (B). The average x̄ = 1
2 (w1 + w2)

gives an estimate for x. Show that x̄ is greater than or equal to the true weight x.

w1

(A)

a

x

b

(B)

w2x

a b

FIGURE 13

solution First note bx = aw1 and ax = bw2. Thus,

x̄ = 1

2
(w1 + w2)

= 1

2

(
bx

a
+ ax

b

)

= x

2

(
b

a
+ a

b

)

≥ x

2
(2) by Exercise 47

= x

Find numbers x and y with sum 10 and product 24. Hint: Find a quadratic polynomial satisfied by x.
51. Find a pair of numbers whose sum and product are both equal to 8.

solution Let x and y be numbers whose sum and product are both equal to 8. Then x + y = 8 and xy = 8. From the

second equation, y = 8
x . Substituting this expression for y in the first equation gives x + 8

x = 8 or x2 − 8x + 8 = 0. By
the quadratic formula,

x = 8 ± √
64 − 32

2
= 4 ± 2

√
2.

If x = 4 + 2
√

2, then

y = 8

4 + 2
√

2
= 8

4 + 2
√

2
· 4 − 2

√
2

4 − 2
√

2
= 4 − 2

√
2.

On the other hand, if x = 4 − 2
√

2, then

y = 8

4 − 2
√

2
= 8

4 − 2
√

2
· 4 + 2

√
2

4 + 2
√

2
= 4 + 2

√
2.

Thus, the two numbers are 4 + 2
√

2 and 4 − 2
√

2.

Show that the parabola y = x2 consists of all points P such that d1 = d2, where d1 is the distance from P to(
0, 1

4

)
and d2 is the distance from P to the line y = − 1

4 (Figure 14).
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Further Insights and Challenges
53. Show that if f (x) and g(x) are linear, then so is f (x) + g(x). Is the same true of f (x)g(x)?

solution If f (x) = mx + b and g(x) = nx + d, then

f (x) + g(x) = mx + b + nx + d = (m + n)x + (b + d),

which is linear. f (x)g(x) is not generally linear. Take, for example, f (x) = g(x) = x. Then f (x)g(x) = x2.

Show that if f (x) and g(x) are linear functions such that f (0) = g(0) and f (1) = g(1), then f (x) = g(x).55. Show that �y/�x for the function f (x) = x2 over the interval [x1, x2] is not a constant, but depends on the interval.
Determine the exact dependence of �y/�x on x1 and x2.

solution For x2,
�y

�x
= x2

2 − x2
1

x2 − x1
= x2 + x1.

Use Eq. (2) to derive the quadratic formula for the roots of ax2 + bx + c = 0.
57. Let a, c 	= 0. Show that the roots of

ax2 + bx + c = 0 and cx2 + bx + a = 0

are reciprocals of each other.

solution Let r1 and r2 be the roots of ax2 + bx + c and r3 and r4 be the roots of cx2 + bx + a. Without loss of
generality, let

r1 = −b +
√

b2 − 4ac

2a
⇒ 1

r1
= 2a

−b +
√

b2 − 4ac
· −b −

√
b2 − 4ac

−b −
√

b2 − 4ac

= 2a(−b −
√

b2 − 4ac)

b2 − b2 + 4ac
= −b −

√
b2 − 4ac

2c
= r4.

Similarly, you can show
1

r2
= r3.

Show, by completing the square, that the parabola

y = ax2 + bx + c

is congruent to y = ax2 by a vertical and horizontal translation.

59. Prove Viète’s Formulas: The quadratic polynomial with α and β as roots is x2 + bx + c, where b = −α − β and
c = αβ.

solution If a quadratic polynomial has roots α and β, then the polynomial is

(x − α)(x − β) = x2 − αx − βx + αβ = x2 + (−α − β)x + αβ.

Thus, b = −α − β and c = αβ.

1.3 The Basic Classes of Functions

Preliminary Questions
1. Give an example of a rational function.

solution One example is
3x2 − 2

7x3 + x − 1
.

2. Is |x| a polynomial function? What about |x2 + 1|?
solution |x| is not a polynomial; however, because x2 + 1 > 0 for all x, it follows that |x2 + 1| = x2 + 1, which is
a polynomial.

3. What is unusual about the domain of the composite function f ◦ g for the functions f (x) = x1/2 and g(x) = −1 − |x|?
solution Recall that (f ◦ g)(x) = f (g(x)). Now, for any real number x, g(x) = −1 − |x| ≤ −1 < 0. Because we
cannot take the square root of a negative number, it follows that f (g(x)) is not defined for any real number. In other
words, the domain of f (g(x)) is the empty set.

4. Is f (x) = ( 1
2

)x increasing or decreasing?

solution The function f (x) = ( 1
2 )x is an exponential function with base b = 1

2 < 1. Therefore, f is a decreasing
function.

5. Give an example of a transcendental function.

solution One possibility is f (x) = ex − sin x.
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Exercises
In Exercises 1–12, determine the domain of the function.

1. f (x) = x1/4

solution x ≥ 0

g(t) = t2/33. f (x) = x3 + 3x − 4

solution All reals

h(z) = z3 + z−3
5. g(t) = 1

t + 2

solution t 	= −2

f (x) = 1

x2 + 4

7. G(u) = 1

u2 − 4

solution u 	= ±2

f (x) =
√

x

x2 − 9

9. f (x) = x−4 + (x − 1)−3

solution x 	= 0, 1

F(s) = sin

(
s

s + 1

)11. g(y) = 10
√

y+y−1

solution y > 0

f (x) = x + x−1

(x − 3)(x + 4)

In Exercises 13–24, identify each of the following functions as polynomial, rational, algebraic, or transcendental.

13. f (x) = 4x3 + 9x2 − 8

solution Polynomial

f (x) = x−4
15. f (x) = √

x

solution Algebraic

f (x) =
√

1 − x217. f (x) = x2

x + sin x

solution Transcendental

f (x) = 2x19. f (x) = 2x3 + 3x

9 − 7x2

solution Rational

f (x) = 3x − 9x−1/2

9 − 7x2

21. f (x) = sin(x2)

solution Transcendental

f (x) = x√
x + 1

23. f (x) = x2 + 3x−1

solution Rational

f (x) = sin(3x)25. Is f (x) = 2x2
a transcendental function?

solution Yes.

Show that f (x) = x2 + 3x−1 and g(x) = 3x3 − 9x + x−2 are rational functions—that is, quotients of polyno-
mials.

In Exercises 27–34, calculate the composite functions f ◦ g and g ◦ f , and determine their domains.

27. f (x) = √
x, g(x) = x + 1

solution f (g(x)) = √
x + 1; D: x ≥ −1, g(f (x)) = √

x + 1; D: x ≥ 0

f (x) = 1

x
, g(x) = x−4

29. f (x) = 2x , g(x) = x2

solution f (g(x)) = 2x2
; D: R, g(f (x)) = (2x)2 = 22x ; D: R

f (x) = |x|, g(θ) = sin θ
31. f (θ) = cos θ , g(x) = x3 + x2

solution f (g(x)) = cos(x3 + x2); D: R, g(f (θ)) = cos3 θ + cos2 θ ; D: R

f (x) = 1

x2 + 1
, g(x) = x−233. f (t) = 1√

t
, g(t) = −t2

solution f (g(t)) = 1√
−t2

; D: Not valid for any t , g(f (t)) = −
(

1√
t

)2 = − 1
t ; D: t > 0

f (t) = √
t , g(t) = 1 − t3
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35. The population (in millions) of a country as a function of time t (years) is P(t) = 30.20.1t . Show that the population
doubles every 10 years. Show more generally that for any positive constants a and k, the function g(t) = a2kt doubles
after 1/k years.

solution Let P(t) = 30 · 20.1t . Then

P(t + 10) = 30 · 20.1(t+10) = 30 · 20.1t+1 = 2(30 · 20.1t ) = 2P(t).

Hence, the population doubles in size every 10 years. In the more general case, let g(t) = a2kt . Then

g

(
t + 1

k

)
= a2k(t+1/k) = a2kt+1 = 2a2kt = 2g(t).

Hence, the function g doubles after 1/k years.

Find all values of c such that f (x) = x + 1

x2 + 2cx + 4
has domain R.Further Insights and Challenges

In Exercises 37–43, we define the first difference δf of a function f (x) by δf (x) = f (x + 1) − f (x).

37. Show that if f (x) = x2, then δf (x) = 2x + 1. Calculate δf for f (x) = x and f (x) = x3.

solution f (x) = x2: δf (x) = f (x + 1) − f (x) = (x + 1)2 − x2 = 2x + 1
f (x) = x: δf (x) = x + 1 − x = 1
f (x) = x3: δf (x) = (x + 1)3 − x3 = 3x2 + 3x + 1

Show that δ(10x) = 9 · 10x and, more generally, that δ(bx) = (b − 1)bx .
39. Show that for any two functions f and g, δ(f + g) = δf + δg and δ(cf ) = cδ(f ), where c is any constant.

solution δ(f + g) = (f (x + 1) + g(x + 1)) − (f (x) − g(x))

= (f (x + 1) − f (x)) + (g(x + 1) − g(x)) = δf (x) + δg(x)

δ(cf ) = cf (x + 1) − cf (x) = c(f (x + 1) − f (x)) = cδf (x).

Suppose we can find a function P(x) such that δP = (x + 1)k and P(0) = 0. Prove that P(1) = 1k , P(2) =
1k + 2k , and, more generally, for every whole number n,

P(n) = 1k + 2k + · · · + nk

41. First show that

P(x) = x(x + 1)

2

satisfies δP = (x + 1). Then apply Exercise 40 to conclude that

1 + 2 + 3 + · · · + n = n(n + 1)

2

solution Let P(x) = x(x + 1)/2. Then

δP (x) = P(x + 1) − P(x) = (x + 1)(x + 2)

2
− x(x + 1)

2
= (x + 1)(x + 2 − x)

2
= x + 1.

Also, note that P(0) = 0. Thus, by Exercise 40, with k = 1, it follows that

P(n) = n(n + 1)

2
= 1 + 2 + 3 + · · · + n.

Calculate δ(x3), δ(x2), and δ(x). Then find a polynomial P(x) of degree 3 such that δP = (x + 1)2 and P(0) = 0.
Conclude that P(n) = 12 + 22 + · · · + n2.

43. This exercise combined with Exercise 40 shows that for all whole numbers k, there exists a polynomial P(x) satisfying
Eq. (1). The solution requires the Binomial Theorem and proof by induction (see Appendix C).

(a) Show that δ(xk+1) = (k + 1) xk + · · · , where the dots indicate terms involving smaller powers of x.
(b) Show by induction that there exists a polynomial of degree k + 1 with leading coefficient 1/(k + 1):

P(x) = 1

k + 1
xk+1 + · · ·

such that δP = (x + 1)k and P(0) = 0.

solution
(a) By the Binomial Theorem:

δ(xn+1) = (x + 1)n+1 − xn+1 =
(

xn+1 +
(

n + 1
1

)
xn +

(
n + 1

2

)
xn−1 + · · · + 1

)
− xn+1

=
(

n + 1
1

)
xn +

(
n + 1

2

)
xn−1 + · · · + 1

Thus,

δ(xn+1) = (n + 1) xn + · · ·
where the dots indicate terms involving smaller powers of x.
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(b) For k = 0, note that P(x) = x satisfies δP = (x + 1)0 = 1 and P(0) = 0.
Now suppose the polynomial

P(x) = 1

k
xk + pk−1xk−1 + · · · + p1x

which clearly satisfies P(0) = 0 also satisfies δP = (x + 1)k−1. We try to prove the existence of

Q(x) = 1

k + 1
xk+1 + qkx

k + · · · + q1x

such that δQ = (x + 1)k . Observe that Q(0) = 0.
If δQ = (x + 1)k and δP = (x + 1)k−1, then

δQ = (x + 1)k = (x + 1)δP = xδP (x) + δP

By the linearity of δ (Exercise 39), we find δQ − δP = xδP or δ(Q − P) = xδP . By definition,

Q − P = 1

k + 1
xk+1 +

(
qk − 1

k

)
xk + · · · + (q1 − p1)x,

so, by the linearity of δ,

δ(Q − P) = 1

k + 1
δ(xk+1) +

(
qk − 1

k

)
δ(xk) + · · · + (q1 − p1) = x(x + 1)k−1

By part (a),

δ(xk+1) = (k + 1)xk + Lk−1,k−1xk−1 + . . . + Lk−1,1x + 1

δ(xk) = kxk−1 + Lk−2,k−2xk−2 + . . . + Lk−2,1x + 1

...

δ(x2) = 2x + 1

where the Li,j are real numbers for each i, j .
To construct Q, we have to group like powers of x on both sides of Eq. (43b). This yields the system of equations

1

k + 1

(
(k + 1)xk

)
= xk

1

k + 1
Lk−1,k−1xk−1 +

(
qk − 1

k

)
kxk−1 = (k − 1)xk−1

...

1

k + 1
+

(
qk − 1

k

)
+ (qk−1 − pk−1) + · · · + (q1 − p1) = 0.

The first equation is identically true, and the second equation can be solved immediately for qk . Substituting the value
of qk into the third equation of the system, we can then solve for qk−1. We continue this process until we substitute the
values of qk, qk−1, . . . q2 into the last equation, and then solve for q1.

1.4 Trigonometric Functions

Preliminary Questions
1. How is it possible for two different rotations to define the same angle?

solution Working from the same initial radius, two rotations that differ by a whole number of full revolutions will
have the same ending radius; consequently, the two rotations will define the same angle even though the measures of the
rotations will be different.

2. Give two different positive rotations that define the angle π/4.

solution The angle π/4 is defined by any rotation of the form π
4 + 2πk where k is an integer. Thus, two different

positive rotations that define the angle π/4 are

π

4
+ 2π(1) = 9π

4
and

π

4
+ 2π(5) = 41π

4
.
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3. Give a negative rotation that defines the angle π/3.

solution The angle π/3 is defined by any rotation of the form π
3 + 2πk where k is an integer. Thus, a negative rotation

that defines the angle π/3 is

π

3
+ 2π(−1) = −5π

3
.

4. The definition of cos θ using right triangles applies when (choose the correct answer):

(a) 0 < θ <
π

2
(b) 0 < θ < π (c) 0 < θ < 2π

solution The correct response is (a): 0 < θ < π
2 .

5. What is the unit circle definition of sin θ?

solution Let O denote the center of the unit circle, and let P be a point on the unit circle such that the radius OP

makes an angle θ with the positive x-axis. Then, sin θ is the y-coordinate of the point P .

6. How does the periodicity of sin θ and cos θ follow from the unit circle definition?

solution Let O denote the center of the unit circle, and let P be a point on the unit circle such that the radius OP

makes an angle θ with the positive x-axis. Then, cos θ and sin θ are the x- and y-coordinates, respectively, of the point
P . The angle θ + 2π is obtained from the angle θ by making one full revolution around the circle. The angle θ + 2π will
therefore have the radius OP as its terminal side. Thus

cos(θ + 2π) = cos θ and sin(θ + 2π) = sin θ.

In other words, sin θ and cos θ are periodic functions.

Exercises
1. Find the angle between 0 and 2π equivalent to 13π/4.

solution Because 13π/4 > 2π , we repeatedly subtract 2π until we arrive at a radian measure that is between 0 and
2π . After one subtraction, we have 13π/4 − 2π = 5π/4. Because 0 < 5π/4 < 2π , 5π/4 is the angle measure between
0 and 2π that is equivalent to 13π/4.

Describe θ = π/6 by an angle of negative radian measure.
3. Convert from radians to degrees:

(a) 1 (b)
π

3
(c)

5

12
(d) −3π

4
solution

(a) 1

(
180◦
π

)
= 180◦

π
≈ 57.3◦ (b)

π

3

(
180◦
π

)
= 60◦

(c)
5

12

(
180◦
π

)
= 75◦

π
≈ 23.87◦ (d) −3π

4

(
180◦
π

)
= −135◦

Convert from degrees to radians:

(a) 1◦ (b) 30◦ (c) 25◦ (d) 120◦
5. Find the lengths of the arcs subtended by the angles θ and φ radians in Figure 20.

4
q = 0.9

f = 2

FIGURE 20 Circle of radius 4.

solution s = rθ = 4(.9) = 3.6; s = rφ = 4(2) = 8

Calculate the values of the six standard trigonometric functions for the angle θ in Figure 21.
7. Fill in the remaining values of (cos θ, sin θ) for the points in Figure 22.

p
2

0 (0, 0)p

5p
6

7p
6

11p
6

3p
4

5p
4

7p
44p

3
5p
33p

2

2p
3

(     ,    )p
6

 
2
3 1

2

(    ,      ) 
2
31

2
p
3

(     ,      )p
4

 
2
2  

2
2

FIGURE 22
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solution

θ π
2

2π
3

3π
4

5π
6 π 7π

6

(cos θ, sin θ) (0, 1)
(−1

2 ,

√
3

2

) (−√
2

2 ,

√
2

2

) (−√
3

2 , 1
2

)
(−1, 0)

(−√
3

2 , −1
2

)

θ 5π
4

4π
3

3π
2

5π
3

7π
4

11π
6

(cos θ, sin θ)
(−√

2
2 , −√

2
2

) (−1
2 , −√

3
2

)
(0, −1)

(
1
2 , −√

3
2

) (√
2

2 , −√
2

2

) (√
3

2 , −1
2

)

Find the values of the six standard trigonometric functions at θ = 11π/6.In Exercises 9–14, use Figure 22 to find all angles between 0 and 2π satisfying the given condition.

9. cos θ = 1

2

solution θ = π
3 , 5π

3

tan θ = 1
11. tan θ = −1

solution θ = 3π
4 , 7π

4

csc θ = 213. sin x =
√

3

2

solution x = π
3 , 2π

3

sec t = 2
15. Fill in the following table of values:

θ
π

6

π

4

π

3

π

2

2π

3

3π

4

5π

6

tan θ

sec θ

solution

θ
π

6

π

4

π

3

π

2

2π

3

3π

4

5π

6

tan θ
1√
3

1
√

3 und −√
3 −1 − 1√

3

sec θ
2√
3

√
2 2 und −2 −√

2 − 2√
3

Complete the following table of signs:

θ sin θ cos θ tan θ cot θ sec θ csc θ

0 < θ <
π

2
+ +

π

2
< θ < π

π < θ <
3π

2

3π

2
< θ < 2π

17. Show that if tan θ = c and 0 ≤ θ < π/2, then cos θ = 1/
√

1 + c2. Hint: Draw a right triangle whose opposite and
adjacent sides have lengths c and 1.

solution Because 0 ≤ θ < π/2, we can use the definition of the trigonometric functions in terms of right triangles.
tan θ is the ratio of the length of the side opposite the angle θ to the length of the adjacent side. With c = c

1 , we label
the length of the opposite side as c and the length of the adjacent side as 1 (see the diagram below). By the Pythagorean

theorem, the length of the hypotenuse is
√

1 + c2. Finally, we use the fact that cos θ is the ratio of the length of the adjacent
side to the length of the hypotenuse to obtain

cos θ = 1√
1 + c2

.

q

1 + c2
c

1

Suppose that cos θ = 1
3 .

(a) Show that if 0 ≤ θ < π/2, then sin θ = 2
√

2/3 and tan θ = 2
√

2.

(b) Find sin θ and tan θ if 3π/2 ≤ θ < 2π .
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In Exercises 19–24, assume that 0 ≤ θ < π/2.

19. Find sin θ and tan θ if cos θ = 5
13 .

solution Consider the triangle below. The lengths of the side adjacent to the angle θ and the hypotenuse have been

labeled so that cos θ = 5
13 . The length of the side opposite the angle θ has been calculated using the Pythagorean theorem:√

132 − 52 = 12. From the triangle, we see that

sin θ = 12

13
and tan θ = 12

5
.

θ
5

1213

Find cos θ and tan θ if sin θ = 3
5 .

21. Find sin θ , sec θ , and cot θ if tan θ = 2
7 .

solution If tan θ = 2
7 , then cot θ = 7

2 . For the remaining trigonometric functions, consider the triangle below. The

lengths of the sides opposite and adjacent to the angle θ have been labeled so that tan θ = 2
7 . The length of the hypotenuse

has been calculated using the Pythagorean theorem:
√

22 + 72 = √
53. From the triangle, we see that

sin θ = 2√
53

= 2
√

53

53
and sec θ =

√
53

7
.

2
q

53

7

Find sin θ , cos θ , and sec θ if cot θ = 4.23. Find cos 2θ if sin θ = 1
5 .

solution Using the double angle formula cos 2θ = cos2 θ − sin2 θ and the fundamental identity sin2 θ + cos2 θ = 1,

we find that cos 2θ = 1 − 2 sin2 θ . Thus, cos 2θ = 1 − 2(1/25) = 23/25.

Find sin 2θ and cos 2θ if tan θ = √
2.

25. Find cos θ and tan θ if sin θ = 0.4 and π/2 ≤ θ < π .

solution We can determine the “magnitude” of cos θ and tan θ using the triangle shown below. The lengths of the

side opposite the angle θ and the hypotenuse have been labeled so that sin θ = 0.4 = 2
5 . The length of the side adjacent

to the angle θ was calculated using the Pythagorean theorem:
√

52 − 22 = √
21. From the triangle, we see that

|cos θ | =
√

21

5
and |tan θ | = 2√

21
= 2

√
21

21
.

Because π/2 ≤ θ < π , both cos θ and tan θ are negative; consequently,

cos θ = −
√

21

5
and tan θ = −2

√
21

21
.

2
5

q

21

Find cos θ and sin θ if tan θ = 4 and π ≤ θ < 3π/2.27. Find cos θ if cot θ = 4
3 and sin θ < 0.

solution We can determine the “magnitude” of cos θ using the triangle shown below. The lengths of the sides opposite

and adjacent to the angle θ have been labeled so that cot θ = 4
3 . The length of the hypotenuse was calculated using the

Pythagorean theorem:
√

32 + 42 = 5. From the triangle, we see that

|cos θ | = 4

5
.

Because cot θ = 4
3 > 0 and sin θ < 0, the angle θ must be in the third quadrant; consequently, cos θ will be negative and

cos θ = −4

5
.
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4

3
5

 
θ

Find tan θ if sec θ = √
5 and sin θ < 0.

29. Find the values of sin θ , cos θ , and tan θ for the angles corresponding to the eight points in Figure 23(A) and (B).

(0.3965, 0.918)

(A) (B)

(0.3965, 0.918)

FIGURE 23

solution Let’s start with the four points in Figure 23(A).

• The point in the first quadrant has coordinates (0.3965, 0.918). Therefore,

sin θ = 0.918, cos θ = 0.3965, and tan θ = 0.918

0.3965
= 2.3153.

• The coordinates of the point in the second quadrant are (−0.918, 0.3965). Therefore,

sin θ = 0.3965, cos θ = −0.918, and tan θ = 0.3965

−0.918
= −0.4319.

• Because the point in the third quadrant is symmetric to the point in the first quadrant with respect to the origin, its
coordinates are (−0.3965, −0.918). Therefore,

sin θ = −0.918, cos θ = −0.3965, and tan θ = −0.918

−0.3965
= 2.3153.

• Because the point in the fourth quadrant is symmetric to the point in the second quadrant with respect to the origin,
its coordinates are (0.918, −0.3965). Therefore,

sin θ = −0.3965, cos θ = 0.918, and tan θ = −0.3965

0.918
= −0.4319.

Now consider the four points in Figure 23(B).

• The point in the first quadrant has coordinates (0.3965, 0.918). Therefore,

sin θ = 0.918, cos θ = 0.3965, and tan θ = 0.918

0.3965
= 2.3153.

• The point in the second quadrant is a reflection through the y-axis of the point in the first quadrant. Its coordinates
are therefore (−0.3965, 0.918) and

sin θ = 0.918, cos θ = −0.3965, and tan θ = 0.918

0.3965
= −2.3153.

• Because the point in the third quadrant is symmetric to the point in the first quadrant with respect to the origin, its
coordinates are (−0.3965, −0.918). Therefore,

sin θ = −0.918, cos θ = −0.3965, and tan θ = −0.918

−0.3965
= 2.3153.

• Because the point in the fourth quadrant is symmetric to the point in the second quadrant with respect to the origin,
its coordinates are (0.3965, −0.918). Therefore,

sin θ = −0.918, cos θ = 0.3965, and tan θ = −0.918

0.3965
= −2.3153.
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Refer to Figure 24(A). Express the functions sin θ , tan θ , and csc θ in terms of c.
31. Refer to Figure 24(B). Compute cos ψ , sin ψ , cot ψ , and csc ψ .

c
1 1

0.3

(B)(A)

θ ψ

FIGURE 24

solution By the Pythagorean theorem, the length of the side opposite the angle ψ in Figure 24(B) is
√

1 − 0.32 =√
0.91. Consequently,

cos ψ = 0.3

1
= 0.3, sin ψ =

√
0.91

1
= √

0.91, cot ψ = 0.3√
0.91

and csc ψ = 1√
0.91

.

Express cos
(
θ + π

2

)
and sin

(
θ + π

2

)
in terms of cos θ and sin θ . Hint: Find the relation between the coordinates

(a, b) and (c, d) in Figure 25.

33. Use the addition formula to compute cos
(
π
3 + π

4

)
exactly.

solution

cos
(π

3
+ π

4

)
= cos

π

3
cos

π

4
− sin

π

3
sin

π

4

= 1

2
·
√

2

2
−

√
3

2
·
√

2

2
=

√
2 − √

6

4
.

Use the addition formula to compute sin
(
π
3 − π

4

)
exactly.In Exercises 35–38, sketch the graph over [0, 2π ].

35. 2 sin 4θ

solution

−2

−1

2

1

y

x
654321

cos
(

2
(
θ − π

2

))37. cos
(

2θ − π

2

)
solution

−1

−0.5

1

0.5

y

x
654321

sin
(

2
(
θ − π

2

)
+ π

)
+ 2

39. How many points lie on the intersection of the horizontal line y = c and the graph of y = sin x for 0 ≤ x < 2π?
Hint: The answer depends on c.

solution Recall that for any x, −1 ≤ sin x ≤ 1. Thus, if |c| > 1, the horizontal line y = c and the graph of y = sin x

never intersect. If c = +1, then y = c and y = sin x intersect at the peak of the sine curve; that is, they intersect at
x = π

2 . On the other hand, if c = −1, then y = c and y = sin x intersect at the bottom of the sine curve; that is, they

intersect at x = 3π
2 . Finally, if |c| < 1, the graphs of y = c and y = sin x intersect twice.

How many points lie on the intersection of the horizontal line y = c and the graph of y = tan x for 0 ≤ x < 2π?In Exercises 41–44, solve for 0 ≤ θ < 2π (see Example 4).

41. sin 2θ + sin 3θ = 0

solution sin α = − sin β when α = −β + 2πk or α = π + β + 2πk. Substituting α = 2θ and β = 3θ , we have

either 2θ = −3θ + 2πk or 2θ = π + 3θ + 2πk. Solving each of these equations for θ yields θ = 2
5πk or θ = −π − 2πk.

The solutions on the interval 0 ≤ θ < 2π are then

θ = 0,
2π

5
,

4π

5
, π,

6π

5
,

8π

5
.

sin θ = sin 2θ
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43. cos 4θ + cos 2θ = 0

solution cos α = − cos β when α + β = π + 2πk or α = β + π + 2πk. Substituting α = 4θ and β = 2θ , we have
either 6θ = π + 2πk or 4θ = 2θ + π + 2πk. Solving each of these equations for θ yields θ = π

6 + π
3 k or θ = π

2 + πk.
The solutions on the interval 0 ≤ θ < 2π are then

θ = π

6
,
π

2
,

5π

6
,

7π

6
,

3π

2
,

11π

6
.

sin θ = cos 2θIn Exercises 45–54, derive the identity using the identities listed in this section.

45. cos 2θ = 2 cos2 θ − 1

solution Starting from the double angle formula for cosine, cos2 θ = 1
2 (1 + cos 2θ), we solve for cos 2θ . This gives

2 cos2 θ = 1 + cos 2θ and then cos 2θ = 2 cos2 θ − 1.

cos2 θ

2
= 1 + cos θ

2
47. sin

θ

2
=

√
1 − cos θ

2

solution Substitute x = θ/2 into the double angle formula for sine, sin2 x = 1
2 (1 − cos 2x) to obtain sin2

(
θ

2

)
=

1 − cos θ

2
. Taking the square root of both sides yields sin

(
θ

2

)
=

√
1 − cos θ

2
.

sin(θ + π) = − sin θ
49. cos(θ + π) = − cos θ

solution From the addition formula for the cosine function, we have

cos(θ + π) = cos θ cos π − sin θ sin π = cos θ(−1) = − cos θ

tan x = cot
(π

2
− x

)51. tan(π − θ) = − tan θ

solution Using Exercises 48 and 49,

tan(π − θ) = sin(π − θ)

cos(π − θ)
= sin(π + (−θ))

cos(π + (−θ))
= − sin(−θ)

− cos(−θ)
= sin θ

− cos θ
= − tan θ.

The second to last equality occurs because sin x is an odd function and cos x is an even function.

tan 2x = 2 tan x

1 − tan2 x

53. tan x = sin 2x

1 + cos 2x

solution Using the addition formula for the sine function, we find

sin 2x = sin(x + x) = sin x cos x + cos x sin x = 2 sin x cos x.

By Exercise 45, we know that cos 2x = 2 cos2 x − 1. Therefore,

sin 2x

1 + cos 2x
= 2 sin x cos x

1 + 2 cos2 x − 1
= 2 sin x cos x

2 cos2 x
= sin x

cos x
= tan x.

sin2 x cos2 x = 1 − cos 4x

8

55. Use Exercises 48 and 49 to show that tan θ and cot θ are periodic with period π .

solution By Exercises 48 and 49,

tan(θ + π) = sin(θ + π)

cos(θ + π)
= − sin θ

− cos θ
= tan θ,

and

cot(θ + π) = cos(θ + π)

sin(θ + π)
= − cos θ

− sin θ
= cot θ.

Thus, both tan θ and cot θ are periodic with period π .

Use the identity of Exercise 45 to show that cos
π

8
is equal to

√
1

2
+

√
2

4
.

57. Use the Law of Cosines to find the distance from P to Q in Figure 26.

P

Q

8

10
7π/9

FIGURE 26

solution By the Law of Cosines, the distance from P to Q is√
102 + 82 − 2(10)(8) cos

7π

9
= 16.928.
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Further Insights and Challenges

Use Figure 27 to derive the Law of Cosines from the Pythagorean Theorem.
59. Use the addition formula to prove

cos 3θ = 4 cos3 θ − 3 cos θ

solution

cos 3θ = cos(2θ + θ) = cos 2θ cos θ − sin 2θ sin θ = (2 cos2 θ − 1) cos θ − (2 sin θ cos θ) sin θ

= cos θ(2 cos2 θ − 1 − 2 sin2 θ) = cos θ(2 cos2 θ − 1 − 2(1 − cos2 θ))

= cos θ(2 cos2 θ − 1 − 2 + 2 cos2 θ) = 4 cos3 θ − 3 cos θ

Use the addition formulas for sine and cosine to prove

tan(a + b) = tan a + tan b

1 − tan a tan b

cot(a − b) = cot a cot b + 1

cot b − cot a

61. Let θ be the angle between the line y = mx + b and the x-axis [Figure 28(A)]. Prove that m = tan θ .

y = mx + b

q x

r

s

(A)

y

q
x

(B)

y L2

L1

FIGURE 28

solution Using the distances labeled in Figure 28(A), we see that the slope of the line is given by the ratio r/s. The
tangent of the angle θ is given by the same ratio. Therefore, m = tan θ .

Let L1 and L2 be the lines of slope m1 and m2 [Figure 28(B)]. Show that the angle θ between L1 and L2 satisfies

cot θ = m2m1 + 1

m2 − m1
.

63. Perpendicular Lines Use Exercise 62 to prove that two lines with nonzero slopes m1 and m2 are perpendicular if
and only if m2 = −1/m1.

solution If lines are perpendicular, then the angle between them is θ = π/2 ⇒

cot(π/2) = 1 + m1m2

m1 − m2

0 = 1 + m1m2

m1 − m2

⇒ m1m2 = −1 ⇒ m1 = − 1

m2

Apply the double-angle formula to prove:

(a) cos
π

8
= 1

2

√
2 + √

2

(b) cos
π

16
= 1

2

√
2 +

√
2 + √

2

Guess the values of cos
π

32
and of cos

π

2n
for all n.

1.5 Technology: Calculators and Computers

Preliminary Questions
1. Is there a definite way of choosing the optimal viewing rectangle, or is it best to experiment until you find a viewing

rectangle appropriate to the problem at hand?

solution It is best to experiment with the window size until one is found that is appropriate for the problem at hand.

2. Describe the calculator screen produced when the function y = 3 + x2 is plotted with viewing rectangle:

(a) [−1, 1] × [0, 2] (b) [0, 1] × [0, 4]
solution

(a) Using the viewing rectangle [−1, 1] by [0, 2], the screen will display nothing as the minimum value of y = 3 + x2

is y = 3.

(b) Using the viewing rectangle [0, 1] by [0, 4], the screen will display the portion of the parabola between the points
(0, 3) and (1, 4).

3. According to the evidence in Example 4, it appears that f (n) = (1 + 1/n)n never takes on a value greater than 3 for
n > 0. Does this evidence prove that f (n) ≤ 3 for n > 0?

solution No, this evidence does not constitute a proof that f (n) ≤ 3 for n ≥ 0.

4. How can a graphing calculator be used to find the minimum value of a function?

solution Experiment with the viewing window to zoom in on the lowest point on the graph of the function. The
y-coordinate of the lowest point on the graph is the minimum value of the function.
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Exercises
The exercises in this section should be done using a graphing calculator or computer algebra system.

1. Plot f (x) = 2x4 + 3x3 − 14x2 − 9x + 18 in the appropriate viewing rectangles and determine its roots.

solution Using a viewing rectangle of [−4, 3] by [−20, 20], we obtain the plot below.

−10

−20

20

10

y

x
−4 −2−3 −1 1 2 3

Now, the roots of f (x) are the x-intercepts of the graph of y = f (x). From the plot, we can identify the x-intercepts as
−3, −1.5, 1, and 2. The roots of f (x) are therefore x = −3, x = −1.5, x = 1, and x = 2.

How many solutions does x3 − 4x + 8 = 0 have?
3. How many positive solutions does x3 − 12x + 8 = 0 have?

solution The graph of y = x3 − 12x + 8 shown below has two x-intercepts to the right of the origin; therefore the

equation x3 − 12x + 8 = 0 has two positive solutions.

−20
−40
−60

60
40
20

y

x
−4 −2 42

Does cos x + x = 0 have a solution? A positive solution?
5. Find all the solutions of sin x = √

x for x > 0.

solution Solutions to the equation sin x = √
x correspond to points of intersection between the graphs of y = sin x

and y = √
x. The two graphs are shown below; the only point of intersection is at x = 0. Therefore, there are no solutions

of sin x = √
x for x > 0.

x

1

2

54321

y

−1

How many solutions does cos x = x2 have?
7. Let f (x) = (x − 100)2 + 1000. What will the display show if you graph f (x) in the viewing rectangle [−10, 10]

by [−10, 10]? Find an appropriate viewing rectangle.

solution Because (x − 100)2 ≥ 0 for all x, it follows that f (x) = (x − 100)2 + 1000 ≥ 1000 for all x. Thus, using
a viewing rectangle of [−10, 10] by [−10, 10] will display nothing. The minimum value of the function occurs when
x = 100, so an appropriate viewing rectangle would be [50, 150] by [1000, 2000].

Plot f (x) = 8x + 1

8x − 4
in an appropriate viewing rectangle. What are the vertical and horizontal asymptotes?

9. Plot the graph of f (x) = x/(4 − x) in a viewing rectangle that clearly displays the vertical and horizontal asymptotes.

solution From the graph of y = x

4 − x
shown below, we see that the vertical asymptote is x = 4 and the horizontal

asymptote is y = −1.

−2

2

y

x
−8 −4

4 8 12 16

Illustrate local linearity for f (x) = x2 by zooming in on the graph at x = 0.5 (see Example 6).
11. Plot f (x) = cos(x2) sin x for 0 ≤ x ≤ 2π . Then illustrate local linearity at x = 3.8 by choosing appropriate viewing
rectangles.

solution The following three graphs display f (x) = cos(x2) sin x over the intervals [0, 2π ], [3.5, 4.1] and
[3.75, 3.85]. The final graph looks like a straight line.



June 7, 2011 LTSV SSM Second Pass

S E C T I O N 1.5 Technology: Calculators and Computers 25

x

1

−1

1 2 3 4 5 6

y

x

1

−1

3.5 3.6 3.7 3.8 3.9 4

y

x

−0.2

0.4

0.2

3.76 3.83.78 3.82 3.84

y

If P0 dollars are deposited in a bank account paying 5% interest compounded monthly, then the account has value

P0

(
1 + 0.05

12

)N
after N months. Find, to the nearest integer N , the number of months after which the account value

doubles.

In Exercises 13–18, investigate the behavior of the function as n or x grows large by making a table of function values
and plotting a graph (see Example 4). Describe the behavior in words.

13. f (n) = n1/n

solution The table and graphs below suggest that as n gets large, n1/n approaches 1.

n n1/n

10 1.258925412
102 1.047128548
103 1.006931669
104 1.000921458
105 1.000115136
106 1.000013816

x

y

1

0 2 4 6 8 10
x

y

1

0 200 400 600 800 1000

f (n) = 4n + 1

6n − 5
15. f (n) =

(
1 + 1

n

)n2

solution The table and graphs below suggest that as n gets large, f (n) tends toward ∞.

n

(
1 + 1

n

)n2

10 13780.61234
102 1.635828711 × 1043

103 1.195306603 × 10434

104 5.341783312 × 104342

105 1.702333054 × 1043429

106 1.839738749 × 10434294

x

y

10,000

0 2 4 6 8 10
x

y

1 × 1043

0 20 40 60 80 100

f (x) =
(

x + 6

x − 4

)x17. f (x) =
(

x tan
1

x

)x

solution The table and graphs below suggest that as x gets large, f (x) approaches 1.

x

(
x tan

1

x

)x

10 1.033975759
102 1.003338973
103 1.000333389
104 1.000033334
105 1.000003333
106 1.000000333
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x

y

1
1.1
1.2
1.3
1.4
1.5

5 10 15 20
x

20 40 60 80 100

y

1
1.1
1.2
1.3
1.4
1.5

f (x) =
(

x tan
1

x

)x2
19. The graph of f (θ) = A cos θ + B sin θ is a sinusoidal wave for any constants A and B. Confirm this for (A, B) =
(1, 1), (1, 2), and (3, 4) by plotting f (θ).

solution The graphs of f (θ) = cos θ + sin θ , f (θ) = cos θ + 2 sin θ and f (θ) = 3 cos θ + 4 sin θ are shown below.

y

x
−2 2

(A, B) = (1, 1)

4 6 8

1

−1

y

x
−2 2

(A, B) = (1, 2)

4 6 8

2

1

−2

−1

y

x
−2 2

(A, B) = (3, 4)

4 6 8

4

2

−4

−2

Find the maximum value of f (θ) for the graphs produced in Exercise 19. Can you guess the formula for the
maximum value in terms of A and B?

21. Find the intervals on which f (x) = x(x + 2)(x − 3) is positive by plotting a graph.

solution The function f (x) = x(x + 2)(x − 3) is positive when the graph of y = x(x + 2)(x − 3) lies above the
x-axis. The graph of y = x(x + 2)(x − 3) is shown below. Clearly, the graph lies above the x-axis and the function is
positive for x ∈ (−2, 0) ∪ (3, ∞).

−20

−40

20

y

x
−4 −2 2 4

Find the set of solutions to the inequality (x2 − 4)(x2 − 1) < 0 by plotting a graph.Further Insights and Challenges
23. Let f1(x) = x and define a sequence of functions by fn+1(x) = 1

2 (fn(x) + x/fn(x)). For example,

f2(x) = 1
2 (x + 1). Use a computer algebra system to compute fn(x) for n = 3, 4, 5 and plot fn(x) together with

√
x for

x ≥ 0. What do you notice?

solution With f1(x) = x and f2(x) = 1
2 (x + 1), we calculate

f3(x) = 1

2

(
1

2
(x + 1) + x

1
2 (x + 1)

)
= x2 + 6x + 1

4(x + 1)

f4(x) = 1

2

⎛
⎝x2 + 6x + 1

4(x + 1)
+ x

x2+6x+1
4(x+1)

⎞
⎠ = x4 + 28x3 + 70x2 + 28x + 1

8(1 + x)(1 + 6x + x2)

and

f5(x) = 1 + 120x + 1820x2 + 8008x3 + 12870x4 + 8008x5 + 1820x6 + 120x7 + x8

16(1 + x)(1 + 6x + x2)(1 + 28x + 70x2 + 28x3 + x4)
.

A plot of f1(x), f2(x), f3(x), f4(x), f5(x) and
√

x is shown below, with the graph of
√

x shown as a dashed curve. It
seems as if the fn are asymptotic to

√
x.

y

x

4

8

12

4020 60 80 100

Set P0(x) = 1 and P1(x) = x. The Chebyshev polynomials (useful in approximation theory) are defined
inductively by the formula Pn+1(x) = 2xPn(x) − Pn−1(x).

(a) Show that P2(x) = 2x2 − 1.

(b) Compute Pn(x) for 3 ≤ n ≤ 6 using a computer algebra system or by hand and plot Pn(x) over [−1 1]
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CHAPTER REVIEW EXERCISES

1. Express (4, 10) as a set {x : |x − a| < c} for suitable a and c.

solution The center of the interval (4, 10) is 4+10
2 = 7 and the radius is 10−4

2 = 3. Therefore, the interval (4, 10) is
equivalent to the set {x : |x − 7| < 3}.

Express as an interval:

(a) {x : |x − 5| < 4} (b) {x : |5x + 3| ≤ 2}
3. Express {x : 2 ≤ |x − 1| ≤ 6} as a union of two intervals.

solution The set {x : 2 ≤ |x − 1| ≤ 6} consists of those numbers that are at least 2 but at most 6 units from 1. The
numbers larger than 1 that satisfy these conditions are 3 ≤ x ≤ 7, while the numbers smaller than 1 that satisfy these
conditions are −5 ≤ x ≤ −1. Therefore {x : 2 ≤ |x − 1| ≤ 6} = [−5, −1] ∪ [3, 7].

Give an example of numbers x, y such that |x| + |y| = x − y.
5. Describe the pairs of numbers x, y such that |x + y| = x − y.

solution First consider the case when x + y ≥ 0. Then |x + y| = x + y and we obtain the equation x + y = x − y.
The solution of this equation is y = 0. Thus, the pairs (x, 0) with x ≥ 0 satisfy |x + y| = x − y. Next, consider the case
when x + y < 0. Then |x + y| = −(x + y) = −x − y and we obtain the equation −x − y = x − y. The solution of this
equation is x = 0. Thus, the pairs (0, y) with y < 0 also satisfy |x + y| = x − y.

Sketch the graph of y = f (x + 2) − 1, where f (x) = x2 for −2 ≤ x ≤ 2.
In Exercises 7–10, let f (x) be the function shown in Figure 1.

1 2 3 4

1

2

0

3

x

y

FIGURE 1

7. Sketch the graphs of y = f (x) + 2 and y = f (x + 2).

solution The graph of y = f (x) + 2 is obtained by shifting the graph of y = f (x) up 2 units (see the graph below
at the left). The graph of y = f (x + 2) is obtained by shifting the graph of y = f (x) to the left 2 units (see the graph
below at the right).

x

yy

x

1

2

3

4

5

1 2 3 4

f (x) + 2

−1−2
x

yy

x

1

2

3

4

5

1 2 3 4

f (x + 2)

−1−2

Sketch the graphs of y = 1
2f (x) and y = f

( 1
2x

)
.

9. Continue the graph of f (x) to the interval [−4, 4] as an even function.

solution To continue the graph of f (x) to the interval [−4, 4] as an even function, reflect the graph of f (x) across
the y-axis (see the graph below).

−1−4 −2−3
x

1 2 3 4

y

1

2

3

Continue the graph of f (x) to the interval [−4, 4] as an odd function.In Exercises 11–14, find the domain and range of the function.

11. f (x) = √
x + 1

solution The domain of the function f (x) = √
x + 1 is {x : x ≥ −1} and the range is {y : y ≥ 0}.

f (x) = 4

x4 + 1

13. f (x) = 2

3 − x

solution The domain of the function f (x) = 2

3 − x
is {x : x 	= 3} and the range is {y : y 	= 0}.

f (x) =
√

x2 − x + 5
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15. Determine whether the function is increasing, decreasing, or neither:

(a) f (x) = 3−x (b) f (x) = 1

x2 + 1
(c) g(t) = t2 + t (d) g(t) = t3 + t

solution

(a) The function f (x) = 3−x can be rewritten as f (x) = ( 1
3 )x . This is an exponential function with a base less than 1;

therefore, this is a decreasing function.
(b) From the graph of y = 1/(x2 + 1) shown below, we see that this function is neither increasing nor decreasing for all
x (though it is increasing for x < 0 and decreasing for x > 0).

x
−3 −2 −1 1 2 3

y

0.2

0.4

0.6

0.8

1

(c) The graph of y = t2 + t is an upward opening parabola; therefore, this function is neither increasing nor decreasing
for all t . By completing the square we find y = (t + 1

2 )2 − 1
4 . The vertex of this parabola is then at t = − 1

2 , so the

function is decreasing for t < − 1
2 and increasing for t > − 1

2 .

(d) From the graph of y = t3 + t shown below, we see that this is an increasing function.

−20

20

y

x
−1 1 2 3−2−3

Determine whether the function is even, odd, or neither:

(a) f (x) = x4 − 3x2

(b) g(x) = sin(x + 1)

(c) f (x) = 2−x2

In Exercises 17–22, find the equation of the line.

17. Line passing through (−1, 4) and (2, 6)

solution The slope of the line passing through (−1, 4) and (2, 6) is

m = 6 − 4

2 − (−1)
= 2

3
.

The equation of the line passing through (−1, 4) and (2, 6) is therefore y − 4 = 2
3 (x + 1) or 2x − 3y = −14.

Line passing through (−1, 4) and (−1, 6)
19. Line of slope 6 through (9, 1)

solution Using the point-slope form for the equation of a line, the equation of the line of slope 6 and passing through
(9, 1) is y − 1 = 6(x − 9) or 6x − y = 53.

Line of slope − 3
2 through (4, −12)

21. Line through (2, 3) parallel to y = 4 − x

solution The equation y = 4 − x is in slope-intercept form; it follows that the slope of this line is −1. Any line
parallel to y = 4 − x will have the same slope, so we are looking for the equation of the line of slope −1 and passing
through (2, 3). The equation of this line is y − 3 = −(x − 2) or x + y = 5.

Horizontal line through (−3, 5)
23. Does the following table of market data suggest a linear relationship between price and number of homes sold during
a one-year period? Explain.

Price (thousands of $) 180 195 220 240

No. of homes sold 127 118 103 91

solution Examine the slope between consecutive data points. The first pair of data points yields a slope of

118 − 127

195 − 180
= − 9

15
= −3

5
,

while the second pair of data points yields a slope of

103 − 118

220 − 195
= −15

25
= −3

5
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and the last pair of data points yields a slope of

91 − 103

240 − 220
= −12

20
= −3

5
.

Because all three slopes are equal, the data does suggest a linear relationship between price and the number of homes
sold.

Does the following table of revenue data for a computer manufacturer suggest a linear relation between revenue
and time? Explain.

Year 2001 2005 2007 2010

Revenue (billions of $) 13 18 15 11

25. Find the roots of f (x) = x4 − 4x2 and sketch its graph. On which intervals is f (x) decreasing?

solution The roots of f (x) = x4 − 4x2 are obtained by solving the equation x4 − 4x2 = x2(x − 2)(x + 2) = 0,
which yields x = −2, x = 0 and x = 2. The graph of y = f (x) is shown below. From this graph we see that f (x) is
decreasing for x less than approximately −1.4 and for x between 0 and approximately 1.4.

10

20

y

x
−1 1

2 3−2−3

Let h(z) = 2z2 + 12z + 3. Complete the square and find the minimum value of h(z).
27. Let f (x) be the square of the distance from the point (2, 1) to a point (x, 3x + 2) on the line y = 3x + 2. Show that
f (x) is a quadratic function, and find its minimum value by completing the square.

solution Let f (x) denote the square of the distance from the point (2, 1) to a point (x, 3x + 2) on the line y = 3x + 2.
Then

f (x) = (x − 2)2 + (3x + 2 − 1)2 = x2 − 4x + 4 + 9x2 + 6x + 1 = 10x2 + 2x + 5,

which is a quadratic function. Completing the square, we find

f (x) = 10

(
x2 + 1

5
x + 1

100

)
+ 5 − 1

10
= 10

(
x + 1

10

)2
+ 49

10
.

Because (x + 1
10 )2 ≥ 0 for all x, it follows that f (x) ≥ 49

10 for all x. Hence, the minimum value of f (x) is 49
10 .

Prove that x2 + 3x + 3 ≥ 0 for all x.
In Exercises 29–34, sketch the graph by hand.

29. y = t4

solution

x
−1 −0.5 10.5

y

0.2

0.4

0.6

0.8

1

y = t531. y = sin
θ

2

solution y

x
−5 5 10

0.5

1

−0.5

−1

y = 10−x33. y = x1/3

solution

x
−1−2−3−4 1 2 3 4

y

1

2

−1

−2

y = 1

x2



June 7, 2011 LTSV SSM Second Pass

30 C H A P T E R 1 PRECALCULUS REVIEW

35. Show that the graph of y = f
( 1

3x − b
)

is obtained by shifting the graph of y = f
( 1

3x
)

to the right 3b units. Use this

observation to sketch the graph of y = ∣∣ 1
3x − 4

∣∣.
solution Let g(x) = f ( 1

3x). Then

g(x − 3b) = f

(
1

3
(x − 3b)

)
= f

(
1

3
x − b

)
.

Thus, the graph of y = f ( 1
3x − b) is obtained by shifting the graph of y = f ( 1

3x) to the right 3b units.

The graph of y = | 1
3x − 4| is the graph of y = | 1

3x| shifted right 12 units (see the graph below).

y

x

1

2

3

4

0 5 10 15 20

Let h(x) = cos x and g(x) = x−1. Compute the composite functions h(g(x)) and g(h(x)), and find their domains.
37. Find functions f and g such that the function

f (g(t)) = (12t + 9)4

solution One possible choice is f (t) = t4 and g(t) = 12t + 9. Then

f (g(t)) = f (12t + 9) = (12t + 9)4

as desired.

Sketch the points on the unit circle corresponding to the following three angles, and find the values of the six
standard trigonometric functions at each angle:

(a)
2π

3
(b)

7π

4
(c)

7π

6

39. What is the period of the function g(θ) = sin 2θ + sin θ
2 ?

solution The function sin 2θ has a period of π , and the function sin(θ/2) has a period of 4π . Because 4π is a multiple
of π , the period of the function g(θ) = sin 2θ + sin θ/2 is 4π .

Assume that sin θ = 4
5 , where π/2 < θ < π . Find:

(a) tan θ (b) sin 2θ (c) csc
θ

2

41. Give an example of values a, b such that

(a) cos(a + b) 	= cos a + cos b (b) cos
a

2
	= cos a

2
solution
(a) Take a = b = π/2. Then cos(a + b) = cos π = −1 but

cos a + cos b = cos
π

2
+ cos

π

2
= 0 + 0 = 0.

(b) Take a = π . Then

cos
(a

2

)
= cos

(π

2

)
= 0

but

cos a

2
= cos π

2
= −1

2
= −1

2
.

Let f (x) = cos x. Sketch the graph of y = 2f
(

1
3x − π

4

)
for 0 ≤ x ≤ 6π .

43. Solve sin 2x + cos x = 0 for 0 ≤ x < 2π .

solution Using the double angle formula for the sine function, we rewrite the equation as 2 sin x cos x + cos x =
cos x(2 sin x + 1) = 0. Thus, either cos x = 0 or sin x = −1/2. From here we see that the solutions are x = π/2,
x = 7π/6, x = 3π/2 and x = 11π/6.

How does h(n) = n2/2n behave for large whole-number values of n? Does h(n) tend to infinity?
45. Use a graphing calculator to determine whether the equation cos x = 5x2 − 8x4 has any solutions.

solution The graphs of y = cos x and y = 5x2 − 8x4 are shown below. Because the graphs do not intersect, there

are no solutions to the equation cos x = 5x2 − 8x4.

x
−1 1

y

y = cos x

y = 5x2 − 8x4

1

−1

Using a graphing calculator, find the number of real roots and estimate the largest root to two decimal places:

(a) f (x) = 1.8x4 − x5 − x

(b) g(x) = 1.7x4 − x5 − x
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2.1 Limits, Rates of Change, and Tangent Lines

Preliminary Questions
1. Average velocity is equal to the slope of a secant line through two points on a graph. Which graph?

solution Average velocity is the slope of a secant line through two points on the graph of position as a function of
time.

2. Can instantaneous velocity be defined as a ratio? If not, how is instantaneous velocity computed?

solution Instantaneous velocity cannot be defined as a ratio. It is defined as the limit of average velocity as time
elapsed shrinks to zero.

3. What is the graphical interpretation of instantaneous velocity at a moment t = t0?

solution Instantaneous velocity at time t = t0 is the slope of the line tangent to the graph of position as a function of
time at t = t0.

4. What is the graphical interpretation of the following statement? The average rate of change approaches the instanta-
neous rate of change as the interval [x0, x1] shrinks to x0.

solution The slope of the secant line over the interval [x0, x1] approaches the slope of the tangent line at x = x0.

5. The rate of change of atmospheric temperature with respect to altitude is equal to the slope of the tangent line to a
graph. Which graph? What are possible units for this rate?

solution The rate of change of atmospheric temperature with respect to altitude is the slope of the line tangent to the
graph of atmospheric temperature as a function of altitude. Possible units for this rate of change are ◦F/ft or ◦C/m.

Exercises
1. A ball dropped from a state of rest at time t = 0 travels a distance s(t) = 4.9t2 m in t seconds.

(a) How far does the ball travel during the time interval [2, 2.5]?
(b) Compute the average velocity over [2, 2.5].
(c) Compute the average velocity for the time intervals in the table and estimate the ball’s instantaneous velocity at t = 2.

Interval [2, 2.01] [2, 2.005] [2, 2.001] [2, 2.00001]
Average
velocity

solution

(a) During the time interval [2, 2.5], the ball travels �s = s(2.5) − s(2) = 4.9(2.5)2 − 4.9(2)2 = 11.025 m.
(b) The average velocity over [2, 2.5] is

�s

�t
= s(2.5) − s(2)

2.5 − 2
= 11.025

0.5
= 22.05 m/s.

(c)
time interval [2, 2.01] [2, 2.005] [2, 2.001] [2, 2.00001]

average velocity 19.649 19.6245 19.6049 19.600049

The instantaneous velocity at t = 2 is 19.6 m/s.

A wrench released from a state of rest at time t = 0 travels a distance s(t) = 4.9t2 m in t seconds. Estimate the
instantaneous velocity at t = 3.

3. Let v = 20
√

T as in Example 2. Estimate the instantaneous rate of change of v with respect to T when T = 300 K.

solution

T interval [300, 300.01] [300, 300.005]
average rate of change 0.577345 0.577348

T interval [300, 300.001] [300, 300.00001]
average rate of change 0.57735 0.57735

The instantaneous rate of change is approximately 0.57735 m/(s · K).

31
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Compute �y/�x for the interval [2, 5], where y = 4x − 9. What is the instantaneous rate of change of y with
respect to x at x = 2?

In Exercises 5 and 6, a stone is tossed vertically into the air from ground level with an initial velocity of 15 m/s. Its height
at time t is h(t) = 15t − 4.9t2 m.

5. Compute the stone’s average velocity over the time interval [0.5, 2.5] and indicate the corresponding secant line on
a sketch of the graph of h(t).

solution The average velocity is equal to

h(2.5) − h(0.5)

2
= 0.3.

The secant line is plotted with h(t) below.

2

0.5 1 1.5 2 2.5 3

4
6
8

10

t

h

Compute the stone’s average velocity over the time intervals [1, 1.01], [1, 1.001], [1, 1.0001] and [0.99, 1],
[0.999, 1], [0.9999, 1], and then estimate the instantaneous velocity at t = 1.

7. With an initial deposit of $100, the balance in a bank account after t years is f (t) = 100(1.08)t dollars.

(a) What are the units of the rate of change of f (t)?

(b) Find the average rate of change over [0, 0.5] and [0, 1].
(c) Estimate the instantaneous rate of change at t = 0.5 by computing the average rate of change over intervals to the
left and right of t = 0.5.

solution
(a) The units of the rate of change of f (t) are dollars/year or $/yr.

(b) The average rate of change of f (t) = 100(1.08)tover the time interval [t1, t2] is given by

�f

�t
= f (t2) − f (t1)

t2 − t1
.

time interval [0, .5] [0, 1]
average rate of change 7.8461 8

(c)

time interval [0.5, 0.51] [0.5, 0.501] [0.5, 0.5001]
average rate of change 8.0011 7.9983 7.9981

time interval [0.49, 0.5] [0.499, 0.5] [0.4999, 0.5]
average rate of change 7.9949 7.9977 7.998

The rate of change at t = 0.5 is approximately $8/yr.

The position of a particle at time t is s(t) = t3 + t . Compute the average velocity over the time interval [1, 4]
and estimate the instantaneous velocity at t = 1.

9. Figure 8 shows the estimated number N of Internet users in Chile, based on data from the United Nations
Statistics Division.

(a) Estimate the rate of change of N at t = 2003.5.

(b) Does the rate of change increase or decrease as t increases? Explain graphically.

(c) Let R be the average rate of change over [2001, 2005]. Compute R.

(d) Is the rate of change at t = 2002 greater than or less than the average rate R? Explain graphically.

2001 2002 2003 2004 2005

3.5

4.0

4.5

N (Internet users in Chile in millions)

t (years)

FIGURE 8
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solution
(a) The tangent line shown in Figure 8 appears to pass through the points (2002, 3.75) and (2005, 4.6). Thus, the rate of
change of N at t = 2003.5 is approximately

4.6 − 3.75

2005 − 2002
= 0.283

million Internet users per year.
(b) As t increases, we move from left to right along the graph in Figure 8. Moreover, as we move from left to right along
the graph, the slope of the tangent line decreases. Thus, the rate of change decreases as t increases.
(c) The graph of N(t) appear to pass through the points (2001, 3.1) and (2005, 4.5). Thus, the average rate of change
over [2001, 2005] is approximately

R = 4.5 − 3.1

2005 − 2001
= 0.35

million Internet users per year.
(d) For the figure below, we see that the slope of the tangent line at t = 2002 is larger than the slope of the secant line
through the endpoints of the graph of N(t). Thus, the rate of change at t = 2002 is greater than the average rate of
change R.

3.0
2001 2002 2003 2004 2005

x

y

3.5

4.0

4.5

The atmospheric temperature T (in ◦C) at altitude h meters above a certain point on earth is T = 15 − 0.0065h

for h ≤ 12,000 m. What are the average and instantaneous rates of change of T with respect to h? Why are they the
same? Sketch the graph of T for h ≤ 12,000.

In Exercises 11–18, estimate the instantaneous rate of change at the point indicated.

11. P(x) = 3x2 − 5; x = 2

solution

x interval [2, 2.01] [2, 2.001] [2, 2.0001] [1.99, 2] [1.999, 2] [1.9999, 2]
average rate of change 12.03 12.003 12.0003 11.97 11.997 11.9997

The rate of change at x = 2 is approximately 12.

f (t) = 12t − 7; t = −413. y(x) = 1

x + 2
; x = 2

solution

x interval [2, 2.01] [2, 2.001] [2, 2.0001] [1.99, 2] [1.999, 2] [1.9999, 2]
average rate of change −0.0623 −0.0625 −0.0625 −0.0627 −0.0625 −0.0625

The rate of change at x = 2 is approximately −0.06.

y(t) = √
3t + 1; t = 1

15. f (x) = 3x ; x = 0

solution

x interval [−0.01, 0] [−0.001, 0] [−0.0001, 0] [0, 0.01] [0, 0.001] [0, 0.0001]
average rate of change 1.0926 1.098 1.0986 1.1047 1.0992 1.0987

The rate of change is betwenn 1.0986 and 1.0987.

f (x) = 3x ; x = 317. f (x) = sin x; x = π

6
solution

x interval
[
π
6 − 0.01, π

6

] [
π
6 − 0.001, π

6

] [
π
6 − 0.0001, π

6

] [
π
6 , π

6 + 0.01
] [

π
6 , π

6 + 0.001
] [

π
6 , π

6 + 0.001
]

average rate of change 0.8685 0.8663 0.8660 0.8635 0.8658 0.8660

The rate of change at x = π
6 is approximately 0.866.
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f (x) = tan x; x = π

4

19. The height (in centimeters) at time t (in seconds) of a small mass oscillating at the end of a spring is h(t) = 8 cos(12πt).

(a) Calculate the mass’s average velocity over the time intervals [0, 0.1] and [3, 3.5].
(b) Estimate its instantaneous velocity at t = 3.

solution

(a) The average velocity over the time interval [t1, t2] is given by
�h

�t
= h (t2) − h (t1)

t2 − t1
.

time interval [0, 0.1] [3, 3.5]
average velocity −144.721 cm/s 0 cm/s

(b)

time interval [3, 3.0001] [3, 3.00001] [3, 3.000001] [2.9999, 3] [2.99999, 3] [2.999999, 3]
average velocity −0.5685 −0.05685 −0.005685 0.5685 0.05685 0.005685

The instantaneous velocity at t = 3 seconds is approximately 0 cm/s.

The number P(t) of E. coli cells at time t (hours) in a petri dish is plotted in Figure 9.

(a) Calculate the average rate of change of P(t) over the time interval [1, 3] and draw the corresponding secant line.

(b) Estimate the slope m of the line in Figure 9. What does m represent?

21. Assume that the period T (in seconds) of a pendulum (the time required for a complete back-and-forth cycle)

is T = 3
2

√
L, where L is the pendulum’s length (in meters).

(a) What are the units for the rate of change of T with respect to L? Explain what this rate measures.
(b) Which quantities are represented by the slopes of lines A and B in Figure 10?
(c) Estimate the instantaneous rate of change of T with respect to L when L = 3 m.

Period (s)

Length (m)
1 3

AB

2

FIGURE 10 The period T is the time required for a pendulum to swing back and forth.

solution
(a) The units for the rate of change of T with respect to L are seconds per meter. This rate measures the sensitivity of
the period of the pendulum to a change in the length of the pendulum.
(b) The slope of the line B represents the average rate of change in T from L = 1 m to L = 3 m. The slope of the line
A represents the instantaneous rate of change of T at L = 3 m.
(c)

time interval [3, 3.01] [3, 3.001] [3, 3.0001] [2.99, 3] [2.999, 3] [2.9999, 3]
average velocity 0.4327 0.4330 0.4330 0.4334 0.4330 0.4330

The instantaneous rate of change at L = 1 m is approximately 0.4330 s/m.

The graphs in Figure 11 represent the positions of moving particles as functions of time.

(a) Do the instantaneous velocities at times t1, t2, t3 in (A) form an increasing or a decreasing sequence?

(b) Is the particle speeding up or slowing down in (A)?

(c) Is the particle speeding up or slowing down in (B)?

23. An advertising campaign boosted sales of Crunchy Crust frozen pizza to a peak level of S0 dollars per month.
A marketing study showed that after t months, monthly sales declined to

S(t) = S0g(t), where g(t) = 1√
1 + t

.

Do sales decline more slowly or more rapidly as time increases? Answer by referring to a sketch of the graph of g(t)

together with several tangent lines.

solution We notice from the figure below that, as time increases, the slopes of the tangent lines to the graph of g(t)

become less negative. Thus, sales decline more slowly as time increases.

2

0.2

0.4

0.6

0.8

1.0

y

x
4 6 8 10 12
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The fraction of a city’s population infected by a flu virus is plotted as a function of time (in weeks) in Figure 12.

(a) Which quantities are represented by the slopes of lines A and B? Estimate these slopes.

(b) Is the flu spreading more rapidly at t = 1, 2, or 3?

(c) Is the flu spreading more rapidly at t = 4, 5, or 6?

25. The graphs in Figure 13 represent the positions s of moving particles as functions of time t . Match each graph with
a description:

(a) Speeding up

(b) Speeding up and then slowing down

(c) Slowing down

(d) Slowing down and then speeding up

(B)(A) (D)(C)

t

s

t

s

t

s

t

s

FIGURE 13

solution When a particle is speeding up over a time interval, its graph is bent upward over that interval. When a
particle is slowing down, its graph is bent downward over that interval. Accordingly,

• In graph (A), the particle is (c) slowing down.

• In graph (B), the particle is (b) speeding up and then slowing down.

• In graph (C), the particle is (d) slowing down and then speeding up.

• In graph (D), the particle is (a) speeding up.

An epidemiologist finds that the percentage N(t) of susceptible children who were infected on day t during the
first three weeks of a measles outbreak is given, to a reasonable approximation, by the formula (Figure 14)

N(t) = 100t2

t3 + 5t2 − 100t + 380

(a) Draw the secant line whose slope is the average rate of change in infected children over the intervals [4, 6] and
[12, 14]. Then compute these average rates (in units of percent per day).

(b) Is the rate of decline greater at t = 8 or t = 16?

(c) Estimate the rate of change of N(t) on day 12.

27. The fungus Fusarium exosporium infects a field of flax plants through the roots and causes the plants to wilt. Eventually,
the entire field is infected. The percentage f (t) of infected plants as a function of time t (in days) since planting is shown
in Figure 15.

(a) What are the units of the rate of change of f (t) with respect to t? What does this rate measure?

(b) Use the graph to rank (from smallest to largest) the average infection rates over the intervals [0, 12], [20, 32], and
[40, 52].
(c) Use the following table to compute the average rates of infection over the intervals [30, 40], [40, 50], [30, 50].

Days 0 10 20 30 40 50 60
Percent infected 0 18 56 82 91 96 98

(d) Draw the tangent line at t = 40 and estimate its slope.

Percent infected

Days after planting

10 20 30 40 50 60

100

80

60

40

20

FIGURE 15

solution

(a) The units of the rate of change of f (t) with respect to t are percent /day or %/d. This rate measures how quickly the
population of flax plants is becoming infected.

(b) From smallest to largest, the average rates of infection are those over the intervals [40, 52], [0, 12], [20, 32]. This is
because the slopes of the secant lines over these intervals are arranged from smallest to largest.

(c) The average rates of infection over the intervals [30, 40], [40, 50], [30, 50] are 0.9, 0.5, 0.7 %/d, respectively.

(d) The tangent line sketched in the graph below appears to pass through the points (20, 80) and (40, 91). The estimate
of the instantaneous rate of infection at t = 40 days is therefore

91 − 80

40 − 20
= 11

20
= 0.55%/d.
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10 20 30 40 50 60
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80

60

40

20

Let v = 20
√

T as in Example 2. Is the rate of change of v with respect to T greater at low temperatures or high
temperatures? Explain in terms of the graph.

29. If an object in linear motion (but with changing velocity) covers �s meters in �t seconds, then its average
velocity is v0 = �s/�t m/s. Show that it would cover the same distance if it traveled at constant velocity v0 over the
same time interval. This justifies our calling �s/�t the average velocity.

solution At constant velocity, the distance traveled is equal to velocity times time, so an object moving at constant
velocity v0 for �t seconds travels v0δt meters. Since v0 = �s/�t , we find

distance traveled = v0δt =
(

�s

�t

)
�t = �s

So the object covers the same distance �s by traveling at constant velocity v0.

Sketch the graph of f (x) = x(1 − x) over [0, 1]. Refer to the graph and, without making any computations,
find:

(a) The average rate of change over [0, 1]
(b) The (instantaneous) rate of change at x = 1

2
(c) The values of x at which the rate of change is positive

31. Which graph in Figure 16 has the following property: For all x, the average rate of change over [0, x] is
greater than the instantaneous rate of change at x. Explain.

(B)

x

y

(A)

x

y

FIGURE 16

solution

(a) The average rate of change over [0, x] is greater than the instantaneous rate of change at x: (B).

(b) The average rate of change over [0, x] is less than the instantaneous rate of change at x: (A)

The graph in (B) bends downward, so the slope of the secant line through (0, 0) and (x, f (x)) is larger than the slope
of the tangent line at (x, f (x)). On the other hand, the graph in (A) bends upward, so the slope of the tangent line at
(x, f (x)) is larger than the slope of the secant line through (0, 0) and (x, f (x)).

Further Insights and Challenges

The height of a projectile fired in the air vertically with initial velocity 25 m/s is

h(t) = 25t − 4.9t2 m.

(a) Compute h(1). Show that h(t) − h(1) can be factored with (t − 1) as a factor.

(b) Using part (a), show that the average velocity over the interval [1, t] is 20.1 − 4.9t .

(c) Use this formula to find the average velocity over several intervals [1, t] with t close to 1. Then estimate the
instantaneous velocity at time t = 1.

33. Let Q(t) = t2. As in the previous exercise, find a formula for the average rate of change of Q over the interval [1, t]
and use it to estimate the instantaneous rate of change at t = 1. Repeat for the interval [2, t] and estimate the rate of
change at t = 2.

solution The average rate of change is

Q(t) − Q(1)

t − 1
= t2 − 1

t − 1
.

Applying the difference of squares formula gives that the average rate of change is ((t + 1)(t − 1))/(t − 1) = (t + 1) for
t �= 1. As t gets closer to 1, this gets closer to 1 + 1 = 2. The instantaneous rate of change is 2.

For t0 = 2, the average rate of change is

Q(t) − Q(2)

t − 2
= t2 − 4

t − 2
,

which simplifies to t + 2 for t �= 2. As t approaches 2, the average rate of change approaches 4. The instantaneous rate
of change is therefore 4.

Show that the average rate of change of f (x) = x3 over [1, x] is equal to

x2 + x + 1.

Use this to estimate the instantaneous rate of change of f (x) at x = 1.
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35. Find a formula for the average rate of change of f (x) = x3 over [2, x] and use it to estimate the instantaneous rate
of change at x = 2.

solution The average rate of change is

f (x) − f (2)

x − 2
= x3 − 8

x − 2
.

Applying the difference of cubes formula to the numerator, we find that the average rate of change is

(x2 + 2x + 4)(x − 2)

x − 2
= x2 + 2x + 4

for x �= 2. The closer x gets to 2, the closer the average rate of change gets to 22 + 2(2) + 4 = 12.

Let T = 3
2

√
L as in Exercise 21. The numbers in the second column of Table 4 are increasing, and those in the

last column are decreasing. Explain why in terms of the graph of T as a function of L. Also, explain graphically why
the instantaneous rate of change at L = 3 lies between 0.4329 and 0.4331.2.2 Limits: A Numerical and Graphical Approach

Preliminary Questions
1. What is the limit of f (x) = 1 as x → π?

solution limx→π 1 = 1.

2. What is the limit of g(t) = t as t → π?

solution limt→π t = π.

3. Is lim
x→10

20 equal to 10 or 20?

solution limx→10 20 = 20.

4. Can f (x) approach a limit as x → c if f (c) is undefined? If so, give an example.

solution Yes. The limit of a function f as x → c does not depend on what happens at x = c, only on the behavior of
f as x → c. As an example, consider the function

f (x) = x2 − 1

x − 1
.

The function is clearly not defined at x = 1 but

lim
x→1

f (x) = lim
x→1

x2 − 1

x − 1
= lim

x→1
(x + 1) = 2.

5. What does the following table suggest about lim
x→1− f (x) and lim

x→1+ f (x)?

x 0.9 0.99 0.999 1.1 1.01 1.001

f (x) 7 25 4317 3.0126 3.0047 3.00011

solution The values in the table suggest that limx→1− f (x) = ∞ and limx→1+ f (x) = 3.

6. Can you tell whether lim
x→5

f (x) exists from a plot of f (x) for x > 5? Explain.

solution No. By examining values of f (x) for x close to but greater than 5, we can determine whether the one-sided
limit limx→5+ f (x) exists. To determine whether limx→5 f (x) exists, we must examine value of f (x) on both sides of
x = 5.

7. If you know in advance that lim
x→5

f (x) exists, can you determine its value from a plot of f (x) for all x > 5?

solution Yes. If limx→5 f (x) exists, then both one-sided limits must exist and be equal.
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Exercises
In Exercises 1–4, fill in the tables and guess the value of the limit.

1. lim
x→1

f (x), where f (x) = x3 − 1

x2 − 1
.

x f (x) x f (x)

1.002 0.998

1.001 0.999

1.0005 0.9995

1.00001 0.99999

solution

x 0.998 0.999 0.9995 0.99999 1.00001 1.0005 1.001 1.002

f (x) 1.498501 1.499250 1.499625 1.499993 1.500008 1.500375 1.500750 1.501500

The limit as x → 1 is 3
2 .

lim
t→0

h(t), where h(t) = cos t − 1

t2
. Note that h(t) is even; that is, h(t) = h(−t).

t ±0.002 ±0.0001 ±0.00005 ±0.00001

h(t)

3. lim
y→2

f (y), where f (y) = y2 − y − 2

y2 + y − 6
.

y f (y) y f (y)

2.002 1.998

2.001 1.999

2.0001 1.9999

solution

y 1.998 1.999 1.9999 2.0001 2.001 2.02

f (y) 0.59984 0.59992 0.599992 0.600008 0.60008 0.601594

The limit as y → 2 is 3
5 .

lim
θ→0

f (θ), where f (θ) = sin θ − θ

θ3
.

θ ±0.002 ±0.0001 ±0.00005 ±0.00001

f (θ)

5. Determine lim
x→0.5

f (x) for f (x) as in Figure 9.

0.5

1.5

x

y

1
f (x)

FIGURE 9

solution The graph suggests that f (x) → 1.5 as x → 0.5.

Determine lim
x→0.5

g(x) for g(x) as in Figure 10.In Exercises 7 and 8, evaluate the limit.

7. lim
x→21

x

solution As x → 21, f (x) = x → 21. You can see this, for example, on the graph of f (x) = x.

lim
x→4.2

√
3

In Exercises 9–16, verify each limit using the limit definition. For example, in Exercise 9, show that |3x − 12| can be
made as small as desired by taking x close to 4.

9. lim
x→4

3x = 12

solution |3x − 12| = 3|x − 4|. |3x − 12| can be made arbitrarily small by making x close enough to 4, thus making
|x − 4| small.
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lim
x→5

3 = 3
11. lim

x→3
(5x + 2) = 17

solution |(5x + 2) − 17| = |5x − 15| = 5|x − 3|. Therefore, if you make |x − 3| small enough, you can make
|(5x + 2) − 17| as small as desired.

lim
x→2

(7x − 4) = 1013. lim
x→0

x2 = 0

solution As x → 0, we have |x2 − 0| = |x + 0||x − 0|. To simplify things, suppose that |x| < 1, so that |x + 0||x −
0| = |x||x| < |x|. By making |x| sufficiently small, so that |x + 0||x − 0| = x2 is even smaller, you can make |x2 − 0|
as small as desired.

lim
x→0

(3x2 − 9) = −9
15. lim

x→0
(4x2 + 2x + 5) = 5

solution As x → 0, we have |4x2 + 2x + 5 − 5| = |4x2 + 2x| = |x||4x + 2|. If |x| < 1, |4x + 2| can be no bigger

than 6, so |x||4x + 2| < 6|x|. Therefore, by making |x − 0| = |x| sufficiently small, you can make |4x2 + 2x + 5 − 5| =
|x||4x + 2| as small as desired.

lim
x→0

(x3 + 12) = 12
In Exercises 17–36, estimate the limit numerically or state that the limit does not exist. If infinite, state whether the
one-sided limits are ∞ or −∞.

17. lim
x→1

√
x − 1

x − 1

solution

x 0.9995 0.99999 1.00001 1.0005

f (x) 0.500063 0.500001 0.49999 0.499938

The limit as x → 1 is 1
2 .

lim
x→−4

2x2 − 32

x + 4

19. lim
x→2

x2 + x − 6

x2 − x − 2

solution

x 1.999 1.99999 2.00001 2.001

f (x) 1.666889 1.666669 1.666664 1.666445

The limit as x → 2 is 5
3 .

lim
x→3

x3 − 2x2 − 9

x2 − 2x − 3

21. lim
x→0

sin 2x

x

solution

x −0.01 −0.005 0.005 0.01

f (x) 1.999867 1.999967 1.999967 1.999867

The limit as x → 0 is 2.

lim
x→0

sin 5x

x

23. lim
θ→0

cos θ − 1

θ

solution

x −0.05 −0.001 0.001 0.05

f (x) 0.0249948 0.0005 −0.0005 −0.0249948

The limit as x → 0 is 0.

lim
x→0

sin x

x2

25. lim
x→4

1

(x − 4)3

solution

x 3.99 3.999 3.9999 4.0001 4.001 4.01

f (x) −106 −109 −1012 1012 109 106

The limit does not exist. As x → 4−, f (x) → −∞; similarly, as x → 4+, f (x) → ∞.
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lim
x→1−

3 − x

x − 1

27. lim
x→3+

x − 4

x2 − 9

solution

x 3.01 3.001 3.0001 3.00001

f (x) −16.473 −166.473 −1666.473 −16666.473

As x → 3+, f (x) → −∞.

lim
h→0

3h − 1

h

29. lim
h→0

sin h cos
1

h

solution

h −0.01 −0.001 −0.0001 0.0001 0.001 0.01

f (h) −0.008623 −0.000562 0.000095 −0.000095 0.000562 0.008623

The limit as x → 0 is 0.

lim
h→0

cos
1

h

31. lim
x→0

|x|x

solution

x −0.05 −0.001 −0.00001 0.00001 0.001 0.05

f (x) 1.161586 1.006932 1.000115 0.999885 0.993116 0.860892

The limit as x → 0 is 1.

lim
x→0

2x − 3x

x

33. lim
θ→ π

4

tan θ − 2 sin θ cos θ

θ − π
4

solution

θ π
4 − 0.01 π

4 − 0.001 π
4 − 0.0001 π

4 + 0.0001 π
4 + 0.001 π

4 + 0.01

f (θ) 1.96026 1.99600 1.99960 2.00040 2.00400 2.04027

The limit as x → π

4
is approximately 2.

lim
r→0

(1 + r)1/r35. lim
θ→0

1 − cos θ

θ2

solution

θ −0.01 −0.001 −0.0001 0.0001 0.001 0.01

f (θ) 0.499996 0.500000 0.500000 0.500000 0.500000 0.499996

The limit as θ → 0 appears to be 0.5.

lim
θ→0

1 − cos θ

θ3

37. The greatest integer function is defined by [x] = n, where n is the unique integer such that n ≤ x < n + 1. Sketch
the graph of y = [x]. Calculate, for c an integer:

(a) lim
x→c−[x] (b) lim

x→c+[x]
solution Here is a graph of the greatest integer function:

2

1

1 2 3−1
x

y

(a) From the graph, we see that, for c an integer,

lim
x→c−[x] = c − 1.
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(b) From the graph, we see that, for c an integer,

lim
x→c+[x] = c.

Determine the one-sided limits at c = 1, 2, and 4 of the function g(x) shown in Figure 11, and state whether the
limit exists at these points.

In Exercises 39–46, determine the one-sided limits numerically or graphically. If infinite, state whether the one-sided limits
are ∞ or −∞, and describe the corresponding vertical asymptote. In Exercise 46, [x] is the greatest integer function
defined in Exercise 37.

39. lim
x→0±

sin x

|x|
solution

x −0.2 −0.02 0.02 0.2

f (x) −0.993347 −0.999933 0.999933 0.993347

The left-hand limit is lim
x→0− f (x) = −1, whereas the right-hand limit is lim

x→0+ f (x) = 1.

lim
x→0± |x|1/x41. lim

x→0±
x − sin |x|

x3

solution

x −0.1 −0.01 0.01 0.1

f (x) 199.853 19999.8 0.166666 0.166583

The left-hand limit is lim
x→0− f (x) = ∞, whereas the right-hand limit is lim

x→0+ f (x) = 1

6
. Thus, the line x = 0 is a vertical

asymptote from the left for the graph of y = x−sin |x|
x3 .

lim
x→4±

x + 1

x − 4
43. lim

x→−2±
4x2 + 7

x3 + 8

solution The graph of y = 4x2+7
x3+8

for x near −2 is shown below. From this graph, we see that

lim
x→−2−

4x2 + 7

x3 + 8
= −∞ while lim

x→−2+
4x2 + 7

x3 + 8
= ∞.

Thus, the line x = −2 is a vertical asymptote for the graph of y = 4x2+7
x3+8

.

−3.0 −2.5 −2.0 −1.5 −1.0
x

lim
x→−3±

x2

x2 − 9

45. lim
x→1±

x5 + x − 2

x2 + x − 2

solution The graph of y = x5+x−2
x2+x−2

for x near 1 is shown below. From this graph, we see that

lim
x→1±

x5 + x − 2

x2 + x − 2
= 2.

2

0.5 1.0 1.5
x

y

4

6
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lim
x→2± cos

(π

2
(x − [x])

)47. Determine the one-sided limits at c = 2, 4 of the function f (x) in Figure 12. What are the vertical asymptotes of
f (x)?

−5
42

15

5

10

x

y

FIGURE 12

solution

• For c = 2, we have lim
x→2− f (x) = ∞ and lim

x→2+ f (x) = ∞.

• For c = 4, we have lim
x→4− f (x) = −∞ and lim

x→4+ f (x) = 10.

The vertical asymptotes are the vertical lines x = 2 and x = 4.

Determine the infinite one- and two-sided limits in Figure 13.In Exercises 49–52, sketch the graph of a function with the given limits.

49. lim
x→1

f (x) = 2, lim
x→3− f (x) = 0, lim

x→3+ f (x) = 4

solution

2

4

6

1 2 3 4

y

x

lim
x→1

f (x) = ∞, lim
x→3− f (x) = 0, lim

x→3+ f (x) = −∞51. lim
x→2+ f (x) = f (2) = 3, lim

x→2− f (x) = −1, lim
x→4

f (x) = 2 �= f (4)

solution

1

−1

2

3

1 2 3 4 5

y

x

lim
x→1+ f (x) = ∞, lim

x→1− f (x) = 3, lim
x→4

f (x) = −∞53. Determine the one-sided limits of the function f (x) in Figure 14, at the points c = 1, 3, 5, 6.

−1

−2

−3

−4

1

2

3

4

5

y

x
1 2 3 4 5 6 7 8

FIGURE 14 Graph of f (x)

solution

• lim
x→1− f (x) = lim

x→1+ f (x) = 3

• lim
x→3− f (x) = −∞
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• lim
x→3+ f (x) = 4

• lim
x→5− f (x) = 2

• lim
x→5+ f (x) = −3

• lim
x→6− f (x) = lim

x→6+ f (x) = ∞

Does either of the two oscillating functions in Figure 15 appear to approach a limit as x → 0?In Exercises 55–60, plot the function and use the graph to estimate the value of the limit.

55. lim
θ→0

sin 5θ

sin 2θ

solution

2.42

2.44

2.46

2.48

2.50

y

From the graph of y = sin 5θ

sin 2θ
shown above, we see that the limit as θ → 0 is 5

2 .

lim
x→0

12x − 1

4x − 1

57. lim
x→0

2x − cos x

x

solution

0.6935

0.6940

0.6930

0.6925

0.6920

y

y = 2
x − cos x

x

The limit as x → 0 is approximately 0.693. (The exact answer is ln 2.)

lim
θ→0

sin2 4θ

cos θ − 1

59. lim
θ→0

cos 7θ − cos 5θ

θ2

solution

−12.0

−11.8

−11.6

−11.4

y

From the graph of y = cos 7θ − cos 5θ

θ2
shown above, we see that the limit as θ → 0 is −12.

lim
θ→0

sin2 2θ − θ sin 4θ

θ4

61. Let n be a positive integer. For which n are the two infinite one-sided limits lim
x→0± 1/xn equal?

solution First, suppose that n is even. Then xn ≥ 0 for all x, and 1
xn > 0 for all x �= 0. Hence,

lim
x→0−

1

xn
= lim

x→0+
1

xn
= ∞.

Next, suppose that n is odd. Then 1
xn > 0 for all x > 0 but 1

xn < 0 for all x < 0. Thus,

lim
x→0−

1

xn
= −∞ but lim

x→0+
1

xn
= ∞.

Finally, the two infinite one-sided limits are equal whenever n is even.

Let L(n) = lim
x→1

(
n

1 − xn
− 1

1 − x

)
for n a positive integer. Investigate L(n) numerically for several values of

n, and then guess the value of of L(n) in general.
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63. In some cases, numerical investigations can be misleading. Plot f (x) = cos π
x .

(a) Does lim
x→0

f (x) exist?

(b) Show, by evaluating f (x) at x = ± 1
2 , ± 1

4 , ± 1
6 , . . . , that you might be able to trick your friends into believing that

the limit exists and is equal to L = 1.
(c) Which sequence of evaluations might trick them into believing that the limit is L = −1.

solution Here is the graph of f (x).

−0.05
−0.5

0.5

y

x
0.05

(a) From the graph of f (x), which shows that the value of f (x) oscillates more and more rapidly as x → 0, it follows
that lim

x→0
f (x) does not exist.

(b) Notice that

f

(
±1

2

)
= cos

π

±1/2
= cos ±2π = 1;

f

(
±1

4

)
= cos

π

±1/4
= cos ±4π = 1;

f

(
±1

6

)
= cos

π

±1/6
= cos ±6π = 1;

and, in general, f (± 1
2n

) = 1 for all integers n.

(c) At x = ±1, ± 1
3 , ± 1

5 , . . ., the value of f (x) is always −1.

Further Insights and Challenges

Light waves of frequency λ passing through a slit of width a produce a Fraunhofer diffraction pattern of light
and dark fringes (Figure 16). The intensity as a function of the angle θ is

I (θ) = Im

(
sin(R sin θ)

R sin θ

)2

where R = πa/λ and Im is a constant. Show that the intensity function is not defined at θ = 0. Then choose any two
values for R and check numerically that I (θ) approaches Im as θ → 0.

65. Investigate lim
θ→0

sin nθ

θ
numerically for several values of n. Then guess the value in general.

solution

• For n = 3, we have

θ −0.1 −0.01 −0.001 0.001 0.01 0.1

sin nθ

θ
2.955202 2.999550 2.999996 2.999996 2.999550 2.955202

The limit as θ → 0 is 3.
• For n = −5, we have

θ −0.1 −0.01 −0.001 0.001 0.01 0.1

sin nθ

θ
−4.794255 −4.997917 −4.999979 −4.999979 −4.997917 −4.794255

The limit as θ → 0 is −5.

• We surmise that, in general, lim
θ→0

sin nθ

θ
= n.

Show numerically that lim
x→0

bx − 1

x
for b = 3, 5 appears to equal ln 3, ln 5, where ln x is the natural logarithm.

Then make a conjecture (guess) for the value in general and test your conjecture for two additional values of b.

67. Investigate lim
x→1

xn − 1

xm − 1
for (m, n) equal to (2, 1), (1, 2), (2, 3), and (3, 2). Then guess the value of the limit in

general and check your guess for two additional pairs.

solution

•

x 0.99 0.9999 1.0001 1.01

x − 1

x2 − 1
0.502513 0.500025 0.499975 0.497512
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The limit as x → 1 is 1
2 .

x 0.99 0.9999 1.0001 1.01

x2 − 1

x − 1
1.99 1.9999 2.0001 2.01

The limit as x → 1 is 2.

x 0.99 0.9999 1.0001 1.01

x2 − 1

x3 − 1
0.670011 0.666700 0.666633 0.663344

The limit as x → 1 is 2
3 .

x 0.99 0.9999 1.0001 1.01

x3 − 1

x2 − 1
1.492513 1.499925 1.500075 1.507512

The limit as x → 1 is 3
2 .

• For general m and n, we have lim
x→1

xn − 1

xm − 1
= n

m
.

•

x 0.99 0.9999 1.0001 1.01

x − 1

x3 − 1
0.336689 0.333367 0.333300 0.330022

The limit as x → 1 is 1
3 .

x 0.99 0.9999 1.0001 1.01

x3 − 1

x − 1
2.9701 2.9997 3.0003 3.0301

The limit as x → 1 is 3.

x 0.99 0.9999 1.0001 1.01

x3 − 1

x7 − 1
0.437200 0.428657 0.428486 0.420058

The limit as x → 1 is 3
7 ≈ 0.428571.

Find by numerical experimentation the positive integers k such that lim
x→0

sin(sin2 x)

xk
exists.

69. Plot the graph of f (x) = 2x − 8

x − 3
.

(a) Zoom in on the graph to estimate L = lim
x→3

f (x).

(b) Explain why

f (2.99999) ≤ L ≤ f (3.00001)

Use this to determine L to three decimal places.

solution
(a)

5.555

5.565

5.545

5.535

5.525

y

x = 3

y = 2
x − 8

x − 3
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(b) It is clear that the graph of f rises as we move to the right. Mathematically, we may express this observation as:
whenever u < v, f (u) < f (v). Because

2.99999 < 3 = lim
x→3

f (x) < 3.00001,

it follows that

f (2.99999) < L = lim
x→3

f (x) < f (3.00001).

With f (2.99999) ≈ 5.54516 and f (3.00001) ≈ 5.545195, the above inequality becomes 5.54516 < L < 5.545195;
hence, to three decimal places, L = 5.545.

The function f (x) = 21/x − 2−1/x

21/x + 2−1/x
is defined for x �= 0.

(a) Investigate lim
x→0+ f (x) and lim

x→0− f (x) numerically.

(b) Plot the graph of f and describe its behavior near x = 0.

2.3 Basic Limit Laws

Preliminary Questions
1. State the Sum Law and Quotient Law.

solution Suppose limx→c f (x) and limx→c g(x) both exist. The Sum Law states that

lim
x→c

(f (x) + g(x)) = lim
x→c

f (x) + lim
x→c

g(x).

Provided limx→c g(x) �= 0, the Quotient Law states that

lim
x→c

f (x)

g(x)
= limx→c f (x)

limx→c g(x)
.

2. Which of the following is a verbal version of the Product Law (assuming the limits exist)?

(a) The product of two functions has a limit.
(b) The limit of the product is the product of the limits.
(c) The product of a limit is a product of functions.
(d) A limit produces a product of functions.

solution The verbal version of the Product Law is (b): The limit of the product is the product of the limits.

3. Which statement is correct? The Quotient Law does not hold if:

(a) The limit of the denominator is zero.
(b) The limit of the numerator is zero.

solution Statements (a) is correct. The Quotient Law does not hold if the limit of the denominator is zero.

Exercises
In Exercises 1–24, evaluate the limit using the Basic Limit Laws and the limits lim

x→c
xp/q = cp/q and lim

x→c
k = k.

1. lim
x→9

x

solution lim
x→9

x = 9.

lim
x→−3

143. lim
x→ 1

2

x4

solution lim
x→ 1

2

x4 =
(

1

2

)4
= 1

16
.

lim
z→27

z2/35. lim
t→2

t−1

solution lim
t→2

t−1 = 2−1 = 1

2
.

lim
x→5

x−2
7. lim

x→0.2
(3x + 4)

solution Using the Sum Law and the Constant Multiple Law:

lim
x→0.2

(3x + 4) = lim
x→0.2

3x + lim
x→0.2

4

= 3 lim
x→0.2

x + lim
x→0.2

4 = 3(0.2) + 4 = 4.6.
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lim
x→ 1

3

(3x3 + 2x2)
9. lim

x→−1
(3x4 − 2x3 + 4x)

solution Using the Sum Law, the Constant Multiple Law and the Powers Law:

lim
x→−1

(3x4 − 2x3 + 4x) = lim
x→−1

3x4 − lim
x→−1

2x3 + lim
x→−1

4x

= 3 lim
x→−1

x4 − 2 lim
x→−1

x3 + 4 lim
x→−1

x

= 3(−1)4 − 2(−1)3 + 4(−1) = 3 + 2 − 4 = 1.

lim
x→8

(3x2/3 − 16x−1)
11. lim

x→2
(x + 1)(3x2 − 9)

solution Using the Product Law, the Sum Law and the Constant Multiple Law:

lim
x→2

(x + 1)
(

3x2 − 9
)

=
(

lim
x→2

x + lim
x→2

1

) (
lim
x→2

3x2 − lim
x→2

9

)

= (2 + 1)

(
3 lim

x→2
x2 − 9

)

= 3(3(2)2 − 9) = 9.

lim
x→ 1

2

(4x + 1)(6x − 1)13. lim
t→4

3t − 14

t + 1

solution Using the Quotient Law, the Sum Law and the Constant Multiple Law:

lim
t→4

3t − 14

t + 1
=

lim
t→4

(3t − 14)

lim
t→4

(t + 1)
=

3 lim
t→4

t − lim
t→4

14

lim
t→4

t + lim
t→4

1
= 3 · 4 − 14

4 + 1
= −2

5
.

lim
z→9

√
z

z − 2

15. lim
y→ 1

4

(16y + 1)(2y1/2 + 1)

solution Using the Product Law, the Sum Law, the Constant Multiple Law and the Powers Law:

lim
y→ 1

4

(16y + 1)(2y1/2 + 1) =
(

lim
y→ 1

4

(16y + 1)

) (
lim

y→ 1
4

(2y1/2 + 1)

)

=
(

16 lim
y→ 1

4

y + lim
y→ 1

4

1

) (
2 lim

y→ 1
4

y1/2 + lim
y→ 1

4

1

)

=
(

16

(
1

4

)
+ 1

) (
2

(
1

2

)
+ 1

)
= 10.

lim
x→2

x(x + 1)(x + 2)17. lim
y→4

1√
6y + 1

solution Using the Quotient Law, the Powers Law, the Sum Law and the Constant Multiple Law:

lim
y→4

1√
6y + 1

= 1

lim
y→4

√
6y + 1

= 1√
6 lim

y→4
y + 1

= 1√
6(4) + 1

= 1

5
.

lim
w→7

√
w + 2 + 1√
w − 3 − 1

19. lim
x→−1

x

x3 + 4x

solution Using the Quotient Law, the Sum Law, the Powers Law and the Constant Multiple Law:

lim
x→−1

x

x3 + 4x
=

lim
x→−1

x

lim
x→−1

x3 + 4 lim
x→−1

x
= −1

(−1)3 + 4(−1)
= 1

5
.

lim
t→−1

t2 + 1

(t3 + 2)(t4 + 1)
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21. lim
t→25

3
√

t − 1
5 t

(t − 20)2

solution Using the Quotient Law, the Sum Law, the Constant Multiple Law and the Powers Law:

lim
t→25

3
√

t − 1
5 t

(t − 20)2
=

3
√

lim
t→25

t − 1
5 lim

t→25
t

(
lim

t→25
t − 20

)2
= 3(5) − 1

5 (25)

52
= 2

5
.

lim
y→ 1

3

(18y2 − 4)423. lim
t→ 3

2

(4t2 + 8t − 5)3/2

solution Using the Powers Law, the Sum Law and the Constant Multiple Law:

lim
t→ 3

2

(4t2 + 8t − 5)3/2 =
(

4 lim
t→ 3

2

t2 + 8 lim
t→ 3

2

t − 5

)3/2

= (9 + 12 − 5)3/2 = 64.

lim
t→7

(t + 2)1/2

(t + 1)2/3

25. Use the Quotient Law to prove that if lim
x→c

f (x) exists and is nonzero, then

lim
x→c

1

f (x)
= 1

lim
x→c

f (x)

solution Since lim
x→c

f (x) is nonzero, we can apply the Quotient Law:

lim
x→c

(
1

f (x)

)
=

(
lim
x→c

1
)

(
lim
x→c

f (x)
) = 1

lim
x→c

f (x)
.

Assuming that lim
x→6

f (x) = 4, compute:

(a) lim
x→6

f (x)2 (b) lim
x→6

1

f (x)
(c) lim

x→6
x
√

f (x)

In Exercises 27–30, evaluate the limit assuming that lim
x→−4

f (x) = 3 and lim
x→−4

g(x) = 1.

27. lim
x→−4

f (x)g(x)

solution lim
x→−4

f (x)g(x) = lim
x→−4

f (x) lim
x→−4

g(x) = 3 · 1 = 3.

lim
x→−4

(2f (x) + 3g(x))29. lim
x→−4

g(x)

x2

solution Since lim
x→−4

x2 �= 0, we may apply the Quotient Law, then applying the Powers Law:

lim
x→−4

g(x)

x2
=

lim
x→−4

g(x)

lim
x→−4

x2
= 1(

lim
x→−4

x

)2
= 1

16
.

lim
x→−4

f (x) + 1

3g(x) − 9

31. Can the Quotient Law be applied to evaluate lim
x→0

sin x

x
? Explain.

solution The limit Quotient Law cannot be applied to evaluate lim
x→0

sin x

x
since lim

x→0
x = 0. This violates a condition

of the Quotient Law. Accordingly, the rule cannot be employed.

Show that the Product Law cannot be used to evaluate the limit lim
x→π/2

(
x − π

2

)
tan x.

33. Give an example where lim
x→0

(f (x) + g(x)) exists but neither lim
x→0

f (x) nor lim
x→0

g(x) exists.

solution Let f (x) = 1/x and g(x) = −1/x. Then lim
x→0

(f (x) + g(x)) = lim
x→0

0 = 0. However, lim
x→0

f (x) =
lim
x→0

1/x and lim
x→0

g(x) = lim
x→0

−1/x do not exist.
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Further Insights and Challenges

Show that if both lim
x→c

f (x) g(x) and lim
x→c

g(x) exist and lim
x→c

g(x) �= 0, then lim
x→c

f (x) exists. Hint: Write

f (x) = f (x) g(x)

g(x)
.

35. Suppose that lim
t→3

tg(t) = 12. Show that lim
t→3

g(t) exists and equals 4.

solution We are given that lim
t→3

tg(t) = 12. Since lim
t→3

t = 3 �= 0, we may apply the Quotient Law:

lim
t→3

g(t) = lim
t→3

tg(t)

t
=

lim
t→3

tg(t)

lim
t→3

t
= 12

3
= 4.

Prove that if lim
t→3

h(t)
t = 5, then lim

t→3
h(t) = 15.37. Assuming that lim

x→0

f (x)
x = 1, which of the following statements is necessarily true? Why?

(a) f (0) = 0 (b) lim
x→0

f (x) = 0

solution

(a) Given that lim
x→0

f (x)

x
= 1, it is not necessarily true that f (0) = 0. A counterexample is provided by f (x) ={

x, x �= 0

5, x = 0
.

(b) Given that lim
x→0

f (x)

x
= 1, it is necessarily true that lim

x→0
f (x) = 0. For note that lim

x→0
x = 0, whence

lim
x→0

f (x) = lim
x→0

x
f (x)

x
=

(
lim
x→0

x

) (
lim
x→0

f (x)

x

)
= 0 · 1 = 0.

Prove that if lim
x→c

f (x) = L �= 0 and lim
x→c

g(x) = 0, then the limit lim
x→c

f (x)
g(x)

does not exist.39. Suppose that lim
h→0

g(h) = L.

(a) Explain why lim
h→0

g(ah) = L for any constant a �= 0.

(b) If we assume instead that lim
h→1

g(h) = L, is it still necessarily true that lim
h→1

g(ah) = L?

(c) Illustrate (a) and (b) with the function f (x) = x2.

solution
(a) As h → 0, ah → 0 as well; hence, if we make the change of variable w = ah, then

lim
h→0

g(ah) = lim
w→0

g(w) = L.

(b) No. As h → 1, ah → a, so we should not expect lim
h→1

g(ah) = lim
h→1

g(h).

(c) Let g(x) = x2. Then

lim
h→0

g(h) = 0 and lim
h→0

g(ah) = lim
h→0

(ah)2 = 0.

On the other hand,

lim
h→1

g(h) = 1 while lim
h→1

g(ah) = lim
h→1

(ah)2 = a2,

which is equal to the previous limit if and only if a = ±1.

Assume that L(a) = lim
x→0

ax − 1

x
exists for all a > 0. Assume also that lim

x→0
ax = 1.

(a) Prove that L(ab) = L(a) + L(b) for a, b > 0. Hint: (ab)x − 1 = ax(bx − 1) + (ax − 1). This shows that L(a)

“behaves” like a logarithm. We will see that L(a) = ln a in Section 7.3.

(b) Verify numerically that L(12) = L(3) + L(4).

2.4 Limits and Continuity

Preliminary Questions
1. Which property of f (x) = x3 allows us to conclude that lim

x→2
x3 = 8?

solution We can conclude that limx→2 x3 = 8 because the function x3 is continuous at x = 2.

2. What can be said about f (3) if f is continuous and lim
x→3

f (x) = 1
2 ?

solution If f is continuous and limx→3 f (x) = 1
2 , then f (3) = 1

2 .

3. Suppose that f (x) < 0 if x is positive and f (x) > 1 if x is negative. Can f be continuous at x = 0?

solution Since f (x) < 0 when x is positive and f (x) > 1 when x is negative, it follows that

lim
x→0+ f (x) ≤ 0 and lim

x→0− f (x) ≥ 1.

Thus, limx→0 f (x) does not exist, so f cannot be continuous at x = 0.
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4. Is it possible to determine f (7) if f (x) = 3 for all x < 7 and f is right-continuous at x = 7? What if f is
left-continuous?

solution No. To determine f (7), we need to combine either knowledge of the values of f (x) for x < 7 with left-
continuity or knowledge of the values of f (x) for x > 7 with right-continuity.

5. Are the following true or false? If false, state a correct version.

(a) f (x) is continuous at x = a if the left- and right-hand limits of f (x) as x → a exist and are equal.

(b) f (x) is continuous at x = a if the left- and right-hand limits of f (x) as x → a exist and equal f (a).

(c) If the left- and right-hand limits of f (x) as x → a exist, then f has a removable discontinuity at x = a.

(d) If f (x) and g(x) are continuous at x = a, then f (x) + g(x) is continuous at x = a.

(e) If f (x) and g(x) are continuous at x = a, then f (x)/g(x) is continuous at x = a.

solution

(a) False. The correct statement is “f (x) is continuous at x = a if the left- and right-hand limits of f (x) as x → a exist
and equal f (a).”

(b) True.

(c) False. The correct statement is “If the left- and right-hand limits of f (x) as x → a are equal but not equal to f (a),
then f has a removable discontinuity at x = a.”

(d) True.

(e) False. The correct statement is “If f (x) and g(x) are continuous at x = a and g(a) �= 0, then f (x)/g(x) is continuous
at x = a.”

Exercises
1. Referring to Figure 14, state whether f (x) is left- or right-continuous (or neither) at each point of discontinuity. Does

f (x) have any removable discontinuities?

1 2 3 4 5 6
x

5

4

3

2

1

y

FIGURE 14 Graph of y = f (x)

solution

• The function f is discontinuous at x = 1; it is right-continuous there.
• The function f is discontinuous at x = 3; it is neither left-continuous nor right-continuous there.
• The function f is discontinuous at x = 5; it is left-continuous there.

However, these discontinuities are not removable.

Exercises 2–4 refer to the function g(x) in Figure 15.

1 2 3 4 5 6
x

5

4

3

2

1

y

FIGURE 15 Graph of y = g(x)

State whether g(x) is left- or right-continuous (or neither) at each of its points of discontinuity.
3. At which point c does g(x) have a removable discontinuity? How should g(c) be redefined to make g continuous at

x = c?

solution Because limx→3 g(x) exists, the function g has a removable discontinuity at x = 3. Assigning g(3) = 4
makes g continuous at x = 3.

Find the point c1 at which g(x) has a jump discontinuity but is left-continuous. How should g(c1) be redefined to
make g right-continuous at x = c1?
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5. In Figure 16, determine the one-sided limits at the points of discontinuity. Which discontinuity is removable and how
should f be redefined to make it continuous at this point?

42−2

6

x

y

FIGURE 16

solution The function f is discontinuous at x = 0, at which lim
x→0− f (x) = ∞ and lim

x→0+ f (x) = 2. The function f

is also discontinuous at x = 2, at which lim
x→2− f (x) = 6 and lim

x→2+ f (x) = 6. Because the two one-sided limits exist

and are equal at x = 2, the discontinuity at x = 2 is removable. Assigning f (2) = 6 makes f continuous at x = 2.

Suppose that f (x) = 2 for x < 3 and f (x) = −4 for x > 3.

(a) What is f (3) if f is left-continuous at x = 3?

(b) What is f (3) if f is right-continuous at x = 3?

In Exercises 7–16, use the Laws of Continuity and Theorems 2 and 3 to show that the function is continuous.

7. f (x) = x + sin x

solution Since x and sin x are continuous, so is x + sin x by Continuity Law (i).

f (x) = x sin x
9. f (x) = 3x + 4 sin x

solution Since x and sin x are continuous, so are 3x and 4 sin x by Continuity Law (ii). Thus 3x + 4 sin x is continuous
by Continuity Law (i).

f (x) = 3x3 + 8x2 − 20x11. f (x) = 1

x2 + 1
solution

• Since x is continuous, so is x2 by Continuity Law (iii).
• Recall that constant functions, such as 1, are continuous. Thus x2 + 1 is continuous.

• Finally,
1

x2 + 1
is continuous by Continuity Law (iv) because x2 + 1 is never 0.

f (x) = x2 − cos x

3 + cos x

13. f (x) = cos(x2)

solution The function f (x) is a composite of two continuous functions: cos x and x2, so f (x) is continuous by
Theorem 5, which states that a composite of continuous functions is continuous.

f (x) = sin(4x)
15. f (x) = 2x cos 3x

solution 2x and cos 3x are continuous, so 2x cos 3x is continuous by Continuity Law (iii).

f (x) = tan

(
1

x2 + 1

)In Exercises 17–34, determine the points of discontinuity. State the type of discontinuity (removable, jump, infinite, or
none of these) and whether the function is left- or right-continuous.

17. f (x) = 1

x

solution The function 1/x is discontinuous at x = 0, at which there is an infinite discontinuity. The function is neither
left- nor right-continuous at x = 0.

f (x) = |x|19. f (x) = x − 2

|x − 1|
solution The function

x − 2

|x − 1| is discontinuous at x = 1, at which there is an infinite discontinuity. The function is

neither left- nor right-continuous at x = 1.

f (x) = [x]21. f (x) =
[

1

2
x

]

solution The function
[

1
2x

]
is discontinuous at even integers, at which there are jump discontinuities. Because

lim
x→2n+

[
1

2
x

]
= n

but

lim
x→2n−

[
1

2
x

]
= n − 1,

it follows that this function is right-continuous at the even integers but not left-continuous.
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g(t) = 1

t2 − 1

23. f (x) = x + 1

4x − 2

solution The function f (x) = x + 1

4x − 2
is discontinuous at x = 1

2 , at which there is an infinite discontinuity. The

function is neither left- nor right-continuous at x = 1
2 .

h(z) = 1 − 2z

z2 − z − 6

25. f (x) = 3x2/3 − 9x3

solution The function f (x) = 3x2/3 − 9x3 is defined and continuous for all x.

g(t) = 3t−2/3 − 9t3
27. f (x) =

⎧⎨
⎩

x − 2

|x − 2| x �= 2

−1 x = 2

solution For x > 2, f (x) = x − 2

(x − 2)
= 1. For x < 2, f (x) = (x − 2)

(2 − x)
= −1. The function has a jump discontinuity

at x = 2. Because

lim
x→2− f (x) = −1 = f (2)

but

lim
x→2+ f (x) = 1 �= f (2),

it follows that this function is left-continuous at x = 2 but not right-continuous.

f (x) =
{

cos
1

x
x �= 0

1 x = 0

29. g(t) = tan 2t

solution The function g(t) = tan 2t = sin 2t

cos 2t
is discontinuous whenever cos 2t = 0; i.e., whenever

2t = (2n + 1)π

2
or t = (2n + 1)π

4
,

where n is an integer. At every such value of t there is an infinite discontinuity. The function is neither left- nor right-
continuous at any of these points of discontinuity.

f (x) = csc(x2)
31. f (x) = tan(sin x)

solution The function f (x) = tan(sin x) is continuous everywhere. Reason: sin x is continuous everywhere and tan u

is continuous on
(−π

2 , π
2

)
—and in particular on −1 ≤ u = sin x ≤ 1. Continuity of tan(sin x) follows by the continuity

of composite functions.

f (x) = cos(π [x])33. f (x) = 1

2x − 2−x

solution The function f (x) = 1

2x − 2−x
is discontinuous at x = 0, at which there is an infinite discontinuity. The

function is neither left- nor right-continuous at x = 0.

f (x) = 2
[x

2

]
− 4

[x

4

]In Exercises 35–48, determine the domain of the function and prove that it is continuous on its domain using the Laws of
Continuity and the facts quoted in this section.

35. f (x) = 2 sin x + 3 cos x

solution The domain of 2 sin x + 3 cos x is all real numbers. Both sin x and cos x are continuous on this domain, so
2 sin x + 3 cos x is continuous by Continuity Laws (i) and (ii).

f (x) =
√

x2 + 9
37. f (x) = √

x sin x

solution This function is defined as long as x ≥ 0. Since
√

x and sin x are continuous, so is
√

x sin x by Continuity
Law (iii).

f (x) = x2

x + x1/4

39. f (x) = x2/32x

solution The domain of x2/32x is all real numbers as the denominator of the rational exponent is odd. Both x2/3 and

2x are continuous on this domain, so x2/32x is continuous by Continuity Law (iii).

f (x) = x1/3 + x3/441. f (x) = x−4/3

solution This function is defined for all x �= 0. Because the function x4/3 is continuous and not equal to zero for
x �= 0, it follows that

x−4/3 = 1

x4/3

is continuous for x �= 0 by Continuity Law (iv).
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f (x) = cos3 x
43. f (x) = tan2 x

solution The domain of tan2 x is all x �= ±(2n − 1)π/2 where n is a positive integer. Because tan x is continuous on

this domain, it follows from Continuity Law (iii) that tan2 x is also continuous on this domain.

f (x) = cos(2x)
45. f (x) = (x4 + 1)3/2

solution The domain of (x4 + 1)3/2 is all real numbers as x4 + 1 > 0 for all x. Because x3/2 and the polynomial

x4 + 1 are both continuous, so is the composite function (x4 + 1)3/2.

f (x) = 3−x247. f (x) = cos(x2)

x2 − 1

solution The domain for this function is all x �= ±1. Because the functions cos x and x2 are continuous on this

domain, so is the composite function cos(x2). Finally, because the polynomial x2 − 1 is continuous and not equal to zero

for x �= ±1, the function
cos(x2)

x2 − 1
is continuous by Continuity Law (iv).

f (x) = 9tan x
49. Show that the function

f (x) =

⎧⎪⎨
⎪⎩

x2 + 3 for x < 1

10 − x for 1 ≤ x ≤ 2

6x − x2 for x > 2

is continuous for x �= 1, 2. Then compute the right- and left-hand limits at x = 1, 2, and determine whether f (x) is
left-continuous, right-continuous, or continuous at these points (Figure 17).

621

9

y = 10 − x

y = 6x − x2

y = x2 + 3
x

y

FIGURE 17

solution Let’s start with x �= 1, 2.

• Because x is continuous, so is x2 by Continuity Law (iii). The constant function 3 is also continuous, so x2 + 3 is
continuous by Continuity Law (i). Therefore, f (x) is continuous for x < 1.

• Because x and the constant function 10 are continuous, the function 10 − x is continuous by Continuity Law (i).
Therefore, f (x) is continuous for 1 < x < 2.

• Because x is continuous, x2 is continuous by Continuity Law (iii) and 6x is continuous by Continuity Law (ii).
Therefore, 6x − x2 is continuous by Continuity Law (i), so f (x) is continuous for x > 2.

At x = 1, f (x) has a jump discontinuity because the one-sided limits exist but are not equal:

lim
x→1− f (x) = lim

x→1−(x2 + 3) = 4, lim
x→1+ f (x) = lim

x→1+(10 − x) = 9.

Furthermore, the right-hand limit equals the function value f (1) = 9, so f (x) is right-continuous at x = 1. At x = 2,

lim
x→2− f (x) = lim

x→2−(10 − x) = 8, lim
x→2+ f (x) = lim

x→2+(6x − x2) = 8.

The left- and right-hand limits exist and are equal to f (2), so f (x) is continuous at x = 2.

Sawtooth Function Draw the graph of f (x) = x − [x]. At which points is f discontinuous? Is it left- or
right-continuous at those points?

In Exercises 51–54, sketch the graph of f (x). At each point of discontinuity, state whether f is left- or right-continuous.

51. f (x) =
{

x2 for x ≤ 1

2 − x for x > 1

solution

−1

1

−1

x

y

1 2 3

The function f is continuous everywhere.
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f (x) =
⎧⎨
⎩

x + 1 for x < 1

1

x
for x ≥ 1

53. f (x) =
⎧⎨
⎩

x2 − 3x + 2

|x − 2| x �= 2

0 x = 2

solution

1

−1−2 4 6

2
3
4
5

y

x

The function f is neither left- nor right-continuous at x = 2.

f (x) =

⎧⎪⎨
⎪⎩

x3 + 1 for −∞ < x ≤ 0

−x + 1 for 0 < x < 2

−x2 + 10x − 15 for x ≥ 2

55. Show that the function

f (x) =
⎧⎨
⎩

x2 − 16

x − 4
x �= 4

10 x = 4

has a removable discontinuity at x = 4.

solution To show that f (x) has a removable discontinuity at x = 4, we must establish that

lim
x→4

f (x)

exists but does not equal f (4). Now,

lim
x→4

x2 − 16

x − 4
= lim

x→4
(x + 4) = 8 �= 10 = f (4);

thus, f (x) has a removable discontinuity at x = 4. To remove the discontinuity, we must redefine f (4) = 8.

Define f (x) = x sin 1
x + 2 for x �= 0. Plot f (x). How should f (0) be defined so that f is continuous at x = 0?

In Exercises 57–59, find the value of the constant (a, b, or c) that makes the function continuous.

57. f (x) =
{

x2 − c for x < 5

4x + 2c for x ≥ 5

solution As x → 5−, we have x2 − c → 25 − c = L. As x → 5+, we have 4x + 2c → 20 + 2c = R. Match the

limits: L = R or 25 − c = 20 + 2c implies c = 5
3 .

f (x) =
{

2x + 9x−1 for x ≤ 3

−4x + c for x > 3
59. f (x) =

⎧⎪⎨
⎪⎩

x−1 for x < −1

ax + b for − 1 ≤ x ≤ 1
2

x−1 for x > 1
2

solution As x → −1−, x−1 → −1 while as x → −1+, ax + b → b − a. For f to be continuous at x = −1, we

must therefore have b − a = −1. Now, as x → 1
2−, ax + b → 1

2a + b while as x → 1
2+, x−1 → 2. For f to be

continuous at x = 1
2 , we must therefore have 1

2a + b = 2. Solving these two equations for a and b yields a = 2 and
b = 1.

Define

g(x) =

⎧⎪⎨
⎪⎩

x + 3 for x < −1

cx for − 1 ≤ x ≤ 2

x + 2 for x > 2

Find a value of c such that g(x) is

(a) left-continuous (b) right-continuous

In each case, sketch the graph of g(x).

61. Define g(t) = 21/(t−1) for t �= 0. Answer the following questions, using a plot if necessary.

(a) Can g(1) be defined so that g(t) is continuous at t = 1?
(b) How should g(1) be defined so that g(t) is left-continuous at t = 1?

solution
(a) From the graph of g(t) shown below, we see that g approaches 0 as t → 1 from the left and becomes infinite as
t → 1 from the right. Therefore, g(1) cannot be defined so that g is continuous at t = 1.

1

0.50 1.0 1.5 2.0

2
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4

5

y

t
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(b) To make g(t) left-continuous at t = 1, we should define

g(1) = lim
t→1− 21/(t−1) = 0

Each of the following statements is false. For each statement, sketch the graph of a function that provides a
counterexample.

(a) If lim
x→a

f (x) exists, then f (x) is continuous at x = a.

(b) If f (x) has a jump discontinuity at x = a, then f (a) is equal to either lim
x→a− f (x) or lim

x→a+ f (x).

In Exercises 63–66, draw the graph of a function on [0, 5] with the given properties.

63. f (x) is not continuous at x = 1, but lim
x→1+ f (x) and lim

x→1− f (x) exist and are equal.

solution

54321

1

2

3

4

y

x

f (x) is left-continuous but not continuous at x = 2 and right-continuous but not continuous at x = 3.
65. f (x) has a removable discontinuity at x = 1, a jump discontinuity at x = 2, and

lim
x→3− f (x) = −∞, lim

x→3+ f (x) = 2

solution

54321

1

2

3

4

y

x

f (x) is right- but not left-continuous at x = 1, left- but not right-continuous at x = 2, and neither left- nor
right-continuous at x = 3.

In Exercises 67–80, evaluate using substitution.

67. lim
x→−1

(2x3 − 4)

solution lim
x→−1

(2x3 − 4) = 2(−1)3 − 4 = −6.

lim
x→2

(5x − 12x−2)69. lim
x→3

x + 2

x2 + 2x

solution lim
x→3

x + 2

x2 + 2x
= 3 + 2

32 + 2 · 3
= 5

15
= 1

3

lim
x→π

sin
(x

2
− π

)71. lim
x→ π

4

tan(3x)

solution lim
x→ π

4

tan(3x) = tan(3 · π
4 ) = tan( 3π

4 ) = −1

lim
x→π

1

cos x

73. lim
x→4

x−5/2

solution lim
x→4

x−5/2 = 4−5/2 = 1

32
.

lim
x→2

√
x3 + 4x

75. lim
x→−1

(1 − 8x3)3/2

solution lim
x→−1

(1 − 8x3)3/2 = (1 − 8(−1)3)3/2 = 27.

lim
x→2

(7x + 2

4 − x

)2/377. lim
x→3

10x2−2x

solution lim
x→3

10x2−2x = 1032−2(3) = 1000.
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lim
x→− π

2

3sin x79. lim
x→ π

3

sin2(π sin2 x)

solution lim
x→ π

3

sin2(π sin2 x) = sin2

(
π lim

x→ π
3

sin2 x

)
= sin2

(
π sin2 (

π
3

)) = sin2
(

3π
4

)
= 1

2

lim
x→1

tan
(

2x−1
)81. Suppose that f (x) and g(x) are discontinuous at x = c. Does it follow that f (x) + g(x) is discontinuous at x = c?

If not, give a counterexample. Does this contradict Theorem 1 (i)?

solution Even if f (x) and g(x) are discontinuous at x = c, it is not necessarily true that f (x) + g(x) is discontinuous

at x = c. For example, suppose f (x) = −x−1 and g(x) = x−1. Both f (x) and g(x) are discontinuous at x = 0; however,
the function f (x) + g(x) = 0, which is continuous everywhere, including x = 0. This does not contradict Theorem 1 (i),
which deals only with continuous functions.

Prove that f (x) = |x| is continuous for all x. Hint: To prove continuity at x = 0, consider the one-sided limits.
83. Use the result of Exercise 82 to prove that if g(x) is continuous, then f (x) = |g(x)| is also continuous.

solution Recall that the composition of two continuous functions is continuous. Now, f (x) = |g(x)| is a composition
of the continuous functions g(x) and |x|, so is also continuous.

Which of the following quantities would be represented by continuous functions of time and which would have
one or more discontinuities?

(a) Velocity of an airplane during a flight

(b) Temperature in a room under ordinary conditions

(c) Value of a bank account with interest paid yearly

(d) The salary of a teacher

(e) The population of the world

85. In 2009, the federal income tax T (x) on income of x dollars (up to $82,250) was determined by the formula

T (x) =

⎧⎪⎨
⎪⎩

0.10x for 0 ≤ x < 8350

0.15x − 417.50 for 8350 ≤ x < 33,950

0.25x − 3812.50 for 33,950 ≤ x < 82,250

Sketch the graph of T (x). Does T (x) have any discontinuities? Explain why, if T (x) had a jump discontinuity, it might
be advantageous in some situations to earn less money.

solution T (x), the amount of federal income tax owed on an income of x dollars in 2009, might be a discontinuous
function depending upon how the tax tables are constructed (as determined by that year’s regulations). Here is a graph of
T (x) for that particular year.

20,000

5000

10,000

15,000

40,000 60,000 80,000
x

y

If T (x) had a jump discontinuity (say at x = c), it might be advantageous to earn slightly less income than c (say c − ε)
and be taxed at a lower rate than to earn c or more and be taxed at a higher rate. Your net earnings may actually be more
in the former case than in the latter one.

Further Insights and Challenges

If f (x) has a removable discontinuity at x = c, then it is possible to redefine f (c) so that f (x) is continuous
at x = c. Can this be done in more than one way?

87. Give an example of functions f (x) and g(x) such that f (g(x)) is continuous but g(x) has at least one discontinuity.

solution Answers may vary. The simplest examples are the functions f (g(x)) where f (x) = C is a constant function,
and g(x) is defined for all x. In these cases, f (g(x)) = C. For example, if f (x) = 3 and g(x) = [x], g is discontinuous
at all integer values x = n, but f (g(x)) = 3 is continuous.

Continuous at Only One Point Show that the following function is continuous only at x = 0:

f (x) =
{

x for x rational

−x for x irrational

89. Show that f (x) is a discontinuous function for all x where f (x) is defined as follows:

f (x) =
{

1 for x rational

−1 for x irrational

Show that f (x)2 is continuous for all x.

solution lim
x→c

f (x) does not exist for any c. If c is irrational, then there is always a rational number r arbitrarily close

to c so that |f (c) − f (r)| = 2. If, on the other hand, c is rational, there is always an irrational number z arbitrarily close
to c so that |f (c) − f (z)| = 2.

On the other hand, f (x)2 is a constant function that always has value 1, which is obviously continuous.
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2.5 Evaluating Limits Algebraically

Preliminary Questions
1. Which of the following is indeterminate at x = 1?

x2 + 1

x − 1
,

x2 − 1

x + 2
,

x2 − 1√
x + 3 − 2

,
x2 + 1√
x + 3 − 2

solution At x = 1, x2−1√
x+3−2

is of the form 0
0 ; hence, this function is indeterminate. None of the remaining functions

is indeterminate at x = 1: x2+1
x−1 and x2+1√

x+3−2
are undefined because the denominator is zero but the numerator is not,

while x2−1
x+2 is equal to 0.

2. Give counterexamples to show that these statements are false:

(a) If f (c) is indeterminate, then the right- and left-hand limits as x → c are not equal.

(b) If lim
x→c

f (x) exists, then f (c) is not indeterminate.

(c) If f (x) is undefined at x = c, then f (x) has an indeterminate form at x = c.

solution

(a) Let f (x) = x2−1
x−1 . At x = 1, f is indeterminate of the form 0

0 but

lim
x→1−

x2 − 1

x − 1
= lim

x→1−(x + 1) = 2 = lim
x→1+(x + 1) = lim

x→1+
x2 − 1

x − 1
.

(b) Again, let f (x) = x2−1
x−1 . Then

lim
x→1

f (x) = lim
x→1

x2 − 1

x − 1
= lim

x→1
(x + 1) = 2

but f (1) is indeterminate of the form 0
0 .

(c) Let f (x) = 1
x . Then f is undefined at x = 0 but does not have an indeterminate form at x = 0.

3. The method for evaluating limits discussed in this section is sometimes called “simplify and plug in.” Explain how it
actually relies on the property of continuity.

solution If f is continuous at x = c, then, by definition, limx→c f (x) = f (c); in other words, the limit of a
continuous function at x = c is the value of the function at x = c. The “simplify and plug-in" strategy is based on
simplifying a function which is indeterminate to a continuous function. Once the simplification has been made, the limit
of the remaining continuous function is obtained by evaluation.

Exercises
In Exercises 1–4, show that the limit leads to an indeterminate form. Then carry out the two-step procedure: Transform
the function algebraically and evaluate using continuity.

1. lim
x→6

x2 − 36

x − 6

solution When we substitute x = 6 into x2−36
x−6 , we obtain the indeterminate form 0

0 . Upon factoring the numerator
and simplifying, we find

lim
x→6

x2 − 36

x − 6
= lim

x→6

(x − 6)(x + 6)

x − 6
= lim

x→6
(x + 6) = 12.

lim
h→3

9 − h2

h − 3

3. lim
x→−1

x2 + 2x + 1

x + 1

solution When we substitutex = −1 into x2+2x+1
x+1 , we obtain the indeterminate form 0

0 . Upon factoring the numerator
and simplifying, we find

lim
x→−1

x2 + 2x + 1

x + 1
= lim

x→−1

(x + 1)2

x + 1
= lim

x→−1
(x + 1) = 0.
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lim
t→9

2t − 18

5t − 45

In Exercises 5–34, evaluate the limit, if it exists. If not, determine whether the one-sided limits exist (finite or infinite).

5. lim
x→7

x − 7

x2 − 49

solution lim
x→7

x − 7

x2 − 49
= lim

x→7

x − 7

(x − 7)(x + 7)
= lim

x→7

1

x + 7
= 1

14
.

lim
x→8

x2 − 64

x − 9

7. lim
x→−2

x2 + 3x + 2

x + 2

solution lim
x→−2

x2 + 3x + 2

x + 2
= lim

x→−2

(x + 1)(x + 2)

x + 2
= lim

x→−2
(x + 1) = −1.

lim
x→8

x3 − 64x

x − 8

9. lim
x→5

2x2 − 9x − 5

x2 − 25

solution lim
x→5

2x2 − 9x − 5

x2 − 25
= lim

x→5

(x − 5)(2x + 1)

(x − 5)(x + 5)
= lim

x→5

2x + 1

x + 5
= 11

10
.

lim
h→0

(1 + h)3 − 1

h

11. lim
x→− 1

2

2x + 1

2x2 + 3x + 1

solution lim
x→− 1

2

2x + 1

2x2 + 3x + 1
= lim

x→− 1
2

2x + 1

(2x + 1)(x + 1)
= lim

x→− 1
2

1

x + 1
= 2.

lim
x→3

x2 − x

x2 − 9

13. lim
x→2

3x2 − 4x − 4

2x2 − 8

solution lim
x→2

3x2 − 4x − 4

2x2 − 8
= lim

x→2

(3x + 2)(x − 2)

2(x − 2)(x + 2)
= lim

x→2

3x + 2

2(x + 2)
= 8

8
= 1.

lim
h→0

(3 + h)3 − 27

h

15. lim
t→0

42t − 1

4t − 1

solution lim
t to0

42t − 1

4t − 1
= lim

t to0

(4t − 1)(4t + 1)

4t − 1
= lim

t→0
(4t + 1) = 2.

lim
h→4

(h + 2)2 − 9h

h − 4

17. lim
x→16

√
x − 4

x − 16

solution lim
x→16

√
x − 4

x − 16
= lim

x→16

√
x − 4(√

x + 4
) (√

x − 4
) = lim

x→16

1√
x + 4

= 1

8
.

lim
t→−2

2t + 4

12 − 3t2
19. lim

y→3

y2 + y − 12

y3 − 10y + 3

solution lim
y→3

y2 + y − 12

y3 − 10y + 3
= lim

y→3

(y − 3)(y + 4)

(y − 3)(y2 + 3y − 1)
= lim

y→3

(y + 4)

(y2 + 3y − 1)
= 7

17
.

lim
h→0

1

(h + 2)2
− 1

4
h

21. lim
h→0

√
2 + h − 2

h

solution lim
h→0

√
h + 2 − 2

h
does not exist.

• As h → 0+, we have

√
h + 2 − 2

h
=

(√
h + 2 − 2

)
(
√

h + 2 + 2)

h(
√

h + 2 + 2)
= h − 2

h(
√

h + 2 + 2)
→ −∞.

• As h → 0−, we have

√
h + 2 − 2

h
=

(√
h + 2 − 2

)
(
√

h + 2 + 2)

h(
√

h + 2 + 2)
= h − 2

h(
√

h + 2 + 2)
→ ∞.

lim
x→8

√
x − 4 − 2

x − 8

23. lim
x→4

x − 4√
x − √

8 − x

solution

lim
x→4

x − 4√
x − √

8 − x
= lim

x→4

(x − 4)(
√

x + √
8 − x)

(
√

x − √
8 − x)(

√
x + √

8 − x)
= lim

x→4

(x − 4)(
√

x + √
8 − x)

x − (8 − x)

= lim
x→4

(x − 4)(
√

x + √
8 − x)

2x − 8
= lim

x→4

(x − 4)(
√

x + √
8 − x)

2(x − 4)

= lim
x→4

(
√

x + √
8 − x)

2
=

√
4 + √

4

2
= 2.
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lim
x→4

√
5 − x − 1

2 − √
x

25. lim
x→4

(
1√

x − 2
− 4

x − 4

)

solution lim
x→4

(
1√

x − 2
− 4

x − 4

)
= lim

x→4

√
x + 2 − 4(√

x − 2
) (√

x + 2
) = lim

x→4

√
x − 2(√

x − 2
) (√

x + 2
) = 1

4
.

lim
x→0+

(
1√
x

− 1√
x2 + x

)27. lim
x→0

cot x

csc x

solution lim
x→0

cot x

csc x
= lim

x→0

cos x

sin x
· sin x = cos 0 = 1.

lim
θ→ π

2

cot θ

csc θ

29. lim
t→2

22t + 2t − 20

2t − 4

solution lim
t→2

22t + 2t − 20

2t − 4
= lim

t→2

(2t + 5)(2t − 4)

2t − 4
= lim

t→2
(2t + 5) = 9.

lim
x→1

(
1

1 − x
− 2

1 − x2

)
31. lim

x→ π
4

sin x − cos x

tan x − 1

solution lim
x→ π

4

sin x − cos x

tan x − 1
· cos x

cos x
= lim

x→ π
4

(sin x − cos x) cos x

sin x − cos x
= cos

π

4
=

√
2

2
.

lim
θ→ π

2

(
sec θ − tan θ

)
33. lim

θ→ π
4

(
1

tan θ − 1
− 2

tan2 θ − 1

)

solution lim
θ→ π

4

(
1

tan θ − 1
− 2

tan2 θ − 1

)
= lim

θ→ π
4

(tan θ + 1) − 2

(tan θ + 1)(tan θ − 1)
= lim

θ→ π
4

1

tan θ + 1
= 1

2
.

lim
x→ π

3

2 cos2 x + 3 cos x − 2

2 cos x − 1

35. Use a plot of f (x) = x − 4√
x − √

8 − x
to estimate lim

x→4
f (x) to two decimal places. Compare with the answer

obtained algebraically in Exercise 23.

solution Let f (x) = x−4√
x−√

8−x
. From the plot of f (x) shown below, we estimate lim

x→4
f (x) ≈ 2.00; to two decimal

places, this matches the value of 2 obtained in Exercise 23.

1.996

1.997

1.998

1.999

2.000

2.001

1.995
3.6

y

x
3.8 4.0 4.2 4.4

Use a plot of f (x) = 1√
x − 2

− 4

x − 4
to estimate lim

x→4
f (x) numerically. Compare with the answer obtained

algebraically in Exercise 25.

In Exercises 37–42, evaluate using the identity

a3 − b3 = (a − b)(a2 + ab + b2)

37. lim
x→2

x3 − 8

x − 2

solution lim
x→2

x3 − 8

x − 2
= lim

x→2

(x − 2)
(
x2 + 2x + 4

)
x − 2

= lim
x→2

(
x2 + 2x + 4

)
= 12.

lim
x→3

x3 − 27

x2 − 9

39. lim
x→1

x2 − 5x + 4

x3 − 1

solution lim
x→1

x2 − 5x + 4

x3 − 1
= lim

x→1

(x − 1)(x − 4)

(x − 1)
(
x2 + x + 1

) = lim
x→1

x − 4

x2 + x + 1
= −1.

lim
x→−2

x3 + 8

x2 + 6x + 8

41. lim
x→1

x4 − 1

x3 − 1

solution

lim
x→1

x4 − 1

x3 − 1
= lim

x→1

(x2 − 1)(x2 + 1)

(x − 1)(x2 + x + 1)
= lim

x→1

(x − 1)(x + 1)(x2 + 1)

(x − 1)(x2 + x + 1)
= lim

x→1

(x + 1)(x2 + 1)

(x2 + x + 1)
= 4

3
.
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lim
x→27

x − 27

x1/3 − 3
43. Evaluate lim

h→0

4√1 + h − 1

h
. Hint: Set x = 4√1 + h and rewrite as a limit as x → 1.

solution Let x = 4√1 + h. Then h = x4 − 1 = (x − 1)(x + 1)(x2 + 1), x → 1 as h → 0 and

lim
h→0

4√1 + h − 1

h
= lim

x→1

x − 1

(x − 1)(x + 1)(x2 + 1)
= lim

x→1

1

(x + 1)(x2 + 1)
= 1

4
.

Evaluate lim
h→0

3√1 + h − 1
2√1 + h − 1

. Hint: Set x = 6√1 + h and rewrite as a limit as x → 1.
In Exercises 45–54, evaluate in terms of the constant a.

45. lim
x→0

(2a + x)

solution lim
x→0

(2a + x) = 2a.

lim
h→−2

(4ah + 7a)
47. lim

t→−1
(4t − 2at + 3a)

solution lim
t→−1

(4t − 2at + 3a) = −4 + 5a.

lim
h→0

(3a + h)2 − 9a2

h

49. lim
h→0

2(a + h)2 − 2a2

h

solution lim
h→0

2(a + h)2 − 2a2

h
= lim

h→0

4ha + 2h2

h
= lim

h→0
(4a + 2h) = 4a.

lim
x→a

(x + a)2 − 4x2

x − a

51. lim
x→a

√
x − √

a

x − a

solution lim
x→a

√
x − √

a

x − a
= lim

x→a

√
x − √

a(√
x − √

a
) (√

x + √
a
) = lim

x→a

1√
x + √

a
= 1

2
√

a
.

lim
h→0

√
a + 2h − √

a

h

53. lim
x→0

(x + a)3 − a3

x

solution lim
x→0

(x + a)3 − a3

x
= lim

x→0

x3 + 3x2a + 3xa2 + a3 − a3

x
= lim

x→0
(x2 + 3xa + 3a2) = 3a2.

lim
h→a

1

h
− 1

a

h − a

Further Insights and Challenges
In Exercises 55–58, find all values of c such that the limit exists.

55. lim
x→c

x2 − 5x − 6

x − c

solution lim
x→c

x2 − 5x − 6

x − c
will exist provided that x − c is a factor of the numerator. (Otherwise there will be an

infinite discontinuity at x = c.) Since x2 − 5x − 6 = (x + 1)(x − 6), this occurs for c = −1 and c = 6.

lim
x→1

x2 + 3x + c

x − 1

57. lim
x→1

(
1

x − 1
− c

x3 − 1

)
solution Simplifying, we find

1

x − 1
− c

x3 − 1
= x2 + x + 1 − c

(x − 1)(x2 + x + 1)
.

In order for the limit to exist as x → 1, the numerator must evaluate to 0 at x = 1. Thus, we must have 3 − c = 0, which
implies c = 3.

lim
x→0

1 + cx2 −
√

1 + x2

x4

59. For which sign ± does the following limit exist?

lim
x→0

(
1

x
± 1

x(x − 1)

)

solution

• The limit lim
x→0

(
1

x
+ 1

x(x − 1)

)
= lim

x→0

(x − 1) + 1

x(x − 1)
= lim

x→0

1

x − 1
= −1.

• The limit lim
x→0

(
1

x
− 1

x(x − 1)

)
does not exist.

– As x → 0+, we have
1

x
− 1

x(x − 1)
= (x − 1) − 1

x(x − 1)
= x − 2

x(x − 1)
→ ∞.

– As x → 0−, we have
1

x
− 1

x(x − 1)
= (x − 1) − 1

x(x − 1)
= x − 2

x(x − 1)
→ −∞.
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2.6 Trigonometric Limits

Preliminary Questions
1. Assume that −x4 ≤ f (x) ≤ x2. What is lim

x→0
f (x)? Is there enough information to evaluate lim

x→ 1
2

f (x)? Explain.

solution Since limx→0 −x4 = limx→0 x2 = 0, the squeeze theorem guarantees that limx→0 f (x) = 0. Since

lim
x→ 1

2
−x4 = − 1

16 �= 1
4 = lim

x→ 1
2

x2, we do not have enough information to determine lim
x→ 1

2
f (x).

2. State the Squeeze Theorem carefully.

solution Assume that for x �= c (in some open interval containing c),

l(x) ≤ f (x) ≤ u(x)

and that lim
x→c

l(x) = lim
x→c

u(x) = L. Then lim
x→c

f (x) exists and

lim
x→c

f (x) = L.

3. If you want to evaluate lim
h→0

sin 5h

3h
, it is a good idea to rewrite the limit in terms of the variable (choose one):

(a) θ = 5h (b) θ = 3h (c) θ = 5h

3

solution To match the given limit to the pattern of

lim
θ→0

sin θ

θ
,

it is best to substitute for the argument of the sine function; thus, rewrite the limit in terms of (a): θ = 5h.

Exercises
1. State precisely the hypothesis and conclusions of the Squeeze Theorem for the situation in Figure 6.

1 2

2

u(x)

l(x)

f (x)

x

y

FIGURE 6

solution For all x �= 1 on the open interval (0, 2) containing x = 1, �(x) ≤ f (x) ≤ u(x). Moreover,

lim
x→1

�(x) = lim
x→1

u(x) = 2.

Therefore, by the Squeeze Theorem,

lim
x→1

f (x) = 2.

In Figure 7, is f (x) squeezed by u(x) and l(x) at x = 3? At x = 2?
3. What does the Squeeze Theorem say about lim

x→7
f (x) if lim

x→7
l(x) = lim

x→7
u(x) = 6 and f (x), u(x), and l(x) are related

as in Figure 8? The inequality f (x) ≤ u(x) is not satisfied for all x. Does this affect the validity of your conclusion?

7

6

x

u(x)

f(x)

l(x)

y

FIGURE 8
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solution The Squeeze Theorem does not require that the inequalities l(x) ≤ f (x) ≤ u(x) hold for all x, only that the
inequalities hold on some open interval containing x = c. In Figure 8, it is clear that l(x) ≤ f (x) ≤ u(x) on some open
interval containing x = 7. Because lim

x→7
u(x) = lim

x→7
l(x) = 6, the Squeeze Theorem guarantees that lim

x→7
f (x) = 6.

Determine lim
x→0

f (x) assuming that cos x ≤ f (x) ≤ 1.
5. State whether the inequality provides sufficient information to determine lim

x→1
f (x), and if so, find the limit.

(a) 4x − 5 ≤ f (x) ≤ x2

(b) 2x − 1 ≤ f (x) ≤ x2

(c) 4x − x2 ≤ f (x) ≤ x2 + 2

solution

(a) Because lim
x→1

(4x − 5) = −1 �= 1 = lim
x→1

x2, the given inequality does not provide sufficient information to determine

limx→1 f (x).

(b) Because lim
x→1

(2x − 1) = 1 = lim
x→1

x2, it follows from the Squeeze Theorem that limx→1 f (x) = 1.

(c) Because lim
x→1

(4x − x2) = 3 = lim
x→1

(x2 + 2), it follows from the Squeeze Theorem that limx→1 f (x) = 3.

Plot the graphs of u(x) = 1 + ∣∣x − π
2

∣∣ and l(x) = sin x on the same set of axes. What can you say about
lim

x→ π
2

f (x) if f (x) is squeezed by l(x) and u(x) at x = π
2 ?

In Exercises 7–16, evaluate using the Squeeze Theorem.

7. lim
x→0

x2 cos
1

x

solution Multiplying the inequality −1 ≤ cos 1
x ≤ 1, which holds for all x �= 0, by x2 yields −x2 ≤ x2 cos 1

x ≤ x2.
Because

lim
x→0

−x2 = lim
x→0

x2 = 0,

it follows by the Squeeze Theorem that

lim
x→0

x2 cos
1

x
= 0.

lim
x→0

x sin
1

x2

9. lim
x→1

(x − 1) sin
π

x − 1

solution Multiplying the inequality
∣∣∣sin π

x−1

∣∣∣ ≤ 1, which holds for x �= 1, by |x − 1| yields
∣∣∣(x − 1) sin π

x−1

∣∣∣ ≤
|x − 1| or −|x − 1| ≤ (x − 1) sin π

x−1 ≤ |x − 1|. Because

lim
x→1

−|x − 1| = lim
x→1

|x − 1| = 0,

it follows by the Squeeze Theorem that

lim
x→1

(x − 1) sin
π

x − 1
= 0.

lim
x→3

(x2 − 9)
x − 3

|x − 3|
11. lim

t→0
(2t − 1) cos

1

t

solution Multiplying the inequality
∣∣∣cos 1

t

∣∣∣ ≤ 1, which holds for t �= 0, by |2t − 1| yields
∣∣∣(2t − 1) cos 1

t

∣∣∣ ≤ |2t − 1|
or −|2t − 1| ≤ (2t − 1) cos 1

t ≤ |2t − 1|. Because

lim
t→0

−|2t − 1| = lim
t→0

|2t − 1| = 0,

it follows by the Squeeze Theorem that

lim
t→0

(2t − 1) cos
1

t
= 0.

lim
x→0+

√
x 4cos(π/x)13. lim

t→2
(t2 − 4) cos

1

t − 2

solution Multiplying the inequality
∣∣∣cos 1

t−2

∣∣∣ ≤ 1, which holds for t �= 2, by |t2 − 4| yields
∣∣∣(t2 − 4) cos 1

t−2

∣∣∣ ≤
|t2 − 4| or −|t2 − 4| ≤ (t2 − 4) cos 1

t−2 ≤ |t2 − 4|. Because

lim
t→2

−|t2 − 4| = lim
t→2

|t2 − 4| = 0,
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it follows by the Squeeze Theorem that

lim
t→2

(t2 − 4) cos
1

t − 2
= 0.

lim
x→0

tan x cos

(
sin

1

x

)
15. lim

θ→ π
2

cos θ cos(tan θ)

solution Multiplying the inequality | cos(tan θ)| ≤ 1, which holds for all θ near π
2 but not equal to π

2 , by | cos θ |
yields | cos θ cos(tan θ)| ≤ | cos θ | or −| cos θ | ≤ cos θ cos(tan θ) ≤ | cos θ |. Because

lim
θ→ π

2

−| cos θ | = lim
θ→ π

2

| cos θ | = 0,

it follows from the Squeeze Theorem that

lim
θ→ π

2

cos θ cos(tan θ) = 0.

lim
t→0− sin2

(
1

t

)
31/t

In Exercises 17–26, evaluate using Theorem 2 as necessary.

17. lim
x→0

tan x

x

solution lim
x→0

tan x

x
= lim

x→0

sin x

x

1

cos x
= lim

x→0

sin x

x
· lim
x→0

1

cos x
= 1 · 1 = 1.

lim
x→0

sin x sec x

x
19. lim

t→0

√
t3 + 9 sin t

t

solution lim
t→0

√
t3 + 9 sin t

t
= lim

t→0

√
t3 + 9 · lim

t→0

sin t

t
= √

9 · 1 = 3.

lim
t→0

sin2 t

t

21. lim
x→0

x2

sin2 x

solution lim
x→0

x2

sin2 x
= lim

x→0

1
sin x

x
sin x

x

= lim
x→0

1
sin x

x

· lim
x→0

1
sin x

x

= 1

1
· 1

1
= 1.

lim
t→ π

2

1 − cos t

t

23. lim
θ→0

sec θ − 1

θ

solution lim
θ→0

sec θ − 1

θ
= lim

θ→0

1 − cos θ

θ cos θ
= lim

θ→0

1 − cos θ

θ
· lim
θ→0

1

cos θ
= 0 · 1 = 0.

lim
θ→0

1 − cos θ

sin θ

25. lim
t→ π

4

sin t

t

solution
sin t

t
is continuous at t = π

4
. Hence, by substitution

lim
t→ π

4

sin t

t
=

√
2

2
π
4

= 2
√

2

π
.

lim
t→0

cos t − cos2 t

t

27. Let L = lim
x→0

sin 14x

x
.

(a) Show, by letting θ = 14x, that L = lim
θ→0

14
sin θ

θ
.

(b) Compute L.

solution

(a) Let θ = 14x. Then x = θ
14 and θ → 0 as x → 0, so

L = lim
x→0

sin 14x

x
= lim

θ→0

sin θ

(θ/14)
= lim

θ→0
14

sin θ

θ
.

(b) Based on part (a),

L = 14 lim
θ→0

· sin θ

θ
= 14.
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Evaluate lim
h→0

sin 9h

sin 7h
. Hint:

sin 9h

sin 7h
=

(
9

7

) (
sin 9h

9h

) (
7h

sin 7h

)
.

In Exercises 29–48, evaluate the limit.

29. lim
h→0

sin 9h

h

solution lim
h→0

sin 9h

h
= lim

h→0
9

sin 9h

9h
= 9.

lim
h→0

sin 4h

4h

31. lim
h→0

sin h

5h

solution lim
h→0

sin h

5h
= lim

h→0

1

5

sin h

h
= 1

5
.

lim
x→ π

6

x

sin 3x

33. lim
θ→0

sin 7θ

sin 3θ

solution We have

sin 7θ

sin 3θ
= 7

3

(
sin 7θ

7θ

) (
3θ

sin 3θ

)

Therefore,

lim
θ→0

sin 7θ

3θ
= 7

3

(
lim
θ→0

sin 7θ

7θ

) (
lim
θ→0

3θ

sin 3θ

)
= 7

3
(1)(1) = 7

3

lim
x→0

tan 4x

9x

35. lim
x→0

x csc 25x

solution Let h = 25x. Then

lim
x→0

x csc 25x = lim
h→0

h

25
csc h = 1

25
lim
h→0

h

sin h
= 1

25
.

lim
t→0

tan 4t

t sec t

37. lim
h→0

sin 2h sin 3h

h2

solution

lim
h→0

sin 2h sin 3h

h2
= lim

h→0

sin 2h sin 3h

h · h
= lim

h→0

sin 2h

h

sin 3h

h

= lim
h→0

2
sin 2h

2h
3

sin 3h

3h
= lim

h→0
2

sin 2h

2h
lim
h→0

3
sin 3h

3h
= 2 · 3 = 6.

lim
z→0

sin(z/3)

sin z

39. lim
θ→0

sin(−3θ)

sin(4θ)

solution lim
θ→0

sin(−3θ)

sin(4θ)
= lim

θ→0

− sin(3θ)

3θ
· 3

4
· 4θ

sin(4θ)
= −3

4
.

lim
x→0

tan 4x

tan 9x

41. lim
t→0

csc 8t

csc 4t

solution lim
t→0

csc 8t

csc 4t
= lim

t→0

sin 4t

sin 8t
· 8t

4t
· 1

2
= 1

2
.

lim
x→0

sin 5x sin 2x

sin 3x sin 5x

43. lim
x→0

sin 3x sin 2x

x sin 5x

solution lim
x→0

sin 3x sin 2x

x sin 5x
= lim

x→0

(
3

sin 3x

3x
· 2

5

(sin 2x) / (2x)

(sin 5x) / (5x)

)
= 6

5
.

lim
h→0

1 − cos 2h

h

45. lim
h→0

sin(2h)(1 − cos h)

h2

solution lim
h→0

sin(2h)(1 − cos h)

h2
= lim

h→0

sin(2h)

h
lim
h→0

1 − cos h

h
= 1 · 0 = 0.

lim
t→0

1 − cos 2t

sin2 3t
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47. lim
θ→0

cos 2θ − cos θ

θ

solution

lim
θ→0

cos 2θ − cos θ

θ
= lim

θ→0

(cos 2θ − 1) + (1 − cos θ)

θ
= lim

θ→0

cos 2θ − 1

θ
+ lim

θ→0

1 − cos θ

θ

= −2 lim
θ→0

1 − cos 2θ

2θ
+ lim

θ→0

1 − cos θ

θ
= −2 · 0 + 0 = 0.

lim
h→ π

2

1 − cos 3h

h

49. Calculate lim
x→0−

sin x

|x| .

solution

lim
x→0−

sin x

|x| = lim
x→0−

sin x

−x
= −1

Use the identity sin 3θ = 3 sin θ − 4 sin3 θ to evaluate the limit lim
θ→0

sin 3θ − 3 sin θ

θ3
.

51. Prove the following result stated in Theorem 2:

lim
θ→0

1 − cos θ

θ
= 0 7

Hint:
1 − cos θ

θ
= 1

1 + cos θ
· 1 − cos2 θ

θ
.

solution

lim
θ→0

1 − cos θ

θ
= lim

θ→0

1

1 + cos θ
· 1 − cos2 θ

θ
= lim

θ→0

1

1 + cos θ
· sin2 θ

θ

= lim
θ→0

1

1 + cos θ
· lim
θ→0

sin2 θ

θ
= lim

θ→0

1

1 + cos θ
· lim
θ→0

sin θ
sin θ

θ

= lim
θ→0

1

1 + cos θ
· lim
θ→0

sin θ · lim
θ→0

sin θ

θ
= 1

2
· 0 · 1 = 0.

Investigate lim
h→0

1 − cos h

h2
numerically (and graphically if you have a graphing utility). Then prove that the

limit is equal to 1
2 . Hint: See the hint for Exercise 51.

In Exercises 53–55, evaluate using the result of Exercise 52.

53. lim
h→0

cos 3h − 1

h2

solution We make the substitution θ = 3h. Then h = θ/3, and

lim
h→0

cos 3h − 1

h2
= lim

θ→0

cos θ − 1

(θ/3)2
= −9 lim

θ→0

1 − cos θ

θ2
= −9

2
.

lim
h→0

cos 3h − 1

cos 2h − 1
55. lim

t→0

√
1 − cos t

t

solution lim
t→0+

√
1 − cos t

t
=

√
lim

t→0+
1 − cos t

t2
=

√
1

2
=

√
2

2
; on the other hand, lim

t→0−

√
1 − cos t

t
=

−
√

lim
t→0−

1 − cos t

t2
= −

√
1

2
= −

√
2

2
.

Use the Squeeze Theorem to prove that if lim
x→c

|f (x)| = 0, then lim
x→c

f (x) = 0.Further Insights and Challenges
57. Use the result of Exercise 52 to prove that for m �= 0,

lim
x→0

cos mx − 1

x2
= −m2

2

solution Substitute u = mx into
cos mx − 1

x2
. We obtain x = u

m . As x → 0, u → 0; therefore,

lim
x→0

cos mx − 1

x2
= lim

u→0

cos u − 1

(u/m)2
= lim

u→0
m2 cos u − 1

u2
= m2

(
−1

2

)
= −m2

2
.
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Using a diagram of the unit circle and the Pythagorean Theorem, show that

sin2 θ ≤ (1 − cos θ)2 + sin2 θ ≤ θ2

Conclude that sin2 θ ≤ 2(1 − cos θ) ≤ θ2 and use this to give an alternative proof of Eq. (7) in Exercise 51. Then
give an alternative proof of the result in Exercise 52.

59. (a) Investigate lim
x→c

sin x − sin c

x − c
numerically for the five values c = 0, π

6 , π
4 , π

3 , π
2 .

(b) Can you guess the answer for general c?
(c) Check that your answer to (b) works for two other values of c.

solution
(a)

x c − 0.01 c − 0.001 c + 0.001 c + 0.01

sin x − sin c

x − c
0.999983 0.99999983 0.99999983 0.999983

Here c = 0 and cos c = 1.

x c − 0.01 c − 0.001 c + 0.001 c + 0.01

sin x − sin c

x − c
0.868511 0.866275 0.865775 0.863511

Here c = π
6 and cos c =

√
3

2 ≈ 0.866025.

x c − 0.01 c − 0.001 c + 0.001 c + 0.01

sin x − sin c

x − c
0.504322 0.500433 0.499567 0.495662

Here c = π
3 and cos c = 1

2 .

x c − 0.01 c − 0.001 c + 0.001 c + 0.01

sin x − sin c

x − c
0.710631 0.707460 0.706753 0.703559

Here c = π
4 and cos c =

√
2

2 ≈ 0.707107.

x c − 0.01 c − 0.001 c + 0.001 c + 0.01

sin x − sin c

x − c
0.005000 0.000500 −0.000500 −0.005000

Here c = π
2 and cos c = 0.

(b) lim
x→c

sin x − sin c

x − c
= cos c.

(c)

x c − 0.01 c − 0.001 c + 0.001 c + 0.01

sin x − sin c

x − c
−0.411593 −0.415692 −0.416601 −0.420686

Here c = 2 and cos c = cos 2 ≈ −0.416147.

x c − 0.01 c − 0.001 c + 0.001 c + 0.01

sin x − sin c

x − c
0.863511 0.865775 0.866275 0.868511

Here c = −π
6 and cos c =

√
3

2 ≈ 0.866025.

2.7 Limits at Infinity

Preliminary Questions
1. Assume that

lim
x→∞ f (x) = L and lim

x→L
g(x) = ∞

Which of the following statements are correct?
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(a) x = L is a vertical asymptote of g(x).
(b) y = L is a horizontal asymptote of g(x).
(c) x = L is a vertical asymptote of f (x).
(d) y = L is a horizontal asymptote of f (x).

solution
(a) Because lim

x→L
g(x) = ∞, x = L is a vertical asymptote of g(x). This statement is correct.

(b) This statement is not correct.
(c) This statement is not correct.
(d) Because lim

x→∞ f (x) = L, y = L is a horizontal asymptote of f (x). This statement is correct.

2. What are the following limits?

(a) lim
x→∞ x3 (b) lim

x→−∞ x3 (c) lim
x→−∞ x4

solution

(a) limx→∞ x3 = ∞
(b) limx→−∞ x3 = −∞
(c) limx→−∞ x4 = ∞
3. Sketch the graph of a function that approaches a limit as x → ∞ but does not approach a limit (either finite or infinite)

as x → −∞.

solution

y

x

4. What is the sign of a if f (x) = ax3 + x + 1 satisfies
lim

x→−∞ f (x) = ∞?

solution Because lim
x→−∞ x3 = −∞, a must be negative to have lim

x→−∞ f (x) = ∞.

5. What is the sign of the leading coefficient a7 if f (x) is a polynomial of degree 7 such that lim
x→−∞ f (x) = ∞?

solution The behavior of f (x) as x → −∞ is controlled by the leading term; that is, limx→−∞ f (x) =
limx→−∞ a7x7. Because x7 → −∞ as x → −∞, a7 must be negative to have limx→−∞ f (x) = ∞.

6. Explain why lim
x→∞ sin 1

x exists but lim
x→0

sin 1
x does not exist. What is lim

x→∞ sin 1
x ?

solution As x → ∞, 1
x → 0, so

lim
x→∞ sin

1

x
= sin 0 = 0.

On the other hand, 1
x → ±∞ as x → 0, and as 1

x → ±∞, sin 1
x oscillates infinitely often. Thus

lim
x→0

sin
1

x

does not exist.

Exercises
1. What are the horizontal asymptotes of the function in Figure 6?

−20 20 40 60 80
x

1

2

y

y = f (x)

FIGURE 6
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solution Because

lim
x→−∞ f (x) = 1 and lim

x→∞ f (x) = 2,

the function f (x) has horizontal asymptotes of y = 1 and y = 2.

Sketch the graph of a function f (x) that has both y = −1 and y = 5 as horizontal asymptotes.
3. Sketch the graph of a function f (x) with a single horizontal asymptote y = 3.

solution

−13

−9

−5

−1−4 −2 2

3

y

x

Sketch the graphs of two functions f (x) and g(x) that have both y = −2 and y = 4 as horizontal asymptotes but
lim

x→∞ f (x) �= lim
x→∞ g(x).

5. Investigate the asymptotic behavior of f (x) = x3

x3 + x
numerically and graphically:

(a) Make a table of values of f (x) for x = ±50, ±100, ±500, ±1000.

(b) Plot the graph of f (x).

(c) What are the horizontal asymptotes of f (x)?

solution

(a) From the table below, it appears that

lim
x→±∞

x3

x3 + x
= 1.

x ±50 ±100 ±500 ±1000

f (x) 0.999600 0.999900 0.999996 0.999999

(b) From the graph below, it also appears that

lim
x→±∞

x3

x3 + x
= 1.

−5 5

0.2

0.4

0.6

0.8

1.0

y

x

(c) The horizontal asymptote of f (x) is y = 1.

Investigate lim
x→±∞

12x + 1√
4x2 + 9

numerically and graphically:

(a) Make a table of values of f (x) = 12x + 1√
4x2 + 9

for x = ±100, ±500, ±1000, ±10,000.

(b) Plot the graph of f (x).

(c) What are the horizontal asymptotes of f (x)?

In Exercises 7–16, evaluate the limit.

7. lim
x→∞

x

x + 9

solution

lim
x→∞

x

x + 9
= lim

x→∞
x−1(x)

x−1(x + 9)
= lim

x→∞
1

1 + 9
x

= 1

1 + 0
= 1.

lim
x→∞

3x2 + 20x

4x2 + 9

9. lim
x→∞

3x2 + 20x

2x4 + 3x3 − 29

solution

lim
x→∞

3x2 + 20x

2x4 + 3x3 − 29
= lim

x→∞
x−4(3x2 + 20x)

x−4(2x4 + 3x3 − 29)
= lim

x→∞
3
x2 + 20

x3

2 + 3
x − 29

x4

= 0

2
= 0.
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lim
x→∞

4

x + 5

11. lim
x→∞

7x − 9

4x + 3
solution

lim
x→∞

7x − 9

4x + 3
= lim

x→∞
x−1(7x − 9)

x−1(4x + 3)
= lim

x→∞
7 − 9

x

4 + 3
x

= 7

4
.

lim
x→∞

9x2 − 2

6 − 29x

13. lim
x→−∞

7x2 − 9

4x + 3

solution

lim
x→−∞

7x2 − 9

4x + 3
= lim

x→−∞
x−1(7x2 − 9)

x−1(4x + 3)
= lim

x→−∞
7x − 9

x

4 + 3
x

= −∞.

lim
x→−∞

5x − 9

4x3 + 2x + 7
15. lim

x→−∞
3x3 − 10

x + 4

solution

lim
x→−∞

3x3 − 10

x + 4
= lim

x→−∞
x−1(3x3 − 10)

x−1(x + 4)
= lim

x→−∞
3x2 − 10

x

1 + 4
x

= ∞
1

= ∞.

lim
x→−∞

2x5 + 3x4 − 31x

8x4 − 31x2 + 12

In Exercises 17–22, find the horizontal asymptotes.

17. f (x) = 2x2 − 3x

8x2 + 8
solution First calculate the limits as x → ±∞. For x → ∞,

lim
x→∞

2x2 − 3x

8x2 + 8
= lim

x→∞
2 − 3

x

8 + 8
x2

= 2

8
= 1

4
.

Similarly,

lim
x→−∞

2x2 − 3x

8x2 + 8
= lim

x→−∞
2 − 3

x

8 + 8
x2

= 2

8
= 1

4
.

Thus, the horizontal asymptote of f (x) is y = 1
4 .

f (x) = 8x3 − x2

7 + 11x − 4x4
19. f (x) =

√
36x2 + 7

9x + 4

solution For x > 0, x−1 = |x−1| =
√

x−2, so

lim
x→∞

√
36x2 + 7

9x + 4
= lim

x→∞

√
36 + 7

x2

9 + 4
x

=
√

36

9
= 2

3
.

On the other hand, for x < 0, x−1 = −|x−1| = −
√

x−2, so

lim
x→−∞

√
36x2 + 7

9x + 4
= lim

x→−∞
−

√
36 + 7

x2

9 + 4
x

= −√
36

9
= −2

3
.

Thus, the horizontal asymptotes of f (x) are y = 2
3 and y = − 2

3 .

f (x) =
√

36x4 + 7

9x2 + 4

21. f (t) = 3t

1 + 3−t

solution With

lim
t→∞

3t

1 + 3−t
= ∞

1
= ∞

and

lim
t→−∞

3t

1 + 3−t
= 0,

the function f (t) has one horizontal asymptote, y = 0.
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f (t) = t1/3

(64t2 + 9)1/6

In Exercises 23–30, evaluate the limit.

23. lim
x→∞

√
9x4 + 3x + 2

4x3 + 1

solution For x > 0, x−3 = |x−3| =
√

x−6, so

lim
x→∞

√
9x4 + 3x + 2

4x3 + 1
= lim

x→∞

√
9
x2 + 3

x5 + 2
x6

4 + 1
x3

= 0.

lim
x→∞

√
x3 + 20x

10x − 2

25. lim
x→−∞

8x2 + 7x1/3√
16x4 + 6

solution For x < 0, x−2 = |x−2| =
√

x−4, so

lim
x→−∞

8x2 + 7x1/3√
16x4 + 6

= lim
x→−∞

8 + 7
x5/3√

16 + 6
x4

= 8√
16

= 2.

lim
x→−∞

4x − 3√
25x2 + 4x

27. lim
t→∞

t4/3 + t1/3

(4t2/3 + 1)2

solution lim
t→∞

t4/3 + t1/3

(4t2/3 + 1)2
= lim

t→∞
1 + 1

t

(4 + 1
t2/3 )2

= 1

16
.

lim
t→∞

t4/3 − 9t1/3

(8t4 + 2)1/3

29. lim
x→−∞

|x| + x

x + 1

solution For x < 0, |x| = −x. Therefore, for all x < 0,

|x| + x

x + 1
= −x + x

x + 1
= 0;

consequently,

lim
x→−∞

|x| + x

x + 1
= 0.

lim
t→−∞

4 + 6 · 102t

5 − 9 · 103t

31. Determine the limits at infinity of g(t) = 5−1/t2
.

solution Because lim
t→±∞ − 1

t2
= − 1

∞ = 0, it follows that

lim
t→±∞ 5−1/t2 = 50 = 1

Show that lim
x→∞(

√
x2 + 1 − x) = 0. Hint: Observe that

√
x2 + 1 − x = 1√

x2 + 1 + x

33. According to the Michaelis–Menten equation (Figure 7), when an enzyme is combined with a substrate of concen-
tration s (in millimolars), the reaction rate (in micromolars/min) is

R(s) = As

K + s
(A, K constants)

(a) Show, by computing lim
s→∞ R(s), that A is the limiting reaction rate as the concentration s approaches ∞.

(b) Show that the reaction rate R(s) attains one-half of the limiting value A when s = K .
(c) For a certain reaction, K = 1.25 mM and A = 0.1. For which concentration s is R(s) equal to 75% of its limiting
value?

Leonor Michaelis
1875−1949

Maud Menten
1879−1960

FIGURE 7 Canadian-born biochemist Maud Menten is best known for her fundamental work on enzyme kinetics with
German scientist Leonor Michaelis. She was also an accomplished painter, clarinetist, mountain climber, and master of
numerous languages.
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solution

(a) lim
s→∞ R(s) = lim

s→∞
As

K + s
= lim

s→∞
A

1 + K
s

= A.

(b) Observe that

R(K) = AK

K + K
= AK

2K
= A

2
,

have of the limiting value.

(c) By part (a), the limiting value is 0.1, so we need to determine the value of s that satisfies

R(s) = 0.1s

1.25 + s
= 0.075.

Solving this equation for s yields

s = (1.25)(0.075)

0.025
= 3.75 mM.

Suppose that the average temperature of the earth is T (t) = 283 + 3(1 − 10−0.013t ) kelvins, where t is the number
of years since 2000.

(a) Calculate the long-term average L = lim
t→∞ T (t).

(b) At what time is T (t) within one-half a degree of its limiting value?

In Exercises 35–42, calculate the limit.

35. lim
x→∞

(√
4x4 + 9x − 2x2)

solution Write

√
4x4 + 9x − 2x2 =

(√
4x4 + 9x − 2x2

)√
4x4 + 9x + 2x2√
4x4 + 9x + 2x2

= (4x4 + 9x) − 4x4√
4x4 + 9x + 2x2

= 9x√
4x4 + 9x + 2x2

.

Thus,

lim
x→∞(

√
4x4 + 9x − 2x2) = lim

x→∞
9x√

4x4 + 9x + 2x2
= 0.

lim
x→∞(

√
9x3 + x − x3/2)

37. lim
x→∞

(
2
√

x − √
x + 2

)
solution Write

2
√

x − √
x + 2 = (

2
√

x − √
x + 2

)2
√

x + √
x + 2

2
√

x + √
x + 2

= 4x − (x + 2)

2
√

x + √
x + 2

= 3x − 2

2
√

x + √
x + 2

.

Thus,

lim
x→∞(2

√
x − √

x + 2) = lim
x→∞

3x − 2

2
√

x + √
x + 2

= ∞.

lim
x→∞

(
1

x
− 1

x + 2

)
39. lim

t→∞ tan

(
π3t + 1

4 − 3t+1

)

solution Dividing numerator and denominator by 3t gives

lim
t→∞ tan

(
π3t + 1

4 − 3t+1

)
= lim

t→∞ tan

(
π + 3−t

4 · 3−t − 3

)
= tan

(
π

−3

)
= tan

(
−π

3

)
= −√

3

lim
t→−∞ 2

(
8t

t + 1
− 10t+1

)41. Let P(n) be the perimeter of an n-gon inscribed in a unit circle (Figure 8).

(a) Explain, intuitively, why P(n) approaches 2π as n → ∞.

(b) Show that P(n) = 2n sin
(
π
n

)
.

(c) Combine (a) and (b) to conclude that lim
n→∞

n
π sin

(
π
n

) = 1.

(d) Use this to give another argument that lim
θ→0

sin θ

θ
= 1.
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n = 6 n = 9 n = 12

FIGURE 8

solution

(a) As n → ∞, the n-gon approaches a circle of radius 1. Therefore, the perimeter of the n-gon approaches the circum-
ference of the unit circle as n → ∞. That is, P(n) → 2π as n → ∞.

(b) Each side of the n-gon is the third side of an isosceles triangle with equal length sides of length 1 and angle θ = 2π
n

between the equal length sides. The length of each side of the n-gon is therefore√
12 + 12 − 2 cos

2π

n
=

√
2(1 − cos

2π

n
) =

√
4 sin2 π

n
= 2 sin

π

n
.

Finally,

P(n) = 2n sin
π

n
.

(c) Combining parts (a) and (b),

lim
n→∞ P(n) = lim

n→∞ 2n sin
π

n
= 2π.

Dividing both sides of this last expression by 2π yields

lim
n→∞

n

π
sin

π

n
= 1.

(d) Let θ = π
n . Then θ → 0 as n → ∞,

n

π
sin

π

n
= 1

θ
sin θ = sin θ

θ
,

and

lim
n→∞

n

π
sin

π

n
= lim

θ→0

sin θ

θ
= 1.

Physicists have observed that Einstein’s theory of special relativity reduces to Newtonian mechanics in the limit
as c → ∞, where c is the speed of light. This is illustrated by a stone tossed up vertically from ground level so
that it returns to earth one second later. Using Newton’s Laws, we find that the stone’s maximum height is h = g/8
meters (g = 9.8 m/s2). According to special relativity, the stone’s mass depends on its velocity divided by c, and the
maximum height is

h(c) = c

√
c2/g2 + 1/4 − c2/g

Prove that lim
c→∞ h(c) = g/8.

Further Insights and Challenges
43. Every limit as x → ∞ can be rewritten as a one-sided limit as t → 0+, where t = x−1. Setting g(t) = f (t−1), we
have

lim
x→∞ f (x) = lim

t→0+ g(t)

Show that lim
x→∞

3x2 − x

2x2 + 5
= lim

t→0+
3 − t

2 + 5t2
, and evaluate using the Quotient Law.

solution Let t = x−1. Then x = t−1, t → 0+ as x → ∞, and

3x2 − x

2x2 + 5
= 3t−2 − t−1

2t−2 + 5
= 3 − t

2 + 5t2
.

Thus,

lim
x→∞

3x2 − x

2x2 + 5
= lim

t→0+
3 − t

2 + 5t2
= 3

2
.

Rewrite the following as one-sided limits as in Exercise 43 and evaluate.

(a) lim
x→∞

3 − 12x3

4x3 + 3x + 1
(b) lim

x→∞ 21/x

(c) lim
x→∞ x sin

1

x
(d) lim

x→∞ cos

(
π

x + 1

x − 1

)

45. Let G(b) = lim
x→∞(1 + bx)1/x for b ≥ 0. Investigate G(b) numerically and graphically for b = 0.2, 0.8, 2, 3, 5

(and additional values if necessary). Then make a conjecture for the value of G(b) as a function of b. Draw a graph
of y = G(b). Does G(b) appear to be continuous? We will evaluate G(b) using L’Hôpital’s Rule in Section 7.7 (see
Exercise 65 in Section 7.7).
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solution

• b = 0.2:

x 5 10 50 100

f (x) 1.000064 1.000000 1.000000 1.000000

It appears that G(0.2) = 1.

• b = 0.8:

x 5 10 50 100

f (x) 1.058324 1.010251 1.000000 1.000000

It appears that G(0.8) = 1.

• b = 2:

x 5 10 50 100

f (x) 2.012347 2.000195 2.000000 2.000000

It appears that G(2) = 2.

• b = 3:

x 5 10 50 100

f (x) 3.002465 3.000005 3.000000 3.000000

It appears that G(3) = 3.

• b = 5:

x 5 10 50 100

f (x) 5.000320 5.000000 5.000000 5.000000

It appears that G(5) = 5.

Based on these observations we conjecture that G(b) = 1 if 0 ≤ b ≤ 1 and G(b) = b for b > 1. The graph of y = G(b)

is shown below; the graph does appear to be continuous.

1

0
0 1 2 3 4

2

3

4

y

x

2.8 Intermediate Value Theorem

Preliminary Questions
1. Prove that f (x) = x2 takes on the value 0.5 in the interval [0, 1].
solution Observe that f (x) = x2 is continuous on [0, 1] with f (0) = 0 and f (1) = 1. Because f (0) < 0.5 < f (1),
the Intermediate Value Theorem guarantees there is a c ∈ [0, 1] such that f (c) = 0.5.

2. The temperature in Vancouver was 8◦C at 6 am and rose to 20◦C at noon. Which assumption about temperature allows
us to conclude that the temperature was 15◦C at some moment of time between 6 am and noon?

solution We must assume that temperature is a continuous function of time.

3. What is the graphical interpretation of the IVT?

solution If f is continuous on [a, b], then the horizontal line y = k for every k between f (a) and f (b) intersects the
graph of y = f (x) at least once.
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4. Show that the following statement is false by drawing a graph that provides a counterexample:

If f (x) is continuous and has a root in [a, b], then f (a) and f (b) have opposite signs.

solution

f (a)

f (b)

a

y

x
b

5. Assume that f (t) is continuous on [1, 5] and that f (1) = 20, f (5) = 100. Determine whether each of the following
statements is always true, never true, or sometimes true.

(a) f (c) = 3 has a solution with c ∈ [1, 5].
(b) f (c) = 75 has a solution with c ∈ [1, 5].
(c) f (c) = 50 has no solution with c ∈ [1, 5].
(d) f (c) = 30 has exactly one solution with c ∈ [1, 5].
solution
(a) This statement is sometimes true.

(b) This statement is always true.

(c) This statement is never true.

(d) This statement is sometimes true.

Exercises
1. Use the IVT to show that f (x) = x3 + x takes on the value 9 for some x in [1, 2].

solution Observe that f (1) = 2 and f (2) = 10. Since f is a polynomial, it is continuous everywhere; in particular
on [1, 2]. Therefore, by the IVT there is a c ∈ [1, 2] such that f (c) = 9.

Show that g(t) = t

t + 1
takes on the value 0.499 for some t in [0, 1].

3. Show that g(t) = t2 tan t takes on the value 1
2 for some t in

[
0, π

4

]
.

solution g(0) = 0 and g(π
4 ) = π2

16 . g(t) is continuous for all t between 0 and π
4 , and 0 < 1

2 < π2

16 ; therefore, by the

IVT, there is a c ∈ [0, π
4 ] such that g(c) = 1

2 .

Show that f (x) = x2

x7 + 1
takes on the value 0.4.

5. Show that cos x = x has a solution in the interval [0, 1]. Hint: Show that f (x) = x − cos x has a zero in [0, 1].
solution Let f (x) = x − cos x. Observe that f is continuous with f (0) = −1 and f (1) = 1 − cos 1 ≈ 0.46.
Therefore, by the IVT there is a c ∈ [0, 1] such that f (c) = c − cos c = 0. Thus c = cos c and hence the equation
cos x = x has a solution c in [0, 1].

Use the IVT to find an interval of length 1
2 containing a root of f (x) = x3 + 2x + 1.

In Exercises 7–16, prove using the IVT.

7.
√

c + √
c + 2 = 3 has a solution.

solution Let f (x) = √
x + √

x + 2 − 3. Note that f is continuous on
[

1
4 , 2

]
with f ( 1

4 ) =
√

1
4 +

√
9
4 − 3 = −1

and f (2) = √
2 − 1 ≈ 0.41. Therefore, by the IVT there is a c ∈

[
1
4 , 2

]
such that f (c) = √

c + √
c + 2 − 3 = 0. Thus

√
c + √

c + 2 = 3 and hence the equation
√

x + √
x + 2 = 3 has a solution c in

[
1
4 , 2

]
.

For all integers n, sin nx = cos x for some x ∈ [0, π ].9.
√

2 exists. Hint: Consider f (x) = x2.

solution Let f (x) = x2. Observe that f is continuous with f (1) = 1 and f (2) = 4. Therefore, by the IVT there is a

c ∈ [1, 2] such that f (c) = c2 = 2. This proves the existence of
√

2, a number whose square is 2.

A positive number c has an nth root for all positive integers n.11. For all positive integers k, cos x = xk has a solution.

solution For each positive integer k, let f (x) = xk − cos x. Observe that f is continuous on
[
0, π

2

]
with f (0) = −1

and f (π
2 ) = (

π
2

)k
> 0. Therefore, by the IVT there is a c ∈ [

0, π
2

]
such that f (c) = ck − cos(c) = 0. Thus cos c = ck

and hence the equation cos x = xk has a solution c in the interval
[
0, π

2

]
.

2x = bx has a solution if b > 2.
13. 2x + 3x = 4x has a solution.

solution Let f (x) = 2x + 3x − 4x . Observe that f is continuous on [0, 2] with f (0) = 1 > 0 and f (2) = −3 < 0.
Therefore, by the IVT, there is a c ∈ (0, 2) such that f (c) = 2c + 3c − 4c = 0.

tan x = x has infinitely many solutions.
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15. 2x + 1

x
= −4 has a solution.

solution Let f (x) = 2x + 1

x
+ 4. Observe that f is continuous for x < 0 with f (−1) = 2−1 + 1

−1 + 4 = 7
2 > 0

and f
(
− 1

8

)
= 2−1/8 − 8 + 4 ≈ −3.08 < 0. Therefore, by the IVT, there is a c ∈

(
−1, − 1

8

)
such that f (c) =

2c − 1
c + 4 = 0 and thus 2c − 1

c = −4.

x = sin x + cos x has a solution.17. Carry out three steps of the Bisection Method for f (x) = 2x − x3 as follows:

(a) Show that f (x) has a zero in [1, 1.5].
(b) Show that f (x) has a zero in [1.25, 1.5].
(c) Determine whether [1.25, 1.375] or [1.375, 1.5] contains a zero.

solution Note that f (x) is continuous for all x.

(a) f (1) = 1, f (1.5) = 21.5 − (1.5)3 < 3 − 3.375 < 0. Hence, f (x) = 0 for some x between 1 and 1.5.

(b) f (1.25) ≈ 0.4253 > 0 and f (1.5) < 0. Hence, f (x) = 0 for some x between 1.25 and 1.5.

(c) f (1.375) ≈ −0.0059. Hence, f (x) = 0 for some x between 1.25 and 1.375.

Figure 4 shows that f (x) = x3 − 8x − 1 has a root in the interval [2.75, 3]. Apply the Bisection Method twice
to find an interval of length 1

16 containing this root.

19. Find an interval of length 1
4 in [1, 2] containing a root of the equation x7 + 3x − 10 = 0.

solution Let f (x) = x7 + 3x − 10. Observe that f is continuous with f (1) = −6 and f (2) = 124. Therefore,
by the IVT there is a c ∈ [1, 2] such that f (c) = 0. f (1.5) ≈ 11.59 > 0, so f (c) = 0 for some c ∈ [1, 1.5].
f (1.25) ≈ −1.48 < 0, and so f (c) = 0 for some c ∈ [1.25, 1.5]. This means that [1.25, 1.5] is an interval of length 0.25
containing a root of f (x).

Show that tan3 θ − 8 tan2 θ + 17 tan θ − 8 = 0 has a root in [0.5, 0.6]. Apply the Bisection Method twice to find
an interval of length 0.025 containing this root.

In Exercises 21–24, draw the graph of a function f (x) on [0, 4] with the given property.

21. Jump discontinuity at x = 2 and does not satisfy the conclusion of the IVT.

solution The function graphed below has a jump discontinuity at x = 2. Note that while f (0) = 2 and f (4) = 4,
there is no point c in the interval [0, 4] such that f (c) = 3. Accordingly, the conclusion of the IVT is not satisfied.

4321

1

3

2

4

y

x

Jump discontinuity at x = 2 and satisfies the conclusion of the IVT on [0, 4].23. Infinite one-sided limits at x = 2 and does not satisfy the conclusion of the IVT.

solution The function graphed below has infinite one-sided limits at x = 2. Note that while f (0) = 2 and f (4) = 4,
there is no point c in the interval [0, 4] such that f (c) = 3. Accordingly, the conclusion of the IVT is not satisfied.

4321

1

−1

3

2

4

5

6

y

x

Infinite one-sided limits at x = 2 and satisfies the conclusion of the IVT on [0, 4].25. Can Corollary 2 be applied to f (x) = x−1 on [−1, 1]? Does f (x) have any roots?

solution No, because f (x) = x−1 is not continuous on [−1, 1]. Even though f (−1) = −1 < 0 and f (1) = 1 > 0,
the function has no roots between x = −1 and x = 1. In fact, this function has no roots at all.
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Further Insights and Challenges

Take any map and draw a circle on it anywhere (Figure 5). Prove that at any moment in time there exists a pair
of diametrically opposite points A and B on that circle corresponding to locations where the temperatures at that
moment are equal. Hint: Let θ be an angular coordinate along the circle and let f (θ) be the difference in temperatures
at the locations corresponding to θ and θ + π .

27. Show that if f (x) is continuous and 0 ≤ f (x) ≤ 1 for 0 ≤ x ≤ 1, then f (c) = c for some c in [0, 1]
(Figure 6).

1

1

y  = f (x)

y  = x

c
x

y

FIGURE 6 A function satisfying 0 ≤ f (x) ≤ 1 for 0 ≤ x ≤ 1.

solution If f (0) = 0, the proof is done with c = 0. We may assume that f (0) > 0. Let g(x) = f (x) − x.
g(0) = f (0) − 0 = f (0) > 0. Since f (x) is continuous, the Rule of Differences dictates that g(x) is continuous. We
need to prove that g(c) = 0 for some c ∈ [0, 1]. Since f (1) ≤ 1, g(1) = f (1) − 1 ≤ 0. If g(1) = 0, the proof is done
with c = 1, so let’s assume that g(1) < 0.

We now have a continuous function g(x) on the interval [0, 1] such that g(0) > 0 and g(1) < 0. From the IVT, there
must be some c ∈ [0, 1] so that g(c) = 0, so f (c) − c = 0 and so f (c) = c.

This is a simple case of a very general, useful, and beautiful theorem called the Brouwer fixed point theorem.

Use the IVT to show that if f (x) is continuous and one-to-one on an interval [a, b], then f (x) is either an increasing
or a decreasing function.

29. Ham Sandwich Theorem Figure 7(A) shows a slice of ham. Prove that for any angle θ (0 ≤ θ ≤ π ), it
is possible to cut the slice in half with a cut of incline θ . Hint: The lines of inclination θ are given by the equations
y = (tan θ)x + b, where b varies from −∞ to ∞. Each such line divides the slice into two pieces (one of which may be
empty). Let A(b) be the amount of ham to the left of the line minus the amount to the right, and let A be the total area of
the ham. Show that A(b) = −A if b is sufficiently large and A(b) = A if b is sufficiently negative. Then use the IVT.
This works if θ �= 0 or π

2 . If θ = 0, define A(b) as the amount of ham above the line y = b minus the amount below.
How can you modify the argument to work when θ = π

2 (in which case tan θ = ∞)?

Cutting a slice of ham
at an angle   .

L (0) = L(   )

L (  )L (    ) 
2

(A) (B) A slice of ham on top
of a slice of bread.

x

y

x

y

FIGURE 7

solution Let θ be such that θ �= π
2 . For any b, consider the line L(θ) drawn at angle θ to the x axis starting at (0, b).

This line has formula y = (tan θ)x + b. Let A(b) be the amount of ham above the line minus that below the line.
Let A > 0 be the area of the ham. We have to accept the following (reasonable) assumptions:

• For low enough b = b0, the line L(θ) lies entirely below the ham, so that A(b0) = A − 0 = A.
• For high enough b1, the line L(θ) lies entirely above the ham, so that A(b1) = 0 − A = −A.
• A(b) is continuous as a function of b.

Under these assumptions, we see A(b) is a continuous function satisfying A(b0) > 0 and A(b1) < 0 for some b0 < b1.
By the IVT, A(b) = 0 for some b ∈ [b0, b1].

Suppose that θ = π
2 . Let the line L(c) be the vertical line through (c, 0) (x = c). Let A(c) be the area of ham to the

left of L(c) minus that to the right of L(c). Since L(0) lies entirely to the left of the ham, A(0) = 0 − A = −A. For
some c = c1 sufficiently large, L(c) lies entirely to the right of the ham, so that A(c1) = A − 0 = A. Hence A(c) is a
continuous function of c such that A(0) < 0 and A(c1) > 0. By the IVT, there is some c ∈ [0, c1] such that A(c) = 0.

Figure 7(B) shows a slice of ham on a piece of bread. Prove that it is possible to slice this open-faced sandwich
so that each part has equal amounts of ham and bread. Hint: By Exercise 29, for all 0 ≤ θ ≤ π there is a line L(θ)

of incline θ (which we assume is unique) that divides the ham into two equal pieces. Let B(θ) denote the amount of
bread to the left of (or above) L(θ) minus the amount to the right (or below). Notice that L(π) and L(0) are the same
line, but B(π) = −B(0) since left and right get interchanged as the angle moves from 0 to π . Assume that B(θ)

is continuous and apply the IVT. (By a further extension of this argument, one can prove the full “Ham Sandwich
Theorem,” which states that if you allow the knife to cut at a slant, then it is possible to cut a sandwich consisting of
a slice of ham and two slices of bread so that all three layers are divided in half.)

2.9 The Formal Definition of a Limit

Preliminary Questions
1. Given that lim

x→0
cos x = 1, which of the following statements is true?

(a) If |cos x − 1| is very small, then x is close to 0.
(b) There is an ε > 0 such that |x| < 10−5 if 0 < |cos x − 1| < ε.
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(c) There is a δ > 0 such that |cos x − 1| < 10−5 if 0 < |x| < δ.

(d) There is a δ > 0 such that |cos x| < 10−5 if 0 < |x − 1| < δ.

solution The true statement is (c): There is a δ > 0 such that |cos x − 1| < 10−5 if 0 < |x| < δ.

2. Suppose it is known that for a given ε and δ, |f (x) − 2| < ε if 0 < |x − 3| < δ. Which of the following statements
must also be true?

(a) |f (x) − 2| < ε if 0 < |x − 3| < 2δ

(b) |f (x) − 2| < 2ε if 0 < |x − 3| < δ

(c) |f (x) − 2| <
ε

2
if 0 < |x − 3| <

δ

2

(d) |f (x) − 2| < ε if 0 < |x − 3| <
δ

2

solution Statements (b) and (d) are true.

Exercises
1. Based on the information conveyed in Figure 5(A), find values of L, ε, and δ > 0 such that the following statement

holds: |f (x) − L| < ε if 0 < |x| < δ.

3 3.12.9

10

10.4

9.8

x

y

y  = f (x) y  = f (x)

(A) (B)

0.1−0.1

4

4.8

3.5

x

y

FIGURE 5

solution We see −0.1 < x < 0.1 forces 3.5 < f (x) < 4.8. Rewritten, this means that |x − 0| < 0.1 implies that
|f (x) − 4| < 0.8. Replacing numbers where appropriate in the definition of the limit |x − c| < δ implies |f (x) − L| < ε,
we get L = 4, ε = 0.8, c = 0, and δ = 0.1.

Based on the information conveyed in Figure 5(B), find values of c, L, ε, and δ > 0 such that the following
statement holds: |f (x) − L| < ε if 0 < |x − c| < δ.

3. Consider lim
x→4

f (x), where f (x) = 8x + 3.

(a) Show that |f (x) − 35| = 8|x − 4|.
(b) Show that for any ε > 0, |f (x) − 35| < ε if 0 < |x − 4| < δ, where δ = ε

8 . Explain how this proves rigorously that
lim
x→4

f (x) = 35.

solution

(a) |f (x) − 35| = |8x + 3 − 35| = |8x − 32| = |8(x − 4)| = 8 |x − 4|. (Remember that the last step is justified because
8 > 0).

(b) Let ε > 0. Let δ = ε/8 and suppose |x − 4| < δ. By part (a), |f (x) − 35| = 8|x − 4| < 8δ. Substituting δ = ε/8,
we see |f (x) − 35| < 8ε/8 = ε. We see that, for any ε > 0, we found an appropriate δ so that |x − 4| < δ implies
|f (x) − 35| < ε. Hence lim

x→4
f (x) = 35.

Consider lim
x→2

f (x), where f (x) = 4x − 1.

(a) Show that |f (x) − 7| < 4δ if 0 < |x − 2| < δ.

(b) Find a δ such that

|f (x) − 7| < 0.01 if 0 < |x − 2| < δ

(c) Prove rigorously that lim
x→2

f (x) = 7.

5. Consider lim
x→2

x2 = 4 (refer to Example 2).

(a) Show that |x2 − 4| < 0.05 if 0 < |x − 2| < 0.01.

(b) Show that |x2 − 4| < 0.0009 if 0 < |x − 2| < 0.0002.

(c) Find a value of δ such that |x2 − 4| is less than 10−4 if
0 < |x − 2| < δ.

solution

(a) If 0 < |x − 2| < δ = 0.01, then |x| < 3 and
∣∣∣x2 − 4

∣∣∣ = |x − 2||x + 2| ≤ |x − 2| (|x| + 2) < 5|x − 2| < 0.05.

(b) If 0 < |x − 2| < δ = 0.0002, then |x| < 2.0002 and∣∣∣x2 − 4
∣∣∣ = |x − 2||x + 2| ≤ |x − 2| (|x| + 2) < 4.0002|x − 2| < 0.00080004 < 0.0009.
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(c) Note that
∣∣∣x2 − 4

∣∣∣ = |(x + 2)(x − 2)| ≤ |x + 2| |x − 2|. Since |x − 2| can get arbitrarily small, we can require

|x − 2| < 1 so that 1 < x < 3. This ensures that |x + 2| is at most 5. Now we know that
∣∣∣x2 − 4

∣∣∣ ≤ 5|x − 2|. Let

δ = 10−5. Then, if |x − 2| < δ, we get
∣∣∣x2 − 4

∣∣∣ ≤ 5|x − 2| < 5 × 10−5 < 10−4 as desired.

With regard to the limit lim
x→5

x2 = 25,

(a) Show that |x2 − 25| < 11|x − 5| if 4 < x < 6. Hint: Write |x2 − 25| = |x + 5| · |x − 5|.
(b) Find a δ such that |x2 − 25| < 10−3 if 0 < |x − 5| < δ.

(c) Give a rigorous proof of the limit by showing that |x2 − 25| < ε if 0 < |x − 5| < δ, where δ is the smaller of ε
11

and 1.

7. Refer to Example 3 to find a value of δ > 0 such that∣∣∣∣ 1

x
− 1

3

∣∣∣∣ < 10−4 if 0 < |x − 3| < δ

solution The Example shows that for any ε > 0 we have∣∣∣∣ 1

x
− 1

3

∣∣∣∣ ≤ ε if |x − 3| < δ

where δ is the smaller of the numbers 6ε and 1. In our case, we may take δ = 6 × 10−4.

Use Figure 6 to find a value of δ > 0 such that the following statement holds:
∣∣1/x2 − 1

4

∣∣ < ε if 0 < |x − 2| < δ

for ε = 0.03. Then find a value of δ that works for ε = 0.01.

9. Plot f (x) = √
2x − 1 together with the horizontal lines y = 2.9 and y = 3.1. Use this plot to find a value of

δ > 0 such that |√2x − 1 − 3| < 0.1 if 0 < |x − 5| < δ.

solution From the plot below, we see that δ = 0.25 will guarantee that |√2x − 1 − 3| < 0.1 whenever |x − 5| ≤ δ.

4.6 4.8 5 5.2 5.4

2.9

2.8

3

3.1

x

y

Plot f (x) = tan x together with the horizontal lines y = 0.99 and y = 1.01. Use this plot to find a value of
δ > 0 such that |tan x − 1| < 0.01 if 0 <

∣∣x − π
4

∣∣ < δ.

11. The function f (x) = 2−x2
satisfies lim

x→0
f (x) = 1. Use a plot of f to find a value of δ > 0 such that

|f (x) − 1| < 0.001 if 0 < |x| < δ.

solution From the plot below, we see that δ = 0.03 will guarantee that∣∣∣2−x2 − 1
∣∣∣ < 0.001

whenever 0 < |x| < δ.

0.9985

−0.04 −0.02 0 0.02 0.04
x

y

0.9990

0.9995

1.0000

Let f (x) = 4

x2 + 1
and ε = 0.5. Using a plot of f (x), find a value of δ > 0 such that

∣∣∣f (x) − 16
5

∣∣∣ < ε for

0 <

∣∣∣x − 1
2

∣∣∣ < δ. Repeat for ε = 0.2 and 0.1.

13. Consider lim
x→2

1

x
.

(a) Show that if |x − 2| < 1, then ∣∣∣∣ 1

x
− 1

2

∣∣∣∣ <
1

2
|x − 2|

(b) Let δ be the smaller of 1 and 2ε. Prove:∣∣∣∣ 1

x
− 1

2

∣∣∣∣ < ε if 0 < |x − 2| < δ

(c) Find a δ > 0 such that
∣∣∣ 1
x − 1

2

∣∣∣ < 0.01 if 0 < |x − 2| < δ.

(d) Prove rigorously that lim
x→2

1

x
= 1

2
.



June 7, 2011 LTSV SSM Second Pass

S E C T I O N 2.9 The Formal Definition of a Limit 79

solution

(a) Since |x − 2| < 1, it follows that 1 < x < 3, in particular that x > 1. Because x > 1, then
1

x
< 1 and

∣∣∣∣ 1

x
− 1

2

∣∣∣∣ =
∣∣∣∣2 − x

2x

∣∣∣∣ = |x − 2|
2x

<
1

2
|x − 2|.

(b) Let δ = min{1, 2ε} and suppose that |x − 2| < δ. Then by part (a) we have∣∣∣∣ 1

x
− 1

2

∣∣∣∣ <
1

2
|x − 2| <

1

2
δ <

1

2
· 2ε = ε.

(c) Choose δ = 0.02. Then

∣∣∣∣ 1

x
− 1

2

∣∣∣∣ <
1

2
δ = 0.01 by part (b).

(d) Let ε > 0 be given. Then whenever 0 < |x − 2| < δ = min {1, 2ε}, we have∣∣∣∣ 1

x
− 1

2

∣∣∣∣ <
1

2
δ ≤ ε.

Since ε was arbitrary, we conclude that lim
x→2

1

x
= 1

2
.

Consider lim
x→1

√
x + 3.

(a) Show that |√x + 3 − 2| < 1
2 |x − 1| if |x − 1| < 4. Hint: Multiply the inequality by |√x + 3 + 2| and observe

that |√x + 3 + 2| > 2.

(b) Find δ > 0 such that |√x + 3 − 2| < 10−4 for 0 < |x − 1| < δ.

(c) Prove rigorously that the limit is equal to 2.

15. Let f (x) = sin x. Using a calculator, we find:

f
(π

4
− 0.1

)
≈ 0.633, f

(π

4

)
≈ 0.707, f

(π

4
+ 0.1

)
≈ 0.774

Use these values and the fact that f (x) is increasing on
[
0, π

2

]
to justify the statement∣∣∣f (x) − f

(π

4

)∣∣∣ < 0.08 if 0 <

∣∣∣x − π

4

∣∣∣ < 0.1

Then draw a figure like Figure 3 to illustrate this statement.

solution Since f (x) is increasing on the interval, the three f (x) values tell us that 0.633 ≤ f (x) ≤ 0.774 for all x

between π
4 − 0.1 and π

4 + 0.1. We may subtract f (π
4 ) from the inequality for f (x). This show that, for π

4 − 0.1 < x <
π
4 + 0.1, 0.633 − f (π

4 ) ≤ f (x) − f (π
4 ) ≤ 0.774 − f (π

4 ). This means that, if |x − π
4 | < 0.1, then 0.633 − 0.707 ≤

f (x) − f (π
4 ) ≤ 0.774 − 0.707, so −0.074 ≤ f (x) − f (π

4 ) ≤ 0.067. Then −0.08 < f (x) − f (π
4 ) < 0.08 follows

from this, so |x − π
4 | < 0.1 implies |f (x) − f (π

4 )| < 0.08. The figure below illustrates this.

0.25 0.5 0.75 1 1.25 1.5

1

0.8

0.6

0.4

0.2

x

y

Adapt the argument in Example 1 to prove rigorously that lim
x→c

(ax + b) = ac + b, where a, b, c are arbitrary.17. Adapt the argument in Example 2 to prove rigorously that lim
x→c

x2 = c2 for all c.

solution To relate the gap to |x − c|, we take∣∣∣x2 − c2
∣∣∣ = |(x + c)(x − c)| = |x + c| |x − c| .

We choose δ in two steps. First, since we are requiring |x − c| to be small, we require δ < |c|, so that x lies between 0

and 2c. This means that |x + c| < 3|c|, so |x − c||x + c| < 3|c|δ. Next, we require that δ <
ε

3|c| , so

|x − c||x + c| <
ε

3|c|3|c| = ε,

and we are done.
Therefore, given ε > 0, we let

δ = min

{
|c|, ε

3|c|
}

.

Then, for |x − c| < δ, we have

|x2 − c2| = |x − c| |x + c| < 3|c|δ < 3|c| ε

3|c| = ε.



June 7, 2011 LTSV SSM Second Pass

80 C H A P T E R 2 LIMITS

Adapt the argument in Example 3 to prove rigorously that lim
x→c

x−1 = 1
c for all c �= 0.

In Exercises 19–24, use the formal definition of the limit to prove the statement rigorously.

19. lim
x→4

√
x = 2

solution Let ε > 0 be given. We bound |√x − 2| by multiplying

√
x + 2√
x + 2

.

|√x − 2| =
∣∣∣∣√x − 2

(√
x + 2√
x + 2

)∣∣∣∣ =
∣∣∣∣ x − 4√

x + 2

∣∣∣∣ = |x − 4|
∣∣∣∣ 1√

x + 2

∣∣∣∣ .
We can assume δ < 1, so that |x − 4| < 1, and hence

√
x + 2 >

√
3 + 2 > 3. This gives us

|√x − 2| = |x − 4|
∣∣∣∣ 1√

x + 2

∣∣∣∣ < |x − 4|1

3
.

Let δ = min(1, 3ε). If |x − 4| < δ,

|√x − 2| = |x − 4|
∣∣∣∣ 1√

x + 2

∣∣∣∣ < |x − 4|1

3
< δ

1

3
< 3ε

1

3
= ε,

thus proving the limit rigorously.

lim
x→1

(3x2 + x) = 4
21. lim

x→1
x3 = 1

solution Let ε > 0 be given. We bound
∣∣∣x3 − 1

∣∣∣ by factoring the difference of cubes:

∣∣∣x3 − 1
∣∣∣ =

∣∣∣(x2 + x + 1)(x − 1)

∣∣∣ = |x − 1|
∣∣∣x2 + x + 1

∣∣∣ .
Let δ = min(1, ε

7 ), and assume |x − 1| < δ. Since δ < 1, 0 < x < 2. Since x2 + x + 1 increases as x increases for

x > 0, x2 + x + 1 < 7 for 0 < x < 2, and so∣∣∣x3 − 1
∣∣∣ = |x − 1|

∣∣∣x2 + x + 1
∣∣∣ < 7|x − 1| < 7

ε

7
= ε

and the limit is rigorously proven.

lim
x→0

(x2 + x3) = 023. lim
x→2

x−2 = 1

4

solution Let ε > 0 be given. First, we bound x−2 − 1
4 :

∣∣∣∣x−2 − 1

4

∣∣∣∣ =
∣∣∣∣∣4 − x2

4x2

∣∣∣∣∣ = |2 − x|
∣∣∣∣2 + x

4x2

∣∣∣∣ .
Let δ = min(1, 4

5 ε), and suppose |x − 2| < δ. Since δ < 1, |x − 2| < 1, so 1 < x < 3. This means that 4x2 > 4 and

|2 + x| < 5, so that
2 + x

4x2
< 5

4 . We get:

∣∣∣∣x−2 − 1

4

∣∣∣∣ = |2 − x|
∣∣∣∣2 + x

4x2

∣∣∣∣ <
5

4
|x − 2| <

5

4
· 4

5
ε = ε.

and the limit is rigorously proven.

lim
x→0

x sin
1

x
= 0

25. Let f (x) = x

|x| . Prove rigorously that lim
x→0

f (x) does not exist. Hint: Show that for any L, there always exists some

x such that |x| < δ but |f (x) − L| ≥ 1
2 , no matter how small δ is taken.

solution Let L be any real number. Let δ > 0 be any small positive number. Let x = δ
2 , which satisfies |x| < δ, and

f (x) = 1. We consider two cases:

• (|f (x) − L| ≥ 1
2 ) : we are done.

• (|f (x) − L| < 1
2 ): This means 1

2 < L < 3
2 . In this case, let x = − δ

2 . f (x) = −1, and so 3
2 < L − f (x).

In either case, there exists an x such that |x| < δ
2 , but |f (x) − L| ≥ 1

2 .

Prove rigorously that lim
x→0

|x| = 0.
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27. Let f (x) = min(x, x2), where min(a, b) is the minimum of a and b. Prove rigorously that lim
x→1

f (x) = 1.

solution Let ε > 0 and let δ = min(1, ε
2 ). Then, whenever |x − 1| < δ, it follows that 0 < x < 2. If 1 < x < 2,

then min(x, x2) = x and

|f (x) − 1| = |x − 1| < δ <
ε

2
< ε.

On the other hand, if 0 < x < 1, then min(x, x2) = x2, |x + 1| < 2 and

|f (x) − 1| = |x2 − 1| = |x − 1| |x + 1| < 2δ < ε.

Thus, whenever |x − 1| < δ, |f (x) − 1| < ε.

Prove rigorously that lim
x→0

sin 1
x does not exist.

29. First, use the identity

sin x + sin y = 2 sin

(
x + y

2

)
cos

(
x − y

2

)

to verify the relation

sin(a + h) − sin a = h
sin(h/2)

h/2
cos

(
a + h

2

)
6

Then use the inequality

∣∣∣∣ sin x

x

∣∣∣∣ ≤ 1 for x �= 0 to show that |sin(a + h) − sin a| < |h| for all a. Finally, prove rigorously

that lim
x→a

sin x = sin a.

solution We first write

sin(a + h) − sin a = sin(a + h) + sin(−a).

Applying the identity with x = a + h, y = −a, yields:

sin(a + h) − sin a = sin(a + h) + sin(−a) = 2 sin

(
a + h − a

2

)
cos

(
2a + h

2

)

= 2 sin

(
h

2

)
cos

(
a + h

2

)
= 2

(
h

h

)
sin

(
h

2

)
cos

(
a + h

2

)
= h

sin(h/2)

h/2
cos

(
a + h

2

)
.

Therefore,

|sin(a + h) − sin a| = |h|
∣∣∣∣ sin(h/2)

h/2

∣∣∣∣
∣∣∣∣cos

(
a + h

2

)∣∣∣∣ .
Using the fact that

∣∣∣∣ sin θ

θ

∣∣∣∣ < 1 and that |cos θ | ≤ 1, and making the substitution h = x − a, we see that this last relation

is equivalent to

|sin x − sin a| < |x − a|.
Now, to prove the desired limit, let ε > 0, and take δ = ε. If |x − a| < δ, then

|sin x − sin a| < |x − a| < δ = ε,

Therefore, a δ was found for arbitrary ε, and the proof is complete.

Further Insights and Challenges

Uniqueness of the Limit Prove that a function converges to at most one limiting value. In other words, use the
limit definition to prove that if lim

x→c
f (x) = L1 and lim

x→c
f (x) = L2, then L1 = L2.

In Exercises 31–33, prove the statement using the formal limit definition.

31. The Constant Multiple Law [Theorem 1, part (ii) in Section 2.3, p. 58]

solution Suppose that lim
x→c

f (x) = L. We wish to prove that lim
x→c

af (x) = aL.

Let ε > 0 be given. ε/|a| is also a positive number. Since lim
x→c

f (x) = L, we know there is a δ > 0 such that

|x − c| < δ forces |f (x) − L| < ε/|a|. Suppose |x − c| < δ. |af (x) − aL| = |a||f (x) − aL| < |a|(ε/|a|) = ε, so the
rule is proven.

The Squeeze Theorem. (Theorem 1 in Section 2.6, p. 77)
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33. The Product Law [Theorem 1, part (iii) in Section 2.3, p. 58]. Hint: Use the identity

f (x)g(x) − LM = (f (x) − L) g(x) + L(g(x) − M)

solution Before we can prove the Product Law, we need to establish one preliminary result. We are given that
limx→c g(x) = M . Consequently, if we set ε = 1, then the definition of a limit guarantees the existence of a δ1 > 0
such that whenever 0 < |x − c| < δ1, |g(x) − M| < 1. Applying the inequality |g(x)| − |M| ≤ |g(x) − M|, it follows
that |g(x)| < 1 + |M|. In other words, because limx→c g(x) = M , there exists a δ1 > 0 such that |g(x)| < 1 + |M|
whenever 0 < |x − c| < δ1.

We can now prove the Product Law. Let ε > 0. As proven above, because limx→c g(x) = M , there exists a δ1 > 0
such that |g(x)| < 1 + |M| whenever 0 < |x − c| < δ1. Furthermore, by the definition of a limit, limx→c g(x) = M

implies there exists a δ2 > 0 such that |g(x) − M| < ε
2(1+|L|) whenever 0 < |x − c| < δ2. We have included the “1+”

in the denominator to avoid division by zero in case L = 0. The reason for including the factor of 2 in the denominator
will become clear shortly. Finally, because limx→c f (x) = L, there exists a δ3 > 0 such that |f (x) − L| < ε

2(1+|M|)
whenever 0 < |x − c| < δ3. Now, let δ = min(δ1, δ2, δ3). Then, for all x satisfying 0 < |x − c| < δ, we have

|f (x)g(x) − LM| = |(f (x) − L)g(x) + L(g(x) − M)|
≤ |f (x) − L| |g(x)| + |L| |g(x) − M|
<

ε

2(1 + |M|) (1 + |M|) + |L| ε

2(1 + |L|)
<

ε

2
+ ε

2
= ε.

Hence,

lim
x→c

f (x)g(x) = LM = lim
x→c

f (x) · lim
x→c

g(x).

Let f (x) = 1 if x is rational and f (x) = 0 if x is irrational. Prove that lim
x→c

f (x) does not exist for any c.35. Here is a function with strange continuity properties:

f (x) =

⎧⎪⎨
⎪⎩

1

q

if x is the rational number p/q in
lowest terms

0 if x is an irrational number

(a) Show that f (x) is discontinuous at c if c is rational. Hint: There exist irrational numbers arbitrarily close to c.

(b) Show that f (x) is continuous at c if c is irrational. Hint: Let I be the interval {x : |x − c| < 1}. Show that for any
Q > 0, I contains at most finitely many fractions p/q with q < Q. Conclude that there is a δ such that all fractions in
{x : |x − c| < δ} have a denominator larger than Q.

solution
(a) Let c be any rational number and suppose that, in lowest terms, c = p/q, where p and q are integers. To prove the
discontinuity of f at c, we must show there is an ε > 0 such that for any δ > 0 there is an x for which |x − c| < δ, but
that |f (x) − f (c)| > ε. Let ε = 1

2q
and δ > 0. Since there is at least one irrational number between any two distinct real

numbers, there is some irrational x between c and c + δ. Hence, |x − c| < δ, but |f (x) − f (c)| = |0 − 1
q | = 1

q > 1
2q

= ε.

(b) Let c be irrational, let ε > 0 be given, and let N > 0 be a prime integer sufficiently large so that 1
N

< ε. Let
p1
q1

, . . . ,
pm
qm

be all rational numbers p
q in lowest terms such that |pq − c| < 1 and q < N . Since N is finite, this is a

finite list; hence, one number pi
qi

in the list must be closest to c. Let δ = 1
2 |pi

qi
− c|. By construction, |pi

qi
− c| > δ for all

i = 1 . . . m. Therefore, for any rational number p
q such that |pq − c| < δ, q > N , so 1

q < 1
N

< ε.
Therefore, for any rational number x such that |x − c| < δ, |f (x) − f (c)| < ε. |f (x) − f (c)| = 0 for any irrational

number x, so |x − c| < δ implies that |f (x) − f (c)| < ε for any number x.

CHAPTER REVIEW EXERCISES

1. The position of a particle at time t (s) is s(t) =
√

t2 + 1 m. Compute its average velocity over [2, 5] and estimate its
instantaneous velocity at t = 2.

solution Let s(t) =
√

t2 + 1. The average velocity over [2, 5] is

s(5) − s(2)

5 − 2
=

√
26 − √

5

3
≈ 0.954 m/s.

From the data in the table below, we estimate that the instantaneous velocity at t = 2 is approximately 0.894 m/s.
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interval [1.9, 2] [1.99, 2] [1.999, 2] [2, 2.001] [2, 2.01] [2, 2.1]
average ROC 0.889769 0.893978 0.894382 0.894472 0.894873 0.898727

The “wellhead” price p of natural gas in the United States (in dollars per 1000 ft3) on the first day of each month
in 2008 is listed in the table below.

J F M A M J

6.99 7.55 8.29 8.94 9.81 10.82

J A S O N D

10.62 8.32 7.27 6.36 5.97 5.87

Compute the average rate of change of p (in dollars per 1000 ft3 per month) over the quarterly periods January–March,
April–June, and July–September.

3. For a whole number n, let P(n) be the number of partitions of n, that is, the number of ways of writing n as a sum
of one or more whole numbers. For example, P(4) = 5 since the number 4 can be partitioned in five different ways: 4,
3 + 1, 2 + 2, 2 + 1 + 1, and 1 + 1 + 1 + 1. Treating P(n) as a continuous function, use Figure 1 to estimate the rate of
change of P(n) at n = 12.

n

P(n)

14121086420
0

40

80

120

160

FIGURE 1 Graph of P(n).

solution The tangent line drawn in the figure appears to pass through the points (15, 140) and (10.5, 40). We therefore
estimate that the rate of change of P(n) at n = 12 is

140 − 40

15 − 10.5
= 100

4.5
= 200

9
.

The average velocity v (m/s) of an oxygen molecule in the air at temperature T (◦C) is v = 25.7
√

273.15 + T .
What is the average speed at T = 25◦ (room temperature)? Estimate the rate of change of average velocity with
respect to temperature at T = 25◦. What are the units of this rate?

In Exercises 5–10, estimate the limit numerically to two decimal places or state that the limit does not exist.

5. lim
x→0

1 − cos3(x)

x2

solution Let f (x) = 1−cos3 x
x2 . The data in the table below suggests that

lim
x→0

1 − cos3 x

x2
≈ 1.50.

In constructing the table, we take advantage of the fact that f is an even function.

x ±0.001 ±0.01 ±0.1

f (x) 1.500000 1.499912 1.491275

(The exact value is 3
2 .)

lim
x→1

x1/(x−1)7. lim
x→2

xx − 4

x2 − 4

solution Let f (x) = xx−4
x2−4

. The data in the table below suggests that

lim
x→2

xx − 4

x2 − 4
≈ 1.69.

x 1.9 1.99 1.999 2.001 2.01 2.1

f (x) 1.575461 1.680633 1.691888 1.694408 1.705836 1.828386

(The exact value is 1 + ln 2.)

lim
x→2

x − 2

2x − 4
9. lim

x→1

(
7

1 − x7 − 3

1 − x3

)

solution Let f (x) =
(

7
1−x7 − 3

1−x3

)
. The data in the table below suggests that

lim
x→1

(
7

1 − x7 − 3

1 − x3

)
≈ 2.00.

x 0.9 0.99 0.999 1.001 1.01 1.1

f (x) 2.347483 2.033498 2.003335 1.996668 1.966835 1.685059

(The exact value is 2.)
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lim
x→2

3x − 9

5x − 25

In Exercises 11–50, evaluate the limit if it exists. If not, determine whether the one-sided limits exist (finite or infinite).

11. lim
x→4

(3 + x1/2)

solution lim
x→4

(3 + x1/2) = 3 + √
4 = 5.

lim
x→1

5 − x2

4x + 7

13. lim
x→−2

4

x3

solution lim
x→−2

4

x3
= 4

(−2)3
= −1

2
.

lim
x→−1

3x2 + 4x + 1

x + 1

15. lim
t→9

√
t − 3

t − 9

solution lim
t→9

√
t − 3

t − 9
= lim

t→9

√
t − 3

(
√

t − 3)(
√

t + 3)
= lim

t→9

1√
t + 3

= 1√
9 + 3

= 1

6
.

lim
x→3

√
x + 1 − 2

x − 3

17. lim
x→1

x3 − x

x − 1

solution lim
x→1

x3 − x

x − 1
= lim

x→1

x(x − 1)(x + 1)

x − 1
= lim

x→1
x(x + 1) = 1(1 + 1) = 2.

lim
h→0

2(a + h)2 − 2a2

h

19. lim
t→9

t − 6√
t − 3

solution Because the one-sided limits

lim
t→9−

t − 6√
t − 3

= −∞ and lim
t→9+

t − 6√
t − 3

= ∞,

are not equal, the two-sided limit

lim
t→9

t − 6√
t − 3

does not exist.

lim
s→0

1 −
√

s2 + 1

s2

21. lim
x→−1+

1

x + 1

solution For x > −1, x + 1 > 0. Therefore,

lim
x→−1+

1

x + 1
= ∞.

lim
y→ 1

3

3y2 + 5y − 2

6y2 − 5y + 1

23. lim
x→1

x3 − 2x

x − 1

solution Because the one-sided limits

lim
x→1−

x3 − 2x

x − 1
= ∞ and lim

x→1+
x3 − 2x

x − 1
= −∞,

are not equal, the two-sided limit

lim
x→1

x3 − 2x

x − 1
does not exist.

lim
a→b

a2 − 3ab + 2b2

a − b

25. lim
x→0

43x − 4x

4x − 1

solution

lim
x→0

43x − 4x

4x − 1
= lim

x→0

4x(4x − 1)(4x + 1)

4x − 1
= lim

x→0
4x(4x + 1) = 1 · 2 = 2.

lim
θ→0

sin 5θ

θ

27. lim
x→1.5

[x]
x

solution lim
x→1.5

[x]
x

= [1.5]
1.5

= 1

1.5
= 2

3
.
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lim
θ→ π

4

sec θ29. lim
z→−3

z + 3

z2 + 4z + 3

solution

lim
z→−3

z + 3

z2 + 4z + 3
= lim

z→−3

z + 3

(z + 3)(z + 1)
= lim

z→−3

1

z + 1
= −1

2
.

lim
x→1

x3 − ax2 + ax − 1

x − 1

31. lim
x→b

x3 − b3

x − b

solution lim
x→b

x3 − b3

x − b
= lim

x→b

(x − b)(x2 + xb + b2)

x − b
= lim

x→b
(x2 + xb + b2) = b2 + b(b) + b2 = 3b2.

lim
x→0

sin 4x

sin 3x

33. lim
x→0

(
1

3x
− 1

x(x + 3)

)

solution lim
x→0

(
1

3x
− 1

x(x + 3)

)
= lim

x→0

(x + 3) − 3

3x(x + 3)
= lim

x→0

1

3(x + 3)
= 1

3(0 + 3)
= 1

9
.

lim
θ→ 1

4

3tan(πθ)35. lim
x→0−

[x]
x

solution For x sufficiently close to zero but negative, [x] = −1. Therefore,

lim
x→0−

[x]
x

= lim
x→0−

−1

x
= ∞.

lim
x→0+

[x]
x

37. lim
θ→ π

2

θ sec θ

solution Because the one-sided limits

lim
θ→ π

2 −
θ sec θ = ∞ and lim

θ→ π
2 +

θ sec θ = −∞

are not equal, the two-sided limit

lim
θ→ π

2

θ sec θ does not exist.

lim
y→3

(
sin

π

y

)−1/239. lim
θ→0

cos θ − 2

θ

solution Because the one-sided limits

lim
θ→0−

cos θ − 2

θ
= ∞ and lim

θ→0+
cos θ − 2

θ
= −∞

are not equal, the two-sided limit

lim
θ→0

cos θ − 2

θ
does not exist.

lim
x→4.3

1

x − [x]
41. lim

x→2−
x − 3

x − 2

solution For x close to 2 but less than 2, x − 3 < 0 and x − 2 < 0. Therefore,

lim
x→2−

x − 3

x − 2
= ∞.

lim
t→0

sin2 t

t3
43. lim

x→1+

(
1√

x − 1
− 1√

x2 − 1

)

solution lim
x→1+

(
1√

x − 1
− 1√

x2 − 1

)
= lim

x→1+

√
x + 1 − 1√
x2 − 1

= ∞.

lim
t→ π

2

√
2t(cos t − 1)
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45. lim
x→ π

2

tan x

solution Because the one-sided limits

lim
x→ π

2 −
tan x = ∞ and lim

x→ π
2 +

tan x = −∞

are not equal, the two-sided limit

lim
x→ π

2

tan x does not exist.

lim
t→0

cos
1

t

47. lim
t→0+

√
t cos

1

t

solution For t > 0,

−1 ≤ cos

(
1

t

)
≤ 1,

so

−√
t ≤ √

t cos

(
1

t

)
≤ √

t .

Because

lim
t→0+ −√

t = lim
t→0+

√
t = 0,

it follows from the Squeeze Theorem that

lim
t→0+

√
t cos

(
1

t

)
= 0.

lim
x→5+

x2 − 24

x2 − 25

49. lim
x→0

cos x − 1

sin x

solution

lim
x→0

cos x − 1

sin x
= lim

x→0

cos x − 1

sin x
· cos x + 1

cos x + 1
= lim

x→0

− sin2 x

sin x(cos x + 1)
= − lim

x→0

sin x

cos x + 1
= − 0

1 + 1
= 0.

lim
θ→0

tan θ − sin θ

sin3 θ

51. Find the left- and right-hand limits of the function f (x) in Figure 2 at x = 0, 2, 4. State whether f (x) is left- or
right-continuous (or both) at these points.

x

y

1 3 52 4

1

2

FIGURE 2

solution According to the graph of f (x),

lim
x→0− f (x) = lim

x→0+ f (x) = 1

lim
x→2− f (x) = lim

x→2+ f (x) = ∞

lim
x→4− f (x) = −∞

lim
x→4+ f (x) = ∞.

The function is both left- and right-continuous at x = 0 and neither left- nor right-continuous at x = 2 and x = 4.

Sketch the graph of a function f (x) such that

(a) lim
x→2− f (x) = 1, lim

x→2+ f (x) = 3

(b) lim
x→4

f (x) exists but does not equal f (4).
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53. Graph h(x) and describe the discontinuity:

h(x) =
{

2x for x ≤ 0

x−1/2 for x > 0

Is h(x) left- or right-continuous?

solution The graph of h(x) is shown below. At x = 0, the function has an infinite discontinuity but is left-continuous.

2

1

0

−1

−4 −3 −2 −1 1 2 3 4
x

y

Sketch the graph of a function g(x) such that

lim
x→−3− g(x) = ∞, lim

x→−3+ g(x) = −∞, lim
x→4

g(x) = ∞

55. Find the points of discontinuity of

g(x) =

⎧⎪⎨
⎪⎩

cos
(πx

2

)
for |x| < 1

|x − 1| for |x| ≥ 1

Determine the type of discontinuity and whether g(x) is left- or right-continuous.

solution First note that cos
(
πx
2

)
is continuous for −1 < x < 1 and that |x − 1| is continuous for x ≤ −1 and for

x ≥ 1. Thus, the only points at which g(x) might be discontinuous are x = ±1. At x = 1, we have

lim
x→1− g(x) = lim

x→1− cos
(πx

2

)
= cos

(π

2

)
= 0

and

lim
x→1+ g(x) = lim

x→1+ |x − 1| = |1 − 1| = 0,

so g(x) is continuous at x = 1. On the other hand, at x = −1,

lim
x→−1+ g(x) = lim

x→−1+ cos
(πx

2

)
= cos

(
−π

2

)
= 0

and

lim
x→−1− g(x) = lim

x→−1− |x − 1| = | − 1 − 1| = 2,

so g(x) has a jump discontinuity at x = −1. Since g(−1) = 2, g(x) is left-continuous at x = −1.

Show that f (x) = x 2sin x is continuous on its domain.
57. Find a constant b such that h(x) is continuous at x = 2, where

h(x) =
{

x + 1 for |x| < 2

b − x2 for |x| ≥ 2

With this choice of b, find all points of discontinuity.

solution To make h(x) continuous at x = 2, we must have the two one-sided limits as x approaches 2 be equal. With

lim
x→2− h(x) = lim

x→2−(x + 1) = 2 + 1 = 3

and

lim
x→2+ h(x) = lim

x→2+(b − x2) = b − 4,

it follows that we must choose b = 7. Because x + 1 is continuous for −2 < x < 2 and 7 − x2 is continuous for x ≤ −2
and for x ≥ 2, the only possible point of discontinuity is x = −2. At x = −2,

lim
x→−2+ h(x) = lim

x→−2+(x + 1) = −2 + 1 = −1
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and

lim
x→−2− h(x) = lim

x→−2−(7 − x2) = 7 − (−2)2 = 3,

so h(x) has a jump discontinuity at x = −2.

In Exercises 58–63, find the horizontal asymptotes of the function by computing the limits at infinity.

f (x) = 9x2 − 4

2x2 − x

59. f (x) = x2 − 3x4

x − 1

solution Because

lim
x→∞

x2 − 3x4

x − 1
= lim

x→∞
1/x2 − 3

1/x3 − 1/x4
= −∞

and

lim
x→−∞

x2 − 3x4

x − 1
= lim

x→−∞
1/x2 − 3

1/x3 − 1/x4
= ∞,

it follows that the graph of y = x2 − 3x4

x − 1
does not have any horizontal asymptotes.

f (u) = 8u − 3√
16u2 + 6

61. f (u) = 2u2 − 1√
6 + u4

solution Because

lim
u→∞

2u2 − 1√
6 + u4

= lim
u→∞

2 − 1/u2√
6/u4 + 1

= 2√
1

= 2

and

lim
u→−∞

2u2 − 1√
6 + u4

= lim
u→−∞

2 − 1/u2√
6/u4 + 1

= 2√
1

= 2,

it follows that the graph of y = 2u2 − 1√
6 + u4

has a horizontal asymptote of y = 2.

f (x) = 3x2/3 + 9x3/7

7x4/5 − 4x−1/3

63. f (t) = t1/3 − t−1/3

(t − t−1)1/3

solution Because

lim
t→∞

t1/3 − t−1/3

(t − t−1)1/3
= lim

t→∞
1 − t−2/3

(1 − t−2)1/3
= 1

11/3
= 1

and

lim
t→−∞

t1/3 − t−1/3

(t − t−1)1/3
= lim

t→−∞
1 − t−2/3

(1 − t−2)1/3
= 1

11/3
= 1,

it follows that the graph of y = t1/3 − t−1/3

(t − t−1)1/3
has a horizontal asymptote of y = 1.

Calculate (a)–(d), assuming that

lim
x→3

f (x) = 6, lim
x→3

g(x) = 4

(a) lim
x→3

(f (x) − 2g(x)) (b) lim
x→3

x2f (x)

(c) lim
x→3

f (x)

g(x) + x
(d) lim

x→3
(2g(x)3 − g(x)3/2)

65. Assume that the following limits exist:

A = lim
x→a

f (x), B = lim
x→a

g(x), L = lim
x→a

f (x)

g(x)

Prove that if L = 1, then A = B. Hint: You cannot use the Quotient Law if B = 0, so apply the Product Law to L and B

instead.

solution Suppose the limits A, B, and L all exist and L = 1. Then

B = B · 1 = B · L = lim
x→a

g(x) · lim
x→a

f (x)

g(x)
= lim

x→a
g(x)

f (x)

g(x)
= lim

x→a
f (x) = A.

Define g(t) = (1 + 21/t )−1 for t �= 0. How should g(0) be defined to make g(t) left-continuous at t = 0?
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67. In the notation of Exercise 65, give an example where L exists but neither A nor B exists.

solution Suppose

f (x) = 1

(x − a)3
and g(x) = 1

(x − a)5 .

Then, neither A nor B exists, but

L = lim
x→a

(x − a)−3

(x − a)−5 = lim
x→a

(x − a)2 = 0.

True or false?

(a) If lim
x→3

f (x) exists, then lim
x→3

f (x) = f (3).

(b) If lim
x→0

f (x)

x
= 1, then f (0) = 0.

(c) If lim
x→−7

f (x) = 8, then lim
x→−7

1

f (x)
= 1

8
.

(d) If lim
x→5+ f (x) = 4 and lim

x→5− f (x) = 8, then lim
x→5

f (x) = 6.

(e) If lim
x→0

f (x)

x
= 1, then lim

x→0
f (x) = 0.

(f) If lim
x→5

f (x) = 2, then lim
x→5

f (x)3 = 8.

69. Let f (x) = x
[

1
x

]
, where [x] is the greatest integer function. Show that for x �= 0,

1

x
− 1 <

[
1

x

]
≤ 1

x

Then use the Squeeze Theorem to prove that

lim
x→0

x

[
1

x

]
= 1

Hint: Treat the one-sided limits separately.

solution Let y be any real number. From the definition of the greatest integer function, it follows that y − 1 < [y] ≤ y,

with equality holding if and only if y is an integer. If x �= 0, then 1
x is a real number, so

1

x
− 1 <

[
1

x

]
≤ 1

x
.

Upon multiplying this inequality through by x, we find

1 − x < x

[
1

x

]
≤ 1.

Because

lim
x→0

(1 − x) = lim
x→0

1 = 1,

it follows from the Squeeze Theorem that

lim
x→0

x

[
1

x

]
= 1.

Let r1 and r2 be the roots of f (x) = ax2 − 2x + 20. Observe that f (x) “approaches” the linear function
L(x) = −2x + 20 as a → 0. Because r = 10 is the unique root of L(x), we might expect one of the roots of f (x)

to approach 10 as a → 0 (Figure 3). Prove that the roots can be labeled so that lim
a→0

r1 = 10 and lim
a→0

r2 = ∞.

71. Use the IVT to prove that the curves y = x2 and y = cos x intersect.

solution Let f (x) = x2 − cos x. Note that any root of f (x) corresponds to a point of intersection between the curves

y = x2 and y = cos x. Now, f (x) is continuous over the interval [0, π
2 ], f (0) = −1 < 0 and f (π

2 ) = π2

4 > 0.
Therefore, by the Intermediate Value Theorem, there exists a c ∈ (0, π

2 ) such that f (c) = 0; consequently, the curves

y = x2 and y = cos x intersect.

Use the IVT to prove that f (x) = x3 − x2 + 2

cos x + 2
has a root in the interval [0, 2].

73. Use the IVT to show that 2−x2 = x has a solution on (0, 1).

solution Let f (x) = 2−x2 − x. Observe that f is continuous on [0, 1] with f (0) = 20 − 0 = 1 > 0 and f (1) =
2−1 − 1 < 0. Therefore, the IVT guarantees there exists a c ∈ (0, 1) such that f (c) = 2−c2 − c = 0.

Use the Bisection Method to locate a solution of x2 − 7 = 0 to two decimal places.75. Give an example of a (discontinuous) function that does not satisfy the conclusion of the IVT on [−1, 1].
Then show that the function

f (x) =
⎧⎨
⎩sin

1

x
x �= 0

0 x = 0

satisfies the conclusion of the IVT on every interval [−a, a], even though f is discontinuous at x = 0.
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solution Let g(x) = [x]. This function is discontinuous on [−1, 1] with g(−1) = −1 and g(1) = 1. For all c �= 0,
there is no x such that g(x) = c; thus, g(x) does not satisfy the conclusion of the Intermediate Value Theorem on [−1, 1].

Now, let

f (x) =
{

sin
(

1
x

)
for x �= 0

0 for x = 0

and let a > 0. On the interval

x ∈
[

a

2 + 2πa
,
a

2

]
⊂ [−a, a],

1
x runs from 2

a to 2
a + 2π , so the sine function covers one full period and clearly takes on every value from − sin a through

sin a.

Let f (x) = 1

x + 2
.

(a) Show that
∣∣∣f (x) − 1

4

∣∣∣ <
|x − 2|

12
if |x − 2| < 1. Hint: Observe that |4(x + 2)| > 12 if |x − 2| < 1.

(b) Find δ > 0 such that
∣∣∣f (x) − 1

4

∣∣∣ < 0.01 for |x − 2| < δ.

(c) Prove rigorously that lim
x→2

f (x) = 1
4 .

77. Plot the function f (x) = x1/3. Use the zoom feature to find a δ > 0 such that |x1/3 − 2| < 0.05 for
|x − 8| < δ.

solution The graphs of y = f (x) = x1/3 and the horizontal lines y = 1.95 and y = 2.05 are shown below. From

this plot, we see that δ = 0.55 guarantees that |x1/3 − 2| < 0.05 whenever |x − 8| < δ.

7 7.5 8 8.5

1.95

1.9

2

2.05

x

y

Use the fact that f (x) = 2x is increasing to find a value of δ such that |2x − 8| < 0.001 if |x − 2| < δ. Hint:
Find c1 and c2 such that 7.999 < f (c1) < f (c2) < 8.001.

79. Prove rigorously that lim
x→−1

(4 + 8x) = −4.

solution Let ε > 0 and take δ = ε/8. Then, whenever |x − (−1)| = |x + 1| < δ,

|f (x) − (−4)| = |4 + 8x + 4| = 8|x + 1| < 8δ = ε.

Prove rigorously that lim
x→3

(x2 − x) = 6.



June 8, 2011 LTSV SSM Second Pass

3 DIFFERENTIATION

3.1 Definition of the Derivative

Preliminary Questions
1. Which of the lines in Figure 10 are tangent to the curve?

A

B

C

D

FIGURE 10

solution Lines B and D are tangent to the curve.

2. What are the two ways of writing the difference quotient?

solution The difference quotient may be written either as

f (x) − f (a)

x − a

or as

f (a + h) − f (a)

h
.

3. Find a and h such that
f (a + h) − f (a)

h
is equal to the slope of the secant line between (3, f (3)) and (5, f (5)).

solution With a = 3 and h = 2,
f (a + h) − f (a)

h
is equal to the slope of the secant line between the points (3, f (3))

and (5, f (5)) on the graph of f (x).

4. Which derivative is approximated by
tan

(
π
4 + 0.0001

) − 1

0.0001
?

solution
tan( π

4 + 0.0001) − 1

0.0001
is a good approximation to the derivative of the function f (x) = tan x at x = π

4 .

5. What do the following quantities represent in terms of the graph of f (x) = sin x?

(a) sin 1.3 − sin 0.9 (b)
sin 1.3 − sin 0.9

0.4
(c) f ′(0.9)

solution Consider the graph of y = sin x.

(a) The quantity sin 1.3 − sin 0.9 represents the difference in height between the points (0.9, sin 0.9) and (1.3, sin 1.3).

(b) The quantity
sin 1.3 − sin 0.9

0.4
represents the slope of the secant line between the points (0.9, sin 0.9) and (1.3, sin 1.3)

on the graph.

(c) The quantity f ′(0.9) represents the slope of the tangent line to the graph at x = 0.9.

Exercises
1. Let f (x) = 5x2. Show that f (3 + h) = 5h2 + 30h + 45. Then show that

f (3 + h) − f (3)

h
= 5h + 30

and compute f ′(3) by taking the limit as h → 0.

91
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solution With f (x) = 5x2, it follows that

f (3 + h) = 5(3 + h)2 = 5(9 + 6h + h2) = 45 + 30h + 5h2.

Using this result, we find

f (3 + h) − f (3)

h
= 45 + 30h + 5h2 − 5 · 9

h
= 45 + 30h + 5h2 − 45

h
= 30h + 5h2

h
= 30 + 5h.

As h → 0, 30 + 5h → 30, so f ′(3) = 30.

Let f (x) = 2x2 − 3x − 5. Show that the secant line through (2, f (2)) and (2 + h, f (2 + h)) has slope 2h + 5.
Then use this formula to compute the slope of:

(a) The secant line through (2, f (2)) and (3, f (3))

(b) The tangent line at x = 2 (by taking a limit)

In Exercises 3–6, compute f ′(a) in two ways, using Eq. (1) and Eq. (2).

3. f (x) = x2 + 9x, a = 0

solution Let f (x) = x2 + 9x. Then

f ′(0) = lim
h→0

f (0 + h) − f (0)

h
= lim

h→0

(0 + h)2 + 9(0 + h) − 0

h
= lim

h→0

9h + h2

h
= lim

h→0
(9 + h) = 9.

Alternately,

f ′(0) = lim
x→0

f (x) − f (0)

x − 0
= lim

x→0

x2 + 9x − 0

x
= lim

x→0
(x + 9) = 9.

f (x) = x2 + 9x, a = 2
5. f (x) = 3x2 + 4x + 2, a = −1

solution Let f (x) = 3x2 + 4x + 2. Then

f ′(−1) = lim
h→0

f (−1 + h) − f (−1)

h
= lim

h→0

3(−1 + h)2 + 4(−1 + h) + 2 − 1

h

= lim
h→0

3h2 − 2h

h
= lim

h→0
(3h − 2) = −2.

Alternately,

f ′(−1) = lim
x→−1

f (x) − f (−1)

x − (−1)
= lim

x→−1

3x2 + 4x + 2 − 1

x + 1

= lim
x→−1

(3x + 1)(x + 1)

x + 1
= lim

x→−1
(3x + 1) = −2.

f (x) = x3, a = 2In Exercises 7–10, refer to Figure 11.

0.5

1.0

1.5

2.0

2.5

3.0
f (x)

1.0 2.0 3.00.5 1.5 2.5
x

y

FIGURE 11

7. Find the slope of the secant line through (2, f (2)) and (2.5, f (2.5)). Is it larger or smaller than f ′(2)?
Explain.

solution From the graph, it appears that f (2.5) = 2.5 and f (2) = 2. Thus, the slope of the secant line through
(2, f (2)) and (2.5, f (2.5)) is

f (2.5) − f (2)

2.5 − 2
= 2.5 − 2

2.5 − 2
= 1.

From the graph, it is also clear that the secant line through (2, f (2)) and (2.5, f (2.5)) has a larger slope than the tangent
line at x = 2. In other words, the slope of the secant line through (2, f (2)) and (2.5, f (2.5)) is larger than f ′(2).

Estimate
f (2 + h) − f (2)

h
for h = −0.5. What does this quantity represent? Is it larger or smaller than f ′(2)?

Explain.

9. Estimate f ′(1) and f ′(2).

solution From the graph, it appears that the tangent line at x = 1 would be horizontal. Thus, f ′(1) ≈ 0. The tangent
line at x = 2 appears to pass through the points (0.5, 0.8) and (2, 2). Thus

f ′(2) ≈ 2 − 0.8

2 − 0.5
= 0.8.

Find a value of h for which
f (2 + h) − f (2)

h
= 0.
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In Exercises 11–14, refer to Figure 12.

1

2

3

5

4

1 2 3 4 5 6 7 8 9
x

y

FIGURE 12 Graph of f (x).

11. Determine f ′(a) for a = 1, 2, 4, 7.

solution Remember that the value of the derivative of f at x = a can be interpreted as the slope of the line tangent
to the graph of y = f (x) at x = a. From Figure 12, we see that the graph of y = f (x) is a horizontal line (that is, a line
with zero slope) on the interval 0 ≤ x ≤ 3. Accordingly, f ′(1) = f ′(2) = 0. On the interval 3 ≤ x ≤ 5, the graph of
y = f (x) is a line of slope 1

2 ; thus, f ′(4) = 1
2 . Finally, the line tangent to the graph of y = f (x) at x = 7 is horizontal,

so f ′(7) = 0.

For which values of x is f ′(x) < 0?
13. Which is larger, f ′(5.5) or f ′(6.5)?

solution The line tangent to the graph of y = f (x) at x = 5.5 has a larger slope than the line tangent to the graph of
y = f (x) at x = 6.5. Therefore, f ′(5.5) is larger than f ′(6.5).

Show that f ′(3) does not exist.In Exercises 15–18, use the limit definition to calculate the derivative of the linear function.

15. f (x) = 7x − 9

solution

lim
h→0

f (a + h) − f (a)

h
= lim

h→0

7(a + h) − 9 − (7a − 9)

h
= lim

h→0
7 = 7.

f (x) = 12
17. g(t) = 8 − 3t

solution

lim
h→0

g(a + h) − g(a)

h
= lim

h→0

8 − 3(a + h) − (8 − 3a)

h
= lim

h→0

−3h

h
= lim

h→0
(−3) = −3.

k(z) = 14z + 12
19. Find an equation of the tangent line at x = 3, assuming that f (3) = 5 and f ′(3) = 2?

solution By definition, the equation of the tangent line to the graph of f (x) at x = 3 is y = f (3) + f ′(3)(x − 3) =
5 + 2(x − 3) = 2x − 1.

Find f (3) and f ′(3), assuming that the tangent line to y = f (x) at a = 3 has equation y = 5x + 2.
21. Describe the tangent line at an arbitrary point on the “curve” y = 2x + 8.

solution Since y = 2x + 8 represents a straight line, the tangent line at any point is the line itself, y = 2x + 8.

Suppose that f (2 + h) − f (2) = 3h2 + 5h. Calculate:

(a) The slope of the secant line through (2, f (2)) and (6, f (6))

(b) f ′(2)

23. Let f (x) = 1

x
. Does f (−2 + h) equal

1

−2 + h
or

1

−2
+ 1

h
? Compute the difference quotient at a = −2 with

h = 0.5.

solution Let f (x) = 1
x . Then

f (−2 + h) = 1

−2 + h
.

With a = −2 and h = 0.5, the difference quotient is

f (a + h) − f (a)

h
= f (−1.5) − f (−2)

0.5
=

1
−1.5 − 1

−2

0.5
= −1

3
.

Let f (x) = √
x. Does f (5 + h) equal

√
5 + h or

√
5 + √

h? Compute the difference quotient at a = 5 with
h = 1.

25. Let f (x) = 1/
√

x. Compute f ′(5) by showing that

f (5 + h) − f (5)

h
= − 1√

5
√

5 + h(
√

5 + h + √
5)
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solution Let f (x) = 1/
√

x. Then

f (5 + h) − f (5)

h
=

1√
5+h

− 1√
5

h
=

√
5 − √

5 + h

h
√

5
√

5 + h

=
√

5 − √
5 + h

h
√

5
√

5 + h

(√
5 + √

5 + h√
5 + √

5 + h

)

= 5 − (5 + h)

h
√

5
√

5 + h(
√

5 + h + √
5)

= − 1√
5
√

5 + h(
√

5 + h + √
5)

.

Thus,

f ′(5) = lim
h→0

f (5 + h) − f (5)

h
= lim

h→0
− 1√

5
√

5 + h(
√

5 + h + √
5)

= − 1√
5

√
5(

√
5 + √

5)
= − 1

10
√

5
.

Find an equation of the tangent line to the graph of f (x) = 1/
√

x at x = 9.In Exercises 27–44, use the limit definition to compute f ′(a) and find an equation of the tangent line.

27. f (x) = 2x2 + 10x, a = 3

solution Let f (x) = 2x2 + 10x. Then

f ′(3) = lim
h→0

f (3 + h) − f (3)

h
= lim

h→0

2(3 + h)2 + 10(3 + h) − 48

h

= lim
h→0

18 + 12h + 2h2 + 30 + 10h − 48

h
= lim

h→0
(22 + 2h) = 22.

At a = 3, the tangent line is

y = f ′(3)(x − 3) + f (3) = 22(x − 3) + 48 = 22x − 18.

f (x) = 4 − x2, a = −1
29. f (t) = t − 2t2, a = 3

solution Let f (t) = t − 2t2. Then

f ′(3) = lim
h→0

f (3 + h) − f (3)

h
= lim

h→0

(3 + h) − 2(3 + h)2 − (−15)

h

= lim
h→0

3 + h − 18 − 12h − 2h2 + 15

h

= lim
h→0

(−11 − 2h) = −11.

At a = 3, the tangent line is

y = f ′(3)(t − 3) + f (3) = −11(t − 3) − 15 = −11t + 18.

f (x) = 8x3, a = 1
31. f (x) = x3 + x, a = 0

solution Let f (x) = x3 + x. Then

f ′(0) = lim
h→0

f (h) − f (0)

h
= lim

h→0

h3 + h − 0

h

= lim
h→0

(h2 + 1) = 1.

At a = 0, the tangent line is

y = f ′(0)(x − 0) + f (0) = x.

f (t) = 2t3 + 4t , a = 4
33. f (x) = x−1, a = 8

solution Let f (x) = x−1. Then

f ′(8) = lim
h→0

f (8 + h) − f (8)

h
= lim

h→0

1
8+h

−
(

1
8

)
h

= lim
h→0

8−8−h
8(8+h)

h
= lim

h→0

−h

(64 + 8h)h
= − 1

64
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The tangent at a = 8 is

y = f ′(8)(x − 8) + f (8) = − 1

64
(x − 8) + 1

8
= − 1

64
x + 1

4
.

f (x) = x + x−1, a = 435. f (x) = 1

x + 3
, a = −2

solution Let f (x) = 1
x+3 . Then

f ′(−2) = lim
h→0

f (−2 + h) − f (−2)

h
= lim

h→0

1
−2+h+3 − 1

h
= lim

h→0

1
1+h

− 1

h
= lim

h→0

−h

h(1 + h)
= lim

h→0

−1

1 + h
= −1.

The tangent line at a = −2 is

y = f ′(−2)(x + 2) + f (−2) = −1(x + 2) + 1 = −x − 1.

f (t) = 2

1 − t
, a = −1

37. f (x) = √
x + 4, a = 1

solution Let f (x) = √
x + 4. Then

f ′(1) = lim
h→0

f (1 + h) − f (1)

h
= lim

h→0

√
h + 5 − √

5

h
= lim

h→0

√
h + 5 − √

5

h
·
√

h + 5 + √
5√

h + 5 + √
5

= lim
h→0

h

h(
√

h + 5 + √
5)

= lim
h→0

1√
h + 5 + √

5
= 1

2
√

5
.

The tangent line at a = 1 is

y = f ′(1)(x − 1) + f (1) = 1

2
√

5
(x − 1) + √

5 = 1

2
√

5
x + 9

2
√

5
.

f (t) = √
3t + 5, a = −139. f (x) = 1√

x
, a = 4

solution Let f (x) = 1√
x

. Then

f ′(4) = lim
h→0

f (4 + h) − f (4)

h
= lim

h→0

1√
4+h

− 1
2

h
= lim

h→0

2−√
4+h

2
√

4+h
· 2+√

4+h

2+√
4+h

h
= lim

h→0

4−4−h

4
√

4+h+2(4+h)

h

= lim
h→0

−1

4
√

4 + h + 2(4 + h)
= − 1

16
.

At a = 4 the tangent line is

y = f ′(4)(x − 4) + f (4) = − 1

16
(x − 4) + 1

2
= − 1

16
x + 3

4
.

f (x) = 1√
2x + 1

, a = 4
41. f (t) =

√
t2 + 1, a = 3

solution Let f (t) =
√

t2 + 1. Then

f ′(3) = lim
h→0

f (3 + h) − f (3)

h
= lim

h→0

√
10 + 6h + h2 − √

10

h

= lim
h→0

√
10 + 6h + h2 − √

10

h
·
√

10 + 6h + h2 + √
10√

10 + 6h + h2 + √
10

= lim
h→0

6h + h2

h(
√

10 + 6h + h2 + √
10)

= lim
h→0

6 + h√
10 + 6h + h2 + √

10
= 3√

10
.

The tangent line at a = 3 is

y = f ′(3)(t − 3) + f (3) = 3√
10

(t − 3) + √
10 = 3√

10
t + 1√

10
.
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f (x) = x−2, a = −143. f (x) = 1

x2 + 1
, a = 0

solution Let f (x) = 1

x2 + 1
. Then

f ′(0) = lim
h→0

f (0 + h) − f (0)

h
= lim

h→0

1
(0+h)2+1

− 1

h
= lim

h→0

−h2

h2+1

h
= lim

h→0

−h

h2 + 1
= 0.

The tangent line at a = 0 is

y = f (0) + f ′(0)(x − 0) = 1 + 0(x − 1) = 1.

f (t) = t−3, a = 1
45. Figure 13 displays data collected by the biologist Julian Huxley (1887–1975) on the average antler weight W of male
red deer as a function of age t . Estimate the derivative at t = 4. For which values of t is the slope of the tangent line equal
to zero? For which values is it negative?

2 40 6 8 10 12 14

Age (years)

Antler
Weight

(kg)

0
1
2
3
4
5
6
7
8

FIGURE 13

solution Let W(t) denote the antler weight as a function of age. The “tangent line” sketched in the figure below passes
through the points (1, 1) and (6, 5.5). Therefore

W ′(4) ≈ 5.5 − 1

6 − 1
= 0.9 kg/year.

If the slope of the tangent is zero, the tangent line is horizontal. This appears to happen at roughly t = 10 and at t = 11.6.
The slope of the tangent line is negative when the height of the graph decreases as we move to the right. For the graph in
Figure 13, this occurs for 10 < t < 11.6.

2 40 6 8 10 12 14
0
1
2
3
4
5
6
7
8

y

x

Figure 14(A) shows the graph of f (x) = √
x. The close-up in Figure 14(B) shows that the graph is nearly a

straight line near x = 16. Estimate the slope of this line and take it as an estimate for f ′(16). Then compute f ′(16)

and compare with your estimate.

47. Let f (x) = 4

1 + 2x
.

(a) Plot f (x) over [−2, 2]. Then zoom in near x = 0 until the graph appears straight, and estimate the slope f ′(0).

(b) Use (a) to find an approximate equation to the tangent line at x = 0. Plot this line and f (x) on the same set of axes.

solution

(a) The figure below at the left shows the graph of f (x) = 4
1+2x over [−2, 2]. The figure below at the right is a close-up

near x = 0. From the close-up, we see that the graph is nearly straight and passes through the points (−0.22, 2.15) and
(0.22, 1.85). We therefore estimate

f ′(0) ≈ 1.85 − 2.15

0.22 − (−0.22)
= −0.3

0.44
= −0.68

y

x
−2 −1 1 2

y

x
−0.2 −0.1 0.1 0.2

0.5 1.8

2.0
2.2

2.4

1
1.5
2

3
2.5
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(b) Using the estimate for f ′(0) obtained in part (a), the approximate equation of the tangent line is

y = f ′(0)(x − 0) + f (0) = −0.68x + 2.

The figure below shows the graph of f (x) and the approximate tangent line.

y

x
−2 −1 1 2

0.5
1

1.5
2

3
2.5

Let f (x) = cot x. Estimate f ′(π
2

)
graphically by zooming in on a plot of f (x) near x = π

2 .
49. Determine the intervals along the x-axis on which the derivative in Figure 15 is positive.

1.0 1.5 2.0 2.5 3.0 3.5 4.00.5

1.0

0.5

1.5

2.0

2.5

3.0

3.5

4.0

x

y

FIGURE 15

solution The derivative (that is, the slope of the tangent line) is positive when the height of the graph increases as we
move to the right. From Figure 15, this appears to be true for 1 < x < 2.5 and for x > 3.5.

Sketch the graph of f (x) = sin x on [0, π ] and guess the value of f ′(π
2

)
. Then calculate the difference quotient

at x = π
2 for two small positive and negative values of h. Are these calculations consistent with your guess?

In Exercises 51–56, each limit represents a derivative f ′(a). Find f (x) and a.

51. lim
h→0

(5 + h)3 − 125

h

solution The difference quotient
(5 + h)3 − 125

h
has the form

f (a + h) − f (a)

h
where f (x) = x3 and a = 5.

lim
x→5

x3 − 125

x − 5

53. lim
h→0

sin
(
π
6 + h

) − 0.5

h

solution The difference quotient
sin( π

6 + h) − 0.5

h
has the form

f (a + h) − f (a)

h
where f (x) = sin x and a = π

6 .

lim
x→ 1

4

x−1 − 4

x − 1
4

55. lim
h→0

52+h − 25

h

solution The difference quotient
5(2+h) − 25

h
has the form

f (a + h) − f (a)

h
where f (x) = 5x and a = 2.

lim
h→0

5h − 1

h

57. Apply the method of Example 6 to f (x) = sin x to determine f ′ (π
4

)
accurately to four decimal places.

solution We know that

f ′(π/4) = lim
h→0

f (π/4 + h) − f (π/4)

h
= lim

h→0

sin(π/4 + h) − √
2/2

h
.

Creating a table of values of h close to zero:

h −0.001 −0.0001 −0.00001 0.00001 0.0001 0.001

sin( π
4 + h) − (

√
2/2)

h
0.7074602 0.7071421 0.7071103 0.7071033 0.7070714 0.7067531

Accurate up to four decimal places, f ′( π
4 ) ≈ 0.7071.

Apply the method of Example 6 to f (x) = cos x to determine f ′(π
5

)
accurately to four decimal places. Use a

graph of f (x) to explain how the method works in this case.
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59. For each graph in Figure 16, determine whether f ′(1) is larger or smaller than the slope of the secant line
between x = 1 and x = 1 + h for h > 0. Explain.

1 1

(A) (B)

y

x

y

x

y = f (x)
y = f (x)

FIGURE 16

solution

• On curve (A),f ′(1) is larger than

f (1 + h) − f (1)

h
;

the curve is bending downwards, so that the secant line to the right is at a lower angle than the tangent line. We say
such a curve is concave down, and that its derivative is decreasing.

• On curve (B), f ′(1) is smaller than

f (1 + h) − f (1)

h
;

the curve is bending upwards, so that the secant line to the right is at a steeper angle than the tangent line. We say
such a curve is concave up, and that its derivative is increasing.

Refer to the graph of f (x) = 2x in Figure 17.

(a) Explain graphically why, for h > 0,

f (−h) − f (0)

−h
≤ f ′(0) ≤ f (h) − f (0)

h

(b) Use (a) to show that 0.69314 ≤ f ′(0) ≤ 0.69315.

(c) Similarly, compute f ′(x) to four decimal places for x = 1, 2, 3, 4.

(d) Now compute the ratios f ′(x)/f ′(0) for x = 1, 2, 3, 4. Can you guess an approximate formula for f ′(x)?

61. Sketch the graph of f (x) = x5/2 on [0, 6].
(a) Use the sketch to justify the inequalities for h > 0:

f (4) − f (4 − h)

h
≤ f ′(4) ≤ f (4 + h) − f (4)

h

(b) Use (a) to compute f ′(4) to four decimal places.

(c) Use a graphing utility to plot f (x) and the tangent line at x = 4, using your estimate for f ′(4).

solution

(a) The slope of the secant line between points (4, f (4)) and (4 + h, f (4 + h)) is

f (4 + h) − f (4)

h
.

x5/2 is a smooth curve increasing at a faster rate as x → ∞. Therefore, if h > 0, then the slope of the secant line is
greater than the slope of the tangent line at f (4), which happens to be f ′(4). Likewise, if h < 0, the slope of the secant
line is less than the slope of the tangent line at f (4), which happens to be f ′(4).

(b) We know that

f ′(4) = lim
h→0

f (4 + h) − f (4)

h
= lim

h→0

(4 + h)5/2 − 32

h
.

Creating a table with values of h close to zero:

h −0.0001 −0.00001 0.00001 0.0001

(4 + h)5/2 − 32

h
19.999625 19.99999 20.0000 20.0000375

Thus, f ′(4) ≈ 20.0000.

(c) Using the estimate for f ′(4) obtained in part (b), the equation of the line tangent to f (x) = x5/2 at x = 4 is

y = f ′(4)(x − 4) + f (4) = 20(x − 4) + 32 = 20x − 48.
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y

x
1 2 3 4 5 6−20

−40
−60

20
40
60
80

Verify that P = (
1, 1

2

)
lies on the graphs of both f (x) = 1/(1 + x2) and L(x) = 1

2 + m(x − 1) for every
slope m. Plot f (x) and L(x) on the same axes for several values of m until you find a value of m for which y = L(x)

appears tangent to the graph of f (x). What is your estimate for f ′(1)?

63. Use a plot of f (x) = xx to estimate the value c such that f ′(c) = 0. Find c to sufficient accuracy so that

∣∣∣∣f (c + h) − f (c)

h

∣∣∣∣ ≤ 0.006 for h = ±0.001

solution Here is a graph of f (x) = xx over the interval [0, 1.5].

0.2 0.4 0.6 0.8 1 1.2 1.4

0.5

1

1.5

2

y

x

The graph shows one location with a horizontal tangent line. The figure below at the left shows the graph of f (x) together
with the horizontal lines y = 0.6, y = 0.7 and y = 0.8. The line y = 0.7 is very close to being tangent to the graph of
f (x). The figure below at the right refines this estimate by graphing f (x) and y = 0.69 on the same set of axes. The point
of tangency has an x-coordinate of roughly 0.37, so c ≈ 0.37.

0.2 0.4 0.6 0.8 1 1.2 1.4

0.5

1

1.5

2

y

x
0.2 0.4 0.6 0.8 1 1.2 1.4

0.5

1

1.5

2

y

x

We note that ∣∣∣∣f (0.37 + 0.001) − f (0.37)

0.001

∣∣∣∣ ≈ 0.00491 < 0.006

and ∣∣∣∣f (0.37 − 0.001) − f (0.37)

0.001

∣∣∣∣ ≈ 0.00304 < 0.006,

so we have determined c to the desired accuracy.

Plot f (x) = xx and y = 2x + a on the same set of axes for several values of a until the line becomes tangent
to the graph. Then estimate the value c such that f ′(c) = 2.

In Exercises 65–71, estimate derivatives using the symmetric difference quotient (SDQ), defined as the average of the
difference quotients at h and −h:

1

2

(
f (a + h) − f (a)

h
+ f (a − h) − f (a)

−h

)
= f (a + h) − f (a − h)

2h
4

The SDQ usually gives a better approximation to the derivative than the difference quotient.

65. The vapor pressure of water at temperature T (in kelvins) is the atmospheric pressure P at which no net evaporation
takes place. Use the following table to estimate P ′(T ) for T = 303, 313, 323, 333, 343 by computing the SDQ given by
Eq. (4) with h = 10.

T (K) 293 303 313 323 333 343 353

P (atm) 0.0278 0.0482 0.0808 0.1311 0.2067 0.3173 0.4754



June 8, 2011 LTSV SSM Second Pass

100 C H A P T E R 3 DIFFERENTIATION

solution Using equation (4),

P ′(303) ≈ P(313) − P(293)

20
= 0.0808 − 0.0278

20
= 0.00265 atm/K;

P ′(313) ≈ P(323) − P(303)

20
= 0.1311 − 0.0482

20
= 0.004145 atm/K;

P ′(323) ≈ P(333) − P(313)

20
= 0.2067 − 0.0808

20
= 0.006295 atm/K;

P ′(333) ≈ P(343) − P(323)

20
= 0.3173 − 0.1311

20
= 0.00931 atm/K;

P ′(343) ≈ P(353) − P(333)

20
= 0.4754 − 0.2067

20
= 0.013435 atm/K

Use the SDQ with h = 1 year to estimate P ′(T ) in the years 2000, 2002, 2004, 2006, where P(T ) is the U.S.
ethanol production (Figure 18). Express your answer in the correct units.

In Exercises 67 and 68, traffic speed S along a certain road (in km/h) varies as a function of traffic density q (number of
cars per km of road). Use the following data to answer the questions:

q (density) 60 70 80 90 100

S (speed) 72.5 67.5 63.5 60 56

67. Estimate S′(80).

solution Let S(q) be the function determining S given q. Using equation (4) with h = 10,

S′(80) ≈ S(90) − S(70)

20
= 60 − 67.5

20
= −0.375;

with h = 20,

S′(80) ≈ S(100) − S(60)

40
= 56 − 72.5

40
= −0.4125;

The mean of these two symmetric difference quotients is −0.39375 kph·km/car.

Explain why V = qS, called traffic volume, is equal to the number of cars passing a point per hour. Use the
data to estimate V ′(80).

Exercises 69–71: The current (in amperes) at time t (in seconds) flowing in the circuit in Figure 19 is given by Kirchhoff’s
Law:

i(t) = Cv′(t) + R−1v(t)

where v(t) is the voltage (in volts), C the capacitance (in farads), and R the resistance (in ohms, �).

+

−

v
R

i

C

FIGURE 19

69. Calculate the current at t = 3 if

v(t) = 0.5t + 4 V

where C = 0.01 F and R = 100 �.

solution Since v(t) is a line with slope 0.5, v′(t) = 0.5 volts/s for all t . From the formula, i(3) = Cv′(3) +
(1/R)v(3) = 0.01(0.5) + (1/100)(5.5) = 0.005 + 0.055 = 0.06 amperes.

Use the following data to estimate v′(10) (by an SDQ). Then estimate i(10), assuming C = 0.03 and R = 1000.

t 9.8 9.9 10 10.1 10.2

v(t) 256.52 257.32 258.11 258.9 259.69

71. Assume that R = 200 � but C is unknown. Use the following data to estimate v′(4) (by an SDQ) and deduce an
approximate value for the capacitance C.

t 3.8 3.9 4 4.1 4.2

v(t) 388.8 404.2 420 436.2 452.8

i(t) 32.34 33.22 34.1 34.98 35.86
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solution Solving i(4) = Cv′(4) + (1/R)v(4) for C yields

C = i(4) − (1/R)v(4)

v′(4)
= 34.1 − 420

200
v′(4)

.

To compute C, we first approximate v′(4). Taking h = 0.1, we find

v′(4) ≈ v(4.1) − v(3.9)

0.2
= 436.2 − 404.2

0.2
= 160.

Plugging this in to the equation above yields

C ≈ 34.1 − 2.1

160
= 0.2 farads.

Further Insights and Challenges

The SDQ usually approximates the derivative much more closely than does the ordinary difference quotient. Let
f (x) = 2x and a = 0. Compute the SDQ with h = 0.001 and the ordinary difference quotients with h = ±0.001.
Compare with the actual value, which is f ′(0) = ln 2.

73. Explain how the symmetric difference quotient defined by Eq. (4) can be interpreted as the slope of a secant line.

solution The symmetric difference quotient

f (a + h) − f (a − h)

2h

is the slope of the secant line connecting the points (a − h, f (a − h)) and (a + h, f (a + h)) on the graph of f ; the
difference in the function values is divided by the difference in the x-values.

Which of the two functions in Figure 20 satisfies the inequality

f (a + h) − f (a − h)

2h
≤ f (a + h) − f (a)

h

for h > 0? Explain in terms of secant lines.

75. Show that if f (x) is a quadratic polynomial, then the SDQ at x = a (for any h �= 0) is equal to f ′(a).
Explain the graphical meaning of this result.

solution Let f (x) = px2 + qx + r be a quadratic polynomial. We compute the SDQ at x = a.

f (a + h) − f (a − h)

2h
= p(a + h)2 + q(a + h) + r − (p(a − h)2 + q(a − h) + r)

2h

= pa2 + 2pah + ph2 + qa + qh + r − pa2 + 2pah − ph2 − qa + qh − r

2h

= 4pah + 2qh

2h
= 2h(2pa + q)

2h
= 2pa + q

Since this doesn’t depend on h, the limit, which is equal to f ′(a), is also 2pa + q. Graphically, this result tells us that the
secant line to a parabola passing through points chosen symmetrically about x = a is always parallel to the tangent line
at x = a.

Let f (x) = x−2. Compute f ′(1) by taking the limit of the SDQs (with a = 1) as h → 0.

3.2 The Derivative as a Function

Preliminary Questions
1. What is the slope of the tangent line through the point (2, f (2)) if f ′(x) = x3?

solution The slope of the tangent line through the point (2, f (2)) is given by f ′(2). Since f ′(x) = x3, it follows that

f ′(2) = 23 = 8.

2. Evaluate (f − g)′(1) and (3f + 2g)′(1) assuming that f ′(1) = 3 and g′(1) = 5.

solution (f − g)′(1) = f ′(1) − g′(1) = 3 − 5 = −2 and (3f + 2g)′(1) = 3f ′(1) + 2g′(1) = 3(3) + 2(5) = 19.

3. To which of the following does the Power Rule apply?

(a) f (x) = x2 (b) f (x) = 2π

(c) f (x) = xπ (d) f (x) = πx

(e) f (x) = xx (f) f (x) = x−4/5

solution

(a) Yes. x2 is a power function, so the Power Rule can be applied.

(b) Yes. 2π is a constant function, so the Power Rule can be applied.

(c) Yes. xπ is a power function, so the Power Rule can be applied.

(d) No. πx is an exponential function (the base is constant while the exponent is a variable), so the Power Rule does not
apply.
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(e) No. xx is not a power function because both the base and the exponent are variable, so the Power Rule does not apply.

(f) Yes. x−4/5 is a power function, so the Power Rule can be applied.

4. Choose (a) or (b). The derivative does not exist if the tangent line is: (a) horizontal (b) vertical.

solution The derivative does not exist when: (b) the tangent line is vertical. At a horizontal tangent, the derivative is
zero.

5. If f (x) is differentiable at x = c, is f (x) necessarily continuous at x = c? Do there exist continuous functions that
are not differentiable?

solution By Theorem 4, if f is differentiable at x = c, then it is continuous at x = c. The converse does not hold,
however. For example, f (x) = |x| is continuous at x = 0 but is not differentiable there since the slopes from the left
equal −1 while those from the right equal 1.

Exercises
In Exercises 1–6, compute f ′(x) using the limit definition.

1. f (x) = 3x − 7

solution Let f (x) = 3x − 7. Then,

f ′(x) = lim
h→0

f (x + h) − f (x)

h
= lim

h→0

3(x + h) − 7 − (3x − 7)

h
= lim

h→0

3h

h
= 3.

f (x) = x2 + 3x
3. f (x) = x3

solution Let f (x) = x3. Then,

f ′(x) = lim
h→0

f (x + h) − f (x)

h
= lim

h→0

(x + h)3 − x3

h
= lim

h→0

x3 + 3x2h + 3xh2 + h3 − x3

h

= lim
h→0

3x2h + 3xh2 + h3

h
= lim

h→0
(3x2 + 3xh + h2) = 3x2.

f (x) = 1 − x−1
5. f (x) = x − √

x

solution Let f (x) = x − √
x. Then,

f ′(x) = lim
h→0

f (x + h) − f (x)

h
= lim

h→0

x + h − √
x + h − (x − √

x)

h
= 1 − lim

h→0

√
x + h − √

x

h
·
(√

x + h + √
x√

x + h + √
x

)

= 1 − lim
h→0

(x + h) − x

h(
√

x + h + √
x)

= 1 − lim
h→0

1√
x + h + √

x
= 1 − 1

2
√

x
.

f (x) = x−1/2In Exercises 7–14, use the Power Rule to compute the derivative.

7.
d

dx
x4

∣∣∣∣
x=−2

solution
d

dx

(
x4

)
= 4x3 so

d

dx
x4

∣∣∣∣
x=−2

= 4(−2)3 = −32.

d

dt
t−3

∣∣∣∣
t=4

9.
d

dt
t2/3

∣∣∣∣
t=8

solution
d

dt

(
t2/3

)
= 2

3
t−1/3 so

d

dt
t2/3

∣∣∣∣
t=8

= 2

3
(8)−1/3 = 1

3
.

d

dt
t−2/5

∣∣∣∣
t=1

11.
d

dx
x0.35

solution
d

dx

(
x0.35

)
= 0.35(x0.35−1) = 0.35x−0.65.

d

dx
x14/313.

d

dt
t

√
17

solution
d

dt

(
t

√
17) = √

17t

√
17−1

d

dt
t−π2
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In Exercises 15–18, compute f ′(x) and find an equation of the tangent line to the graph at x = a.

15. f (x) = x4, a = 2

solution Let f (x) = x4. Then, by the Power Rule, f ′(x) = 4x3. The equation of the tangent line to the graph of
f (x) at x = 2 is

y = f ′(2)(x − 2) + f (2) = 32(x − 2) + 16 = 32x − 48.

f (x) = x−2, a = 5
17. f (x) = 5x − 32

√
x, a = 4

solution Let f (x) = 5x − 32x1/2. Then f ′(x) = 5 − 16x−1/2. In particular, f ′(4) = −3. The tangent line at x = 4
is

y = f ′(4)(x − 4) + f (4) = −3(x − 4) − 44 = −3x − 32.

f (x) = 3√x, a = 819. Find an equation of the tangent line to y = 1

x
at x = 9.

solution Let f (x) = 1

x
. Then f (9) = 1

9
, f ′(x) = − 1

x2
, and f ′(9) = − 1

81
. The equation of the tangent line is

y − 1

9
= − 1

81
(x − 9), or y = − 1

81
x + 2

9

Find a point on the graph of y = √
x where the tangent line has slope 10.In Exercises 21–32, calculate the derivative.

21. f (x) = 2x3 − 3x2 + 5

solution
d

dx

(
2x3 − 3x2 + 5

)
= 6x2 − 6x.

f (x) = 2x3 − 3x2 + 2x
23. f (x) = 4x5/3 − 3x−2 − 12

solution
d

dx

(
4x5/3 − 3x−2 − 12

)
= 20

3
x2/3 + 6x−3.

f (x) = x5/4 + 4x−3/2 + 11x
25. g(z) = 7z−5/14 + z−5 + 9

solution
d

dz

(
7z−5/14 + z−5 + 9

)
= −5

2
z−19/14 − 5z−6.

h(t) = 6
√

t + 1√
t

27. f (s) = 4√s + 3√s

solution f (s) = 4√s + 3√s = s1/4 + s1/3. In this form, we can apply the Sum and Power Rules.

d

ds

(
s1/4 + s1/3

)
= 1

4
(s(1/4)−1) + 1

3
(s(1/3)−1) = 1

4
s−3/4 + 1

3
s−2/3.

W(y) = 6y4 + 7y2/329. g(x) = π2

solution Because π2 is a constant,
d

dx
π2 = 0.

f (x) = xπ31. h(t) = √
2 t

√
2

solution
d

dt

√
2 t

√
2 = 2t

√
2−1.

R(z) = z5/3 − 4z3/2

z
Hint: simplify.

In Exercises 33–36, calculate the derivative by expanding or simplifying the function.

33. P(s) = (4s − 3)2

solution P(s) = (4s − 3)2 = 16s2 − 24s + 9. Thus,

dP

ds
= 32s − 24.

Q(r) = (1 − 2r)(3r + 5)35. g(x) = x2 + 4x1/2

x2

solution g(x) = x2 + 4x1/2

x2
= 1 + 4x−3/2. Thus,

dg

dx
= −6x−5/2.
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s(t) = 1 − 2t

t1/2

In Exercises 37–42, calculate the derivative indicated.

37.
dT

dC

∣∣∣
C=8

, T = 3C2/3

solution With T (C) = 3C2/3, we have
dT

dC
= 2C−1/3. Therefore,

dT

dC

∣∣∣∣
C=8

= 2(8)−1/3 = 1.

dP

dV

∣∣∣
V =−2

, P = 7

V

39.
ds

dz

∣∣∣
z=2

, s = 4z − 16z2

solution With s = 4z − 16z2, we have
ds

dz
= 4 − 32z. Therefore,

ds

dz

∣∣∣∣
z=2

= 4 − 32(2) = −60.

dR

dW

∣∣∣∣
W=1

, R = Wπ41.
dr

dt

∣∣∣∣
t=4

, r = t2 + 1

t1/2

solution We have

dr

dt
= d

dt

t2 + 1

t1/2
= d

dt
(t3/2 + t−1/2) = 3

2
t1/2 − 1

2
t−3/2

Evaluating at t = 4 gives

dr

dt

∣∣∣∣
t=4

= 3

2
41/2 − 1

2
4−3/2 = 47

16

dp

dh

∣∣∣∣
h=32

, p = 16h0.2 + 8h−0.8
43. Match the functions in graphs (A)–(D) with their derivatives (I)–(III) in Figure 11. Note that two of the functions
have the same derivative. Explain why.

y

x

x

(A)

y

(I)

x

y

(II)

x

y

(III)

y

x

(B)

y

x

(C)

y

x

(D)

FIGURE 11

solution

• Consider the graph in (A). On the left side of the graph, the slope of the tangent line is positive but on the right
side the slope of the tangent line is negative. Thus the derivative should transition from positive to negative with
increasing x. This matches the graph in (III).

• Consider the graph in (B). This is a linear function, so its slope is constant. Thus the derivative is constant, which
matches the graph in (I).

• Consider the graph in (C). Moving from left to right, the slope of the tangent line transitions from positive to negative
then back to positive. The derivative should therefore be negative in the middle and positive to either side. This
matches the graph in (II).

• Consider the graph in (D). On the left side of the graph, the slope of the tangent line is positive but on the right
side the slope of the tangent line is negative. Thus the derivative should transition from positive to negative with
increasing x. This matches the graph in (III).

Note that the functions whose graphs are shown in (A) and (D) have the same derivative. This happens because the
graph in (D) is just a vertical translation of the graph in (A), which means the two functions differ by a constant. The
derivative of a constant is zero, so the two functions end up with the same derivative.
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Of the two functions f and g in Figure 12, which is the derivative of the other? Justify your answer.
45. Assign the labels f (x), g(x), and h(x) to the graphs in Figure 13 in such a way that f ′(x) = g(x) and g′(x) = h(x).

y

x

y

x

y

x

(A) (B) (C)

FIGURE 13

solution Consider the graph in (A). Moving from left to right, the slope of the tangent line is positive over the first
quarter of the graph, negative in the middle half and positive again over the final quarter. The derivative of this function
must therefore be negative in the middle and positive on either side. This matches the graph in (C).

Now focus on the graph in (C). The slope of the tangent line is negative over the left half and positive on the right
half. The derivative of this function therefore needs to be negative on the left and positive on the right. This description
matches the graph in (B).

We should therefore label the graph in (A) as f (x), the graph in (B) as h(x), and the graph in (C) as g(x). Then
f ′(x) = g(x) and g′(x) = h(x).

According to the peak oil theory, first proposed in 1956 by geophysicist M. Hubbert, the total amount of crude oil
Q(t) produced worldwide up to time t has a graph like that in Figure 14.

(a) Sketch the derivative Q′(t) for 1900 ≤ t ≤ 2150. What does Q′(t) represent?

(b) In which year (approximately) does Q′(t) take on its maximum value?

(c) What is L = lim
t→∞ Q(t)? And what is its interpretation?

(d) What is the value of lim
t→∞ Q′(t)?

47. Use the table of values of f (x) to determine which of (A) or (B) in Figure 15 is the graph of f ′(x). Explain.

x 0 0.5 1 1.5 2 2.5 3 3.5 4

f (x) 10 55 98 139 177 210 237 257 268

x

y

x

y

(A) (B)

FIGURE 15 Which is the graph of f ′(x)?

solution The increment between successive x values in the table is a constant 0.5 but the increment between successive
f (x) values decreases from 45 to 43 to 41 to 38 and so on. Thus the difference quotients decrease with increasing x,
suggesting that f ′(x) decreases as a function of x. Because the graph in (B) depicts a decreasing function, (B) might be
the graph of the derivative of f (x).

Let R be a variable and r a constant. Compute the derivatives:

(a)
d

dR
R (b)

d

dR
r (c)

d

dR
r2R3

49. Compute the derivatives, where c is a constant.

(a)
d

dt
ct3 (b)

d

dy
(9c2y3 − 24c) (c)

d

dz
(5z + 4cz2)

solution

(a)
d

dt
ct3 = 3ct2. (b)

d

dz
(5z + 4cz2) = 5 + 8cz. (c)

d

dy
(9c2y3 − 24c) = 27c2y2.

Find the points on the graph of f (x) = 12x − x3 where the tangent line is horizontal.
51. Find the points on the graph of y = x2 + 3x − 7 at which the slope of the tangent line is equal to 4.

solution Let y = x2 + 3x − 7. Solving dy/dx = 2x + 3 = 4 yields x = 1
2 .

Find the values of x where y = x3 and y = x2 + 5x have parallel tangent lines.
53. Determine a and b such that p(x) = x2 + ax + b satisfies p(1) = 0 and p′(1) = 4.

solution Let p(x) = x2 + ax + b satisfy p(1) = 0 and p′(1) = 4. Now, p′(x) = 2x + a. Therefore 0 = p(1) =
1 + a + b and 4 = p′(1) = 2 + a; i.e., a = 2 and b = −3.

Find all values of x such that the tangent line to y = 4x2 + 11x + 2 is steeper than the tangent line to y = x3.
55. Let f (x) = x3 − 3x + 1. Show that f ′(x) ≥ −3 for all x and that, for every m > −3, there are precisely two points
where f ′(x) = m. Indicate the position of these points and the corresponding tangent lines for one value of m in a sketch
of the graph of f (x).

solution Let P = (a, b) be a point on the graph of f (x) = x3 − 3x + 1.

• The derivative satisfies f ′(x) = 3x2 − 3 ≥ −3 since 3x2 is nonnegative.
• Suppose the slope m of the tangent line is greater than −3. Then f ′(a) = 3a2 − 3 = m, whence

a2 = m + 3

3
> 0 and thus a = ±

√
m + 3

3
.

• The two parallel tangent lines with slope 2 are shown with the graph of f (x) here.
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−2
−1

−2
2

4

1

2
x

y

Show that the tangent lines to y = 1
3x3 − x2 at x = a and at x = b are parallel if a = b or a + b = 2.

57. Compute the derivative of f (x) = x3/2 using the limit definition. Hint: Show that

f (x + h) − f (x)

h
= (x + h)3 − x3

h

(
1√

(x + h)3 +
√

x3

)

solution Once we have the difference of square roots, we multiply by the conjugate to solve the problem.

f ′(x) = lim
h→0

(x + h)3/2 − x3/2

h
= lim

h→0

√
(x + h)3 −

√
x3

h

(√
(x + h)3 +

√
x3√

(x + h)3 +
√

x3

)

= lim
h→0

(x + h)3 − x3

h

(
1√

(x + h)3 +
√

x3

)
.

The first factor of the expression in the last line is clearly the limit definition of the derivative of x3, which is 3x2. The
second factor can be evaluated, so

d

dx
x3/2 = 3x2 1

2
√

x3
= 3

2
x1/2.

Sketch the graph of a continuous function on (0, 5) that is differentiable except at x = 1 and x = 4.59. Show, using the limit definition of the derivative, that f (x) = |x2 − 4| is not differentiable at x = 2.

solution We have

f ′(2) = lim
h→0

f (2 + h) − f (2)

h
= lim

h→0

∣∣∣(2 + h)2 − 4
∣∣∣ − 0

h
= lim

h→0

∣∣∣h2 + 4h

∣∣∣
h

= lim
h→0

|h + 4| · |h|
h

As h approaches zero, h + 4 approaches 4. However, the second factor is 1 if h is positive and is −1 if h is negative. Thus

lim
h→0− |h + 4| · |h|

h
= −4, and lim

h→0+ |h + 4| · |h|
h

= 4

Since the two one-sided limits are unequal, f (x) is not differentiable at x = 2.

The average speed (in meters per second) of a gas molecule is

vavg =
√

8RT

πM

where T is the temperature (in kelvins), M is the molar mass (in kilograms per mole), and R = 8.31. Calculate
dvavg/dT at T = 300 K for oxygen, which has a molar mass of 0.032 kg/mol.

61. Biologists have observed that the pulse rate P (in beats per minute) in animals is related to body mass (in kilograms)
by the approximate formula P = 200m−1/4. This is one of many allometric scaling laws prevalent in biology. Is |dP/dm|
an increasing or decreasing function of m? Find an equation of the tangent line at the points on the graph in Figure 16
that represent goat (m = 33) and man (m = 68).

Mass (kg)

500400300200100

Cattle

Pulse
(beats/min)

200

100

Guinea pig

Goat

Man

FIGURE 16

solution dP/dm = −50m−5/4. For m > 0, |dP/dm| = |50m−5/4|. |dP/dm| → 0 as m gets larger; |dP/dm| gets
smaller as m gets bigger.

For each m = c, the equation of the tangent line to the graph of P at m is

y = P ′(c)(m − c) + P(c).

For a goat (m = 33 kg), P(33) = 83.445 beats per minute (bpm) and

dP

dm
= −50(33)−5/4 ≈ −0.63216 bpm/kg.

Hence, y = −0.63216(m − 33) + 83.445.
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For a man (m = 68 kg), we have P(68) = 69.647 bpm and

dP

dm
= −50(68)−5/4 ≈ −0.25606 bpm/kg.

Hence, the tangent line has formula y = −0.25606(m − 68) + 69.647.

Some studies suggest that kidney mass K in mammals (in kilograms) is related to body mass m (in kilograms) by
the approximate formula K = 0.007m0.85. Calculate dK/dm at m = 68. Then calculate the derivative with respect
to m of the relative kidney-to-mass ratio K/m at m = 68.

63. The Clausius–Clapeyron Law relates the vapor pressure of water P (in atmospheres) to the temperature T (in kelvins):

dP

dT
= k

P

T 2

where k is a constant. Estimate dP/dT for T = 303, 313, 323, 333, 343 using the data and the approximation

dP

dT
≈ P(T + 10) − P(T − 10)

20

T (K) 293 303 313 323 333 343 353

P (atm) 0.0278 0.0482 0.0808 0.1311 0.2067 0.3173 0.4754

Do your estimates seem to confirm the Clausius–Clapeyron Law? What is the approximate value of k?

solution Using the indicated approximation to the first derivative, we calculate

P ′(303) ≈ P(313) − P(293)

20
= 0.0808 − 0.0278

20
= 0.00265 atm/K;

P ′(313) ≈ P(323) − P(303)

20
= 0.1311 − 0.0482

20
= 0.004145 atm/K;

P ′(323) ≈ P(333) − P(313)

20
= 0.2067 − 0.0808

20
= 0.006295 atm/K;

P ′(333) ≈ P(343) − P(323)

20
= 0.3173 − 0.1311

20
= 0.00931 atm/K;

P ′(343) ≈ P(353) − P(333)

20
= 0.4754 − 0.2067

20
= 0.013435 atm/K

If the Clausius–Clapeyron law is valid, then
T 2

P

dP

dT
should remain constant as T varies. Using the data for vapor

pressure and temperature and the approximate derivative values calculated above, we find

T (K) 303 313 323 333 343

T 2

P

dP

dT
5047.59 5025.76 5009.54 4994.57 4981.45

These values are roughly constant, suggesting that the Clausius–Clapeyron law is valid, and that k ≈ 5000.

Let L be the tangent line to the hyperbola xy = 1 at x = a, where a > 0. Show that the area of the triangle
bounded by L and the coordinate axes does not depend on a.

65. In the setting of Exercise 64, show that the point of tangency is the midpoint of the segment of L lying in the first
quadrant.

solution In the previous exercise, we saw that the tangent line to the hyperbola xy = 1 or y = 1
x at x = a has

y-intercept P = (0, 2
a ) and x-intercept Q = (2a, 0). The midpoint of the line segment connecting P and Q is thus(

0 + 2a

2
,

2
a + 0

2

)
=

(
a,

1

a

)
,

which is the point of tangency.

Match functions (A)–(C) with their derivatives (I)–(III) in Figure 17.
67. Make a rough sketch of the graph of the derivative of the function in Figure 18(A).

(A) (B)

y =    x2

434321 20 1−1

3

2

1
2

x

y

x

y

FIGURE 18



June 8, 2011 LTSV SSM Second Pass

108 C H A P T E R 3 DIFFERENTIATION

solution The graph has a tangent line with negative slope approximately on the interval (1, 3.6), and has a tangent
line with a positive slope elsewhere. This implies that the derivative must be negative on the interval (1, 3.6) and positive
elsewhere. The graph may therefore look like this:

y

x
1 2 3 4

Graph the derivative of the function in Figure 18(B), omitting points where the derivative is not defined.
69. Sketch the graph of f (x) = x |x|. Then show that f ′(0) exists.

solution For x < 0, f (x) = −x2, and f ′(x) = −2x. For x > 0, f (x) = x2, and f ′(x) = 2x. At x = 0, we find

lim
h→0+

f (0 + h) − f (0)

h
= lim

h→0+
h2

h
= 0

and

lim
h→0−

f (0 + h) − f (0)

h
= lim

h→0−
−h2

h
= 0.

Because the two one-sided limits exist and are equal, it follows that f ′(0) exists and is equal to zero. Here is the graph
of f (x) = x|x|.

y

x
1 2−1−2

2

4

−4

−2

Determine the values of x at which the function in Figure 19 is: (a) discontinuous, and (b) nondifferentiable.In Exercises 71–76, find the points c (if any) such that f ′(c) does not exist.

71. f (x) = |x − 1|
solution

y

x
1

0.5

1

1.5

2

2 3−1

Here is the graph of f (x) = |x − 1|. Its derivative does not exist at x = 1. At that value of x there is a sharp corner.

f (x) = [x]73. f (x) = x2/3

solution Here is the graph of f (x) = x2/3. Its derivative does not exist at x = 0. At that value of x, there is a sharp
corner or “cusp”.

y

x
1

1

1.5

2−1−2

f (x) = x3/275. f (x) = |x2 − 1|
solution Here is the graph of f (x) =

∣∣∣x2 − 1
∣∣∣. Its derivative does not exist at x = −1 or at x = 1. At these values

of x, the graph has sharp corners.
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y

x
1

2

1

3

2−1−2

f (x) = |x − 1|2In Exercises 77–82, zoom in on a plot of f (x) at the point (a, f (a)) and state whether or not f (x) appears to be
differentiable at x = a. If it is nondifferentiable, state whether the tangent line appears to be vertical or does not exist.

77. f (x) = (x − 1)|x|, a = 0

solution The graph of f (x) = (x − 1)|x| for x near 0 is shown below. Because the graph has a sharp corner at x = 0,
it appears that f is not differentiable at x = 0. Moreover, the tangent line does not exist at this point.

y

x
0.1 0.2−0.1−0.2

−0.1

−0.2

−0.3

f (x) = (x − 3)5/3, a = 3
79. f (x) = (x − 3)1/3, a = 3

solution The graph of f (x) = (x − 3)1/3 for x near 3 is shown below. From this graph, it appears that f is not
differentiable at x = 3. Moreover, the tangent line appears to be vertical.

3.05 3.12.95 32.9

f (x) = sin(x1/3), a = 0
81. f (x) = | sin x|, a = 0

solution The graph of f (x) = | sin x| for x near 0 is shown below. Because the graph has a sharp corner at x = 0, it
appears that f is not differentiable at x = 0. Moreover, the tangent line does not exist at this point.

y

x
0.05

0.08

0.04

0.1

0.1−0.05−0.1

f (x) = |x − sin x|, a = 083. Plot the derivative f ′(x) of f (x) = 2x3 − 10x−1 for x > 0 (set the bounds of the viewing box appropriately)
and observe that f ′(x) > 0. What does the positivity of f ′(x) tell us about the graph of f (x) itself? Plot f (x) and confirm
this conclusion.

solution Let f (x) = 2x3 − 10x−1. Then f ′(x) = 6x2 + 10x−2. The graph of f ′(x) is shown in the figure below at
the left and it is clear that f ′(x) > 0 for all x > 0. The positivity of f ′(x) tells us that the graph of f (x) is increasing for
x > 0. This is confirmed in the figure below at the right, which shows the graph of f (x).

8642
x

y

100

200

300

400

8642
x

y

200

−200

400

600

800
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Find the coordinates of the point P in Figure 20 at which the tangent line passes through (5, 0).Exercises 85–88 refer to Figure 21. Length QR is called the subtangent at P , and length RT is called the subnormal.

x

y

P = (x, f (x))

TR

y = f (x)

Q

Tangent line

FIGURE 21

85. Calculate the subtangent of

f (x) = x2 + 3x at x = 2

solution Let f (x) = x2 + 3x. Then f ′(x) = 2x + 3, and the equation of the tangent line at x = 2 is

y = f ′(2)(x − 2) + f (2) = 7(x − 2) + 10 = 7x − 4.

This line intersects the x-axis at x = 4
7 . Thus Q has coordinates ( 4

7 , 0), R has coordinates (2, 0) and the subtangent is

2 − 4

7
= 10

7
.

Calculate the subnormal of f (x) = x2/3 at x = 8.
87. Prove in general that the subnormal at P is |f ′(x)f (x)|.
solution The slope of the tangent line at P is f ′(x). The slope of the line normal to the graph at P is then −1/f ′(x),
and the normal line intersects the x-axis at the point T with coordinates (x + f (x)f ′(x), 0). The point R has coordinates
(x, 0), so the subnormal is

|x + f (x)f ′(x) − x| = |f (x)f ′(x)|.

Show that PQ has length |f (x)|
√

1 + f ′(x)−2.
89. Prove the following theorem ofApollonius of Perga (the Greek mathematician born in 262 bce who gave the parabola,
ellipse, and hyperbola their names): The subtangent of the parabola y = x2 at x = a is equal to a/2.

solution Let f (x) = x2. The tangent line to f at x = a is

y = f ′(a)(x − a) + f (a) = 2a(x − a) + a2 = 2ax − a2.

The x-intercept of this line (where y = 0) is a
2 as claimed.

y

y = x2

(a, a2)

x

(–, 0)a
2

Show that the subtangent to y = x3 at x = a is equal to 1
3a.91. Formulate and prove a generalization of Exercise 90 for y = xn.

solution Let f (x) = xn. Then f ′(x) = nxn−1, and the equation of the tangent line t x = a is

y = f ′(a)(x − a) + f (a) = nan−1(x − a) + an = nan−1x − (n − 1)an.

This line intersects the x-axis at x = (n − 1)a/n. Thus, Q has coordinates ((n − 1)a/n, 0), R has coordinates (a, 0) and
the subtangent is

a − n − 1

n
a = 1

n
a.
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Further Insights and Challenges

Two small arches have the shape of parabolas. The first is given by f (x) = 1 − x2 for −1 ≤ x ≤ 1 and the second
by g(x) = 4 − (x − 4)2 for 2 ≤ x ≤ 6. A board is placed on top of these arches so it rests on both (Figure 22). What
is the slope of the board? Hint: Find the tangent line to y = f (x) that intersects y = g(x) in exactly one point.

FIGURE 22

93. A vase is formed by rotating y = x2 around the y-axis. If we drop in a marble, it will either touch the bottom point
of the vase or be suspended above the bottom by touching the sides (Figure 23). How small must the marble be to touch
the bottom?

FIGURE 23

solution Suppose a circle is tangent to the parabola y = x2 at the point (t, t2). The slope of the parabola at this point

is 2t , so the slope of the radius of the circle at this point is − 1
2t

(since it is perpendicular to the tangent line of the circle).

Thus the center of the circle must be where the line given by y = − 1
2t

(x − t) + t2 crosses the y-axis. We can find the

y-coordinate by setting x = 0: we get y = 1
2 + t2. Thus, the radius extends from (0, 1

2 + t2) to (t, t2) and

r =
√(

1

2
+ t2 − t2

)2
+ t2 =

√
1

4
+ t2.

This radius is greater than 1
2 whenever t > 0; so, if a marble has radius > 1/2 it sits on the edge of the vase, but if it has

radius ≤ 1/2 it rolls all the way to the bottom.

Let f (x) be a differentiable function, and set g(x) = f (x + c), where c is a constant. Use the limit definition to
show that g′(x) = f ′(x + c). Explain this result graphically, recalling that the graph of g(x) is obtained by shifting
the graph of f (x) c units to the left (if c > 0) or right (if c < 0).

95. Negative Exponents Let n be a whole number. Use the Power Rule for xn to calculate the derivative of f (x) = x−n

by showing that

f (x + h) − f (x)

h
= −1

xn(x + h)n

(x + h)n − xn

h

solution Let f (x) = x−n where n is a positive integer.

• The difference quotient for f is

f (x + h) − f (x)

h
= (x + h)−n − x−n

h
=

1
(x+h)n

− 1
xn

h
=

xn−(x+h)n

xn(x+h)n

h

= −1

xn(x + h)n

(x + h)n − xn

h
.

• Therefore,

f ′(x) = lim
h→0

f (x + h) − f (x)

h
= lim

h→0

−1

xn(x + h)n

(x + h)n − xn

h

= lim
h→0

−1

xn(x + h)n
lim
h→0

(x + h)n − xn

h
= −x−2n d

dx

(
xn

)
.

• From above, we continue: f ′(x) = −x−2n d

dx

(
xn

) = −x−2n · nxn−1 = −nx−n−1. Since n is a positive integer,

k = −n is a negative integer and we have
d

dx

(
xk

)
= d

dx

(
x−n

) = −nx−n−1 = kxk−1; i.e.
d

dx

(
xk

)
= kxk−1

for negative integers k.

Verify the Power Rule for the exponent 1/n, where n is a positive integer, using the following trick: Rewrite the
difference quotient for y = x1/n at x = b in terms of u = (b + h)1/n and a = b1/n.

97. Infinitely Rapid Oscillations Define

f (x) =

⎧⎪⎨
⎪⎩

x sin
1

x
x �= 0

0 x = 0

Show that f (x) is continuous at x = 0 but f ′(0) does not exist (see Figure 22).
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solution Let f (x) =
{

x sin
(

1
x

)
if x �= 0

0 if x = 0
. As x → 0,

|f (x) − f (0)| =
∣∣∣∣x sin

(
1

x

)
− 0

∣∣∣∣ = |x|
∣∣∣∣sin

(
1

x

)∣∣∣∣ → 0

since the values of the sine lie between −1 and 1. Hence, by the Squeeze Theorem, lim
x→0

f (x) = f (0) and thus f is

continuous at x = 0.
As x → 0, the difference quotient at x = 0,

f (x) − f (0)

x − 0
=

x sin
(

1
x

)
− 0

x − 0
= sin

(
1

x

)

does not converge to a limit since it oscillates infinitely through every value between −1 and 1. Accordingly, f ′(0) does
not exist.

For which values of c does the equation x2 + 4 = cx have a unique solution? Hint: Draw a graph.

3.3 Product and Quotient Rules

Preliminary Questions
1. Are the following statements true or false? If false, state the correct version.

(a) fg denotes the function whose value at x is f (g(x)).
(b) f/g denotes the function whose value at x is f (x)/g(x).
(c) The derivative of the product is the product of the derivatives.

(d)
d

dx
(fg)

∣∣∣∣
x=4

= f (4)g′(4) − g(4)f ′(4)

(e)
d

dx
(fg)

∣∣∣∣
x=0

= f (0)g′(0) + g(0)f ′(0)

solution
(a) False. The notation fg denotes the function whose value at x is f (x)g(x).
(b) True.
(c) False. The derivative of a product fg is f ′(x)g(x) + f (x)g′(x).

(d) False.
d

dx
(fg)

∣∣∣∣
x=4

= f (4)g′(4) + g(4)f ′(4).

(e) True.

2. Find (f/g)′(1) if f (1) = f ′(1) = g(1) = 2 and g′(1) = 4.

solution
d

dx
(f/g)

∣∣
x=1 = [g(1)f ′(1) − f (1)g′(1)]/g(1)2 = [2(2) − 2(4)]/22 = −1.

3. Find g(1) if f (1) = 0, f ′(1) = 2, and (fg)′(1) = 10.

solution (fg)′(1) = f (1)g′(1) + f ′(1)g(1), so 10 = 0 · g′(1) + 2g(1) and g(1) = 5.

Exercises
In Exercises 1–6, use the Product Rule to calculate the derivative.

1. f (x) = x3(2x2 + 1)

solution Let f (x) = x3(2x2 + 1). Then

f ′(x) = x3 d

dx
(2x2 + 1) + (2x2 + 1)

d

dx
x3 = x3(4x) + (2x2 + 1)(3x2) = 10x4 + 3x2.

f (x) = (3x − 5)(2x2 − 3)
3. f (x) = √

x(1 − x3)

solution Let f (x) = √
x(1 − x3). Then

f ′(x) = √
x

d

dx
(1 − x3) + (1 − x3)

d

dx

√
x = √

x(−3x2) + (1 − x3)

(
1

2
x−1/2

)

= −3x5/2 + 1

2
x−1/2 − 1

2
x5/2 = −7

2
x5/2 + 1

2x1/2



June 8, 2011 LTSV SSM Second Pass

S E C T I O N 3.3 Product and Quotient Rules 113

f (x) = (3x4 + 2x6)(x − 2)5.
dh

ds

∣∣∣∣
s=4

, h(s) = (s−1/2 + 2s)(7 − s−1)

solution Let h(s) = (s−1/2 + 2s)(7 − s−1). Then

dh

ds
= (s−1/2 + 2s)

d

dx
(7 − s−1) + (7 − s−1)

d

ds

(
s−1/2 + 2s

)

= (s−1/2 + 2s)(s−2) + (7 − s−1)

(
−1

2
s−3/2 + 2

)
= −7

2
s−3/2 + 3

2
s−5/2 + 14.

Therefore,

dh

ds

∣∣∣∣
s=4

= −7

2
(4)−3/2 + 3

2
(4)−5/2 + 14 = 871

64
.

y = (t − 8t−1)(t + t2)
In Exercises 7–12, use the Quotient Rule to calculate the derivative.

7. f (x) = x

x − 2
solution Let f (x) = x

x−2 . Then

f ′(x) = (x − 2) d
dx

x − x d
dx

(x − 2)

(x − 2)2
= (x − 2) − x

(x − 2)2
= −2

(x − 2)2
.

f (x) = x + 4

x2 + x + 1
9.

dg

dt

∣∣∣∣
t=−2

, g(t) = t2 + 1

t2 − 1

solution Let g(t) = t2 + 1

t2 − 1
. Then

dg

dt
= (t2 − 1) d

dt
(t2 + 1) − (t2 + 1) d

dt
(t2 − 1)

(t2 − 1)2
= (t2 − 1)(2t) − (t2 + 1)(2t)

(t2 − 1)2
= − 4t

(t2 − 1)2
.

Therefore,

dg

dt

∣∣∣∣
t=−2

= − 4(−2)

((−2)2 − 1)2
= 8

9
.

dw

dz

∣∣∣∣
z=9

, w = z2
√

z + z

11. g(x) = 1

1 + x3/2

solution

g′(x) = (1 + x3/2) d
dt

(1) − 1 d
dt

(1 + x3/2)

(1 + x3/2)2
= −

3
2x1/2

(1 + x3/2)2
= − 3

√
x

2(1 + x3/2)2

h(s) = s3/2

s2 + 1

In Exercises 13–16, calculate the derivative in two ways. First use the Product or Quotient Rule; then rewrite the function
algebraically and apply the Power Rule directly.

13. f (t) = (2t + 1)(t2 − 2)

solution Let f (t) = (2t + 1)(t2 − 2). Then, using the Product Rule,

f ′(t) = (2t + 1)(2t) + (t2 − 2)(2) = 6t2 + 2t − 4.

Multiplying out first, we find f (t) = 2t3 + t2 − 4t − 2. Therefore, f ′(t) = 6t2 + 2t − 4.

f (x) = x2(3 + x−1)15. h(t) = t2 − 1

t − 1

solution Let h(t) = t2−1
t−1 . Using the quotient rule,

f ′(t) = (t − 1)(2t) − (t2 − 1)(1)

(t − 1)2
= t2 − 2t + 1

(t − 1)2
= 1

for t �= 1. Simplifying first, we find for t �= 1,

h(t) = (t − 1)(t + 1)

(t − 1)
= t + 1.

Hence h′(t) = 1 for t �= 1.
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g(x) = x3 + 2x2 + 3x−1

x

In Exercises 17–38, calculate the derivative.

17. f (x) = (x3 + 5)(x3 + x + 1)

solution Let f (x) = (x3 + 5)(x3 + x + 1). Then

f ′(x) = (x3 + 5)(3x2 + 1) + (x3 + x + 1)(3x2) = 6x5 + 4x3 + 18x2 + 5.

f (x) =
(

1
x − x2

)
(x3 + 1)19.

dy

dx

∣∣∣∣
x=3

, y = 1

x + 10

solution Let y = 1
x+10 . Using the quotient rule:

dy

dx
= (x + 10)(0) − 1(1)

(x + 10)2
= − 1

(x + 10)2
.

Therefore,

dy

dx

∣∣∣∣
x=3

= − 1

(3 + 10)2
= − 1

169
.

dz

dx

∣∣∣∣
x=−2

, z = x

3x2 + 1

21. f (x) = (
√

x + 1)(
√

x − 1)

solution Let f (x) = (
√

x + 1)(
√

x − 1). Multiplying through first yields f (x) = x − 1 for x ≥ 0. Therefore,

f ′(x) = 1 for x ≥ 0. If we carry out the product rule on f (x) = (x1/2 + 1)(x1/2 − 1), we get

f ′(x) = (x1/2 + 1)

(
1

2
(x−1/2)

)
+ (x1/2 − 1)

(
1

2
x−1/2

)
= 1

2
+ 1

2
x−1/2 + 1

2
− 1

2
x−1/2 = 1.

f (x) = 9x5/2 − 2

x

23.
dy

dx

∣∣∣∣
x=2

, y = x4 − 4

x2 − 5

solution Let y = x4 − 4

x2 − 5
. Then

dy

dx
=

(
x2 − 5

) (
4x3

)
−

(
x4 − 4

)
(2x)(

x2 − 5
)2

= 2x5 − 20x3 + 8x(
x2 − 5

)2
.

Therefore,

dy

dx

∣∣∣∣
x=2

= 2(2)5 − 20(2)3 + 8(2)

(22 − 5)2
= −80.

f (x) = x4 + x−1

x + 1

25.
dz

dx

∣∣∣∣
x=1

, z = 1

x3 + 1

solution Let z = 1
x3+1

. Using the quotient rule:

dz

dx
= (x3 + 1)(0) − 1(3x2)

(x3 + 1)2
= − 3x2

(x3 + 1)2
.

Therefore,

dz

dx

∣∣∣∣
x=1

= − 3(1)2

(13 + 1)2
= −3

4
.

f (x) = 3x3 − x2 + 2√
x

27. h(t) = t

(t + 1)(t2 + 1)

solution Let h(t) = t

(t + 1)(t2 + 1)
= t

t3 + t2 + t + 1
. Then

h′(t) =
(
t3 + t2 + t + 1

)
(1) − t

(
3t2 + 2t + 1

)
(
t3 + t2 + t + 1

)2
= −2t3 − t2 + 1(

t3 + t2 + t + 1
)2

.

f (x) = x3/2(
2x4 − 3x + x−1/2)29. f (t) = 31/2 · 51/2

solution Let f (t) = √
3
√

5. Then f ′(t) = 0, since f (t) is a constant function!
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h(x) = π2(x − 1)
31. f (x) = (x + 3)(x − 1)(x − 5)

solution Let f (x) = (x + 3)(x − 1)(x − 5). Using the Product Rule inside the Product Rule with a first factor of
(x + 3) and a second factor of (x − 1)(x − 5), we find

f ′(x) = (x + 3) ((x − 1)(1) + (x − 5)(1)) + (x − 1)(x − 5)(1) = 3x2 − 6x − 13.

Alternatively,

f (x) = (x + 3)
(
x2 − 6x + 5

)
= x3 − 3x2 − 13x + 15.

Therefore, f ′(x) = 3x2 − 6x − 13.

h(s) = s(s + 4)(s2 + 1)33. f (x) = x3/2(x2 + 1)

x + 1

solution Using the quotient rule, and then using the product rule to differentiate the numerator, we find

f ′(x) =
(x + 1)

(
3
2x1/2(x2 + 1) + x3/2(2x)

)
− x3/2(x2 + 1)(1)

(x + 1)2

= 5x7/2 + 7x5/2 + x3/2 + 3x1/2

2(x + 1)2

g(z) = (z − 2)(z2 + 1)

z

35. g(z) =
(

z2 − 4

z − 1

) (
z2 − 1

z + 2

)
Hint: Simplify first.

solution Let

g(z) =
(

z2 − 4

z − 1

) (
z2 − 1

z + 2

)
=

(
(z + 2)(z − 2)

z − 1

) (
(z + 1)(z − 1)

z + 2

)
= (z − 2)(z + 1)

for z �= −2 and z �= 1. Then,

g′(z) = (z + 1)(1) + (z − 2)(1) = 2z − 1.

d

dx

(
(ax + b)(abx2 + 1)

)
(a, b constants)

37.
d

dt

(
xt − 4

t2 − x

)
(x constant)

solution Let f (t) = xt−4
t2−x

. Using the quotient rule:

f ′(t) = (t2 − x)(x) − (xt − 4)(2t)

(t2 − x)2
= xt2 − x2 − 2xt2 + 8t

(t2 − x)2
= −xt2 + 8t − x2

(t2 − x)2
.

d

dx

(
ax + b

cx + d

)
(a, b, c, d constants)

In Exercises 39–42, calculate the derivative using the values:

f (4) f ′(4) g(4) g′(4)

10 −2 5 −1

39. (fg)′(4) and (f/g)′(4).

solution Let h = fg and H = f/g. Then h′ = fg′ + gf ′ and H ′ = gf ′−fg′
g2 . Finally,

h′(4) = f (4)g′(4) + g(4)f ′(4) = (10)(−1) + (5)(−2) = −20,

and

H ′(4) = g(4)f ′(4) − f (4)g′(4)

(g(4))2
= (5)(−2) − (10)(−1)

(5)2
= 0.

F ′(4), where F(x) = x2f (x).
41. G′(4), where G(x) = g(x)2.

solution Let G(x) = g(x)2 = g(x)g(x). Then G′(x) = g(x)g′(x) + g(x)g′(x) = 2g(x)g′(x), and

G′(4) = 2g(4)g′(4) = 2(5)(−1) = −10.
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H ′(4), where H(x) = x

g(x)f (x)
.

43. Calculate F ′(0), where

F(x) = x9 + x8 + 4x5 − 7x

x4 − 3x2 + 2x + 1

Hint: Do not calculate F ′(x). Instead, write F(x) = f (x)/g(x) and express F ′(0) directly in terms of f (0), f ′(0), g(0),

g′(0).

solution Taking the hint, let

f (x) = x9 + x8 + 4x5 − 7x

and let

g(x) = x4 − 3x2 + 2x + 1.

Then F(x) = f (x)
g(x)

. Now,

f ′(x) = 9x8 + 8x7 + 20x4 − 7 and g′(x) = 4x3 − 6x + 2.

Moreover, f (0) = 0, f ′(0) = −7, g(0) = 1, and g′(0) = 2.
Using the quotient rule:

F ′(0) = g(0)f ′(0) − f (0)g′(0)

(g(0))2
= −7 − 0

1
= −7.

Proceed as in Exercise 43 to calculate F ′(0), where

F(x) = (
1 + x + x4/3 + x5/3) 3x5 + 5x4 + 5x + 1

8x9 − 7x4 + 1

45. Verify the formula (x3)′ = 3x2 by writing x3 = x · x · x and applying the Product Rule.

solution Using the product rule, we have

(x3)′ = ((x · x) · x)′ = (x · x) · x′ + (x · x)′ · x = (x · x) + (x · x′ + x′ · x) · x = (x · x) + (2x) · x = 3x2

Plot the derivative of f (x) = x/(x2 + 1) over [−4, 4]. Use the graph to determine the intervals on which
f ′(x) > 0 and f ′(x) < 0. Then plot f (x) and describe how the sign of f ′(x) is reflected in the graph of f (x).

47. Plot f (x) = x/(x2 − 1) (in a suitably bounded viewing box). Use the plot to determine whether f ′(x) is
positive or negative on its domain {x : x �= ±1}. Then compute f ′(x) and confirm your conclusion algebraically.

solution Let f (x) = x

x2 − 1
. The graph of f (x) is shown below. From this plot, we see that f (x) is decreasing on

its domain {x : x �= ±1}. Consequently, f ′(x) must be negative. Using the quotient rule, we find

f ′(x) = (x2 − 1)(1) − x(2x)

(x2 − 1)2
= − x2 + 1

(x2 − 1)2
,

which is negative for all x �= ±1.

4321
x

y

5

−5

−1−2−3−4

Let P = V 2R/(R + r)2 as in Example 7. Calculate dP/dr, assuming that r is variable and R is constant.
49. Find all values of a such that the tangent line to

f (x) = x − 1

x + 8
at x = a

passes through the origin (Figure 4).

−8 −4 4 8

y

x

FIGURE 4
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solution The slope of the tangent line is given by f ′(x), which is

f ′(x) = (x + 8)(1) − (x − 1)(1)

(x + 8)2
= 9

(x + 8)2

When x = a, then, we have f (a) = a − 1

a + 8
and f ′(a) = 9

(a+8)2 , so that the equation of the tangent line is

y = f ′(a)(x − a) + f (a) = 9

(a + 8)2
(x − a) + a − 1

a + 8
= 2

(a + 8)2
x + −9a + (a − 1)(a + 8)

(a + 8)2

= 2

(a + 8)2
x + a2 − 2a − 8

(a + 8)2

The tangent line passes through the origin when its constant term is zero, i.e. when a2 − 2a − 8 = 0, or for a = 4, −2.

Current I (amperes), voltage V (volts), and resistance R (ohms) in a circuit are related by Ohm’s Law, I = V/R.

(a) Calculate
dI

dR

∣∣∣∣
R=6

if V is constant with value V = 24.

(b) Calculate
dV

dR

∣∣∣∣
R=6

if I is constant with value I = 4.

51. The revenue per month earned by the Couture clothing chain at time t is R(t) = N(t)S(t), where N(t) is the number
of stores and S(t) is average revenue per store per month. Couture embarks on a two-part campaign: (A) to build new
stores at a rate of 5 stores per month, and (B) to use advertising to increase average revenue per store at a rate of $10,000
per month. Assume that N(0) = 50 and S(0) = $150,000.

(a) Show that total revenue will increase at the rate

dR

dt
= 5S(t) + 10,000N(t)

Note that the two terms in the Product Rule correspond to the separate effects of increasing the number of stores on the
one hand, and the average revenue per store on the other.

(b) Calculate
dR

dt

∣∣∣∣
t=0

.

(c) If Couture can implement only one leg (A or B) of its expansion at t = 0, which choice will grow revenue most
rapidly?

solution
(a) Given R(t) = N(t)S(t), it follows that

dR

dt
= N(t)S′(t) + S(t)N ′(t).

We are told that N ′(t) = 5 stores per month and S′(t) = 10,000 dollars per month. Therefore,

dR

dt
= 5S(t) + 10,000N(t).

(b) Using part (a) and the given values of N(0) and S(0), we find

dR

dt

∣∣∣∣
t=0

= 5(150,000) + 10,000(50) = 1,250,000.

(c) From part (b), we see that of the two terms contributing to total revenue growth, the term 5S(0) is larger than the
term 10,000N(0). Thus, if only one leg of the campaign can be implemented, it should be part A: increase the number of
stores by 5 per month.

The tip speed ratio of a turbine (Figure 5) is the ratio R = T/W , where T is the speed of the tip of a blade and
W is the speed of the wind. (Engineers have found empirically that a turbine with n blades extracts maximum power
from the wind when R = 2π/n.) Calculate dR/dt (t in minutes) if W = 35 km/h and W decreases at a rate of 4
km/h per minute, and the tip speed has constant value T = 150 km/h.

53. The curve y = 1/(x2 + 1) is called the witch of Agnesi (Figure 6) after the Italian mathematician Maria Agnesi
(1718–1799), who wrote one of the first books on calculus. This strange name is the result of a mistranslation of the Italian
word la versiera, meaning “that which turns.” Find equations of the tangent lines at x = ±1.

321−2−3 −1

1

x

y

FIGURE 6 The witch of Agnesi.

solution Let f (x) = 1

x2 + 1
. Then f ′(x) = (x2 + 1)(0) − 1(2x)

(x2 + 1)2
= − 2x(

x2 + 1
)2

.

• At x = −1, the tangent line is

y = f ′(−1)(x + 1) + f (−1) = 1

2
(x + 1) + 1

2
= 1

2
x + 1.
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• At x = 1, the tangent line is

y = f ′(1)(x − 1) + f (1) = −1

2
(x − 1) + 1

2
= −1

2
x + 1.

Let f (x) = g(x) = x. Show that (f/g)′ �= f ′/g′.55. Use the Product Rule to show that (f 2)′ = 2ff ′.

solution Let g = f 2 = ff . Then g′ =
(
f 2

)′ = (ff )′ = ff ′ + ff ′ = 2ff ′.

Show that (f 3)′ = 3f 2f ′.Further Insights and Challenges
57. Let f , g, h be differentiable functions. Show that (fgh)′(x) is equal to

f (x)g(x)h′(x) + f (x)g′(x)h(x) + f ′(x)g(x)h(x)

Hint: Write fgh as f (gh).

solution Let p = fgh. Then

p′ = (fgh)′ = f
(
gh′ + hg′) + ghf ′ = f ′gh + fg′h + fgh′.

Prove the Quotient Rule using the limit definition of the derivative.
59. Derivative of the Reciprocal Use the limit definition to prove

d

dx

(
1

f (x)

)
= − f ′(x)

f 2(x)
7

Hint: Show that the difference quotient for 1/f (x) is equal to

f (x) − f (x + h)

hf (x)f (x + h)

solution Let g(x) = 1
f (x)

. We then compute the derivative of g(x) using the difference quotient:

g′(x) = lim
h→0

g(x + h) − g(x)

h
= lim

h→0

1

h

(
1

f (x + h)
− 1

f (x)

)
= lim

h→0

1

h

(
f (x) − f (x + h)

f (x)f (x + h)

)

= − lim
h→0

(
f (x + h) − f (x)

h

) (
1

f (x)f (x + h)

)
.

We can apply the rule of products for limits. The first parenthetical expression is the difference quotient definition of

f ′(x). The second can be evaluated at h = 0 to give 1
(f (x))2 . Hence

g′(x) = d

dx

(
1

f (x)

)
= − f ′(x)

f 2(x)
.

Prove the Quotient Rule using Eq. (7) and the Product Rule.
61. Use the limit definition of the derivative to prove the following special case of the Product Rule:

d

dx
(xf (x)) = xf ′(x) + f (x)

solution First note that because f (x) is differentiable, it is also continuous. It follows that

lim
h→0

f (x + h) = f (x).

Now we tackle the derivative:

d

dx
(xf (x)) = lim

h→0

(x + h)f (x + h) − f (x)

h
= lim

h→0

(
x

f (x + h) − f (x)

h
+ f (x + h)

)

= x lim
h→0

f (x + h) − f (x)

h
+ lim

h→0
f (x + h)

= xf ′(x) + f (x).

Carry out Maria Agnesi’s proof of the Quotient Rule from her book on calculus, published in 1748: Assume that
f , g, and h = f/g are differentiable. Compute the derivative of hg = f using the Product Rule, and solve for h′.

63. The Power Rule Revisited If you are familiar with proof by induction, use induction to prove the Power Rule for

all whole numbers n. Show that the Power Rule holds for n = 1; then write xn as x · xn−1 and use the Product Rule.

solution Let k be a positive integer. If k = 1, then xk = x. Note that

d

dx

(
x1

)
= d

dx
(x) = 1 = 1x0.
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Hence the Power Rule holds for k = 1. Assume it holds for k = n where n ≥ 2. Then for k = n + 1, we have

d

dx

(
xk

)
= d

dx

(
xn+1

)
= d

dx

(
x · xn

) = x
d

dx

(
xn

) + xn d

dx
(x)

= x · nxn−1 + xn · 1 = (n + 1)xn = kxk−1

Accordingly, the Power Rule holds for all positive integers by induction.

Exercises 64 and 65: A basic fact of algebra states that c is a root of a polynomial f (x) if and only if f (x) = (x − c)g(x)

for some polynomial g(x). We say that c is a multiple root if f (x) = (x − c)2h(x), where h(x) is a polynomial.

Show that c is a multiple root of f (x) if and only if c is a root of both f (x) and f ′(x).
65. Use Exercise 64 to determine whether c = −1 is a multiple root:

(a) x5 + 2x4 − 4x3 − 8x2 − x + 2

(b) x4 + x3 − 5x2 − 3x + 2

solution

(a) To show that −1 is a multiple root of

f (x) = x5 + 2x4 − 4x3 − 8x2 − x + 2,

it suffices to check that f (−1) = f ′(−1) = 0. We have f (−1) = −1 + 2 + 4 − 8 + 1 + 2 = 0 and

f ′(x) = 5x4 + 8x3 − 12x2 − 16x − 1

f ′(−1) = 5 − 8 − 12 + 16 − 1 = 0

(b) Let f (x) = x4 + x3 − 5x2 − 3x + 2. Then f ′(x) = 4x3 + 3x2 − 10x − 3. Because

f (−1) = 1 − 1 − 5 + 3 + 2 = 0

but

f ′(−1) = −4 + 3 + 10 − 3 = 6 �= 0,

it follows that x = −1 is a root of f , but not a multiple root.

Figure 7 is the graph of a polynomial with roots at A, B, and C. Which of these is a multiple root? Explain your
reasoning using Exercise 64.

3.4 Rates of Change

Preliminary Questions
1. Which units might be used for each rate of change?

(a) Pressure (in atmospheres) in a water tank with respect to depth

(b) The rate of a chemical reaction (change in concentration with respect to time with concentration in moles per liter)

solution

(a) The rate of change of pressure with respect to depth might be measured in atmospheres/meter.

(b) The reaction rate of a chemical reaction might be measured in moles/(liter·hour).

2. Two trains travel from New Orleans to Memphis in 4 hours. The first train travels at a constant velocity of 90 mph,
but the velocity of the second train varies. What was the second train’s average velocity during the trip?

solution Since both trains travel the same distance in the same amount of time, they have the same average velocity:
90 mph.

3. Estimate f (26), assuming that f (25) = 43, f ′(25) = 0.75.

solution f (x) ≈ f (25) + f ′(25)(x − 25), so f (26) ≈ 43 + 0.75(26 − 25) = 43.75.

4. The population P(t) of Freedonia in 2009 was P(2009) = 5 million.

(a) What is the meaning of P ′(2009)?

(b) Estimate P(2010) if P ′(2009) = 0.2.

solution

(a) Because P(t) measures the population of Freedonia as a function of time, the derivative P ′(2009) measures the rate
of change of the population of Freedonia in the year 2009.

(b) P(2010) ≈ P(2009) + P ′(2010). Thus, if P ′(2009) = 0.2, then P(2009) ≈ 5.2 million.
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Exercises
In Exercises 1–8, find the rate of change.

1. Area of a square with respect to its side s when s = 5.

solution Let the area be A = f (s) = s2. Then the rate of change of A with respect to s is d/ds(s2) = 2s. When
s = 5, the area changes at a rate of 10 square units per unit increase. (Draw a 5 × 5 square on graph paper and trace the
area added by increasing each side length by 1, excluding the corner, to see what this means.)

Volume of a cube with respect to its side s when s = 5.
3. Cube root 3√x with respect to x when x = 1, 8, 27.

solution Let f (x) = 3√x. Writing f (x) = x1/3, we see the rate of change of f (x) with respect to x is given by

f ′(x) = 1
3x−2/3. The requested rates of change are given in the table that follows:

c ROC of f (x) with respect to x at x = c.

1 f ′(1) = 1
3 (1) = 1

3

8 f ′(8) = 1
3 (8−2/3) = 1

3 ( 1
4 ) = 1

12

27 f ′(27) = 1
3 (27−2/3) = 1

3 ( 1
9 ) = 1

27

The reciprocal 1/x with respect to x when x = 1, 2, 3.
5. The diameter of a circle with respect to radius.

solution The relationship between the diameter d of a circle and its radius r is d = 2r . The rate of change of the
diameter with respect to the radius is then d ′ = 2.

Surface area A of a sphere with respect to radius r (A = 4πr2).
7. Volume V of a cylinder with respect to radius if the height is equal to the radius.

solution The volume of the cylinder is V = πr2h = πr3. Thus dV/dr = 3πr2.

Speed of sound v (in m/s) with respect to air temperature T (in kelvins), where v = 20
√

T .In Exercises 9–11, refer to Figure 10, the graph of distance s(t) from the origin as a function of time for a car trip.

t (h)
3.02.52.01.51.00.5

150

100

50

Distance (km)

FIGURE 10 Distance from the origin versus time for a car trip.

9. Find the average velocity over each interval.

(a) [0, 0.5] (b) [0.5, 1] (c) [1, 1.5] (d) [1, 2]
solution
(a) The average velocity over the interval [0, 0.5] is

50 − 0

0.5 − 0
= 100 km/hour.

(b) The average velocity over the interval [0.5, 1] is

100 − 50

1 − 0.5
= 100 km/hour.

(c) The average velocity over the interval [1, 1.5] is

100 − 100

1.5 − 1
= 0 km/hour.

(d) The average velocity over the interval [1, 2] is

50 − 100

2 − 1
= −50 km/hour.

At what time is velocity at a maximum?
11. Match the descriptions (i)–(iii) with the intervals (a)–(c).

(i) Velocity increasing
(ii) Velocity decreasing

(iii) Velocity negative

(a) [0, 0.5]
(b) [2.5, 3]
(c) [1.5, 2]
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solution

(a) (i) : The distance curve is increasing, and is also bending upward, so that distance is increasing at an increasing rate.

(b) (ii) : Over the interval [2.5, 3], the distance curve is flattening, showing that the car is slowing down; that is, the
velocity is decreasing.

(c) (iii) : The distance curve is decreasing, so the tangent line has negative slope; this means the velocity is negative.

Use the data from Table 1 in Example 1 to calculate the average rate of change of Martian temperature T with
respect to time t over the interval from 8:36 am to 9:34 am.

13. Use Figure 3 from Example 1 to estimate the instantaneous rate of change of Martian temperature with respect to
time (in degrees Celsius per hour) at t = 4 am.

solution The segment of the temperature graph around t = 4 am appears to be a straight line passing through roughly
(1:36, −70) and (4:48, −75). The instantaneous rate of change of Martian temperature with respect to time at t = 4 am
is therefore approximately

dT

dt
= −75 − (−70)

3.2
= −1.5625◦C/hour.

The temperature (in ◦C) of an object at time t (in minutes) is T (t) = 3
8 t2 − 15t + 180 for 0 ≤ t ≤ 20. At what

rate is the object cooling at t = 10? (Give correct units.)

15. The velocity (in cm/s) of blood molecules flowing through a capillary of radius 0.008 cm is v = 6.4 × 10−8 − 0.001r2,
where r is the distance from the molecule to the center of the capillary. Find the rate of change of velocity with respect
to r when r = 0.004 cm.

solution The rate of change of the velocity of the blood molecules is v′(r) = −0.002r . When r = 0.004 cm, this rate

is −8 × 10−6 cm/s.

Figure 11 displays the voltage V across a capacitor as a function of time while the capacitor is being charged.
Estimate the rate of change of voltage at t = 20 s. Indicate the values in your calculation and include proper units.
Does voltage change more quickly or more slowly as time goes on? Explain in terms of tangent lines.

17. Use Figure 12 to estimate dT /dh at h = 30 and 70, where T is atmospheric temperature (in degrees Celsius) and h

is altitude (in kilometers). Where is dT /dh equal to zero?
T
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FIGURE 12 Atmospheric temperature versus altitude.

solution At h = 30 km, the graph of atmospheric temperature appears to be linear passing through the points (23, −50)

and (40, 0). The slope of this segment of the graph is then

0 − (−50)

40 − 23
= 50

17
= 2.94;

so

dT

dh

∣∣∣∣
h=30

≈ 2.94◦C/km.

At h = 70 km, the graph of atmospheric temperature appears to be linear passing through the points (58, 0) and (88, −100).
The slope of this segment of the graph is then

−100 − 0

88 − 58
= −100

30
= −3.33;

so

dT

dh

∣∣∣∣
h=70

≈ −3.33◦C/km.

dT
dh

= 0 at those points where the tangent line on the graph is horizontal. This appears to happen over the interval [13, 23],
and near the points h = 50 and h = 90.

The earth exerts a gravitational force of F(r) = (2.99 × 1016)/r2 newtons on an object with a mass of 75 kg
located r meters from the center of the earth. Find the rate of change of force with respect to distance r at the surface
of the earth.

19. Calculate the rate of change of escape velocity vesc = (2.82 × 107)r−1/2 m/s with respect to distance r from the
center of the earth.

solution The rate that escape velocity changes is v′
esc(r) = −1.41 × 107r−3/2.

The power delivered by a battery to an apparatus of resistance R (in ohms) is P = 2.25R/(R + 0.5)2 watts. Find
the rate of change of power with respect to resistance for R = 3 � and R = 5 �.
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21. The position of a particle moving in a straight line during a 5-s trip is s(t) = t2 − t + 10 cm. Find a time t at which
the instantaneous velocity is equal to the average velocity for the entire trip.

solution Let s(t) = t2 − t + 10, 0 ≤ t ≤ 5, with s in centimeters (cm) and t in seconds (s). The average velocity
over the t-interval [0, 5] is

s(5) − s(0)

5 − 0
= 30 − 10

5
= 4 cm/s.

The (instantaneous) velocity is v(t) = s′(t) = 2t − 1. Solving 2t − 1 = 4 yields t = 5
2 s, the time at which the

instantaneous velocity equals the calculated average velocity.

The height (in meters) of a helicopter at time t (in minutes) is s(t) = 600t − 3t3 for 0 ≤ t ≤ 12.

(a) Plot s(t) and velocity v(t).

(b) Find the velocity at t = 8 and t = 10.

(c) Find the maximum height of the helicopter.

23. A particle moving along a line has position s(t) = t4 − 18t2 m at time t seconds. At which times does the particle
pass through the origin? At which times is the particle instantaneously motionless (that is, it has zero velocity)?

solution The particle passes through the origin when s(t) = t4 − 18t2 = t2(t2 − 18) = 0. This happens when t = 0

seconds and when t = 3
√

2 ≈ 4.24 seconds. With s(t) = t4 − 18t2, it follows that v(t) = s′(t) = 4t3 − 36t = 4t (t2 − 9).
The particle is therefore instantaneously motionless when t = 0 seconds and when t = 3 seconds.

Plot the position of the particle in Exercise 23. What is the farthest distance to the left of the origin attained by
the particle?

25. A bullet is fired in the air vertically from ground level with an initial velocity 200 m/s. Find the bullet’s maximum
velocity and maximum height.

solution We employ Galileo’s formula, s(t) = s0 + v0t − 1
2gt2 = 200t − 4.9t2, where the time t is in seconds (s)

and the height s is in meters (m). The velocity is v(t) = 200 − 9.8t . The maximum velocity of 200 m/s occurs at t = 0.
This is the initial velocity. The bullet reaches its maximum height when v(t) = 200 − 9.8t = 0; i.e., when t ≈ 20.41 s.
At this point, the height is 2040.82 m.

Find the velocity of an object dropped from a height of 300 m at the moment it hits the ground.
27. A ball tossed in the air vertically from ground level returns to earth 4 s later. Find the initial velocity and maximum
height of the ball.

solution Galileo’s formula gives s(t) = s0 + v0t − 1
2gt2 = v0t − 4.9t2, where the time t is in seconds (s) and the

height s is in meters (m). When the ball hits the ground after 4 seconds its height is 0. Solve 0 = s(4) = 4v0 − 4.9(4)2

to obtain v0 = 19.6 m/s. The ball reaches its maximum height when s′(t) = 0, that is, when 19.6 − 9.8t = 0, or t = 2
s. At this time, t = 2 s,

s(2) = 0 + 19.6(2) − 1

2
(9.8)(4) = 19.6 m.

Olivia is gazing out a window from the tenth floor of a building when a bucket (dropped by a window washer)
passes by. She notes that it hits the ground 1.5 s later. Determine the floor from which the bucket was dropped if each
floor is 5 m high and the window is in the middle of the tenth floor. Neglect air friction.

29. Show that for an object falling according to Galileo’s formula, the average velocity over any time interval [t1, t2] is
equal to the average of the instantaneous velocities at t1 and t2.

solution The simplest way to proceed is to compute both values and show that they are equal. The average velocity
over [t1, t2] is

s(t2) − s(t1)

t2 − t1
= (s0 + v0t2 − 1

2gt2
2 ) − (s0 + v0t1 − 1

2gt2
1 )

t2 − t1
= v0(t2 − t1) + g

2 (t2
2 − t1

2)

t2 − t1

= v0(t2 − t1)

t2 − t1
− g

2
(t2 + t1) = v0 − g

2
(t2 + t1)

Whereas the average of the instantaneous velocities at the beginning and end of [t1, t2] is

s′(t1) + s′(t2)

2
= 1

2

(
(v0 − gt1) + (v0 − gt2)

)
= 1

2
(2v0) − g

2
(t2 + t1) = v0 − g

2
(t2 + t1).

The two quantities are the same.

An object falls under the influence of gravity near the earth’s surface. Which of the following statements is
true? Explain.

(a) Distance traveled increases by equal amounts in equal time intervals.

(b) Velocity increases by equal amounts in equal time intervals.

(c) The derivative of velocity increases with time.

31. By Faraday’s Law, if a conducting wire of length � meters moves at velocity v m/s perpendicular to a magnetic field
of strength B (in teslas), a voltage of size V = −B�v is induced in the wire. Assume that B = 2 and � = 0.5.

(a) Calculate dV/dv.
(b) Find the rate of change of V with respect to time t if v = 4t + 9.

solution
(a) Assuming that B = 2 and l = 0.5, V = −2(0.5)v = −v. Therefore,

dV

dv
= −1.

(b) If v = 4t + 9, then V = −2(0.5)(4t + 9) = −(4t + 9). Therefore, dV
dt

= −4.

The voltage V , current I , and resistance R in a circuit are related by Ohm’s Law: V = IR, where the units are
volts, amperes, and ohms. Assume that voltage is constant with V = 12 volts. Calculate (specifying units):

(a) The average rate of change of I with respect to R for the interval from R = 8 to R = 8.1

(b) The rate of change of I with respect to R when R = 8

(c) The rate of change of R with respect to I when I = 1.5

33. Ethan finds that with h hours of tutoring, he is able to answer correctly S(h) percent of the problems on a
math exam. Which would you expect to be larger: S′(3) or S′(30)? Explain.

solution One possible graph of S(h) is shown in the figure below on the left. This graph indicates that in the early
hours of working with the tutor, Ethan makes rapid progress in learning the material but eventually approaches either the
limit of his ability to learn the material or the maximum possible score on the exam. In this scenario, S′(3) would be
larger than S′(30).
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An alternative graph of S(h) is shown below on the right. Here, in the early hours of working with the tutor little
progress is made (perhaps the tutor is assessing how much Ethan already knows, his learning style, his personality, etc.).
This is followed by a period of rapid improvement and finally a leveling off as Ethan reaches his maximum score. In this
scenario, S′(3) and S′(30) might be roughly equal.
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Suppose θ(t) measures the angle between a clock’s minute and hour hands. What is θ ′(t) at 3 o’clock?
35. To determine drug dosages, doctors estimate a person’s body surface area (BSA) (in meters squared) using the formula
BSA = √

hm/60, where h is the height in centimeters and m the mass in kilograms. Calculate the rate of change of BSA
with respect to mass for a person of constant height h = 180. What is this rate at m = 70 and m = 80? Express your
result in the correct units. Does BSA increase more rapidly with respect to mass at lower or higher body mass?

solution Assuming constant height h = 180 cm, let f (m) = √
hm/60 =

√
5

10 m be the formula for body surface area
in terms of weight. The rate of change of BSA with respect to mass is

f ′(m) =
√

5

10

(
1

2
m−1/2

)
=

√
5

20
√

m
.

If m = 70 kg, this is

f ′(70) =
√

5

20
√

70
=

√
14

280
≈ 0.0133631

m2

kg
.

If m = 80 kg,

f ′(80) =
√

5

20
√

80
= 1

20
√

16
= 1

80

m2

kg
.

Because the rate of change of BSA depends on 1/
√

m, it is clear that BSA increases more rapidly at lower body mass.

The atmospheric CO2 level A(t) at Mauna Loa, Hawaii at time t (in parts per million by volume) is recorded by
the Scripps Institution of Oceanography. The values for the months January–December 2007 were

382.45, 383.68, 384.23, 386.26, 386.39, 385.87,
384.39, 381.78, 380.73, 380.81, 382.33, 383.69

(a) Assuming that the measurements were made on the first of each month, estimate A′(t) on the 15th of the months
January–November.

(b) In which months did A′(t) take on its largest and smallest values?

(c) In which month was the CO2 level most nearly constant?

37. The tangent lines to the graph of f (x) = x2 grow steeper as x increases. At what rate do the slopes of the tangent
lines increase?

solution Let f (x) = x2. The slopes s of the tangent lines are given by s = f ′(x) = 2x. The rate at which these
slopes are increasing is ds/dx = 2.

Figure 13 shows the height y of a mass oscillating at the end of a spring. through one cycle of the oscillation.
Sketch the graph of velocity as a function of time.

In Exercises 39–46, use Eq. (3) to estimate the unit change.

39. Estimate
√

2 − √
1 and

√
101 − √

100. Compare your estimates with the actual values.

solution Let f (x) = √
x = x1/2. Then f ′(x) = 1

2 (x−1/2). We are using the derivative to estimate the average rate
of change. That is,

√
x + h − √

x

h
≈ f ′(x),

so that
√

x + h − √
x ≈ hf ′(x).

Thus,
√

2 − √
1 ≈ 1f ′(1) = 1

2 (1) = 1
2 . The actual value, to six decimal places, is 0.414214. Also,

√
101 − √

100 ≈
1f ′(100) = 1

2

(
1
10

)
= 0.05. The actual value, to six decimal places, is 0.0498756.

Estimate f (4) − f (3) if f ′(x) = 2−x . Then estimate f (4), assuming that f (3) = 12.
41. Let F(s) = 1.1s + 0.05s2 be the stopping distance as in Example 3. Calculate F(65) and estimate the increase in
stopping distance if speed is increased from 65 to 66 mph. Compare your estimate with the actual increase.

solution Let F(s) = 1.1s + .05s2 be as in Example 3. F ′(s) = 1.1 + 0.1s.

• Then F(65) = 282.75 ft and F ′(65) = 7.6 ft/mph.
• F ′(65) ≈ F(66) − F(65) is approximately equal to the change in stopping distance per 1 mph increase in speed

when traveling at 65 mph. Increasing speed from 65 to 66 therefore increases stopping distance by approximately
7.6 ft.

• The actual increase in stopping distance when speed increases from 65 mph to 66 mph is F(66) − F(65) =
290.4 − 282.75 = 7.65 feet, which differs by less than one percent from the estimate found using the derivative.
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According to Kleiber’s Law, the metabolic rate P (in kilocalories per day) and body mass m (in kilograms) of an
animal are related by a three-quarter-power law P = 73.3m3/4. Estimate the increase in metabolic rate when body
mass increases from 60 to 61 kg.

43. The dollar cost of producing x bagels is C(x) = 300 + 0.25x − 0.5(x/1000)3. Determine the cost of producing 2000
bagels and estimate the cost of the 2001st bagel. Compare your estimate with the actual cost of the 2001st bagel.

solution Expanding the power of 3 yields

C(x) = 300 + 0.25x − 5 × 10−10x3.

This allows us to get the derivative C′(x) = 0.25 − 1.5 × 10−9x2. The cost of producing 2000 bagels is

C(2000) = 300 + 0.25(2000) − 0.5(2000/1000)3 = 796

dollars. The cost of the 2001st bagel is, by definition, C(2001) − C(2000). By the derivative estimate, C(2001) −
C(2000) ≈ C′(2000)(1), so the cost of the 2001st bagel is approximately

C′(2000) = 0.25 − 1.5 × 10−9(20002) = $0.244.

C(2001) = 796.244, so the exact cost of the 2001st bagel is indistinguishable from the estimated cost. The function is
very nearly linear at this point.

Suppose the dollar cost of producing x video cameras is C(x) = 500x − 0.003x2 + 10−8x3.

(a) Estimate the marginal cost at production level x = 5000 and compare it with the actual cost C(5001) − C(5000).

(b) Compare the marginal cost at x = 5000 with the average cost per camera, defined as C(x)/x.

45. Demand for a commodity generally decreases as the price is raised. Suppose that the demand for oil (per capita per
year) is D(p) = 900/p barrels, where p is the dollar price per barrel. Find the demand when p = $40. Estimate the
decrease in demand if p rises to $41 and the increase if p declines to $39.

solution D(p) = 900p−1, so D′(p) = −900p−2. When the price is $40 a barrel, the per capita demand is D(40) =
22.5 barrels per year. With an increase in price from $40 to $41 a barrel, the change in demand D(41) − D(40) is
approximately D′(40) = −900(40−2) = −0.5625 barrels a year. With a decrease in price from $40 to $39 a barrel, the
change in demand D(39) − D(40) is approximately −D′(40) = +0.5625. An increase in oil prices of a dollar leads to a
decrease in demand of 0.5625 barrels a year, and a decrease of a dollar leads to an increase in demand of 0.5625 barrels
a year.

The reproduction rate f of the fruit fly Drosophila melanogaster, grown in bottles in a laboratory, decreases
with the number p of flies in the bottle. A researcher has found the number of offspring per female per day to be
approximately f (p) = (34 − 0.612p)p−0.658.

(a) Calculate f (15) and f ′(15).

(b) Estimate the decrease in daily offspring per female when p is increased from 15 to 16. Is this estimate larger or
smaller than the actual value f (16) − f (15)?

(c) Plot f (p) for 5 ≤ p ≤ 25 and verify that f (p) is a decreasing function of p. Do you expect f ′(p) to be
positive or negative? Plot f ′(p) and confirm your expectation.

47. According to Stevens’ Law in psychology, the perceived magnitude of a stimulus is proportional (approxi-
mately) to a power of the actual intensity I of the stimulus. Experiments show that the perceived brightness B of a light
satisfies B = kI2/3, where I is the light intensity, whereas the perceived heaviness H of a weight W satisfies H = kW3/2

(k is a constant that is different in the two cases). Compute dB/dI and dH/dW and state whether they are increasing or
decreasing functions. Then explain the following statements:

(a) A one-unit increase in light intensity is felt more strongly when I is small than when I is large.

(b) Adding another pound to a load W is felt more strongly when W is large than when W is small.

solution

(a) dB/dI = 2k

3
I−1/3 = 2k

3I1/3
.

As I increases, dB/dI shrinks, so that the rate of change of perceived intensity decreases as the actual intensity
increases. Increased light intensity has a diminished return in perceived intensity. A sketch of B against I is shown: See
that the height of the graph increases more slowly as you move to the right.

(b) dH/dW = 3k
2 W1/2. As W increases, dH/dW increases as well, so that the rate of change of perceived weight

increases as weight increases. A sketch of H against W is shown: See that the graph becomes steeper as you move to the
right.
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Let M(t) be the mass (in kilograms) of a plant as a function of time (in years). Recent studies by Niklas and Enquist
have suggested that a remarkably wide range of plants (from algae and grass to palm trees) obey a three-quarter-power
growth law—that is, dM/dt = CM3/4 for some constant C.

(a) If a tree has a growth rate of 6 kg/yr when M = 100 kg, what is its growth rate when M = 125 kg?

(b) If M = 0.5 kg, how much more mass must the plant acquire to double its growth rate?

Further Insights and Challenges
Exercises 49–51: The Lorenz curve y = F(r) is used by economists to study income distribution in a given country (see
Figure 14). By definition, F(r) is the fraction of the total income that goes to the bottom rth part of the population, where
0 ≤ r ≤ 1. For example, if F(0.4) = 0.245, then the bottom 40% of households receive 24.5% of the total income. Note
that F(0) = 0 and F(1) = 1.
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FIGURE 14

49. Our goal is to find an interpretation for F ′(r). The average income for a group of households is the total
income going to the group divided by the number of households in the group. The national average income is A = T/N ,
where N is the total number of households and T is the total income earned by the entire population.

(a) Show that the average income among households in the bottom rth part is equal to (F (r)/r)A.

(b) Show more generally that the average income of households belonging to an interval [r, r + �r] is equal to(
F(r + �r) − F(r)

�r

)
A

(c) Let 0 ≤ r ≤ 1. A household belongs to the 100rth percentile if its income is greater than or equal to the income of
100r % of all households. Pass to the limit as �r → 0 in (b) to derive the following interpretation: A household in the
100rth percentile has income F ′(r)A. In particular, a household in the 100rth percentile receives more than the national
average if F ′(r) > 1 and less if F ′(r) < 1.

(d) For the Lorenz curves L1 and L2 in Figure 14(B), what percentage of households have above-average income?

solution

(a) The total income among households in the bottom rth part is F(r)T and there are rN households in this part of the
population. Thus, the average income among households in the bottom rth part is equal to

F(r)T

rN
= F(r)

r
· T

N
= F(r)

r
A.

(b) Consider the interval [r, r + �r]. The total income among households between the bottom rth part and the bottom
r + �r-th part is F(r + �r)T − F(r)T . Moreover, the number of households covered by this interval is (r + �r)N −
rN = �rN . Thus, the average income of households belonging to an interval [r, r + �r] is equal to

F(r + �r)T − F(r)T

�rN
= F(r + �r) − F(r)

�r
· T

N
= F(r + �r) − F(r)

�r
A.

(c) Take the result from part (b) and let �r → 0. Because

lim
�r→0

F(r + �r) − F(r)

�r
= F ′(r),

we find that a household in the 100rth percentile has income F ′(r)A.

(d) The point P in Figure 14(B) has an r-coordinate of 0.6, while the point Q has an r-coordinate of roughly 0.75. Thus,
on curve L1, 40% of households have F ′(r) > 1 and therefore have above-average income. On curve L2, roughly 25%
of households have above-average income.

The following table provides values of F(r) for Sweden in 2004. Assume that the national average income was
A = 30,000 euros.

r 0 0.2 0.4 0.6 0.8 1
F(r) 0 0.01 0.245 0.423 0.642 1

(a) What was the average income in the lowest 40% of households?

(b) Show that the average income of the households belonging to the interval [0.4, 0.6] was 26,700 euros.

(c) Estimate F ′(0.5). Estimate the income of households in the 50th percentile? Was it greater or less than the
ti l ?

51. Use Exercise 49 (c) to prove:

(a) F ′(r) is an increasing function of r .

(b) Income is distributed equally (all households have the same income) if and only if F(r) = r for 0 ≤ r ≤ 1.
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solution
(a) Recall from Exercise 49 (c) that F ′(r)A is the income of a household in the 100r-th percentile. Suppose 0 ≤ r1 <

r2 ≤ 1. Because r2 > r1, a household in the 100r2-th percentile must have income at least as large as a household in the
100r1-th percentile. Thus, F ′(r2)A ≥ F ′(r1)A, or F ′(r2) ≥ F ′(r1). This implies F ′(r) is an increasing function of r .
(b) If F(r) = r for 0 ≤ r ≤ 1, then F ′(r) = 1 and households in all percentiles have income equal to the national
average; that is, income is distributed equally. Alternately, if income is distributed equally (all households have the same
income), then F ′(r) = 1 for 0 ≤ r ≤ 1. Thus, F must be a linear function in r with slope 1. Moreover, the condition
F(0) = 0 requires the F intercept of the line to be 0. Hence, F(r) = 1 · r + 0 = r .

Studies of Internet usage show that website popularity is described quite well by Zipf’s Law, according to which
the nth most popular website receives roughly the fraction 1/n of all visits. Suppose that on a particular day, the nth
most popular site had approximately V (n) = 106/n visitors (for n ≤ 15,000).

(a) Verify that the top 50 websites received nearly 45% of the visits. Hint: Let T (N) denote the sum of V (n) for
1 ≤ n ≤ N . Use a computer algebra system to compute T (45) and T (15,000).

(b) Verify, by numerical experimentation, that when Eq. (3) is used to estimate V (n + 1) − V (n), the error in the
estimate decreases as n grows larger. Find (again, by experimentation) an N such that the error is at most 10 for
n ≥ N .

(c) Using Eq. (3), show that for n ≥ 100, the nth website received at most 100 more visitors than the (n + 1)st
website.

In Exercises 53 and 54, the average cost per unit at production level x is defined as Cavg(x) = C(x)/x, where C(x) is
the cost function. Average cost is a measure of the efficiency of the production process.

53. Show that Cavg(x) is equal to the slope of the line through the origin and the point (x, C(x)) on the graph of C(x).
Using this interpretation, determine whether average cost or marginal cost is greater at points A, B, C, D in Figure 15.

C

x

A B C

D

FIGURE 15 Graph of C(x).

solution By definition, the slope of the line through the origin and (x, C(x)), that is, between (0, 0) and (x, C(x)) is

C(x) − 0

x − 0
= C(x)

x
= Cav.

At point A, average cost is greater than marginal cost, as the line from the origin to A is steeper than the curve at this
point (we see this because the line, tracing from the origin, crosses the curve from below). At point B, the average cost is
still greater than the marginal cost. At the point C, the average cost and the marginal cost are nearly the same, since the
tangent line and the line from the origin are nearly the same. The line from the origin to D crosses the cost curve from
above, and so is less steep than the tangent line to the curve at D; the average cost at this point is less than the marginal
cost.

The cost in dollars of producing alarm clocks is C(x) = 50x3 − 750x2 + 3740x + 3750 where x is in units of
1000.

(a) Calculate the average cost at x = 4, 6, 8, and 10.

(b) Use the graphical interpretation of average cost to find the production level x0 at which average cost is lowest.
What is the relation between average cost and marginal cost at x0 (see Figure 16)?

3.5 Higher Derivatives

Preliminary Questions
1. On September 4, 2003, the Wall Street Journal printed the headline “Stocks Go Higher, Though the Pace of Their

Gains Slows.” Rephrase this headline as a statement about the first and second time derivatives of stock prices and sketch
a possible graph.

solution Because stocks are going higher, stock prices are increasing and the first derivative of stock prices must
therefore be positive. On the other hand, because the pace of gains is slowing, the second derivative of stock prices must
be negative.

Stock
price

Time

2. True or false? The third derivative of position with respect to time is zero for an object falling to earth under the
influence of gravity. Explain.

solution This statement is true. The acceleration of an object falling to earth under the influence of gravity is constant;
hence, the second derivative of position with respect to time is constant. Because the third derivative is just the derivative
of the second derivative and the derivative of a constant is zero, it follows that the third derivative is zero.

3. Which type of polynomial satisfies f ′′′(x) = 0 for all x?

solution The third derivative of all quadratic polynomials (polynomials of the form ax2 + bx + c for some constants
a, b and c) is equal to 0 for all x.
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4. What is the sixth derivative of f (x) = x6?

solution The sixth derivative of f (x) = x6 is 6! = 720.

Exercises
In Exercises 1–16, calculate y′′ and y′′′.

1. y = 14x2

solution Let y = 14x2. Then y′ = 28x, y′′ = 28, and y′′′ = 0.

y = 7 − 2x3. y = x4 − 25x2 + 2x

solution Let y = x4 − 25x2 + 2x. Then y′ = 4x3 − 50x + 2, y′′ = 12x2 − 50, and y′′′ = 24x.

y = 4t3 − 9t2 + 75. y = 4

3
πr3

solution Let y = 4
3πr3. Then y′ = 4πr2, y′′ = 8πr , and y′′′ = 8π .

y = √
x

7. y = 20t4/5 − 6t2/3

solution Let y = 20t4/5 − 6t2/3. Then y′ = 16t−1/5 − 4t−1/3, y′′ = − 16
5 t−6/5 + 4

3 t−4/3, and y′′′ = 96
25 t−11/15 −

16
9 t−7/3.

y = x−9/59. y = z − 4

z

solution Let y = z − 4z−1. Then y′ = 1 + 4z−2, y′′ = −8z−3, and y′′′ = 24z−4.

y = 5t−3 + 7t−8/311. y = θ2(2θ + 7)

solution Let y = θ2(2θ + 7) = 2θ3 + 7θ2. Then y′ = 6θ2 + 14θ , y′′ = 12θ + 14, and y′′′ = 12.

y = (x2 + x)(x3 + 1)13. y = x − 4

x

solution Let y = x−4
x = 1 − 4x−1. Then y′ = 4x−2, y′′ = −8x−3, and y′′′ = 24x−4.

y = 1

1 − x

15. y = s−1/2(s + 1)

solution Expanding gives y = s1/2 + s−1/2. Then

y′ = 1

2
s−1/2 − 1

2
s−3/2

y′′ = −1

4
s−3/2 + 3

4
s−5/2

y′′′ = 3

8
s−5/2 − 15

8
s−7/2

y = (r1/2 + r)(1 − r)
In Exercises 17–25, calculate the derivative indicated.

17. f (4)(1), f (x) = x4

solution Let f (x) = x4. Then f ′(x) = 4x3, f ′′(x) = 12x2, f ′′′(x) = 24x, and f (4)(x) = 24. Thus f (4)(1) = 24.

g′′′(−1), g(t) = −4t−519.
d2y

dt2

∣∣∣∣
t=1

, y = 4t−3 + 3t2

solution Let y = 4t−3 + 3t2. Then dy
dt

= −12t−4 + 6t and d2y

dt2 = 48t−5 + 6. Hence

d2y

dt2

∣∣∣∣∣
t=1

= 48(1)−5 + 6 = 54.

d4f

dt4

∣∣∣∣
t=1

, f (t) = 6t9 − 2t521.
d4x

dt4

∣∣∣∣
t=16

, x = t−3/4

solution Let x(t) = t−3/4. Then dx
dt

= − 3
4 t−7/4, d2x

dt2 = 21
16 t−11/4, d3x

dt3 = − 231
64 t−15/4, and d4x

dt4 = 3465
256 t−19/4.

Thus

d4x

dt4

∣∣∣∣∣
t=16

= 3465

256
16−19/4 = 3465

134,217,728
.
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f ′′′(4), f (t) = 2t2 − t23. f ′′′(−3), f (x) = 12

x
− x3

solution Differentiating gives

f ′(x) = −12x−2 − 3x2

f ′′(x) = 24x−3 − 6x

f ′′′(x) = −72x−4 − 6

Thus, f ′′′(−3) = −72 · 3−4 − 6 = −62

9
.

f ′′(1), f (t) = t

t + 1
25. h′′(1), h(w) = 1√

w + 1

solution Differentiating gives

h′(w) = − 1
2w−1/2

(
√

w + 1)2
= − 1

2
√

w(
√

w + 1)2

h′′(w) =
2
√

w
(

2(
√

w + 1) 1
2w−1/2

)
+ 2 · 1

2w−1/2(
√

w + 1)2

4w(
√

w + 1)4
= 2(

√
w + 1) + w−1/2(

√
w + 1)2

4w(
√

w + 1)4

so that

h′′(1) = 2(1 + 1) + 1(1 + 1)2

4 · 1(1 + 1)4
= 8

64
= 1

8

g′′(1), g(s) =
√

s

s + 1

27. Calculate y(k)(0) for 0 ≤ k ≤ 5, where y = x4 + ax3 + bx2 + cx + d (with a, b, c, d the constants).

solution Applying the power, constant multiple, and sum rules at each stage, we get (note y(0) is y by convention):

k y(k)

0 x4 + ax3 + bx2 + cx + d

1 4x3 + 3ax2 + 2bx + c

2 12x2 + 6ax + 2b

3 24x + 6a

4 24

5 0

from which we get y(0)(0) = d, y(1)(0) = c, y(2)(0) = 2b, y(3)(0) = 6a, y(4)(0) = 24, and y(5)(0) = 0.

Which of the following satisfy f (k)(x) = 0 for all k ≥ 6?

(a) f (x) = 7x4 + 4 + x−1 (b) f (x) = x3 − 2

(c) f (x) = √
x (d) f (x) = 1 − x6

(e) f (x) = x9/5 (f) f (x) = 2x2 + 3x5

29. Use the result in Example 3 to find
d6

dx6
x−1.

solution The equation in Example 3 indicates that

d6

dx6
x−1 = (−1)66!x−6−1.

(−1)6 = 1 and 6! = 6 × 5 × 4 × 3 × 2 × 1 = 720, so

d6

dx6
x−1 = 720x−7.

Calculate the first five derivatives of f (x) = √
x.

(a) Show that f (n)(x) is a multiple of x−n+1/2.

(b) Show that f (n)(x) alternates in sign as (−1)n−1 for n ≥ 1.

(c) Find a formula for f (n)(x) for n ≥ 2. Hint: Verify that the coefficient is ±1 · 3 · 5 · · · 2n − 3

2n
.

In Exercises 31–36, find a general formula for f (n)(x).

31. f (x) = x−2

solution f ′(x) = −2x−3, f ′′(x) = 6x−4, f ′′′(x) = −24x−5, f (4)(x) = 5 · 24x−6, . . . . From this we can conclude

that the nth derivative can be written as f (n)(x) = (−1)n(n + 1)!x−(n+2).
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f (x) = (x + 2)−133. f (x) = x−1/2

solution f ′(x) = −1
2 x−3/2. We will avoid simplifying numerators and denominators to find the pattern:

f ′′(x) = −3

2

−1

2
x−5/2 = (−1)2 3 × 1

22
x−5/2

f ′′′(x) = −5

2

3 × 1

22
x−7/2 = (−1)3 5 × 3 × 1

23
x−7/2

...

f (n)(x) = (−1)n
(2n − 1) × (2n − 3) × . . . × 1

2n
x−(2n+1)/2.

f (x) = x−3/235. f (x) = x + 1

x2

solution Let f (x) = x + 1

x2
= x−1 + x−2. Taking successive derivatives gives

f ′(x) = −x−2 − 2x−3

f ′′(x) = 2x−3 + 6x−4

f ′′′(x) = −6x−4 − 24x−5

f (4)(x) = 24x−5 + 120x−6

...

f (n)(x) = (−1)n(n!x−n−1 + (n + 1)!x−n−2)

f (x) = x − 1√
x

37. (a) Find the acceleration at time t = 5 min of a helicopter whose height is s(t) = 300t − 4t3 m.

(b) Plot the acceleration h′′(t) for 0 ≤ t ≤ 6. How does this graph show that the helicopter is slowing down during this
time interval?

solution

(a) Let s(t) = 300t − 4t3, with t in minutes and s in meters. The velocity is v(t) = s′(t) = 300 − 12t2 and acceleration
is a(t) = s′′(t) = −24t . Thus a(5) = −120 m/min2.

(b) The acceleration of the helicopter for 0 ≤ t ≤ 6 is shown in the figure below. As the acceleration of the helicopter is
negative, the velocity of the helicopter must be decreasing. Because the velocity is positive for 0 ≤ t ≤ 6, the helicopter
is slowing down.

−140
−120
−100
−80
−60
−40
−20 1 2 3 4 5 6

y

x

Find an equation of the tangent to the graph of y = f ′(x) at x = 3, where f (x) = x4.
39. Figure 5 shows f , f ′, and f ′′. Determine which is which.

(A) (B)

x

y

321
x

y

321
x

y

(C)

321

FIGURE 5

solution (a) f ′′ (b) f ′ (c) f .
The tangent line to (c) is horizontal at x = 1 and x = 3, where (b) has roots. The tangent line to (b) is horizontal at

x = 2 and x = 0, where (a) has roots.

The second derivative f ′′ is shown in Figure 6. Which of (A) or (B) is the graph of f and which is f ′?
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41. Figure 7 shows the graph of the position s of an object as a function of time t . Determine the intervals on which the
acceleration is positive.

Time

40302010

Position

FIGURE 7

solution Roughly from time 10 to time 20 and from time 30 to time 40. The acceleration is positive over the same
intervals over which the graph is bending upward.

Find a polynomial f (x) that satisfies the equation xf ′′(x) + f (x) = x2.
43. Find all values of n such that y = xn satisfies

x2y′′ − 2xy′ = 4y

solution We have y′ = nxn−1, y′′ = n(n − 1)xn−2, so that

x2y′′ − 2xy′ = x2(n(n − 1)xn−2) − 2xnxn−1 = (n2 − 3n)xn = (n2 − 3n)y

Thus the equation is satisfied if and only if n2 − 3n = 4, so that n2 − 3n − 4 = 0. This happens for n = −1, 4.

Which of the following descriptions could not apply to Figure 8? Explain.

(a) Graph of acceleration when velocity is constant

(b) Graph of velocity when acceleration is constant

(c) Graph of position when acceleration is zero

45. According to one model that takes into account air resistance, the acceleration a(t) (in m/s2) of a skydiver of mass
m in free fall satisfies

a(t) = −9.8 + k

m
v(t)2

where v(t) is velocity (negative since the object is falling) and k is a constant. Suppose that m = 75 kg and k = 14 kg/m.

(a) What is the object’s velocity when a(t) = −4.9?
(b) What is the object’s velocity when a(t) = 0? This velocity is the object’s terminal velocity.

solution Solving a(t) = −9.8 + k
mv(t)2 for the velocity and taking into account that the velocity is negative since

the object is falling, we find

v(t) = −
√

m

k
(a(t) + 9.8) = −

√
75

14
(a(t) + 9.8).

(a) Substituting a(t) = −4.9 into the above formula for the velocity, we find

v(t) = −
√

75

14
(4.9) = −√

26.25 = −5.12 m/s.

(b) When a(t) = 0,

v(t) = −
√

75

14
(9.8) = −√

52.5 = −7.25 m/s.

According to one model that attempts to account for air resistance, the distance s(t) (in meters) traveled by a
falling raindrop satisfies

d2s

dt2
= g − 0.0005

D

(
ds

dt

)2

where D is the raindrop diameter and g = 9.8 m/s2. Terminal velocity vterm is defined as the velocity at which the
drop has zero acceleration (one can show that velocity approaches vterm as time proceeds).

(a) Show that vterm = √
2000gD.

(b) Find vterm for drops of diameter 10−3 m and 10−4 m.

(c) In this model, do raindrops accelerate more rapidly at higher or lower velocities?

47. Aservomotor controls the vertical movement of a drill bit that will drill a pattern of holes in sheet metal. The maximum
vertical speed of the drill bit is 4 in./s, and while drilling the hole, it must move no more than 2.6 in./s to avoid warping
the metal. During a cycle, the bit begins and ends at rest, quickly approaches the sheet metal, and quickly returns to its
initial position after the hole is drilled. Sketch possible graphs of the drill bit’s vertical velocity and acceleration. Label
the point where the bit enters the sheet metal.

solution There will be multiple cycles, each of which will be more or less identical. Let v(t) be the downward vertical
velocity of the drill bit, and let a(t) be the vertical acceleration. From the narrative, we see that v(t) can be no greater
than 4 and no greater than 2.6 while drilling is taking place. During each cycle, v(t) = 0 initially, v(t) goes to 4 quickly.
When the bit hits the sheet metal, v(t) goes down to 2.6 quickly, at which it stays until the sheet metal is drilled through.
As the drill pulls out, it reaches maximum non-drilling upward speed (v(t) = −4) quickly, and maintains this speed until
it returns to rest. A possible plot follows:

−2

−4

4

2

21.510.5
x

y

Metal
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A graph of the acceleration is extracted from this graph:

−20

−40

40

20

21.5

10.5
x

y

Metal

In Exercises 48 and 49, refer to the following. In a 1997 study, Boardman and Lave related the traffic speed S on a
two-lane road to traffic density Q (number of cars per mile of road) by the formula

S = 2882Q−1 − 0.052Q + 31.73

for 60 ≤ Q ≤ 400 (Figure 9).

Density Q

400300200100

Speed S
(mph)

10
20
30
40
50
60
70

FIGURE 9 Speed as a function of traffic density.

Calculate dS/dQ and d2S/dQ2.49. (a) Explain intuitively why we should expect that dS/dQ < 0.

(b) Show that d2S/dQ2 > 0. Then use the fact that dS/dQ < 0 and d2S/dQ2 > 0 to justify the following statement:
A one-unit increase in traffic density slows down traffic more when Q is small than when Q is large.
(c) Plot dS/dQ. Which property of this graph shows that d2S/dQ2 > 0?

solution
(a) Traffic speed must be reduced when the road gets more crowded so we expect dS/dQ to be negative. This is indeed
the case since dS/dQ = −0.052 − 2882/Q2 < 0.
(b) The decrease in speed due to a one-unit increase in density is approximately dS/dQ (a negative number). Since
d2S/dQ2 = 5764Q−3 > 0 is positive, this tells us that dS/dQ gets larger as Q increases—and a negative number which
gets larger is getting closer to zero. So the decrease in speed is smaller when Q is larger, that is, a one-unit increase in
traffic density has a smaller effect when Q is large.
(c) dS/dQ is plotted below. The fact that this graph is increasing shows that d2S/dQ2 > 0.

x

y

−0.2
−0.4
−0.6
−0.8

−1
−1.2

400300100 200

Use a computer algebra system to compute f (k)(x) for k = 1, 2, 3 for the following functions.

(a) f (x) = (1 + x3)5/3 (b) f (x) = 1 − x4

1 − 5x − 6x2

51. Let f (x) = x + 2

x − 1
. Use a computer algebra system to compute the f (k)(x) for 1 ≤ k ≤ 4. Can you find a

general formula for f (k)(x)?

solution Let f (x) = x + 2

x − 1
. Using a computer algebra system,

f ′(x) = − 3

(x − 1)2
= (−1)1 3 · 1

(x − 1)1+1
;

f ′′(x) = 6

(x − 1)3
= (−1)2 3 · 2 · 1

(x − 1)2+1
;

f ′′′(x) = − 18

(x − 1)4
= (−1)3 3 · 3!

(x − 1)3+1
; and

f (4)(x) = 72

(x − 1)5 = (−1)4 3 · 4!
(x − 1)4+1

.
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From the pattern observed above, we conjecture

f (k)(x) = (−1)k
3 · k!

(x − 1)k+1
.

Further Insights and Challenges

Find the 100th derivative of

p(x) = (x + x5 + x7)10(1 + x2)11(x3 + x5 + x7)

53. What is p(99)(x) for p(x) as in Exercise 52?

solution First note that for any integer n ≤ 98,

d99

dx99
xn = 0.

Now, if we expand p(x), we find

p(x) = x99 + terms of degree at most 98;
therefore,

d99

dx99
p(x) = d99

dx99
(x99 + terms of degree at most 98) = d99

dx99
x99

Using logic similar to that used to compute the derivative in Example (3), we compute:

d99

dx99
(x99) = 99 × 98 × . . . 1,

so that d99

dx99 p(x) = 99!.

Use the Product Rule twice to find a formula for (fg)′′ in terms of f and g and their first and second derivatives.
55. Use the Product Rule to find a formula for (fg)′′′ and compare your result with the expansion of (a + b)3. Then try
to guess the general formula for (fg)(n).

solution Continuing from Exercise 54, we have

h′′′ = f ′′g′ + gf ′′′ + 2(f ′g′′ + g′f ′′) + fg′′′ + g′′f ′ = f ′′′g + 3f ′′g′ + 3f ′g′′ + fg′′′

The binomial theorem gives

(a + b)3 = a3 + 3a2b + 3ab2 + b3 = a3b0 + 3a2b1 + 3a1b2 + a0b3

and more generally

(a + b)n =
n∑

k=0

(
n

k

)
an−kbk,

where the binomial coefficients are given by(
n

k

)
= k(k − 1) · · · (k − n + 1)

n! .

Accordingly, the general formula for (fg)(n) is given by

(fg)(n) =
n∑

k=0

(
n

k

)
f (n−k)g(k),

where p(k) is the kth derivative of p (or p itself when k = 0).

Compute

�f (x) = lim
h→0

f (x + h) + f (x − h) − 2f (x)

h2

for the following functions:

(a) f (x) = x (b) f (x) = x2 (c) f (x) = x3

Based on these examples, what do you think the limit �f represents?

3.6 Trigonometric Functions

Preliminary Questions
1. Determine the sign (+ or −) that yields the correct formula for the following:

(a)
d

dx
(sin x + cos x) = ± sin x ± cos x

(b)
d

dx
sec x = ± sec x tan x

(c)
d

dx
cot x = ± csc2 x
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solution The correct formulas are

(a)
d

dx
(sin x + cos x) = − sin x + cos x

(b)
d

dx
sec x = sec x tan x

(c)
d

dx
cot x = − csc2 x

2. Which of the following functions can be differentiated using the rules we have covered so far?

(a) y = 3 cos x cot x (b) y = cos(x2) (c) y = 2x sin x

solution
(a) 3 cos x cot x is a product of functions whose derivatives are known. This function can therefore be differentiated using
the Product Rule.
(b) cos(x2) is a composition of the functions cos x and x2. We have not yet discussed how to differentiate composite
functions.
(c) 2x sin x is a product of functions, but we do not yet know how to differentiate 2x , so we do not know how to
differentiate the product.

3. Compute d
dx

(sin2 x + cos2 x) without using the derivative formulas for sin x and cos x.

solution Recall that sin2 x + cos2 x = 1 for all x. Thus,

d

dx
(sin2 x + cos2 x) = d

dx
1 = 0.

4. How is the addition formula used in deriving the formula (sin x)′ = cos x?

solution The difference quotient for the function sin x involves the expression sin(x + h). The addition formula for
the sine function is used to expand this expression as sin(x + h) = sin x cos h + sin h cos x.

Exercises
In Exercises 1–4, find an equation of the tangent line at the point indicated.

1. y = sin x, x = π
4

solution Let f (x) = sin x. Then f ′(x) = cos x and the equation of the tangent line is

y = f ′ (π

4

) (
x − π

4

)
+ f

(π

4

)
=

√
2

2

(
x − π

4

)
+

√
2

2
=

√
2

2
x +

√
2

2

(
1 − π

4

)
.

y = cos x, x = π
3

3. y = tan x, x = π
4

solution Let f (x) = tan x. Then f ′(x) = sec2 x and the equation of the tangent line is

y = f ′ (π

4

) (
x − π

4

)
+ f

(π

4

)
= 2

(
x − π

4

)
+ 1 = 2x + 1 − π

2
.

y = sec x, x = π
6

In Exercises 5–24, compute the derivative.

5. f (x) = sin x cos x

solution Let f (x) = sin x cos x. Then

f ′(x) = sin x(− sin x) + cos x(cos x) = − sin2 x + cos2 x.

f (x) = x2 cos x
7. f (x) = sin2 x

solution Let f (x) = sin2 x = sin x sin x. Then

f ′(x) = sin x(cos x) + sin x(cos x) = 2 sin x cos x.

f (x) = 9 sec x + 12 cot x9. H(t) = sin t sec2 t

solution Let H(t) = sin t sec2 t . Then

H ′(t) = sin t
d

dt
(sec t · sec t) + sec2 t (cos t)

= sin t (sec t sec t tan t + sec t sec t tan t) + sec t

= 2 sin t sec2 t tan t + sec t.
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h(t) = 9 csc t + t cot t
11. f (θ) = tan θ sec θ

solution Let f (θ) = tan θ sec θ . Then

f ′(θ) = tan θ sec θ tan θ + sec θ sec2 θ = sec θ tan2 θ + sec3 θ =
(

tan2 θ + sec2 θ
)

sec θ.

k(θ) = θ2 sin2 θ
13. f (x) = (2x4 − 4x−1) sec x

solution Let f (x) = (2x4 − 4x−1) sec x. Then

f ′(x) = (2x4 − 4x−1) sec x tan x + sec x(8x3 + 4x−2).

f (z) = z tan z15. y = sec θ

θ

solution Let y = sec θ

θ
. Then

y′ = θ sec θ tan θ − sec θ

θ2
.

G(z) = 1

tan z − cot z

17. R(y) = 3 cos y − 4

sin y

solution Let R(y) = 3 cos y − 4

sin y
. Then

R′(y) = sin y(−3 sin y) − (3 cos y − 4)(cos y)

sin2 y
= 4 cos y − 3(sin2 y + cos2 y)

sin2 y
= 4 cos y − 3

sin2 y
.

f (x) = x

sin x + 2
19. f (x) = 1 + tan x

1 − tan x

solution Let f (x) = 1 + tan x

1 − tan x
. Then

f ′(x) =
(1 − tan x) sec2 x − (1 + tan x)

(
− sec2 x

)
(1 − tan x)2

= 2 sec2 x

(1 − tan x)2
.

f (θ) = θ tan θ sec θ21. f (x) = sin x + 1

sin x − 1

solution We have

f ′(x) = (sin x − 1)(cos x) − (sin x + 1)(cos x)

(sin x − 1)2
= −2 cos x

(sin x − 1)2

f (x) = csc2 t

t

23. R(θ) = cos θ

4 + cos θ

solution Differentiating, we have

R′(θ) = (4 + cos θ)(− sin θ) − (cos θ)(− sin θ)

(4 + cos θ)2
= − 4 sin θ

(4 + cos θ)2

g(z) = cot z

3 − 3 sin z

In Exercises 25–34, find an equation of the tangent line at the point specified.

25. y = x3 + cos x, x = 0

solution Let f (x) = x3 + cos x. Then f ′(x) = 3x2 − sin x and f ′(0) = 0. The tangent line at x = 0 is

y = f ′(0)(x − 0) + f (0) = 0(x) + 1 = 1.

y = tan θ , θ = π
6

27. y = sin x + 3 cos x, x = 0

solution Let f (x) = sin x + 3 cos x. Then f ′(x) = cos x − 3 sin x and f ′(0) = 1. The tangent line at x = 0 is

y = f ′(0)(x − 0) + f (0) = x + 3.
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y = sin t

1 + cos t
, t = π

3

29. y = 2(sin θ + cos θ), θ = π
3

solution Let f (θ) = 2(sin θ + cos θ). Then f ′(θ) = 2(cos θ − sin θ) and f ′( π
3 ) = 1 − √

3. The tangent line at
x = π

3 is

y = f ′ (π

3

) (
x − π

3

)
+ f

(π

3

)
= (1 − √

3)
(
x − π

3

)
+ 1 + √

3.

y = csc x − cot x, x = π
4

31. y = (cot t)(cos t), t = π

3

solution Let f (t) = (cot t)(cos t). Then

f ′(t) = (− csc2 t)(cos t) + (cot t)(− sin t) = − cot t csc t − cos t

For t = π

3
, we have

f (t) = cot
π

3
cos

π

3
=

√
3

6
, f ′(t) = − cot

π

3
csc

π

3
− cos

π

3
= −2

3
− 1

2
= −7

6

so that the equation of the tangent line is

y = f ′ (π

3

) (
x − π

3

)
+ f

(π

3

)
= −7

6
x + 7π

18
+

√
3

6

y = x cos2 x, x = π

4

33. y = x2(1 − sin x), x = 3π
2

solution Let f (x) = x2(1 − sin x). Then

f ′(x) = 2x(1 − sin x) − x2 cos x

For a = 3π

2
, we have

f (a) = 9π2

4
(1 − (−1)) = 9π2

2
, f ′(a) = 3π(1 − (−1)) − 9π2

4
(0) = 6π

so that the equation of the tangent line is

y = f ′(a)(x − a) + f (a) = 6π

(
x − 3π

2

)
+ 9π2

2
= 6πx − 9π2

2

y = sin θ − cos θ

θ
, θ = π

4

In Exercises 35–37, use Theorem 1 to verify the formula.

35.
d

dx
cot x = − csc2 x

solution cot x = cos x

sin x
. Using the quotient rule and the derivative formulas, we compute:

d

dx
cot x = d

dx

cos x

sin x
= sin x(− sin x) − cos x(cos x)

sin2 x
= −(sin2 x + cos2 x)

sin2 x
= −1

sin2 x
= − csc2 x.

d

dx
sec x = sec x tan x

37.
d

dx
csc x = − csc x cot x

solution Since csc x = 1

sin x
, we can apply the quotient rule and the two known derivatives to get:

d

dx
csc x = d

dx

1

sin x
= sin x(0) − 1(cos x)

sin2 x
= − cos x

sin2 x
= −cos x

sin x

1

sin x
= − cot x csc x.

Show that both y = sin x and y = cos x satisfy y′′ = −y.In Exercises 39–42, calculate the higher derivative.

39. f ′′(θ), f (θ) = θ sin θ

solution Let f (θ) = θ sin θ . Then

f ′(θ) = θ cos θ + sin θ

f ′′(θ) = θ(− sin θ) + cos θ + cos θ = −θ sin θ + 2 cos θ.
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d2

dt2
cos2 t

41. y′′, y′′′, y = tan x

solution Let y = tan x. Then y′ = sec2 x and by the Chain Rule,

y′′ = = d

dx
sec2 x = 2(sec x)(sec x tan x) = 2 sec2 x tan x

y′′′ = 2 sec2 x(sec2 x) + (2 sec2 x tan x) tan x = 2 sec4 +4 sec4 x tan2 x

y′′, y′′′, y = t2 sin t
43. Calculate the first five derivatives of f (x) = cos x. Then determine f (8) and f (37).

solution Let f (x) = cos x.

• Then f ′(x) = − sin x, f ′′(x) = − cos x, f ′′′(x) = sin x, f (4)(x) = cos x, and f (5)(x) = − sin x.
• Accordingly, the successive derivatives of f cycle among

{− sin x, − cos x, sin x, cos x}
in that order. Since 8 is a multiple of 4, we have f (8)(x) = cos x.

• Since 36 is a multiple of 4, we have f (36)(x) = cos x. Therefore, f (37)(x) = − sin x.

Find y(157), where y = sin x.
45. Find the values of x between 0 and 2π where the tangent line to the graph of y = sin x cos x is horizontal.

solution Let y = sin x cos x. Then

y′ = (sin x)(− sin x) + (cos x)(cos x) = cos2 x − sin2 x.

When y′ = 0, we have sin x = ± cos x. In the interval [0, 2π ], this occurs when x = π
4 , 3π

4 , 5π
4 , 7π

4 .

Plot the graph f (θ) = sec θ + csc θ over [0, 2π ] and determine the number of solutions to f ′(θ) = 0 in this
interval graphically. Then compute f ′(θ) and find the solutions.

47. Let g(t) = t − sin t .

(a) Plot the graph of g with a graphing utility for 0 ≤ t ≤ 4π .

(b) Show that the slope of the tangent line is nonnegative. Verify this on your graph.

(c) For which values of t in the given range is the tangent line horizontal?

solution Let g(t) = t − sin t .

(a) Here is a graph of g over the interval [0, 4π ].
y

x
2 4 6 8 10 12

2

4

6

8

10

12

(b) Since g′(t) = 1 − cos t ≥ 0 for all t , the slope of the tangent line to g is always nonnegative.

(c) In the interval [0, 4π ], the tangent line is horizontal when t = 0, 2π, 4π .

Let f (x) = (sin x)/x for x �= 0 and f (0) = 1.

(a) Plot f (x) on [−3π, 3π ].
(b) Show that f ′(c) = 0 if c = tan c. Use the numerical root finder on a computer algebra system to find a good
approximation to the smallest positive value c0 such that f ′(c0) = 0.

(c) Verify that the horizontal line y = f (c0) is tangent to the graph of y = f (x) at x = c0 by plotting them on the
same set of axes.

49. Show that no tangent line to the graph of f (x) = tan x has zero slope. What is the least slope of a tangent
line? Justify by sketching the graph of (tan x)′.
solution Let f (x) = tan x. Then f ′(x) = sec2 x = 1

cos2 x
. Note that f ′(x) = 1

cos2 x
has numerator 1; the equation

f ′(x) = 0 therefore has no solution. Because the maximum value of cos2 x is 1, the minimum value of f ′(x) = 1
cos2 x

is 1. Hence, the least slope for a tangent line to tan x is 1. Here is a graph of f ′.

2 4−2−4

y

x
2
4
6
8

10
12
14
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The height at time t (in seconds) of a mass, oscillating at the end of a spring, is s(t) = 300 + 40 sin t cm. Find
the velocity and acceleration at t = π

3 s.

51. The horizontal range R of a projectile launched from ground level at an angle θ and initial velocity v0 m/s is
R = (v2

0/9.8) sin θ cos θ . Calculate dR/dθ . If θ = 7π/24, will the range increase or decrease if the angle is increased
slightly? Base your answer on the sign of the derivative.

solution Let R(θ) = (v2
0/9.8) sin θ cos θ .

dR

dθ
= R′(θ) = (v2

0/9.8)(− sin2 θ + cos2 θ).

If θ = 7π/24, π
4 < θ < π

2 , so | sin θ | > | cos θ |, and dR/dθ < 0 (numerically, dR/dθ = −0.0264101v2
0). At this point,

increasing the angle will decrease the range.

Show that if π
2 < θ < π , then the distance along the x-axis between θ and the point where the tangent line

intersects the x-axis is equal to |tan θ | (Figure 4).
Further Insights and Challenges
53. Use the limit definition of the derivative and the addition law for the cosine function to prove that (cos x)′ = − sin x.

solution Let f (x) = cos x. Then

f ′(x) = lim
h→0

cos(x + h) − cos x

h
= lim

h→0

cos x cos h − sin x sin h − cos x

h

= lim
h→0

(
(− sin x)

sin h

h
+ (cos x)

cos h − 1

h

)
= (− sin x) · 1 + (cos x) · 0 = − sin x.

Use the addition formula for the tangent

tan(x + h) = tan x + tan h

1 + tan x tan h

to compute (tan x)′ directly as a limit of the difference quotients. You will also need to show that lim
h→0

tan h

h
= 1.

55. Verify the following identity and use it to give another proof of the formula (sin x)′ = cos x.

sin(x + h) − sin x = 2 cos
(
x + 1

2h
)

sin
(

1
2h

)
Hint: Use the addition formula to prove that sin(a + b) − sin(a − b) = 2 cos a sin b.

solution Recall that

sin(a + b) = sin a cos b + cos a sin b

and

sin(a − b) = sin a cos b − cos a sin b.

Subtracting the second identity from the first yields

sin(a + b) − sin(a − b) = 2 cos a sin b.

If we now set a = x + h
2 and b = h

2 , then the previous equation becomes

sin(x + h) − sin x = 2 cos

(
x + h

2

)
sin

(
h

2

)
.

Finally, we use the limit definition of the derivative of sin x to obtain

d

dx
sin x = lim

h→0

sin(x + h) − sin x

h
= lim

h→0

2 cos
(
x + h

2

)
sin

(
h
2

)
h

= lim
h→0

cos

(
x + h

2

)
· lim
h→0

sin
(

h
2

)
(

h
2

) = cos x · 1 = cos x.

In other words,
d

dx
(sin x) = cos x.

Show that a nonzero polynomial function y = f (x) cannot satisfy the equation y′′ = −y. Use this to prove
that neither sin x nor cos x is a polynomial. Can you think of another way to reach this conclusion by considering
limits as x → ∞?

57. Let f (x) = x sin x and g(x) = x cos x.

(a) Show that f ′(x) = g(x) + sin x and g′(x) = −f (x) + cos x.

(b) Verify that f ′′(x) = −f (x) + 2 cos x and
g′′(x) = −g(x) − 2 sin x.

(c) By further experimentation, try to find formulas for all higher derivatives of f and g. Hint: The kth derivative depends
on whether k = 4n, 4n + 1, 4n + 2, or 4n + 3.

solution Let f (x) = x sin x and g(x) = x cos x.

(a) We examine first derivatives: f ′(x) = x cos x + (sin x) · 1 = g(x) + sin x and g′(x) = (x)(− sin x) + (cos x) · 1 =
−f (x) + cos x; i.e., f ′(x) = g(x) + sin x and g′(x) = −f (x) + cos x.
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(b) Now look at second derivatives: f ′′(x) = g′(x) + cos x = −f (x) + 2 cos x and g′′(x) = −f ′(x) − sin x =
−g(x) − 2 sin x; i.e., f ′′(x) = −f (x) + 2 cos x and g′′(x) = −g(x) − 2 sin x.

(c) • The third derivatives are f ′′′(x) = −f ′(x) − 2 sin x = −g(x) − 3 sin x and g′′′(x) = −g′(x) − 2 cos x =
f (x) − 3 cos x; i.e., f ′′′(x) = −g(x) − 3 sin x and g′′′(x) = f (x) − 3 cos x.

• The fourth derivatives are f (4)(x) = −g′(x) − 3 cos x = f (x) − 4 cos x and g(4)(x) = f ′(x) + 3 sin x =
g(x) + 4 sin x; i.e., f (4) = f (x) − 4 cos x and g(4)(x) = g(x) + 4 sin x.

• We can now see the pattern for the derivatives, which are summarized in the following table. Here n = 0, 1, 2, . . .

k 4n 4n + 1 4n + 2 4n + 3

f (k)(x) f (x) − k cos x g(x) + k sin x −f (x) + k cos x −g(x) − k sin x

g(k)(x) g(x) + k sin x −f (x) + k cos x −g(x) − k sin x f (x) − k cos x

Figure 5 shows the geometry behind the derivative formula (sin θ)′ = cos θ . Segments BA and BD are parallel
to the x- and y-axes. Let � sin θ = sin(θ + h) − sin θ . Verify the following statements.

(a) � sin θ = BC

(b) � BDA = θ Hint: OA ⊥ AD.

(c) BD = (cos θ)AD

Now explain the following intuitive argument: If h is small, then BC ≈ BD and AD ≈ h, so � sin θ ≈ (cos θ)h and
(sin θ)′ = cos θ .

3.7 The Chain Rule

Preliminary Questions
1. Identify the outside and inside functions for each of these composite functions.

(a) y =
√

4x + 9x2 (b) y = tan(x2 + 1)

(c) y = sec5 x (d) y = (1 + x12)4

solution

(a) The outer function is
√

x, and the inner function is 4x + 9x2.

(b) The outer function is tan x, and the inner function is x2 + 1.

(c) The outer function is x5, and the inner function is sec x.

(d) The outer function is x4, and the inner function is 1 + x12.

2. Which of the following can be differentiated easily without using the Chain Rule?

(a) y = tan(7x2 + 2) (b) y = x

x + 1
(c) y = √

x · sec x (d) y = √
x cos x

(e) y = x sec
√

x (f) y = tan(4x)

solution The function x
x+1 can be differentiated using the Quotient Rule, and the function

√
x · sec x can be differ-

entiated using the Product Rule. The functions tan(7x2 + 2),
√

x cos x, and tan(4x) require the Chain Rule. x sec
√

x can
be partially evaluated using the Product Rule, but then the Chain rule is needed to differentiate one of the factors, sec

√
x.

3. Which is the derivative of f (5x)?

(a) 5f ′(x) (b) 5f ′(5x) (c) f ′(5x)

solution The correct answer is (b): 5f ′(5x).

4. Suppose that f ′(4) = g(4) = g′(4) = 1. Do we have enough information to compute F ′(4), where F(x) = f (g(x))?
If not, what is missing?

solution If F(x) = f (g(x)), then F ′(x) = f ′(g(x))g′(x) and F ′(4) = f ′(g(4))g′(4). Thus, we do not have enough
information to compute F ′(4). We are missing the value of f ′(1).

Exercises
In Exercises 1–4, fill in a table of the following type:

f (g(x)) f ′(u) f ′(g(x)) g′(x) (f ◦ g)′

1. f (u) = u3/2, g(x) = x4 + 1

solution

f (g(x)) f ′(u) f ′(g(x)) g′(x) (f ◦ g)′

(x4 + 1)3/2 3
2u1/2 3

2 (x4 + 1)1/2 4x3 6x3(x4 + 1)1/2
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f (u) = u3, g(x) = 3x + 5
3. f (u) = tan u, g(x) = x4

solution

f (g(x)) f ′(u) f ′(g(x)) g′(x) (f ◦ g)′

tan(x4) sec2 u sec2(x4) 4x3 4x3 sec2(x4)

f (u) = u4 + u, g(x) = cos x
In Exercises 5 and 6, write the function as a composite f (g(x)) and compute the derivative using the Chain Rule.

5. y = (x + sin x)4

solution Let f (x) = x4, g(x) = x + sin x, and y = f (g(x)) = (x + sin x)4. Then

dy

dx
= f ′(g(x))g′(x) = 4(x + sin x)3(1 + cos x).

y = cos(x3)7. Calculate
d

dx
cos u for the following choices of u(x):

(a) u = 9 − x2 (b) u = x−1 (c) u = tan x

solution

(a) cos(u(x)) = cos(9 − x2).

d

dx
cos(u(x)) = − sin(u(x))u′(x) = − sin(9 − x2)(−2x) = 2x sin(9 − x2).

(b) cos(u(x)) = cos(x−1).

d

dx
cos(u(x)) = − sin(u(x))u′(x) = − sin(x−1)

(
− 1

x2

)
= sin(x−1)

x2
.

(c) cos(u(x)) = cos(tan x).

d

dx
cos(u(x)) = − sin(u(x))u′(x) = − sin(tan x)(sec2 x) = − sec2 x sin(tan x).

Calculate
d

dx
f (x2 + 1) for the following choices of f (u):

(a) f (u) = sin u (b) f (u) = 3u3/2 (c) f (u) = u2 − u

9. Compute
df

dx
if

df

du
= 2 and

du

dx
= 6.

solution Assuming f is a function of u, which is in turn a function of x,

df

dx
= df

du
· du

dx
= 2(6) = 12.

Compute
df

dx

∣∣∣
x=2

if f (u) = u2, u(2) = −5, and u′(2) = −5.
In Exercises 11–22, use the General Power Rule or the Shifting and Scaling Rule to compute the derivative.

11. y = (x4 + 5)3

solution Using the General Power Rule,

d

dx
(x4 + 5)3 = 3(x4 + 5)2 d

dx
(x4 + 5) = 3(x4 + 5)2(4x3) = 12x3(x4 + 5)2.

y = (8x4 + 5)313. y = √
7x − 3

solution Using the Shifting and Scaling Rule

d

dx

√
7x − 3 = d

dx
(7x − 3)1/2 = 1

2
(7x − 3)−1/2(7) = 7

2
√

7x − 3
.

y = (4 − 2x − 3x2)515. y = (x2 + 9x)−2

solution Using the General Power Rule,

d

dx
(x2 + 9x)−2 = −2(x2 + 9x)−3 d

dx
(x2 + 9x) = −2(x2 + 9x)−3(2x + 9).

y = (x3 + 3x + 9)−4/317. y = cos4 θ

solution Using the General Power Rule,

d

dθ
cos4 θ = 4 cos3 θ

d

dθ
cos θ = −4 cos3 θ sin θ.
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y = cos(9θ + 41)19. y = (2 cos θ + 5 sin θ)9

solution Using the General Power Rule,

d

dθ
(2 cos θ + 5 sin θ)9 = 9(2 cos θ + 5 sin θ)8 d

dθ
(2 cos θ + 5 sin θ) = 9(2 cos θ + 5 sin θ)8(5 cos θ − 2 sin θ).

y = √
9 + x + sin x

21. y = sin
(√

x2 + 2x + 9
)

solution Using the general power rule,

d

dx
sin

(√
x2 + 2x + 9

)
= cos

(√
x2 + 2x + 9

)
· 1

2
(x2 + 2x + 9)−1/2 · (2x + 2)

= (x + 1)(x2 + 2x + 9)−1/2 cos
(√

x2 + 2x + 9
)

y = tan(4 − 3x) sec(3 − 4x)In Exercises 23–26, compute the derivative of f ◦ g.

23. f (u) = sin u, g(x) = 2x + 1

solution Let h(x) = f (g(x)) = sin(2x + 1). Then, applying the shifting and scaling rule, h′(x) = 2 cos(2x + 1).
Alternately,

d

dx
f (g(x)) = f ′(g(x))g′(x) = cos(2x + 1) · 2 = 2 cos(2x + 1).

f (u) = 2u + 1, g(x) = sin x
25. f (u) = u + u−1, g(x) = tan x

solution Let h(x) = f (g(x)) = tan x + cot x. Then h′(x) = sec2 x − csc2 x. Alternatively,

d

dx
f (g(x)) = f ′(g(x))g′(x) = (1 − cot2 x) sec2 x = sec2 x − csc2 x

f (u) = u

u − 1
, g(x) = csc x

In Exercises 27 and 28, find the derivatives of f (g(x)) and g(f (x)).

27. f (u) = cos u, u = g(x) = x2 + 1

solution

d

dx
f (g(x)) = f ′(g(x))g′(x) = − sin(x2 + 1)(2x) = −2x sin(x2 + 1).

d

dx
g(f (x)) = g′(f (x))f ′(x) = 2(cos x)(− sin x) = −2 sin x cos x.

f (u) = u3, u = g(x) = 1

x + 1

In Exercises 29–42, use the Chain Rule to find the derivative.

29. y = sin(x2)

solution Let y = sin
(
x2

)
. Then y′ = cos

(
x2

)
· 2x = 2x cos

(
x2

)
.

y = sin2 x
31. y =

√
t2 + 9

solution Let y =
√

t2 + 9 = (t2 + 9)1/2. Then

y′ = 1

2
(t2 + 9)−1/2(2t) = t√

t2 + 9
.

y = (t2 + 3t + 1)−5/233. y = (x4 − x3 − 1)2/3

solution Let y =
(
x4 − x3 − 1

)2/3
. Then

y′ = 2

3

(
x4 − x3 − 1

)−1/3 (
4x3 − 3x2

)
.

y = (
√

x + 1 − 1)3/235. y =
(

x + 1

x − 1

)4

solution Let y =
(

x + 1

x − 1

)4
. Then

y′ = 4

(
x + 1

x − 1

)3
· (x − 1) · 1 − (x + 1) · 1

(x − 1)2
= −8 (x + 1)3

(x − 1)5 = 8(1 + x)3

(1 − x)5 .
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y = cos3(12θ)37. y = sec
1

x

solution Let f (x) = sec
(
x−1

)
. Then

f ′(x) = sec
(
x−1

)
tan

(
x−1

)
·
(
−x−2

)
= − sec (1/x) tan (1/x)

x2
.

y = tan(θ2 − 4θ)
39. y = tan(θ + cos θ)

solution Let y = tan (θ + cos θ). Then

y′ = sec2 (θ + cos θ) · (1 − sin θ) = (1 − sin θ) sec2 (θ + cos θ) .

y =
√

cot9 θ + 1
41. y = csc(9 − 2θ2)

solution We have

y′ = − csc(9 − 2θ2) cot(9 − 2θ2) · (−4θ) = 4θ csc(9 − 2θ2) cot(9 − 2θ2)

y = cot(
√

θ − 1)
In Exercises 43–72, find the derivative using the appropriate rule or combination of rules.

43. y = tan(x2 + 4x)

solution Let y = tan(x2 + 4x). By the chain rule,

y′ = sec2(x2 + 4x) · (2x + 4) = (2x + 4) sec2(x2 + 4x).

y = sin(x2 + 4x)
45. y = x cos(1 − 3x)

solution Let y = x cos (1 − 3x). Applying the product rule and then the scaling and shifting rule,

y′ = x (− sin (1 − 3x)) · (−3) + cos (1 − 3x) · 1 = 3x sin (1 − 3x) + cos (1 − 3x) .

y = sin(x2) cos(x2)
47. y = (4t + 9)1/2

solution Let y = (4t + 9)1/2. By the shifting and scaling rule,

dy

dt
= 4

(
1

2

)
(4t + 9)−1/2 = 2(4t + 9)−1/2.

y = (z + 1)4(2z − 1)349. y = (x3 + cos x)−4

solution Let y = (x3 + cos x)−4. By the general power rule,

y′ = −4(x3 + cos x)−5(3x2 − sin x) = 4(sin x − 3x2)(x3 + cos x)−5.

y = sin(cos(sin x))
51. y = √

sin x cos x

solution We start by using a trig identity to rewrite

y = √
sin x cos x =

√
1

2
sin 2x = 1√

2
(sin 2x)1/2 .

Then, after two applications of the chain rule,

y′ = 1√
2

· 1

2
(sin 2x)−1/2 · cos 2x · 2 = cos 2x√

2 sin 2x
.

y = (9 − (5 − 2x4)7)353. y = (cos 6x + sin x2)1/2

solution Let y = (cos 6x + sin(x2))1/2. Applying the general power rule followed by both the scaling and shifting
rule and the chain rule,

y′ = 1

2

(
cos 6x + sin(x2)

)−1/2(− sin 6x · 6 + cos(x2) · 2x
) = x cos(x2) − 3 sin 6x√

cos 6x + sin(x2)
.
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y = (x + 1)1/2

x + 2

55. y = tan3 x + tan(x3)

solution Let y = tan3 x + tan(x3) = (tan x)3 + tan(x3). Applying the general power rule to the first term and the
chain rule to the second term,

y′ = 3(tan x)2 sec2 x + sec2(x3) · 3x2 = 3
(
x2 sec2(x3) + sec2 x tan2 x

)
.

y = √
4 − 3 cos x57. y =

√
z + 1

z − 1

solution Let y =
(

z + 1

z − 1

)1/2
. Applying the general power rule followed by the quotient rule,

dy

dz
= 1

2

(
z + 1

z − 1

)−1/2
· (z − 1) · 1 − (z + 1) · 1

(z − 1)2
= −1√

z + 1 (z − 1)3/2
.

y = (cos3 x + 3 cos x + 7)959. y = cos(1 + x)

1 + cos x

solution Let

y = cos(1 + x)

1 + cos x
.

Then, applying the quotient rule and the shifting and scaling rule,

dy

dx
= −(1 + cos x) sin(1 + x) + cos(1 + x) sin x

(1 + cos x)2
= cos(1 + x) sin x − cos x sin(1 + x) − sin(1 + x)

(1 + cos x)2

= sin(−1) − sin(1 + x)

(1 + cos x)2
.

The last line follows from the identity

sin(A − B) = sin A cos B − cos A sin B

with A = x and B = 1 + x.

y = sec(
√

t2 − 9)
61. y = cot7(x5)

solution Let y = cot7
(
x5

)
. Applying the general power rule followed by the chain rule,

dy

dx
= 7 cot6

(
x5

)
·
(
− csc2

(
x5

))
· 5x4 = −35x4 cot6

(
x5

)
csc2

(
x5

)
.

y = cos(1/x)

1 + x2

63. y =
(

1 + cot5(x4 + 1)
)9

solution Let y =
(

1 + cot5
(
x4 + 1

))9
. Applying the general power rule, the chain rule, and the general power rule

in succession,

dy

dx
= 9

(
1 + cot5

(
x4 + 1

))8 · 5 cot4
(
x4 + 1

)
·
(
− csc2

(
x4 + 1

))
· 4x3

= −180x3 cot4
(
x4 + 1

)
csc2

(
x4 + 1

) (
1 + cot5

(
x4 + 1

))8
.

y = √
cos 2x + sin 4x

65. y = (1 − csc2(1 − x3))6

solution Using the chain rule multiple times, we have

d

dx
(1 − csc2(1 − x3))6 = 6(1 − csc2(1 − x3))5 d

dx
(1 − csc2(1 − x3))

= 6(1 − csc2(1 − x3))5(−2 csc(1 − x3))(− csc(1 − x3) cot(1 − x3))(−3x2)

= −36x2 csc2(1 − x3) cot(1 − x3)(1 − csc2(1 − x3))5

y = sin(
√

sin θ + 1)67. y =
(
x + 1

x

)−1/2

solution Applying the chain rule gives

d

dx

(
x + 1

x

)−1/2
= −1

2

(
x + 1

x

)−3/2
(1 − x−2) = 1

2
(x−2 − 1)(x + x−1)−3/2



June 8, 2011 LTSV SSM Second Pass

S E C T I O N 3.7 The Chain Rule 143

y = sec(1 + (4 + x)−3/2)69. y =
√

1 +
√

1 + √
x

solution Let y =
(

1 +
(

1 + x1/2
)1/2

)1/2
. Applying the general power rule twice,

dy

dx
= 1

2

(
1 +

(
1 + x1/2

)1/2
)−1/2

· 1

2

(
1 + x1/2

)−1/2 · 1

2
x−1/2 = 1

8
√

x
√

1 + √
x

√
1 + √

1 + √
x

.

y =
√√

x + 1 + 1
71. y = (kx + b)−1/3; k and b any constants

solution Let y = (kx + b)−1/3, where b and k are constants. By the scaling and shifting rule,

y′ = −1

3
(kx + b)−4/3 · k = −k

3
(kx + b)−4/3.

y = 1√
kt4 + b

; k, b constants, not both zero
In Exercises 73–76, compute the higher derivative.

73.
d2

dx2
sin(x2)

solution Let f (x) = sin
(
x2

)
. Then, by the chain rule, f ′(x) = 2x cos

(
x2

)
and, by the product rule and the chain

rule,

f ′′(x) = 2x
(
− sin

(
x2

)
· 2x

)
+ 2 cos

(
x2

)
= 2 cos

(
x2

)
− 4x2 sin

(
x2

)
.

d2

dx2
(x2 + 9)575.

d3

dx3
(9 − x)8

solution Let f (x) = (9 − x)8. Then, by repeated use of the scaling and shifting rule,

f ′(x) = 8(9 − x)7 · (−1) = −8(9 − x)7

f ′′(x) = −56(9 − x)6 · (−1) = 56(9 − x)6,

f ′′′(x) = 336(9 − x)5 · (−1) = −336(9 − x)5.

d3

dx3
sin(2x)

77. The average molecular velocity v of a gas in a certain container is given by v = 29
√

T m/s, where T is the

temperature in kelvins. The temperature is related to the pressure (in atmospheres) by T = 200P . Find
dv

dP

∣∣∣∣
P=1.5

.

solution First note that when P = 1.5 atmospheres, T = 200(1.5) = 300K. Thus,

dv

dP

∣∣∣∣
P=1.5

= dv

dT

∣∣∣∣
T =300

· dT

dP

∣∣∣∣
P=1.5

= 29

2
√

300
· 200 = 290

√
3

3

m

s · atmospheres
.

Alternately, substituting T = 200P into the equation for v gives v = 290
√

2P . Therefore,

dv

dP
= 290

√
2

2
√

P
= 290√

2P
,

so

dv

dP

∣∣∣∣
P=1.5

= 290√
3

= 290
√

3

3

m

s · atmospheres
.

The power P in a circuit is P = Ri2, where R is the resistance and i is the current. Find dP/dt at t = 1
3 if

R = 1000 � and i varies according to i = sin(4πt) (time in seconds).

79. An expanding sphere has radius r = 0.4t cm at time t (in seconds). Let V be the sphere’s volume. Find dV /dt

when (a) r = 3 and (b) t = 3.

solution Let r = 0.4t , where t is in seconds (s) and r is in centimeters (cm). With V = 4
3πr3, we have

dV

dr
= 4πr2.

Thus

dV

dt
= dV

dr

dr

dt
= 4πr2 · (0.4) = 1.6πr2.

(a) When r = 3,
dV

dt
= 1.6π(3)2 ≈ 45.24 cm/s.

(b) When t = 3, we have r = 1.2. Hence
dV

dt
= 1.6π(1.2)2 ≈ 7.24 cm/s.
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A 2005 study by the Fisheries Research Services in Aberdeen, Scotland, suggests that the average length of the
species Clupea harengus (Atlantic herring) as a function of age t (in years) can be modeled by

L(t) = 32
(

1 − (1 + 0.37t + 0.068t2 + 0.0085t3 + 0.0009t4)−1
)

for 0 ≤ t ≤ 13. See Figure 2.

(a) How fast is the average length changing at age t = 6 years?

(b) At what age is the average length changing at a rate of 5 cm/yr?

81. According to a 1999 study by Starkey and Scarnecchia, the average weight (in kilograms) at age t (in years) of
channel catfish in the Lower Yellowstone River (Figure 3) is approximated by the function:

W(t) = (0.14 + 0.115t − 0.002t2 + 0.000023t3)3.4

Find the rate at which average weight is changing at age t = 10.

5 10 15 20

1

2

3

4

5

6

7

8

t (year)

W (kg)

Lower Yellowstone River

FIGURE 3 Average weight of channel catfish at age t

solution Let W(t) = (0.14 + 0.115t − 0.002t2 + 0.000023t3)3.4. Then

W ′(t) = 3.4(0.14 + 0.115t − 0.002t2 + 0.000023t3)2.4(0.115 − 0.004t + 0.000069t2)

At age t = 10,

W ′(10) ≈ 0.36 kg/yr.

Calculate M ′(0) in terms of the constants a, b, k, and m, where

M(t) =
(

a + (b − a)

(
1 + kmt + 1

2
(kmt)2

))1/m

83. With notation as in Example 7, calculate

(a)
d

dθ
sin θ

∣∣∣∣
θ=60◦

(b)
d

dθ

(
θ + tan θ

) ∣∣∣∣
θ=45◦

solution

(a)
d

dθ
sin θ

∣∣∣
θ=60◦=

d

dθ
sin

( π

180
θ
) ∣∣∣

θ=60◦ =
( π

180

)
cos

( π

180
(60)

)
= π

180

1

2
= π

360
.

(b)
d

dθ

(
θ + tan θ

) ∣∣∣
θ=45◦=

d

dθ

(
θ + tan

( π

180
θ
)) ∣∣∣

θ=45◦ = 1 + π

180
sec2

(π

4

)
= 1 + π

90
.

Assume that

f (0) = 2, f ′(0) = 3, h(0) = −1, h′(0) = 7

Calculate the derivatives of the following functions at x = 0:

(a) (f (x))3 (b) f (7x) (c) f (4x)h(5x)

85. Compute the derivative of h(sin x) at x = π
6 , assuming that h′(0.5) = 10.

solution Let u = sin x and suppose that h′(0.5) = 10. Then

d

dx
(h(u)) = dh

du

du

dx
= dh

du
cos x.

When x = π
6 , we have u = 0.5. Accordingly, the derivative of h(sin x) at x = π

6 is 10 cos
(
π
6

) = 5
√

3.

Let F(x) = f (g(x)), where the graphs of f and g are shown in Figure 4. Estimate g′(2) and f ′(g(2)) and
compute F ′(2).

In Exercises 87–90, use the table of values to calculate the derivative of the function at the given point.

x 1 4 6

f (x) 4 0 6
f ′(x) 5 7 4
g(x) 4 1 6
g′(x) 5 1

2 3

87. f (g(x)), x = 6

solution
d

dx
f (g(x))

∣∣∣∣
x=6

= f ′(g(6))g′(6) = f ′(6)g′(6) = 4 × 3 = 12.

sin(πg(x)), x = 4
89. g(

√
x), x = 16

solution
d

dx
g(

√
x)

∣∣∣∣
x=16

= g′(4)

(
1

2

)
(1/

√
16) =

(
1

2

) (
1

2

) (
1

4

)
= 1

16
.

f (2x + g(x)), x = 1
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91. The price (in dollars) of a computer component is P = 2C − 18C−1, where C is the manufacturer’s cost to produce
it. Assume that cost at time t (in years) is C = 9 + 3t−1. Determine the rate of change of price with respect to time at
t = 3.

solution
dC

dt
= −3t−2. C(3) = 10 and C′(3) = − 1

3 , so we compute:

dP

dt

∣∣∣∣
t=3

= 2C′(3) + 18

(C(3))2
C′(3) = −2

3
+ 18

100

(
−1

3

)
= −0.727

dollars

year
.

Plot the “astroid” y = (4 − x2/3)3/2 for 0 ≤ x ≤ 8. Show that the part of every tangent line in the first quadrant
has a constant length 8.

93. According to the U.S. standard atmospheric model, developed by the National Oceanic and Atmospheric Admin-
istration for use in aircraft and rocket design, atmospheric temperature T (in degrees Celsius), pressure P (kPa = 1000
pascals), and altitude h (in meters) are related by these formulas (valid in the troposphere h ≤ 11,000):

T = 15.04 − 0.000649h, P = 101.29 +
(

T + 273.1

288.08

)5.256

Use the Chain Rule to calculate dP/dh. Then estimate the change in P (in pascals, Pa) per additional meter of altitude
when h = 3000.

solution

dP

dT
= 5.256

(
T + 273.1

288.08

)4.256 (
1

288.08

)
= 6.21519 × 10−13 (273.1 + T )4.256

and dT
dh

= −0.000649◦C/m. dP
dh

= dP
dT

dT
dh

, so

dP

dh
=

(
6.21519 × 10−13 (273.1 + T )4.256

)
(−0.000649) = −4.03366 × 10−16 (288.14 − 0.000649 h)4.256.

When h = 3000,

dP

dh
= −4.03366 × 10−16(286.193)4.256 = −1.15 × 10−5 kPa/m;

therefore, for each additional meter of altitude,

�P ≈ −1.15 × 10−5 kPa = −1.15 × 10−2 Pa.

Climate scientists use the Stefan-Boltzmann Law R = σT 4 to estimate the change in the earth’s average temper-
ature T (in kelvins) caused by a change in the radiation R (in joules per square meter per second) that the earth receives
from the sun. Here σ = 5.67 × 10−8 Js−1m−2K−4. Calculate dR/dt , assuming that T = 283 and dT

dt
= 0.05 K/yr.

What are the units of the derivative?

95. In the setting of Exercise 94, calculate the yearly rate of change of T if T = 283 K and R increases at a rate of 0.5
Js−1m−2 per year.

solution By the Chain Rule,

dR

dt
= dR

dT
· dT

dt
= 4σT 3 dT

dt
.

Assuming T = 283 K and dR
dt

= 0.5 Js−1m−2 per year, it follows that author:

0.5 = 4σ(283)3 dT

dt
⇒ dT

dt
= 0.5

4σ(283)3
≈ 0.0973 kelvins/yr

Use a computer algebra system to compute f (k)(x) for k = 1, 2, 3 for the following functions:

(a) f (x) = cot(x2) (b) f (x) =
√

x3 + 1

97. Use the Chain Rule to express the second derivative of f ◦ g in terms of the first and second derivatives of f and g.

solution Let h(x) = f (g(x)). Then

h′(x) = f ′(g(x))g′(x)

and

h′′(x) = f ′(g(x))g′′(x) + g′(x)f ′′(g(x))g′(x) = f ′(g(x))g′′(x) + f ′′(g(x))
(
g′(x)

)2
.

Compute the second derivative of sin(g(x)) at x = 2, assuming that g(2) = π
4 , g′(2) = 5, and g′′(2) = 3.Further Insights and Challenges

99. Show that if f , g, and h are differentiable, then

[f (g(h(x)))]′ = f ′(g(h(x)))g′(h(x))h′(x)

solution Let f , g, and h be differentiable. Let u = h(x), v = g(u), and w = f (v). Then

dw

dx
= df

dv

dv

dx
= df

dv

dg

du

du

dx
= f ′(g(h(x))g′(h(x))h′(x)
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Show that differentiation reverses parity: If f is even, then f ′ is odd, and if f is odd, then f ′ is even. Hint:
Differentiate f (−x).

101. (a) Sketch a graph of any even function f (x) and explain graphically why f ′(x) is odd.

(b) Suppose that f ′(x) is even. Is f (x) necessarily odd? Hint: Check whether this is true for linear functions.

solution
(a) The graph of an even function is symmetric with respect to the y-axis. Accordingly, its image in the left half-plane is
a mirror reflection of that in the right half-plane through the y-axis. If at x = a ≥ 0, the slope of f exists and is equal to
m, then by reflection its slope at x = −a ≤ 0 is −m. That is, f ′(−a) = −f ′(a). Note: This means that if f ′(0) exists,
then it equals 0.

y

x
−2 −1 1 2

1

2

3

4

(b) Suppose that f ′ is even. Then f is not necessarily odd. Let f (x) = 4x + 7. Then f ′(x) = 4, an even function. But
f is not odd. For example, f (2) = 15, f (−2) = −1, but f (−2) �= −f (2).

Power Rule for Fractional Exponents Let f (u) = uq and g(x) = xp/q . Assume that g(x) is differentiable.

(a) Show that f (g(x)) = xp (recall the laws of exponents).

(b) Apply the Chain Rule and the Power Rule for whole-number exponents to show that f ′(g(x)) g′(x) = pxp−1.

(c) Then derive the Power Rule for xp/q .

103. Prove that for all whole numbers n ≥ 1,

dn

dxn
sin x = sin

(
x + nπ

2

)
Hint: Use the identity cos x = sin

(
x + π

2

)
.

solution We will proceed by induction on n. For n = 1, we find

d

dx
sin x = cos x = sin

(
x + π

2

)
,

as required. Now, suppose that for some positive integer k,

dk

dxk
sin x = sin

(
x + kπ

2

)
.

Then

dk+1

dxk+1
sin x = d

dx
sin

(
x + kπ

2

)

= cos

(
x + kπ

2

)
= sin

(
x + (k + 1)π

2

)
.

A Discontinuous Derivative Use the limit definition to show that g′(0) exists but g′(0) �= lim
x→0

g′(x), where

g(x) =

⎧⎪⎨
⎪⎩

x2 sin
1

x
x �= 0

0 x = 0

105. Chain Rule This exercise proves the Chain Rule without the special assumption made in the text. For any number
b, define a new function

F(u) = f (u) − f (b)

u − b
for all u �= b

(a) Show that if we define F(b) = f ′(b), then F(u) is continuous at u = b.

(b) Take b = g(a). Show that if x �= a, then for all u,

f (u) − f (g(a))

x − a
= F(u)

u − g(a)

x − a
2

Note that both sides are zero if u = g(a).

(c) Substitute u = g(x) in Eq. (2) to obtain

f (g(x)) − f (g(a))

x − a
= F(g(x))

g(x) − g(a)

x − a

Derive the Chain Rule by computing the limit of both sides as x → a.

solution For any differentiable function f and any number b, define

F(u) = f (u) − f (b)

u − b

for all u �= b.
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(a) Define F(b) = f ′(b). Then

lim
u→b

F (u) = lim
u→b

f (u) − f (b)

u − b
= f ′(b) = F(b),

i.e., lim
u→b

F (u) = F(b). Therefore, F is continuous at u = b.

(b) Let g be a differentiable function and take b = g(a). Let x be a number distinct from a. If we substitute u = g(a)

into Eq. (2), both sides evaluate to 0, so equality is satisfied. On the other hand, if u �= g(a), then

f (u) − f (g(a))

x − a
= f (u) − f (g(a))

u − g(a)

u − g(a)

x − a
= f (u) − f (b)

u − b

u − g(a)

x − a
= F(u)

u − g(a)

x − a
.

(c) Hence for all u, we have

f (u) − f (g(a))

x − a
= F(u)

u − g(a)

x − a
.

(d) Substituting u = g(x) in Eq. (2), we have

f (g(x)) − f (g(a))

x − a
= F(g(x))

g(x) − g(a)

x − a
.

Letting x → a gives

lim
x→a

f (g(x)) − f (g(a))

x − a
= lim

x→a

(
F(g(x))

g(x) − g(a)

x − a

)
= F(g(a))g′(a) = F(b)g′(a) = f ′(b)g′(a)

= f ′(g(a))g′(a)

Therefore (f ◦ g)′ (a) = f ′(g(a))g′(a), which is the Chain Rule.

3.8 Implicit Differentiation

Preliminary Questions
1. Which differentiation rule is used to show

d

dx
sin y = cos y

dy

dx
?

solution The chain rule is used to show that d
dx

sin y = cos y
dy
dx

.

2. One of (a)–(c) is incorrect. Find and correct the mistake.

(a)
d

dy
sin(y2) = 2y cos(y2) (b)

d

dx
sin(x2) = 2x cos(x2) (c)

d

dx
sin(y2) = 2y cos(y2)

solution

(a) This is correct. Note that the differentiation is with respect to the variable y.

(b) This is correct. Note that the differentiation is with respect to the variable x.

(c) This is incorrect. Because the differentiation is with respect to the variable x, the chain rule is needed to obtain

d

dx
sin(y2) = 2y cos(y2)

dy

dx
.

3. On an exam, Jason was asked to differentiate the equation

x2 + 2xy + y3 = 7

Find the errors in Jason’s answer: 2x + 2xy′ + 3y2 = 0

solution There are two mistakes in Jason’s answer. First, Jason should have applied the product rule to the second
term to obtain

d

dx
(2xy) = 2x

dy

dx
+ 2y.

Second, he should have applied the general power rule to the third term to obtain

d

dx
y3 = 3y2 dy

dx
.
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4. Which of (a) or (b) is equal to
d

dx
(x sin t)?

(a) (x cos t)
dt

dx
(b) (x cos t)

dt

dx
+ sin t

solution Using the product rule and the chain rule we see that

d

dx
(x sin t) = x cos t

dt

dx
+ sin t,

so the correct answer is (b).

Exercises
1. Show that if you differentiate both sides of x2 + 2y3 = 6, the result is 2x + 6y2 dy

dx
= 0. Then solve for dy/dx and

evaluate it at the point (2, 1).

solution

d

dx
(x2 + 2y3) = d

dx
6

2x + 6y2 dy

dx
= 0

2x + 6y2 dy

dx
= 0

6y2 dy

dx
= −2x

dy

dx
= −2x

6y2
.

At (2, 1), dy
dx

= −4
6 = − 2

3 .

Show that if you differentiate both sides of xy + 4x + 2y = 1, the result is (x + 2)
dy
dx

+ y + 4 = 0. Then solve
for dy/dx and evaluate it at the point (1, −1).

In Exercises 3–8, differentiate the expression with respect to x, assuming that y = f (x).

3. x2y3

solution Assuming that y depends on x, then

d

dx

(
x2y3

)
= x2 · 3y2y′ + y3 · 2x = 3x2y2y′ + 2xy3.

x3

y2

5. (x2 + y2)3/2

solution Assuming that y depends on x, then

d

dx

((
x2 + y2

)3/2
)

= 3

2

(
x2 + y2

)1/2 (
2x + 2yy′) = 3

(
x + yy′) √

x2 + y2.

tan(xy)7.
y

y + 1

solution Assuming that y depends on x, then
d

dx

y

y + 1
= (y + 1)y′ − yy′

(y + 1)2
= y′

(y + 1)2
.

sin
y

x

In Exercises 9–26, calculate the derivative with respect to x.

9. 3y3 + x2 = 5

solution Let 3y3 + x2 = 5. Then 9y2y′ + 2x = 0, and y′ = − 2x

9y2
.

y4 − 2y = 4x3 + x
11. x2y + 2x3y = x + y

solution Let x2y + 2x3y = x + y. Then

x2y′ + 2xy + 2x3y′ + 6x2y = 1 + y′

x2y′ + 2x3y′ − y′ = 1 − 2xy − 6x2y

y′ = 1 − 2xy − 6x2y

x2 + 2x3 − 1
.

xy2 + x2y5 − x3 = 3
13. x3R5 = 1

solution Let x3R5 = 1. Then x3 · 5R4R′ + R5 · 3x2 = 0, and R′ = −3x2R5

5x3R4
= −3R

5x
.
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x4 + z4 = 115.
y

x
+ x

y
= 2y

solution Let

y

x
+ x

y
= 2y.

Then

xy′ − y

x2
+ y − xy′

y2
= 2y′

(
1

x
− x

y2
− 2

)
y′ = y

x2
− 1

y

y2 − x2 − 2xy2

xy2
y′ = y2 − x2

x2y

y′ = y(y2 − x2)

x(y2 − x2 − 2xy2)
.

√
x + s = 1

x
+ 1

s

17. y−2/3 + x3/2 = 1

solution Let y−2/3 + x3/2 = 1. Then

−2

3
y−5/3y′ + 3

2
x1/2 = 0 or y′ = 9

4
x1/2y5/3.

x1/2 + y2/3 = −4y19. y + 1

y
= x2 + x

solution Let y + 1
y = x2 + x. Then

y′ − 1

y2
y′ = 2x + 1 or y′ = 2x + 1

1 − y−2
= (2x + 1)y2

y2 − 1
.

sin(xt) = t
21. sin(x + y) = x + cos y

solution Let sin(x + y) = x + cos y. Then

(1 + y′) cos(x + y) = 1 − y′ sin y

cos(x + y) + y′ cos(x + y) = 1 − y′ sin y

(cos(x + y) + sin y) y′ = 1 − cos(x + y)

y′ = 1 − cos(x + y)

cos(x + y) + sin y
.

tan(x2y) = (x + y)3
23. tan(x + y) = tan x + tan y

solution Implicitly differentiating gives

sec2(x + y) + y′ sec2(x + y) = sec2 x + y′ sec2 y

y′(sec2(x + y) − sec2 y) = sec2 x − sec2(x + y)

y′ = sec2 x − sec2(x + y)

sec2(x + y) − sec2 y

x sin y − y cos x = 2
25. x + cos(3x − y) = xy

solution Differentiate implicitly to get

1 − 3 sin(3x − y) + y′ sin(3x − y) = y + xy′

y′(sin(3x − y) − x) = y − 1 + 3 sin(3x − y)

y′ = y − 1 + 3 sin(3x − y)

sin(3x − y) − x



June 8, 2011 LTSV SSM Second Pass

150 C H A P T E R 3 DIFFERENTIATION

2x2 − x − y =
√

x4 + y4
27. Show that x + yx−1 = 1 and y = x − x2 define the same curve (except that (0, 0) is not a solution of the first
equation) and that implicit differentiation yields y′ = yx−1 − x and y′ = 1 − 2x. Explain why these formulas produce
the same values for the derivative.

solution Multiply the first equation by x and then isolate the y term to obtain

x2 + y = x ⇒ y = x − x2.

Implicit differentiation applied to the first equation yields

1 − yx−2 + x−1y′ = 0 or y′ = yx−1 − x.

From the first equation, we find yx−1 = 1 − x; upon substituting this expression into the previous derivative, we find

y′ = 1 − x − x = 1 − 2x,

which is the derivative of the second equation.

Use the method of Example 4 to compute dy
dx

∣∣
P

at P = (2, 1) on the curve y2x3 + y3x4 − 10x + y = 5.
In Exercises 29 and 30, find dy/dx at the given point.

29. (x + 2)2 − 6(2y + 3)2 = 3, (1, −1)

solution By the scaling and shifting rule,

2(x + 2) − 24(2y + 3)y′ = 0.

If x = 1 and y = −1, then

2(3) − 24(1)y′ = 0.

so that 24y′ = 6, or y′ = 1
4 .

sin2(3y) = x + y,

(
2 − π

4
,
π

4

)In Exercises 31–38, find an equation of the tangent line at the given point.

31. xy + x2y2 = 5, (2, 1)

solution Taking the derivative of both sides of xy + x2y2 = 5 yields

xy′ + y + 2xy2 + 2x2yy′ = 0.

Substituting x = 2, y = 1, we find

2y′ + 1 + 4 + 8y′ = 0 or y′ = −1

2
.

Hence, the equation of the tangent line at (2, 1) is y − 1 = − 1
2 (x − 2) or y = − 1

2x + 2.

x2/3 + y2/3 = 2, (1, 1)
33. x2 + sin y = xy2 + 1, (1, 0)

solution Taking the derivative of both sides of x2 + sin y = xy2 + 1 yields

2x + cos yy′ = y2 + 2xyy′.

Substituting x = 1, y = 0, we find

2 + y′ = 0 or y′ = −2.

Hence, the equation of the tangent line is y − 0 = −2(x − 1) or y = −2x + 2.

sin(x − y) = x cos
(
y + π

4

)
,

(
π
4 , π

4

)35. 2x1/2 + 4y−1/2 = xy, (1, 4)

solution Taking the derivative of both sides of 2x1/2 + 4y−1/2 = xy yields

x−1/2 − 2y−3/2y′ = xy′ + y.

Substituting x = 1, y = 4, we find

1 − 2

(
1

8

)
y′ = y′ + 4 or y′ = −12

5
.

Hence, the equation of the tangent line is y − 4 = − 12
5 (x − 1) or y = − 12

5 x + 32
5 .

x

x + 1
+ y

y + 1
= 1, (1, 1)
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37. sin(2x − y) = x2

y
, (0, π)

solution Using implicit differentiation,

2 cos(2x − y) − y′ cos(2x − y) = 2x

y
− x2y′

y2

At (0, π), this gives 2 cos(−π) − y′ cos(−π) = 0, or −2 + y′ = 0, so that y′ = 2. The tangent line at (0, π) is thus
y − π = 2x, or y = 2x + π .

x + √
x = y2 + y4, (1, 1)

39. Find the points on the graph of y2 = x3 − 3x + 1 (Figure 5) where the tangent line is horizontal.

(a) First show that 2yy′ = 3x2 − 3, where y′ = dy/dx.

(b) Do not solve for y′. Rather, set y′ = 0 and solve for x. This yields two values of x where the slope may be zero.

(c) Show that the positive value of x does not correspond to a point on the graph.

(d) The negative value corresponds to the two points on the graph where the tangent line is horizontal. Find their
coordinates.

2

−2

−2 −1 1 2
x

y

FIGURE 5 Graph of y2 = x3 − 3x + 1.

solution

(a) Applying implicit differentiation to y2 = x3 − 3x + 1, we have

2y
dy

dx
= 3x2 − 3.

(b) Setting y′ = 0 we have 0 = 3x2 − 3, so x = 1 or x = −1.

(c) If we return to the equation y2 = x3 − 3x + 1 and substitute x = 1, we obtain the equation y2 = −1, which has no
real solutions.

(d) Substituting x = −1 into y2 = x3 − 3x + 1 yields

y2 = (−1)3 − 3(−1) + 1 = −1 + 3 + 1 = 3,

so y = √
3 or −√

3. The tangent is horizontal at the points (−1,
√

3) and (−1, −√
3).

Show, by differentiating the equation, that if the tangent line at a point (x, y) on the curve x2y − 2x + 8y = 2 is
horizontal, then xy = 1. Then substitute y = x−1 in x2y − 2x + 8y = 2 to show that the tangent line is horizontal
at the points

(
2, 1

2

)
and

( − 4, − 1
4

)
.

41. Find all points on the graph of 3x2 + 4y2 + 3xy = 24 where the tangent line is horizontal (Figure 6).

x

y

FIGURE 6 Graph of 3x2 + 4y2 + 3xy = 24.

solution Differentiating the equation 3x2 + 4y2 + 3xy = 24 implicitly yields

6x + 8yy′ + 3xy′ + 3y = 0,

so

y′ = −6x + 3y

8y + 3x
.

Setting y′ = 0 leads to 6x + 3y = 0, or y = −2x. Substituting y = −2x into the equation 3x2 + 4y2 + 3xy = 24 yields

3x2 + 4(−2x)2 + 3x(−2x) = 24,
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or 13x2 = 24. Thus, x = ±2
√

78/13, and the coordinates of the two points on the graph of 3x2 + 4y2 + 3xy = 24
where the tangent line is horizontal are(

2
√

78

13
, −4

√
78

13

)
and

(
−2

√
78

13
,

4
√

78

13

)
.

Show that no point on the graph of x2 − 3xy + y2 = 1 has a horizontal tangent line.
43. Figure 1 shows the graph of y4 + xy = x3 − x + 2. Find dy/dx at the two points on the graph with x-coordinate 0
and find an equation of the tangent line at (1, 1).

solution Consider the equation y4 + xy = x3 − x + 2. Then 4y3y′ + xy′ + y = 3x2 − 1, and

y′ = 3x2 − y − 1

x + 4y3
.

• Substituting x = 0 into y4 + xy = x3 − x + 2 gives y4 = 2, which has two real solutions, y = ±21/4. When
y = 21/4, we have

y′ = −21/4 − 1

4
(
23/4

) = −
√

2 + 4√2

8
≈ −0.3254.

When y = −21/4, we have

y′ = 21/4 − 1

−4
(
23/4

) = −
√

2 − 4√2

8
≈ −0.02813.

• At the point (1, 1), we have y′ = 1
5 . At this point the tangent line is y − 1 = 1

5 (x − 1) or y = 1
5x + 4

5 .

Folium of Descartes The curve x3 + y3 = 3xy (Figure 7) was first discussed in 1638 by the French philosopher-
mathematician René Descartes, who called it the folium (meaning “leaf”). Descartes’s scientific colleague Gilles de
Roberval called it the jasmine flower. Both men believed incorrectly that the leaf shape in the first quadrant was
repeated in each quadrant, giving the appearance of petals of a flower. Find an equation of the tangent line at the point( 2

3 , 4
3

)
.

45. Find a point on the folium x3 + y3 = 3xy other than the origin at which the tangent line is horizontal.

solution Using implicit differentiation, we find

d

dx

(
x3 + y3

)
= d

dx
(3xy)

3x2 + 3y2y′ = 3(xy′ + y)

Setting y′ = 0 in this equation yields 3x2 = 3y or y = x2. If we substitute this expression into the original equation
x3 + y3 = 3xy, we obtain:

x3 + x6 = 3x(x2) = 3x3 or x3(x3 − 2) = 0.

One solution of this equation is x = 0 and the other is x = 21/3. Thus, the two points on the folium x3 + y3 = 3xy at
which the tangent line is horizontal are (0, 0) and (21/3, 22/3).

Plot x3 + y3 = 3xy + b for several values of b and describe how the graph changes as b → 0. Then compute

dy/dx at the point (b1/3, 0). How does this value change as b → ∞? Do your plots confirm this conclusion?

47. Find the x-coordinates of the points where the tangent line is horizontal on the trident curve xy = x3 − 5x2 + 2x − 1,
so named by Isaac Newton in his treatise on curves published in 1710 (Figure 8).

Hint: 2x3 − 5x2 + 1 = (2x − 1)(x2 − 2x − 1).

20

−20

−2 86

4

2
x

y

FIGURE 8 Trident curve: xy = x3 − 5x2 + 2x − 1.

solution Take the derivative of the equation of a trident curve:

xy = x3 − 5x2 + 2x − 1

to obtain

xy′ + y = 3x2 − 10x + 2.

Setting y′ = 0 gives y = 3x2 − 10x + 2. Substituting this into the equation of the trident, we have

xy = x(3x2 − 10x + 2) = x3 − 5x2 + 2x − 1
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or

3x3 − 10x2 + 2x = x3 − 5x2 + 2x − 1

Collecting like terms and setting to zero, we have

0 = 2x3 − 5x2 + 1 = (2x − 1)(x2 − 2x − 1).

Hence, x = 1
2 , 1 ± √

2.

Find an equation of the tangent line at each of the four points on the curve (x2 + y2 − 4x)2 = 2(x2 + y2) where
x = 1. This curve (Figure 9) is an example of a limaçon of Pascal, named after the father of the French philosopher
Blaise Pascal, who first described it in 1650.

49. Find the derivative at the points where x = 1 on the folium (x2 + y2)2 = 25
4 xy2. See Figure 10.

2

−2

1
x

y

FIGURE 10 Folium curve: (x2 + y2)2 = 25

4
xy2

solution First, find the points (1, y) on the curve. Setting x = 1 in the equation (x2 + y2)2 = 25
4 xy2 yields

(1 + y2)2 = 25

4
y2

y4 + 2y2 + 1 = 25

4
y2

4y4 + 8y2 + 4 = 25y2

4y4 − 17y2 + 4 = 0

(4y2 − 1)(y2 − 4) = 0

y2 = 1

4
or y2 = 4

Hence y = ± 1
2 or y = ±2. Taking d

dx
of both sides of the original equation yields

2(x2 + y2)(2x + 2yy′) = 25

4
y2 + 25

2
xyy′

4(x2 + y2)x + 4(x2 + y2)yy′ = 25

4
y2 + 25

2
xyy′

(4(x2 + y2) − 25

2
x)yy′ = 25

4
y2 − 4(x2 + y2)x

y′ =
25
4 y2 − 4(x2 + y2)x

y(4(x2 + y2) − 25
2 x)

• At (1, 2), x2 + y2 = 5, and

y′ =
25
4 22 − 4(5)(1)

2(4(5) − 25
2 (1))

= 1

3
.

• At (1, −2), x2 + y2 = 5 as well, and

y′ =
25
4 (−2)2 − 4(5)(1)

−2(4(5) − 25
2 (1))

= −1

3
.

• At (1, 1
2 ), x2 + y2 = 5

4 , and

y′ =
25
4

(
1
2

)2 − 4
(

5
4

)
(1)

1
2

(
4

(
5
4

)
− 25

2 (1)
) = 11

12
.
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• At (1, − 1
2 ), x2 + y2 = 5

4 , and

y′ =
25
4

(
− 1

2

)2 − 4
(

5
4

)
(1)

− 1
2

(
4

(
5
4

)
− 25

2 (1)
) = − 11

12
.

The folium and its tangent lines are plotted below:

2

1

−1

−2

21.510.5
x

y

Plot (x2 + y2)2 = 12(x2 − y2) + 2 for −4 ≤ x ≤ 4, 4 ≤ y ≤ 4 using a computer algebra system. How many
horizontal tangent lines does the curve appear to have? Find the points where these occur.

Exercises 51–53: If the derivative dx/dy (instead of dy/dx = 0) exists at a point and dx/dy = 0, then the tangent line
at that point is vertical.

51. Calculate dx/dy for the equation y4 + 1 = y2 + x2 and find the points on the graph where the tangent line is vertical.

solution Let y4 + 1 = y2 + x2. Differentiating this equation with respect to y yields

4y3 = 2y + 2x
dx

dy
,

so

dx

dy
= 4y3 − 2y

2x
= y(2y2 − 1)

x
.

Thus,
dx

dy
= 0 when y = 0 and when y = ±

√
2

2
. Substituting y = 0 into the equation y4 + 1 = y2 + x2 gives

1 = x2, so x = ±1. Substituting y = ±
√

2

2
, gives x2 = 3/4, so x = ±

√
3

2
. Thus, there are six points on the graph of

y4 + 1 = y2 + x2 where the tangent line is vertical:

(1, 0), (−1, 0),

(√
3

2
,

√
2

2

)
,

(
−

√
3

2
,

√
2

2

)
,

(√
3

2
, −

√
2

2

)
,

(
−

√
3

2
, −

√
2

2

)
.

Show that the tangent lines at x = 1 ± √
2 to the conchoid with equation (x − 1)2(x2 + y2) = 2x2 are vertical

(Figure 11).

53. Use a computer algebra system to plot y2 = x3 − 4x for −4 ≤ x ≤ 4, 4 ≤ y ≤ 4. Show that if dx/dy = 0,
then y = 0. Conclude that the tangent line is vertical at the points where the curve intersects the x-axis. Does your plot
confirm this conclusion?

solution A plot of the curve y2 = x3 − 4x is shown below.

1

2

−1

−2

−1−2 321
x

y

Differentiating the equation y2 = x3 − 4x with respect to y yields

2y = 3x2 dx

dy
− 4

dx

dy
,

or

dx

dy
= 2y

3x2 − 4
.

From here, it follows that dx
dy

= 0 when y = 0, so the tangent line to this curve is vertical at the points where the curve
intersects the x-axis. This conclusion is confirmed by the plot of the curve shown above.
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Show that for all points P on the graph in Figure 12, the segments OP and PR have equal length.
In Exercises 55–58, use implicit differentiation to calculate higher derivatives.

55. Consider the equation y3 − 3
2x2 = 1.

(a) Show that y′ = x/y2 and differentiate again to show that

y′′ = y2 − 2xyy′
y4

(b) Express y′′ in terms of x and y using part (a).

solution

(a) Let y3 − 3
2x2 = 1. Then 3y2y′ − 3x = 0, and y′ = x/y2. Therefore,

y′′ = y2 · 1 − x · 2yy′
y4

= y2 − 2xyy′
y4

.

(b) Substituting the expression for y′ into the result for y′′ gives

y′′ =
y2 − 2xy

(
x/y2

)
y4

= y3 − 2x2

y5 .

Use the method of the previous exercise to show that y′′ = −y−3 on the circle x2 + y2 = 1.
57. Calculate y′′ at the point (1, 1) on the curve xy2 + y − 2 = 0 by the following steps:

(a) Find y′ by implicit differentiation and calculate y′ at the point (1, 1).

(b) Differentiate the expression for y′ found in (a). Then compute y′′ at (1, 1) by substituting x = 1, y = 1, and the
value of y′ found in (a).

solution Let xy2 + y − 2 = 0.

(a) Then x · 2yy′ + y2 · 1 + y′ = 0, and y′ = − y2

2xy + 1
. At (x, y) = (1, 1), we have y′ = −1

3
.

(b) Therefore,

y′′ = − (2xy + 1)
(
2yy′) − y2 (

2xy′ + 2y
)

(2xy + 1)2
= −

(3)
(
− 2

3

)
− (1)

(
− 2

3 + 2
)

32
= −−6 + 2 − 6

27
= 10

27

given that (x, y) = (1, 1) and y′ = − 1
3 .

Use the method of the previous exercise to compute y′′ at the point (1, 1) on the curve x3 + y3 = 3x + y − 2.
In Exercises 59–61, x and y are functions of a variable t and use implicit differentiation to relate dy/dt and dx/dt .

59. Differentiate xy = 1 with respect to t and derive the relation
dy

dt
= −y

x

dx

dt
.

solution Let xy = 1. Then x
dy

dt
+ y

dx

dt
= 0, and

dy

dt
= −y

x

dx

dt
.

Differentiate x3 + 3xy2 = 1 with respect to t and express dy/dt in terms of dx/dt , as in Exercise 59.
61. Calculate dy/dt in terms of dx/dt .

(a) x3 − y3 = 1 (b) y4 + 2xy + x2 = 0

solution

(a) Taking the derivative of both sides of the equation x3 − y3 = 1 with respect to t yields

3x2 dx

dt
− 3y2 dy

dt
= 0 or

dy

dt
= x2

y2

dx

dt
.

(b) Taking the derivative of both sides of the equation y4 + 2xy + x2 = 0 with respect to t yields

4y3 dy

dt
+ 2x

dy

dt
+ 2y

dx

dt
+ 2x

dx

dt
= 0,

or

dy

dt
= − x + y

2y3 + x

dx

dt
.

The volume V and pressure P of gas in a piston (which vary in time t) satisfy PV 3/2 = C, where C is a
constant. Prove that

dP/dt = −3 P
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Further Insights and Challenges
63. Show that if P lies on the intersection of the two curves x2 − y2 = c and xy = d (c, d constants), then the tangents
to the curves at P are perpendicular.

solution Let C1 be the curve described by x2 − y2 = c, and let C2 be the curve described by xy = d. Suppose that

P = (x0, y0) lies on the intersection of the two curves x2 − y2 = c and xy = d. Since x2 − y2 = c, the chain rule gives
us 2x − 2yy′ = 0, so that y′ = 2x

2y
= x

y . The slope to the tangent line to C1 is x0
y0

. On the curve C2, since xy = d, the

product rule yields that xy′ + y = 0, so that y′ = − y
x . Therefore the slope to the tangent line to C2 is − y0

x0
. The two

slopes are negative reciprocals of one another, hence the tangents to the two curves are perpendicular.

The lemniscate curve (x2 + y2)2 = 4(x2 − y2) was discovered by Jacob Bernoulli in 1694, who noted that it is
“shaped like a figure 8, or a knot, or the bow of a ribbon.” Find the coordinates of the four points at which the tangent
line is horizontal (Figure 13).

65. Divide the curve in Figure 14

y5 − y = x2y + x + 1

into five branches, each of which is the graph of a function. Sketch the branches.

2

−2

−2−4 42
x

y

FIGURE 14 Graph of y5 − y = x2y + x + 1.

solution The branches are:

• Upper branch:

−2−4 42
x

2

−2

y

• Lower part of lower left curve:

x

y

−4 −3 −2 −1

−2

−1

1

• Upper part of lower left curve:

x

y

−4 −3 −2 −1

−1

1

−2

• Upper part of lower right curve:

y

−1

−2

1

1 2 3 4
x
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• Lower part of lower right curve:

y

−1

−2

1

1 2 3 4
x

3.9 Related Rates

Preliminary Questions
1. Assign variables and restate the following problem in terms of known and unknown derivatives (but do not solve it):

How fast is the volume of a cube increasing if its side increases at a rate of 0.5 cm/s?

solution Let s and V denote the length of the side and the corresponding volume of a cube, respectively. Determine
dV
dt

if ds
dt

= 0.5 cm/s.

2. What is the relation between dV /dt and dr/dt if V = ( 4
3

)
πr3?

solution Applying the general power rule, we find dV
dt

= 4πr2 dr
dt

. Therefore, the ratio is 4πr2.

In Questions 3 and 4, water pours into a cylindrical glass of radius 4 cm. Let V and h denote the volume and water level
respectively, at time t .

3. Restate this question in terms of dV /dt and dh/dt : How fast is the water level rising if water pours in at a rate of
2 cm3/min?

solution Determine dh
dt

if dV
dt

= 2 cm3/min.

4. Restate this question in terms of dV /dt and dh/dt : At what rate is water pouring in if the water level rises at a rate
of 1 cm/min?

solution Determine dV
dt

if dh
dt

= 1 cm/min.

Exercises
In Exercises 1 and 2, consider a rectangular bathtub whose base is 18 ft2.

1. How fast is the water level rising if water is filling the tub at a rate of 0.7 ft3/min?

solution Let h be the height of the water in the tub and V be the volume of the water. Then V = 18h and
dV

dt
= 18

dh

dt
.

Thus

dh

dt
= 1

18

dV

dt
= 1

18
(0.7) ≈ 0.039 ft/min.

At what rate is water pouring into the tub if the water level rises at a rate of 0.8 ft/min?
3. The radius of a circular oil slick expands at a rate of 2 m/min.

(a) How fast is the area of the oil slick increasing when the radius is 25 m?

(b) If the radius is 0 at time t = 0, how fast is the area increasing after 3 min?

solution Let r be the radius of the oil slick and A its area.

(a) Then A = πr2 and
dA

dt
= 2πr

dr

dt
. Substituting r = 25 and dr

dt
= 2, we find

dA

dt
= 2π (25) (2) = 100π ≈ 314.16 m2/min.

(b) Since dr
dt

= 2 and r(0) = 0, it follows that r(t) = 2t . Thus, r(3) = 6 and

dA

dt
= 2π (6) (2) = 24π ≈ 75.40 m2/min.
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At what rate is the diagonal of a cube increasing if its edges are increasing at a rate of 2 cm/s?In Exercises 5–8, assume that the radius r of a sphere is expanding at a rate of 30 cm/min. The volume of a sphere is
V = 4

3πr3 and its surface area is 4πr2. Determine the given rate.

5. Volume with respect to time when r = 15 cm.

solution As the radius is expanding at 30 centimeters per minute, we know that dr
dt

= 30 cm/min. Taking d
dt

of the

equation V = 4
3πr3 yields

dV

dt
= 4

3
π

(
3r2 dr

dt

)
= 4πr2 dr

dt
.

Substituting r = 15 and dr
dt

= 30 yields

dV

dt
= 4π(15)2(30) = 27,000π cm3/min.

Volume with respect to time at t = 2 min, assuming that r = 0 at t = 0.
7. Surface area with respect to time when r = 40 cm.

solution Taking the derivative of both sides of A = 4πr2 with respect to t yields dA
dt

= 8πr dr
dt

. dr
dt

= 30, so

dA

dt
= 8π(40)(30) = 9600π cm2/min.

Surface area with respect to time at t = 2 min, assuming that r = 10 at t = 0.In Exercises 9–12, refer to a 5-meter ladder sliding down a wall, as in Figures 1 and 2. The variable h is the height of the
ladder’s top at time t , and x is the distance from the wall to the ladder’s bottom.

9. Assume the bottom slides away from the wall at a rate of 0.8 m/s. Find the velocity of the top of the ladder at t = 2 s
if the bottom is 1.5 m from the wall at t = 0 s.

solution Let x denote the distance from the base of the ladder to the wall, and h denote the height of the top of the

ladder from the floor. The ladder is 5 m long, so h2 + x2 = 52. At any time t , x = 1.5 + 0.8t . Therefore, at time t = 2,
the base is x = 1.5 + 0.8(2) = 3.1 m from the wall. Furthermore, we have

2h
dh

dt
+ 2x

dx

dt
= 0 so

dh

dt
= −x

h

dx

dt
.

Substituting x = 3.1, h =
√

52 − 3.12 and dx
dt

= 0.8, we obtain

dh

dt
= − 3.1√

52 − 3.12
(0.8) ≈ −0.632 m/s.

Suppose that the top is sliding down the wall at a rate of 1.2 m/s. Calculate dx/dt when h = 3 m.
11. Suppose that h(0) = 4 and the top slides down the wall at a rate of 1.2 m/s. Calculate x and dx/dt at t = 2 s.

solution Let h and x be the height of the ladder’s top and the distance from the wall of the ladder’s bottom, respectively.

After 2 seconds, h = 4 + 2 (−1.2) = 1.6 m. Since h2 + x2 = 52,

x =
√

52 − 1.62 = 4.737 m.

Furthermore, we have 2h
dh

dt
+ 2x

dx

dt
= 0, so that

dx

dt
= −h

x

dh

dt
. Substituting h = 1.6, x = 4.737, and dh

dt
= −1.2, we

find

dx

dt
= − 1.6

4.737
(−1.2) ≈ 0.405 m/s.

What is the relation between h and x at the moment when the top and bottom of the ladder move at the same
speed?

13. A conical tank has height 3 m and radius 2 m at the top. Water flows in at a rate of 2 m3/min. How fast is the water
level rising when it is 2 m?

solution Consider the cone of water in the tank at a certain instant. Let r be the radius of its (inverted) base, h its

height, and V its volume. By similar triangles, r
h

= 2
3 or r = 2

3h and thus V = 1
3πr2h = 4

27πh3. Therefore,

dV

dt
= 4

9πh2 dh

dt
,

and

dh

dt
= 9

4πh2

dV

dt
.

Substituting h = 2 and dV
dt

= 2 yields

dh

dt
= 9

4π (2)2
× 2 = 9

8π
≈ −0.36 m/min.
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Follow the same set-up as Exercise 13, but assume that the water level is rising at a rate of 0.3 m/min when it is
2 m. At what rate is water flowing in?

15. The radius r and height h of a circular cone change at a rate of 2 cm/s. How fast is the volume of the cone increasing
when r = 10 and h = 20?

solution Let r be the radius, h be the height, and V be the volume of a right circular cone. Then V = 1
3πr2h, and

dV

dt
= 1

3
π

(
r2 dh

dt
+ 2hr

dr

dt

)
.

When r = 10, h = 20, and dr
dt

= dh
dt

= 2, we find

dV

dt
= π

3

(
102 · 2 + 2 · 20 · 10 · 2

)
= 1000π

3
≈ 1047.20 cm3/s.

A road perpendicular to a highway leads to a farmhouse located 2 km away (Figure 8). An automobile travels past
the farmhouse at a speed of 80 km/h. How fast is the distance between the automobile and the farmhouse increasing
when the automobile is 6 km past the intersection of the highway and the road?

17. A man of height 1.8 meters walks away from a 5-meter lamppost at a speed of 1.2 m/s (Figure 9). Find the rate at
which his shadow is increasing in length.

x y

5

FIGURE 9

solution Since the man is moving at a rate of 1.2 m/s, his distance from the light post at any given time is x = 1.2t .
Knowing the man is 1.8 meters tall and that the length of his shadow is denoted by y, we set up a proportion of similar
triangles from the diagram:

y

1.8
= 1.2t + y

5
.

Clearing fractions and solving for y yields

y = 0.675t.

Thus, dy/dt = 0.675 meters per second is the rate at which the length of the shadow is increasing.

As Claudia walks away from a 264-cm lamppost, the tip of her shadow moves twice as fast as she does. What is
Claudia’s height?

19. At a given moment, a plane passes directly above a radar station at an altitude of 6 km.

(a) The plane’s speed is 800 km/h. How fast is the distance between the plane and the station changing half a minute
later?

(b) How fast is the distance between the plane and the station changing when the plane passes directly above the station?

solution Let x be the distance of the plane from the station along the ground and h the distance through the air.

(a) By the Pythagorean Theorem, we have

h2 = x2 + 62 = x2 + 36.

Thus 2h
dh

dt
= 2x

dx

dt
, and

dh

dt
= x

h

dx

dt
. After half a minute, x = 1

2 × 1
60 × 800 = 20

3 kilometers. With x = 20
3 ,

h =
√(

20

3

)2
+ 36 = 1

3

√
724 = 2

3

√
181 ≈ 8.969 km,

and dx
dt

= 800,

dh

dt
= 20

3

3

2
√

181
× 800 = 8000√

181
≈ 594.64 km/h.

(b) When the plane is directly above the station, x = 0, so the distance between the plane and the station is not changing,
for at this instant we have

dh

dt
= 0

6
× 800 = 0 km/h.
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In the setting of Exercise 19, let θ be the angle that the line through the radar station and the plane makes with the
horizontal. How fast is θ changing 12 min after the plane passes over the radar station?

21. A hot air balloon rising vertically is tracked by an observer located 4 km from the lift-off point. At a certain moment,
the angle between the observer’s line of sight and the horizontal is π

5 , and it is changing at a rate of 0.2 rad/min. How fast
is the balloon rising at this moment?

solution Let y be the height of the balloon (in miles) and θ the angle between the line-of-sight and the horizontal. Via

trigonometry, we have tan θ = y

4
. Therefore,

sec2 θ · dθ

dt
= 1

4

dy

dt
,

and

dy

dt
= 4

dθ

dt
sec2 θ.

Using dθ
dt

= 0.2 and θ = π
5 yields

dy

dt
= 4 (0.2)

1

cos2 (π/5)
≈ 1.22 km/min.

A laser pointer is placed on a platform that rotates at a rate of 20 revolutions per minute. The beam hits a wall 8 m
away, producing a dot of light that moves horizontally along the wall. Let θ be the angle between the beam and the
line through the searchlight perpendicular to the wall (Figure 10). How fast is this dot moving when θ = π

6 ?

23. A rocket travels vertically at a speed of 1200 km/h. The rocket is tracked through a telescope by an observer located
16 km from the launching pad. Find the rate at which the angle between the telescope and the ground is increasing 3 min
after lift-off.

solution Let y be the height of the rocket and θ the angle between the telescope and the ground. Using trigonometry,
we have tan θ = y

16 . Therefore,

sec2 θ · dθ

dt
= 1

16

dy

dt
,

and

dθ

dt
= cos2 θ

16

dy

dt
.

After the rocket has traveled for 3 minutes (or 1
20 hour), its height is 1

20 × 1200 = 60 km. At this instant, tan θ = 60/16 =
15/4 and thus

cos θ = 4√
152 + 42

= 4√
241

.

Finally,

dθ

dt
= 16/241

16
(1200) = 1200

241
≈ 4.98 rad/hr.

Using a telescope, you track a rocket that was launched 4 km away, recording the angle θ between the telescope
and the ground at half-second intervals. Estimate the velocity of the rocket if θ(10) = 0.205 and θ(10.5) = 0.225.

25. A police car traveling south toward Sioux Falls at 160 km/h pursues a truck traveling east away from Sioux Falls,
Iowa, at 140 km/h (Figure 11). At time t = 0, the police car is 20 km north and the truck is 30 km east of Sioux Falls.
Calculate the rate at which the distance between the vehicles is changing:

(a) At time t = 0

(b) 5 minutes later

160 km/h

140 km/h

Sioux Falls

x

y

FIGURE 11

solution Let y denote the distance the police car is north of Sioux Falls and x the distance the truck is east of Sioux
Falls. Then y = 20 − 160t and x = 30 + 140t . If � denotes the distance between the police car and the truck, then

�2 = x2 + y2 = (30 + 140t)2 + (20 − 160t)2
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and

�
d�

dt
= 140(30 + 140t) − 160(20 − 160t) = 1000 + 45,200t.

(a) At t = 0, � =
√

302 + 202 = 10
√

13, so

d�

dt
= 1000

10
√

13
= 100

√
13

13
≈ 27.735 km/h.

(b) At t = 5 minutes = 1
12 hour,

� =
√(

30 + 140 · 1

12

)2
+

(
20 − 160 · 1

12

)2
≈ 42.197 km,

and

d�

dt
= 1000 + 45,200 · 1

12
42.197

≈ 112.962 km/h.

A car travels down a highway at 25 m/s. An observer stands 150 m from the highway.

(a) How fast is the distance from the observer to the car increasing when the car passes in front of the observer?
Explain your answer without making any calculations.

(b) How fast is the distance increasing 20 s later?

27. In the setting of Example 5, at a certain moment, the tractor’s speed is 3 m/s and the bale is rising at 2 m/s. How far
is the tractor from the bale at this moment?

solution From Example 5, we have the equation

x dx
dt√

x2 + 4.52
= dh

dt
,

where x denote the distance from the tractor to the bale and h denotes the height of the bale. Given

dx

dt
= 3 and

dh

dt
= 2,

it follows that

3x√
4.52 + x2

= 2,

which yields x = √
16.2 ≈ 4.025 m.

Placido pulls a rope attached to a wagon through a pulley at a rate of q m/s. With dimensions as in Figure 12:

(a) Find a formula for the speed of the wagon in terms of q and the variable x in the figure.

(b) Find the speed of the wagon when x = 0.6 if q = 0.5 m/s.

29. Julian is jogging around a circular track of radius 50 m. In a coordinate system with origin at the center of the track,
Julian’s x-coordinate is changing at a rate of −1.25 m/s when his coordinates are (40, 30). Find dy/dt at this moment.

solution We have x2 + y2 = 502, so

2x
dx

dt
+ 2y

dy

dt
= 0 or

dy

dt
= −x

y

dx

dt
.

Given x = 40, y = 30 and dx/dt = −1.25, we find

dy

dt
= −40

30
(−1.25) = 5

3
m/s.

A particle moves counterclockwise around the ellipse with equation 9x2 + 16y2 = 25 (Figure 13).

(a) In which of the four quadrants is dx/dt > 0? Explain.

(b) Find a relation between dx/dt and dy/dt .

(c) At what rate is the x-coordinate changing when the particle passes the point (1, 1) if its y-coordinate is increasing
at a rate of 6 m/s?

(d) Find dy/dt when the particle is at the top and bottom of the ellipse.

In Exercises 31 and 32, assume that the pressure P (in kilopascals) and volume V (in cubic centimeters) of an expanding
gas are related by PV b = C, where b and C are constants (this holds in an adiabatic expansion, without heat gain or
loss).

31. Find dP/dt if b = 1.2, P = 8 kPa, V = 100 cm2, and dV /dt = 20 cm3/min.

solution Let PV b = C. Then

PbV b−1 dV

dt
+ V b dP

dt
= 0,

and

dP

dt
= −Pb

V

dV

dt
.

Substituting b = 1.2, P = 8, V = 100, and dV
dt

= 20, we find

dP

dt
= − (8) (1.2)

100
(20) = −1.92 kPa/min.
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Find b if P = 25 kPa, dP/dt = 12 kPa/min, V = 100 cm2, and dV /dt = 20 cm3/min.
33. The base x of the right triangle in Figure 14 increases at a rate of 5 cm/s, while the height remains constant at h = 20.
How fast is the angle θ changing when x = 20?

x

q

20

FIGURE 14

solution We have cot θ = x

20
, from which

− csc2 θ · dθ

dt
= 1

20

dx

dt

and thus

dθ

dt
= − sin2 θ

20

dx

dt
.

We are given dx
dt

= 5 and when x = h = 20, θ = π
4 . Hence,

dθ

dt
= − sin2 (

π
4

)
20

(5) = −1

8
rad/s.

Two parallel paths 15 m apart run east-west through the woods. Brooke jogs east on one path at 10 km/h, while
Jamail walks west on the other path at 6 km/h. If they pass each other at time t = 0, how far apart are they 3 s later,
and how fast is the distance between them changing at that moment?

35. A particle travels along a curve y = f (x) as in Figure 15. Let L(t) be the particle’s distance from the origin.

(a) Show that
dL

dt
=

(
x + f (x)f ′(x)√

x2 + f (x)2

)
dx

dt
if the particle’s location at time t is P = (x, f (x)).

(b) Calculate L′(t) when x = 1 and x = 2 if f (x) =
√

3x2 − 8x + 9 and dx/dt = 4.

x

y

y = f (x)

O

P

θ

1 2

2

FIGURE 15

solution
(a) If the particle’s location at time t is P = (x, f (x)), then

L(t) =
√

x2 + f (x)2.

Thus,

dL

dt
= 1

2
(x2 + f (x)2)−1/2

(
2x

dx

dt
+ 2f (x)f ′(x)

dx

dt

)
=

(
x + f (x)f ′(x)√

x2 + f (x)2

)
dx

dt
.

(b) Given f (x) =
√

3x2 − 8x + 9, it follows that

f ′(x) = 3x − 4√
3x2 − 8x + 9

.

Let’s start with x = 1. Then f (1) = 2, f ′(1) = − 1
2 and

dL

dt
=

(
1 − 1√
12 + 22

)
(4) = 0.

With x = 2, f (2) = √
5, f ′(2) = 2/

√
5 and

dL

dt
= 2 + 2√

22 + √
5

2
(4) = 16

3
.
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Let θ be the angle in Figure 15, where P = (x, f (x)). In the setting of the previous exercise, show that

dθ

dt
=

(
xf ′(x) − f (x)

x2 + f (x)2

)
dx

dt

Hint: Differentiate tan θ = f (x)/x and observe that cos θ = x/
√

x2 + f (x)2.

Exercises 37 and 38 refer to the baseball diamond (a square of side 90 ft) in Figure 16.

20 ft/s

15 ft/s

s

90 ft

First base

Second base

Home plate

FIGURE 16

37. A baseball player runs from home plate toward first base at 20 ft/s. How fast is the player’s distance from second base
changing when the player is halfway to first base?

solution Let x be the distance of the player from home plate and h the player’s distance from second base. Using the

Pythagorean theorem, we have h2 = 902 + (90 − x)2. Therefore,

2h
dh

dt
= 2 (90 − x)

(
− dx

dt

)
,

and
dh

dt
= −90 − x

h

dx

dt
.

We are given dx
dt

= 20. When the player is halfway to first base, x = 45 and h =
√

902 + 452, so

dh

dt
= − 45√

902 + 452
(20) = −4

√
5 ≈ −8.94 ft/s.

Player 1 runs to first base at a speed of 20 ft/s while Player 2 runs from second base to third base at a speed of
15 ft/s. Let s be the distance between the two players. How fast is s changing when Player 1 is 30 ft from home plate
and Player 2 is 60 ft from second base?

39. The conical watering pail in Figure 17 has a grid of holes. Water flows out through the holes at a rate of kA m3/min,
where k is a constant and A is the surface area of the part of the cone in contact with the water. This surface area

is A = πr
√

h2 + r2 and the volume is V = 1
3πr2h. Calculate the rate dh/dt at which the water level changes at

h = 0.3 m, assuming that k = 0.25 m.

0.45 m

0.15 m

h

r

FIGURE 17

solution By similar triangles, we have

r

h
= 0.15

0.45
= 1

3
so r = 1

3
h.

Substituting this expression for r into the formula for V yields

V = 1

3
π

(
1

3
h

)2
h = 1

27
πh3.

From here and the problem statement, it follows that

dV

dt
= 1

9
πh2 dh

dt
= −kA = −0.25πr

√
h2 + r2.
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Solving for dh/dt gives

dh

dt
= −9

4

r

h2

√
h2 + r2.

When h = 0.3, r = 0.1 and

dh

dt
= −9

4

0.1

0.32

√
0.32 + 0.12 = −0.79 m/min.

Further Insights and Challenges

A bowl contains water that evaporates at a rate proportional to the surface area of water exposed to the air
(Figure 18). Let A(h) be the cross-sectional area of the bowl at height h.

(a) Explain why V (h + �h) − V (h) ≈ A(h)�h if �h is small.

(b) Use (a) to argue that
dV

dh
= A(h).

(c) Show that the water level h decreases at a constant rate.

41. A roller coaster has the shape of the graph in Figure 19. Show that when the roller coaster passes the point (x, f (x)),
the vertical velocity of the roller coaster is equal to f ′(x) times its horizontal velocity.

(x,  f (x))

FIGURE 19 Graph of f (x) as a roller coaster track.

solution Let the equation y = f (x) describe the shape of the roller coaster track. Taking d
dt

of both sides of this

equation yields dy
dt

= f ′(x) dx
dt

. In other words, the vertical velocity of a car moving along the track, dy
dt

, is equal to f ′(x)

times the horizontal velocity, dx
dt

.

Two trains leave a station at t = 0 and travel with constant velocity v along straight tracks that make an angle θ .

(a) Show that the trains are separating from each other at a rate v
√

2 − 2 cos θ .

(b) What does this formula give for θ = π?

43. As the wheel of radius r cm in Figure 20 rotates, the rod of length L attached at point P drives a piston back and
forth in a straight line. Let x be the distance from the origin to point Q at the end of the rod, as shown in the figure.

(a) Use the Pythagorean Theorem to show that

L2 = (x − r cos θ)2 + r2 sin2 θ 6

(b) Differentiate Eq. (6) with respect to t to prove that

2(x − r cos θ)

(
dx

dt
+ r sin θ

dθ

dt

)
+ 2r2 sin θ cos θ

dθ

dt
= 0

(c) Calculate the speed of the piston when θ = π
2 , assuming that r = 10 cm, L = 30 cm, and the wheel rotates at 4

revolutions per minute.

Piston moves
back and forth

x

L
qP

Q

r

FIGURE 20

solution From the diagram, the coordinates of P are (r cos θ, r sin θ) and those of Q are (x, 0).

(a) The distance formula gives

L =
√

(x − r cos θ)2 + (−r sin θ)2.

Thus,

L2 = (x − r cos θ)2 + r2 sin2 θ.

Note that L (the length of the fixed rod) and r (the radius of the wheel) are constants.
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(b) From (a) we have

0 = 2 (x − r cos θ)

(
dx

dt
+ r sin θ

dθ

dt

)
+ 2r2 sin θ cos θ

dθ

dt
.

(c) Solving for dx/dt in (b) gives

dx

dt
= r2 sin θ cos θ dθ

dt

r cos θ − x
− r sin θ

dθ

dt
= rx sin θ dθ

dt

r cos θ − x
.

With θ = π
2 , r = 10, L = 30, and dθ

dt
= 8π ,

dx

dt
= (10) (x)

(
sin π

2

)
(8π)

(10) (0) − x
= −80π ≈ −251.33 cm/min

A spectator seated 300 m away from the center of a circular track of radius 100 m watches an athlete run laps at a
speed of 5 m/s. How fast is the distance between the spectator and athlete changing when the runner is approaching
the spectator and the distance between them is 250 m? Hint: The diagram for this problem is similar to Figure 20,
with r = 100 and x = 300.

CHAPTER REVIEW EXERCISES

In Exercises 1–4, refer to the function f (x) whose graph is shown in Figure 1.

y

2.01.51.00.5
x

7
6
5
4
3
2
1

FIGURE 1

1. Compute the average rate of change of f (x) over [0, 2]. What is the graphical interpretation of this average rate?

solution The average rate of change of f (x) over [0, 2] is

f (2) − f (0)

2 − 0
= 7 − 1

2 − 0
= 3.

Graphically, this average rate of change represents the slope of the secant line through the points (2, 7) and (0, 1) on the
graph of f (x).

For which value of h is
f (0.7 + h) − f (0.7)

h
equal to the slope of the secant line between the points where

x = 0.7 and x = 1.1?

3. Estimate
f (0.7 + h) − f (0.7)

h
for h = 0.3. Is this number larger or smaller than f ′(0.7)?

solution For h = 0.3,

f (0.7 + h) − f (0.7)

h
= f (1) − f (0.7)

0.3
≈ 2.8 − 2

0.3
= 8

3
.

Because the curve is concave up, the slope of the secant line is larger than the slope of the tangent line, so the value of
the difference quotient should be larger than the value of the derivative.

Estimate f ′(0.7) and f ′(1.1).In Exercises 5–8, compute f ′(a) using the limit definition and find an equation of the tangent line to the graph of f (x)

at x = a.

5. f (x) = x2 − x, a = 1

solution Let f (x) = x2 − x and a = 1. Then

f ′(a) = lim
h→0

f (a + h) − f (a)

h
= lim

h→0

(1 + h)2 − (1 + h) − (12 − 1)

h

= lim
h→0

1 + 2h + h2 − 1 − h

h
= lim

h→0
(1 + h) = 1

and the equation of the tangent line to the graph of f (x) at x = a is

y = f ′(a)(x − a) + f (a) = 1(x − 1) + 0 = x − 1.
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f (x) = 5 − 3x, a = 27. f (x) = x−1, a = 4

solution Let f (x) = x−1 and a = 4. Then

f ′(a) = lim
h→0

f (a + h) − f (a)

h
= lim

h→0

1
4+h

− 1
4

h
= lim

h→0

4 − (4 + h)

4h(4 + h)

= lim
h→0

−1

4(4 + h)
= − 1

4(4 + 0)
= − 1

16

and the equation of the tangent line to the graph of f (x) at x = a is

y = f ′(a)(x − a) + f (a) = − 1

16
(x − 4) + 1

4
= − 1

16
x + 1

2
.

f (x) = x3, a = −2
In Exercises 9–12, compute dy/dx using the limit definition.

9. y = 4 − x2

solution Let y = 4 − x2. Then

dy

dx
= lim

h→0

4 − (x + h)2 − (4 − x2)

h
= lim

h→0

4 − x2 − 2xh − h2 − 4 + x2

h
= lim

h→0
(−2x − h) = −2x − 0 = −2x.

y = √
2x + 111. y = 1

2 − x

solution Let y = 1

2 − x
. Then

dy

dx
= lim

h→0

1
2−(x+h)

− 1
2−x

h
= lim

h→0

(2 − x) − (2 − x − h)

h(2 − x − h)(2 − x)
= lim

h→0

1

(2 − x − h)(2 − x)
= 1

(2 − x)2
.

y = 1

(x − 1)2

In Exercises 13–16, express the limit as a derivative.

13. lim
h→0

√
1 + h − 1

h

solution Let f (x) = √
x. Then

lim
h→0

√
1 + h − 1

h
= lim

h→0

f (1 + h) − f (1)

h
= f ′(1).

lim
x→−1

x3 + 1

x + 1

15. lim
t→π

sin t cos t

t − π

solution Let f (t) = sin t cos t and note that f (π) = sin π cos π = 0. Then

lim
t→π

sin t cos t

t − π
= lim

t→π

f (t) − f (π)

t − π
= f ′(π).

lim
θ→π

cos θ − sin θ + 1

θ − π

17. Find f (4) and f ′(4) if the tangent line to the graph of f (x) at x = 4 has equation y = 3x − 14.

solution The equation of the tangent line to the graph of f (x) at x = 4 is y = f ′(4)(x − 4) + f (4) = f ′(4)x +
(f (4) − 4f ′(4)). Matching this to y = 3x − 14, we see that f ′(4) = 3 and f (4) − 4(3) = −14, so f (4) = −2.

Each graph in Figure 2 shows the graph of a function f (x) and its derivative f ′(x). Determine which is the
function and which is the derivative.

19. Is (A), (B), or (C) the graph of the derivative of the function f (x) shown in Figure 3?

(A) (B)

y

(C)

y

x
−2 2−1 1

x
−2 2−1 1

y

y = f (x)

x
−2 2−1 1

y

x
−2 2−1 1

FIGURE 3
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solution The graph of f (x) has four horizontal tangent lines on [−2, 2], so the graph of its derivative must have four
x-intercepts on [−2, 2]. This eliminates (B). Moreover, f (x) is increasing at both ends of the interval, so its derivative
must be positive at both ends. This eliminates (A) and identifies (C) as the graph of f ′(x).

Let N(t) be the percentage of a state population infected with a flu virus on week t of an epidemic. What percentage
is likely to be infected in week 4 if N(3) = 8 and N ′(3) = 1.2?

21. A girl’s height h(t) (in centimeters) is measured at time t (in years) for 0 ≤ t ≤ 14:

52, 75.1, 87.5, 96.7, 104.5, 111.8, 118.7, 125.2,
131.5, 137.5, 143.3, 149.2, 155.3, 160.8, 164.7

(a) What is the average growth rate over the 14-year period?

(b) Is the average growth rate larger over the first half or the second half of this period?

(c) Estimate h′(t) (in centimeters per year) for t = 3, 8.

solution

(a) The average growth rate over the 14-year period is

164.7 − 52

14
= 8.05 cm/year.

(b) Over the first half of the 14-year period, the average growth rate is

125.2 − 52

7
≈ 10.46 cm/year,

which is larger than the average growth rate over the second half of the 14-year period:

164.7 − 125.2

7
≈ 5.64 cm/year.

(c) For t = 3,

h′(3) ≈ h(4) − h(3)

4 − 3
= 104.5 − 96.7

1
= 7.8 cm/year;

for t = 8,

h′(8) ≈ h(9) − h(8)

9 − 8
= 137.5 − 131.5

1
= 6.0 cm/year.

A planet’s period P (number of days to complete one revolution around the sun) is approximately 0.199A3/2,
where A is the average distance (in millions of kilometers) from the planet to the sun.

(a) Calculate P and dP/dA for Earth using the value A = 150.

(b) Estimate the increase in P if A is increased to 152.

In Exercises 23 and 24, use the following table of values for the number A(t) of automobiles (in millions) manufactured
in the United States in year t .

t 1970 1971 1972 1973 1974 1975 1976

A(t) 6.55 8.58 8.83 9.67 7.32 6.72 8.50

23. What is the interpretation of A′(t)? Estimate A′(1971). Does A′(1974) appear to be positive or negative?

solution Because A(t) measures the number of automobiles manufactured in the United States in year t , A′(t)
measures the rate of change in automobile production in the United States. For t = 1971,

A′(1971) ≈ A(1972) − A(1971)

1972 − 1971
= 8.83 − 8.58

1
= 0.25 million automobiles/year.

Because A(t) decreases from 1973 to 1974 and from 1974 to 1975, it appears that A′(1974) would be negative.

Given the data, which of (A)–(C) in Figure 4 could be the graph of the derivative A′(t)? Explain.In Exercises 25–50, compute the derivative.

25. y = 3x5 − 7x2 + 4

solution Let y = 3x5 − 7x2 + 4. Then

dy

dx
= 15x4 − 14x.

y = 4x−3/227. y = t−7.3

solution Let y = t−7.3. Then

dy

dt
= −7.3t−8.3.
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y = 4x2 − x−229. y = x + 1

x2 + 1

solution Let y = x + 1

x2 + 1
. Then

dy

dx
= (x2 + 1)(1) − (x + 1)(2x)

(x2 + 1)2
= 1 − 2x − x2

(x2 + 1)2
.

y = 3t − 2

4t − 9

31. y = (x4 − 9x)6

solution Let y = (x4 − 9x)6. Then

dy

dx
= 6(x4 − 9x)5 d

dx
(x4 − 9x) = 6(4x3 − 9)(x4 − 9x)5.

y = (3t2 + 20t−3)633. y = (2 + 9x2)3/2

solution Let y = (2 + 9x2)3/2. Then

dy

dx
= 3

2
(2 + 9x2)1/2 d

dx
(2 + 9x2) = 27x(2 + 9x2)1/2.

y = (x + 1)3(x + 4)435. y = z√
1 − z

solution Let y = z√
1 − z

. Then

dy

dz
=

√
1 − z − (− z

2 ) 1√
1−z

1 − z
= 1 − z + z

2

(1 − z)3/2
= 2 − z

2(1 − z)3/2
.

y =
(

1 + 1

x

)337. y = x4 + √
x

x2

solution Let

y = x4 + √
x

x2
= x2 + x−3/2.

Then

dy

dx
= 2x − 3

2
x−5/2.

y = 1

(1 − x)
√

2 − x
39. y =

√
x +

√
x + √

x

solution Let y =
√

x + √
x + √

x. Then

dy

dx
= 1

2

(
x +

√
x + √

x

)−1/2 d

dx

(
x +

√
x + √

x

)

= 1

2

(
x +

√
x + √

x

)−1/2 (
1 + 1

2

(
x + √

x
)−1/2 d

dx

(
x + √

x
))

= 1

2

(
x +

√
x + √

x

)−1/2 (
1 + 1

2

(
x + √

x
)−1/2

(
1 + 1

2
x−1/2

))
.

h(z) = (
z + (z + 1)1/2)−3/241. y = tan(t−3)

solution Let y = tan(t−3). Then

dy

dt
= sec2(t−3)

d

dt
t−3 = −3t−4 sec2(t−3).

y = 4 cos(2 − 3x)43. y = sin(2x) cos2 x

solution Let y = sin(2x) cos2 x = 2 sin x cos3 x. Then

dy

dx
= −6 sin2 x cos2 x + 2 cos4 x.
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y = sin

(
4

θ

)45. y = t

1 + sec t

solution Let y = t

1 + sec t
. Then

dy

dt
= 1 + sec t − t sec t tan t

(1 + sec t)2
.

y = z csc(9z + 1)47. y = 8

1 + cot θ

solution Let y = 8

1 + cot θ
= 8(1 + cot θ)−1. Then

dy

dθ
= −8(1 + cot θ)−2 d

dθ
(1 + cot θ) = 8 csc2 θ

(1 + cot θ)2
.

y = tan(cos x)
49. y = tan(

√
1 + csc θ)

solution

dy

dx
= sec2(

√
1 + csc θ)

d

dx

√
1 + csc θ

= sec2(
√

1 + csc θ) · 1

2
(1 + csc θ)−1/2 d

dx
(1 + csc θ)

= − sec2(
√

1 + csc θ) csc θ cot θ

2(
√

1 + csc θ)
.

y = cos(cos(cos(θ)))In Exercises 51–56, use the following table of values to calculate the derivative of the given function at x = 2.

x f (x) g(x) f ′(x) g′(x)

2 5 4 −3 9

4 3 2 −2 3

51. S(x) = 3f (x) − 2g(x)

solution Let S(x) = 3f (x) − 2g(x). Then S′(x) = 3f ′(x) − 2g′(x) and

S′(2) = 3f ′(2) − 2g′(2) = 3(−3) − 2(9) = −27.

H(x) = f (x)g(x)53. R(x) = f (x)

g(x)

solution Let R(x) = f (x)/g(x). Then

R′(x) = g(x)f ′(x) − f (x)g′(x)

g(x)2

and

R′(2) = g(2)f ′(2) − f (2)g′(2)

g(2)2
= 4(−3) − 5(9)

42
= −57

16
.

G(x) = f (g(x))
55. F(x) = f (g(2x))

solution Let F(x) = f (g(2x)). Then F ′(x) = 2f ′(g(2x))g′(2x) and

F ′(2) = 2f ′(g(4))g′(4) = 2f ′(2)g′(4) = 2(−3)(3) = −18.

K(x) = f (x2)
57. Find the points on the graph of x3 − y3 = 3xy − 3 where the tangent line is horizontal.

solution Use implicit differentiation:

3x2 − 3y2y′ = 3y + 3xy′

3x2 − 3y = y′(3x + 3y2)

y′ = x2 − y

x + y2
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The tangent line is horizontal at those points on the graph where y = x2. Substituting x2 for y in the equation of the
graph gives

x3 − x6 = 3x3 − 3, or x6 + 2x3 − 3 = 0

Treating this as a quadratic equation in x3 gives x3 = 1 and x3 = −3. Thus the x-values of the points on the curve
where the tangent is horizontal are x = 1 and x = 3√−3. Since we know that at these points y = x2, the corresponding
y-coordinates are 1 and (−3)2/3 = 32/3. Thus the coordinates of the points at which the tangent line to this graph are
horizontal are (1, 1) and (−31/3, 32/3).

Find the points on the graph of x2/3 + y2/3 = 1 where the tangent line has slope 1.
59. Find a such that the tangent lines y = x3 − 2x2 + x + 1 at x = a and x = a + 1 are parallel.

solution Let f (x) = x3 − 2x2 + x + 1. Then f ′(x) = 3x2 − 4x + 1 and the slope of the tangent line at x = a is

f ′(a) = 3a2 − 4a + 1, while the slope of the tangent line at x = a + 1 is

f ′(a + 1) = 3(a + 1)2 − 4(a + 1) + 1 = 3(a2 + 2a + 1) − 4a − 4 + 1 = 3a2 + 2a.

In order for the tangent lines at x = a and x = a + 1 to have the same slope, we must have f ′(a) = f ′(a + 1), or

3a2 − 4a + 1 = 3a2 + 2a.

The only solution to this equation is a = 1
6 . The equation of the tangent line at x = 1

6 is

y = f ′
(

1

6

) (
x − 1

6

)
+ f

(
1

6

)
= 5

12

(
x − 1

6

)
+ 241

216
= 5

12
x + 113

108
,

and the equation of the tangent line at x = 7
6 is

y = f ′
(

7

6

) (
x − 7

6

)
+ f

(
7

6

)
= 5

12

(
x − 7

6

)
+ 223

216
= 5

12
x + 59

108
.

The graphs of f (x) and the two tangent lines appear below.

y

x
−1 −1

−3
−2

21.510.5

3
2

In Exercises 60–63, let f (x) = x3 − 3x2 + x + 4.

Find the points on the graph of f (x) where the tangent line has slope 10.
61. For which values of x are the tangent lines to y = f (x) horizontal?

solution The tangent lines are horizontal when the derivative vanishes. From the previous problem, f ′(x) = 3x2 −
6x + 1, which is zero when x = 1 ±

√
6

3
.

Find all values of b such that y = 25x + b is tangent to the graph of f (x).
63. Find all values of k such that f (x) has only one tangent line of slope k.

solution The tangent line has slope k when f ′(x) = 3x2 − 6x + 1 = k, so that 3x2 − 6x + (1 − k) = 0. There is
exactly one point where the tangent line has slope k if this equation has only one root, which occurs when its discriminant
is zero. The discriminant of this quadratic is 36 − 4 · 3 · (1 − k) = 24 + 12k, so that k = −2. Thus k = −2 is the only
such value of k.

Use the table to compute the average rate of change of Candidate A’s percentage of votes over the intervals
from day 20 to day 15, day 15 to day 10, and day 10 to day 5. If this trend continues over the last 5 days before the
election, will Candidate A win?

Days Before Election 20 15 10 5

Candidate A 44.8% 46.8% 48.3% 49.3%

Candidate B 55.2% 53.2% 51.7% 50.7%

In Exercises 65–70, calculate y′′.

65. y = 12x3 − 5x2 + 3x

solution Let y = 12x3 − 5x2 + 3x. Then

y′ = 36x2 − 10x + 3 and y′′ = 72x − 10.

y = x−2/567. y = √
2x + 3

solution Let y = √
2x + 3 = (2x + 3)1/2. Then

y′ = 1

2
(2x + 3)−1/2 d

dx
(2x + 3) = (2x + 3)−1/2 and y′′ = −1

2
(2x + 3)−3/2 d

dx
(2x + 3) = −(2x + 3)−3/2.
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y = 4x

x + 1

69. y = tan(x2)

solution Let y = tan(x2). Then

y′ = 2x sec2(x2) and

y′′ = 2x

(
2 sec(x2)

d

dx
sec(x2)

)
+ 2 sec2(x2) = 8x2 sec2(x2) tan(x2) + 2 sec2(x2).

y = sin2(4x + 9)In Exercises 71–76, compute
dy

dx
.

71. x3 − y3 = 4

solution Consider the equation x3 − y3 = 4. Differentiating with respect to x yields

3x2 − 3y2 dy

dx
= 0.

Therefore,

dy

dx
= x2

y2
.

4x2 − 9y2 = 36
73. y = xy2 + 2x2

solution Consider the equation y = xy2 + 2x2. Differentiating with respect to x yields

dy

dx
= 2xy

dy

dx
+ y2 + 4x.

Therefore,

dy

dx
= y2 + 4x

1 − 2xy
.

y

x
= x + y

75. y = sin(x + y)

solution Consider the equation y = sin(x + y). Differentiating with respect to x yields

dy

dx
= cos(x + y)

(
1 + dy

dx

)
.

Therefore,

dy

dx
= cos(x + y)

1 − cos(x + y)
.

tan(x + y) = xy
77. In Figure 5, label the graphs f , f ′, and f ′′.

y

x

y

x

FIGURE 5

solution First consider the plot on the left. Observe that the green curve is nonnegative whereas the red curve is
increasing, suggesting that the green curve is the derivative of the red curve. Moreover, the green curve is linear with
negative slope for x < 0 and linear with positive slope for x > 0 while the blue curve is a negative constant for x < 0
and a positive constant for x > 0, suggesting the blue curve is the derivative of the green curve. Thus, the red, green and
blue curves, respectively, are the graphs of f , f ′ and f ′′.

Now consider the plot on the right. Because the red curve is decreasing when the blue curve is negative and increasing
when the blue curve is positive and the green curve is decreasing when the red curve is negative and increasing when the
red curve is positive, it follows that the green, red and blue curves, respectively, are the graphs of f , f ′ and f ′′.

Let f (x) = x2 sin(x−1) for x �= 0 and f (0) = 0. Show that f ′(x) exists for all x (including x = 0) but that
f ′(x) is not continuous at x = 0 (Figure 6).
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Exercises 79–81: Let q be the number of units of a product (cell phones, barrels of oil, etc.) that can be sold at the price p.
The price elasticity of demand E is defined as the percentage rate of change of q with respect to p. In terms of derivatives,

E = p

q

dq

dp
= lim

�p→0

(100�q)/q

(100�p)/p

79. Show that the total revenue R = pq satisfies
dR

dp
= q(1 + E).

solution Let R = pq. Then

dR

dp
= p

dq

dp
+ q = q

p

q

dq

dp
+ q = q(E + 1).

A commercial bakery can sell q chocolate cakes per week at price $p, where q = 50p(10 − p) for 5 < p < 10.

(a) Show that E(p) = 2p − 10

p − 10
.

(b) Show, by computing E(8), that if p = $8, then a 1% increase in price reduces demand by approximately 3%.

81. The monthly demand (in thousands) for flights between Chicago and St. Louis at the price p is q = 40 − 0.2p.
Calculate the price elasticity of demand when p = $150 and estimate the percentage increase in number of additional
passengers if the ticket price is lowered by 1%.

solution Let q = 40 − 0.2p. Then q ′(p) = −0.2 and

E(p) =
(

p

q

)
dq

dp
= 0.2p

0.2p − 40
.

For p = 150,

E(150) = 0.2(150)

0.2(150) − 40
= −3,

so a 1% decrease in price increases demand by 3%. The demand when p = 150 is q = 40 − 0.2(150) = 10, or 10,000
passengers. Therefore, a 1% increase in demand translates to 300 additional passengers.

How fast does the water level rise in the tank in Figure 7 when the water level is h = 4 m and water pours in at
20 m3/min?

83. The minute hand of a clock is 8 cm long, and the hour hand is 5 cm long. How fast is the distance between the tips
of the hands changing at 3 o’clock?

solution Let S be the distance between the tips of the two hands. By the law of cosines

S2 = 82 + 52 − 2 · 8 · 5 cos(θ),

where θ is the angle between the hands. Thus

2S
dS

dt
= 80 sin(θ)

dθ

dt
.

At three o’clock θ = π/2, S = √
89, and

dθ

dt
=

( π

360
− π

30

)
rad/min = −11π

360
rad/min,

so

dS

dt
= 1

2
√

89
(80)(1)

−11π

360
≈ −0.407 cm/min.

Chloe and Bao are in motorboats at the center of a lake. At time t = 0, Chloe begins traveling south at a speed of
50 km/h. One minute later, Bao takes off, heading east at a speed of 40 km/h. At what rate is the distance between
them increasing at t = 12 min?

85. A bead slides down the curve xy = 10. Find the bead’s horizontal velocity at time t = 2 s if its height at time t

seconds is y = 400 − 16t2 cm.

solution Let xy = 10. Then x = 10/y and

dx

dt
= − 10

y2

dy

dt
.

If y = 400 − 16t2, then dy
dt

= −32t and

dx

dt
= − 10

(400 − 16t2)2
(−32t) = 320t

(400 − 16t2)2
.

Thus, at t = 2,

dx

dt
= 640

(336)2
≈ 0.00567 cm/s.
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In Figure 8, x is increasing at 2 cm/s, y is increasing at 3 cm/s, and θ is decreasing such that the area of the triangle
has the constant value 4 cm2.

(a) How fast is θ decreasing when x = 4, y = 4?

(b) How fast is the distance between P and Q changing when x = 4, y = 4?

87. A light moving at 0.8 m/s approaches a man standing 4 m from a wall (Figure 9). The light is 1 m above the ground.
How fast is the tip P of the man’s shadow moving when the light is 7 m from the wall?

1.8 m

1 m

4 m 0.8 m/s

P

FIGURE 9

solution Let x denote the distance between the man and the light. Using similar triangles, we find

0.8

x
= P − 1

4 + x
or P = 3.2

x
+ 1.8.

Therefore,

dP

dt
= −3.2

x2

dx

dt
.

When the light is 7 feet from the wall, x = 3. With dx
dt

= −0.8, we have

dP

dt
= −3.2

32
(−0.8) = 0.284 m/s.
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4 APPLICATIONS OF
THE DERIVATIVE

4.1 Linear Approximation and Applications

Preliminary Questions
1. True or False? The Linear Approximation says that the vertical change in the graph is approximately equal to the

vertical change in the tangent line.

solution This statement is true. The linear approximation does say that the vertical change in the graph is approximately
equal to the vertical change in the tangent line.

2. Estimate g(1.2) − g(1) if g′(1) = 4.

solution Using the Linear Approximation,

g(1.2) − g(1) ≈ g′(1)(1.2 − 1) = 4(0.2) = 0.8.

3. Estimate f (2.1) if f (2) = 1 and f ′(2) = 3.

solution Using the Linearization,

f (2.1) ≈ f (2) + f ′(2)(2.1 − 2) = 1 + 3(0.1) = 1.3

4. Complete the sentence: The Linear Approximation shows that up to a small error, the change in output �f is directly
proportional to ….

solution The Linear Approximation tells us that up to a small error, the change in output �f is directly proportional
to the change in input �x when �x is small.

Exercises
In Exercises 1–6, use Eq. (1) to estimate �f = f (3.02) − f (3).

1. f (x) = x2

solution Let f (x) = x2. Then f ′(x) = 2x and �f ≈ f ′(3)�x = 6(0.02) = 0.12.

f (x) = x43. f (x) = x−1

solution Let f (x) = x−1. Then f ′(x) = −x−2 and �f ≈ f ′(3)�x = −1

9
(0.02) = −0.00222.

f (x) = 1

x + 1

5. f (x) = √
x + 6

solution Let f (x) = √
x + 6. Then f ′(x) = 1

2 (x + 6)−1/2 and

�f ≈ f ′(3)�x = 1

2
9−1/2(0.02) = 0.003333.

f (x) = tan
πx

3

7. The cube root of 27 is 3. How much larger is the cube root of 27.2? Estimate using the Linear Approximation.

solution Let f (x) = x1/3, a = 27, and �x = 0.2. Then f ′(x) = 1
3x−2/3 and f ′(a) = f ′(27) = 1

27 . The Linear
Approximation is

�f ≈ f ′(a)�x = 1

27
(0.2) = 0.0074074

Estimate sin
(π

2
+ 0.1

)
− sin

π

2
using differentials.

In Exercises 9–12, use Eq. (1) to estimate �f . Use a calculator to compute both the error and the percentage error.

9. f (x) = √
1 + x, a = 3, �x = 0.2

solution Let f (x) = (1 + x)1/2, a = 3, and �x = 0.2. Then f ′(x) = 1
2 (1 + x)−1/2, f ′(a) = f ′(3) = 1

4 and

�f ≈ f ′(a)�x = 1
4 (0.2) = 0.05. The actual change is

�f = f (a + �x) − f (a) = f (3.2) − f (3) = √
4.2 − 2 ≈ 0.049390.

The error in the Linear Approximation is therefore |0.049390 − 0.05| = 0.000610; in percentage terms, the error is

0.000610

0.049390
× 100% ≈ 1.24%.

174
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f (x) = 2x2 − x, a = 5, �x = −0.411. f (x) = 1

1 + x2
, a = 3, �x = 0.5

solution Let f (x) = 1
1+x2 , a = 3, and �x = 0.5. Then f ′(x) = − 2x

(1+x2)2 , f ′(a) = f ′(3) = −0.06 and

�f ≈ f ′(a)�x = −0.06(0.5) = −0.03. The actual change is

�f = f (a + �x) − f (a) = f (3.5) − f (3) ≈ −0.0245283.

The error in the Linear Approximation is therefore | − 0.0245283 − (−0.03)| = 0.0054717; in percentage terms, the
error is ∣∣∣∣ 0.0054717

−0.0245283

∣∣∣∣× 100% ≈ 22.31%

f (x) = tan
(x

4
+ π

4

)
, a = 0, �x = 0.01

In Exercises 13–16, estimate �y using differentials [Eq. (3)].

13. y = cos x, a = π
6 , dx = 0.014

solution Let f (x) = cos x. Then f ′(x) = − sin x and

�y ≈ dy = f ′(a)dx = − sin
(π

6

)
(0.014) = −0.007.

y = tan2 x, a = π
4 , dx = −0.0215. y = 10 − x2

2 + x2
, a = 1, dx = 0.01

solution Let f (x) = 10 − x2

2 + x2
. Then

f ′(x) = (2 + x2)(−2x) − (10 − x2)(2x)

(2 + x2)2
= − 24x

(2 + x2)2

and

�y ≈ dy = f ′(a)dx = −24

9
(0.01) = −0.026667.

y = 3 − √
x√

x + 3
, a = 1, dx = −0.1

In Exercises 17–24, estimate using the Linear Approximation and find the error using a calculator.

17.
√

26 − √
25

solution Let f (x) = √
x, a = 25, and �x = 1. Then f ′(x) = 1

2x−1/2 and f ′(a) = f ′(25) = 1
10 .

• The Linear Approximation is �f ≈ f ′(a)�x = 1
10 (1) = 0.1.

• The actual change is �f = f (a + �x) − f (a) = f (26) − f (25) ≈ 0.0990195.
• The error in this estimate is |0.0990195 − 0.1| = 0.000980486.

16.51/4 − 161/419.
1√
101

− 1

10

solution Let f (x) = 1√
x

, a = 100, and �x = 1. Then f ′(x) = d
dx

(x−1/2) = − 1
2x−3/2 and f ′(a) = − 1

2 ( 1
1000 ) =

−0.0005.

• The Linear Approximation is �f ≈ f ′(a)�x = −0.0005(1) = −0.0005.
• The actual change is

�f = f (a + �x) − f (a) = 1√
101

− 1

10
= −0.000496281.

• The error in this estimate is |−0.0005 − (−0.000496281)| = 3.71902 × 10−6.

1√
98

− 1

10

21. 91/3 − 2

solution Let f (x) = x1/3, a = 8, and �x = 1. Then f ′(x) = 1
3x−2/3 and f ′(a) = f ′(8) = 1

12 .

• The Linear Approximation is �f ≈ f ′(a)�x = 1
12 (1) = 0.083333.

• The actual change is �f = f (a + �x) − f (a) = f (9) − f (8) = 0.080084.
• The error in this estimate is |0.080084 − 0.083333| ≈ 3.25 × 10−3.
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1

(27.5)5/3
− 1

243

23. sin(0.023)

solution Let f (x) = sin x, a = 0, and �x = 0.023. Then f ′(x) = cos x and f ′(a) = f ′(0) = 1.

• The Linear Approximation is �f ≈ f ′(a)�x = 1 · 0.023 ≈ 0.023.
• The actual change is �f = f (a + �x) − f (a) = f (0.023) − f (0) ≈ 0.02299797.
• The error in this estimate is |0.023 − 0.02299797| ≈ 2 × 10−6.

tan
(π

4
+ 0.01

)
− 1

25. Estimate f (4.03) for f (x) as in Figure 8.

(4, 2)

(10, 4)

x

y = f (x)

Tangent line

y

FIGURE 8

solution Using the Linear Approximation, f (4.03) ≈ f (4) + f ′(4)(0.03). From the figure, we find that f (4) = 2
and

f ′(4) = 4 − 2

10 − 4
= 1

3
.

Thus,

f (4.03) ≈ 2 + 1

3
(0.03) = 2.01.

At a certain moment, an object in linear motion has velocity 100 m/s. Estimate the distance traveled over the
next quarter-second, and explain how this is an application of the Linear Approximation.

27. Which is larger:
√

2.1 − √
2 or

√
9.1 − √

9? Explain using the Linear Approximation.

solution Let f (x) = √
x, and �x = 0.1. Then f ′(x) = 1

2x−1/2 and the Linear Approximation at x = a gives

�f = √
a + 0.1 − √

a ≈ f ′(a)(0.1) = 1

2
a−1/2(0.1) = 0.05√

a

We see that �f decreases as a increases. In particular

√
2.1 − √

2 ≈ 0.05√
2

is larger than
√

9.1 − √
9 ≈ 0.05

3

Estimate sin 61◦ − sin 60◦ using the Linear Approximation. Hint: Express �θ in radians.29. Box office revenue at a multiplex cinema in Paris is R(p) = 3600p − 10p3 euros per showing when the ticket price
is p euros. Calculate R(p) for p = 9 and use the Linear Approximation to estimate �R if p is raised or lowered by 0.5
euros.

solution Let R(p) = 3600p − 10p3. Then R(9) = 3600(9) − 10(9)3 = 25,110 euros. Moreover, R′(p) = 3600 −
30p2, so by the Linear Approximation,

�R ≈ R′(9)�p = 1170�p.

If p is raised by 0.5 euros, then �R ≈ 585 euros; on the other hand, if p is lowered by 0.5 euros, then �R ≈ −585 euros.

The stopping distance for an automobile is F(s) = 1.1s + 0.054s2 ft, where s is the speed in mph. Use the Linear
Approximation to estimate the change in stopping distance per additional mph when s = 35 and when s = 55.

31. A thin silver wire has length L = 18 cm when the temperature is T = 30◦C. Estimate �L when T decreases to 25◦C
if the coefficient of thermal expansion is k = 1.9 × 10−5◦C−1 (see Example 3).

solution We have

dL

dT
= kL = (1.9 × 10−5)(18) = 3.42 × 10−4 cm/◦C

The change in temperature is �T = −5◦ C, so by the Linear Approximation, the change in length is approximately

�L ≈ 3.42 × 10−4�T = (3.42 × 10−4)(−5) = −0.00171 cm

At T = 25◦ C, the length of the wire is approximately 17.99829 cm.

At a certain moment, the temperature in a snake cage satisfies dT /dt = 0.008◦C/s. Estimate the rise in temperature
over the next 10 seconds.

33. The atmospheric pressure P at altitude h = 20 km is P = 5.5 kilopascals. Estimate P at altitude h = 20.5 km

assuming that
dP

dh
= −0.87.

solution We have

�P ≈ P ′(h)�h = −0.87 · 0.5 ≈ −0.435



June 9, 2011 LTSV SSM Second Pass

S E C T I O N 4.1 Linear Approximation and Applications 177

so that

P(20.5) ≈ P(20) + �P = 5.5 − 0.435 ≈ 5.065 kilopascals.

The resistance R of a copper wire at temperature T = 20◦C is R = 15 �. Estimate the resistance at T = 22◦C,
assuming that dR/dT

∣∣
T =20 = 0.06 �/◦C.

35. Newton’s Law of Gravitation shows that if a person weighs w pounds on the surface of the earth, then his or her
weight at distance x from the center of the earth is

W(x) = wR2

x2
(for x ≥ R)

where R = 3960 miles is the radius of the earth (Figure 9).

(a) Show that the weight lost at altitude h miles above the earth’s surface is approximately �W ≈ −(0.0005w)h. Hint:
Use the Linear Approximation with dx = h.
(b) Estimate the weight lost by a 200-lb football player flying in a jet at an altitude of 7 miles.

3960

h

FIGURE 9 The distance to the center of the earth is 3960 + h miles.

solution
(a) Using the Linear Approximation

�W ≈ W ′(R)�x = −2wR2

R3
h = −2wh

R
≈ −0.0005wh.

(b) Substitute w = 200 and h = 7 into the result from part (a) to obtain

�W ≈ −0.0005(200)(7) = −0.7 pounds.

Using Exercise 35(a), estimate the altitude at which a 130-lb pilot would weigh 129.5 lb.37. A stone tossed vertically into the air with initial velocity v cm/s reaches a maximum height of h = v2/1960 cm.

(a) Estimate �h if v = 700 cm/s and �v = 1 cm/s.
(b) Estimate �h if v = 1000 cm/s and �v = 1 cm/s.
(c) In general, does a 1 cm/s increase in v lead to a greater change in h at low or high initial velocities? Explain.

solution A stone tossed vertically with initial velocity v cm/s attains a maximum height of h(v) = v2/1960 cm.
Thus, h′(v) = v/980.

(a) If v = 700 and �v = 1, then �h ≈ h′(v)�v = 1
980 (700)(1) ≈ 0.71 cm.

(b) If v = 1000 and �v = 1, then �h ≈ h′(v)�v = 1
980 (1000)(1) = 1.02 cm.

(c) A one centimeter per second increase in initial velocity v increases the maximum height by approximately v/980 cm.
Accordingly, there is a bigger effect at higher velocities.

The side s of a square carpet is measured at 6 m. Estimate the maximum error in the area A of the carpet if s is
accurate to within 2 centimeters.

In Exercises 39 and 40, use the following fact derived from Newton’s Laws: An object released at an angle θ with initial
velocity v ft/s travels a horizontal distance

s = 1

32
v2 sin 2θ ft (Figure 10)

q
x

y

FIGURE 10 Trajectory of an object released at an angle θ .

39. A player located 18.1 ft from the basket launches a successful jump shot from a height of 10 ft (level with the rim of
the basket), at an angle θ = 34◦ and initial velocity v = 25 ft/s.)

(a) Show that �s ≈ 0.255�θ ft for a small change of �θ .
(b) Is it likely that the shot would have been successful if the angle had been off by 2◦?
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solution Using Newton’s laws and the given initial velocity of v = 25 ft/s, the shot travels s = 1
32v2 sin 2t =

625
32 sin 2t ft, where t is in radians.

(a) If θ = 34◦ (i.e., t = 17
90π ), then

�s ≈ s′(t)�t = 625

16
cos

(
17

45
π

)
�t = 625

16
cos

(
17

45
π

)
�θ · π

180
≈ 0.255�θ.

(b) If �θ = 2◦, this gives �s ≈ 0.51 ft, in which case the shot would not have been successful, having been off half a
foot.

Estimate �s if θ = 34◦, v = 25 ft/s, and �v = 2.
41. The radius of a spherical ball is measured at r = 25 cm. Estimate the maximum error in the volume and surface area
if r is accurate to within 0.5 cm.

solution The volume and surface area of the sphere are given by V = 4
3πr3 and S = 4πr2, respectively. If r = 25

and �r = ±0.5, then

�V ≈ V ′(25)�r = 4π(25)2(0.5) ≈ 3927 cm3,

and

�S ≈ S′(25)�r = 8π(25)(0.5) ≈ 314.2 cm2.

The dosage D of diphenhydramine for a dog of body mass w kg is D = 4.7w2/3 mg. Estimate the maximum
allowable error in w for a cocker spaniel of mass w = 10 kg if the percentage error in D must be less than 3%.

43. The volume (in liters) and pressure P (in atmospheres) of a certain gas satisfy PV = 24. A measurement yields
V = 4 with a possible error of ±0.3 L. Compute P and estimate the maximum error in this computation.

solution Given PV = 24 and V = 4, it follows that P = 6 atmospheres. Solving PV = 24 for P yields P = 24V −1.

Thus, P ′ = −24V −2 and

�P ≈ P ′(4)�V = −24(4)−2(±0.3) = ±0.45 atmospheres.

In the notation of Exercise 43, assume that a measurement yields V = 4. Estimate the maximum allowable error
in V if P must have an error of less than 0.2 atm.

In Exercises 45–54, find the linearization at x = a.

45. f (x) = x4, a = 1

solution Let f (x) = x4. Then f ′(x) = 4x3. The linearization at a = 1 is

L(x) = f ′(a)(x − a) + f (a) = 4(x − 1) + 1 = 4x − 3.

f (x) = 1

x
, a = 2

47. f (θ) = sin2 θ , a = π
4

solution Let f (θ) = sin2 θ . Then f ′(θ) = 2 sin θ cos θ = sin 2θ . The linearization at a = π
4 is

L(θ) = f ′(a)(θ − a) + f (a) = 1
(
θ − π

4

)
+ 1

2
= θ − π

4
+ 1

2
.

g(x) = x2

x − 3
, a = 4

49. y = (1 + x)−1/2, a = 0

solution Let f (x) = (1 + x)−1/2. Then f ′(x) = − 1
2 (1 + x)−3/2. The linearization at a = 0 is

L(x) = f ′(a)(x − a) + f (a) = −1

2
x + 1.

y = (1 + x)−1/2, a = 3
51. y = (1 + x2)−1/2, a = 0

solution Let f (x) = (1 + x2)−1/2. Then f ′(x) = −x(1 + x2)−3/2, f (a) = 1 and f ′(a) = 0, so the linearization
at a is

L(x) = f ′(a)(x − a) + f (a) = 1.

y = 1 − x

1 + x
, a = 4

53. y = sin x

x
, a = π

2

solution Let f (x) = sin x

x
. Then

f ′(x) = x cos x − sin x

x2
, f (a) = 2

π
, f ′(a) = − 4

π2

so the linearization of f (x) at a is

L(x) = f ′(a)(x − a) + f (a) = − 4

π2

(
x − π

2

)
+ 2

π
= − 4

π2
x + 4

π
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y = sin x

x
, a = π

4

55. What is f (2) if the linearization of f (x) at a = 2 is L(x) = 2x + 4?

solution f (2) = L(2) = 2(2) + 4 = 8.

Compute the linearization of f (x) = 3x − 4 at a = 0 and a = 2. Prove more generally that a linear function
coincides with its linearization at x = a for all a.

57. Estimate
√

16.2 using the linearization L(x) of f (x) = √
x at a = 16. Plot f (x) and L(x) on the same set of axes

and determine whether the estimate is too large or too small.

solution Let f (x) = x1/2, a = 16, and �x = 0.2. Then f ′(x) = 1
2x−1/2 and f ′(a) = f ′(16) = 1

8 . The linearization
to f (x) is

L(x) = f ′(a)(x − a) + f (a) = 1

8
(x − 16) + 4 = 1

8
x + 2.

Thus, we have
√

16.2 ≈ L(16.2) = 4.025. Graphs of f (x) and L(x) are shown below. Because the graph of L(x) lies
above the graph of f (x), we expect that the estimate from the Linear Approximation is too large.

y

x
1
2
3
4

0

5

5 10 15 2520

f (x)

L(x)

Estimate 1/
√

15 using a suitable linearization of f (x) = 1/
√

x. Plot f (x) and L(x) on the same set of axes
and determine whether the estimate is too large or too small. Use a calculator to compute the percentage error.

In Exercises 59–67, approximate using linearization and use a calculator to compute the percentage error.

59.
1√
17

solution Let f (x) = x−1/2, a = 16, and �x = 1. Then f ′(x) = − 1
2x−3/2, f ′(a) = f ′(16) = − 1

128 and the
linearization to f (x) is

L(x) = f ′(a)(x − a) + f (a) = − 1

128
(x − 16) + 1

4
= − 1

128
x + 3

8
.

Thus, we have 1√
17

≈ L(17) ≈ 0.24219. The percentage error in this estimate is

∣∣∣∣∣∣
1√
17

− 0.24219

1√
17

∣∣∣∣∣∣× 100% ≈ 0.14%

1

101

61.
1

(10.03)2

solution Let f (x) = x−2, a = 10 and �x = 0.03. Then f ′(x) = −2x−3, f ′(a) = f ′(10) = −0.002 and the
linearization to f (x) is

L(x) = f ′(a)(x − a) + f (a) = −0.002(x − 10) + 0.01 = −0.002x + 0.03.

Thus, we have

1

(10.03)2
≈ L(10.03) = −0.002(10.03) + 0.03 = 0.00994.

The percentage error in this estimate is∣∣∣∣∣∣
1

(10.03)2 − 0.00994

1
(10.03)2

∣∣∣∣∣∣× 100% ≈ 0.0027%

(17)1/463. (64.1)1/3

solution Let f (x) = x1/3, a = 64, and �x = 0.1. Then f ′(x) = 1
3x−2/3, f ′(a) = f ′(64) = 1

48 and the linearization
to f (x) is

L(x) = f ′(a)(x − a) + f (a) = 1

48
(x − 64) + 4 = 1

48
x + 8

3
.

Thus, we have (64.1)1/3 ≈ L(64.1) ≈ 4.002083. The percentage error in this estimate is∣∣∣∣∣ (64.1)1/3 − 4.002083

(64.1)1/3

∣∣∣∣∣× 100% ≈ 0.000019%
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(1.2)5/3
65. tan(0.04)

solution Let f (x) = tan x and a = 0. Then f ′(x) = sec2 x, f (a) = tan 0 = 0, and f ′(a) = sec2 0 = 1. The
linearization of f (x) is then

L(x) = f ′(a)(x − a) + f (a) = 1(x − 0) + 0 = x

Thus, we have tan(0.04) ≈ 0.04. The percentage error in this estimate is∣∣∣∣ tan(0.04) − 0.04

tan(0.04)

∣∣∣∣× 100% ≈ 0.053%.

cos

(
3.1

4

)
67.

(3.1)/2

sin(3.1/2)

solution Let f (x) = x

sin x
and a = π

2
. Then

f ′(x) = sin x − x cos x

sin2 x
, f (a) = π

2
, f ′(a) = 1

The linearization of f (x) is then

L(x) = f ′(a)(x − a) + f (a) = x − π

2
+ π

2
= x

Thus, we have
(3.1/2)

sin(3.1/2)
≈ L

(
3.1

2

)
= 1.55. The percentage error in this estimate is

∣∣∣∣∣∣
(3.1/2)

sin(3.1/2)
− 1.55

(3.1/2)
sin(3.1/2)

∣∣∣∣∣∣× 100% ≈ 0.022%

Compute the linearization L(x) of f (x) = x2 − x3/2 at a = 4. Then plot f (x) − L(x) and find an interval I

around a = 4 such that |f (x) − L(x)| ≤ 0.1 for x ∈ I .

69. Show that the Linear Approximation to f (x) = √
x at x = 9 yields the estimate

√
9 + h − 3 ≈ 1

6h. Set K = 0.01
and show that |f ′′(x)| ≤ K for x ≥ 9. Then verify numerically that the error E satisfies Eq. (5) for h = 10−n, for
1 ≤ n ≤ 4.

solution Let f (x) = √
x. Then f (9) = 3, f ′(x) = 1

2x−1/2 and f ′(9) = 1
6 . Therefore, by the Linear Approximation,

f (9 + h) − f (9) = √
9 + h − 3 ≈ 1

6
h.

Moreover, f ′′(x) = − 1
4x−3/2, so |f ′′(x)| = 1

4x−3/2. Because this is a decreasing function, it follows that for x ≥ 9,

K = max |f ′′(x)| ≤ |f ′′(9)| = 1

108
< 0.01.

From the following table, we see that for h = 10−n, 1 ≤ n ≤ 4, E ≤ 1
2Kh2.

h E = |√9 + h − 3 − 1
6h| 1

2Kh2

10−1 4.604 × 10−5 5.00 × 10−5

10−2 4.627 × 10−7 5.00 × 10−7

10−3 4.629 × 10−9 5.00 × 10−9

10−4 4.627 × 10−11 5.00 × 10−11

The Linear Approximation to f (x) = tan x at x = π
4 yields the estimate tan

(
π
4 + h

)− 1 ≈ 2h. Set K = 6.2
and show, using a plot, that |f ′′(x)| ≤ K for x ∈ [π

4 , π
4 + 0.1]. Then verify numerically that the error E satisfies

Eq. (5) for h = 10−n, for 1 ≤ n ≤ 4.

Further Insights and Challenges
71. Compute dy/dx at the point P = (2, 1) on the curve y3 + 3xy = 7 and show that the linearization at P is
L(x) = − 1

3x + 5
3 . Use L(x) to estimate the y-coordinate of the point on the curve where x = 2.1.

solution Differentiating both sides of the equation y3 + 3xy = 7 with respect to x yields

3y2 dy

dx
+ 3x

dy

dx
+ 3y = 0,

so

dy

dx
= − y

y2 + x
.
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Thus,

dy

dx

∣∣∣∣
(2,1)

= − 1

12 + 2
= −1

3
,

and the linearization at P = (2, 1) is

L(x) = 1 − 1

3
(x − 2) = −1

3
x + 5

3
.

Finally, when x = 2.1, we estimate that the y-coordinate of the point on the curve is

y ≈ L(2.1) = −1

3
(2.1) + 5

3
= 0.967.

Apply the method of Exercise 71 to P = (0.5, 1) on y5 + y − 2x = 1 to estimate the y-coordinate of the point
on the curve where x = 0.55.

73. Apply the method of Exercise 71 to P = (−1, 2) on y4 + 7xy = 2 to estimate the solution of y4 − 7.7y = 2 near
y = 2.

solution Differentiating both sides of the equation y4 + 7xy = 2 with respect to x yields

4y3 dy

dx
+ 7x

dy

dx
+ 7y = 0,

so

dy

dx
= − 7y

4y3 + 7x
.

Thus,

dy

dx

∣∣∣∣
(−1,2)

= − 7(2)

4(2)3 + 7(−1)
= −14

25
,

and the linearization at P = (−1, 2) is

L(x) = 2 − 14

25
(x + 1) = −14

25
x + 36

25
.

Finally, the equation y4 − 7.7y = 2 corresponds to x = −1.1, so we estimate the solution of this equation near y = 2 is

y ≈ L(−1.1) = −14

25
(−1.1) + 36

25
= 2.056.

Show that for any real number k, (1 + �x)k ≈ 1 + k�x for small �x. Estimate (1.02)0.7 and (1.02)−0.3.
75. Let �f = f (5 + h) − f (5), where f (x) = x2. Verify directly that E = |�f − f ′(5)h| satisfies (5) with K = 2.

solution Let f (x) = x2. Then

�f = f (5 + h) − f (5) = (5 + h)2 − 52 = h2 + 10h

and

E = |�f − f ′(5)h| = |h2 + 10h − 10h| = h2 = 1

2
(2)h2 = 1

2
Kh2.

Let �f = f (1 + h) − f (1) where f (x) = x−1. Show directly that E = |�f − f ′(1)h| is equal to h2/(1 + h).
Then prove that E ≤ 2h2 if − 1

2 ≤ h ≤ 1
2 . Hint: In this case, 1

2 ≤ 1 + h ≤ 3
2 .

4.2 Extreme Values

Preliminary Questions
1. What is the definition of a critical point?

solution A critical point is a value of the independent variable x in the domain of a function f at which either f ′(x) = 0
or f ′(x) does not exist.

In Questions 2 and 3, choose the correct conclusion.

2. If f (x) is not continuous on [0, 1], then

(a) f (x) has no extreme values on [0, 1].
(b) f (x) might not have any extreme values on [0, 1].
solution The correct response is (b): f (x) might not have any extreme values on [0, 1]. Although [0, 1] is closed,
because f is not continuous, the function is not guaranteed to have any extreme values on [0, 1].
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3. If f (x) is continuous but has no critical points in [0, 1], then

(a) f (x) has no min or max on [0, 1].
(b) Either f (0) or f (1) is the minimum value on [0, 1].
solution The correct response is (b): either f (0) or f (1) is the minimum value on [0, 1]. Remember that extreme
values occur either at critical points or endpoints. If a continuous function on a closed interval has no critical points, the
extreme values must occur at the endpoints.

4. Fermat’s Theorem does not claim that if f ′(c) = 0, then f (c) is a local extreme value (this is false). What does
Fermat’s Theorem assert?

solution Fermat’s Theorem claims: If f (c) is a local extreme value, then either f ′(c) = 0 or f ′(c) does not exist.

Exercises
1. The following questions refer to Figure 15.

(a) How many critical points does f (x) have on [0, 8]?
(b) What is the maximum value of f (x) on [0, 8]?
(c) What are the local maximum values of f (x)?

(d) Find a closed interval on which both the minimum and maximum values of f (x) occur at critical points.

(e) Find an interval on which the minimum value occurs at an endpoint.

83 4 5 6 721

2

3

4

5

6

1

f (x)

x

y

FIGURE 15

solution

(a) f (x) has three critical points on the interval [0, 8]: at x = 3, x = 5 and x = 7. Two of these, x = 3 and x = 5, are
where the derivative is zero and one, x = 7, is where the derivative does not exist.

(b) The maximum value of f (x) on [0, 8] is 6; the function takes this value at x = 0.

(c) f (x) achieves a local maximum of 5 at x = 5.

(d) Answers may vary. One example is the interval [4, 8]. Another is [2, 6].
(e) Answers may vary. The easiest way to ensure this is to choose an interval on which the graph takes no local minimum.
One example is [0, 2].

State whether f (x) = x−1 (Figure 16) has a minimum or maximum value on the following intervals:

(a) (0, 2) (b) (1, 2) (c) [1, 2]
In Exercises 3–20, find all critical points of the function.

3. f (x) = x2 − 2x + 4

solution Let f (x) = x2 − 2x + 4. Then f ′(x) = 2x − 2 = 0 implies that x = 1 is the lone critical point of f .

f (x) = 7x − 25. f (x) = x3 − 9
2x2 − 54x + 2

solution Let f (x) = x3 − 9
2x2 − 54x + 2. Then f ′(x) = 3x2 − 9x − 54 = 3(x + 3)(x − 6) = 0 implies that

x = −3 and x = 6 are the critical points of f .

f (t) = 8t3 − t27. f (x) = x−1 − x−2

solution Let f (x) = x−1 − x−2. Then

f ′(x) = −x−2 + 2x−3 = 2 − x

x3
= 0

implies that x = 2 is the only critical point of f . Though f ′(x) does not exist at x = 0, this is not a critical point of f

because x = 0 is not in the domain of f .

g(z) = 1

z − 1
− 1

z

9. f (x) = x

x2 + 1

solution Let f (x) = x

x2 + 1
. Then f ′(x) = 1 − x2

(x2 + 1)2
= 0 implies that x = ±1 are the critical points of f .

f (x) = x2

x2 − 4x + 8
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11. f (t) = t − 4
√

t + 1

solution Let f (t) = t − 4
√

t + 1. Then

f ′(t) = 1 − 2√
t + 1

= 0

implies that t = 3 is a critical point of f . Because f ′(t) does not exist at t = −1, this is another critical point of f .

f (t) = 4t −
√

t2 + 1
13. f (x) = x2

√
1 − x2

solution Let f (x) = x2
√

1 − x2. Then

f ′(x) = − x3√
1 − x2

+ 2x
√

1 − x2 = 2x − 3x3√
1 − x2

.

This derivative is 0 when x = 0 and when x = ±√
2/3; the derivative does not exist when x = ±1. All five of these

values are critical points of f

f (x) = x + |2x + 1|15. g(θ) = sin2 θ

solution Let g(θ) = sin2 θ . Then g′(θ) = 2 sin θ cos θ = sin 2θ = 0 implies that

θ = nπ

2

is a critical value of g for all integer values of n.

R(θ) = cos θ + sin2 θ
17. Let f (x) = x2 − 4x + 1.

(a) Find the critical point c of f (x) and compute f (c).

(b) Compute the value of f (x) at the endpoints of the interval [0, 4].
(c) Determine the min and max of f (x) on [0, 4].
(d) Find the extreme values of f (x) on [0, 1].
solution Let f (x) = x2 − 4x + 1.

(a) Then f ′(c) = 2c − 4 = 0 implies that c = 2 is the sole critical point of f . We have f (2) = −3.

(b) f (0) = f (4) = 1.

(c) Using the results from (a) and (b), we find the maximum value of f on [0, 4] is 1 and the minimum value is −3.

(d) We have f (1) = −2. Hence the maximum value of f on [0, 1] is 1 and the minimum value is −2.

Find the extreme values of f (x) = 2x3 − 9x2 + 12x on [0, 3] and [0, 2].
19. Find the critical points of f (x) = sin x + cos x and determine the extreme values on

[
0, π

2

]
.

solution

• Let f (x) = sin x + cos x. Then on the interval
[
0, π

2

]
, we have f ′(x) = cos x − sin x = 0 at x = π

4 , the only
critical point of f in this interval.

• Since f (π
4 ) = √

2 and f (0) = f (π
2 ) = 1, the maximum value of f on

[
0, π

2

]
is

√
2, while the minimum value

is 1.

Compute the critical points of h(t) = (t2 − 1)1/3. Check that your answer is consistent with Figure 17. Then find
the extreme values of h(t) on [0, 1] and [0, 2].

21. Plot f (x) = 2
√

x − x on [0, 4] and determine the maximum value graphically. Then verify your answer
using calculus.

solution The graph of y = 2
√

x − x over the interval [0, 4] is shown below. From the graph, we see that at x = 1,
the function achieves its maximum value of 1.

y

x
0.2
0.4
0.6
0.8

0

1

1 2 3 4

To verify the information obtained from the plot, let f (x) = 2
√

x − x. Then f ′(x) = x−1/2 − 1. Solving f ′(x) = 0
yields the critical points x = 0 and x = 1. Because f (0) = f (4) = 0 and f (1) = 1, we see that the maximum value of
f on [0, 4] is 1.

Plot f (x) = 2x3 − 9x2 + 12x on [0, 3] and locate the extreme values graphically. Then verify your answer
using calculus.
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23. Approximate the critical points of g(x) = x cos x on I = [0, 2π ] and estimate the minimum value of g(x)

on I .

solution g′(x) = cos x − x sin x, so g′(x) = 0 when x ≈ 0.860334 and when x ≈ 3.425618. Evaluating g at the
endpoints as well as at these critical points gives g(0) = 0, g(0.860334) ≈ 0.561096, g(3.425618) ≈ −3.288371, and
g(2π) = 2π ≈ 6.28. Hence the minimum value of g(x) on I is ≈ −3.288371 at x ≈ 3.425618.

Approximate the critical points of g(x) = tan2 x − 5x on I =
(
−π

2
,
π

2

)
and estimate the minimum value of

g(x) on I .

In Exercises 25–58, find the min and max of the function on the given interval by comparing values at the critical points
and endpoints.

25. y = 2x2 + 4x + 5, [−2, 2]
solution Let f (x) = 2x2 + 4x + 5. Then f ′(x) = 4x + 4 = 0 implies that x = −1 is the only critical point of f .
The minimum of f on the interval [−2, 2] is f (−1) = 3, whereas its maximum is f (2) = 21. (Note: f (−2) = 5.)

y = 2x2 + 4x + 5, [0, 2]27. y = 6t − t2, [0, 5]
solution Let f (t) = 6t − t2. Then f ′(t) = 6 − 2t = 0 implies that t = 3 is the only critical point of f . The minimum
of f on the interval [0, 5] is f (0) = 0, whereas the maximum is f (3) = 9. (Note: f (5) = 5.)

y = 6t − t2, [4, 6]29. y = x3 − 6x2 + 8, [1, 6]
solution Let f (x) = x3 − 6x2 + 8. Then f ′(x) = 3x2 − 12x = 3x(x − 4) = 0 implies that x = 0 and x = 4 are
the critical points of f . The minimum of f on the interval [1, 6] is f (4) = −24, whereas the maximum is f (6) = 8.
(Note: f (1) = 3 and the critical point x = 0 is not in the interval [1, 6].)

y = x3 + x2 − x, [−2, 2]31. y = 2t3 + 3t2, [1, 2]
solution Let f (t) = 2t3 + 3t2. Then f ′(t) = 6t2 + 6t = 6t (t + 1) = 0 implies that t = 0 and t = −1 are the
critical points of f . The minimum of f on the interval [1, 2] is f (1) = 5, whereas the maximum is f (2) = 28. (Note:
Neither critical points are in the interval [1, 2].)

y = x3 − 12x2 + 21x, [0, 2]33. y = z5 − 80z, [−3, 3]
solution Let f (z) = z5 − 80z. Then f ′(z) = 5z4 − 80 = 5(z4 − 16) = 5(z2 + 4)(z + 2)(z − 2) = 0 implies
that z = ±2 are the critical points of f . The minimum value of f on the interval [−3, 3] is f (2) = −128, whereas the
maximum is f (−2) = 128. (Note: f (−3) = 3 and f (3) = −3.)

y = 2x5 + 5x2, [−2, 2]35. y = x2 + 1

x − 4
, [5, 6]

solution Let f (x) = x2 + 1

x − 4
. Then

f ′(x) = (x − 4) · 2x − (x2 + 1) · 1

(x − 4)2
= x2 − 8x − 1

(x − 4)2
= 0

implies x = 4 ± √
17 are critical points of f . x = 4 is not a critical point because x = 4 is not in the domain of f . On

the interval [5, 6], the minimum of f is f (6) = 37
2 = 18.5, whereas the maximum of f is f (5) = 26. (Note: The critical

points x = 4 ± √
17 are not in the interval [5, 6].)

y = 1 − x

x2 + 3x
, [1, 4]37. y = x − 4x

x + 1
, [0, 3]

solution Let f (x) = x − 4x

x + 1
. Then

f ′(x) = 1 − 4

(x + 1)2
= (x − 1)(x + 3)

(x + 1)2
= 0

implies that x = 1 and x = −3 are critical points of f . x = −1 is not a critical point because x = −1 is not in the domain
of f . The minimum of f on the interval [0, 3] is f (1) = −1, whereas the maximum is f (0) = f (3) = 0. (Note: The
critical point x = −3 is not in the interval [0, 3].)

y = 2
√

x2 + 1 − x, [0, 2]39. y = (2 + x)
√

2 + (2 − x)2, [0, 2]
solution Let f (x) = (2 + x)

√
2 + (2 − x)2. Then

f ′(x) =
√

2 + (2 − x)2 − (2 + x)(2 + (2 − x)2)−1/2(2 − x) = 2(x − 1)2√
2 + (2 − x)2

= 0

implies that x = 1 is the critical point of f . On the interval [0, 2], the minimum is f (0) = 2
√

6 ≈ 4.9 and the maximum
is f (2) = 4

√
2 ≈ 5.66. (Note: f (1) = 3

√
3 ≈ 5.2.)

y =
√

1 + x2 − 2x, [0, 1]
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41. y =
√

x + x2 − 2
√

x, [0, 4]
solution Let f (x) =

√
x + x2 − 2

√
x. Then

f ′(x) = 1

2
(x + x2)−1/2(1 + 2x) − x−1/2 = 1 + 2x − 2

√
1 + x

2
√

x
√

1 + x
= 0

implies that x = 0 and x =
√

3
2 are the critical points of f . Neither x = −1 nor x = −

√
3

2 is a critical point because

neither is in the domain of f . On the interval [0, 4], the minimum of f is f
(√

3
2

)
≈ −0.589980 and the maximum is

f (4) ≈ 0.472136. (Note: f (0) = 0.)

y = (t − t2)1/3, [−1, 2]
43. y = sin x cos x,

[
0, π

2

]
solution Let f (x) = sin x cos x = 1

2 sin 2x. On the interval
[
0, π

2

]
, f ′(x) = cos 2x = 0 when x = π

4 . The minimum

of f on this interval is f (0) = f (π
2 ) = 0, whereas the maximum is f (π

4 ) = 1
2 .

y = x + sin x, [0, 2π ]45. y = √
2 θ − sec θ ,

[
0, π

3

]
solution Let f (θ) = √

2θ − sec θ . On the interval [0, π
3 ], f ′(θ) = √

2 − sec θ tan θ = 0 at θ = π
4 . The minimum

value of f on this interval is f (0) = −1, whereas the maximum value over this interval is f (π
4 ) = √

2( π
4 − 1) ≈

−0.303493. (Note: f (π
3 ) = √

2 π
3 − 2 ≈ −0.519039.)

y = cos θ + sin θ , [0, 2π ]47. y = θ − 2 sin θ , [0, 2π ]
solution Let g(θ) = θ − 2 sin θ . On the interval [0, 2π ], g′(θ) = 1 − 2 cos θ = 0 at θ = π

3 and θ = 5
3π . The

minimum of g on this interval is g(π
3 ) = π

3 − √
3 ≈ −0.685 and the maximum is g( 5

3π) = 5
3π + √

3 ≈ 6.968. (Note:
g(0) = 0 and g(2π) = 2π ≈ 6.283.)

y = 4 sin3 θ − 3 cos2 θ , [0, 2π ]
49. y = tan x − 2x, [0, 1]
solution Let f (x) = tan x − 2x. Then on the interval [0, 1], f ′(x) = sec2 x − 2 = 0 at x = π

4 . The minimum of f

is f (π
4 ) = 1 − π

2 ≈ −0.570796 and the maximum is f (0) = 0. (Note: f (1) = tan 1 − 2 ≈ −0.442592.)

y = sec2 x − 2 tan x,
[
−π

6
,
π

3

]51. Let f (θ) = 2 sin 2θ + sin 4θ .

(a) Show that θ is a critical point if cos 4θ = − cos 2θ .
(b) Show, using a unit circle, that cos θ1 = − cos θ2 if and only if θ1 = π ± θ2 + 2πk for an integer k.
(c) Show that cos 4θ = − cos 2θ if and only if θ = π

2 + πk or θ = π
6 + (π3 )k.

(d) Find the six critical points of f (θ) on [0, 2π ] and find the extreme values of f (θ) on this interval.
(e) Check your results against a graph of f (θ).

solution f (θ) = 2 sin 2θ + sin 4θ is differentiable at all θ , so the way to find the critical points is to find all points
such that f ′(θ) = 0.

(a) f ′(θ) = 4 cos 2θ + 4 cos 4θ . If f ′(θ) = 0, then 4 cos 4θ = −4 cos 2θ , so cos 4θ = − cos 2θ .
(b) Given the point (cos θ, sin θ) at angle θ on the unit circle, there are two points with x coordinate − cos θ . The graphic
shows these two points, which are:

• The point (cos(θ + π), sin(θ + π)) on the opposite end of the unit circle.
• The point (cos(π − θ), sin(θ − π)) obtained by reflecting through the y axis.

If we include all angles representing these points on the circle, we find that cos θ1 = − cos θ2 if and only if θ1 =
(π + θ2) + 2πk or θ1 = (π − θ2) + 2πk for integers k.
(c) Using (b), we recognize that cos 4θ = − cos 2θ if 4θ = 2θ + π + 2πk or 4θ = π − 2θ + 2πk. Solving for θ , we
obtain θ = π

2 + kπ or θ = π
6 + π

3 k.
(d) To find all θ , 0 ≤ θ < 2π indicated by (c), we use the following table:

k 0 1 2 3 4 5

π
2 + kπ π

2
3π
2

π
6 + π

3 k π
6

π
2

5π
6

7π
6

3π
2

11π
6
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The critical points in the range [0, 2π ] are π
6 , π

2 , 5π
6 , 7π

6 , 3π
2 , and 11π

6 . On this interval, the maximum value is f (π
6 ) =

f ( 7π
6 ) = 3

√
3

2 and the minimum value is f ( 5π
6 ) = f ( 11π

6 ) = − 3
√

3
2 .

(e) The graph of f (θ) = 2 sin 2θ + sin 4θ is shown here:

x
1

2 3

4

5

6

1

2

−1

−2

y

We can see that there are six flat points on the graph between 0 and 2π , as predicted. There are 4 local extrema, and two
points at ( π

2 , 0) and ( 3π
2 , 0) where the graph has neither a local maximum nor a local minimum.

Find the critical points of f (x) = 2 cos 3x + 3 cos 2x in [0, 2π ]. Check your answer against a graph of f (x).In Exercises 53–56, find the critical points and the extreme values on [0, 4]. In Exercises 55 and 56, refer to Figure 18.

y = |x2 + 4x − 12|

2−6

10

20

30

y = | cos x |

1

π
2

π 3π
2

− π
2

x x

yy

FIGURE 18

53. y = |x − 2|
solution Let f (x) = |x − 2|. For x < 2, we have f ′(x) = −1. For x > 2, we have f ′(x) = 1. Now as x → 2−, we

have
f (x) − f (2)

x − 2
= (2 − x) − 0

x − 2
→ −1; whereas as x → 2+, we have

f (x) − f (2)

x − 2
= (x − 2) − 0

x − 2
→ 1. Therefore,

f ′(2) = lim
x→2

f (x) − f (2)

x − 2
does not exist and the lone critical point of f is x = 2. Alternately, we examine the graph of

f (x) = |x − 2| shown below.
To find the extremum, we check the values of f (x) at the critical point and the endpoints. f (0) = 2, f (4) = 2, and

f (2) = 0. f (x) takes its minimum value of 0 at x = 2, and its maximum of 2 at x = 0 and at x = 4.

y

x

0.5

1

1.5

2

0 3 421

y = |3x − 9|55. y = |x2 + 4x − 12|
solution Let f (x) = |x2 + 4x − 12| = |(x + 6)(x − 2)|. From the graph of f in Figure 18, we see that f ′(x) does
not exist at x = −6 and at x = 2, so these are critical points of f . There is also a critical point between x = −6 and
x = 2 at which f ′(x) = 0. For −6 < x < 2, f (x) = −x2 − 4x + 12, so f ′(x) = −2x − 4 = 0 when x = −2. On
the interval [0, 4] the minimum value of f is f (2) = 0 and the maximum value is f (4) = 20. (Note: f (0) = 12 and the
critical points x = −6 and x = −2 are not in the interval.)

y = | cos x|In Exercises 57–60, verify Rolle’s Theorem for the given interval.

57. f (x) = x + x−1,
[ 1

2 , 2
]

solution Because f is continuous on [ 1
2 , 2], differentiable on ( 1

2 , 2) and

f

(
1

2

)
= 1

2
+ 1

1
2

= 5

2
= 2 + 1

2
= f (2),

we may conclude from Rolle’s Theorem that there exists a c ∈ ( 1
2 , 2) at which f ′(c) = 0. Here, f ′(x) = 1 − x−2 = x2−1

x2 ,
so we may take c = 1.

f (x) = sin x,
[
π
4 , 3π

4

]
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59. f (x) = x2

8x − 15
, [3, 5]

solution Because f is continuous on [3, 5], differentiable on (3, 5) and f (3) = f (5) = 1, we may conclude from
Rolle’s Theorem that there exists a c ∈ (3, 5) at which f ′(c) = 0. Here,

f ′(x) = (8x − 15)(2x) − 8x2

(8x − 15)2
= 2x(4x − 15)

(8x − 15)2
,

so we may take c = 15
4 .

f (x) = sin2 x − cos2 x,
[
π
4 , 3π

4

]61. Prove that f (x) = x5 + 2x3 + 4x − 12 has precisely one real root.

solution Let’s first establish the f (x) = x5 + 2x3 + 4x − 12 has at least one root. Because f is a polynomial, it is
continuous for all x. Moreover, f (0) = −12 < 0 and f (2) = 44 > 0. Therefore, by the Intermediate Value Theorem,
there exists a c ∈ (0, 2) such that f (c) = 0.

Next, we prove that this is the only root. We will use proof by contradiction. Suppose f (x) = x5 + 2x3 + 4x − 12 has
two real roots, x = a and x = b. Then f (a) = f (b) = 0 and Rolle’s Theorem guarantees that there exists a c ∈ (a, b) at
which f ′(c) = 0. However, f ′(x) = 5x4 + 6x2 + 4 ≥ 4 for all x, so there is no c ∈ (a, b) at which f ′(c) = 0. Based on
this contradiction, we conclude that f (x) = x5 + 2x3 + 4x − 12 cannot have more than one real root. Finally, f must
have precisely one real root.

Prove that f (x) = x3 + 3x2 + 6x has precisely one real root.
63. Prove that f (x) = x4 + 5x3 + 4x has no root c satisfying c > 0. Hint: Note that x = 0 is a root and apply Rolle’s
Theorem.

solution We will proceed by contradiction. Note that f (0) = 0 and suppose that there exists a c > 0 such that
f (c) = 0. Then f (0) = f (c) = 0 and Rolle’s Theorem guarantees that there exists a d ∈ (0, c) such that f ′(d) = 0.
However, f ′(x) = 4x3 + 15x2 + 4 > 4 for all x > 0, so there is no d ∈ (0, c) such that f ′(d) = 0. Based on this
contradiction, we conclude that f (x) = x4 + 5x3 + 4x has no root c satisfying c > 0.

Prove that c = 4 is the largest root of f (x) = x4 − 8x2 − 128.
65. The position of a mass oscillating at the end of a spring is s(t) = A sin ωt , where A is the amplitude and ω is the
angular frequency. Show that the speed |v(t)| is at a maximum when the acceleration a(t) is zero and that |a(t)| is at a
maximum when v(t) is zero.

solution Let s(t) = A sin ωt . Then

v(t) = ds

dt
= Aω cos ωt

and

a(t) = dv

dt
= −Aω2 sin ωt.

Thus, the speed

|v(t)| = |Aω cos ωt |
is a maximum when | cos ωt | = 1, which is precisely when sin ωt = 0; that is, the speed |v(t)| is at a maximum when the
acceleration a(t) is zero. Similarly,

|a(t)| = |Aω2 sin ωt |
is a maximum when | sin ωt | = 1, which is precisely when cos ωt = 0; that is, |a(t)| is at a maximum when v(t) is zero.

The concentration C(t) (in mg/cm3) of a drug in a patient’s bloodstream after t hours is

C(t) = 0.016t

t2 + 4t + 4

Find the maximum concentration in the time interval [0, 8] and the time at which it occurs.

67. In 1919, physicist Alfred Betz argued that the maximum efficiency of a wind turbine is around 59%. If wind enters a
turbine with speed v1 and exits with speed v2, then the power extracted is the difference in kinetic energy per unit time:

P = 1

2
mv2

1 − 1

2
mv2

2 watts

where m is the mass of wind flowing through the rotor per unit time (Figure 19). Betz assumed that m = ρA(v1 + v2)/2,
where ρ is the density of air and A is the area swept out by the rotor. Wind flowing undisturbed through the same area
A would have mass per unit time ρAv1 and power P0 = 1

2ρAv3
1. The fraction of power extracted by the turbine is

F = P/P0.

(a) Show that F depends only on the ratio r = v2/v1 and is equal to F(r) = 1
2 (1 − r2)(1 + r), where 0 ≤ r ≤ 1.

(b) Show that the maximum value of F(r), called the Betz Limit, is 16/27 ≈ 0.59.

(c) Explain why Betz’s formula for F(r) is not meaningful for r close to zero. Hint: How much wind would
pass through the turbine if v2 were zero? Is this realistic?
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1

0.1

0.2

0.3

0.5

0.4

0.6

0.5
r

F

(A) Wind flowing through a turbine. (B) F is the fraction of energy
       extracted by the turbine as a 
      function of r = v2/v1.

v1 v2

FIGURE 19

solution
(a) We note that

F = P

P0
=

1
2

ρA(v1+v2)
2 (v2

1 − v2
2)

1
2ρAv3

1

= 1

2

v2
1 − v2

2

v2
1

· v1 + v2

v1

= 1

2

(
1 − v2

2

v2
1

)(
1 + v2

v1

)

= 1

2
(1 − r2)(1 + r).

(b) Based on part (a),

F ′(r) = 1

2
(1 − r2) − r(1 + r) = −3

2
r2 − r + 1

2
.

The roots of this quadratic are r = −1 and r = 1
3 . Now, F(0) = 1

2 , F(1) = 0 and

F

(
1

3

)
= 1

2
· 8

9
· 4

3
= 16

27
≈ 0.59.

Thus, the Betz Limit is 16/27 ≈ 0.59.
(c) If v2 were 0, then no air would be passing through the turbine, which is not realistic.

The Bohr radius a0 of the hydrogen atom is the value of r that minimizes the energy

E(r) = h̄2

2mr2
− e2

4πε0r

where h̄, m, e, and ε0 are physical constants. Show that a0 = 4πε0h̄2/(me2). Assume that the minimum occurs at a
critical point, as suggested by Figure 20.

69. The response of a circuit or other oscillatory system to an input of frequency ω (“omega”) is described by the function

φ(ω) = 1√
(ω2

0 − ω2)2 + 4D2ω2

Both ω0 (the natural frequency of the system) and D (the damping factor) are positive constants. The graph of φ is called a
resonance curve, and the positive frequency ωr > 0, where φ takes its maximum value, if it exists, is called the resonant

frequency. Show that ωr =
√

ω2
0 − 2D2 if 0 < D < ω0/

√
2 and that no resonant frequency exists otherwise (Figure 21).

w

(A) D = 0.01 (B) D = 0.2

2 2w r

(C) D = 0.75 (no resonance)

50
f f f

w
2w r

1

2

3

w
31 2

1

0.5

FIGURE 21 Resonance curves with ω0 = 1.

solution Let φ(ω) = ((ω2
0 − ω2)2 + 4D2ω2)−1/2. Then

φ′(ω) = 2ω((ω2
0 − ω2) − 2D2)

((ω2
0 − ω2)2 + 4D2ω2)3/2

and the non-negative critical points are ω = 0 and ω =
√

ω2
0 − 2D2. The latter critical point is positive if and only if

ω2
0 − 2D2 > 0, and since we are given D > 0, this is equivalent to 0 < D < ω0/

√
2.
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Define ωr =
√

ω2
0 − 2D2. Now, φ(0) = 1/ω2

0 and φ(ω) → 0 as ω → ∞. Finally,

φ(ωr ) = 1

2D

√
ω2

0 − D2
,

which, for 0 < D < ω0/
√

2, is larger than 1/ω2
0. Hence, the point ω =

√
ω2

0 − 2D2, if defined, is a local maximum.

Bees build honeycomb structures out of cells with a hexagonal base and three rhombus-shaped faces on top, as in
Figure 22. We can show that the surface area of this cell is

A(θ) = 6hs + 3

2
s2(

√
3 csc θ − cot θ)

with h, s, and θ as indicated in the figure. Remarkably, bees “know” which angle θ minimizes the surface area (and
therefore requires the least amount of wax).

(a) Show that θ ≈ 54.7◦ (assume h and s are constant). Hint: Find the critical point of A(θ) for 0 < θ < π/2.

(b) Confirm, by graphing f (θ) = √
3 csc θ − cot θ , that the critical point indeed minimizes the surface area.

71. Find the maximum of y = xa − xb on [0, 1] where 0 < a < b. In particular, find the maximum of y = x5 − x10 on
[0, 1].
solution

• Let f (x) = xa − xb. Then f ′(x) = axa−1 − bxb−1. Since a < b, f ′(x) = xa−1(a − bxb−a) = 0 implies
critical points x = 0 and x = ( a

b
)1/(b−a), which is in the interval [0, 1] as a < b implies a

b
< 1 and consequently

x = ( a
b
)1/(b−a) < 1. Also, f (0) = f (1) = 0 and a < b implies xa > xb on the interval [0, 1], which gives

f (x) > 0 and thus the maximum value of f on [0, 1] is

f

((a

b

)1/(b−a)
)

=
(a

b

)a/(b−a) −
(a

b

)b/(b−a)
.

• Let f (x) = x5 − x10. Then by part (a), the maximum value of f on [0, 1] is

f

((
1

2

)1/5
)

=
(

1

2

)
−
(

1

2

)2
= 1

2
− 1

4
= 1

4
.

In Exercises 72–74, plot the function using a graphing utility and find its critical points and extreme values on [−5, 5].

y = 1

1 + |x − 1|
73. y = 1

1 + |x − 1| + 1

1 + |x − 4|
solution Let

f (x) = 1

1 + |x − 1| + 1

1 + |x − 4| .

The plot follows:

−5 −4 −3 −2 −1 1 2 3 4 5

0.2

0.4

0.6

0.8

1

1.2

We can see on the plot that the critical points of f (x) lie at the cusps at x = 1 and x = 4 and at the location of the
horizontal tangent line at x = 5

2 . With f (−5) = 17
70 , f (1) = f (4) = 5

4 , f ( 5
2 ) = 4

5 and f (5) = 7
10 , it follows that the

maximum value of f (x) on [−5, 5] is f (1) = f (4) = 5
4 and the minimum value is f (−5) = 17

70 .

y = x

|x2 − 1| + |x2 − 4|
75. (a) Use implicit differentiation to find the critical points on the curve 27x2 = (x2 + y2)3.
(b) Plot the curve and the horizontal tangent lines on the same set of axes.

solution

(a) Differentiating both sides of the equation 27x2 = (x2 + y2)3 with respect to x yields

54x = 3(x2 + y2)2
(

2x + 2y
dy

dx

)
.

Solving for dy/dx we obtain

dy

dx
= 27x − 3x(x2 + y2)2

3y(x2 + y2)2
= x(9 − (x2 + y2)2)

y(x2 + y2)2
.

Thus, the derivative is zero when x2 + y2 = 3. Substituting into the equation for the curve, this yields x2 = 1, or x = ±1.
There are therefore four points at which the derivative is zero:

(−1, −√
2), (−1,

√
2), (1,−√

2), (1,
√

2).
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There are also critical points where the derivative does not exist. This occurs when y = 0 and gives the following points
with vertical tangents:

(0, 0), (± 4√
27, 0).

(b) The curve 27x2 = (x2 + y2)3 and its horizontal tangents are plotted below.

1

−1

y

x
−2 −1 1 2

Sketch the graph of a continuous function on (0, 4) with a minimum value but no maximum value.
77. Sketch the graph of a continuous function on (0, 4) having a local minimum but no absolute minimum.

solution Here is the graph of a function f on (0, 4) with a local minimum value [between x = 2 and x = 4] but no
absolute minimum [since f (x) → −∞ as x → 0+].

x
1 2 3

10

−10

y

Sketch the graph of a function on [0, 4] having

(a) Two local maxima and one local minimum.

(b) An absolute minimum that occurs at an endpoint, and an absolute maximum that occurs at a critical point.

79. Sketch the graph of a function f (x) on [0, 4] with a discontinuity such that f (x) has an absolute minimum but no
absolute maximum.

solution Here is the graph of a function f on [0, 4] that (a) has a discontinuity [at x = 4] and (b) has an absolute
minimum [at x = 0] but no absolute maximum [since f (x) → ∞ as x → 4−].

y

x
0

1

2

3

4

1 2 3 4

Arainbow is produced by light rays that enter a raindrop (assumed spherical) and exit after being reflected internally
as in Figure 23. The angle between the incoming and reflected rays is θ = 4r − 2i, where the angle of incidence i

and refraction r are related by Snell’s Law sin i = n sin r with n ≈ 1.33 (the index of refraction for air and water).

(a) Use Snell’s Law to show that
dr

di
= cos i

n cos r
.

(b) Show that the maximum value θmax of θ occurs when i satisfies cos i =
√

n2 − 1

3
. Hint: Show that

dθ

di
= 0 if

cos i = n

2
cos r . Then use Snell’s Law to eliminate r .

(c) Show that θmax ≈ 59.58◦.

Further Insights and Challenges
81. Show that the extreme values of f (x) = a sin x + b cos x are ±

√
a2 + b2.

solution If f (x) = a sin x + b cos x, then f ′(x) = a cos x − b sin x, so that f ′(x) = 0 implies a cos x − b sin x = 0.
This implies tan x = a

b
. Then,

sin x = ±a√
a2 + b2

and cos x = ±b√
a2 + b2

.

Therefore

f (x) = a sin x + b cos x = a
±a√

a2 + b2
+ b

±b√
a2 + b2

= ± a2 + b2√
a2 + b2

= ±
√

a2 + b2.

Show, by considering its minimum, that f (x) = x2 − 2x + 3 takes on only positive values. More generally, find
the conditions on r and s under which the quadratic function f (x) = x2 + rx + s takes on only positive values. Give
examples of r and s for which f takes on both positive and negative values.

83. Show that if the quadratic polynomial f (x) = x2 + rx + s takes on both positive and negative values, then its
minimum value occurs at the midpoint between the two roots.

solution Let f (x) = x2 + rx + s and suppose that f (x) takes on both positive and negative values. This will
guarantee that f has two real roots. By the quadratic formula, the roots of f are

x = −r ±
√

r2 − 4s

2
.
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Observe that the midpoint between these roots is

1

2

(
−r +

√
r2 − 4s

2
+ −r −

√
r2 − 4s

2

)
= − r

2
.

Next, f ′(x) = 2x + r = 0 when x = − r
2 and, because the graph of f (x) is an upward opening parabola, it follows that

f (− r
2 ) is a minimum. Thus, f takes on its minimum value at the midpoint between the two roots.

Generalize Exercise 83: Show that if the horizontal line y = c intersects the graph of f (x) = x2 + rx + s at two

points (x1, f (x1)) and (x2, f (x2)), then f (x) takes its minimum value at the midpoint M = x1 + x2

2
(Figure 24).

85. A cubic polynomial may have a local min and max, or it may have neither (Figure 25). Find conditions on the
coefficients a and b of

f (x) = 1

3
x3 + 1

2
ax2 + bx + c

that ensure that f has neither a local min nor a local max. Hint: Apply Exercise 82 to f ′(x).

−4 −2 42

(A) (B)

−2 42

20

−20

60

30

xx

yy

FIGURE 25 Cubic polynomials

solution Let f (x) = 1
3x3 + 1

2ax2 + bx + c. Using Exercise 82, we have g(x) = f ′(x) = x2 + ax + b > 0 for all

x provided b > 1
4a2, in which case f has no critical points and hence no local extrema. (Actually b ≥ 1

4a2 will suffice,
since in this case [as we’ll see in a later section] f has an inflection point but no local extrema.)

Find the min and max of

f (x) = xp(1 − x)q on [0, 1],
where p, q > 0.

87. Prove that if f is continuous and f (a) and f (b) are local minima where a < b, then there exists a value c

between a and b such that f (c) is a local maximum. (Hint: Apply Theorem 1 to the interval [a, b].) Show that continuity
is a necessary hypothesis by sketching the graph of a function (necessarily discontinuous) with two local minima but no
local maximum.

solution

• Let f (x) be a continuous function with f (a) and f (b) local minima on the interval [a, b]. By Theorem 1, f (x)

must take on both a minimum and a maximum on [a, b]. Since local minima occur at f (a) and f (b), the maximum
must occur at some other point in the interval, call it c, where f (c) is a local maximum.

• The function graphed here is discontinuous at x = 0.

x
2 4 6 8−8 −6 −4 −2

4

6

8

y

4.3 The Mean Value Theorem and Monotonicity

Preliminary Questions
1. For which value of m is the following statement correct? If f (2) = 3 and f (4) = 9, and f (x) is differentiable, then

f has a tangent line of slope m.

solution The Mean Value Theorem guarantees that the function has a tangent line with slope equal to

f (4) − f (2)

4 − 2
= 9 − 3

4 − 2
= 3.

Hence, m = 3 makes the statement correct.

2. Assume f is differentiable. Which of the following statements does not follow from the MVT?

(a) If f has a secant line of slope 0, then f has a tangent line of slope 0.

(b) If f (5) < f (9), then f ′(c) > 0 for some c ∈ (5, 9).
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(c) If f has a tangent line of slope 0, then f has a secant line of slope 0.

(d) If f ′(x) > 0 for all x, then every secant line has positive slope.

solution Conclusion (c) does not follow from the Mean Value Theorem. As a counterexample, consider the function

f (x) = x3. Note that f ′(0) = 0, but no secant line has zero slope.

3. Can a function that takes on only negative values have a positive derivative? If so, sketch an example.

solution Yes. The figure below displays a function that takes on only negative values but has a positive derivative.

x

y

4. For f (x) with derivative as in Figure 12:

(a) Is f (c) a local minimum or maximum?

(b) Is f (x) a decreasing function?

c
x

y

FIGURE 12 Graph of derivative f ′(x).

solution

(a) To the left of x = c, the derivative is positive, so f is increasing; to the right of x = c, the derivative is negative, so f
is decreasing. Consequently, f (c) must be a local maximum.

(b) No. The derivative is a decreasing function, but as noted in part (a), f (x) is increasing for x < c and decreasing for
x > c.

Exercises
In Exercises 1–8, find a point c satisfying the conclusion of the MVT for the given function and interval.

1. y = x−1, [2, 8]
solution Let f (x) = x−1, a = 2, b = 8. Then f ′(x) = −x−2, and by the MVT, there exists a c ∈ (2, 8) such that

− 1

c2
= f ′(c) = f (b) − f (a)

b − a
=

1
8 − 1

2
8 − 2

= − 1

16
.

Thus c2 = 16 and c = ±4. Choose c = 4 ∈ (2, 8).

y = √
x, [9, 25]3. y = cos x − sin x, [0, 2π ]

solution Let f (x) = cos x − sin x, a = 0, b = 2π . Then f ′(x) = − sin x − cos x, and by the MVT, there exists a
c ∈ (0, 2π) such that

− sin c − cos c = f ′(c) = f (b) − f (a)

b − a
= 1 − 1

2π − 0
= 0.

Thus − sin c = cos c. Choose either c = 3π
4 or c = 7π

4 ∈ (0, 2π).

y = x

x + 2
, [1, 4]

5. y = x3, [−4, 5]
solution Let f (x) = x3, a = −4, b = 5. Then f ′(x) = 3x2, and by the MVT, there exists a c ∈ (−4, 5) such that

3c2 = f ′(c) = f (b) − f (a)

b − a
= 189

9
= 21.

Solving for c yields c2 = 7, so c = ±√
7. Both of these values are in the interval [−4, 5], so either value can be chosen.

y = (x − 1)(x − 3), [1, 3]
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7. y = x sin x,
[
−π

2
,
π

2

]
solution Let f (x) = x sin x, a = −π

2
, b = π

2
. Then f ′(x) = sin x + x cos x, and by the MVT, there exists a

c ∈
(
−π

2
,
π

2

)
such that

sin c + c cos c = f ′(c) = f (b) − f (a)

b − a
=

π
2 − −π

2 (−1)

π
= 0

Solving for c gives c = 0 as the only solution.

y = x − sin(πx), [−1, 1]9. Let f (x) = x5 + x2. The secant line between x = 0 and x = 1 has slope 2 (check this), so by the MVT,
f ′(c) = 2 for some c ∈ (0, 1). Plot f (x) and the secant line on the same axes. Then plot y = 2x + b for different values
of b until the line becomes tangent to the graph of f . Zoom in on the point of tangency to estimate x-coordinate c of the
point of tangency.

solution Let f (x) = x5 + x2. The slope of the secant line between x = 0 and x = 1 is

f (1) − f (0)

1 − 0
= 2 − 0

1
= 2.

A plot of f (x), the secant line between x = 0 and x = 1, and the line y = 2x − 0.764 is shown below at the left. The
line y = 2x − 0.764 appears to be tangent to the graph of y = f (x). Zooming in on the point of tangency (see below at
the right), it appears that the x-coordinate of the point of tangency is approximately 0.62.

y = x5 + x2

y = 2x − .764

x
1

2

4

y

x

y

0.3

0.6

0.5

0.4

0.56 0.6 0.640.52

Plot the derivative of f (x) = 3x5 − 5x3. Describe its sign changes and use this to determine the local extreme
values of f (x). Then graph f (x) to confirm your conclusions.

11. Determine the intervals on which f ′(x) is positive and negative, assuming that Figure 13 is the graph of f (x).

x
654321

y

FIGURE 13

solution The derivative of f is positive on the intervals (0, 1) and (3, 5) where f is increasing; it is negative on the
intervals (1, 3) and (5, 6) where f is decreasing.

Determine the intervals on which f (x) is increasing or decreasing, assuming that Figure 13 is the graph of f ′(x).
13. State whether f (2) and f (4) are local minima or local maxima, assuming that Figure 13 is the graph of f ′(x).

solution

• f ′(x) makes a transition from positive to negative at x = 2, so f (2) is a local maximum.
• f ′(x) makes a transition from negative to positive at x = 4, so f (4) is a local minimum.

Figure 14 shows the graph of the derivative f ′(x) of a function f (x). Find the critical points of f (x) and determine
whether they are local minima, local maxima, or neither.

In Exercises 15–18, sketch the graph of a function f (x) whose derivative f ′(x) has the given description.

15. f ′(x) > 0 for x > 3 and f ′(x) < 0 for x < 3

solution Here is the graph of a function f for which f ′(x) > 0 for x > 3 and f ′(x) < 0 for x < 3.

y

x
0

2

4

6

8

10

1 2 3 4 5
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f ′(x) > 0 for x < 1 and f ′(x) < 0 for x > 1
17. f ′(x) is negative on (1, 3) and positive everywhere else.

solution Here is the graph of a function f for which f ′(x) is negative on (1, 3) and positive elsewhere.

x
1 2 3 4

2

4

6

8

−2

y

f ′(x) makes the sign transitions +, −, +, −.In Exercises 19–22, find all critical points of f and use the First Derivative Test to determine whether they are local
minima or maxima.

19. f (x) = 4 + 6x − x2

solution Let f (x) = 4 + 6x − x2. Then f ′(x) = 6 − 2x = 0 implies that x = 3 is the only critical point of f . As x

increases through 3, f ′(x) makes the sign transition +, −. Therefore, f (3) = 13 is a local maximum.

f (x) = x3 − 12x − 421. f (x) = x2

x + 1

solution Let f (x) = x2

x + 1
. Then

f ′(x) = x(x + 2)

(x + 1)2
= 0

implies that x = 0 and x = −2 are critical points. Note that x = −1 is not a critical point because it is not in the domain of
f . As x increases through −2, f ′(x) makes the sign transition +, − so f (−2) = −4 is a local maximum. As x increases
through 0, f ′(x) makes the sign transition −, + so f (0) = 0 is a local minimum.

f (x) = x3 + x−3In Exercises 23–44, find the critical points and the intervals on which the function is increasing or decreasing. Use the
First Derivative Test to determine whether the critical point is a local min or max (or neither).

solution Here is a table legend for Exercises 23–44.

SYMBOL MEANING

− The entity is negative on the given interval.

0 The entity is zero at the specified point.

+ The entity is positive on the given interval.

U The entity is undefined at the specified point.

↗ f is increasing on the given interval.

↘ f is decreasing on the given interval.

M f has a local maximum at the specified point.

m f has a local minimum at the specified point.

¬ There is no local extremum here.

23. y = −x2 + 7x − 17

solution Let f (x) = −x2 + 7x − 17. Then f ′(x) = 7 − 2x = 0 yields the critical point c = 7
2 .

x
(
−∞, 7

2

)
7/2

(
7
2 , ∞

)
f ′ + 0 −
f ↗ M ↘

y = 5x2 + 6x − 4
25. y = x3 − 12x2

solution Let f (x) = x3 − 12x2. Then f ′(x) = 3x2 − 24x = 3x(x − 8) = 0 yields critical points c = 0, 8.
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x (−∞, 0) 0 (0, 8) 8 (8, ∞)

f ′ + 0 − 0 +
f ↗ M ↘ m ↗

y = x(x − 2)327. y = 3x4 + 8x3 − 6x2 − 24x

solution Let f (x) = 3x4 + 8x3 − 6x2 − 24x. Then

f ′(x) = 12x3 + 24x2 − 12x − 24

= 12x2(x + 2) − 12(x + 2) = 12(x + 2)(x2 − 1)

= 12 (x − 1) (x + 1) (x + 2) = 0

yields critical points c = −2, −1, 1.

x (−∞, −2) −2 (−2, −1) −1 (−1, 1) 1 (1, ∞)

f ′ − 0 + 0 − 0 +
f ↘ m ↗ M ↘ m ↗

y = x2 + (10 − x)229. y = 1
3x3 + 3

2x2 + 2x + 4

solution Let f (x) = 1
3x3 + 3

2x2 + 2x + 4. Then f ′(x) = x2 + 3x + 2 = (x + 1) (x + 2) = 0 yields critical points
c = −2, −1.

x (−∞, −2) −2 (−2, −1) −1 (−1, ∞)

f ′ + 0 − 0 +
f ↗ M ↘ m ↗

y = x4 + x331. y = x5 + x3 + 1

solution Let f (x) = x5 + x3 + 1. Then f ′(x) = 5x4 + 3x2 = x2(5x2 + 3) yields a single critical point: c = 0.

x (−∞, 0) 0 (0, ∞)

f ′ + 0 +
f ↗ ¬ ↗

y = x5 + x3 + x
33. y = x4 − 4x3/2 (x > 0)

solution Let f (x) = x4 − 4x3/2 for x > 0. Then f ′(x) = 4x3 − 6x1/2 = 2x1/2(2x5/2 − 3) = 0, which gives us

the critical point c = ( 3
2 )2/5. (Note: c = 0 is not in the interval under consideration.)

x
(

0,
( 3

2

)2/5
)

3
2

2/5 (( 3
2

)2/5
, ∞
)

f ′ − 0 +
f ↘ m ↗

y = x5/2 − x2 (x > 0)
35. y = x + x−1 (x > 0)

solution Let f (x) = x + x−1 for x > 0. Then f ′(x) = 1 − x−2 = 0 yields the critical point c = 1. (Note: c = −1
is not in the interval under consideration.)

x (0, 1) 1 (1, ∞)

f ′ − 0 +
f ↘ m ↗
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y = x−2 − 4x−1 (x > 0)37. y = 1

x2 + 1

solution Let f (x) =
(
x2 + 1

)−1
. Then f ′(x) = −2x

(
x2 + 1

)−2 = 0 yields critical point c = 0.

x (−∞, 0) 0 (0, ∞)

f ′ + 0 −
f ↗ M ↘

y = 2x + 1

x2 + 1
39. y = x3

x2 + 1

solution Let f (x) = x3

x2 + 1
. Then

f ′(x) = (x2 + 1)(3x2) − x3(2x)

(x2 + 1)2
= x2(x2 + 3)

(x2 + 1)2
= 0

yields the single critical point c = 0.

x (−∞, 0) 0 (0, ∞)

f ′ + 0 +
f ↗ ¬ ↗

y = x3

x2 − 3

41. y = θ + sin θ + cos θ

solution Let f (θ) = θ + sin θ + cos θ . Then f ′(θ) = 1 + cos θ − sin θ = 0 yields the critical points c = π
2 and

c = π .

θ
(
0, π

2

)
π
2

(
π
2 , π

)
π (π, 2π)

f ′ + 0 − 0 +
f ↗ M ↘ m ↗

y = sin θ + √
3 cos θ

43. y = sin2 θ + sin θ

solution Let f (θ) = sin2 θ + sin θ . Then f ′(θ) = 2 sin θ cos θ + cos θ = cos θ(2 sin θ + 1) = 0 yields the critical

points c = π
2 , 7π

6 , 3π
2 , and 11π

6 .

θ
(
0, π

2

)
π
2

(
π
2 , 7π

6

)
7π
6

(
7π
6 , 3π

2

)
3π
2

(
3π
2 , 11π

6

)
11π

6

(
11π

6 , 2π
)

f ′ + 0 − 0 + 0 − 0 +
f ↗ M ↘ m ↗ M ↘ m ↗

y = θ − 2 cos θ , [0, 2π ]45. Find the minimum value of f (x) = xx for x > 0.

solution Let f (x) = xx . By logarithmic differentiation, we know that f ′(x) = xx(1 + ln x). Thus, x = 1
e is the

only critical point. Because f ′(x) < 0 for 0 < x < 1
e and f ′(x) > 0 for x > 1

e ,

f

(
1

e

)
=
(

1

e

)1/e

≈ 0.692201

is the minimum value.

Show that f (x) = x2 + bx + c is decreasing on
(− ∞, − b

2

)
and increasing on

(− b
2 , ∞).47. Show that f (x) = x3 − 2x2 + 2x is an increasing function. Hint: Find the minimum value of f ′(x).

solution Let f (x) = x3 − 2x2 + 2x. For all x, we have

f ′(x) = 3x2 − 4x + 2 = 3

(
x − 2

3

)2
+ 2

3
≥ 2

3
> 0.

Since f ′(x) > 0 for all x, the function f is everywhere increasing.

Find conditions on a and b that ensure that f (x) = x3 + ax + b is increasing on (−∞, ∞).
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49. Let h(x) = x(x2 − 1)

x2 + 1
and suppose that f ′(x) = h(x). Plot h(x) and use the plot to describe the local extrema

and the increasing/decreasing behavior of f (x). Sketch a plausible graph for f (x) itself.

solution The graph of h(x) is shown below at the left. Because h(x) is negative for x < −1 and for 0 < x < 1, it
follows that f (x) is decreasing for x < −1 and for 0 < x < 1. Similarly, f (x) is increasing for −1 < x < 0 and for
x > 1 because h(x) is positive on these intervals. Moreover, f (x) has local minima at x = −1 and x = 1 and a local
maximum at x = 0. A plausible graph for f (x) is shown below at the right.

x

0.3

0.2

0.1

21−1−2

−0.2

x

1

0.5

−1

−0.5

h(x) f(x)

1 2−2 −1

Sam made two statements that Deborah found dubious.

(a) “The average velocity for my trip was 70 mph; at no point in time did my speedometer read 70 mph.”

(b) “A policeman clocked me going 70 mph, but my speedometer never read 65 mph.”

In each case, which theorem did Deborah apply to prove Sam’s statement false: the Intermediate Value Theorem or
the Mean Value Theorem? Explain.

51. Determine where f (x) = (1000 − x)2 + x2 is decreasing. Use this to decide which is larger: 8002 + 2002 or
6002 + 4002.

solution If f (x) = (1000 − x)2 + x2, then f ′(x) = −2(1000 − x) + 2x = 4x − 2000. f ′(x) < 0 as long as

x < 500. Therefore, 8002 + 2002 = f (200) > f (400) = 6002 + 4002.

Show that f (x) = 1 − |x| satisfies the conclusion of the MVT on [a, b] if both a and b are positive or negative,
but not if a < 0 and b > 0.

53. Which values of c satisfy the conclusion of the MVT on the interval [a, b] if f (x) is a linear function?

solution Let f (x) = px + q, where p and q are constants. Then the slope of every secant line and tangent line of f is

p. Accordingly, considering the interval [a, b], every point c ∈ (a, b) satisfies f ′(c) = p = f (b) − f (a)

b − a
, the conclusion

of the MVT.

Show that if f (x) is any quadratic polynomial, then the midpoint c = a + b

2
satisfies the conclusion of the MVT

on [a, b] for any a and b.

55. Suppose that f (0) = 2 and f ′(x) ≤ 3 for x > 0. Apply the MVT to the interval [0, 4] to prove that f (4) ≤ 14.
Prove more generally that f (x) ≤ 2 + 3x for all x > 0.

solution The MVT, applied to the interval [0, 4], guarantees that there exists a c ∈ (0, 4) such that

f ′(c) = f (4) − f (0)

4 − 0
or f (4) − f (0) = 4f ′(c).

Because c > 0, f ′(c) ≤ 3, so f (4) − f (0) ≤ 12. Finally, f (4) ≤ f (0) + 12 = 14.
More generally, let x > 0. The MVT, applied to the interval [0, x], guarantees there exists a c ∈ (0, x) such that

f ′(c) = f (x) − f (0)

x − 0
or f (x) − f (0) = f ′(c)x.

Because c > 0, f ′(c) ≤ 3, so f (x) − f (0) ≤ 3x. Finally, f (x) ≤ f (0) + 3x = 3x + 2.

Show that if f (2) = −2 and f ′(x) ≥ 5 for x > 2, then f (4) ≥ 8.
57. Show that if f (2) = 5 and f ′(x) ≥ 10 for x > 2, then f (x) ≥ 10x − 15 for all x > 2.

solution Let x > 2. The MVT, applied to the interval [2, x], guarantees there exists a c ∈ (2, x) such that

f ′(c) = f (x) − f (2)

x − 2
or f (x) − f (2) = (x − 2)f ′(c).

Because f ′(x) ≥ 10, it follows that f (x) − f (2) ≥ 10(x − 2), or f (x) ≥ f (2) + 10(x − 2) = 10x − 15.

Further Insights and Challenges

Show that a cubic function f (x) = x3 + ax2 + bx + c is increasing on (−∞, ∞) if b > a2/3.
59. Prove that if f (0) = g(0) and f ′(x) ≤ g′(x) for x ≥ 0, then f (x) ≤ g(x) for all x ≥ 0. Hint: Show that f (x) − g(x)

is nonincreasing.

solution Let h(x) = f (x) − g(x). By the sum rule, h′(x) = f ′(x) − g′(x). Since f ′(x) ≤ g′(x) for all x ≥ 0,
h′(x) ≤ 0 for all x ≥ 0. This implies that h is nonincreasing. Since h(0) = f (0) − g(0) = 0, h(x) ≤ 0 for all x ≥ 0 (as
h is nonincreasing, it cannot climb above zero). Hence f (x) − g(x) ≤ 0 for all x ≥ 0, and so f (x) ≤ g(x) for x ≥ 0.

Use Exercise 59 to prove that x ≤ tan x for 0 ≤ x < π
2 .

61. Use Exercise 59 and the inequality sin x ≤ x for x ≥ 0 (established in Theorem 3 of Section 2.6) to prove the
following assertions for all x ≥ 0 (each assertion follows from the previous one).

(a) cos x ≥ 1 − 1
2x2

(b) sin x ≥ x − 1
6x3

(c) cos x ≤ 1 − 1
2x2 + 1

24x4

(d) Can you guess the next inequality in the series?
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solution

(a) We prove this using Exercise 59: Let g(x) = cos x and f (x) = 1 − 1
2x2. Then f (0) = g(0) = 1 and g′(x) =

− sin x ≥ −x = f ′(x) for x ≥ 0 by Exercise 60. Now apply Exercise 59 to conclude that cos x ≥ 1 − 1
2x2 for x ≥ 0.

(b) Let g(x) = sin x and f (x) = x − 1
6x3. Then f (0) = g(0) = 0 and g′(x) = cos x ≥ 1 − 1

2x2 = f ′(x) for x ≥ 0 by

part (a). Now apply Exercise 59 to conclude that sin x ≥ x − 1
6x3 for x ≥ 0.

(c) Let g(x) = 1 − 1
2x2 + 1

24x4 and f (x) = cos x. Then f (0) = g(0) = 1 and g′(x) = −x + 1
6x3 ≥ − sin x = f ′(x)

for x ≥ 0 by part (b). Now apply Exercise 59 to conclude that cos x ≤ 1 − 1
2x2 + 1

24x4 for x ≥ 0.

(d) The next inequality in the series is sin x ≤ x − 1
6x3 + 1

120x5, valid for x ≥ 0. To construct (d) from (c), we note
that the derivative of sin x is cos x, and look for a polynomial (which we currently must do by educated guess) whose
derivative is 1 − 1

2x2 + 1
24x4. We know the derivative of x is 1, and that a term whose derivative is − 1

2x2 should be

of the form Cx3. d
dx

Cx3 = 3Cx2 = − 1
2x2, so C = − 1

6 . A term whose derivative is 1
24x4 should be of the form Dx5.

From this, d
dx

Dx5 = 5Dx4 = 1
24x4, so that 5D = 1

24 , or D = 1
120 .

Suppose that f (x) is a function such that f (0) = 1 and for all x, f ′(x) = f (x) and f (x) > 0 (in Chapter 7, we
will see that f (x) is the exponential function ex ). Prove that for all x ≥ 0 (each assertion follows from the previous
one),

(a) f (x) ≥ 1

(b) f (x) ≥ 1 + x

(c) f (x) ≥ 1 + x + 1

2
x2

Then prove by induction that for every whole number n and all x ≥ 0,

f (x) ≥ 1 + x + 1

2!x
2 + · · · + 1

n!x
n

63. Assume that f ′′ exists and f ′′(x) = 0 for all x. Prove that f (x) = mx + b, where m = f ′(0) and b = f (0).

solution

• Let f ′′(x) = 0 for all x. Then f ′(x) = constant for all x. Since f ′(0) = m, we conclude that f ′(x) = m for all x.
• Let g(x) = f (x) − mx. Then g′(x) = f ′(x) − m = m − m = 0 which implies that g(x) = constant for all x and

consequently f (x) − mx = constant for all x. Rearranging the statement, f (x) = mx + constant. Since f (0) = b,
we conclude that f (x) = mx + b for all x.

Define f (x) = x3 sin
( 1
x

)
for x = 0 and f (0) = 0.

(a) Show that f ′(x) is continuous at x = 0 and that x = 0 is a critical point of f .

(b) Examine the graphs of f (x) and f ′(x). Can the First Derivative Test be applied?

(c) Show that f (0) is neither a local min nor a local max.

65. Suppose that f (x) satisfies the following equation (an example of a differential equation):

f ′′(x) = −f (x) 1

(a) Show that f (x)2 + f ′(x)2 = f (0)2 + f ′(0)2 for all x. Hint: Show that the function on the left has zero derivative.
(b) Verify that sin x and cos x satisfy Eq. (1), and deduce that sin2 x + cos2 x = 1.

solution

(a) Let g(x) = f (x)2 + f ′(x)2. Then

g′(x) = 2f (x)f ′(x) + 2f ′(x)f ′′(x) = 2f (x)f ′(x) + 2f ′(x)(−f (x)) = 0,

where we have used the fact that f ′′(x) = −f (x). Because g′(0) = 0 for all x, g(x) = f (x)2 + f ′(x)2 must be a constant
function. In other words, f (x)2 + f ′(x)2 = C for some constant C. To determine the value of C, we can substitute any
number for x. In particular, for this problem, we want to substitute x = 0 and find C = f (0)2 + f ′(0)2. Hence,

f (x)2 + f ′(x)2 = f (0)2 + f ′(0)2.

(b) Let f (x) = sin x. Then f ′(x) = cos x and f ′′(x) = − sin x, so f ′′(x) = −f (x). Next, let f (x) = cos x. Then
f ′(x) = − sin x, f ′′(x) = − cos x, and we again have f ′′(x) = −f (x). Finally, if we take f (x) = sin x, the result from
part (a) guarantees that

sin2 x + cos2 x = sin2 0 + cos2 0 = 0 + 1 = 1.

Suppose that functions f and g satisfy Eq. (1) and have the same initial values—that is, f (0) = g(0) and
f ′(0) = g′(0). Prove that f (x) = g(x) for all x. Hint: Apply Exercise 65(a) to f − g.

67. Use Exercise 66 to prove: f (x) = sin x is the unique solution of Eq. (1) such that f (0) = 0 and f ′(0) = 1; and
g(x) = cos x is the unique solution such that g(0) = 1 and g′(0) = 0. This result can be used to develop all the properties
of the trigonometric functions “analytically”—that is, without reference to triangles.

solution In part (b) of Exercise 65, it was shown that f (x) = sin x satisfies Eq. (1), and we can directly calculate
that f (0) = sin 0 = 0 and f ′(0) = cos 0 = 1. Suppose there is another function, call it F(x), that satisfies Eq. (1) with
the same initial conditions: F(0) = 0 and F ′(0) = 1. By Exercise 66, it follows that F(x) = sin x for all x. Hence,
f (x) = sin x is the unique solution of Eq. (1) satisfying f (0) = 0 and f ′(0) = 1. The proof that g(x) = cos x is the
unique solution of Eq. (1) satisfying g(0) = 1 and g′(0) = 0 is carried out in a similar manner.

4.4 The Shape of a Graph

Preliminary Questions
1. If f is concave up, then f ′ is (choose one):

(a) increasing (b) decreasing

solution The correct response is (a): increasing. If the function is concave up, then f ′′ is positive. Since f ′′ is the
derivative of f ′, it follows that the derivative of f ′ is positive and f ′ must therefore be increasing.
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2. What conclusion can you draw if f ′(c) = 0 and f ′′(c) < 0?

solution If f ′(c) = 0 and f ′′(c) < 0, then f (c) is a local maximum.

3. True or False? If f (c) is a local min, then f ′′(c) must be positive.

solution False. f ′′(c) could be zero.

4. True or False? If f ′′(x) changes from + to − at x = c, then f has a point of inflection at x = c.

solution False. f will have a point of inflection at x = c only if x = c is in the domain of f .

Exercises
1. Match the graphs in Figure 13 with the description:

(a) f ′′(x) < 0 for all x. (b) f ′′(x) goes from + to −.
(c) f ′′(x) > 0 for all x. (d) f ′′(x) goes from − to +.

(A) (B) (C) (D)

FIGURE 13

solution
(a) In C, we have f ′′(x) < 0 for all x.
(b) In A, f ′′(x) goes from + to −.
(c) In B, we have f ′′(x) > 0 for all x.
(d) In D, f ′′(x) goes from − to +.

Match each statement with a graph in Figure 14 that represents company profits as a function of time.

(a) The outlook is great: The growth rate keeps increasing.

(b) We’re losing money, but not as quickly as before.

(c) We’re losing money, and it’s getting worse as time goes on.

(d) We’re doing well, but our growth rate is leveling off.

(e) Business had been cooling off, but now it’s picking up.

(f) Business had been picking up, but now it’s cooling off.

In Exercises 3–14, determine the intervals on which the function is concave up or down and find the points of inflection.

3. y = x2 − 4x + 3

solution Let f (x) = x2 − 4x + 3. Then f ′(x) = 2x − 4 and f ′′(x) = 2 > 0 for all x. Therefore, f is concave up
everywhere, and there are no points of inflection.

y = t3 − 6t2 + 4
5. y = 10x3 − x5

solution Let f (x) = 10x3 − x5. Then f ′(x) = 30x2 − 5x4 and f ′′(x) = 60x − 20x3 = 20x(3 − x2). Now, f is

concave up for x < −√
3 and for 0 < x <

√
3 since f ′′(x) > 0 there. Moreover, f is concave down for −√

3 < x < 0
and for x >

√
3 since f ′′(x) < 0 there. Finally, because f ′′(x) changes sign at x = 0 and at x = ±√

3, f (x) has a point
of inflection at x = 0 and at x = ±√

3.

y = 5x2 + x4
7. y = θ − 2 sin θ , [0, 2π ]

solution Let f (θ) = θ − 2 sin θ . Then f ′(θ) = 1 − 2 cos θ and f ′′(θ) = 2 sin θ . Now, f is concave up for 0 < θ < π

since f ′′(θ) > 0 there. Moreover, f is concave down for π < θ < 2π since f ′′(θ) < 0 there. Finally, because f ′′(θ)

changes sign at θ = π , f (θ) has a point of inflection at θ = π .

y = θ + sin2 θ , [0, π ]
9. y = x(x − 8

√
x) (x ≥ 0)

solution Let f (x) = x(x − 8
√

x) = x2 − 8x3/2. Then f ′(x) = 2x − 12x1/2 and f ′′(x) = 2 − 6x−1/2. Now, f

is concave down for 0 < x < 9 since f ′′(x) < 0 there. Moreover, f is concave up for x > 9 since f ′′(x) > 0 there.
Finally, because f ′′(x) changes sign at x = 9, f (x) has a point of inflection at x = 9.

y = x7/2 − 35x211. y = (x − 2)(1 − x3)

solution Let f (x) = (x − 2)
(

1 − x3
)

= x − x4 − 2 + 2x3. Then f ′(x) = 1 − 4x3 + 6x2 and f ′′(x) = 12x −
12x2 = 12x(1 − x) = 0 at x = 0 and x = 1. Now, f is concave up on (0, 1) since f ′′(x) > 0 there. Moreover, f

is concave down on (−∞, 0) ∪ (1, ∞) since f ′′(x) < 0 there. Finally, because f ′′(x) changes sign at both x = 0 and
x = 1, f (x) has a point of inflection at both x = 0 and x = 1.

y = x7/513. y = 1

x2 + 3

solution Let f (x) = 1

x2 + 3
. Then f ′(x) = − 2x

(x2 + 3)2
and

f ′′(x) = −2(x2 + 3)2 − 8x2(x2 + 3)

(x2 + 3)4
= 6x2 − 6

(x2 + 3)3
.

Now, f is concave up for |x| > 1 since f ′′(x) > 0 there. Moreover, f is concave down for |x| < 1 since f ′′(x) < 0
there. Finally, because f ′′(x) changes sign at both x = −1 and x = 1, f (x) has a point of inflection at both x = −1 and
x = 1.



June 9, 2011 LTSV SSM Second Pass

200 C H A P T E R 4 APPLICATIONS OF THE DERIVATIVE

y = x

x2 + 9
15. The growth of a sunflower during the first 100 days after sprouting is modeled well by the logistic curve
y = h(t) shown in Figure 15. Estimate the growth rate at the point of inflection and explain its significance. Then make
a rough sketch of the first and second derivatives of h(t).

20 40 60 80 100
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100
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200

300

250

t  (days)

Height (cm)

FIGURE 15

solution The point of inflection in Figure 15 appears to occur at t = 40 days. The graph below shows the logistic
curve with an approximate tangent line drawn at t = 40. The approximate tangent line passes roughly through the points
(20, 20) and (60, 240). The growth rate at the point of inflection is thus

240 − 20

60 − 20
= 220

40
= 5.5 cm/day.

Because the logistic curve changes from concave up to concave down at t = 40, the growth rate at this point is the
maximum growth rate for the sunflower plant.
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Sketches of the first and second derivative of h(t) are shown below at the left and at the right, respectively.

20 40 60 80 100

1

2
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5

t

10080604020
t

h′

0.1

−0.1

h′′

Assume that Figure 16 is the graph of f (x). Where do the points of inflection of f (x) occur, and on which interval
is f (x) concave down?

17. Repeat Exercise 16 but assume that Figure 16 is the graph of the derivative f ′(x).

solution Points of inflection occur when f ′′(x) changes sign. Consequently, points of inflection occur when f ′(x)

changes from increasing to decreasing or from decreasing to increasing. In Figure 16, this occurs at x = b and at x = e;
therefore, f (x) has an inflection point at x = b and another at x = e. The function f (x) will be concave down when
f ′′(x) < 0 or when f ′(x) is decreasing. Thus, f (x) is concave down for b < x < e.

Repeat Exercise 16 but assume that Figure 16 is the graph of the second derivative f ′′(x).
19. Figure 17 shows the derivative f ′(x) on [0, 1.2]. Locate the points of inflection of f (x) and the points where the
local minima and maxima occur. Determine the intervals on which f (x) has the following properties:

(a) Increasing (b) Decreasing

(c) Concave up (d) Concave down

1.210.17 0.640.4
x

y

y = f '(x)

FIGURE 17
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solution Recall that the graph is that of f ′, not f . The inflection points of f occur where f ′ changes from increasing
to decreasing or vice versa because it is at these points that the sign of f ′′ changes. From the graph we conclude that f

has points of inflection at x = 0.17, x = 0.64, and x = 1. The local extrema of f occur where f ′ changes sign. This
occurs at x = 0.4. Because the sign of f ′ changes from + to −, f (0.4) is a local maximum. There are no local minima.

(a) f is increasing when f ′ is positive. Hence, f is increasing on (0, 0.4).

(b) f is decreasing when f ′ is negative. Hence, f is decreasing on (0.4, 1) ∪ (1, 1.2).

(c) Now f is concave up where f ′ is increasing. This occurs on (0, 0.17) ∪ (0.64, 1).

(d) Moreover, f is concave down where f ′ is decreasing. This occurs on (0.17, 0.64) ∪ (1, 1.2).

Leticia has been selling solar-powered laptop chargers through her website, with monthly sales as recorded below.
In a report to investors, she states, “Sales reached a point of inflection when I started using pay-per-click advertising.”
In which month did that occur? Explain.

Month 1 2 3 4 5 6 7 8

Sales 2 30 50 60 90 150 230 340

In Exercises 21–34, find the critical points and apply the Second Derivative Test (or state that it fails).

21. f (x) = x3 − 12x2 + 45x

solution Let f (x) = x3 − 12x2 + 45x. Then f ′(x) = 3x2 − 24x + 45 = 3(x − 3)(x − 5), and the critical points
are x = 3 and x = 5. Moreover, f ′′(x) = 6x − 24, so f ′′(3) = −6 < 0 and f ′′(5) = 6 > 0. Therefore, by the Second
Derivative Test, f (3) = 54 is a local maximum, and f (5) = 50 is a local minimum.

f (x) = x4 − 8x2 + 1
23. f (x) = 3x4 − 8x3 + 6x2

solution Let f (x) = 3x4 − 8x3 + 6x2. Then f ′(x) = 12x3 − 24x2 + 12x = 12x(x − 1)2 = 0 at x = 0, 1 and

f ′′(x) = 36x2 − 48x + 12. Thus, f ′′(0) > 0, which implies f (0) is a local minimum; however, f ′′(1) = 0, which is
inconclusive.

f (x) = x5 − x325. f (x) = x2 − 8x

x + 1

solution Let f (x) = x2 − 8x

x + 1
. Then

f ′(x) = x2 + 2x − 8

(x + 1)2
and f ′′(x) = 2(x + 1)2 − 2(x2 + 2x − 8)

(x + 1)3
.

Thus, the critical points are x = −4 and x = 2. Moreover, f ′′(−4) < 0 and f ′′(2) > 0. Therefore, by the second
derivative test, f (−4) = −16 is a local maximum and f (2) = −4 is a local minimum.

f (x) = 1

x2 − x + 2

27. y = 6x3/2 − 4x1/2

solution Let f (x) = 6x3/2 − 4x1/2. Then f ′(x) = 9x1/2 − 2x−1/2 = x−1/2(9x − 2), so there are two critical

points: x = 0 and x = 2
9 . Now,

f ′′(x) = 9

2
x−1/2 + x−3/2 = 1

2
x−3/2(9x + 2).

Thus, f ′′ ( 2
9

)
> 0, which implies f

(
2
9

)
is a local minimum. f ′′(x) is undefined at x = 0, so the Second Derivative Test

cannot be applied there.

y = 9x7/3 − 21x1/229. f (x) = x3 + 48

x

solution We have f ′(x) = 3x2 − 48x−2, so f ′(x) = 0 when 3x4 = 48, so x = ±2. Now, f ′′(x) = 6x + 96x−3,

and f ′′(−2) = −12 − 96

8
= −24 < 0 while f ′′(2) = 12 + 96

8
= 24 > 0, so that x = −2 is a local maximum and

x = 2 is a local minimum.

f (x) = x4 + 128

x2

31. f (x) = sin2 x + cos x, [0, π ]
solution Let f (x) = sin2 x + cos x. Then f ′(x) = 2 sin x cos x − sin x = sin x(2 cos x − 1). On the interval [0, π ],
f ′(x) = 0 at x = 0, x = π

3 and x = π . Now,

f ′′(x) = 2 cos2 x − 2 sin2 x − cos x.

Thus, f ′′(0) > 0, so f (0) is a local minimum. On the other hand, f ′′( π
3 ) < 0, so f (π

3 ) is a local maximum. Finally,
f ′′(π) > 0, so f (π) is a local minimum.

y = 1

sin x + 4
, [0, 2π ]

33. f (x) = 2 + tan2 x,
(
−π

2
,
π

2

)
solution We have f ′(x) = 2 tan x sec2 x and f ′′(x) = 2 sec4 x + 4 tan2 x sec2 x. Now, f ′(x) = 0 in the specified
interval when tan x = 0, i.e. when x = 0. Since f ′′(0) = 2, f (0) = 2 is a local minimum.

f (x) = sin x cos3 x, [0, π ]



June 9, 2011 LTSV SSM Second Pass

202 C H A P T E R 4 APPLICATIONS OF THE DERIVATIVE

In Exercises 35–52, find the intervals on which f is concave up or down, the points of inflection, the critical points, and
the local minima and maxima.

solution Here is a table legend for Exercises 35–45.

SYMBOL MEANING

− The entity is negative on the given interval.

0 The entity is zero at the specified point.

+ The entity is positive on the given interval.

U The entity is undefined at the specified point.

↗ The function (f , g, etc.) is increasing on the given interval.

↘ The function (f , g, etc.) is decreasing on the given interval.

� The function (f , g, etc.) is concave up on the given interval.

� The function (f , g, etc.) is concave down on the given interval.

M The function (f , g, etc.) has a local maximum at the specified point.

m The function (f , g, etc.) has a local minimum at the specified point.

I The function (f , g, etc.) has an inflection point here.

¬ There is no local extremum or inflection point here.

35. f (x) = x3 − 2x2 + x

solution Let f (x) = x3 − 2x2 + x.

• Then f ′(x) = 3x2 − 4x + 1 = (x − 1)(3x − 1) = 0 yields x = 1 and x = 1
3 as candidates for extrema.

• Moreover, f ′′(x) = 6x − 4 = 0 gives a candidate for a point of inflection at x = 2
3 .

x
(− ∞, 1

3

) 1
3

( 1
3 , 1
)

1
(
1, ∞)

f ′ + 0 − 0 +
f ↗ M ↘ m ↗

x
(− ∞, 2

3

) 2
3

( 2
3 , ∞)

f ′′ − 0 +
f � I �

f (x) = x2(x − 4)
37. f (t) = t2 − t3

solution Let f (t) = t2 − t3.

• Then f ′(t) = 2t − 3t2 = t (2 − 3t) = 0 yields t = 0 and t = 2
3 as candidates for extrema.

• Moreover, f ′′(t) = 2 − 6t = 0 gives a candidate for a point of inflection at t = 1
3 .

t (−∞, 0) 0
(
0, 2

3

) 2
3

( 2
3 , ∞)

f ′ − 0 + 0 −
f ↘ m ↗ M ↘

t
(− ∞, 1

3

) 1
3

( 1
3 , ∞)

f ′′ + 0 −
f � I �

f (x) = 2x4 − 3x2 + 2
39. f (x) = x2 − 8x1/2 (x ≥ 0)

solution Let f (x) = x2 − 8x1/2. Note that the domain of f is x ≥ 0.

• Then f ′(x) = 2x − 4x−1/2 = x−1/2
(

2x3/2 − 4
)

= 0 yields x = 0 and x = (2)2/3 as candidates for extrema.

• Moreover, f ′′(x) = 2 + 2x−3/2 > 0 for all x ≥ 0, which means there are no inflection points.

x 0
(

0, (2)2/3
)

(2)2/3
(
(2)2/3 , ∞

)
f ′ U − 0 +
f M ↘ m ↗

f (x) = x3/2 − 4x−1/2 (x > 0)
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41. f (x) = x

x2 + 27

solution Let f (x) = x

x2 + 27
.

• Then f ′(x) = 27 − x2(
x2 + 27

)2 = 0 yields x = ±3
√

3 as candidates for extrema.

• Moreover, f ′′(x) =
−2x

(
x2 + 27

)2 − (27 − x2)(2)
(
x2 + 27

)
(2x)(

x2 + 27
)4 =

2x
(
x2 − 81

)
(
x2 + 27

)3 = 0 gives candidates for

a point of inflection at x = 0 and at x = ±9.

x
(
−∞, −3

√
3
)

−3
√

3
(
−3

√
3, 3

√
3
)

3
√

3
(

3
√

3, ∞
)

f ′ − 0 + 0 −
f ↘ m ↗ M ↘

x (−∞, −9) −9 (−9, 0) 0 (0, 9) 9 (9, ∞)

f ′′ − 0 + 0 − 0 +
f � I � I � I �

f (x) = 1

x4 + 1

43. f (θ) = θ + sin θ , [0, 2π ]
solution Let f (θ) = θ + sin θ on [0, 2π ].

• Then f ′(θ) = 1 + cos θ = 0 yields θ = π as a candidate for an extremum.

• Moreover, f ′′(θ) = − sin θ = 0 gives candidates for a point of inflection at θ = 0, at θ = π , and at θ = 2π .

θ (0, π) π (π, 2π)

f ′ + 0 +
f ↗ ¬ ↗

θ 0 (0, π) π (π, 2π) 2π

f ′′ 0 − 0 + 0

f ¬ � I � ¬

f (x) = cos2 x, [0, π ]
45. f (x) = tan x,

(−π
2 , π

2

)
solution Let f (x) = tan x on

(−π
2 , π

2

)
.

• Then f ′(x) = sec2 x ≥ 1 > 0 on
(−π

2 , π
2

)
.

• Moreover, f ′′(x) = 2 sec x · sec x tan x = 2 sec2 x tan x = 0 gives a candidate for a point of inflection at x = 0.

x
(−π

2 , π
2

)
f ′ +
f ↗

x
(−π

2 , 0
)

0
(
0, π

2

)
f ′′ − 0 +
f � I �

f (x) = x

x6 + 5

x (−∞, −1) −1 (−1, 1) 1 (1, ∞)

f ′ − 0 + 0 −
f ↘ m ↗ M ↘

x (−∞, − 6√7) − 6√7 (− 6√7, 0) 0 (0,
6√7)

6√7 (
6√7, ∞)

f ′′ − 0 + 0 − 0 +
f � I � I � I �

47. Sketch the graph of an increasing function such that f ′′(x) changes from + to − at x = 2 and from − to + at x = 4.
Do the same for a decreasing function.

solution The graph shown below at the left is an increasing function which changes from concave up to concave
down at x = 2 and from concave down to concave up at x = 4. The graph shown below at the right is a decreasing
function which changes from concave up to concave down at x = 2 and from concave down to concave up at x = 4.

x
2 4

2

1

y

x
2 4

6

2

4

y
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In Exercises 48–50, sketch the graph of a function f (x) satisfying all of the given conditions.

f ′(x) > 0 and f ′′(x) < 0 for all x.
49. (i) f ′(x) > 0 for all x, and

(ii) f ′′(x) < 0 for x < 0 and f ′′(x) > 0 for x > 0.

solution Here is the graph of a function f (x) satisfying (i) f ′(x) > 0 for all x and (ii) f ′′(x) < 0 for x < 0 and
f ′′(x) > 0 for x > 0.

x

10

5

−10

−5

y

1 2−2 −1

(i) f ′(x) < 0 for x < 0 and f ′(x) > 0 for x > 0, and

(ii) f ′′(x) < 0 for |x| > 2, and f ′′(x) > 0 for |x| < 2.

51. An infectious flu spreads slowly at the beginning of an epidemic. The infection process accelerates until a
majority of the susceptible individuals are infected, at which point the process slows down.

(a) If R(t) is the number of individuals infected at time t , describe the concavity of the graph of R near the beginning
and end of the epidemic.

(b) Describe the status of the epidemic on the day that R(t) has a point of inflection.

solution

(a) Near the beginning of the epidemic, the graph of R is concave up. Near the epidemic’s end, R is concave down.

(b) “Epidemic subsiding: number of new cases declining.”

Water is pumped into a sphere at a constant rate (Figure 18). Let h(t) be the water level at time t . Sketch the
graph of h(t) (approximately, but with the correct concavity). Where does the point of inflection occur?

53. Water is pumped into a sphere of radius R at a variable rate in such a way that the water level rises at a
constant rate (Figure 18). Let V (t) be the volume of water in the tank at time t . Sketch the graph V (t) (approximately,
but with the correct concavity). Where does the point of inflection occur?

solution Because water is entering the sphere in such a way that the water level rises at a constant rate, we expect the
volume to increase more slowly near the bottom and top of the sphere where the sphere is not as “wide” and to increase
more rapidly near the middle of the sphere. The graph of V (t) should therefore start concave up and change to concave
down when the sphere is half full; that is, the point of inflection should occur when the water level is equal to the radius
of the sphere. A possible graph of V (t) is shown below.

t

V

(Continuation of Exercise 53) If the sphere has radius R, the volume of water is V = π
(
Rh2 − 1

3h3) where h is
the water level. Assume the level rises at a constant rate of 1 (that is, h = t).

(a) Find the inflection point of V (t). Does this agree with your conclusion in Exercise 53?

(b) Plot V (t) for R = 1.

Further Insights and Challenges
In Exercises 55–57, assume that f (x) is differentiable.

55. Proof of the Second Derivative Test Let c be a critical point such that f ′′(c) > 0 (the case f ′′(c) < 0 is similar).

(a) Show that f ′′(c) = lim
h→0

f ′(c + h)

h
.

(b) Use (a) to show that there exists an open interval (a, b) containing c such that f ′(x) < 0 if a < x < c and f ′(x) > 0
if c < x < b. Conclude that f (c) is a local minimum.

solution

(a) Because c is a critical point, either f ′(c) = 0 or f ′(c) does not exist; however, f ′′(c) exists, so f ′(c) must also exist.
Therefore, f ′(c) = 0. Now, from the definition of the derivative, we have

f ′′(c) = lim
h→0

f ′(c + h) − f ′(c)
h

= lim
h→0

f ′(c + h)

h
.



June 9, 2011 LTSV SSM Second Pass

S E C T I O N 4.4 The Shape of a Graph 205

(b) We are given that f ′′(c) > 0. By part (a), it follows that

lim
h→0

f ′(c + h)

h
> 0;

in other words, for sufficiently small h,

f ′(c + h)

h
> 0.

Now, if h is sufficiently small but negative, then f ′(c + h) must also be negative (so that the ratio f ′(c + h)/h will be
positive) and c + h < c. On the other hand, if h is sufficiently small but positive, then f ′(c + h) must also be positive
and c + h > c. Thus, there exists an open interval (a, b) containing c such that f ′(x) < 0 for a < x < c and f ′(c) > 0
for c < x < b. Finally, because f ′(x) changes from negative to positive at x = c, f (c) must be a local minimum.

Prove that if f ′′(x) exists and f ′′(x) > 0 for all x, then the graph of f (x) “sits above” its tangent lines.

(a) For any c, set G(x) = f (x) − f ′(c)(x − c) − f (c). It is sufficient to prove that G(x) ≥ 0 for all c. Explain why
with a sketch.

(b) Show that G(c) = G′(c) = 0 and G′′(x) > 0 for all x. Conclude that G′(x) < 0 for x < c and G′(x) > 0 for
x > c. Then deduce, using the MVT, that G(x) > G(c) for x = c.

57. Assume that f ′′(x) exists and let c be a point of inflection of f (x).

(a) Use the method of Exercise 56 to prove that the tangent line at x = c crosses the graph (Figure 19). Hint: Show that
G(x) changes sign at x = c.

(b) Verify this conclusion for f (x) = x

3x2 + 1
by graphing f (x) and the tangent line at each inflection point on

the same set of axes.

FIGURE 19 Tangent line crosses graph at point of inflection.

solution

(a) Let G(x) = f (x) − f ′(c)(x − c) − f (c). Then, as in Exercise 55, G(c) = G′(c) = 0 and G′′(x) = f ′′(x). If f ′′(x)

changes from positive to negative at x = c, then so does G′′(x) and G′(x) is increasing for x < c and decreasing for
x > c. This means that G′(x) < 0 for x < c and G′(x) < 0 for x > c. This in turn implies that G(x) is decreasing, so
G(x) > 0 for x < c but G(x) < 0 for x > c. On the other hand, if f ′′(x) changes from negative to positive at x = c, then
so does G′′(x) and G′(x) is decreasing for x < c and increasing for x > c. Thus, G′(x) > 0 for x < c and G′(x) > 0
for x > c. This in turn implies that G(x) is increasing, so G(x) < 0 for x < c and G(x) > 0 for x > c. In either case,
G(x) changes sign at x = c, and the tangent line at x = c crosses the graph of the function.

(b) Let f (x) = x

3x2 + 1
. Then

f ′(x) = 1 − 3x2

(3x2 + 1)2
and f ′′(x) = −18x(1 − x2)

(3x2 + 1)3
.

Therefore f (x) has a point of inflection at x = 0 and at x = ±1. The figure below shows the graph of y = f (x) and its
tangent lines at each of the points of inflection. It is clear that each tangent line crosses the graph of f (x) at the inflection
point.

x

y

Let C(x) be the cost of producing x units of a certain good. Assume that the graph of C(x) is concave up.

(a) Show that the average cost A(x) = C(x)/x is minimized at the production level x0 such that average cost equals
marginal cost—that is, A(x0) = C′(x0).

(b) Show that the line through (0, 0) and (x0, C(x0)) is tangent to the graph of C(x).

59. Let f (x) be a polynomial of degree n ≥ 2. Show that f (x) has at least one point of inflection if n is odd. Then give
an example to show that f (x) need not have a point of inflection if n is even.

solution Let f (x) = anxn + an−1xn−1 + · · · + a1x + a0 be a polynomial of degree n. Then f ′(x) = nanxn−1 +
(n − 1)an−1xn−2 + · · · + 2a2x + a1 and f ′′(x) = n(n − 1)anxn−2 + (n − 1)(n − 2)an−1xn−3 + · · · + 6a3x + 2a2.
If n ≥ 3 and is odd, then n − 2 is also odd and f ′′(x) is a polynomial of odd degree. Therefore f ′′(x) must take on both
positive and negative values. It follows that f ′′(x) has at least one root c such that f ′′(x) changes sign at c. The function
f (x) will then have a point of inflection at x = c. On the other hand, the functions f (x) = x2, x4 and x8 are polynomials
of even degree that do not have any points of inflection.

Critical and Inflection Points If f ′(c) = 0 and f (c) is neither a local min nor a local max, must x = c be a
point of inflection? This is true for “reasonable” functions (including the functions studied in this text), but it is not
true in general. Let

f (x)

{
x2 sin 1

x for x = 0
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4.5 Graph Sketching and Asymptotes

Preliminary Questions
1. Sketch an arc where f ′ and f ′′ have the sign combination ++. Do the same for −+.

solution An arc with the sign combination ++ (increasing, concave up) is shown below at the left. An arc with the
sign combination −+ (decreasing, concave up) is shown below at the right.

x

y

x

y

2. If the sign combination of f ′ and f ′′ changes from ++ to +− at x = c, then (choose the correct answer):

(a) f (c) is a local min (b) f (c) is a local max

(c) c is a point of inflection

solution Because the sign of the second derivative changes at x = c, the correct response is (c): c is a point of
inflection.

3. The second derivative of the function f (x) = (x − 4)−1 is f ′′(x) = 2(x − 4)−3. Although f ′′(x) changes sign at
x = 4, f (x) does not have a point of inflection at x = 4. Why not?

solution The function f does not have a point of inflection at x = 4 because x = 4 is not in the domain of f.

Exercises
1. Determine the sign combinations of f ′ and f ′′ for each interval A–G in Figure 15.

CB D E F GA
x

y

y = f (x)

FIGURE 15

solution

• In A, f is decreasing and concave up, so f ′ < 0 and f ′′ > 0.
• In B, f is increasing and concave up, so f ′ > 0 and f ′′ > 0.
• In C, f is increasing and concave down, so f ′ > 0 and f ′′ < 0.
• In D, f is decreasing and concave down, so f ′ < 0 and f ′′ < 0.
• In E, f is decreasing and concave up, so f ′ < 0 and f ′′ > 0.
• In F, f is increasing and concave up, so f ′ > 0 and f ′′ > 0.
• In G, f is increasing and concave down, so f ′ > 0 and f ′′ < 0.

State the sign change at each transition point A–G in Figure 16. Example: f ′(x) goes from + to − at A.In Exercises 3–6, draw the graph of a function for which f ′ and f ′′ take on the given sign combinations.

3. ++, +−, −−
solution This function changes from concave up to concave down at x = −1 and from increasing to decreasing at
x = 0.

x

y

−1

0 1−1
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+−, −−, −+5. −+, −−, −+
solution The function is decreasing everywhere and changes from concave up to concave down at x = −1 and from

concave down to concave up at x = − 1
2 .

x

y

0.05

−1 0

−+, ++, +−7. Sketch the graph of y = x2 − 5x + 4.

solution Let f (x) = x2 − 5x + 4. Then f ′(x) = 2x − 5 and f ′′(x) = 2. Hence f is decreasing for x < 5/2, is
increasing for x > 5/2, has a local minimum at x = 5/2 and is concave up everywhere.

2

5

10

15

4 6

y

x

Sketch the graph of y = 12 − 5x − 2x2.
9. Sketch the graph of f (x) = x3 − 3x2 + 2. Include the zeros of f (x), which are x = 1 and 1 ± √

3 (approximately
−0.73, 2.73).

solution Let f (x) = x3 − 3x2 + 2. Then f ′(x) = 3x2 − 6x = 3x(x − 2) = 0 yields x = 0, 2 and f ′′(x) = 6x − 6.
Thus f is concave down for x < 1, is concave up for x > 1, has an inflection point at x = 1, is increasing for x < 0 and
for x > 2, is decreasing for 0 < x < 2, has a local maximum at x = 0, and has a local minimum at x = 2.

1

x
1 2 3−1

y

−1

2

−2

Show that f (x) = x3 − 3x2 + 6x has a point of inflection but no local extreme values. Sketch the graph.
11. Extend the sketch of the graph of f (x) = cos x + 1

2x in Example 4 to the interval [0, 5π ].
solution Let f (x) = cos x + 1

2x. Then f ′(x) = − sin x + 1
2 = 0 yields critical points at x = π

6 , 5π
6 , 13π

6 , 17π
6 ,

25π
6 , and 29π

6 . Moreover, f ′′(x) = − cos x so there are points of inflection at x = π
2 , 3π

2 , 5π
2 , 7π

2 , and 9π
2 .

2

x
2 4 6 8 10 12 14

y

4

6

0

Sketch the graphs of y = x2/3 and y = x4/3.
In Exercises 13–34, find the transition points, intervals of increase/decrease, concavity, and asymptotic behavior. Then
sketch the graph, with this information indicated.

13. y = x3 + 24x2

solution Let f (x) = x3 + 24x2. Then f ′(x) = 3x2 + 48x = 3x (x + 16) and f ′′(x) = 6x + 48. This shows that f

has critical points at x = 0 and x = −16 and a candidate for an inflection point at x = −8.

Interval (−∞, −16) (−16, −8) (−8, 0) (0, ∞)

Signs of f ′ and f ′′ +− −− −+ ++
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Thus, there is a local maximum at x = −16, a local minimum at x = 0, and an inflection point at x = −8. Moreover,

lim
x→−∞ f (x) = −∞ and lim

x→∞ f (x) = ∞.

Here is a graph of f with these transition points highlighted as in the graphs in the textbook.

−20 −15 −10 −5 5

1000

2000

3000

y

x

y = x3 − 3x + 5
15. y = x2 − 4x3

solution Let f (x) = x2 − 4x3. Then f ′(x) = 2x − 12x2 = 2x(1 − 6x) and f ′′(x) = 2 − 24x. Critical points are

at x = 0 and x = 1
6 , and the sole candidate point of inflection is at x = 1

12 .

Interval (−∞, 0) (0, 1
12 ) ( 1

12 , 1
6 ) ( 1

6 , ∞)

Signs of f ′ and f ′′ −+ ++ +− −−

Thus, f (0) is a local minimum, f ( 1
6 ) is a local maximum, and there is a point of inflection at x = 1

12 . Moreover,

lim
x→±∞ f (x) = ∞.

Here is the graph of f with transition points highlighted as in the textbook:

0.04

x
0.2−0.2

y

−0.04

y = 1
3x3 + x2 + 3x

17. y = 4 − 2x2 + 1
6x4

solution Let f (x) = 1
6x4 − 2x2 + 4. Then f ′(x) = 2

3x3 − 4x = 2
3x
(
x2 − 6

)
and f ′′(x) = 2x2 − 4. This shows

that f has critical points at x = 0 and x = ±√
6 and has candidates for points of inflection at x = ±√

2.

Interval (−∞, −√
6) (−√

6, −√
2) (−√

2, 0) (0,
√

2) (
√

2,
√

6) (
√

6, ∞)

Signs of f ′ and f ′′ −+ ++ +− −− −+ ++

Thus, f has local minima at x = ±√
6, a local maximum at x = 0, and inflection points at x = ±√

2. Moreover,

lim
x→±∞ f (x) = ∞.

Here is a graph of f with transition points highlighted.

5

x
2−2

y

10

y = 7x4 − 6x2 + 1
19. y = x5 + 5x

solution Let f (x) = x5 + 5x. Then f ′(x) = 5x4 + 5 = 5(x4 + 1) and f ′′(x) = 20x3. f ′(x) > 0 for all x, so the
graph has no critical points and is always increasing. f ′′(x) = 0 at x = 0. Sign analyses reveal that f ′′(x) changes from
negative to positive at x = 0, so that the graph of f (x) has an inflection point at (0, 0). Moreover,

lim
x→−∞ f (x) = −∞ and lim

x→∞ f (x) = ∞.

Here is a graph of f with transition points highlighted.
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20

x
21−2 −1

y

−40

40

−20

y = x5 − 15x321. y = x4 − 3x3 + 4x

solution Let f (x) = x4 − 3x3 + 4x. Then f ′(x) = 4x3 − 9x2 + 4 = (4x2 − x − 2)(x − 2) and f ′′(x) =
12x2 − 18x = 6x(2x − 3). This shows that f has critical points at x = 2 and x = 1 ± √

33

8
and candidate points of

inflection at x = 0 and x = 3
2 . Sign analyses reveal that f ′(x) changes from negative to positive at x = 1−√

33
8 , from

positive to negative at x = 1+√
33

8 , and again from negative to positive at x = 2. Therefore, f ( 1−√
33

8 ) and f (2) are

local minima of f (x), and f ( 1+√
33

8 ) is a local maximum. Further sign analyses reveal that f ′′(x) changes from positive

to negative at x = 0 and from negative to positive at x = 3
2 , so that there are points of inflection both at x = 0 and x = 3

2 .
Moreover,

lim
x→±∞ f (x) = ∞.

Here is a graph of f (x) with transition points highlighted.

4

x
21−1

y

6

2

−2

y = x2(x − 4)223. y = x7 − 14x6

solution Let f (x) = x7 − 14x6. Then f ′(x) = 7x6 − 84x5 = 7x5 (x − 12) and f ′′(x) = 42x5 − 420x4 =
42x4 (x − 10). Critical points are at x = 0 and x = 12, and candidate inflection points are at x = 0 and x = 10. Sign
analyses reveal that f ′(x) changes from positive to negative at x = 0 and from negative to positive at x = 12. Therefore
f (0) is a local maximum and f (12) is a local minimum. Also, f ′′(x) changes from negative to positive at x = 10.
Therefore, there is a point of inflection at x = 10. Moreover,

lim
x→−∞ f (x) = −∞ and lim

x→∞ f (x) = ∞.

Here is a graph of f with transition points highlighted.

−5 5 10

−5 × 106

5 × 106

1 × 107

y

x

y = x6 − 9x4
25. y = x − 4

√
x

solution Let f (x) = x − 4
√

x = x − 4x1/2. Then f ′(x) = 1 − 2x−1/2. This shows that f has critical points at
x = 0 (where the derivative does not exist) and at x = 4 (where the derivative is zero). Because f ′(x) < 0 for 0 < x < 4
and f ′(x) > 0 for x > 4, f (4) is a local minimum. Now f ′′(x) = x−3/2 > 0 for all x > 0, so the graph is always
concave up. Moreover,

lim
x→∞ f (x) = ∞.

Here is a graph of f with transition points highlighted.

−2

2

4

5 10 15 20

y

x
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y = √
x + √

16 − x
27. y = x(8 − x)1/3

solution Let f (x) = x (8 − x)1/3. Then

f ′(x) = x · 1
3 (8 − x)−2/3 (−1) + (8 − x)1/3 · 1 = 24 − 4x

3 (8 − x)2/3

and similarly

f ′′(x) = 4x − 48

9 (8 − x)5/3
.

Critical points are at x = 8 and x = 6, and candidate inflection points are x = 8 and x = 12. Sign analyses reveal that
f ′(x) changes from positive to negative at x = 6 and f ′(x) remains negative on either side of x = 8. Moreover, f ′′(x)

changes from negative to positive at x = 8 and from positive to negative at x = 12. Therefore, f has a local maximum
at x = 6 and inflection points at x = 8 and x = 12. Moreover,

lim
x→±∞ f (x) = −∞.

Here is a graph of f with the transition points highlighted.

−30

−5 5 10 15

−20

−10

y

x

y = (x2 − 4x)1/329. y = (2x − x2)1/3

solution We have

f ′(x) = 1

3
(2x − x2)−2/3(2 − 2x) = 2 − 2x

3(2x − x2)2/3

f ′′(x) = 2(x2 − 2x + 4)

9x(x − 2)(2x − x2)2/3

The only critical point is at x = 1, and since the numerator of f ′′(x) is always positive, there are no inflection points. Sign
analysis shows that f ′(x) changes from positive to negative at x = 1, so that f has a local maximum at x = 1. Finally,

lim
x→±∞ f (x) = ∞

so that the graph has no horizontal asymptotes. Here is a graph of f with the transition points highlighted:

−1
−10 −5 5 10

x

y

1

−2

−3

−4

y = (x3 − 3x)1/331. y = x − x−1

solution We have f ′(x) = 1 + x−2 and f ′′(x) = −2x−3. Since f (x) never vanishes, there are no critical points.
Since f ′′(x) = 0 only at x = 0, there are no inflection points. Finally,

lim
x→±∞ f (x) = ±∞, lim

x→0+ f (x) = −∞, lim
x→0− f (x) = ∞

so that the graph has a vertical asymptote at x = 0 but no horizontal asymptotes. Here is a graph of f :
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−3 −1 1 2 3
x

y

−2

4
6
8

−4
−6
−8

y = x2 − x−233. y = x3 − 48

x2

solution We have f ′(x) = 3x2 + 96x−3 and f ′′(x) = 6x − 288x−4. The critical points occur for 0 = f ′(x) =
3x2 + 96x−3, so where 3x5 = −96. Thus the only critical point is x = −2. f ′′(x) vanishes when 6x5 = 288, so that
x5 = 48 and x = 5√48. Sign analysis shows that f ′(x) changes from positive to negative at x = −2, so that x = −2 is a
local maximum, but does not change sign, remaining positive, at x = 2. Thus x = 2 is not a local extremum. Moreover,
f ′′(x) changes from negative to positive at x = 5√48, so that this is a point of inflection. Finally,

lim
x→±∞ f (x) = ±∞, lim

x→0
f (x) = −∞

so that the graph has a vertical asymptote at x = 0 but no horizontal asymptotes. Here is a graph of f with the transition
points highlighted:

−4 −3 1 2 3 4

y

x

−100

−80

−60

−40

−20

20

40

60

y = x2 − x + x−135. Sketch the graph of f (x) = 18(x − 3)(x − 1)2/3 using the formulas

f ′(x) = 30
(
x − 9

5

)
(x − 1)1/3

, f ′′(x) = 20
(
x − 3

5

)
(x − 1)4/3

solution

f ′(x) = 30(x − 9
5 )

(x − 1)1/3

yields critical points at x = 9
5 , x = 1.

f ′′(x) = 20(x − 3
5 )

(x − 1)4/3

yields potential inflection points at x = 3
5 , x = 1.

Interval signs of f ′ and f ′′

(−∞, 3
5 ) +−

( 3
5 , 1) ++

(1, 9
5 ) −+

( 9
5 , ∞) ++

The graph has an inflection point at x = 3
5 , a local maximum at x = 1 (at which the graph has a cusp), and a local

minimum at x = 9
5 . The sketch looks something like this.

40

x
321−2 −1

y

−20

20

−40
−60
−80
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Sketch the graph of f (x) = x

x2 + 1
using the formulas

f ′(x) = 1 − x2

(1 + x2)2
, f ′′(x) = 2x(x2 − 3)

(x2 + 1)3

In Exercises 37–40, sketch the graph of the function, indicating all transition points. If necessary, use a graphing
utility or computer algebra system to locate the transition points numerically.

37. y = x3 − 4

x2 + 1

solution We have

f ′(x) = 3x2 + 8x

(x2 + 1)2
, f ′′(x) = 6x − 8(3x2 − 1)

(x2 + 1)3

The critical points are the roots of f ′(x), which are x = 0 and x = −0.8678. Candidates for inflection points occur
when f ′′(x) vanishes; the only root of f ′′(x) is −0.41119. Sign analysis reveals that f ′(x) changes from positive to
negative at x = −0.8678 and from negative to positive at x = 0. Also, f ′′(x) changes sign from negative to positive
at x = −0.41119. Thus f has a local maximum at x = −0.8678, a point of inflection at x = −0.41119, and a local
minimum at x = 0. Moreover, lim

x→±∞ = ±∞, so there are no horizontal asymptotes. Since f (x) is defined everywhere,

there are no vertical asymptotes. Here is a graph of f with the transition points highlighted:

−2

−2

2

−6

−1 1 2
x

y

y = 12
√

x2 + 2x + 4 − x2
39. y = x4 − 4x2 + x + 1

solution Let f (x) = x4 − 4x2 + x + 1. Then f ′(x) = 4x3 − 8x + 1 and f ′′(x) = 12x2 − 8. The critical points

are x = −1.473, x = 0.126 and x = 1.347, while the candidates for points of inflection are x = ±
√

2
3 . Sign analysis

reveals that f ′(x) changes from negative to positive at x = −1.473, from positive to negative at x = 0.126 and from

negative to positive at x = 1.347. For the second derivative, f ′′(x) changes from positive to negative at x = −
√

2
3 and

from negative to positive at x =
√

2
3 . Therefore, f has local minima at x = −1.473 and x = 1.347, a local maximum at

x = 0.126 and points of inflection at x = ±
√

2
3 . Moreover,

lim
x→±∞ f (x) = ∞.

Here is a graph of f with the transition points highlighted.

−2 −1 1 2−5

5

10

15

20

y

x

y = 2
√

x − sin x, 0 ≤ x ≤ 2π
In Exercises 41–46, sketch the graph over the given interval, with all transition points indicated.

41. y = x + sin x, [0, 2π ]
solution Let f (x) = x + sin x. Setting f ′(x) = 1 + cos x = 0 yields cos x = −1, so that x = π is the lone critical
point on the interval [0, 2π ]. Setting f ′′(x) = − sin x = 0 yields potential points of inflection at x = 0, π, 2π on the
interval [0, 2π ].

Interval signs of f ′ and f ′′

(0, π) +−
(π, 2π) ++

The graph has an inflection point at x = π , and no local maxima or minima. Here is a sketch of the graph of f (x):
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y

x

1

2

3

4

5

6

0 654321

y = sin x + cos x, [0, 2π ]43. y = 2 sin x − cos2 x, [0, 2π ]
solution Let f (x) = 2 sin x − cos2 x. Then f ′(x) = 2 cos x − 2 cos x (− sin x) = sin 2x + 2 cos x and f ′′(x) =
2 cos 2x − 2 sin x. Setting f ′(x) = 0 yields sin 2x = −2 cos x, so that 2 sin x cos x = −2 cos x. This implies cos x = 0
or sin x = −1, so that x = π

2 or 3π
2 . Setting f ′′(x) = 0 yields 2 cos 2x = 2 sin x, so that 2 sin( π

2 − 2x) = 2 sin x, or
π
2 − 2x = x ± 2nπ . This yields 3x = π

2 + 2nπ , or x = π
6 , 5π

6 , 9π
6 = 3π

2 .

Interval signs of f ′ and f ′′
(
0, π

6

) ++
(
π
6 , π

2

) +−
(
π
2 , 5π

6

) −−
( 5π

6 , 3π
2

) −+
( 3π

2 , 2π
) ++

The graph has a local maximum at x = π
2 , a local minimum at x = 3π

2 , and inflection points at x = π
6 and x = 5π

6 .
Here is a graph of f without transition points highlighted.

x
654

3

21

y

1

2

−2

−1

y = sin x + 1
2x, [0, 2π ]45. y = sin x + √

3 cos x, [0, π ]
solution Let f (x) = sin x + √

3 cos x. Setting f ′(x) = cos x − √
3 sin x = 0 yields tan x = 1√

3
. In the interval

[0, π ], the solution is x = π
6 . Setting f ′′(x) = − sin x − √

3 cos x = 0 yields tan x = −√
3. In the interval [0, π ], the

lone solution is x = 2π
3 .

Interval signs of f ′ and f ′′

(0, π/6) +−
(π/6, 2π/3) −−
(2π/3, π) −+

The graph has a local maximum at x = π
6 and a point of inflection at x = 2π

3 . A plot without the transition points
highlighted is given below:

x
321

y

1

2

−2

−1
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y = sin x − 1
2 sin 2x, [0, π ]47. Are all sign transitions possible? Explain with a sketch why the transitions ++ → −+ and −− → +− do

not occur if the function is differentiable. (See Exercise 76 for a proof.)

solution In both cases, there is a point where f is not differentiable at the transition from increasing to decreasing or
decreasing to increasing.

y

x

y

x

Suppose that f is twice differentiable satisfying (i) f (0) = 1, (ii) f ′(x) > 0 for all x = 0, and (iii) f ′′(x) < 0
for x < 0 and f ′′(x) > 0 for x > 0. Let g(x) = f (x2).

(a) Sketch a possible graph of f (x).

(b) Prove that g(x) has no points of inflection and a unique local extreme value at x = 0. Sketch a possible graph of
g(x).

49. Which of the graphs in Figure 17 cannot be the graph of a polynomial? Explain.

(A) (B) (C)

x

x

x

yy y

FIGURE 17

solution Polynomials are everywhere differentiable. Accordingly, graph (B) cannot be the graph of a polynomial,
since the function in (B) has a cusp (sharp corner), signifying nondifferentiability at that point.

Which curve in Figure 18 is the graph of f (x) = 2x4 − 1

1 + x4
? Explain on the basis of horizontal asymptotes.

51. Match the graphs in Figure 19 with the two functions y = 3x

x2 − 1
and y = 3x2

x2 − 1
. Explain.

(A) (B)

−1 1−1 1
xx

y y

FIGURE 19

solution Since lim
x→±∞

3x2

x2 − 1
= 3

1
· lim
x→±∞ 1 = 3, the graph of y = 3x2

x2 − 1
has a horizontal asymptote of y = 3;

hence, the right curve is the graph of f (x) = 3x2

x2 − 1
. Since

lim
x→±∞

3x

x2 − 1
= 3

1
· lim
x→±∞ x−1 = 0,

the graph of y = 3x

x2 − 1
has a horizontal asymptote of y = 0; hence, the left curve is the graph of f (x) = 3x

x2 − 1
.

Match the functions with their graphs in Figure 20.

(a) y = 1

x2 − 1
(b) y = x2

x2 + 1

(c) y = 1

x2 + 1
(d) y = x

x2 − 1

In Exercises 53–70, sketch the graph of the function. Indicate the transition points and asymptotes.

53. y = 1

3x − 1

solution Let f (x) = 1

3x − 1
. Then f ′(x) = −3

(3x − 1)2
, so that f is decreasing for all x = 1

3 . Moreover, f ′′(x) =
18

(3x − 1)3
, so that f is concave up for x > 1

3 and concave down for x < 1
3 . Because lim

x→±∞
1

3x − 1
= 0, f has a

horizontal asymptote at y = 0. Finally, f has a vertical asymptote at x = 1
3 with

lim
x→ 1

3 −
1

3x − 1
= −∞ and lim

x→ 1
3 +

1

3x − 1
= ∞.
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−5

−2 2

5

y

x

y = x − 2

x − 3

55. y = x + 3

x − 2

solution Let f (x) = x + 3

x − 2
. Then f ′(x) = −5

(x − 2)2
, so that f is decreasing for all x = 2. Moreover, f ′′(x) =

10

(x − 2)3
, so that f is concave up for x > 2 and concave down for x < 2. Because lim

x→±∞
x + 3

x − 2
= 1, f has a horizontal

asymptote at y = 1. Finally, f has a vertical asymptote at x = 2 with

lim
x→2−

x + 3

x − 2
= −∞ and lim

x→2+
x + 3

x − 2
= ∞.

x
105−10 −5

y

−10

−5

10

5

y = x + 1

x

57. y = 1

x
+ 1

x − 1

solution Let f (x) = 1

x
+ 1

x − 1
. Then f ′(x) = −2x2 − 2x + 1

x2 (x − 1)2
, so that f is decreasing for all x = 0, 1. Moreover,

f ′′(x) =
2
(

2x3 − 3x2 + 3x − 1
)

x3 (x − 1)3
, so that f is concave up for 0 < x < 1

2 and x > 1 and concave down for x < 0

and 1
2 < x < 1. Because lim

x→±∞

(
1

x
+ 1

x − 1

)
= 0, f has a horizontal asymptote at y = 0. Finally, f has vertical

asymptotes at x = 0 and x = 1 with

lim
x→0−

(
1

x
+ 1

x − 1

)
= −∞ and lim

x→0+

(
1

x
+ 1

x − 1

)
= ∞

and

lim
x→1−

(
1

x
+ 1

x − 1

)
= −∞ and lim

x→1+

(
1

x
+ 1

x − 1

)
= ∞.

x
1 2−1

y

5

−5

y = 1

x
− 1

x − 1

59. y = 1

x(x − 2)

solution Let f (x) = 1

x(x − 2)
. Then f ′(x) = 2(1 − x)

x2(x − 2)2
, so that f is increasing for x < 0 and 0 < x < 1 and

decreasing for 1 < x < 2 and x > 2. Moreover, f ′′(x) = 2(3x2 − 6x + 4)

x3(x − 2)3
, so that f is concave up for x < 0 and x > 2

and concave down for 0 < x < 2. Because lim
x→±∞

(
1

x(x − 2)

)
= 0, f has a horizontal asymptote at y = 0. Finally, f

has vertical asymptotes at x = 0 and x = 2 with

lim
x→0−

(
1

x(x − 2)

)
= +∞ and lim

x→0+

(
1

x(x − 2)

)
= −∞
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and

lim
x→2−

(
1

x(x − 2)

)
= −∞ and lim

x→2+

(
1

x(x − 2)

)
= ∞.

−5

5

−2 4

y

x

y = x

x2 − 9
61. y = 1

x2 − 6x + 8

solution Let f (x) = 1

x2 − 6x + 8
= 1

(x − 2) (x − 4)
. Then f ′(x) = 6 − 2x(

x2 − 6x + 8
)2 , so that f is increasing for

x < 2 and for 2 < x < 3, is decreasing for 3 < x < 4 and for x > 4, and has a local maximum at x = 3. Moreover,

f ′′(x) =
2
(

3x2 − 18x + 28
)

(
x2 − 6x + 8

)3 , so that f is concave up for x < 2 and for x > 4 and is concave down for 2 < x < 4.

Because lim
x→±∞

1

x2 − 6x + 8
= 0, f has a horizontal asymptote at y = 0. Finally, f has vertical asymptotes at x = 2

and x = 4, with

lim
x→2−

(
1

x2 − 6x + 8

)
= ∞ and lim

x→2+

(
1

x2 − 6x + 8

)
= −∞

and

lim
x→4−

(
1

x2 − 6x + 8

)
= −∞ and lim

x→4+

(
1

x2 − 6x + 8

)
= ∞.

x
6542

3

1

y

5

−5

y = x3 + 1

x

63. y = 1 − 3

x
+ 4

x3

solution Let f (x) = 1 − 3

x
+ 4

x3
. Then

f ′(x) = 3

x2
− 12

x4
= 3(x − 2)(x + 2)

x4
,

so that f is increasing for |x| > 2 and decreasing for −2 < x < 0 and for 0 < x < 2. Moreover,

f ′′(x) = − 6

x3
+ 48

x5 = 6(8 − x2)

x5 ,

so that f is concave down for −2
√

2 < x < 0 and for x > 2
√

2, while f is concave up for x < −2
√

2 and for
0 < x < 2

√
2. Because

lim
x→±∞

(
1 − 3

x
+ 4

x3

)
= 1,

f has a horizontal asymptote at y = 1. Finally, f has a vertical asymptote at x = 0 with

lim
x→0−

(
1 − 3

x
+ 4

x3

)
= −∞ and lim

x→0+

(
1 − 3

x
+ 4

x3

)
= ∞.
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2

x
2 4 6−6 −4 −2

y

4

6

−6

−4

−2

y = 1

x2
+ 1

(x − 2)2

65. y = 1

x2
− 1

(x − 2)2

solution Let f (x) = 1

x2
− 1

(x − 2)2
. Then f ′(x) = −2x−3 + 2 (x − 2)−3, so that f is increasing for x < 0 and for

x > 2 and is decreasing for 0 < x < 2. Moreover,

f ′′(x) = 6x−4 − 6 (x − 2)−4 = −48(x − 1)(x2 − 2x + 2)

x4(x − 2)4
,

so that f is concave up for x < 0 and for 0 < x < 1, is concave down for 1 < x < 2 and for x > 2, and has a point

of inflection at x = 1. Because lim
x→±∞

(
1

x2
− 1

(x − 2)2

)
= 0, f has a horizontal asymptote at y = 0. Finally, f has

vertical asymptotes at x = 0 and x = 2 with

lim
x→0−

(
1

x2
− 1

(x − 2)2

)
= ∞ and lim

x→0+

(
1

x2
− 1

(x − 2)2

)
= ∞

and

lim
x→2−

(
1

x2
− 1

(x − 2)2

)
= −∞ and lim

x→2+

(
1

x2
− 1

(x − 2)2

)
= −∞.

x

2

4

−2

−4

y

1 2 3 4

−2 −1

y = 4

x2 − 9

67. y = 1

(x2 + 1)2

solution Let f (x) = 1

(x2 + 1)2
. Then f ′(x) = −4x

(x2 + 1)3
, so that f is increasing for x < 0, is decreasing for x > 0

and has a local maximum at x = 0. Moreover,

f ′′(x) = −4(x2 + 1)3 + 4x · 3(x2 + 1)2 · 2x

(x2 + 1)6
= 20x2 − 4

(x2 + 1)4
,

so that f is concave up for |x| > 1/
√

5, is concave down for |x| < 1/
√

5, and has points of inflection at x = ±1/
√

5.

Because lim
x→±∞

1

(x2 + 1)2
= 0, f has a horizontal asymptote at y = 0. Finally, f has no vertical asymptotes.

x

1

0.8

42−2−4

y
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y = x2

(x2 − 1)(x2 + 1)

69. y = 1√
x2 + 1

solution Let f (x) = 1√
x2+1

. Then

f ′(x) = − x√
(x2 + 1)3

= −x(x2 + 1)−3/2,

so that f is increasing for x < 0 and decreasing for x > 0. Moreover,

f ′′(x) = −3

2
x(x2 + 1)−5/2(−2x) − (x2 + 1)−3/2 = (2x2 − 1)(x2 + 1)−5/2,

so that f is concave down for |x| <

√
2

2 and concave up for |x| >

√
2

2 . Because

lim
x→±∞

1√
x2 + 1

= 0,

f has a horizontal asymptote at y = 0. Finally, f has no vertical asymptotes.

x

1

0.8

0.2

105−5−10

y

y = x√
x2 + 1

Further Insights and Challenges
In Exercises 71–75, we explore functions whose graphs approach a nonhorizontal line as x → ∞. A line y = ax + b is
called a slant asymptote if

lim
x→∞(f (x) − (ax + b)) = 0

or

lim
x→−∞(f (x) − (ax + b)) = 0

71. Let f (x) = x2

x − 1
(Figure 21). Verify the following:

(a) f (0) is a local max and f (2) a local min.

(b) f is concave down on (−∞, 1) and concave up on (1, ∞).

(c) lim
x→1− f (x) = −∞ and lim

x→1+ f (x) = ∞.

(d) y = x + 1 is a slant asymptote of f (x) as x → ±∞.

(e) The slant asymptote lies above the graph of f (x) for x < 1 and below the graph for x > 1.

y = x + 1

10−10

10

−10

x

y
f (x) = x2

x − 1

FIGURE 21

solution Let f (x) = x2

x − 1
. Then f ′(x) = x(x − 2)

(x − 1)2
and f ′′(x) = 2

(x − 1)3
.

(a) Sign analysis of f ′′(x) reveals that f ′′(x) < 0 on (−∞, 1) and f ′′(x) > 0 on (1, ∞).

(b) Critical points of f ′(x) occur at x = 0 and x = 2. x = 1 is not a critical point because it is not in the domain of f .
Sign analyses reveal that x = 2 is a local minimum of f and x = 0 is a local maximum.
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(c)

lim
x→1− f (x) = −1 lim

x→1−
1

1 − x
= −∞ and lim

x→1+ f (x) = 1 lim
x→1+

1

x − 1
= ∞.

(d) Note that using polynomial division, f (x) = x2

x − 1
= x + 1 + 1

x − 1
. Then

lim
x→±∞(f (x) − (x + 1)) = lim

x→±∞ x + 1 + 1

x − 1
− (x + 1) = lim

x→±∞
1

x − 1
= 0.

(e) For x > 1, f (x) − (x + 1) = 1

x − 1
> 0, so f (x) approaches x + 1 from above. Similarly, for x < 1, f (x) − (x +

1) = 1

x − 1
< 0, so f (x) approaches x + 1 from below.

If f (x) = P(x)/Q(x), where P and Q are polynomials of degrees m + 1 and m, then by long division, we
can write

f (x) = (ax + b) + P1(x)/Q(x)

where P1 is a polynomial of degree < m. Show that y = ax + b is the slant asymptote of f (x). Use this procedure
to find the slant asymptotes of the following functions:

(a) y = x2

x + 2
(b) y = x3 + x

x2 + x + 1

73. Sketch the graph of

f (x) = x2

x + 1
.

Proceed as in the previous exercise to find the slant asymptote.

solution Let f (x) = x2

x + 1
. Then f ′(x) = x(x + 2)

(x + 1)2
and f ′′(x) = 2

(x + 1)3
. Thus, f is increasing for x < −2 and

for x > 0, is decreasing for −2 < x < −1 and for −1 < x < 0, has a local minimum at x = 0, has a local maximum at
x = −2, is concave down on (−∞, −1) and concave up on (−1, ∞). Limit analyses give a vertical asymptote at x = −1,
with

lim
x→−1−

x2

x + 1
= −∞ and lim

x→−1+
x2

x + 1
= ∞.

By polynomial division, f (x) = x − 1 + 1

x + 1
and

lim
x→±∞

(
x − 1 + 1

x + 1
− (x − 1)

)
= 0,

which implies that the slant asymptote is y = x − 1. Notice that f approaches the slant asymptote as in exercise 71.

x

4

2

42−2−4

−4

−6

−2

y

Show that y = 3x is a slant asymptote for f (x) = 3x + x−2. Determine whether f (x) approaches the slant
asymptote from above or below and make a sketch of the graph.

75. Sketch the graph of f (x) = 1 − x2

2 − x
.

solution Let f (x) = 1 − x2

2 − x
. Using polynomial division, f (x) = x + 2 + 3

x − 2
. Then

lim
x→±∞(f (x) − (x + 2)) = lim

x→±∞

(
(x + 2) + 3

x − 2
− (x + 2)

)
= lim

x→±∞
3

x − 2
= 3

1
· lim
x→±∞ x−1 = 0

which implies that y = x + 2 is the slant asymptote of f (x). Since f (x) − (x + 2) = 3

x − 2
> 0 for x > 2, f (x)

approaches the slant asymptote from above for x > 2; similarly,
3

x − 2
< 0 for x < 2 so f (x) approaches the slant

asymptote from below for x < 2. Moreover, f ′(x) = x2 − 4x + 1

(2 − x)2
and f ′′(x) = −6

(2 − x)3
. Sign analyses reveal a local

minimum at x = 2 + √
3, a local maximum at x = 2 − √

3 and that f is concave down on (−∞, 2) and concave up on
(2, ∞). Limit analyses give a vertical asymptote at x = 2.
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x

10

5
105−5−10

−10

−5

y

Assume that f ′(x) and f ′′(x) exist for all x and let c be a critical point of f (x). Show that f (x) cannot make a
transition from ++ to −+ at x = c. Hint: Apply the MVT to f ′(x).

77. Assume that f ′′(x) exists and f ′′(x) > 0 for all x. Show that f (x) cannot be negative for all x. Hint: Show
that f ′(b) = 0 for some b and use the result of Exercise 56 in Section 4.4.

solution Let f (x) be a function such that f ′′(x) exists and f ′′(x) > 0 for all x. Since f ′′(x) > 0, there is at least one
point x = b such that f ′(b) = 0. If not, f ′(x) = 0 for all x, so f ′′(x) = 0. By the result of Exercise 56 in Section 4.4,
f (x) ≥ f (b) + f ′(b)(x − b). Now, if f ′(b) > 0, we find that f (b) + f ′(b)(x − b) > 0 whenever

x >
bf ′(b) − f (b)

f ′(b)
,

a condition that must be met for some x sufficiently large. For such x, f (x) > f (b) + f ′(b)(x − b) > 0. On the other
hand, if f ′(b) < 0, we find that f (b) + f ′(b)(x − b) > 0 whenever

x <
bf ′(b) − f (b)

f ′(b)
.

For such an x, f (x) > f (b) + f ′(b)(x − b) > 0.

4.6 Applied Optimization

Preliminary Questions
1. The problem is to find the right triangle of perimeter 10 whose area is as large as possible. What is the constraint

equation relating the base b and height h of the triangle?

solution The perimeter of a right triangle is the sum of the lengths of the base, the height and the hypotenuse. If the

base has length b and the height is h, then the length of the hypotenuse is
√

b2 + h2 and the perimeter of the triangle is

P = b + h +
√

b2 + h2. The requirement that the perimeter be 10 translates to the constraint equation

b + h +
√

b2 + h2 = 10.

2. Describe a way of showing that a continuous function on an open interval (a, b) has a minimum value.

solution If the function tends to infinity at the endpoints of the interval, then the function must take on a minimum
value at a critical point.

3. Is there a rectangle of area 100 of largest perimeter? Explain.

solution No. Even by fixing the area at 100, we can take one of the dimensions as large as we like thereby allowing
the perimeter to become as large as we like.

Exercises
1. Find the dimensions x and y of the rectangle of maximum area that can be formed using 3 meters of wire.

(a) What is the constraint equation relating x and y?

(b) Find a formula for the area in terms of x alone.

(c) What is the interval of optimization? Is it open or closed?

(d) Solve the optimization problem.

solution

(a) The perimeter of the rectangle is 3 meters, so 3 = 2x + 2y, which is equivalent to y = 3
2 − x.

(b) Using part (a), A = xy = x( 3
2 − x) = 3

2x − x2.

(c) This problem requires optimization over the closed interval [0, 3
2 ], since both x and y must be non-negative.

(d) A′(x) = 3
2 − 2x = 0, which yields x = 3

4 and consequently, y = 3
4 . Because A(0) = A(3/2) = 0 and A( 3

4 ) =
0.5625, the maximum area 0.5625 m2 is achieved with x = y = 3

4 m.

Wire of length 12 m is divided into two pieces and each piece is bent into a square. How should this be done in
order to minimize the sum of the areas of the two squares?

(a) Express the sum of the areas of the squares in terms of the lengths x and y of the two pieces.

(b) What is the constraint equation relating x and y?

(c) What is the interval of optimization? Is it open or closed?
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3. Wire of length 12 m is divided into two pieces and the pieces are bent into a square and a circle. How should this be
done in order to minimize the sum of their areas?

solution Suppose the wire is divided into one piece of length x m that is bent into a circle and a piece of length
12 − x m that is bent into a square. Because the circle has circumference x, it follows that the radius of the circle is x/2π ;
therefore, the area of the circle is

π
( x

2π

)2 = x2

4π
.

As for the square, because the perimeter is 12 − x, the length of each side is 3 − x/4 and the area is (3 − x/4)2. Then

A(x) = x2

4π
+
(

3 − 1

4
x

)2
.

Now

A′(x) = x

2π
− 1

2

(
3 − 1

4
x

)
= 0

when

x = 12π

4 + π
m ≈ 5.28 m.

Because A(0) = 9 m2, A(12) = 36/π ≈ 11.46 m2, and

A

(
12π

4 + π

)
≈ 5.04 m2,

we see that the sum of the areas is minimized when approximately 5.28 m of the wire is allotted to the circle.

Find the positive number x such that the sum of x and its reciprocal is as small as possible. Does this problem
require optimization over an open interval or a closed interval?

5. A flexible tube of length 4 m is bent into an L-shape. Where should the bend be made to minimize the distance
between the two ends?

solution Let x, y > 0 be lengths of the side of the L. Since x + y = 4 or y = 4 − x, the distance between the ends

of L is h(x) =
√

x2 + y2 =
√

x2 + (4 − x)2. We may equivalently minimize the square of the distance,

f (x) = x2 + y2 = x2 + (4 − x)2

This is easier computationally (when working by hand). Solve f ′(x) = 4x − 8 = 0 to obtain x = 2 m. Now f (0) =
f (4) = 16, whereas f (2) = 8. Hence the distance between the two ends of the L is minimized when the bend is made at
the middle of the wire.

Find the dimensions of the box with square base with:

(a) Volume 12 and the minimal surface area.

(b) Surface area 20 and maximal volume.

7. A rancher will use 600 m of fencing to build a corral in the shape of a semicircle on top of a rectangle (Figure 9).
Find the dimensions that maximize the area of the corral.

FIGURE 9

solution Let x be the width of the corral and therefore the diameter of the semicircle, and let y be the height of the
rectangular section. Then the perimeter of the corral can be expressed by the equation 2y + x + π

2 x = 2y + (1 + π
2 )x =

600 m or equivalently, y = 1
2

(
600 − (1 + π

2 )x
)
. Since x and y must both be nonnegative, it follows that x must

be restricted to the interval [0, 600
1+π/2 ]. The area of the corral is the sum of the area of the rectangle and semicircle,

A = xy + π
8 x2. Making the substitution for y from the constraint equation,

A(x) = 1

2
x
(

600 − (1 + π

2
)x
)

+ π

8
x2 = 300x − 1

2

(
1 + π

2

)
x2 + π

8
x2.

Now, A′(x) = 300 − (1 + π
2

)
x + π

4 x = 0 implies x = 300(
1+ π

4

) ≈ 168.029746 m. With A(0) = 0 m2,

A

(
300

1 + π/4

)
≈ 25204.5 m2 and A

(
600

1 + π/2

)
≈ 21390.8 m2,

it follows that the corral of maximum area has dimensions

x = 300

1 + π/4
m and y = 150

1 + π/4
m.
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What is the maximum area of a rectangle inscribed in a right triangle with 5 and 8 as in Figure 10. The sides of
the rectangle are parallel to the legs of the triangle.

9. Find the dimensions of the rectangle of maximum area that can be inscribed in a circle of radius r = 4 (Figure 11).

r

FIGURE 11

solution Place the center of the circle at the origin with the sides of the rectangle (of lengths 2x > 0 and 2y > 0)

parallel to the coordinate axes. By the Pythagorean Theorem, x2 + y2 = r2 = 16, so that y =
√

16 − x2. Thus the area

of the rectangle is A(x) = 2x · 2y = 4x
√

16 − x2. To guarantee both x and y are real and nonnegative, we must restrict
x to the interval [0, 4]. Solve

A′(x) = 4
√

16 − x2 − 4x2√
16 − x2

= 0

for x > 0 to obtain x = 4√
2

= 2
√

2. Since A(0) = A(4) = 0 and A(2
√

2) = 32, the rectangle of maximum area has

dimensions 2x = 2y = 4
√

2.

Find the dimensions x and y of the rectangle inscribed in a circle of radius r that maximizes the quantity xy2.
11. Find the point on the line y = x closest to the point (1, 0). Hint: It is equivalent and easier to minimize the square
of the distance.

solution With y = x, let’s equivalently minimize the square of the distance, f (x) = (x − 1)2 + y2 = 2x2 − 2x + 1,

which is computationally easier (when working by hand). Solve f ′(x) = 4x − 2 = 0 to obtain x = 1
2 . Since f (x) → ∞

as x → ±∞, ( 1
2 , 1

2 ) is the point on y = x closest to (1, 0).

Find the point P on the parabola y = x2 closest to the point (3, 0) (Figure 12).
13. Find the coordinates of the point on the graph of y = x + 2x−1 closest to the origin in the region x > 0 (Figure 13).

1 2 3

2

4

6

8

y = x + 2x−1

y

x

FIGURE 13

solution The distance from the origin to the point (x, x + 2x−1) on the graph of y = x + 2x−1 is d =√
x2 + (x + 2x−1)2. As usual, we will minimize d2. Let d2 = f (x) = x2 + (x + 2x−1)2. Then

f ′(x) = 2x + 2(x + 2x−1)(1 − 2x−2) = 4x − 8x−3.

To determine x, we need to solve f ′(x) = 0. Multiplying through by x3 gives 4x4 − 8 = 0, so that x = 4√2 ≈ 1.189.
Since f (1.189) ≈ 2.871, the point on y = x + 2x−1 that is closest to the origin is approximately (1.189, 2.871).

Problem of Tartaglia (1500–1557) Among all positive numbers a, b whose sum is 8, find those for which the
product of the two numbers and their difference is largest.

15. Find the angle θ that maximizes the area of the isosceles triangle whose legs have length 
 (Figure 14).

q

FIGURE 14

solution The area of the triangle is

A(θ) = 1

2

2 sin θ,

where 0 ≤ θ ≤ π . Setting

A′(θ) = 1

2

2 cos θ = 0

yields θ = π
2 . Since A(0) = A(π) = 0 and A(π

2 ) = 1
2
2, the angle that maximizes the area of the isosceles triangle is

θ = π
2 .
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Aright circular cone (Figure 15) has volume V = π
3 r2h and surface area is S = πr

√
r2 + h2. Find the dimensions

of the cone with surface area 1 and maximal volume.

17. Find the area of the largest isosceles triangle that can be inscribed in a circle of radius r .

solution Consider the following diagram:

q

p −q p −q
2q

r

r r

The area of the isosceles triangle is

A(θ) = 2 · 1

2
r2 sin(π − θ) + 1

2
r2 sin(2θ) = r2 sin θ + 1

2
r2 sin(2θ),

where 0 ≤ θ ≤ π . Solve

A′(θ) = r2 cos θ + r2 cos(2θ) = 0

to obtain θ = π
3 , π . Since A(0) = A(π) = 0 and A(π

3 ) = 3
√

3
4 r2, the area of the largest isosceles triangle that can be

inscribed in a circle of radius r is 3
√

3
4 r2.

Find the radius and height of a cylindrical can of total surface area A whose volume is as large as possible. Does
there exist a cylinder of surface area A and minimal total volume?

19. A poster of area 6000 cm2 has blank margins of width 10 cm on the top and bottom and 6 cm on the sides. Find the
dimensions that maximize the printed area.

solution Let x be the width of the printed region, and let y be the height. The total printed area is A = xy. Because the

total area of the poster is 6000 cm2, we have the constraint (x + 12)(y + 20) = 6000, so that xy + 12y + 20x + 240 =
6000, or y = 5760−20x

x+12 . Therefore, A(x) = 20 288x−x2

x+12 , where 0 ≤ x ≤ 288.
A(0) = A(288) = 0, so we are looking for a critical point on the interval [0, 288]. Setting A′(x) = 0 yields

20
(x + 12)(288 − 2x) − (288x − x2)

(x + 12)2
= 0

−x2 − 24x + 3456

(x + 12)2
= 0

x2 + 24x − 3456 = 0

(x − 48)(x + 72) = 0

Therefore x = 48 or x = −72. x = 48 is the only critical point of A(x) in the interval [0, 288], so A(48) = 3840 is the
maximum value of A(x) in the interval [0, 288]. Now, y = 20 288−48

48+12 = 80 cm, so the poster with maximum printed area
is 48 + 12 = 60 cm. wide by 80 + 20 = 100 cm. tall.

According to postal regulations, a carton is classified as “oversized” if the sum of its height and girth ( perimeter
of its base) exceeds 108 in. Find the dimensions of a carton with square base that is not oversized and has maximum
volume.

21. Kepler’s Wine Barrel Problem In his work Nova stereometria doliorum vinariorum (New Solid Geometry of
a Wine Barrel), published in 1615, astronomer Johannes Kepler stated and solved the following problem: Find the
dimensions of the cylinder of largest volume that can be inscribed in a sphere of radius R. Hint: Show that an inscribed
cylinder has volume 2πx(R2 − x2), where x is one-half the height of the cylinder.

solution Place the center of the sphere at the origin in three-dimensional space. Let the cylinder be of radius y and

half-height x. The Pythagorean Theorem states, x2 + y2 = R2, so that y2 = R2 − x2. The volume of the cylinder is

V (x) = πy2 (2x) = 2π
(
R2 − x2

)
x = 2πR2x − 2πx3. Allowing for degenerate cylinders, we have 0 ≤ x ≤ R.

Solve V ′(x) = 2πR2 − 6πx2 = 0 for x ≥ 0 to obtain x = R√
3

. Since V (0) = V (R) = 0, the largest volume is

V ( R√
3
) = 4

9π
√

3R3 when x = R√
3

and y =
√

2
3R.

Find the angle θ that maximizes the area of the trapezoid with a base of length 4 and sides of length 2, as in
Figure 16.

23. A landscape architect wishes to enclose a rectangular garden of area 1,000 m2 on one side by a brick wall costing
$90/m and on the other three sides by a metal fence costing $30/m. Which dimensions minimize the total cost?

solution Let x be the length of the brick wall and y the length of an adjacent side with x, y > 0. With xy = 1000 or

y = 1000
x , the total cost is

C(x) = 90x + 30 (x + 2y) = 120x + 60,000x−1.

Solve C′(x) = 120 − 60,000x−2 = 0 for x > 0 to obtain x = 10
√

5. Since C(x) → ∞ as x → 0+ and as x → ∞, the
minimum cost is C(10

√
5) = 2400

√
5 ≈ $5366.56 when x = 10

√
5 ≈ 22.36 m and y = 20

√
5 ≈ 44.72 m.

The amount of light reaching a point at a distance r from a light source A of intensity IA is IA/r2. Suppose that
a second light source B of intensity IB = 4IA is located 10 m from A. Find the point on the segment joining A and
B where the total amount of light is at a minimum.
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25. Find the maximum area of a rectangle inscribed in the region bounded by the graph of y = 4 − x

2 + x
and the axes

(Figure 17).

2

4

y = 4 − x
2 + x

x

y

FIGURE 17

solution Let s be the width of the rectangle. The height of the rectangle is h = 4−s
2+s

, so that the area is

A(s) = s
4 − s

2 + s
= 4s − s2

2 + s
.

We are maximizing on the closed interval [0, 4]. It is obvious from the pictures that A(0) = A(4) = 0, so we look for
critical points of A.

A′(s) = (2 + s)(4 − 2s) − (4s − s2)

(2 + s)2
= − s2 + 4s − 8

(s + 2)2
.

The only point where A′(s) doesn’t exist is s = −2 which isn’t under consideration.
Setting A′(s) = 0 gives, by the quadratic formula,

s = −4 ± √
48

2
= −2 ± 2

√
3.

Of these, only −2 + 2
√

3 is positive, so this is our lone critical point. A(−2 + 2
√

3) ≈ 1.0718 > 0. Since we are finding
the maximum over a closed interval and −2 + 2

√
3 is the only critical point, the maximum area is A(−2 + 2

√
3) ≈ 1.0718.

Find the maximum area of a triangle formed by the axes and a tangent line to the graph of y = (x + 1)−2 with
x > 0.

27. Find the maximum area of a rectangle circumscribed around a rectangle of sides L and H . Hint: Express the area in
terms of the angle θ (Figure 18).

H

q

L

FIGURE 18

solution Position the L × H rectangle in the first quadrant of the xy-plane with its “northwest” corner at the origin.
Let θ be the angle the base of the circumscribed rectangle makes with the positive x-axis, where 0 ≤ θ ≤ π

2 . Then the area

of the circumscribed rectangle is A = LH + 2 · 1
2 (H sin θ)(H cos θ) + 2 · 1

2 (L sin θ)(L cos θ) = LH + 1
2 (L2 + H 2)

sin 2θ , which has a maximum value of LH + 1
2 (L2 + H 2) when θ = π

4 because sin 2θ achieves its maximum when
θ = π

4 .

Acontractor is engaged to build steps up the slope of a hill that has the shape of the graph of y = x2(120 − x)/6400
for 0 ≤ x ≤ 80 with x in meters (Figure 19). What is the maximum vertical rise of a stair if each stair has a horizontal
length of one-third meter.

29. Find the equation of the line through P = (4, 12) such that the triangle bounded by this line and the axes in the first
quadrant has minimal area.

solution Let P = (4, 12) be a point in the first quadrant and y − 12 = m(x − 4), −∞ < m < 0, be a line
through P that cuts the positive x- and y-axes. Then y = L(x) = m(x − 4) + 12. The line L(x) intersects the y-axis at

H (0, 12 − 4m) and the x-axis at W
(

4 − 12
m , 0

)
. Hence the area of the triangle is

A(m) = 1

2
(12 − 4m)

(
4 − 12

m

)
= 48 − 8m − 72m−1.

Solve A′(m) = 72m−2 − 8 = 0 for m < 0 to obtain m = −3. Since A → ∞ as m → −∞ or m → 0−, we
conclude that the minimal triangular area is obtained when m = −3. The equation of the line through P = (4, 12) is
y = −3(x − 4) + 12 = −3x + 24.

Let P = (a, b) lie in the first quadrant. Find the slope of the line through P such that the triangle bounded by this
line and the axes in the first quadrant has minimal area. Then show that P is the midpoint of the hypotenuse of this
triangle.
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31. Archimedes’ Problem A spherical cap (Figure 20) of radius r and height h has volume V = πh2(r − 1
3h
)

and
surface area S = 2πrh. Prove that the hemisphere encloses the largest volume among all spherical caps of fixed surface
area S.

r

h

FIGURE 20

solution Consider all spherical caps of fixed surface area S. Because S = 2πrh, it follows that

r = S

2πh

and

V (h) = πh2
(

S

2πh
− 1

3
h

)
= S

2
h − π

3
h3.

Now

V ′(h) = S

2
− πh2 = 0

when

h2 = S

2π
or h = S

2πh
= r.

Hence, the hemisphere encloses the largest volume among all spherical caps of fixed surface area S.

Find the isosceles triangle of smallest area (Figure 21) that circumscribes a circle of radius 1 (from Thomas
Simpson’s The Doctrine and Application of Fluxions, a calculus text that appeared in 1750).

33. A box of volume 72 m3 with square bottom and no top is constructed out of two different materials. The cost of the
bottom is $40/m2 and the cost of the sides is $30/m2. Find the dimensions of the box that minimize total cost.

solution Let s denote the length of the side of the square bottom of the box and h denote the height of the box. Then

V = s2h = 72 or h = 72

s2
.

The cost of the box is

C = 40s2 + 120sh = 40s2 + 8640

s
,

so

C′(s) = 80s − 8640

s2
= 0

when s = 3 3√4 m and h = 2 3√4 m. Because C → ∞ as s → 0− and as s → ∞, we conclude that the critical point
gives the minimum cost.

Find the dimensions of a cylinder of volume 1 m3 of minimal cost if the top and bottom are made of material that
costs twice as much as the material for the side.

35. Your task is to design a rectangular industrial warehouse consisting of three separate spaces of equal size as in
Figure 22. The wall materials cost $500 per linear meter and your company allocates $2,400,000 for the project.

(a) Which dimensions maximize the area of the warehouse?
(b) What is the area of each compartment in this case?

FIGURE 22

solution Let one compartment have lengthx and widthy. Then total length of the wall of the warehouse isP = 4x + 6y

and the constraint equation is cost = 2,400,000 = 500(4x + 6y), which gives y = 800 − 2
3x.

(a) Area is given by A = 3xy = 3x
(

800 − 2
3x
)

= 2400x − 2x2, where 0 ≤ x ≤ 1200. Then A′(x) = 2400 − 4x = 0

yields x = 600 and consequently y = 400. Since A(0) = A(1200) = 0 and A(600) = 720, 000, the area of the warehouse
is maximized when each compartment has length of 600 m and width of 400 m.
(b) The area of one compartment is 600 · 400 = 240, 000 square meters.
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Suppose, in the previous exercise, that the warehouse consists of n separate spaces of equal size. Find a formula
in terms of n for the maximum possible area of the warehouse.

37. According to a model developed by economists E. Heady and J. Pesek, if fertilizer made from N pounds of nitrogen
and P pounds of phosphate is used on an acre of farmland, then the yield of corn (in bushels per acre) is

Y = 7.5 + 0.6N + 0.7P − 0.001N2 − 0.002P 2 + 0.001NP

A farmer intends to spend $30 per acre on fertilizer. If nitrogen costs 25 cents/lb and phosphate costs 20 cents/lb, which
combination of N and L produces the highest yield of corn?

solution The farmer’s budget for fertilizer is $30 per acre, so we have the constraint equation

0.25N + 0.2P = 30 or P = 150 − 1.25N

Substituting for P in the equation for Y , we find

Y (N) = 7.5 + 0.6N + 0.7(150 − 1.25N) − 0.001N2 − 0.002(150 − 1.25N)2 + 0.001N(150 − 1.25N)

= 67.5 + 0.625N − 0.005375N2

Both N and P must be nonnegative. Since P = 150 − 1.25N ≥ 0, we require that 0 ≤ N ≤ 120. Next,

dY

dN
= 0.625 − 0.01075N = 0 ⇒ N = 0.625

0.01075
≈ 58.14 pounds.

Now, Y (0) = 67.5, Y (120) = 65.1 and Y (58.14) ≈ 85.67, so the maximum yield of corn occurs for N ≈ 58.14 pounds
and P ≈ 77.33 pounds.

Experiments show that the quantities x of corn and y of soybean required to produce a hog of weight Q satisfy
Q = 0.5x1/2y1/4. The unit of x, y, and Q is the cwt, an agricultural unit equal to 100 lbs. Find the values of x and
y that minimize the cost of a hog of weight Q = 2.5 cwt if corn costs $3/cwt and soy costs $7/cwt.

39. All units in a 100-unit apartment building are rented out when the monthly rent is set at r = $900/month. Suppose
that one unit becomes vacant with each $10 increase in rent and that each occupied unit costs $80/month in maintenance.
Which rent r maximizes monthly profit?

solution Let n denote the number of $10 increases in rent. Then the monthly profit is given by

P(n) = (100 − n)(900 + 10n − 80) = 82000 + 180n − 10n2,

and

P ′(n) = 180 − 20n = 0

when n = 9. We know this results in maximum profit because this gives the location of vertex of a downward opening
parabola. Thus, monthly profit is maximized with a rent of $990.

An 8-billion-bushel corn crop brings a price of $2.40/bu. A commodity broker uses the rule of thumb: If the crop
is reduced by x percent, then the price increases by 10x cents. Which crop size results in maximum revenue and what
is the price per bu? Hint: Revenue is equal to price times crop size.

41. The monthly output of a Spanish light bulb factory is P = 2LK2 (in millions), where L is the cost of labor and K

is the cost of equipment (in millions of euros). The company needs to produce 1.7 million units per month. Which values
of L and K would minimize the total cost L + K?

solution Since P = 1.7 and P = 2LK2, we have L = 0.85

K2
. Accordingly, the cost of production is

C(K) = L + K = K + 0.85

K2
.

Solve C′(K) = 1 − 1.7

K3
for K ≥ 0 to obtain K = 3√1.7. Since C(K) → ∞ as K → 0+ and as K → ∞, the minimum

cost of production is achieved for K = 3√1.7 ≈ 1.2 and L = 0.6. The company should invest 1.2 million euros in
equipment and 600, 000 euros in labor.

The rectangular plot in Figure 23 has size 100 m × 200 m. Pipe is to be laid from A to a point P on side BC and
from there to C. The cost of laying pipe along the side of the plot is $45/m and the cost through the plot is $80/m
(since it is underground).

(a) Let f (x) be the total cost, where x is the distance from P to B. Determine f (x), but note that f is discontinuous
at x = 0 (when x = 0, the cost of the entire pipe is $45/ft).

(b) What is the most economical way to lay the pipe? What if the cost along the sides is $65/m?

43. Brandon is on one side of a river that is 50 m wide and wants to reach a point 200 m downstream on the opposite
side as quickly as possible by swimming diagonally across the river and then running the rest of the way. Find the best
route if Brandon can swim at 1.5 m/s and run at 4 m/s.

solution Let lengths be in meters, times in seconds, and speeds in m/s. Suppose that Brandon swims diagonally to

a point located x meters downstream on the opposite side. Then Brandon then swims a distance
√

x2 + 502 and runs a
distance 200 − x. The total time of the trip is

f (x) =
√

x2 + 2500

1.5
+ 200 − x

4
, 0 ≤ x ≤ 200.

Solve

f ′(x) = 2x

3
√

x2 + 2500
− 1

4
= 0

to obtain x = 30 5
11 ≈ 20.2 and f (20.2) ≈ 80.9. Since f (0) ≈ 83.3 and f (200) ≈ 137.4, we conclude that the minimal

time is 80.9 s. This occurs when Brandon swims diagonally to a point located 20.2 m downstream and then runs the rest
of the way.
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Snell’s Law When a light beam travels from a point A above a swimming pool to a point B below the water
(Figure 24), it chooses the path that takes the least time. Let v1 be the velocity of light in air and v2 the velocity in
water (it is known that v1 > v2). Prove Snell’s Law of Refraction:

sin θ1

v1
= sin θ2

v2

In Exercises 45–47, a box (with no top) is to be constructed from a piece of cardboard of sides A and B by cutting out
squares of length h from the corners and folding up the sides (Figure 26).

h

A

B

FIGURE 26

45. Find the value of h that maximizes the volume of the box if A = 15 and B = 24. What are the dimensions of this
box?

solution Once the sides have been folded up, the base of the box will have dimensions (A − 2h) × (B − 2h) and the
height of the box will be h. Thus

V (h) = h(A − 2h)(B − 2h) = 4h3 − 2(A + B)h2 + ABh.

When A = 15 and B = 24, this gives

V (h) = 4h3 − 78h2 + 360h,

and we need to maximize over 0 ≤ h ≤ 15
2 . Now,

V ′(h) = 12h2 − 156h + 360 = 0

yields h = 3 and h = 10. Because h = 10 is not in the domain of the problem and V (0) = V (15/2) = 0 and V (3) = 486,
volume is maximized when h = 3. The corresponding dimensions are 9 × 18 × 3.

Vascular Branching A small blood vessel of radius r branches off at an angle θ from a larger vessel of radius
R to supply blood along a path from A to B. According to Poiseuille’s Law, the total resistance to blood flow is
proportional to

T =
(

a − b cot θ

R4
+ b csc θ

r4

)

where a and b are as in Figure 25. Show that the total resistance is minimized when cos θ = (r/R)4.

47. Which values of A and B maximize the volume of the box if h = 10 cm and AB = 900 cm.

solution With h = 10 and AB = 900 (which means that B = 900/A), the volume of the box is

V (A) = 10(A − 20)

(
900

A
− 20

)
= 13,000 − 200A − 180,000

A
,

where 20 ≤ A ≤ 45. Now, solving

V ′(A) = −200 + 180,000

A2
= 0

yields A = 30. Because V (20) = V (45) = 0 and V (30) = 1000 cm3, maximum volume is achieved with A = B =
30 cm.

Given n numbers x1, . . . , xn, find the value of x minimizing the sum of the squares:

(x − x1)2 + (x − x2)2 + · · · + (x − xn)2

First solve for n = 2, 3 and then try it for arbitrary n.

49. A billboard of height b is mounted on the side of a building with its bottom edge at a distance h from the street as in
Figure 27. At what distance x should an observer stand from the wall to maximize the angle of observation θ?

h

b

x

P
q θ

ψ

ψ

P

A

R

B

C

Q

FIGURE 27

solution From the upper diagram in Figure 27 and the addition formula for the cotangent function, we see that

cot θ = 1 + x
b+h

x
h

x
h

− x
b+h

= x2 + h(b + h)

bx
,

where b and h are constant. Now, differentiate with respect to x and solve

− csc2 θ
dθ

dx
= x2 − h(b + h)

bx2
= 0

to obtain x =
√

bh + h2. Since this is the only critical point, and since θ → 0 as x → 0+ and θ → 0 as x → ∞, θ(x)

reaches its maximum at x =
√

bh + h2.
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Solve Exercise 49 again using geometry rather than calculus. There is a unique circle passing through points B

and C which is tangent to the street. Let R be the point of tangency. Note that the two angles labeled ψ in Figure 27
are equal because they subtend equal arcs on the circle.

(a) Show that the maximum value of θ is θ = ψ . Hint: Show that ψ = θ +  PBA where A is the intersection of
the circle with PC.

(b) Prove that this agrees with the answer to Exercise 49.

(c) Show that  QRB =  RCQ for the maximal angle ψ .

51. Optimal Delivery Schedule A gas station sells Q gallons of gasoline per year, which is delivered N times per
year in equal shipments of Q/N gallons. The cost of each delivery is d dollars and the yearly storage costs are sQT ,
where T is the length of time (a fraction of a year) between shipments and s is a constant. Show that costs are minimized
for N = √

sQ/d . (Hint: T = 1/N .) Find the optimal number of deliveries if Q = 2 million gal, d = $8000, and
s = 30 cents/gal-yr. Your answer should be a whole number, so compare costs for the two integer values of N nearest the
optimal value.

solution There are N shipments per year, so the time interval between shipments is T = 1/N years. Hence, the total
storage costs per year are sQ/N . The yearly delivery costs are dN and the total costs is C(N) = dN + sQ/N . Solving,

C′(N) = d − sQ

N2
= 0

for N yields N = √
sQ/d . For the specific case Q = 2,000,000, d = 8000 and s = 0.30,

N =
√

0.30(2,000,000)

8000
= 8.66.

With C(8) = $139,000 and C(9) = $138,667, the optimal number of deliveries per year is N = 9.

Victor Klee’s Endpoint Maximum Problem Given 40 meters of straight fence, your goal is to build a rectangular
enclosure using 80 additional meters of fence that encompasses the greatest area. Let A(x) be the area of the enclosure,
with x as in Figure 28.

(a) Find the maximum value of A(x).

(b) Which interval of x values is relevant to our problem? Find the maximum value of A(x) on this interval.

53. Let (a, b) be a fixed point in the first quadrant and let S(d) be the sum of the distances from (d, 0) to the points (0, 0),
(a, b), and (a, −b).

(a) Find the value of d for which S(d) is minimal. The answer depends on whether b <
√

3a or b ≥ √
3a. Hint: Show

that d = 0 when b ≥ √
3a.

(b) Let a = 1. Plot S(d) for b = 0.5,
√

3, 3 and describe the position of the minimum.

solution

(a) If d < 0, then the distance from (d, 0) to the other three points can all be reduced by increasing the value of d.
Similarly, if d > a, then the distance from (d, 0) to the other three points can all be reduced by decreasing the value of
d. It follows that the minimum of S(d) must occur for 0 ≤ d ≤ a. Restricting attention to this interval, we find

S(d) = d + 2
√

(d − a)2 + b2.

Solving

S′(d) = 1 + 2(d − a)√
(d − a)2 + b2

= 0

yields the critical point d = a − b/
√

3. If b <
√

3a, then d = a − b/
√

3 > 0 and the minimum occurs at this value of d.
On the other hand, if b ≥ √

3a, then the minimum occurs at the endpoint d = 0.

(b) Let a = 1. Plots of S(d) for b = 0.5, b = √
3 and b = 3 are shown below. For b = 0.5, the results of (a) indicate the

minimum should occur for d = 1 − 0.5/
√

3 ≈ 0.711, and this is confirmed in the plot. For both b = √
3 and b = 3, the

results of (a) indicate that the minimum should occur at d = 0, and both of these conclusions are confirmed in the plots.

1.6
x

0 0.2 0.4 0.6 0.8

b = 0.5

1

y

1.5

1.9
1.8
1.7

2
2.1

x
0 0.2 0.4 0.6 0.8 1

y

6.6

6.4

6.8
b = 3

4
x

0 0.2 0.4 0.6 0.8 1

y

4.2

4.1

4.3

4.4
b = �3

The force F (in Newtons) required to move a box of mass m kg in motion by pulling on an attached rope (Figure 29)
is

F(θ) = f mg

cos θ + f sin θ

where θ is the angle between the rope and the horizontal, f is the coefficient of static friction, and g = 9.8 m/s2. Find
the angle θ that minimizes the required force F , assuming f = 0.4. Hint: Find the maximum value of cos θ + f sin θ .

55. In the setting of Exercise 54, show that for any f the minimal force required is proportional to 1/
√

1 + f 2.

solution We minimize F(θ) by finding the maximum value g(θ) = cos θ + f sin θ . The angle θ is restricted to the
interval [0, π

2 ]. We solve for the critical points:

g′(θ) = − sin θ + f cos θ = 0

We obtain

f cos θ = sin θ ⇒ tan θ = f

From the figure below we find that cos θ = 1/
√

1 + f 2 and sin θ = f/
√

1 + f 2. Hence

g(θ) = 1

f
+ f 2√

1 + f 2
= 1 + f 2√

1 + f 2
=
√

1 + f 2



June 9, 2011 LTSV SSM Second Pass

S E C T I O N 4.6 Applied Optimization 229

The values at the endpoints are

g(0) = 1, g
(π

2

)
= f

Both of these values are less than
√

1 + f 2. Therefore the maximum value of g(θ) is
√

1 + f 2 and the minimum value
of F(θ) is

F = f mg

g(θ)
= f mg√

1 + f 2

f

α

1
√1 + f 2

Bird Migration Ornithologists have found that the power (in joules per second) consumed by a certain pigeon

flying at velocity v m/s is described well by the function P(v) = 17v−1 + 10−3v3 J/s. Assume that the pigeon can
store 5 × 104 J of usable energy as body fat.

(a) Show that at velocity v, a pigeon can fly a total distance of D(v) = (5 × 104)v/P (v) if it uses all of its stored
energy.

(b) Find the velocity vp that minimizes P(v).

(c) Migrating birds are smart enough to fly at the velocity that maximizes distance traveled rather than minimizes
power consumption. Show that the velocity vd which maximizes D(v) satisfies P ′(vd) = P(vd)/vd. Show that vd
is obtained graphically as the velocity coordinate of the point where a line through the origin is tangent to the graph
of P(v) (Figure 30).

(d) Find vd and the maximum distance D(vd).

57. The problem is to put a “roof” of side s on an attic room of height h and width b. Find the smallest length s for which
this is possible if b = 27 and h = 8 (Figure 31).

s

h

b

FIGURE 31

solution Consider the right triangle formed by the right half of the rectangle and its “roof”. This triangle has hy-
potenuse s.

h

b/2 x

sy

As shown, let y be the height of the roof, and let x be the distance from the right base of the rectangle to the base of the
roof. By similar triangles applied to the smaller right triangles at the top and right of the larger triangle, we get:

y − 8

27/2
= 8

x
or y = 108

x
+ 8.

s, y, and x are related by the Pythagorean Theorem:

s2 =
(

27

2
+ x

)2
+ y2 =

(
27

2
+ x

)2
+
(

108

x
+ 8

)2
.

Since s > 0, s2 is least whenever s is least, so we can minimize s2 instead of s. Setting the derivative equal to zero yields

2

(
27

2
+ x

)
+ 2

(
108

x
+ 8

)(
−108

x2

)
= 0

2

(
27

2
+ x

)
+ 2

8

x

(
27

2
+ x

)(
−108

x2

)
= 0

2

(
27

2
+ x

)(
1 − 864

x3

)
= 0

The zeros are x = − 27
2 (irrelevant) and x = 6 3√4. Since this is the only critical point of s with x > 0, and since s → ∞

as x → 0 and s → ∞ as x → ∞, this is the point where s attains its minimum. For this value of x,

s2 =
(

27

2
+ 6

3√
4

)2
+
(

9
3√

2 + 8
)2 ≈ 904.13,

so the smallest roof length is

s ≈ 30.07.
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Redo Exercise 57 for arbitrary b and h.
59. Find the maximum length of a pole that can be carried horizontally around a corner joining corridors of widths a = 24
and b = 3 (Figure 32).

a

b

FIGURE 32

solution In order to find the length of the longest pole that can be carried around the corridor, we have to find the
shortest length from the left wall to the top wall touching the corner of the inside wall. Any pole that does not fit in this
shortest space cannot be carried around the corner, so an exact fit represents the longest possible pole.

Let θ be the angle between the pole and a horizontal line to the right. Let c1 be the length of pole in the corridor of
width 24 and let c2 be the length of pole in the corridor of width 3. By the definitions of sine and cosine,

3

c2
= sin θ and

24

c1
= cos θ,

so that c1 = 24
cos θ , c2 = 3

sin θ
. What must be minimized is the total length, given by

f (θ) = 24

cos θ
+ 3

sin θ
.

Setting f ′(θ) = 0 yields

24 sin θ

cos2 θ
− 3 cos θ

sin2 θ
= 0

24 sin θ

cos2 θ
= 3 cos θ

sin2 θ

24 sin3 θ = 3 cos3 θ

As θ < π
2 (the pole is being turned around a corner, after all), we can divide both sides by cos3 θ , getting tan3 θ = 1

8 .

This implies that tan θ = 1
2 (tan θ > 0 as the angle is acute).

Since f (θ) → ∞ as θ → 0+ and as θ → π
2 −, we can tell that the minimum is attained at θ0 where tan θ0 = 1

2 .
Because

tan θ0 = opposite

adjacent
= 1

2
,

we draw a triangle with opposite side 1 and adjacent side 2. By Pythagoras, c = √
5, so

sin θ0 = 1√
5

and cos θ0 = 2√
5
.

From this, we get

f (θ0) = 24

cos θ0
+ 3

sin θ0
= 24

2

√
5 + 3

√
5 = 15

√
5.

Redo Exercise 59 for arbitrary widths a and b.
61. Find the minimum length 
 of a beam that can clear a fence of height h and touch a wall located b ft behind the fence
(Figure 33).

b x

h

FIGURE 33
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solution Let y be the height of the point where the beam touches the wall in feet. By similar triangles,

y − h

b
= h

x
or y = bh

x
+ h

and by Pythagoras:


2 = (b + x)2 +
(

bh

x
+ h

)2
.

We can minimize 
2 rather than 
, so setting the derivative equal to zero gives:

2(b + x) + 2

(
bh

x
+ h

)(
−bh

x2

)
= 2(b + x)

(
1 − h2b

x3

)
= 0.

The zeroes are b = −x (irrelevant) and x = 3√
h2b. Since 
2 → ∞ as x → 0+ and as x → ∞, x = 3√

h2b corresponds
to a minimum for 
2. For this value of x, we have


2 = (b + h2/3b1/3)2 + (h + h1/3b2/3)2

= b2/3(b2/3 + h2/3)2 + h2/3(h2/3 + b2/3)2

= (b2/3 + h2/3)3

and so


 = (b2/3 + h2/3)3/2.

A beam that clears a fence of height h feet and touches a wall b feet behind the fence must have length at least 
 =
(b2/3 + h2/3)3/2 ft.

Which value of h maximizes the volume of the box if A = B?63. A basketball player stands d feet from the basket. Let h and α be as in Figure 34. Using physics, one can
show that if the player releases the ball at an angle θ , then the initial velocity required to make the ball go through the
basket satisfies

v2 = 16d

cos2 θ(tan θ − tan α)

(a) Explain why this formula is meaningful only for α < θ < π
2 . Why does v approach infinity at the endpoints of this

interval?

(b) Take α = π
6 and plot v2 as a function of θ for π

6 < θ < π
2 . Verify that the minimum occurs at θ = π

3 .

(c) Set F(θ) = cos2 θ(tan θ − tan α). Explain why v is minimized for θ such that F(θ) is maximized.

(d) Verify that F ′(θ) = cos(α − 2θ) sec α (you will need to use the addition formula for cosine) and show that the
maximum value of F(θ) on

[
α, π

2

]
occurs at θ0 = α

2 + π
4 .

(e) For a given α, the optimal angle for shooting the basket is θ0 because it minimizes v2 and therefore minimizes the
energy required to make the shot (energy is proportional to v2). Show that the velocity vopt at the optimal angle θ0 satisfies

v2
opt = 32d cos α

1 − sin α
= 32 d2

−h +
√

d2 + h2

(f) Show with a graph that for fixed d (say, d = 15 ft, the distance of a free throw), v2
opt is an increasing function

of h. Use this to explain why taller players have an advantage and why it can help to jump while shooting.

q
a

h

d

FIGURE 34
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solution

(a) α = 0 corresponds to shooting the ball directly at the basket while α = π/2 corresponds to shooting the ball directly
upward. In neither case is it possible for the ball to go into the basket.

If the angle α is extremely close to 0, the ball is shot almost directly at the basket, so that it must be launched with
great speed, as it can only fall an extremely short distance on the way to the basket.

On the other hand, if the angle α is extremely close to π/2, the ball is launched almost vertically. This requires the
ball to travel a great distance upward in order to travel the horizontal distance. In either one of these cases, the ball has to
travel at an enormous speed.

(b)

π
6

π
4

π
3

5π
12

π
2

The minimum clearly occurs where θ = π/3.

(c) If F(θ) = cos2 θ (tan θ − tan α),

v2 = 16d

cos2 θ (tan θ − tan α)
= 16d

F(θ)
.

Since α ≤ θ , F(θ) > 0, hence v2 is smallest whenever F(θ) is greatest.

(d) F ′(θ) = −2 sin θ cos θ (tan θ − tan α) + cos2 θ
(

sec2 θ
)

= −2 sin θ cos θ tan θ + 2 sin θ cos θ tan α + 1. We will

apply all the double angle formulas:

cos(2θ) = cos2 θ − sin2 θ = 1 − 2 sin2 θ; sin 2θ = 2 sin θ cos θ,

getting:

F ′(θ) = 2 sin θ cos θ tan α − 2 sin θ cos θ tan θ + 1

= 2 sin θ cos θ
sin α

cos α
− 2 sin θ cos θ

sin θ

cos θ
+ 1

= sec α
(
−2 sin2 θ cos α + 2 sin θ cos θ sin α + cos α

)
= sec α

(
cos α

(
1 − 2 sin2 θ

)
+ sin α (2 sin θ cos θ)

)
= sec α (cos α(cos 2θ) + sin α(sin 2θ))

= sec α cos(α − 2θ)

A critical point of F(θ) occurs where cos(α − 2θ) = 0, so that α − 2θ = −π
2 (negative because 2θ > θ > α), and this

gives us θ = α/2 + π/4. The minimum value F(θ0) takes place at θ0 = α/2 + π/4.

(e) Plug in θ0 = α/2 + π/4. To find v2
opt we must simplify

cos2 θ0(tan θ0 − tan α) = cos θ0(sin θ0 cos α − cos θ0 sin α)

cos α

By the addition law for sine:

sin θ0 cos α − cos θ0 sin α = sin(θ0 − α) = sin(−α/2 + π/4)

and so

cos θ0(sin θ0 cos α − cos θ0 sin α) = cos(α/2 + π/4) sin(−α/2 + π/4)

Now use the identity (that follows from the addition law):

sin x cos y = 1

2
(sin(x + y) + sin(x − y))

to get

cos(α/2 + π/4) sin(−α/2 + π/4) = (1/2)(1 − sin α)
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So we finally get

cos2 θ0(tan θ0 − tan α) = (1/2)(1 − sin α)

cos α

and therefore

v2
opt = 32d cos α

1 − sin α

as claimed. From Figure 34 we see that

cos α = d√
d2 + h2

and sin α = h√
d2 + h2

.

Substituting these values into the expression for v2
opt yields

v2
opt = 32d2

−h +
√

d2 + h2
.

(f) A sketch of the graph of v2
opt versus h for d = 15 feet is given below: v2

opt increases with respect to basket height
relative to the shooter. This shows that the minimum velocity required to launch the ball to the basket drops as shooter
height increases. This shows one of the ways height is an advantage in free throws; a taller shooter need not shoot the ball
as hard to reach the basket.

100

200

300

400

500

600

4 50 321

Three towns A, B, and C are to be joined by an underground fiber cable as illustrated in Figure 35(A). Assume
that C is located directly below the midpoint of AB. Find the junction point P that minimizes the total amount of
cable used.

(a) First show that P must lie directly above C. Hint: Use the result of Example 6 to show that if the junction is placed
at point Q in Figure 35(B), then we can reduce the cable length by moving Q horizontally over to the point P lying
above C.

(b) With x as in Figure 35(A), let f (x) be the total length of cable used. Show that f (x) has a unique critical point
c. Compute c and show that 0 ≤ c ≤ L if and only if D ≤ 2

√
3 L.

(c) Find the minimum of f (x) on [0, L] in two cases: D = 2, L = 4 and D = 8, L = 2.

Further Insights and Challenges
65. Tom and Ali drive along a highway represented by the graph of f (x) in Figure 36. During the trip, Ali views a
billboard represented by the segment BC along the y-axis. Let Q be the y-intercept of the tangent line to y = f (x). Show
that θ is maximized at the value of x for which the angles  QPB and  QCP are equal. This generalizes Exercise 50 (c)
(which corresponds to the case f (x) = 0). Hints:

(a) Show that dθ/dx is equal to

(b − c) · (x2 + (xf ′(x))2) − (b − (f (x) − xf ′(x)))(c − (f (x) − xf ′(x)))

(x2 + (b − f (x))2)(x2 + (c − f (x))2)

(b) Show that the y-coordinate of Q is f (x) − xf ′(x).
(c) Show that the condition dθ/dx = 0 is equivalent to

PQ2 = BQ · CQ

(d) Conclude that �QPB and �QCP are similar triangles.

x
x

y

billboard

highway

P = (x, f (x))

y = f (x)
B = (0, b)

C = (0, c)

FIGURE 36

solution
(a) From the figure, we see that

θ(x) = tan−1 c − f (x)

x
− tan−1 b − f (x)

x
.
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Then

θ ′(x) = b − (f (x) − xf ′(x))

x2 + (b − f (x))2
− c − (f (x) − xf ′(x))

x2 + (c − f (x))2

= (b − c)
x2 − bc + (b + c)(f (x) − xf ′(x)) − (f (x))2 + 2xf (x)f ′(x)

(x2 + (b − f (x))2)(x2 + (c − f (x))2)

= (b − c)
(x2 + (xf ′(x))2 − (bc − (b + c)(f (x) − xf ′(x)) + (f (x) − xf ′(x))2)

(x2 + (b − f (x))2)(x2 + (c − f (x))2)

= (b − c)
(x2 + (xf ′(x))2 − (b − (f (x) − xf ′(x)))(c − (f (x) − xf ′(x)))

(x2 + (b − f (x))2)(x2 + (c − f (x))2)
.

(b) The point Q is the y-intercept of the line tangent to the graph of f (x) at point P . The equation of this tangent line is

Y − f (x) = f ′(x)(X − x).

The y-coordinate of Q is then f (x) − xf ′(x).

(c) From the figure, we see that

BQ = b − (f (x) − xf ′(x)),

CQ = c − (f (x) − xf ′(x))

and

PQ =
√

x2 + (f (x) − (f (x) − xf ′(x)))2 =
√

x2 + (xf ′(x))2.

Comparing these expressions with the numerator of dθ/dx, it follows that
dθ

dx
= 0 is equivalent to

PQ2 = BQ · CQ.

(d) The equation PQ2 = BQ · CQ is equivalent to

PQ

BQ
= CQ

PQ
.

In other words, the sides CQ and PQ from the triangle �QCP are proportional in length to the sides PQ and BQ from
the triangle �QPB. As  PQB =  CQP , it follows that triangles �QCP and �QPB are similar.

Seismic Prospecting Exercises 66–68 are concerned with determining the thickness d of a layer of soil that lies on top
of a rock formation. Geologists send two sound pulses from point A to point D separated by a distance s. The first pulse
travels directly from A to D along the surface of the earth. The second pulse travels down to the rock formation, then
along its surface, and then back up to D (path ABCD), as in Figure 37. The pulse travels with velocity v1 in the soil and
v2 in the rock.

A

B C

s D

Soil

Rock

q q d

FIGURE 37

(a) Show that the time required for the first pulse to travel from A to D is t1 = s/v1.

(b) Show that the time required for the second pulse is

t2 = 2d

v1
sec θ + s − 2d tan θ

v2

provided that

tan θ ≤ s

2d

(Note: If this inequality is not satisfied, then point B does not lie to the left of C.)

(c) Show that t2 is minimized when sin θ = v1/v2.

67. In this exercise, assume that v2/v1 ≥
√

1 + 4(d/s)2.

(a) Show that inequality (2) holds if sin θ = v1/v2.

(b) Show that the minimal time for the second pulse is

t2 = 2d

v1
(1 − k2)1/2 + s

v2

where k = v1/v2.

(c) Conclude that
t2

t1
= 2d(1 − k2)1/2

s
+ k.
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solution
(a) If sin θ = v1

v2
, then

tan θ = v1√
v2

2 − v2
1

= 1√(
v2
v1

)2 − 1

.

Because v2
v1

≥
√

1 + 4( d
s )2, it follows that

√(
v2

v1

)2
− 1 ≥

√
1 + 4

(
d

s

)2
− 1 = 2d

s
.

Hence, tan θ ≤ s
2d

as required.

(b) For the time-minimizing choice of θ , we have sin θ = v1

v2
from which sec θ = v2√

v2
2 − v2

1

and tan θ = v1√
v2

2 − v2
1

.

Thus

t2 = 2d

v1
sec θ + s − 2d tan θ

v2
= 2d

v1

v2√
v2

2 − v2
1

+
s − 2d

v1√
v2

2−v2
1

v2

= 2d

v1

⎛
⎜⎝ v2√

v2
2 − v2

1

− v2
1

v2

√
v2

2 − v2
1

⎞
⎟⎠+ s

v2

= 2d

v1

⎛
⎜⎝ v2

2 − v2
1

v2

√
v2

2 − v2
1

⎞
⎟⎠+ s

v2
= 2d

v1

⎛
⎜⎝
√

v2
2 − v2

1√
v2

2

⎞
⎟⎠+ s

v2

= 2d

v1

√
1 −

(
v1

v2

)2
+ s

v2
=

2d
(

1 − k2
)1/2

v1
+ s

v2
.

(c) Recall that t1 = s

v1
. We therefore have

t2

t1
=

2d
(
1−k2

)1/2

v1
+ s

v2
s
v1

=
2d
(

1 − k2
)1/2

s
+ v1

v2
=

2d
(

1 − k2
)1/2

s
+ k.

Continue with the assumption of the previous exercise.

(a) Find the thickness of the soil layer, assuming that v1 = 0.7v2, t2/t1 = 1.3, and s = 400 m.

(b) The times t1 and t2 are measured experimentally. The equation in Exercise 67(c) shows that t2/t1 is a linear
function of 1/s. What might you conclude if experiments were formed for several values of s and the points (1/s, t2/t1)

did not lie on a straight line?

69. In this exercise we use Figure 38 to prove Heron’s principle of Example 6 without calculus. By definition, C
is the reflection of B across the line MN (so that BC is perpendicular to MN and BN = CN . Let P be the intersection
of AC and MN . Use geometry to justify:

(a) �PNB and �PNC are congruent and θ1 = θ2.

(b) The paths APB and APC have equal length.

(c) Similarly AQB and AQC have equal length.

(d) The path APC is shorter than AQC for all Q = P .

Conclude that the shortest path AQB occurs for Q = P .

A
B

h1
h2

P

h2

Q

C

M N

θ1

θ1

θ2

FIGURE 38
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solution

(a) By definition, BC is orthogonal to QM , so triangles �PNB and �PNC are congruent by side–angle–side. Therefore
θ1 = θ2
(b) Because �PNB and �PNC are congruent, it follows that PB and PC are of equal length. Thus, paths APB and
APC have equal length.
(c) The same reasoning used in parts (a) and (b) lead us to conclude that �QNB and �QNC are congruent and that
PB and PC are of equal length. Thus, paths AQB and AQC are of equal length.
(d) Consider triangle �AQC. By the triangle inequality, the length of side AC is less than or equal to the sum of the
lengths of the sides AQ and QC. Thus, the path APC is shorter than AQC for all Q = P .

Finally, the shortest path AQB occurs for Q = P .

A jewelry designer plans to incorporate a component made of gold in the shape of a frustum of a cone of height
1 cm and fixed lower radius r (Figure 39). The upper radius x can take on any value between 0 and r . Note that x = 0
and x = r correspond to a cone and cylinder, respectively. As a function of x, the surface area (not including the top
and bottom) is S(x) = πs(r + x), where s is the slant height as indicated in the figure. Which value of x yields the
least expensive design [the minimum value of S(x) for 0 ≤ x ≤ r]?

(a) Show that S(x) = π(r + x)
√

1 + (r − x)2.

(b) Show that if r <
√

2, then S(x) is an increasing function. Conclude that the cone (x = 0) has minimal area in
this case.

(c) Assume that r >
√

2. Show that S(x) has two critical points x1 < x2 in (0, r), and that S(x1) is a local maximum,
and S(x2) is a local minimum.

(d) Conclude that the minimum occurs at x = 0 or x2.

(e) Find the minimum in the cases r = 1.5 and r = 2.

(f) Challenge: Let c =
√

(5 + 3
√

3)/4 ≈ 1.597. Prove that the minimum occurs at x = 0 (cone) if
√

2 < r < c,
but the minimum occurs at x = x2 if r > c.

4.7 Newton’s Method

Preliminary Questions
1. How many iterations of Newton’s Method are required to compute a root if f (x) is a linear function?

solution Remember that Newton’s Method uses the linear approximation of a function to estimate the location of a
root. If the original function is linear, then only one iteration of Newton’s Method will be required to compute the root.

2. What happens in Newton’s Method if your initial guess happens to be a zero of f ?

solution If x0 happens to be a zero of f, then

x1 = x0 − f (x0)

f ′(x0)
= x0 − 0 = x0;

in other words, every term in the Newton’s Method sequence will remain x0.

3. What happens in Newton’s Method if your initial guess happens to be a local min or max of f ?

solution Assuming that the function is differentiable, then the derivative is zero at a local maximum or a local
minimum. If Newton’s Method is started with an initial guess such that f ′(x0) = 0, then Newton’s Method will fail in
the sense that x1 will not be defined. That is, the tangent line will be parallel to the x-axis and will never intersect it.

4. Is the following a reasonable description of Newton’s Method: “A root of the equation of the tangent line to f (x) is
used as an approximation to a root of f (x) itself”? Explain.

solution Yes, that is a reasonable description. The iteration formula for Newton’s Method was derived by solving the
equation of the tangent line to y = f (x) at x0 for its x-intercept.

Exercises
In this exercise set, all approximations should be carried out using Newton’s Method.

In Exercises 1–6, apply Newton’s Method to f (x) and initial guess x0 to calculate x1, x2, x3.

1. f (x) = x2 − 6, x0 = 2

solution Let f (x) = x2 − 6 and define

xn+1 = xn − f (xn)

f ′(xn)
= xn − x2

n − 6

2xn
.

With x0 = 2, we compute

n 1 2 3

xn 2.5 2.45 2.44948980

f (x) = x2 − 3x + 1, x0 = 3
3. f (x) = x3 − 10, x0 = 2

solution Let f (x) = x3 − 10 and define

xn+1 = xn − f (xn)

f ′(xn)
= xn − x3

n − 10

3x2
n

.

With x0 = 2 we compute

n 1 2 3

xn 2.16666667 2.15450362 2.15443469
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f (x) = x3 + x + 1, x0 = −1
5. f (x) = cos x − 4x, x0 = 1

solution Let f (x) = cos x − 4x and define

xn+1 = xn − f (xn)

f ′(xn)
= xn − cos xn − 4xn

− sin xn − 4
.

With x0 = 1 we compute

n 1 2 3

xn 0.28540361 0.24288009 0.24267469

f (x) = 1 − x sin x, x0 = 77. Use Figure 6 to choose an initial guess x0 to the unique real root of x3 + 2x + 5 = 0 and compute the first three
Newton iterates.

21−2 −1
x

y

FIGURE 6 Graph of y = x3 + 2x + 5.

solution Let f (x) = x3 + 2x + 5 and define

xn+1 = xn − f (xn)

f ′(xn)
= xn − x3

n + 2xn + 5

3x2
n + 2

.

We take x0 = −1.4, based on the figure, and then calculate

n 1 2 3

xn −1.330964467 −1.328272820 −1.328268856

Approximate a solution of sin x = cos 2x in the interval
[
0, π

2

]
to three decimal places. Then find the exact

solution and compare with your approximation.

9. Approximate the point of intersection of the graphs y = x2 + 4 + 1

x
and y = 2

x2
to three decimal places (Figure 7).

1 2

5

10

y

x

y = 2/x2

y = x2 + 4 + 1/x

FIGURE 7 Graphs of x2 + 4 + 1
x and 2

x2 .

solution The point of intersection is the solution of f (x) = x2 + 4 + x−1 + 2x−2. We use an initial guess of 0.5.

Newton’s Method x0 = 0.5 (guess)

x1 = 0.5 − f (0.5)

f ′(0.5)
x1 ≈ 0.560345

x2 = 0.560345 − f (0.560345)

f ′(0.560345)
x2 ≈ 0.573460

x3 = 0.573460 − f (0.573460)

f ′(0.573460)
x3 ≈ 0.573927

x4 = 0.573927 − f (0.573927)

f ′(0.573927)
x4 ≈ 0.573928

The point of intersection has x-coordinate ≈ 0.574 to three decimal places. The corresponding y-coordinate is
2

0.5742
≈

6.070.

The first positive solution of sin x = 0 is x = π . Use Newton’s Method to calculate π to four decimal places.
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In Exercises 11–14, approximate to three decimal places using Newton’s Method and compare with the value from a
calculator.

11.
√

11

solution Let f (x) = x2 − 11, and let x0 = 3. Newton’s Method yields:

n 1 2 3

xn 3.33333333 3.31666667 3.31662479

A calculator yields 3.31662479.

51/313. 27/3

solution Note that 27/3 = 4 · 21/3. Let f (x) = x3 − 2, and let x0 = 1. Newton’s Method yields:

n 1 2 3

xn 1.33333333 1.26388889 1.25993349

Thus, 27/3 ≈ 4 · 1.25993349 = 5.03973397. A calculator yields 5.0396842.

3−1/415. Approximate the largest positive root of f (x) = x4 − 6x2 + x + 5 to within an error of at most 10−4. Refer to
Figure 5.

solution Figure 5 from the text suggests the largest positive root of f (x) = x4 − 6x2 + x + 5 is near 2. So let

f (x) = x4 − 6x2 + x + 5 and take x0 = 2.

n 1 2 3 4

xn 2.111111111 2.093568458 2.093064768 2.093064358

The largest positive root of x4 − 6x2 + x + 5 is approximately 2.093064358.

In Exercises 16–19, approximate the root specified to three decimal places using Newton’s Method. Use a plot to
choose an initial guess.

Largest positive root of f (x) = x3 − 5x + 1.
17. Negative root of f (x) = x5 − 20x + 10.

solution Let f (x) = x5 − 20x + 10. The graph of f (x) shown below suggests taking x0 = −2.2. Starting from
x0 = −2.2, the first three iterates of Newton’s Method are:

n 1 2 3

xn −2.22536529 −2.22468998 −2.22468949

Thus, to three decimal places, the negative root of f (x) = x5 − 20x + 10 is −2.225.

−150

−100

−50
−2.5 −2.0 −1.5 −1.0 −0.5

y

x

Positive solution of sin θ = 0.8θ .19. Positive solution of 4 cos x = x2.

solution From the graph below, we see that the positive solution to the equation 4 cos x = x2 is approximately

x = 1.2. Choosing x0 = 1.2, the first two iterates of Newton’s Method applied to f (x) = 4 cos x − x2 are

n 1 2

xn 1.20154 1.20154

Thus, to three decimal places, the positive solution to 4 cos x = x2 is 1.20154.
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1

0

2

0.5 1.0 1.5 2.0

3

4

5

6

x

y

4 cos x x2

Let x1, x2 be the estimates to a root obtained by applying Newton’s Method with x0 = 1 to the function graphed
in Figure 8. Estimate the numerical values of x1 and x2, and draw the tangent lines used to obtain them.

21. Find the smallest positive value of x at which y = x and y = tan x intersect. Hint: Draw a plot.

solution Here is a plot of tan x and x on the same axes:

431 2
x

y

−5

5

The first intersection with x > 0 lies on the second “branch” of y = tan x, between x = 5π
4 and x = 3π

2 . Let

f (x) = tan x − x. The graph suggests an initial guess x0 = 5π
4 , from which we get the following table:

n 1 2 3 4

xn 6.85398 21.921 4480.8 7456.27

This is clearly leading nowhere, so we need to try a better initial guess. Note: This happens with Newton’s Method—it is
sometimes difficult to choose an initial guess. We try the point directly between 5π

4 and 3π
2 , x0 = 11π

8 :

n 1 2 3 4 5 6 7

xn 4.64662 4.60091 4.54662 4.50658 4.49422 4.49341 4.49341

The first point where y = x and y = tan x cross is at approximately x = 4.49341, which is approximately 1.4303π .

In 1535, the mathematician Antonio Fior challenged his rival Niccolo Tartaglia to solve this problem: A tree
stands 12 braccia high; it is broken into two parts at such a point that the height of the part left standing is the cube
root of the length of the part cut away. What is the height of the part left standing? Show that this is equivalent to
solving x3 + x = 12 and find the height to three decimal places. Tartaglia, who had discovered the secret of the cubic
equation, was able to determine the exact answer:

x =
(

3
√√

2919 + 54 − 3
√√

2919 − 54

)/
3√

9

23. Find (to two decimal places) the coordinates of the point P in Figure 9 where the tangent line to y = cos x passes
through the origin.

P

y = cos x

2π

1

x

y

FIGURE 9

solution Let (xr , cos(xr )) be the coordinates of the point P . The slope of the tangent line is − sin(xr ), so we are
looking for a tangent line:

y = − sin(xr )(x − xr ) + cos(xr )

such that y = 0 when x = 0. This gives us the equation:

− sin(xr )(−xr ) + cos(xr ) = 0.

Let f (x) = cos x + x sin x. We are looking for the first point x = r where f (r) = 0. The sketch given indicates that
x0 = 3π/4 would be a good initial guess. The following table gives successive Newton’s Method approximations:

n 1 2 3 4

xn 2.931781309 2.803636974 2.798395826 2.798386046

The point P has approximate coordinates (2.7984, −0.941684).
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Newton’s Method is often used to determine interest rates in financial calculations. In Exercises 24–26, r denotes a yearly
interest rate expressed as a decimal (rather than as a percent).

If P dollars are deposited every month in an account earning interest at the yearly rate r , then the value S of the
account after N years is

S = P

(
b12N+1 − b

b − 1

)
where b = 1 + r

12

You have decided to deposit P = 100 dollars per month.

(a) Determine S after 5 years if r = 0.07 (that is, 7%).

(b) Show that to save $10,000 after 5 years, you must earn interest at a rate r determined bys the equation b61 −
101b + 100 = 0. Use Newton’s Method to solve for b. Then find r . Note that b = 1 is a root, but you want the root
satisfying b > 1.

25. If you borrow L dollars for N years at a yearly interest rate r , your monthly payment of P dollars is calculated using
the equation

L = P

(
1 − b−12N

b − 1

)
where b = 1 + r

12

(a) Find P if L = $5000, N = 3, and r = 0.08 (8%).

(b) You are offered a loan of L = $5000 to be paid back over 3 years with monthly payments of P = $200. Use Newton’s
Method to compute b and find the implied interest rate r of this loan. Hint: Show that (L/P )b12N+1 − (1 + L/P )b12N +
1 = 0.

solution

(a) b = (1 + 0.08/12) = 1.00667

P = L

(
b − 1

1 − b−12N

)
= 5000

(
1.00667 − 1

1 − 1.00667−36

)
≈ $156.69

(b) Starting from

L = P

(
1 − b−12N

b − 1

)
,

divide by P , multiply by b − 1, multiply by b12N and collect like terms to arrive at

(L/P )b12N+1 − (1 + L/P )b12N + 1 = 0.

Since L/P = 5000/200 = 25, we must solve

25b37 − 26b36 + 1 = 0.

Newton’s Method gives b ≈ 1.02121 and

r = 12(b − 1) = 12(0.02121) ≈ 0.25452

So the interest rate is around 25.45%.

If you deposit P dollars in a retirement fund every year for N years with the intention of then withdrawing Q

dollars per year for M years, you must earn interest at a rate r satisfying P(bN − 1) = Q(1 − b−M), where b = 1 + r .
Assume that $2000 is deposited each year for 30 years and the goal is to withdraw $10,000 per year for 25 years. Use
Newton’s Method to compute b and then find r . Note that b = 1 is a root, but you want the root satisfying b > 1.

27. There is no simple formula for the position at time t of a planet P in its orbit (an ellipse) around the sun. Introduce
the auxiliary circle and angle θ in Figure 10 (note that P determines θ because it is the central angle of point B on the
circle). Let a = OA and e = OS/OA (the eccentricity of the orbit).

(a) Show that sector BSA has area (a2/2)(θ − e sin θ).

(b) By Kepler’s Second Law, the area of sector BSA is proportional to the time t elapsed since the planet passed point
A, and because the circle has area πa2, BSA has area (πa2)(t/T ), where T is the period of the orbit. Deduce Kepler’s
Equation:

2πt

T
= θ − e sin θ

(c) The eccentricity of Mercury’s orbit is approximately e = 0.2. Use Newton’s Method to find θ after a quarter of
Mercury’s year has elapsed (t = T/4). Convert θ to degrees. Has Mercury covered more than a quarter of its orbit at
t = T/4?

O

P

A
S

Auxiliary circle

Elliptical orbit

Sun
q

B

FIGURE 10
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solution

(a) The sector SAB is the slice OAB with the triangle OPS removed. OAB is a central sector with arc θ and radius

OA = a, and therefore has area a2θ
2 . OPS is a triangle with height a sin θ and base length OS = ea. Hence, the area of

the sector is

a2

2
θ − 1

2
ea2 sin θ = a2

2
(θ − e sin θ).

(b) Since Kepler’s second law indicates that the area of the sector is proportional to the time t since the planet passed
point A, we get

πa2 (t/T ) = a2/2 (θ − e sin θ)

2π
t

T
= θ − e sin θ.

(c) If t = T/4, the last equation in (b) gives:

π

2
= θ − e sin θ = θ − 0.2 sin θ.

Let f (θ) = θ − 0.2 sin θ − π
2 . We will use Newton’s Method to find the point where f (θ) = 0. Since a quarter of the

year on Mercury has passed, a good first estimate θ0 would be π
2 .

n 1 2 3 4

xn 1.7708 1.76696 1.76696 1.76696

From the point of view of the Sun, Mercury has traversed an angle of approximately 1.76696 radians = 101.24◦. Mercury
has therefore traveled more than one fourth of the way around (from the point of view of central angle) during this time.

The roots of f (x) = 1
3x3 − 4x + 1 to three decimal places are −3.583, 0.251, and 3.332 (Figure 11). Determine

the root to which Newton’s Method converges for the initial choices x0 = 1.85, 1.7, and 1.55. The answer shows that
a small change in x0 can have a significant effect on the outcome of Newton’s Method.

29. What happens when you apply Newton’s Method to find a zero of f (x) = x1/3? Note that x = 0 is the only zero.

solution Let f (x) = x1/3. Define

xn+1 = xn − f (xn)

f ′(xn)
= xn − x

1/3
n

1
3x

−2/3
n

= xn − 3xn = −2xn.

Take x0 = 0.5. Then the sequence of iterates is −1, 2, −4, 8, −16, 32, −64, . . . That is, for any nonzero starting value,
the sequence of iterates diverges spectacularly, since xn = (−2)n x0. Thus limn→∞ |xn| = limn→∞ 2n |x0| = ∞.

What happens when you apply Newton’s Method to the equation x3 − 20x = 0 with the unlucky initial guess
x0 = 2?

Further Insights and Challenges
31. Newton’s Method can be used to compute reciprocals without performing division. Let c > 0 and set f (x) = x−1 − c.

(a) Show that x − (f (x)/f ′(x)) = 2x − cx2.

(b) Calculate the first three iterates of Newton’s Method with c = 10.3 and the two initial guesses x0 = 0.1 and x0 = 0.5.

(c) Explain graphically why x0 = 0.5 does not yield a sequence converging to 1/10.3.

solution

(a) Let f (x) = 1
x − c. Then

x − f (x)

f ′(x)
= x −

1
x − c

−x−2
= 2x − cx2.

(b) For c = 10.3, we have f (x) = 1
x − 10.3 and thus xn+1 = 2xn − 10.3x2

n .

• Take x0 = 0.1.

n 1 2 3
xn 0.097 0.0970873 0.09708738

• Take x0 = 0.5.

n 1 2 3
xn −1.575 −28.7004375 −8541.66654

(c) The graph is disconnected. If x0 = 0.5, (x1, f (x1)) is on the other portion of the graph, which will never converge
to any point under Newton’s Method.



June 9, 2011 LTSV SSM Second Pass

242 C H A P T E R 4 APPLICATIONS OF THE DERIVATIVE

In Exercises 32 and 33, consider a metal rod of length L fastened at both ends. If you cut the rod and weld on an additional
segment of length m, leaving the ends fixed, the rod will bow up into a circular arc of radius R (unknown), as indicated
in Figure 12.

R

h

q

L

FIGURE 12 The bold circular arc has length L + m.

Let h be the maximum vertical displacement of the rod.

(a) Show that L = 2R sin θ and conclude that

h = L(1 − cos θ)

2 sin θ

(b) Show that L + m = 2Rθ and then prove

sin θ

θ
= L

L + m

33. Let L = 3 and m = 1. Apply Newton’s Method to Eq. (2) to estimate θ , and use this to estimate h.

solution We let L = 3 and m = 1. We want the solution of:

sin θ

θ
= L

L + m

sin θ

θ
− L

L + m
= 0

sin θ

θ
− 3

4
= 0.

Let f (θ) = sin θ
θ − 3

4 .

1.50.5 1
x

y

−0.2
−0.2

0.2
0.1

The figure above suggests that θ0 = 1.5 would be a good initial guess. The Newton’s Method approximations for the
solution follow:

n 1 2 3 4

θn 1.2854388 1.2757223 1.2756981 1.2756981

The angle where sin θ
θ = L

L+m
is approximately 1.2757. Hence

h = L
1 − cos θ

2 sin θ
≈ 1.11181.

Quadratic Convergence to Square Roots Let f (x) = x2 − c and let en = xn − √
c be the error in xn.

(a) Show that xn+1 = 1
2 (xn + c/xn) and en+1 = e2

n/2xn.

(b) Show that if x0 >
√

c, then xn >
√

c for all n. Explain graphically.

(c) Show that if x0 >
√

c, then en+1 ≤ e2
n/(2

√
c).

4.8 Antiderivatives

Preliminary Questions
1. Find an antiderivative of the function f (x) = 0.

solution Since the derivative of any constant is zero, any constant function is an antiderivative for the function
f (x) = 0.

2. Is there a difference between finding the general antiderivative of a function f (x) and evaluating
∫

f (x) dx?

solution No difference. The indefinite integral is the symbol for denoting the general antiderivative.

3. Jacques was told that f (x) and g(x) have the same derivative, and he wonders whether f (x) = g(x). Does Jacques
have sufficient information to answer his question?

solution No. Knowing that the two functions have the same derivative is only good enough to tell Jacques that the
functions may differ by at most an additive constant. To determine whether the functions are equal for all x, Jacques needs
to know the value of each function for a single value of x. If the two functions produce the same output value for a single
input value, they must take the same value for all input values.

4. Suppose that F ′(x) = f (x) and G′(x) = g(x). Which of the following statements are true? Explain.
(a) If f = g, then F = G.
(b) If F and G differ by a constant, then f = g.
(c) If f and g differ by a constant, then F = G.
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solution
(a) False. Even if f (x) = g(x), the antiderivatives F and G may differ by an additive constant.
(b) True. This follows from the fact that the derivative of any constant is 0.
(c) False. If the functions f and g are different, then the antiderivatives F and G differ by a linear function: F(x) − G(x) =
ax + b for some constants a and b.

5. Is y = x a solution of the following Initial Value Problem?

dy

dx
= 1, y(0) = 1

solution Although d
dx

x = 1, the function f (x) = x takes the value 0 when x = 0, so y = x is not a solution of the
indicated initial value problem.

Exercises
In Exercises 1–8, find the general antiderivative of f (x) and check your answer by differentiating.

1. f (x) = 18x2

solution ∫
18x2 dx = 18

∫
x2 dx = 18 · 1

3
x3 + C = 6x3 + C.

As a check, we have

d

dx
(6x3 + C) = 18x2

as needed.

f (x) = x−3/53. f (x) = 2x4 − 24x2 + 12x−1

solution ∫
(2x4 − 24x2 + 12x−1) dx = 2

∫
x4 dx − 24

∫
x2 dx + 12

∫
1

x
dx

= 2 · 1

5
x5 − 24 · 1

3
x3 + 12 ln |x| + C

= 2

5
x5 − 8x3 + 12 ln |x| + C.

As a check, we have

d

dx

(
2

5
x5 − 8x3 + 12 ln |x| + C

)
= 2x4 − 24x2 + 12x−1

as needed.

f (x) = 9x + 15x−2
5. f (x) = 2 cos x − 9 sin x

solution ∫
(2 cos x − 9 sin x) dx = 2

∫
cos x dx − 9

∫
sin x dx

= 2 sin x − 9(− cos x) + C = 2 sin x + 9 cos x + C

As a check, we have

d

dx
(2 sin x + 9 cos x + C) = 2 cos x + 9(− sin x) = 2 cos x − 9 sin x

as needed.

f (x) = 4x7 − 3 cos x
7. f (x) = sin 2x + 12 cos 3x

solution ∫
(sin 2x + 12 cos 3x) dx =

∫
sin 2x dx + 12

∫
cos 3x dx = −1

2
cos 2x + 12

3
sin 3x + C

= 4 sin 3x − 1

2
cos 2x + C

As a check, we have

d

dx

(
4 sin 3x − 1

2
cos 2x + C

)
= sin 2x + 12 cos 3x
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f (x) = sin(4 − 9x)
9. Match functions (a)–(d) with their antiderivatives (i)–(iv).

(a) f (x) = sin x (i) F(x) = cos(1 − x)

(b) f (x) = x sin(x2) (ii) F(x) = − cos x

(c) f (x) = sin(1 − x) (iii) F(x) = − 1
2 cos(x2)

(d) f (x) = x sin x (iv) F(x) = sin x − x cos x

solution

(a) An antiderivative of sin x is − cos x, which is (ii). As a check, we have d
dx

(− cos x) = − (− sin x) = sin x.

(b) An antiderivative of x sin(x2) is − 1
2 cos(x2), which is (iii). This is because, by the Chain Rule, we have

d
dx

(
− 1

2 cos(x2)
)

= − 1
2

(
− sin(x2)

)
· 2x = x sin(x2).

(c) An antiderivative of sin (1 − x) is cos (1 − x) or (i). As a check, we have d
dx

cos(1 − x) = − sin(1 − x) · (−1) =
sin(1 − x).

(d) An antiderivative of x sin x is sin x − x cos x, which is (iv). This is because

d

dx
(sin x − x cos x) = cos x − (x (− sin x) + cos x · 1) = x sin x

In Exercises 10–39, evaluate the indefinite integral.

∫
(9x + 2) dx

11.
∫

(4 − 18x) dx

solution
∫

(4 − 18x) dx = 4x − 9x2 + C.

∫
x−3 dx

13.
∫

t−6/11 dt

solution
∫

t−6/11 dt = t5/11

5/11
+ C = 11

5
t5/11 + C.

∫
(5t3 − t−3) dt

15.
∫

(18t5 − 10t4 − 28t) dt

solution
∫

(18t5 − 10t4 − 28t) dt = 3t6 − 2t5 − 14t2 + C.

∫
14s9/5 ds

17.
∫

(z−4/5 − z2/3 + z5/4) dz

solution
∫

((z−4/5 − z2/3 + z5/4) dz = z1/5

1/5
− z5/3

5/3
+ z9/4

9/4
+ C = 5z1/5 − 3

5
z5/3 + 4

9
z9/4 + C.

∫
3

2
dx

19.
∫

1
3√x

dx

solution
∫

1
3√x

dx =
∫

x−1/3 dx = x2/3

2/3
+ C = 3

2
x2/3 + C.

∫
dx

x4/3

21.
∫

36 dt

t3

solution
∫

36

t3
dt =

∫
36t−3 dt = 36

t−2

−2
+ C = −18

t2
+ C.

∫
x(x2 − 4) dx

23.
∫

(t1/2 + 1)(t + 1) dt

solution ∫
(t1/2 + 1)(t + 1) dt =

∫
(t3/2 + t + t1/2 + 1) dt

= t5/2

5/2
+ 1

2
t2 + t3/2

3/2
+ t + C

= 2

5
t5/2 + 1

2
t2 + 2

3
t3/2 + t + C
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∫
12 − z√

z
dz

25.
∫

x3 + 3x2 − 4

x2
dx

solution

∫
x3 + 3x2 − 4

x2
dx =

∫
(x + 3 − 4x−2) dx

= 1

2
x2 + 3x + 4x−1 + C

∫ (
1

3
sin x − 1

4
cos x

)
dx

27.
∫

12 sec x tan x dx

solution
∫

12 sec x tan x dx = 12 sec x + C.

∫
(θ + sec2 θ) dθ

29.
∫

(csc t cot t) dt

solution
∫

(csc t cot t) dt = − csc t + C.

∫
sin(7x − 5) dx

31.
∫

sec2(7 − 3θ) dθ

solution
∫

sec2(7 − 3θ) dθ = −1

3
tan(7 − 3θ) + C.

∫
(θ − cos(1 − θ)) dθ

33.
∫

25 sec2(3z + 1) dz

solution
∫

25 sec2(3z + 1) dz = 25

3
tan(3z + 1) + C.

∫
(12 cos 4x + 9 sin 3x) dx

35.
∫

sec 12t tan 12t dt

solution
∫

sec 12t tan 12t dt = 1

12
sec 12t + C

∫
5 tan(4θ + 3) sec(4θ + 3) dθ

37.
∫

sec 4x(3 sec 4x − 5 tan 4x) dx

solution∫
sec 4x(3 sec 4x − 5 tan 4x) dx = 3

∫
sec2 4x dx − 5

∫
sec 4x tan 4x dx = 3

4
tan 4x − 5

4
sec 4x + C

∫
sec(x + 5) tan(x + 5) dx

39.
∫ (

cos(3θ) − 1

2
sec2

(
θ

4

))
dθ

solution
∫ (

cos(3θ) − 1

2
sec2

(
θ

4

))
dθ = 1

3
sin(3θ) − 2 tan

(
θ

4

)
+ C.

In Figure 2, is graph (A) or graph (B) the graph of an antiderivative of f (x)?
41. In Figure 3, which of graphs (A), (B), and (C) is not the graph of an antiderivative of f (x)? Explain.

f (x)

(C)(B)(A)

x

x

y

x

y

x

y

y

FIGURE 3

solution Let F(x) be an antiderivative of f (x). Notice that f (x) = F ′(x) changes sign from − to + to − to +.
Hence, F(x) must transition from decreasing to increasing to decreasing to increasing.

• Both graph (A) and graph (C) meet the criteria discussed above and only differ by an additive constant. Thus either
could be an antiderivative of f (x).

• Graph (B) does not have the same local extrema as indicated by f (x) and therefore is not an antiderivative of f (x).
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Show that F(x) = 1
3 (x + 13)3 is an antiderivative of f (x) = (x + 13)2.

In Exercises 43–46, verify by differentiation.

43.
∫

(x + 13)6 dx = 1

7
(x + 13)7 + C

solution
d

dx

(
1

7
(x + 13)7 + C

)
= (x + 13)6 as required.

∫
(x + 13)−5 dx = −1

4
(x + 13)−4 + C

45.
∫

(4x + 13)2 dx = 1

12
(4x + 13)3 + C

solution
d

dx

(
1

12
(4x + 13)3 + C

)
= 1

4
(4x + 13)2(4) = (4x + 13)2 as required.

∫
(ax + b)n dx = 1

a(n + 1)
(ax + b)n+1 + C (for n = −1)

In Exercises 47–62, solve the initial value problem.

47.
dy

dx
= x3, y(0) = 4

solution Since dy
dx

= x3, we have

y =
∫

x3 dx = 1

4
x4 + C.

Thus,

4 = y(0) = 1

4
04 + C = C,

so that C = 4. Therefore, y = 1
4x4 + 4.

dy

dt
= 3 − 2t , y(0) = −5

49.
dy

dt
= 2t + 9t2, y(1) = 2

solution Since dy
dt

= 2t + 9t2, we have

y =
∫

(2t + 9t2) dt = t2 + 3t3 + C.

Thus,

2 = y(1) = 12 + 3(1)3 + C,

so that C = −2. Therefore y = t2 + 3t3 − 2.

dy

dx
= 8x3 + 3x2, y(2) = 0

51.
dy

dt
= √

t , y(1) = 1

solution Since dy
dt

= √
t = t1/2, we have

y =
∫

t1/2 dt = 2

3
t3/2 + C.

Thus

1 = y(1) = 2

3
+ C,

so that C = 1
3 . Therefore, y = 2

3 t3/2 + 1
3 .

dz

dt
= t−3/2, z(4) = −1

53.
dy

dx
= (3x + 2)3, y(0) = 1

solution Since dy
dx

= (3x + 2)3, we have

y =
∫

(3x + 2)3 dx = 1

4
· 1

3
(3x + 2)4 + C = 1

12
(3x + 2)4 + C.

Thus,

1 = y(0) = 1

12
(2)4 + C,

so that C = 1 − 4
3 = − 1

3 . Therefore, y = 1
12 (3x + 2)4 − 1

3 .

dy

dt
= (4t + 3)−2, y(1) = 0
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55.
dy

dx
= sin x, y

(π

2

)
= 1

solution Since dy
dx

= sin x, we have

y =
∫

sin x dx = − cos x + C.

Thus

1 = y
(π

2

)
= 0 + C,

so that C = 1. Therefore, y = 1 − cos x.

dy

dz
= sin 2z, y

(π

4

)
= 4

57.
dy

dx
= cos 5x, y(π) = 3

solution Since dy
dx

= cos 5x, we have

y =
∫

cos 5x dx = 1

5
sin 5x + C.

Thus 3 = y(π) = 0 + C, so that C = 3. Therefore, y = 3 + 1
5 sin 5x.

dy

dx
= sec2 3x, y

(π

4

)
= 2

59.
dy

dθ
= 6 sec 3θ tan 3θ , y

( π

12

)
= −4

solution We have

y =
∫

6 sec 3θ tan 3θ dθ = 2 sec 3θ + C

Thus,

−4 = y
( π

12

)
= 2 sec 3 · π

12
+ C = 2 sec

π

4
+ C = 2

√
2 + C

so that C = −4 − 2
√

2. Therefore, y = 2 sec 3θ − 4 − 2
√

2.

dy

dt
= 4t − sin 2t , y(0) = 2

61.
dy

dθ
= cos

(
3π − 1

2
θ

)
, y(3π) = 8.

solution We have

y =
∫

cos

(
3π − 1

2
θ

)
dθ = −2 sin

(
3π − 1

2
θ

)
+ C

Thus,

8 = y(3π) = −2 sin

(
3π − 3π

2

)
+ C = −2 sin

(
3π

2

)
+ C = 2 + C

so that C = 6. Therefore, y = −2 sin

(
3π − 1

2
θ

)
+ 6

dy

dx
= 1

x2
− csc2 x, y

(π

2

)
= 0

In Exercises 63–69, first find f ′ and then find f .

63. f ′′(x) = 12x, f ′(0) = 1, f (0) = 2

solution Let f ′′(x) = 12x. Then f ′(x) = 6x2 + C. Given f ′(0) = 1, it follows that 1 = 6(0)2 + C and C = 1.

Thus, f ′(x) = 6x2 + 1. Next, f (x) = 2x3 + x + C. Given f (0) = 2, it follows that 2 = 2(0)3 + 0 + C and C = 2.
Finally, f (x) = 2x3 + x + 2.

f ′′(x) = x3 − 2x, f ′(1) = 0, f (1) = 2
65. f ′′(x) = x3 − 2x + 1, f ′(0) = 1, f (0) = 0

solution Let g(x) = f ′(x). The statement gives us g′(x) = x3 − 2x + 1, g(0) = 1. From this, we get g(x) =
1
4x4 − x2 + x + C. g(0) = 1 gives us 1 = C, so f ′(x) = g(x) = 1

4x4 − x2 + x + 1. f ′(x) = 1
4x4 − x2 + x + 1, so

f (x) = 1
20x5 − 1

3x3 + 1
2x2 + x + C. f (0) = 0 gives C = 0, so

f (x) = 1

20
x5 − 1

3
x3 + 1

2
x2 + x.

f ′′(x) = x3 − 2x + 1, f ′(1) = 0, f (1) = 4
67. f ′′(t) = t−3/2, f ′(4) = 1, f (4) = 4

solution Let g(t) = f ′(t). The problem statement is g′(t) = t−3/2, g(4) = 1. From g′(t) we get g(t) = 1
−1/2 t−1/2 +

C = −2t−1/2 + C. From g(4) = 1 we get −1 + C = 1 so that C = 2. Hence f ′(t) = g(t) = −2t−1/2 + 2. From
f ′(t) we get f (t) = −2 1

1/2 t1/2 + 2t + C = −4t1/2 + 2t + C. From f (4) = 4 we get −8 + 8 + C = 4, so that C = 4.

Hence, f (t) = −4t1/2 + 2t + 4.
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f ′′(θ) = cos θ , f ′ (π

2

)
= 1, f

(π

2

)
= 6

69. f ′′(t) = t − cos t , f ′(0) = 2, f (0) = −2

solution Let g(t) = f ′(t). The problem statement gives

g′(t) = t − cos t, g(0) = 2.

From g′(t), we get g(t) = 1
2 t2 − sin t + C. From g(0) = 2, we get C = 2. Hence f ′(t) = g(t) = 1

2 t2 − sin t + 2. From

f ′(t), we get f (t) = 1
2 ( 1

3 t3) + cos t + 2t + C. From f (0) = −2, we get 1 + C = −2, hence C = −3, and

f (t) = 1

6
t3 + cos t + 2t − 3.

Show that F(x) = tan2 x and G(x) = sec2 x have the same derivative. What can you conclude about the relation
between F and G? Verify this conclusion directly.

71. A particle located at the origin at t = 1 s moves along the x-axis with velocity v(t) = (6t2 − t) m/s. State the
differential equation with initial condition satisfied by the position s(t) of the particle, and find s(t).

solution The differential equation satisfied by s(t) is

ds

dt
= v(t) = 6t2 − t,

and the associated initial condition is s(1) = 0. From the differential equation, we find

s(t) =
∫

(6t2 − t) dt = 2t3 − 1

2
t2 + C.

Using the initial condition, it follows that

0 = s(1) = 2 − 1

2
+ C so C = −3

2
.

Finally,

s(t) = 2t3 − 1

2
t2 − 3

2
.

A particle moves along the x-axis with velocity v(t) = (6t2 − t) m/s. Find the particle’s position s(t) assuming
that s(2) = 4.

73. A mass oscillates at the end of a spring. Let s(t) be the displacement of the mass from the equilibrium position at time
t . Assuming that the mass is located at the origin at t = 0 and has velocity v(t) = sin(πt/2) m/s, state the differential
equation with initial condition satisfied by s(t), and find s(t).

solution The differential equation satisfied by s(t) is

ds

dt
= v(t) = sin(πt/2),

and the associated initial condition is s(0) = 0. From the differential equation, we find

s(t) =
∫

sin(πt/2) dt = − 2

π
cos(πt/2) + C.

Using the initial condition, it follows that

0 = s(0) = − 2

π
+ C so C = 2

π
.

Finally,

s(t) = 2

π
(1 − cos(πt/2)).

Beginning at t = 0 with initial velocity 4 m/s, a particle moves in a straight line with acceleration a(t) = 3t1/2

m/s2. Find the distance traveled after 25 seconds.

75. A car traveling 25 m/s begins to decelerate at a constant rate of 4 m/s2. After how many seconds does the car come
to a stop and how far will the car have traveled before stopping?

solution Since the acceleration of the car is a constant −4m/s2, v is given by the differential equation:

dv

dt
= −4, v(0) = 25.

From dv
dt

, we get v(t) = ∫ −4 dt = −4t + C. Since v(0)25, C = 25. From this, v(t) = −4t + 25 m
s . To find the time

until the car stops, we must solve v(t) = 0:

−4t + 25 = 0

4t = 25

t = 25/4 = 6.25 s.
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Now we have a differential equation for s(t). Since we want to know how far the car has traveled from the beginning of
its deceleration at time t = 0, we have s(0) = 0 by definition, so:

ds

dt
= v(t) = −4t + 25, s(0) = 0.

From this, s(t) = ∫ (−4t + 25) dt = −2t2 + 25t + C. Since s(0) = 0, we have C = 0, and

s(t) = −2t2 + 25t.

At stopping time t = 0.25 s, the car has traveled

s(6.25) = −2(6.25)2 + 25(6.25) = 78.125 m.

At time t = 1 s, a particle is traveling at 72 m/s and begins to decelerate at the rate a(t) = −t−1/2 until it stops.
How far does the particle travel before stopping?

77. A 900-kg rocket is released from a space station. As it burns fuel, the rocket’s mass decreases and its velocity
increases. Let v(m) be the velocity (in meters per second) as a function of mass m. Find the velocity when m = 729 if
dv/dm = −50m−1/2. Assume that v(900) = 0.

solution Since dv
dm

= −50m−1/2, we have v(m) = ∫ −50m−1/2 dm = −100m1/2 + C. Thus 0 = v(900) =
−100

√
900 + C = −3000 + C, and C = 3000. Therefore, v(m) = 3000 − 100

√
m. Accordingly,

v(729) = 3000 − 100
√

729 = 3000 − 100(27) = 300 meters/sec.

As water flows through a tube of radius R = 10 cm, the velocity v of an individual water particle depends only on
its distance r from the center of the tube. The particles at the walls of the tube have zero velocity and dv/dr = −0.06r .
Determine v(r).

79. Verify the linearity properties of the indefinite integral stated in Theorem 4.

solution To verify the Sum Rule, let F(x) and G(x) be any antiderivatives of f (x) and g(x), respectively. Because

d

dx
(F (x) + G(x)) = d

dx
F(x) + d

dx
G(x) = f (x) + g(x),

it follows that F(x) + G(x) is an antiderivative of f (x) + g(x); i.e.,∫
(f (x) + g(x)) dx =

∫
f (x) dx +

∫
g(x) dx.

To verify the Multiples Rule, again let F(x) be any antiderivative of f (x) and let c be a constant. Because

d

dx
(cF (x)) = c

d

dx
F(x) = cf (x),

it follows that cF (x) is and antiderivative of cf (x); i.e.,∫
(cf (x)) dx = c

∫
f (x) dx.

Further Insights and Challenges

Find constants c1 and c2 such that F(x) = c1x sin x + c2 cos x is an antiderivative of f (x) = x cos x.
81. Find constants c1 and c2 such that F(x) = c1x cos x + c2 sin x is an antiderivative of f (x) = x sin x.

solution Let F(x) = c1x cos x + c2 sin x. If F(x) is to be an antiderivative of f (x), then we must have f (x) = F ′(x).
Therefore

x sin x = c1 cos x − c1x sin x + c2 cos x = −c1x sin x + (c1 + c2) cos x

Equating coefficients of x sin x yields c1 = −1; equating coefficients of cos x then gives c2 = 1. Thus F(x) = −x cos x +
sin x.

Suppose that F ′(x) = f (x) and G′(x) = g(x). Is it true that F(x)G(x) is an antiderivative of f (x)g(x)? Confirm
or provide a counterexample.

83. Suppose that F ′(x) = f (x).

(a) Show that 1
2F(2x) is an antiderivative of f (2x).

(b) Find the general antiderivative of f (kx) for k = 0.

solution Let F ′(x) = f (x).

(a) By the Chain Rule, we have

d

dx

(
1

2
F(2x)

)
= 1

2
F ′(2x) · 2 = F ′(2x) = f (2x).

Thus 1
2F(2x) is an antiderivative of f (2x).
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(b) For nonzero constant k, the Chain Rules gives

d

dx

(
1

k
F (kx)

)
= 1

k
F ′(kx) · k = F ′(kx) = f (kx).

Thus 1
k
F (kx) is an antiderivative of f (kx). Hence the general antiderivative of f (kx) is 1

k
F (kx) + C, where C is a

constant.

Find an antiderivative for f (x) = |x|.85. Using Theorem 1, prove that F ′(x) = f (x) where f (x) is a polynomial of degree n − 1, then F(x) is a polynomial
of degree n. Then prove that if g(x) is any function such that g(n)(x) = 0, then g(x) is a polynomial of degree at most n.

solution Suppose F ′(x) = f (x) where f (x) is a polynomial of degree n − 1. Now, we know that the derivative of a
polynomial of degree n is a polynomial of degree n − 1, and hence an antiderivative of a polynomial of degree n − 1 is a
polynomial of degree n. Thus, by Theorem 1, F(x) can differ from a polynomial of degree n by at most a constant term,
which is still a polynomial of degree n. Now, suppose that g(x) is any function such that g(n+1)(x) = 0. We know that
the n + 1-st derivative of any polynomial of degree at most n is zero, so by repeated application of Theorem 1, g(x) can
differ from a polynomial of degree at most n by at most a constant term. Hence, g(x) is a polynomial of degree at most n.

The Power Rule for antiderivatives does not apply to f (x) = x−1. Which of the graphs in Figure 4 could plausibly
represent an antiderivative of f (x) = x−1?CHAPTER REVIEW EXERCISES

In Exercises 1–6, estimate using the Linear Approximation or linearization, and use a calculator to estimate the error.

1. 8.11/3 − 2

solution Let f (x) = x1/3, a = 8 and �x = 0.1. Then f ′(x) = 1
3x−2/3, f ′(a) = 1

12 and, by the Linear Approxima-
tion,

�f = 8.11/3 − 2 ≈ f ′(a)�x = 1

12
(0.1) = 0.00833333.

Using a calculator, 8.11/3 − 2 = 0.00829885. The error in the Linear Approximation is therefore

|0.00829885 − 0.00833333| = 3.445 × 10−5.

1√
4.1

− 1

2

3. 6251/4 − 6241/4

solution Let f (x) = x1/4, a = 625 and �x = −1. Then f ′(x) = 1
4x−3/4, f ′(a) = 1

500 and, by the Linear
Approximation,

�f = 6241/4 − 6251/4 ≈ f ′(a)�x = 1

500
(−1) = −0.002.

Thus 6251/4 − 6241/4 ≈ 0.002. Using a calculator,

6251/4 − 6241/4 = 0.00200120.

The error in the Linear Approximation is therefore

|0.00200120 − (0.002)| = 1.201 × 10−6.

√
1015.

1

1.02

solution Let f (x) = x−1 and a = 1. Then f (a) = 1, f ′(x) = −x−2 and f ′(a) = −1. The linearization of f (x) at
a = 1 is therefore

L(x) = f (a) + f ′(a)(x − a) = 1 − (x − 1) = 2 − x,

and 1
1.02 ≈ L(1.02) = 0.98. Using a calculator, 1

1.02 = 0.980392, so the error in the Linear Approximation is

|0.980392 − 0.98| = 3.922 × 10−4.

5√33
In Exercises 7–12, find the linearization at the point indicated.

7. y = √
x, a = 25

solution Let y = √
x and a = 25. Then y(a) = 5, y′ = 1

2x−1/2 and y′(a) = 1
10 . The linearization of y at a = 25 is

therefore

L(x) = y(a) + y′(a)(x − 25) = 5 + 1

10
(x − 25).
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v(t) = 32t − 4t2, a = 2
9. A(r) = 4

3πr3, a = 3

solution Let A(r) = 4
3πr3 and a = 3. Then A(a) = 36π , A′(r) = 4πr2 and A′(a) = 36π . The linearization of

A(r) at a = 3 is therefore

L(r) = A(a) + A′(a)(r − a) = 36π + 36π(r − 3) = 36π(r − 2).

V (h) = 4h(2 − h)(4 − 2h), a = 111. P(θ) = sin(3θ + π), a = π

3

solution We have P(a) = sin(2π) = 0, P ′(θ) = 3 cos(3θ + π), and P ′(a) = 3 cos 2π = 3. The linearization of

P(θ) at a = π

3
is therefore

L(h) = P ′(a)(h − a) + P(a) = 3
(
h − π

3

)
= 3h − π

R(t) = tan

(
π

(
t − 1

2

))
, a = 1

4

In Exercises 13–18, use the Linear Approximation.

13. The position of an object in linear motion at time t is s(t) = 0.4t2 + (t + 1)−1. Estimate the distance traveled over
the time interval [4, 4.2].
solution Let s(t) = 0.4t2 + (t + 1)−1, a = 4 and �t = 0.2. Then s′(t) = 0.8t − (t + 1)−2 and s′(a) = 3.16. Using
the Linear Approximation, the distance traveled over the time interval [4, 4.2] is approximately

�s = s(4.2) − s(4) ≈ s′(a)�t = 3.16(0.2) = 0.632.

A bond that pays $10,000 in 6 years is offered for sale at a price P . The percentage yield Y of the bond is

Y = 100

((
10,000

P

)1/6
− 1

)

Verify that if P = $7500, then Y = 4.91%. Estimate the drop in yield if the price rises to $7700.

15. When a bus pass from Albuquerque to Los Alamos is priced at p dollars, a bus company takes in a monthly revenue
of R(p) = 1.5p − 0.01p2 (in thousands of dollars).

(a) Estimate �R if the price rises from $50 to $53.

(b) If p = 80, how will revenue be affected by a small increase in price? Explain using the Linear Approximation.

solution

(a) If the price is raised from $50 to $53, then �p = 3 and

�R ≈ R′(50)�p = (1.5 − 0.02(50))(3) = 1.5

We therefore estimate an increase of $1500 in revenue.

(b) Because R′(80) = 1.5 − 0.02(80) = −0.1, the Linear Approximation gives �R ≈ −0.1�p. A small increase in
price would thus result in a decrease in revenue.

A store sells 80 MP4 players per week when the players are priced at P = $75. Estimate the number N sold if P

is raised to $80, assuming that dN/dP = −4. Estimate N if the price is lowered to $69.

17. The circumference of a sphere is measured at C = 100 cm. Estimate the maximum percentage error in V if the error
in C is at most 3 cm.

solution The volume of a sphere is V = 4
3πr3 and the circumference is C = 2πr , where r is the radius of the sphere.

Thus, r = 1
2π

C and

V = 4

3
π

(
C

2π

)3
= 1

6π2
C3.

Using the Linear Approximation,

�V ≈ dV

dC
�C = 1

2π2
C2�C,

so

�V

V
≈

1
2π2 C2�C

1
6π2 C3

= 3
�C

C
.

With C = 100 cm and �C at most 3 cm, we estimate that the maximum percentage error in V is 3 3
100 = 0.09, or 9%.

Show that
√

a2 + b ≈ a + b
2a

if b is small. Use this to estimate
√

26 and find the error using a calculator.
19. Verify the MVT for f (x) = x−1/3 on [1, 8].

solution We have f (1) = 1−1/3 = 1 and f (8) = 8−1/3 = 1

2
, so the MVT says that there is c ∈ [1, 8] such that

f ′(c) = f (8) − f (1)

8 − 1
= − 1

14
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Now, f ′(x) = −1

3
x−4/3. Solving for f ′(x) = − 1

14
gives

−1

3
x−4/3 = − 1

14
⇒ x−4/3 = 3

14
⇒ x4/3 = 14

3
⇒ x =

(
14

3

)3/4
≈ 3.175 ∈ [1, 8]

Show that f (x) = 2x3 + 2x + sin x + 1 has precisely one real root.21. Verify the MVT for f (x) = x + 1

x
on [2, 5].

solution On the interval [2, 5], f (x) is continuous and differentiable, so the MVT applies. Now, f ′(x) = 1 − 1

x2
, so

1 − 1

c2
= f ′(c) = f (b) − f (a)

b − a
=

26
5 − 5

2
5 − 2

= 9

10
,

or

c2 = 10 ⇒ c = √
10 ∈ [2, 5]

Suppose that f (1) = 5 and f ′(x) ≥ 2 for x ≥ 1. Use the MVT to show that f (8) ≥ 19.
23. Use the MVT to prove that if f ′(x) ≤ 2 for x > 0 and f (0) = 4, then f (x) ≤ 2x + 4 for all x ≥ 0.

solution Let x > 0. Because f is continuous on [0, x] and differentiable on (0, x), the Mean Value Theorem guarantees
there exists a c ∈ (0, x) such that

f ′(c) = f (x) − f (0)

x − 0
or f (x) = f (0) + xf ′(c).

Now, we are given that f (0) = 4 and that f ′(x) ≤ 2 for x > 0. Therefore, for all x ≥ 0,

f (x) ≤ 4 + x(2) = 2x + 4.

A function f (x) has derivative f ′(x) = 1

x4 + 1
. Where on the interval [1, 4] does f (x) take on its maximum

value?

In Exercises 25–30, find the critical points and determine whether they are minima, maxima, or neither.

25. f (x) = x3 − 4x2 + 4x

solution Let f (x) = x3 − 4x2 + 4x. Then f ′(x) = 3x2 − 8x + 4 = (3x − 2)(x − 2), so that x = 2
3 and x = 2 are

critical points. Next, f ′′(x) = 6x − 8, so f ′′( 2
3 ) = −4 < 0 and f ′′(2) = 4 > 0. Therefore, by the Second Derivative

Test, f ( 2
3 ) is a local maximum while f (2) is a local minimum.

s(t) = t4 − 8t227. f (x) = x2(x + 2)3

solution Let f (x) = x2(x + 2)3. Then

f ′(x) = 3x2(x + 2)2 + 2x(x + 2)3 = x(x + 2)2(3x + 2x + 4) = x(x + 2)2(5x + 4),

so that x = 0, x = −2 and x = − 4
5 are critical points. The sign of the first derivative on the intervals surrounding the

critical points is indicated in the table below. Based on this information, f (−2) is neither a local maximum nor a local
minimum, f (− 4

5 ) is a local maximum and f (0) is a local minimum.

Interval (−∞, −2) (−2, − 4
5 ) (− 4

5 , 0) (0, ∞)

Sign of f ′ + + − +

f (x) = x2/3(1 − x)
29. g(θ) = sin2 θ + θ

solution Let g(θ) = sin2 θ + θ . Then

g′(θ) = 2 sin θ cos θ + 1 = 2 sin 2θ + 1,

so the critical points are

θ = 3π

4
+ nπ

for all integers n. Because g′(θ) ≥ 0 for all θ , it follows that g

(
3π

4
+ nπ

)
is neither a local maximum nor a local

minimum for all integers n.

h(θ) = 2 cos 2θ + cos 4θIn Exercises 31–38, find the extreme values on the interval.

31. f (x) = x(10 − x), [−1, 3]
solution Let f (x) = x(10 − x) = 10x − x2. Then f ′(x) = 10 − 2x, so that x = 5 is the only critical point. As this
critical point is not in the interval [−1, 3], we only need to check the value of f at the endpoints to determine the extreme
values. Because f (−1) = −11 and f (3) = 21, the maximum value of f (x) = x(10 − x) on the interval [−1, 3] is 21
while the minimum value is −11.
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f (x) = 6x4 − 4x6, [−2, 2]33. g(θ) = sin2 θ − cos θ , [0, 2π ]
solution Let g(θ) = sin2 θ − cos θ . Then

g′(θ) = 2 sin θ cos θ + sin θ = sin θ(2 cos θ + 1) = 0

when θ = 0, 2π
3 , π, 4π

3 , 2π . The table below lists the value of g at each of the critical points and the endpoints of the
interval [0, 2π ]. Based on this information, the minimum value of g(θ) on the interval [0, 2π ] is −1 and the maximum
value is 5

4 .

θ 0 2π/3 π 4π/3 2π

g(θ) −1 5/4 1 5/4 −1

R(t) = t

t2 + t + 1
, [0, 3]

35. f (x) = x2/3 − 2x1/3, [−1, 3]
solution Let f (x) = x2/3 − 2x1/3. Then f ′(x) = 2

3x−1/3 − 2
3x−2/3 = 2

3x−2/3(x1/3 − 1), so that the critical

points are x = 0 and x = 1. With f (−1) = 3, f (0) = 0, f (1) = −1 and f (3) = 3√9 − 2 3√3 ≈ −0.804, it follows that
the minimum value of f (x) on the interval [−1, 3] is −1 and the maximum value is 3.

f (x) = 4x − tan2 x,
[
−π

4
,
π

3

]37. f (x) = x − x3/2, [0, 2]
solution We have f ′(x) = 1 − 3

2x1/2, so that x = 4
9 is the only critical point. Then

f

(
4

9

)
= 4

27
≈ 0.148, f (0) = 0, f (2) ≈ −0.828

so that the maximum value of f on [0, 2] is ≈ 0.148 and its minimum value is ≈ −0.828.

f (x) = sec x − cos x,
[
−π

4
,
π

4

]39. Find the critical points and extreme values of
f (x) = |x − 1| + |2x − 6| in [0, 8].
solution Let

f (x) = |x − 1| + |2x − 6| =

⎧⎪⎨
⎪⎩

7 − 3x, x < 1

5 − x, 1 ≤ x < 3

3x − 7, x ≥ 3

.

The derivative of f (x) is never zero but does not exist at the transition points x = 1 and x = 3. Thus, the critical points
of f are x = 1 and x = 3. With f (0) = 7, f (1) = 4, f (3) = 2 and f (8) = 17, it follows that the minimum value of
f (x) on the interval [0, 8] is 2 and the maximum value is 17.

Match the description of f (x) with the graph of its derivative f ′(x) in Figure 1.

(a) f (x) is increasing and concave up.

(b) f (x) is decreasing and concave up.

(c) f (x) is increasing and concave down.

In Exercises 41–46, find the points of inflection.

41. y = x3 − 4x2 + 4x

solution Let y = x3 − 4x2 + 4x. Then y′ = 3x2 − 8x + 4 and y′′ = 6x − 8. Thus, y′′ > 0 and y is concave up for

x > 4
3 , while y′′ < 0 and y is concave down for x < 4

3 . Hence, there is a point of inflection at x = 4
3 .

y = x − 2 cos x43. y = x2

x2 + 4

solution Let y = x2

x2 + 4
= 1 − 4

x2 + 4
. Then y′ = 8x

(x2 + 4)2
and

y′′ = (x2 + 4)2(8) − 8x(2)(2x)(x2 + 4)

(x2 + 4)4
= 8(4 − 3x2)

(x2 + 4)3
.

Thus, y′′ > 0 and y is concave up for

− 2√
3

< x <
2√
3
,

while y′′ < 0 and y is concave down for

|x| ≥ 2√
3
.

Hence, there are points of inflection at

x = ± 2√
3
.
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y = x

(x2 − 4)1/3
45. f (x) = x3 − x

x2 + 1

solution We have

f ′(x) = (x2 + 1)(3x2 − 1) − (x3 − x)(2x)

(x2 + 1)
= x4 + 4x2 − 1

(x2 + 1)2

f ′′(x) = (x2 + 1)2(4x3 + 8x) − (x4 + 4x2 − 1)(2(x2 + 1)(2x))

(x2 + 1)4
= −4x(x2 − 3)

(x2 + 1)3

Since the denominator of f ′′(x) is always positive, f ′′(x) > 0 and f (x) is concave up for x < −√
3 and for 0 < x <

√
3,

while f ′′(x) < 0 and f (x) is concave down for −√
3 < x < 0 and for

√
3 < x. Thus there are points of inflection at

x = 0 and at x = ±√
3.

f (x) = sin 2x − 4 cos xIn Exercises 47–56, sketch the graph, noting the transition points and asymptotic behavior.

47. y = 12x − 3x2

solution Let y = 12x − 3x2. Then y′ = 12 − 6x and y′′ = −6. It follows that the graph of y = 12x − 3x2 is
increasing for x < 2, decreasing for x > 2, has a local maximum at x = 2 and is concave down for all x. Because

lim
x→±∞(12x − 3x2) = −∞,

the graph has no horizontal asymptotes. There are also no vertical asymptotes. The graph is shown below.

5
x

−1 1 2 3 54

y

10

−5
−10

y = 8x2 − x449. y = x3 − 2x2 + 3

solution Let y = x3 − 2x2 + 3. Then y′ = 3x2 − 4x and y′′ = 6x − 4. It follows that the graph of y = x3 − 2x2 + 3

is increasing for x < 0 and x > 4
3 , is decreasing for 0 < x < 4

3 , has a local maximum at x = 0, has a local minimum at

x = 4
3 , is concave up for x > 2

3 , is concave down for x < 2
3 and has a point of inflection at x = 2

3 . Because

lim
x→−∞(x3 − 2x2 + 3) = −∞ and lim

x→∞(x3 − 2x2 + 3) = ∞,

the graph has no horizontal asymptotes. There are also no vertical asymptotes. The graph is shown below.

5

x
−1 1 2

y

10

−5

−10

y = 4x − x3/251. y = x

x3 + 1

solution Let y = x

x3 + 1
. Then

y′ = x3 + 1 − x(3x2)

(x3 + 1)2
= 1 − 2x3

(x3 + 1)2

and

y′′ = (x3 + 1)2(−6x2) − (1 − 2x3)(2)(x3 + 1)(3x2)

(x3 + 1)4
= −6x2(2 − x3)

(x3 + 1)3
.

It follows that the graph of y = x

x3 + 1
is increasing for x < −1 and −1 < x < 3

√
1
2 , is decreasing for x > 3

√
1
2 , has a

local maximum at x = 3
√

1
2 , is concave up for x < −1 and x >

3√2, is concave down for −1 < x < 0 and 0 < x <
3√2
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and has a point of inflection at x = 3√2. Note that x = −1 is not an inflection point because x = −1 is not in the domain
of the function. Now,

lim
x→±∞

x

x3 + 1
= 0,

so y = 0 is a horizontal asymptote. Moreover,

lim
x→−1−

x

x3 + 1
= ∞ and lim

x→−1+
x

x3 + 1
= −∞,

so x = −1 is a vertical asymptote. The graph is shown below.

2

x
−1−2−3 1 2 3

y

4

−2

−4

y = x

(x2 − 4)2/3
53. y = 1

|x + 2| + 1

solution Let y = 1

|x + 2| + 1
. Because

lim
x→±∞

1

|x + 2| + 1
= 0,

the graph of this function has a horizontal asymptote of y = 0. The graph has no vertical asymptotes as |x + 2| + 1 ≥ 1
for all x. The graph is shown below. From this graph we see there is a local maximum at x = −2.

0.8

x
−4 −2−6−8 2 4

y

1

0.4

0.2

0.6

y =
√

2 − x3
55. y = √

3 sin x − cos x on [0, 2π ]
solution Let y = √

3 sin x − cos x. Then y′ = √
3 cos x + sin x and y′′ = −√

3 sin x + cos x. It follows that the graph

of y = √
3 sin x − cos x is increasing for 0 < x < 5π/6 and 11π/6 < x < 2π , is decreasing for 5π/6 < x < 11π/6, has

a local maximum at x = 5π/6, has a local minimum at x = 11π/6, is concave up for 0 < x < π/3 and 4π/3 < x < 2π ,
is concave down for π/3 < x < 4π/3 and has points of inflection at x = π/3 and x = 4π/3. The graph is shown below.

x

−1
1

4

5 62 3

y

1

y = 2x − tan x on [0, 2π ]57. Draw a curve y = f (x) for which f ′ and f ′′ have signs as indicated in Figure 2.

x
−2 0

- + + + + -- -- +

1 3 5

FIGURE 2

solution The figure below depicts a curve for which f ′(x) and f ′′(x) have the required signs.

x
4 8−4

y
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Find the dimensions of a cylindrical can with a bottom but no top of volume 4 m3 that uses the least amount of
metal.

59. A rectangular box of height h with square base of side b has volume V = 4 m3. Two of the side faces are made of
material costing $40/m2. The remaining sides cost $20/m2. Which values of b and h minimize the cost of the box?

solution Because the volume of the box is

V = b2h = 4 it follows that h = 4

b2
.

Now, the cost of the box is

C = 40(2bh) + 20(2bh) + 20b2 = 120bh + 20b2 = 480

b
+ 20b2.

Thus,

C′(b) = −480

b2
+ 40b = 0

when b = 3√12 meters. Because C(b) → ∞ as b → 0+ and as b → ∞, it follows that cost is minimized when b = 3√12
meters and h = 1

3
3√12 meters.

The corn yield on a certain farm is

Y = −0.118x2 + 8.5x + 12.9 (bushels per acre)

where x is the number of corn plants per acre (in thousands). Assume that corn seed costs $1.25 (per thousand seeds)
and that corn can be sold for $1.50/bushel. Let P(x) be the profit (revenue minus the cost of seeds) at planting level
x.

(a) Compute P(x0) for the value x0 that maximizes yield Y .

(b) Find the maximum value of P(x). Does maximum yield lead to maximum profit?

61. A quantity N(T ) satisfies
dN

dt
= 2

t
− 8

t2
for t ≥ 4 (t in days). At which time is N increasing most rapidly?

solution N is increasing most rapidly where the slope is greatest, i.e. where N ′ = dN

dt
has a local maximum. We

have

N ′′ = − 2

t2
+ 16

t3

and N ′′(t) = 0 for t = 8. Sign analysis shows that N ′′(t) changes sign from positive to negative at t = 8, so that in fact
t = 8 is a local maximum.

A truck gets 10 miles per gallon of diesel fuel traveling along an interstate highway at 50 mph. This mileage
decreases by 0.15 mpg for each mile per hour increase above 50 mph.

(a) If the truck driver is paid $30/hour and diesel fuel costs P = $3/gal, which speed v between 50 and 70 mph will
minimize the cost of a trip along the highway? Notice that the actual cost depends on the length of the trip, but the
optimal speed does not.

(b) Plot cost as a function of v (choose the length arbitrarily) and verify your answer to part (a).

(c) Do you expect the optimal speed v to increase or decrease if fuel costs go down to P = $2/gal? Plot the graphs
of cost as a function of v for P = 2 and P = 3 on the same axis and verify your conclusion.

63. Find the maximum volume of a right-circular cone placed upside-down in a right-circular cone of radius R = 3 and
height H = 4 as in Figure 3. A cone of radius r and height h has volume 1

3πr2h.

R

H

FIGURE 3

solution Let r denote the radius and h the height of the upside down cone. By similar triangles, we obtain the relation

4 − h

r
= 4

3
so h = 4

(
1 − r

3

)
and the volume of the upside down cone is

V (r) = 1

3
πr2h = 4

3
π

(
r2 − r3

3

)

for 0 ≤ r ≤ 3. Thus,

dV

dr
= 4

3
π
(

2r − r2
)

,

and the critical points are r = 0 and r = 2. Because V (0) = V (3) = 0 and

V (2) = 4

3
π

(
4 − 8

3

)
= 16

9
π,

the maximum volume of a right-circular cone placed upside down in a right-circular cone of radius 3 and height 4 is

16

9
π.
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Redo Exercise 63 for arbitrary R and H .
65. Show that the maximum area of a parallelogram ADEF that is inscribed in a triangle ABC, as in Figure 4, is equal

to one-half the area of �ABC.

D E

B

F CA

FIGURE 4

solution Let θ denote the measure of angle BAC. Then the area of the parallelogram is given by AD · AF sin θ .
Now, suppose that

BE/BC = x.

Then, by similar triangles, AD = (1 − x)AB, AF = DE = xAC, and the area of the parallelogram becomes AB ·
ACx(1 − x) sin θ . The function x(1 − x) achieves its maximum value of 1

4 when x = 1
2 . Thus, the maximum area of a

parallelogram inscribed in a triangle �ABC is

1

4
AB · AC sin θ = 1

2

(
1

2
AB · AC sin θ

)
= 1

2
(area of �ABC) .

A box of volume 8 m3 with a square top and bottom is constructed out of two types of metal. The metal for the
top and bottom costs $50/m2 and the metal for the sides costs $30/m2. Find the dimensions of the box that minimize
total cost.

67. Let f (x) be a function whose graph does not pass through the x-axis and let Q = (a, 0). Let P = (x0, f (x0)) be
the point on the graph closest to Q (Figure 5). Prove that PQ is perpendicular to the tangent line to the graph of x0. Hint:
Find the minimum value of the square of the distance from (x, f (x)) to (a, 0).

y

x

y = f (x)

P = (x0, f (x0))

Q = (a, 0)

FIGURE 5

solution Let P = (a, 0) and let Q = (x0, f (x0)) be the point on the graph of y = f (x) closest to P . The slope of
the segment joining P and Q is then

f (x0)

x0 − a
.

Now, let

q(x) =
√

(x − a)2 + (f (x))2,

the distance from the arbitrary point (x, f (x)) on the graph of y = f (x) to the point P . As (x0, f (x0)) is the point closest
to P , we must have

q ′(x0) = 2(x0 − a) + 2f (x0)f ′(x0)√
(x0 − a)2 + (f (x0))2

= 0.

Thus,

f ′(x0) = −x0 − a

f (x0)
= −

(
f (x0)

x0 − a

)−1
.

In other words, the slope of the segment joining P and Q is the negative reciprocal of the slope of the line tangent to the
graph of y = f (x) at x = x0; hence; the two lines are perpendicular.

Take a circular piece of paper of radius R, remove a sector of angle θ (Figure 6), and fold the remaining piece
into a cone-shaped cup. Which angle θ produces the cup of largest volume?

69. Use Newton’s Method to estimate 3√25 to four decimal places.

solution Let f (x) = x3 − 25 and define

xn+1 = xn − f (xn)

f ′(xn)
= xn − x3

n − 25

3x2
n

.

With x0 = 3, we find
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n 1 2 3

xn 2.925925926 2.924018982 2.924017738

Thus, to four decimal places 3√25 = 2.9240.

Use Newton’s Method to find a root of f (x) = x2 − x − 1 to four decimal places.In Exercises 71–84, calculate the indefinite integral.

71.
∫ (

4x3 − 2x2) dx

solution
∫

(4x3 − 2x2) dx = x4 − 2

3
x3 + C.

∫
x9/4 dx

73.
∫

sin(θ − 8) dθ

solution
∫

sin(θ − 8) dθ = − cos(θ − 8) + C.

∫
cos(5 − 7θ) dθ

75.
∫

(4t−3 − 12t−4) dt

solution
∫

(4t−3 − 12t−4) dt = −2t−2 + 4t−3 + C.

∫
(9t−2/3 + 4t7/3) dt

77.
∫

sec2 x dx

solution
∫

sec2 x dx = tan x + C.

∫
tan 3θ sec 3θ dθ

79.
∫

(y + 2)4 dy

solution
∫

(y + 2)4 dy = 1

5
(y + 2)5 + C.

∫
3x3 − 9

x2
dx

81.
∫

(cos θ − θ) dθ

solution
∫

(cos θ − θ) dθ = sin θ − 1

2
θ2 + C.

∫
sec2(12 − 25θ) dθ

83.
∫

8 dx

x3

solution
∫

8 dx

x3
= − 4

x2
+ C.

∫
sin(4x − 9) dx

In Exercises 85–90, solve the differential equation with the given initial condition.

85.
dy

dx
= 4x3, y(1) = 4

solution Let dy
dx

= 4x3. Then

y(x) =
∫

4x3 dx = x4 + C.

Using the initial condition y(1) = 4, we find y(1) = 14 + C = 4, so C = 3. Thus, y(x) = x4 + 3.

dy

dt
= 3t2 + cos t , y(0) = 12

87.
dy

dx
= x−1/2, y(1) = 1

solution Let dy
dx

= x−1/2. Then

y(x) =
∫

x−1/2 dx = 2x1/2 + C.

Using the initial condition y(1) = 1, we find y(1) = 2
√

1 + C = 1, so C = −1. Thus, y(x) = 2x1/2 − 1.

dy

dx
= sec2 x, y

(
π
4

) = 2



June 9, 2011 LTSV SSM Second Pass

Chapter Review Exercises 259

89.
dy

dt
= 1 + π sin 3t , y(π) = π

solution Integrating gives

y(t) =
∫

(1 + π sin 3t) dt = t − π

3
cos 3t + C

Using the initial condition, we find

π = y(π) = π − π

3
cos 3π + C = π + π

3
+ C

so that C = −π

3
, and thus y(t) = t − π

3
(1 + cos 3t)

dy

dt
= cos 3πt + sin 4πt , y

(
1

3

)
= 0

91. Find f (t) if f ′′(t) = 1 − 2t , f (0) = 2, and f ′(0) = −1.

solution Suppose f ′′(t) = 1 − 2t . Then

f ′(t) =
∫

f ′′(t) dt =
∫

(1 − 2t) dt = t − t2 + C.

Using the initial condition f ′(0) = −1, we find f ′(0) = 0 − 02 + C = −1, so C = −1. Thus, f ′(t) = t − t2 − 1. Now,

f (t) =
∫

f ′(t) dt =
∫

(t − t2 − 1) dt = 1

2
t2 − 1

3
t3 − t + C.

Using the initial condition f (0) = 2, we find f (0) = 1
2 02 − 1

3 03 − 0 + C = 2, so C = 2. Thus,

f (t) = 1

2
t2 − 1

3
t3 − t + 2.

At time t = 0, a driver begins decelerating at a constant rate of −10 m/s2 and comes to a halt after traveling
500 m. Find the velocity at t = 0.
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5.1 Approximating and Computing Area

Preliminary Questions
1. What are the right and left endpoints if [2, 5] is divided into six subintervals?

solution If the interval [2, 5] is divided into six subintervals, the length of each subinterval is 5−2
6 = 1

2 . The right

endpoints of the subintervals are then 5
2 , 3, 7

2 , 4, 9
2 , 5, while the left endpoints are 2, 5

2 , 3, 7
2 , 4, 9

2 .

2. The interval [1, 5] is divided into eight subintervals.

(a) What is the left endpoint of the last subinterval?

(b) What are the right endpoints of the first two subintervals?

solution Note that each of the 8 subintervals has length 5−1
8 = 1

2 .

(a) The left endpoint of the last subinterval is 5 − 1
2 = 9

2 .

(b) The right endpoints of the first two subintervals are 1 + 1
2 = 3

2 and 1 + 2
(

1
2

)
= 2.

3. Which of the following pairs of sums are not equal?

(a)
4∑

i=1

i,

4∑
�=1

� (b)
4∑

j=1

j2,

5∑
k=2

k2

(c)
4∑

j=1

j,

5∑
i=2

(i − 1) (d)
4∑

i=1

i(i + 1),

5∑
j=2

(j − 1)j

solution

(a) Only the name of the index variable has been changed, so these two sums are the same.

(b) These two sums are not the same; the second squares the numbers two through five while the first squares the numbers
one through four.

(c) These two sums are the same. Note that when i ranges from two through five, the expression i − 1 ranges from one
through four.

(d) These two sums are the same. Both sums are 1 · 2 + 2 · 3 + 3 · 4 + 4 · 5.

4. Explain:
100∑
j=1

j =
100∑
j=0

j but
100∑
j=1

1 is not equal to
100∑
j=0

1.

solution The first term in the sum
∑100

j=0 j is equal to zero, so it may be dropped. More specifically,

100∑
j=0

j = 0 +
100∑
j=1

j =
100∑
j=1

j.

On the other hand, the first term in
∑100

j=0 1 is not zero, so this term cannot be dropped. In particular,

100∑
j=0

1 = 1 +
100∑
j=1

1 �=
100∑
j=1

1.

5. Explain why L100 ≥ R100 for f (x) = x−2 on [3, 7].
solution On [3, 7], the function f (x) = x−2 is a decreasing function; hence, for any subinterval of [3, 7], the function
value at the left endpoint is larger than the function value at the right endpoint. Consequently, L100 must be larger than
R100.

260
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Exercises
1. Figure 15 shows the velocity of an object over a 3-min interval. Determine the distance traveled over the intervals

[0, 3] and [1, 2.5] (remember to convert from km/h to km/min).

3
min

km/h

21

20

30

10

FIGURE 15

solution The distance traveled by the object can be determined by calculating the area underneath the velocity graph
over the specified interval. During the interval [0, 3], the object travels(

10

60

)(
1

2

)
+
(

25

60

)
(1) +

(
15

60

)(
1

2

)
+
(

20

60

)
(1) = 23

24
≈ 0.96 km.

During the interval [1, 2.5], it travels(
25

60

)(
1

2

)
+
(

15

60

)(
1

2

)
+
(

20

60

)(
1

2

)
= 1

2
= 0.5 km.

An ostrich (Figure 16) runs with velocity 20 km/h for 2 minutes, 12 km/h for 3 minutes, and 40 km/h for another
minute. Compute the total distance traveled and indicate with a graph how this quantity can be interpreted as an area.

3. A rainstorm hit Portland, Maine, in October 1996, resulting in record rainfall. The rainfall rate R(t) on October 21
is recorded, in centimeters per hour, in the following table, where t is the number of hours since midnight. Compute the
total rainfall during this 24-hour period and indicate on a graph how this quantity can be interpreted as an area.

t (h) 0–2 2–4 4–9 9–12 12–20 20–24

R(t) (cm) 0.5 0.3 1.0 2.5 1.5 0.6

solution Over each interval, the total rainfall is the time interval in hours times the rainfall in centimeters per hour.
Thus

R = 2(0.5) + 2(0.3) + 5(1.0) + 3(2.5) + 8(1.5) + 4(0.6) = 28.5 cm.

The figure below is a graph of the rainfall as a function of time. The area of the shaded region represents the total rainfall.

0.5

1.0

1.5

2.0

2.5

5 10 15 20 25

y

x

The velocity of an object is v(t) = 12t m/s. Use Eq. (2) and geometry to find the distance traveled over the time
intervals [0, 2] and [2, 5].

5. Compute R5 and L5 over [0, 1] using the following values.

x 0 0.2 0.4 0.6 0.8 1

f (x) 50 48 46 44 42 40

solution �x = 1−0
5 = 0.2. Thus,

L5 = 0.2 (50 + 48 + 46 + 44 + 42) = 0.2(230) = 46,

and

R5 = 0.2 (48 + 46 + 44 + 42 + 40) = 0.2(220) = 44.

The average is

46 + 44

2
= 45.

This estimate is frequently referred to as the Trapezoidal Approximation.
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Compute R6, L6, and M3 to estimate the distance traveled over [0, 3] if the velocity at half-second intervals is as
follows:

t (s) 0 0.5 1 1.5 2 2.5 3

v (m/s) 0 12 18 25 20 14 20

7. Let f (x) = 2x + 3.

(a) Compute R6 and L6 over [0, 3].
(b) Use geometry to find the exact area A and compute the errors |A − R6| and |A − L6| in the approximations.

solution Let f (x) = 2x + 3 on [0, 3].

(a) We partition [0, 3] into 6 equally-spaced subintervals. The left endpoints of the subintervals are
{

0, 1
2 , 1, 3

2 , 2, 5
2

}
whereas the right endpoints are

{
1
2 , 1, 3

2 , 2, 5
2 , 3
}

.

• Let a = 0, b = 3, n = 6, �x = (b − a) /n = 1
2 , and xk = a + k�x, k = 0, 1, . . . , 5 (left endpoints). Then

L6 =
5∑

k=0

f (xk)�x = �x

5∑
k=0

f (xk) = 1

2
(3 + 4 + 5 + 6 + 7 + 8) = 16.5.

• With xk = a + k�x, k = 1, 2, . . . , 6 (right endpoints), we have

R6 =
6∑

k=1

f (xk)�x = �x

6∑
k=1

f (xk) = 1

2
(4 + 5 + 6 + 7 + 8 + 9) = 19.5.

(b) Via geometry (see figure below), the exact area is A = 1
2 (3) (6) + 32 = 18. Thus, L6 underestimates the true area

(L6 − A = −1.5), while R6 overestimates the true area (R6 − A = +1.5).

0.5 1 1.5 2 2.5 3

3

6

9

x

y

Repeat Exercise 7 for f (x) = 20 − 3x over [2, 4].9. Calculate R3 and L3

for f (x) = x2 − x + 4 over [1, 4]

Then sketch the graph of f and the rectangles that make up each approximation. Is the area under the graph larger or
smaller than R3? Is it larger or smaller than L3?

solution Let f (x) = x2 − x + 4 and set a = 1, b = 4, n = 3, �x = (b − a) /n = (4 − 1) /3 = 1.

(a) Let xk = a + k�x, k = 0, 1, 2, 3.

• Selecting the left endpoints of the subintervals, xk , k = 0, 1, 2, or {1, 2, 3}, we have

L3 =
2∑

k=0

f (xk)�x = �x

2∑
k=0

f (xk) = (1) (4 + 6 + 10) = 20.

• Selecting the right endpoints of the subintervals, xk , k = 1, 2, 3, or {2, 3, 4}, we have

R3 =
3∑

k=1

f (xk)�x = �x

3∑
k=1

f (xk) = (1) (6 + 10 + 16) = 32.

(b) Here are figures of the three rectangles that approximate the area under the curve f (x) over the interval [1, 4]. Clearly,
the area under the graph is larger than L3 but smaller than R3.

4

1.0 1.5 2.0 2.5 3.0 3.5

6
8

10

12

14

y

x

L3

4

1.0 1.5 2.0 2.5 3.0 3.5

6
8

10

12

14

y

x

R3
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Let f (x) =
√

x2 + 1 and �x = 1
3 . Sketch the graph of f (x) and draw the right-endpoint rectangles whose area

is represented by the sum
6∑

i=1

f (1 + i�x)�x.

11. Estimate R3, M3, and L6 over [0, 1.5] for the function in Figure 17.

1

2

3

4

5

x

y

0.5 1 1.5

FIGURE 17

solution Let f (x) on [0, 3
2 ] be given by Figure 17. For n = 3, �x = ( 3

2 − 0)/3 = 1
2 , {xk}3

k=0 =
{

0, 1
2 , 1, 3

2

}
.

Therefore

R3 = 1

2

3∑
k=1

f (xk) = 1

2
(2 + 1 + 2) = 2.5,

M3 = 1

2

6∑
k=1

f

(
xk − 1

2
�x

)
= 1

2
(3.25 + 1.25 + 1.25) = 2.875.

For n = 6, �x = ( 3
2 − 0)/6 = 1

4 , {xk}6
k=0 =

{
0, 1

4 , 1
2 , 3

4 , 1, 5
4 , 3

2

}
. Therefore

L6 = 1

4

5∑
k=0

f (xk) = 1

4
(5 + 3.25 + 2 + 1.25 + 1 + 1.25) = 3.4375.

Calculate the area of the shaded rectangles in Figure 18. Which approximation do these rectangles represent?In Exercises 13–20, calculate the approximation for the given function and interval.

13. R3, f (x) = 7 − x, [3, 5]
solution Let f (x) = 7 − x on [3, 5]. For n = 3, �x = (5 − 3)/3 = 2

3 , and {xk}3
k=0 =

{
3, 11

3 , 13
3 , 5

}
. Therefore

R3 = 2

3

3∑
k=1

(7 − xk)

= 2

3

(
10

3
+ 8

3
+ 2

)
= 2

3
(8) = 16

3
.

L6, f (x) = √
6x + 2, [1, 3]15. M6, f (x) = 4x + 3, [5, 8]

solution Let f (x) = 4x + 3 on [5, 8]. For n = 6, �x = (8 − 5)/6 = 1
2 , and {x∗

k
}5
k=0 = {5.25, 5.75, 6.25, 6.75,

7.25, 7.75}. Therefore,

M6 = 1

2

5∑
k=0

(
4x∗

k + 3
)

= 1

2
(24 + 26 + 28 + 30 + 32 + 34)

= 1

2
(174) = 87.

R5, f (x) = x2 + x, [−1, 1]17. L6, f (x) = x2 + 3|x|, [−2, 1]
solution Let f (x) = x2 + 3 |x| on [−2, 1]. For n = 6, �x = (1 − (−2))/6 = 1

2 , and {xk}6
k=0 = {−2, −1.5, −1,

−0.5, 0, 0.5, 1}. Therefore

L6 = 1

2

5∑
k=0

(x2
k + 3 |xk |) = 1

2
(10 + 6.75 + 4 + 1.75 + 0 + 1.75) = 12.125.

M4, f (x) = √
x, [3, 5]19. L4, f (x) = cos2 x,
[
π
6 , π

2

]
solution Let f (x) = cos2 x on [π

6 , π
2 ]. For n = 4,

�x = (π/2 − π/6)

4
= π

12
and {xk}4

k=0 =
{

π

6
,
π

4
,
π

3
,

5π

12
,
π

2

}
.
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Therefore

L4 = π

12

3∑
k=0

cos2 xk ≈ 0.410236.

M4, f (x) = 1

x2 + 1
, [1, 5]

In Exercises 21–26, write the sum in summation notation.

21. 47 + 57 + 67 + 77 + 87

solution The first term is 47, and the last term is 87, so it seems the kth term is k7. Therefore, the sum is:

8∑
k=4

k7.

(22 + 2) + (32 + 3) + (42 + 4) + (52 + 5)
23. (22 + 2) + (23 + 2) + (24 + 2) + (25 + 2)

solution The first term is 22 + 2, and the last term is 25 + 2, so it seems the sum limits are 2 and 5, and the kth term

is 2k + 2. Therefore, the sum is:

5∑
k=2

(2k + 2).

√
1 + 13 +

√
2 + 23 + · · · +

√
n + n325.

1

2 · 3
+ 2

3 · 4
+ · · · + n

(n + 1)(n + 2)

solution The first summand is 1
(1+1)·(1+2)

. This shows us

1

2 · 3
+ 2

3 · 4
+ · · · + n

(n + 1)(n + 2)
=

n∑
i=1

i

(i + 1)(i + 2)
.

sin(π) + sin
(π

2

)
+ sin

(π

3

)
+ · · · + sin

(
π

n + 1

)27. Calculate the sums:

(a)
5∑

i=1

9 (b)
5∑

i=0

4 (c)
4∑

k=2

k3

solution

(a)
5∑

i=1

9 = 9 + 9 + 9 + 9 + 9 = 45. Alternatively,
5∑

i=1

9 = 9
5∑

i=1

1 = (9)(5) = 45.

(b)
5∑

i=0

4 = 4 + 4 + 4 + 4 + 4 + 4 = 24. Alternatively,
5∑

i=0

4 = 4
5∑

i=0

= (4)(6) = 24.

(c)
4∑

k=2

k3 = 23 + 33 + 43 = 99. Alternatively,

4∑
k=2

k3 =
⎛
⎝ 4∑

k=1

k3

⎞
⎠−

⎛
⎝ 1∑

k=1

k3

⎞
⎠ =

(
44

4
+ 43

2
+ 42

4

)
−
(

14

4
+ 13

2
+ 12

4

)
= 99.

Calculate the sums:

(a)
4∑

j=3

sin
(
j

π

2

)
(b)

5∑
k=3

1

k − 1
(c)

2∑
j=0

3j−1

29. Let b1 = 4, b2 = 1, b3 = 2, and b4 = −4. Calculate:

(a)
4∑

i=2

bi (b)
2∑

j=1

(2bj − bj ) (c)
3∑

k=1

kbk

solution

(a)
4∑

i=2

bi = b2 + b3 + b4 = 1 + 2 + (−4) = −1.

(b)
2∑

j=1

(
2bj − bj

)
= (24 − 4) + (21 − 1) = 13.

(c)
3∑

k=1

kbk = 1(4) + 2(1) + 3(2) = 12.
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Assume that a1 = −5,
10∑
i=1

ai = 20, and
10∑
i=1

bi = 7. Calculate:

(a)
10∑
i=1

(4ai + 3) (b)
10∑
i=2

ai (c)
10∑
i=1

(2ai − 3bi)

31. Calculate
200∑

j=101

j . Hint: Write as a difference of two sums and use formula (3).

solution

200∑
j=101

j =
200∑
j=1

j −
100∑
j=1

j =
(

2002

2
+ 200

2

)
−
(

1002

2
+ 100

2

)
= 20,100 − 5050 = 15,050.

Calculate
30∑

j=1

(2j + 1)2. Hint: Expand and use formulas (3)–(4).

In Exercises 33–40, use linearity and formulas (3)–(5) to rewrite and evaluate the sums.

33.
20∑

j=1

8j3

solution
20∑

j=1

8j3 = 8
20∑

j=1

j3 = 8

(
204

4
+ 203

2
+ 202

4

)
= 8(44,100) = 352,800.

30∑
k=1

(4k − 3)
35.

150∑
n=51

n2

solution

150∑
n=51

n2 =
150∑
n=1

n2 −
50∑

n=1

n2

=
(

1503

3
+ 1502

2
+ 150

6

)
−
(

503

3
+ 502

2
+ 50

6

)

= 1,136,275 − 42,925 = 1,093,350.

200∑
k=101

k337.
50∑

j=0

j (j − 1)

solution

50∑
j=0

j (j − 1) =
50∑

j=0

(j2 − j) =
50∑

j=0

j2 −
50∑

j=0

j

=
(

503

3
+ 502

2
+ 50

6

)
−
(

502

2
+ 50

2

)
= 503

3
− 50

3
= 124,950

3
= 41,650.

The power sum formula is usable because
50∑

j=0

j (j − 1) =
50∑

j=1

j (j − 1).

30∑
j=2

(
6j + 4j2

3

)
39.

30∑
m=1

(4 − m)3

solution

30∑
m=1

(4 − m)3 =
30∑

m=1

(64 − 48m + 12m2 − m3)

= 64
30∑

m=1

1 − 48
30∑

m=1

m + 12
30∑

m=1

m2 −
30∑

m=1

m3

= 64(30) − 48
(30)(31)

2
+ 12

(
303

3
+ 302

2
+ 30

6

)
−
(

304

4
+ 303

2
+ 302

4

)

= 1920 − 22,320 + 113,460 − 216,225 = −123,165.
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20∑
m=1

(
5 + 3m

2

)2In Exercises 41–44, use formulas (3)–(5) to evaluate the limit.

41. lim
N→∞

N∑
i=1

i

N2

solution Let sN =
N∑

i=1

i

N2
. Then,

sN =
N∑

i=1

i

N2
= 1

N2

N∑
i=1

i = 1

N2

(
N2

2
+ N

2

)
= 1

2
+ 1

2N
.

Therefore, lim
N→∞ sN = 1

2
.

lim
N→∞

N∑
j=1

j3

N4

43. lim
N→∞

N∑
i=1

i2 − i + 1

N3

solution Let sN =
N∑

i=1

i2 − i + 1

N3
. Then

sN =
N∑

i=1

i2 − i + 1

N3
= 1

N3

⎡
⎣
⎛
⎝ N∑

i=1

i2

⎞
⎠−

⎛
⎝ N∑

i=1

i

⎞
⎠+

⎛
⎝ N∑

i=1

1

⎞
⎠
⎤
⎦

= 1

N3

[(
N3

3
+ N2

2
+ N

6

)
−
(

N2

2
+ N

2

)
+ N

]
= 1

3
+ 2

3N2
.

Therefore, lim
N→∞ sN = 1

3
.

lim
N→∞

N∑
i=1

(
i3

N4
− 20

N

)In Exercises 45–50, calculate the limit for the given function and interval. Verify your answer by using geometry.

45. lim
N→∞ RN , f (x) = 9x, [0, 2]

solution Let f (x) = 9x on [0, 2]. Let N be a positive integer and set a = 0, b = 2, and �x = (b − a)/N =
(2 − 0)/N = 2/N . Also, let xk = a + k�x = 2k/N , k = 1, 2, . . . , N be the right endpoints of the N subintervals of
[0, 2]. Then

RN = �x

N∑
k=1

f (xk) = 2

N

N∑
k=1

9

(
2k

N

)
= 36

N2

N∑
k=1

k = 36

N2

(
N2

2
+ N

2

)
= 18 + 18

N
.

The area under the graph is

lim
N→∞ RN = lim

N→∞

(
18 + 18

N

)
= 18.

The region under the graph is a triangle with base 2 and height 18. The area of the region is then 1
2 (2)(18) = 18, which

agrees with the value obtained from the limit of the right-endpoint approximations.

lim
N→∞ RN , f (x) = 3x + 6, [1, 4]47. lim

N→∞ LN , f (x) = 1
2x + 2, [0, 4]

solution Let f (x) = 1
2x + 2 on [0, 4]. Let N > 0 be an integer, and set a = 0, b = 4, and �x = (4 − 0)/N = 4

N
.

Also, let xk = 0 + k�x = 4k
N

, k = 0, 1, . . . , N − 1 be the left endpoints of the N subintervals. Then

LN = �x

N−1∑
k=0

f (xk) = 4

N

N−1∑
k=0

(
1

2

(
4k

N

)
+ 2

)
= 8

N

N−1∑
k=0

1 + 8

N2

N−1∑
k=0

k

= 8 + 8

N2

(
(N − 1)2

2
+ N − 1

2

)
= 12 − 4

N
.

The area under the graph is

lim
N→∞ LN = 12.

The region under the curve over [0, 4] is a trapezoid with base width 4 and heights 2 and 4. From this, we get that the
area is 1

2 (4)(2 + 4) = 12, which agrees with the answer obtained from the limit of the left-endpoint approximations.
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lim
N→∞ LN , f (x) = 4x − 2, [1, 3]49. lim

N→∞ MN , f (x) = x, [0, 2]

solution Let f (x) = x on [0, 2]. Let N > 0 be an integer and set a = 0, b = 2, and �x = (b − a)/N = 2
N

. Also,

let x∗
k

= 0 + (k − 1
2 )�x = 2k−1

N
, k = 1, 2, . . . N , be the midpoints of the N subintervals of [0, 2]. Then

MN = �x

N∑
k=1

f (x∗
k ) = 2

N

N∑
k=1

2k − 1

N
= 2

N2

N∑
k=1

(2k − 1)

= 2

N2

⎛
⎝2

N∑
k=1

k − N

⎞
⎠ = 4

N2

(
N2

2
+ N

2

)
− 2

N
= 2.

The area under the curve over [0, 2] is

lim
N→∞ MN = 2.

The region under the curve over [0, 2] is a triangle with base and height 2, and thus area 2, which agrees with the answer
obtained from the limit of the midpoint approximations.

lim
N→∞ MN , f (x) = 12 − 4x, [2, 6]51. Show, for f (x) = 3x2 + 4x over [0, 2], that

RN = 2

N

N∑
j=1

(
24j2

N2
+ 16j

N

)

Then evaluate lim
N→∞ RN .

solution Let f (x) = 3x2 + 4x on [0, 2]. Let N be a positive integer and set a = 0, b = 2, and �x = (b − a)/N =
(2 − 0)/N = 2/N . Also, let xj = a + j�x = 2j/N , j = 1, 2, . . . , N be the right endpoints of the N subintervals of
[0, 3]. Then

RN = �x

N∑
j=1

f (xj ) = 2

N

N∑
j=1

(
3

(
2j

N

)2
+ 4

2j

N

)

= 2

N

N∑
j=1

(
12j2

N2
+ 8j

N

)

Continuing, we find

RN = 24

N3

N∑
j=1

j2 + 16

N2

N∑
j=1

j

= 24

N3

(
N3

3
+ N2

2
+ N

6

)
+ 16

N2

(
N2

2
+ N

2

)

= 16 + 20

N
+ 4

N2

Thus,

lim
N→∞ RN = lim

N→∞

(
16 + 20

N
+ 4

N2

)
= 16.

Show, for f (x) = 3x3 − x2 over [1, 5], that

RN = 4

N

N∑
j=1

(
192j3

N3
+ 128j2

N2
+ 28j

N
+ 2

)

Then evaluate lim
N→∞ RN .

In Exercises 53–60, find a formula for RN and compute the area under the graph as a limit.

53. f (x) = x2, [0, 1]
solution Let f (x) = x2 on the interval [0, 1]. Then �x = 1 − 0

N
= 1

N
and a = 0. Hence,

RN = �x

N∑
j=1

f (0 + j�x) = 1

N

N∑
j=1

j2 1

N2
= 1

N3

(
N3

3
+ N2

2
+ N

6

)
= 1

3
+ 1

2N
+ 1

6N2

and

lim
N→∞ RN = lim

N→∞

(
1

3
+ 1

2N
+ 1

6N2

)
= 1

3
.
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f (x) = x2, [−1, 5]55. f (x) = 6x2 − 4, [2, 5]
solution Let f (x) = 6x2 − 4 on the interval [2, 5]. Then �x = 5 − 2

N
= 3

N
and a = 2. Hence,

RN = �x

N∑
j=1

f (2 + j�x) = 3

N

N∑
j=1

(
6

(
2 + 3j

N

)2
− 4

)
= 3

N

N∑
j=1

(
20 + 72j

N
+ 54j2

N2

)

= 60 + 216

N2

N∑
j=1

j + 162

N3

N∑
j=1

j2

= 60 + 216

N2

(
N2

2
+ N

2

)
+ 162

N3

(
N3

3
+ N2

2
+ N

6

)

= 222 + 189

N
+ 27

N2

and

lim
N→∞ RN = lim

N→∞

(
222 + 189

N
+ 27

N2

)
= 222.

f (x) = x2 + 7x, [6, 11]57. f (x) = x3 − x, [0, 2]
solution Let f (x) = x3 − x on the interval [0, 2]. Then �x = 2 − 0

N
= 2

N
and a = 0. Hence,

RN = �x

N∑
j=1

f (0 + j�x) = 2

N

N∑
j=1

((
2j

N

)3
− 2j

N

)
= 2

N

N∑
j=1

(
8j3

N3
− 2j

N

)

= 16

N4

N∑
j=1

j3 − 4

N2

N∑
j=1

j

= 16

N4

(
N4

4
+ N3

2
+ N2

2

)
− 4

N2

(
N2

2
+ N

2

)

= 2 + 6

N
+ 8

N2

and

lim
N→∞ RN = lim

N→∞

(
2 + 6

N
+ 8

N2

)
= 2.

f (x) = 2x3 + x2, [−2, 2]
59. f (x) = 2x + 1, [a, b] (a, b constants with a < b)

solution Let f (x) = 2x + 1 on the interval [a, b]. Then �x = b − a

N
. Hence,

RN = �x

N∑
j=1

f (a + j�x) = (b − a)

N

N∑
j=1

(
2

(
a + j

(b − a)

N

)
+ 1

)

= (b − a)

N
(2a + 1)

N∑
j=1

1 + 2(b − a)2

N2

N∑
j=1

j

= (b − a)

N
(2a + 1)N + 2(b − a)2

N2

(
N2

2
+ N

2

)

= (b − a)(2a + 1) + (b − a)2 + (b − a)2

N

and

lim
N→∞ RN = lim

N→∞

(
(b − a)(2a + 1) + (b − a)2 + (b − a)2

N

)

= (b − a)(2a + 1) + (b − a)2 = (b2 + b) − (a2 + a).
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f (x) = x2, [a, b] (a, b constants with a < b)In Exercises 61–64, describe the area represented by the limits.

61. lim
N→∞

1

N

N∑
j=1

(
j

N

)4

solution The limit

lim
N→∞ RN = lim

N→∞
1

N

N∑
j=1

(
j

N

)4

represents the area between the graph of f (x) = x4 and the x-axis over the interval [0, 1].

lim
N→∞

3

N

N∑
j=1

(
2 + 3j

N

)463. lim
N→∞

5

N

N−1∑
j=0

(
−2 + 5j

N

)

solution The limit

lim
N→∞ LN = lim

N→∞
5

N

N−1∑
j=0

(
−2 + 5j

N

)

represents the area between the graph of y = x and the x-axis over the interval [−2, 3].

lim
N→∞

π

2N

N∑
j=1

sin

(
π

3
− π

4N
+ jπ

2N

)In Exercises 65–70, express the area under the graph as a limit using the approximation indicated (in summation notation),
but do not evaluate.

65. RN , f (x) = sin x over [0, π ]
solution Let f (x) = sin x over [0, π ] and set a = 0, b = π , and �x = (b − a) /N = π/N . Then

RN = �x

N∑
k=1

f (xk) = π

N

N∑
k=1

sin

(
kπ

N

)
.

Hence

lim
N→∞ RN = lim

N→∞
π

N

N∑
k=1

sin

(
kπ

N

)

is the area between the graph of f (x) = sin x and the x-axis over [0, π ].

RN , f (x) = x−1 over [1, 7]67. LN , f (x) = √
2x + 1 over [7, 11]

solution Let f (x) = √
2x + 1 over the interval [7, 11]. Then �x = 11 − 7

N
= 4

N
and a = 7. Hence,

LN = �x

N−1∑
j=0

f (7 + j�x) = 4

N

N−1∑
j=0

√
2(7 + j

4

N
) + 1

and

lim
N→∞ LN = lim

N→∞
4

N

N−1∑
j=0

√
15 + 8j

N

is the area between the graph of f (x) = √
2x + 1 and the x-axis over [7, 11].

LN , f (x) = cos x over
[
π
8 , π

4

]69. MN , f (x) = tan x over
[ 1

2 , 1
]

solution Let f (x) = tan x over the interval [ 1
2 , 1]. Then �x = 1− 1

2
N

= 1
2N

and a = 1
2 . Hence

MN = �x

N∑
j=1

f

(
1

2
+
(

j − 1

2

)
�x

)
= 1

2N

N∑
j=1

tan

(
1

2
+ 1

2N

(
j − 1

2

))

and so

lim
N→∞ MN = lim

N→∞
1

2N

N∑
j=1

tan

(
1

2
+ 1

2N

(
j − 1

2

))

is the area between the graph of f (x) = tan x and the x-axis over [ 1
2 , 1].
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MN , f (x) = x−2 over [3, 5]71. Evaluate lim
N→∞

1

N

N∑
j=1

√
1 −

(
j

N

)2
by interpreting it as the area of part of a familiar geometric figure.

solution The limit

lim
N→∞ RN = lim

N→∞
1

N

N∑
j=1

√
1 −

(
j

N

)2

represents the area between the graph of y = f (x) =
√

1 − x2 and the x-axis over the interval [0, 1]. This is the portion
of the circular disk x2 + y2 ≤ 1 that lies in the first quadrant. Accordingly, its area is 1

4π (1)2 = π
4 .

In Exercises 72–74, let f (x) = x2 and let RN , LN , and MN be the approximations for the interval [0, 1].

Show that RN = 1

3
+ 1

2N
+ 1

6N2
. Interpret the quantity

1

2N
+ 1

6N2
as the area of a region.

73. Show that

LN = 1

3
− 1

2N
+ 1

6N2
, MN = 1

3
− 1

12N2

Then rank the three approximations RN , LN , and MN in order of increasing accuracy (use Exercise 72).

solution Let f (x) = x2 on [0, 1]. Let N be a positive integer and set a = 0, b = 1, and �x = (b − a) /N = 1/N .

Let xk = a + k�x = k/N , k = 0, 1, . . . , N and let x∗
k

= a + (k + 1
2 )�x = (k + 1

2 )/N , k = 0, 1, . . . , N − 1. Then

LN = �x

N−1∑
k=0

f (xk) = 1

N

N−1∑
k=0

(
k

N

)2
= 1

N3

N−1∑
k=1

k2

= 1

N3

(
(N − 1)3

3
+ (N − 1)2

2
+ N − 1

6

)
= 1

3
− 1

2N
+ 1

6N2

MN = �x

N−1∑
k=0

f (x∗
k ) = 1

N

N−1∑
k=0

(
k + 1

2
N

)2

= 1

N3

N−1∑
k=0

(
k2 + k + 1

4

)

= 1

N3

⎛
⎝
⎛
⎝N−1∑

k=1

k2

⎞
⎠+

⎛
⎝N−1∑

k=1

k

⎞
⎠+ 1

4

⎛
⎝N−1∑

k=0

1

⎞
⎠
⎞
⎠

= 1

N3

((
(N − 1)3

3
+ (N − 1)2

2
+ N − 1

6

)
+
(

(N − 1)2

2
+ N − 1

2

)
+ 1

4
N

)
= 1

3
− 1

12N2

The error of RN is given by
1

2N
+ 1

6N2
, the error of LN is given by − 1

2N
+ 1

6N2
and the error of MN is given by

− 1

12N2
. Of the three approximations, RN is the least accurate, then LN and finally MN is the most accurate.

For each of RN , LN , and MN , find the smallest integer N for which the error is less than 0.001.In Exercises 75–80, use the Graphical Insight on page 291 to obtain bounds on the area.

75. Let A be the area under f (x) = √
x over [0, 1]. Prove that 0.51 ≤ A ≤ 0.77 by computing R4 and L4. Explain your

reasoning.

solution For n = 4, �x = 1−0
4 = 1

4 and {xi}4
i=0 = {0 + i�x} = {0, 1

4 , 1
2 , 3

4 , 1}. Therefore,

R4 = �x

4∑
i=1

f (xi) = 1

4

(
1

2
+

√
2

2
+

√
3

2
+ 1

)
≈ 0.768

L4 = �x

3∑
i=0

f (xi) = 1

4

(
0 + 1

2
+

√
2

2
+

√
3

2

)
≈ 0.518.

In the plot below, you can see the rectangles whose area is represented by L4 under the graph and the top of those whose
area is represented by R4 above the graph. The area A under the curve is somewhere between L4 and R4, so

0.518 ≤ A ≤ 0.768.
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L4, R4 and the graph of f (x).

Use R5 and L5 to show that the area A under y = x−2 over [10, 13] satisfies 0.0218 ≤ A ≤ 0.0244.
77. Use R4 and L4 to show that the area A under the graph of y = sin x over

[
0, π

2

]
satisfies 0.79 ≤ A ≤ 1.19.

solution Let f (x) = sin x. f (x) is increasing over the interval [0, π/2], so the Insight on page 291 applies, which

indicates that L4 ≤ A ≤ R4. For n = 4, �x = π/2−0
4 = π

8 and {xi}4
i=0 = {0 + i�x}4

i=0 = {0, π
8 , π

4 , 3π
8 , π

2 }. From
this,

L4 = π

8

3∑
i=0

f (xi) ≈ 0.79, R4 = π

8

4∑
i=1

f (xi) ≈ 1.18.

Hence A is between 0.79 and 1.19.

Left and Right endpoint approximations to A.

Show that the area A under f (x) = x−1 over [1, 8] satisfies

1
2 + 1

3 + 1
4 + 1

5 + 1
6 + 1

7 + 1
8 ≤ A ≤ 1 + 1

2 + 1
3 + 1

4 + 1
5 + 1

6 + 1
7

79. Show that the area A under y = x1/4 over [0, 1] satisfies LN ≤ A ≤ RN for all N . Use a computer algebra
system to calculate LN and RN for N = 100 and 200, and determine A to two decimal places.

solution On [0, 1], f (x) = x1/4 is an increasing function; therefore, LN ≤ A ≤ RN for all N . We find

L100 = 0.793988 and R100 = 0.80399,

while

L200 = 0.797074 and R200 = 0.802075.

Thus, A = 0.80 to two decimal places.

Show that the area A under y = 4/(x2 + 1) over [0, 1] satisfies RN ≤ A ≤ LN for all N . Determine A to at
least three decimal places using a computer algebra system. Can you guess the exact value of A?

Further Insights and Challenges
81. Although the accuracy of RN generally improves as N increases, this need not be true for small values of N . Draw
the graph of a positive continuous function f (x) on an interval such that R1 is closer than R2 to the exact area under the
graph. Can such a function be monotonic?

solution Let δ be a small positive number less than 1
4 . (In the figures below, δ = 1

10 . But imagine δ being very tiny.)
Define f (x) on [0, 1] by

f (x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 if 0 ≤ x < 1
2 − δ

1
2δ

− x
δ if 1

2 − δ ≤ x < 1
2

x
δ − 1

2δ
if 1

2 ≤ x < 1
2 + δ

1 if 1
2 + δ ≤ x ≤ 1

Then f is continuous on [0, 1]. (Again, just look at the figures.)

• The exact area between f and the x-axis is A = 1 − 1
2bh = 1 − 1

2 (2δ)(1) = 1 − δ. (For δ = 1
10 , we have A = 9

10 .)

• With R1 = 1, the absolute error is |E1| = |R1 − A| = |1 − (1 − δ)| = δ. (For δ = 1
10 , this absolute error is

|E1| = 1
10 .)

• With R2 = 1
2 , the absolute error is |E2| = |R2 − A| = ∣∣ 1

2 − (1 − δ)
∣∣ = ∣∣δ − 1

2

∣∣ = 1
2 − δ. (For δ = 1

10 , we have

|E2| = 2
5 .)

• Accordingly, R1 is closer to the exact area A than is R2. Indeed, the tinier δ is, the more dramatic the effect.
• For a monotonic function, this phenomenon cannot occur. Successive approximations from either side get progres-

sively more accurate.
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x

Right endpt approx, n = 1Graph of f(x)

0.2 0.4 0.6 0.8 1

1

0.8

0.6

0.4

0.2

0
0.5 1

1

0.5

0

Right endpt approx, n = 2

0.5 1

1

0.5

0

Draw the graph of a positive continuous function on an interval such that R2 and L2 are both smaller than the
exact area under the graph. Can such a function be monotonic?

83. Explain graphically: The endpoint approximations are less accurate when f ′(x) is large.

solution When f ′ is large, the graph of f is steeper and hence there is more gap between f and LN or RN . Recall that
the top line segments of the rectangles involved in an endpoint approximation constitute a piecewise constant function.
If f ′ is large, then f is increasing more rapidly and hence is less like a constant function.

1 2 4

1

2

3

0 x

y

Smaller f'

3 100 2 4

1

2

3

0 x

y

Larger f'

3

Prove that for any function f (x) on [a, b],

RN − LN = b − a

N
(f (b) − f (a))

85. In this exercise, we prove that lim
N→∞ RN and lim

N→∞ LN exist and are equal if f (x) is increasing [the case

of f (x) decreasing is similar]. We use the concept of a least upper bound discussed in Appendix B.

(a) Explain with a graph why LN ≤ RM for all N, M ≥ 1.

(b) By (a), the sequence {LN } is bounded, so it has a least upper bound L. By definition, L is the smallest number such
that LN ≤ L for all N . Show that L ≤ RM for all M .

(c) According to (b), LN ≤ L ≤ RN for all N . Use Eq. (8) to show that lim
N→∞ LN = L and lim

N→∞ RN = L.

solution

(a) Let f (x) be positive and increasing, and let N and M be positive integers. From the figure below at the left, we see
that LN underestimates the area under the graph of y = f (x), while from the figure below at the right, we see that RM

overestimates the area under the graph. Thus, for all N, M ≥ 1, LN ≤ RM .

x

y

x

y

(b) Because the sequence {LN } is bounded above by RM for any M , each RM is an upper bound for the sequence.
Furthermore, the sequence {LN } must have a least upper bound, call it L. By definition, the least upper bound must be
no greater than any other upper bound; consequently, L ≤ RM for all M .

(c) Since LN ≤ L ≤ RN , RN − L ≤ RN − LN , so |RN − L| ≤ |RN − LN |. From this,

lim
N→∞ |RN − L| ≤ lim

N→∞ |RN − LN |.

By Eq. (8),

lim
N→∞ |RN − LN | = lim

N→∞
1

N
|(b − a)(f (b) − f (a))| = 0,

so lim
N→∞ |RN − L| ≤ |RN − LN | = 0, hence lim

N→∞ RN = L.

Similarly, |LN − L| = L − LN ≤ RN − LN , so

|LN − L| ≤ |RN − LN | = (b − a)

N
(f (b) − f (a)).
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This gives us that

lim
N→∞ |LN − L| ≤ lim

N→∞
1

N
|(b − a)(f (b) − f (a))| = 0,

so lim
N→∞ LN = L.

This proves lim
N→∞ LN = lim

N→∞ RN = L.

Use Eq. (8) to show that if f (x) is positive and monotonic, then the area A under its graph over [a, b] satisfies

|RN − A| ≤ b − a

N
|f (b) − f (a)|

In Exercises 87 and 88, use Eq. (9) to find a value of N such that |RN − A| < 10−4 for the given function and interval.

87. f (x) = √
x, [1, 4]

solution Let f (x) = √
x on [1, 4]. Then b = 4, a = 1, and

|RN − A| ≤ 4 − 1

N
(f (4) − f (1)) = 3

N
(2 − 1) = 3

N
.

We need 3
N

< 10−4, which gives N > 30,000. Thus |R30,001 − A| < 10−4 for f (x) = √
x on [1, 4].

f (x) =
√

9 − x2, [0, 3]89. Prove that if f (x) is positive and monotonic, then MN lies between RN and LN and is closer to the actual
area under the graph than both RN and LN . Hint: In the case that f (x) is increasing, Figure 19 shows that the part of the
error in RN due to the ith rectangle is the sum of the areas A + B + D, and for MN it is |B − E|. On the other hand,
A ≥ E.

x
xi − 1 ximidpoint

A

F

D
E

B

C

FIGURE 19

solution Suppose f (x) is monotonic increasing on the interval [a, b], �x = b − a

N
,

{xk}Nk=0 = {a, a + �x, a + 2�x, . . . , a + (N − 1)�x, b}
and

{
x∗
k

}N−1
k=0 =

{
a + (a + �x)

2
,
(a + �x) + (a + 2�x)

2
, . . . ,

(a + (N − 1)�x) + b

2

}
.

Note that xi < x∗
i

< xi+1 implies f (xi) < f (x∗
i
) < f (xi+1) for all 0 ≤ i < N because f (x) is monotone increasing.

Then ⎛
⎝LN = b − a

N

N−1∑
k=0

f (xk)

⎞
⎠ <

⎛
⎝MN = b − a

N

N−1∑
k=0

f (x∗
k )

⎞
⎠ <

⎛
⎝RN = b − a

N

N∑
k=1

f (xk)

⎞
⎠

Similarly, if f (x) is monotone decreasing,⎛
⎝LN = b − a

N

N−1∑
k=0

f (xk)

⎞
⎠ >

⎛
⎝MN = b − a

N

N−1∑
k=0

f (x∗
k )

⎞
⎠ >

⎛
⎝RN = b − a

N

N∑
k=1

f (xk)

⎞
⎠

Thus, if f (x) is monotonic, then MN always lies in between RN and LN .
Now, as in Figure 19, consider the typical subinterval [xi−1, xi ] and its midpoint x∗

i
. We let A, B, C, D, E, and F

be the areas as shown in Figure 19. Note that, by the fact that x∗
i

is the midpoint of the interval, A = D + E and
F = B + C. Let ER represent the right endpoint approximation error ( = A + B + D), let EL represent the left endpoint
approximation error ( = C + F + E) and let EM represent the midpoint approximation error ( = |B − E|).

• If B > E, then EM = B − E. In this case,

ER − EM = A + B + D − (B − E) = A + D + E > 0,

so ER > EM , while

EL − EM = C + F + E − (B − E) = C + (B + C) + E − (B − E) = 2C + 2E > 0,

so EL > EM . Therefore, the midpoint approximation is more accurate than either the left or the right endpoint
approximation.
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• If B < E, then EM = E − B. In this case,

ER − EM = A + B + D − (E − B) = D + E + D − (E − B) = 2D + B > 0,

so that ER > EM while

EL − EM = C + F + E − (E − B) = C + F + B > 0,

so EL > EM . Therefore, the midpoint approximation is more accurate than either the right or the left endpoint
approximation.

• If B = E, the midpoint approximation is exactly equal to the area.

Hence, for B < E, B > E, or B = E, the midpoint approximation is more accurate than either the left endpoint or the
right endpoint approximation.

5.2 The Definite Integral

Preliminary Questions

1. What is
∫ 5

3
dx [the function is f (x) = 1]?

solution
∫ 5

3
dx =

∫ 5

3
1 · dx = 1(5 − 3) = 2.

2. Let I =
∫ 7

2
f (x) dx, where f (x) is continuous. State whether true or false:

(a) I is the area between the graph and the x-axis over [2, 7].
(b) If f (x) ≥ 0, then I is the area between the graph and the x-axis over [2, 7].
(c) If f (x) ≤ 0, then −I is the area between the graph of f (x) and the x-axis over [2, 7].
solution

(a) False.
∫ b
a f (x) dx is the signed area between the graph and the x-axis.

(b) True.
(c) True.

3. Explain graphically:
∫ π

0
cos x dx = 0.

solution Because cos(π − x) = − cos x, the “negative” area between the graph of y = cos x and the x-axis over
[π

2 , π ] exactly cancels the “positive” area between the graph and the x-axis over [0, π
2 ].

4. Which is negative,
∫ −5

−1
8 dx or

∫ −1

−5
8 dx?

solution Because −5 − (−1) = −4,
∫ −5

−1
8 dx is negative.

Exercises
In Exercises 1–10, draw a graph of the signed area represented by the integral and compute it using geometry.

1.
∫ 3

−3
2x dx

solution The region bounded by the graph of y = 2x and the x-axis over the interval [−3, 3] consists of two right

triangles. One has area 1
2 (3)(6) = 9 below the axis, and the other has area 1

2 (3)(6) = 9 above the axis. Hence,

∫ 3

−3
2x dx = 9 − 9 = 0.

−3 −2 −2
−4
−6

−1 1 2 3

2
4
6

x

y
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∫ 3

−2
(2x + 4) dx

3.
∫ 1

−2
(3x + 4) dx

solution The region bounded by the graph of y = 3x + 4 and the x-axis over the interval [−2, 1] consists of two

right triangles. One has area 1
2 ( 2

3 )(2) = 2
3 below the axis, and the other has area 1

2 ( 7
3 )(7) = 49

6 above the axis. Hence,

∫ 1

−2
(3x + 4) dx = 49

6
− 2

3
= 15

2
.

−2
−2

−1 1

2

4

8

6

x

y

∫ 1

−2
4 dx

5.
∫ 8

6
(7 − x) dx

solution The region bounded by the graph of y = 7 − x and the x-axis over the interval [6, 8] consists of two right

triangles. One triangle has area 1
2 (1)(1) = 1

2 above the axis, and the other has area 1
2 (1)(1) = 1

2 below the axis. Hence,

∫ 8

6
(7 − x) dx = 1

2
− 1

2
= 0.

−1

8642

0.5

−0.5

1

x

y

∫ 3π/2

π/2
sin x dx

7.
∫ 5

0

√
25 − x2 dx

solution The region bounded by the graph of y =
√

25 − x2 and the x-axis over the interval [0, 5] is one-quarter of
a circle of radius 5. Hence, ∫ 5

0

√
25 − x2 dx = 1

4
π(5)2 = 25π

4
.

54321

3

4

5

1

2

x

y

∫ 3

−2
|x| dx

9.
∫ 2

−2
(2 − |x|) dx

solution The region bounded by the graph of y = 2 − |x| and the x-axis over the interval [−2, 2] is a triangle above
the axis with base 4 and height 2. Consequently,∫ 2

−2
(2 − |x|) dx = 1

2
(2)(4) = 4.

−2 −1 21

2

1

x

y



June 9, 2011 LTSV SSM Second Pass

276 C H A P T E R 5 THE INTEGRAL

∫ 5

−2
(3 + x − 2|x|) dx

11. Calculate
∫ 10

0
(8 − x) dx in two ways:

(a) As the limit lim
N→∞ RN

(b) By sketching the relevant signed area and using geometry

solution Let f (x) = 8 − x over [0, 10]. Consider the integral
∫ 10

0 f (x) dx = ∫ 10
0 (8 − x) dx.

(a) Let N be a positive integer and set a = 0, b = 10, �x = (b − a) /N = 10/N . Also, let xk = a + k�x = 10k/N ,
k = 1, 2, . . . , N be the right endpoints of the N subintervals of [0, 10]. Then

RN = �x

N∑
k=1

f (xk) = 10

N

N∑
k=1

(
8 − 10k

N

)
= 10

N

⎛
⎝8

⎛
⎝ N∑

k=1

1

⎞
⎠− 10

N

⎛
⎝ N∑

k=1

k

⎞
⎠
⎞
⎠

= 10

N

(
8N − 10

N

(
N2

2
+ N

2

))
= 30 − 50

N
.

Hence lim
N→∞ RN = lim

N→∞

(
30 − 50

N

)
= 30.

(b) The region bounded by the graph of y = 8 − x and the x-axis over the interval [0, 10] consists of two right triangles.
One triangle has area 1

2 (8)(8) = 32 above the axis, and the other has area 1
2 (2)(2) = 2 below the axis. Hence,∫ 10

0
(8 − x) dx = 32 − 2 = 30.

2

2

4

6

8

4 6 8

10

y

x

Calculate
∫ 4

−1
(4x − 8) dx in two ways: As the limit lim

N→∞ RN and using geometry.
In Exercises 13 and 14, refer to Figure 14.

y = f (x)

642

y

x

FIGURE 14 The two parts of the graph are semicircles.

13. Evaluate: (a)
∫ 2

0
f (x) dx (b)

∫ 6

0
f (x) dx

solution Let f (x) be given by Figure 14.

(a) The definite integral
∫ 2

0 f (x) dx is the signed area of a semicircle of radius 1 which lies below the x-axis. Therefore,∫ 2

0
f (x) dx = −1

2
π (1)2 = −π

2
.

(b) The definite integral
∫ 6

0 f (x) dx is the signed area of a semicircle of radius 1 which lies below the x-axis and a
semicircle of radius 2 which lies above the x-axis. Therefore,∫ 6

0
f (x) dx = 1

2
π (2)2 − 1

2
π (1)2 = 3π

2
.

Evaluate: (a)
∫ 4

1
f (x) dx (b)

∫ 6

1
|f (x)| dx

In Exercises 15 and 16, refer to Figure 15.

1 2 3 4 5

2

1

−1

−2

y = g (t)

t

y

FIGURE 15
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15. Evaluate
∫ 3

0
g(t) dt and

∫ 5

3
g(t) dt .

solution

• The region bounded by the curve y = g(x) and the x-axis over the interval [0, 3] is comprised of two right triangles,
one with area 1

2 below the axis, and one with area 2 above the axis. The definite integral is therefore equal to

2 − 1
2 = 3

2 .
• The region bounded by the curve y = g(x) and the x-axis over the interval [3, 5] is comprised of another two right

triangles, one with area 1 above the axis and one with area 1 below the axis. The definite integral is therefore equal
to 0.

Find a, b, and c such that
∫ a

0
g(t) dt and

∫ c

b
g(t) dt are as large as possible.

17. Describe the partition P and the set of sample points C for the Riemann sum shown in Figure 16. Compute the value
of the Riemann sum.

x
1 32.5 3.220.5 4.5 5

34.25

20

15

8

y

FIGURE 16

solution The partition P is defined by

x0 = 0 < x1 = 1 < x2 = 2.5 < x3 = 3.2 < x4 = 5

The set of sample points is given by C = {c1 = 0.5, c2 = 2, c3 = 3, c4 = 4.5}. Finally, the value of the Riemann sum is

34.25(1 − 0) + 20(2.5 − 1) + 8(3.2 − 2.5) + 15(5 − 3.2) = 96.85.

Compute R(f, P, C) for f (x) = x2 + x for the partition P and the set of sample points C in Figure 16.
In Exercises 19–22, calculate the Riemann sum R(f, P, C) for the given function, partition, and choice of sample points.
Also, sketch the graph of f and the rectangles corresponding to R(f, P, C).

19. f (x) = x, P = {1, 1.2, 1.5, 2}, C = {1.1, 1.4, 1.9}
solution Let f (x) = x. With

P = {x0 = 1, x1 = 1.2, x2 = 1.5, x3 = 2} and C = {c1 = 1.1, c2 = 1.4, c3 = 1.9},
we get

R(f, P, C) = �x1f (c1) + �x2f (c2) + �x3f (c3)

= (1.2 − 1)(1.1) + (1.5 − 1.2)(1.4) + (2 − 1.5)(1.9) = 1.59.

Here is a sketch of the graph of f and the rectangles.

0.5 1 1.5 2 2.5

0.5

1

2

1.5

x

y

f (x) = 2x + 3, P = {−4, −1, 1, 4, 8}, C = {−3, 0, 2, 5}21. f (x) = x2 + x, P = {2, 3, 4.5, 5}, C = {2, 3.5, 5}
solution Let f (x) = x2 + x. With

P = {x0 = 2, x1 = 3, x3 = 4.5, x4 = 5} and C = {c1 = 2, c2 = 3.5, c3 = 5},
we get

R(f, P, C) = �x1f (c1) + �x2f (c2) + �x3f (c3)

= (3 − 2)(6) + (4.5 − 3)(15.75) + (5 − 4.5)(30) = 44.625.

Here is a sketch of the graph of f and the rectangles.
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5

10

15

20

25

30

y

x
51 42 3

f (x) = sin x, P = {0, π
6 , π

3 , π
2

}
, C = {0.4, 0.7, 1.2}In Exercises 23–28, sketch the signed area represented by the integral. Indicate the regions of positive and negative area.

23.
∫ 5

0
(4x − x2) dx

solution Here is a sketch of the signed area represented by the integral
∫ 5

0 (4x − x2) dx.

1 2 3 4

5

−4

−2

2

4

y

x

∫ π/4

−π/4
tan x dx

25.
∫ 2π

π
sin x dx

solution Here is a sketch of the signed area represented by the integral
∫ 2π
π sin x dx.

−0.4

−0.8

−1.2

7531 642

0.4

x

y

−

∫ 3π

0
sin x dx

27.
∫ 6

0
(|12 − 4x| − 4) dx

solution Here is a sketch of the signed area represented by the integral
∫ 6

0 (|12 − 4x| − 4) dx:

 +  + 

 − 
1

−2

2

0

4

6

8

2 3 4 5 6
x

y

∫ 2

−2
(t2 − 1)(t2 − 4) dt

In Exercises 29–32, determine the sign of the integral without calculating it. Draw a graph if necessary.

29.
∫ 1

−2
x4 dx

solution The integrand is always positive. The integral must therefore be positive, since the signed area has only
positive part.

∫ 1

−2
x3 dx

31.
∫ 2π

0
x sin x dx

solution As you can see from the graph below, the area below the axis is greater than the area above the axis. Thus,
the definite integral is negative.
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−0.2

−0.4

−0.6

7531 642

0.2

x

y

−

+

∫ 2π

0

sin x

x
dx

In Exercises 33–42, use properties of the integral and the formulas in the summary to calculate the integrals.

33.
∫ 4

0
(6t − 3) dt

solution
∫ 4

0
(6t − 3) dt = 6

∫ 4

0
t dt − 3

∫ 4

0
1 dt = 6 · 1

2
(4)2 − 3(4 − 0) = 36.

∫ 2

−3
(4x + 7) dx

35.
∫ 9

0
x2 dx

solution By formula (5),
∫ 9

0
x2 dx = 1

3
(9)3 = 243.

∫ 5

2
x2 dx

37.
∫ 1

0
(u2 − 2u) du

solution

∫ 1

0
(u2 − 2u) du =

∫ 1

0
u2 du − 2

∫ 1

0
u du = 1

3
(1)3 − 2

(
1

2

)
(1)2 = 1

3
− 1 = −2

3
.

∫ 1/2

0
(12y2 + 6y) dy

39.
∫ 1

−3
(7t2 + t + 1) dt

solution First, write

∫ 1

−3
(7t2 + t + 1) dt =

∫ 0

−3
(7t2 + t + 1) dt +

∫ 1

0
(7t2 + t + 1) dt

= −
∫ −3

0
(7t2 + t + 1) dt +

∫ 1

0
(7t2 + t + 1) dt

Then, ∫ 1

−3
(7t2 + t + 1) dt = −

(
7 · 1

3
(−3)3 + 1

2
(−3)2 − 3

)
+
(

7 · 1

3
13 + 1

2
12 + 1

)

= −
(

−63 + 9

2
− 3

)
+
(

7

3
+ 1

2
+ 1

)
= 196

3
.

∫ 3

−3
(9x − 4x2) dx

41.
∫ 1

−a
(x2 + x) dx

solution First,
∫ b

0 (x2 + x) dx = ∫ b
0 x2 dx + ∫ b

0 x dx = 1
3b3 + 1

2b2. Therefore

∫ 1

−a
(x2 + x) dx =

∫ 0

−a
(x2 + x) dx +

∫ 1

0
(x2 + x) dx =

∫ 1

0
(x2 + x) dx −

∫ −a

0
(x2 + x) dx

=
(

1

3
· 13 + 1

2
· 12
)

−
(

1

3
(−a)3 + 1

2
(−a)2

)
= 1

3
a3 − 1

2
a2 + 5

6
.

∫ a2

a
x2 dx

In Exercises 43–47, calculate the integral, assuming that∫ 5

0
f (x) dx = 5,

∫ 5

0
g(x) dx = 12

43.
∫ 5

0
(f (x) + g(x)) dx

solution
∫ 5

0
(f (x) + g(x)) dx =

∫ 5

0
f (x) dx +

∫ 5

0
g(x) dx = 5 + 12 = 17.
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∫ 5

0

(
2f (x) − 1

3
g(x)

)
dx

45.
∫ 0

5
g(x) dx

solution
∫ 0

5
g(x) dx = −

∫ 5

0
g(x) dx = −12.

∫ 5

0
(f (x) − x) dx

47. Is it possible to calculate
∫ 5

0
g(x)f (x) dx from the information given?

solution It is not possible to calculate
∫ 5

0 g(x)f (x) dx from the information given.

Prove by computing the limit of right-endpoint approximations:

∫ b

0
x3 dx = b4

4

In Exercises 49–54, evaluate the integral using the formulas in the summary and Eq. (9).

49.
∫ 3

0
x3 dx

solution By Eq. (9),
∫ 3

0
x3 dx = 34

4
= 81

4
.

∫ 3

1
x3 dx

51.
∫ 3

0
(x − x3) dx

solution
∫ 3

0
(x − x3) dx =

∫ 3

0
x dx −

∫ 3

0
x3 dx = 1

2
32 − 1

4
34 = −63

4
.

∫ 1

0
(2x3 − x + 4) dx

53.
∫ 1

0
(12x3 + 24x2 − 8x) dx

solution ∫ 1

0
(12x3 + 24x2 − 8x) dx = 12

∫ 1

0
x3 dx + 24

∫ 1

0
x2 − 8

∫ 1

0
x dx

= 12 · 1

4
14 + 24 · 1

3
13 − 8 · 1

2
12

= 3 + 8 − 4 = 7

∫ 2

−2
(2x3 − 3x2) dx

In Exercises 55–58, calculate the integral, assuming that∫ 1

0
f (x) dx = 1,

∫ 2

0
f (x) dx = 4,

∫ 4

1
f (x) dx = 7

55.
∫ 4

0
f (x) dx

solution
∫ 4

0
f (x) dx =

∫ 1

0
f (x) dx +

∫ 4

1
f (x) dx = 1 + 7 = 8.

∫ 2

1
f (x) dx

57.
∫ 1

4
f (x) dx

solution
∫ 1

4
f (x) dx = −

∫ 4

1
f (x) dx = −7.

∫ 4

2
f (x) dx

In Exercises 59–62, express each integral as a single integral.

59.
∫ 3

0
f (x) dx +

∫ 7

3
f (x) dx

solution
∫ 3

0
f (x) dx +

∫ 7

3
f (x) dx =

∫ 7

0
f (x) dx.

∫ 9

2
f (x) dx −

∫ 9

4
f (x) dx

61.
∫ 9

2
f (x) dx −

∫ 5

2
f (x) dx

solution
∫ 9

2
f (x) dx −

∫ 5

2
f (x) dx =

(∫ 5

2
f (x) dx +

∫ 9

5
f (x) dx

)
−
∫ 5

2
f (x) dx =

∫ 9

5
f (x) dx.

∫ 3

7
f (x) dx +

∫ 9

3
f (x) dxIn Exercises 63–66, calculate the integral, assuming that f is integrable and

∫ b

1
f (x) dx = 1 − b−1 for all b > 0.

63.
∫ 5

1
f (x) dx

solution
∫ 5

1
f (x) dx = 1 − 5−1 = 4

5
.
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∫ 5

3
f (x) dx

65.
∫ 6

1
(3f (x) − 4) dx

solution
∫ 6

1
(3f (x) − 4) dx = 3

∫ 6

1
f (x) dx − 4

∫ 6

1
1 dx = 3(1 − 6−1) − 4(6 − 1) = −35

2
.

∫ 1

1/2
f (x) dx

67. Explain the difference in graphical interpretation between
∫ b

a
f (x) dx and

∫ b

a
|f (x)| dx.

solution When f (x) takes on both positive and negative values on [a, b], ∫ b
a f (x) dx represents the signed area

between f (x) and the x-axis, whereas
∫ b
a |f (x)| dx represents the total (unsigned) area between f (x) and the x-axis.

Any negatively signed areas that were part of
∫ b
a f (x) dx are regarded as positive areas in

∫ b
a |f (x)| dx. Here is a graphical

example of this phenomenon.

−20

2 4−4 −2

10

−30

−10

x

Graph of f (x)

2 4−4 −2

10

20

30

x

Graph of | f (x)|

Use the graphical interpretation of the definite integral to explain the inequality∣∣∣∣∣
∫ b

a
f (x) dx

∣∣∣∣∣ ≤
∫ b

a
|f (x)| dx

where f (x) is continuous. Explain also why equality holds if and only if either f (x) ≥ 0 for all x or f (x) ≤ 0 for
all x.

69. Let f (x) = x. Find an interval [a, b] such that∣∣∣∣∣
∫ b

a
f (x) dx

∣∣∣∣∣ = 1

2
and

∫ b

a
|f (x)| dx = 3

2

solution If a > 0, then f (x) ≥ 0 for all x ∈ [a, b], so∣∣∣∣∣
∫ b

a
f (x) dx

∣∣∣∣∣ =
∫ b

a
|f (x)| dx

by the previous exercise. We find a similar result if b < 0. Thus, we must have a < 0 and b > 0. Now,

∫ b

a
|f (x)| dx = 1

2
a2 + 1

2
b2.

Because ∫ b

a
f (x) dx = 1

2
b2 − 1

2
a2,

then ∣∣∣∣∣
∫ b

a
f (x) dx

∣∣∣∣∣ = 1

2
|b2 − a2|.

If b2 > a2, then

1

2
a2 + 1

2
b2 = 3

2
and

1

2
(b2 − a2) = 1

2

yield a = −1 and b = √
2. On the other hand, if b2 < a2, then

1

2
a2 + 1

2
b2 = 3

2
and

1

2
(a2 − b2) = 1

2

yield a = −√
2 and b = 1.

Evaluate I =
∫ 2π

0
sin2 x dx and J =

∫ 2π

0
cos2 x dx as follows. First show with a graph that I = J . Then

prove that I + J = 2π .

In Exercises 71–74, calculate the integral.

71.
∫ 6

0
|3 − x| dx

solution Over the interval, the region between the curve and the interval [0, 6] consists of two triangles above the x

axis, each of which has height 3 and width 3, and so area 9
2 . The total area, hence the definite integral, is 9.
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654321

1

2

3

x

y

Alternately, ∫ 6

0
|3 − x| dx =

∫ 3

0
(3 − x) dx +

∫ 6

3
(x − 3) dx

= 3
∫ 3

0
dx −

∫ 3

0
x dx +

(∫ 6

0
x dx −

∫ 3

0
x dx

)
− 3

∫ 6

3
dx

= 9 − 1

2
32 + 1

2
62 − 1

2
32 − 9 = 9.

∫ 3

1
|2x − 4| dx

73.
∫ 1

−1
|x3| dx

solution

|x3| =
{

x3 x ≥ 0

−x3 x < 0.

Therefore, ∫ 1

−1
|x3| dx =

∫ 0

−1
−x3 dx +

∫ 1

0
x3 dx =

∫ −1

0
x3 dx +

∫ 1

0
x3 dx = 1

4
(−1)4 + 1

4
(1)4 = 1

2
.

∫ 2

0
|x2 − 1| dx

75. Use the Comparison Theorem to show that∫ 1

0
x5 dx ≤

∫ 1

0
x4 dx,

∫ 2

1
x4 dx ≤

∫ 2

1
x5 dx

solution On the interval [0, 1], x5 ≤ x4, so, by Theorem 5,

∫ 1

0
x5 dx ≤

∫ 1

0
x4 dx.

On the other hand, x4 ≤ x5 for x ∈ [1, 2], so, by the same Theorem,∫ 2

1
x4 dx ≤

∫ 2

1
x5 dx.

Prove that
1

3
≤
∫ 6

4

1

x
dx ≤ 1

2
.

77. Prove that 0.0198 ≤ ∫ 0.3
0.2 sin x dx ≤ 0.0296. Hint: Show that 0.198 ≤ sin x ≤ 0.296 for x in [0.2, 0.3].

solution For 0 ≤ x ≤ π
6 ≈ 0.52, we have d

dx
(sin x) = cos x > 0. Hence sin x is increasing on [0.2, 0.3].

Accordingly, for 0.2 ≤ x ≤ 0.3, we have

m = 0.198 ≤ 0.19867 ≈ sin 0.2 ≤ sin x ≤ sin 0.3 ≈ 0.29552 ≤ 0.296 = M

Therefore, by the Comparison Theorem, we have

0.0198 = m(0.3 − 0.2) =
∫ 0.3

0.2
m dx ≤

∫ 0.3

0.2
sin x dx ≤

∫ 0.3

0.2
M dx = M(0.3 − 0.2) = 0.0296.

Prove that 0.277 ≤
∫ π/4

π/8
cos x dx ≤ 0.363.

79. Prove that 0 ≤
∫ π/2

π/4

sin x

x
dx ≤

√
2

2
.

solution Let

f (x) = sin x

x
.
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As we can see in the sketch below, f (x) is decreasing on the interval [π/4, π/2]. Therefore f (x) ≤ f (π/4) for all x in

[π/4, π/2]. f (π/4) = 2
√

2
π , so:

∫ π/2

π/4

sin x

x
dx ≤

∫ π/2

π/4

2
√

2

π
dx = π

4

2
√

2

π
=

√
2

2
.

2

x

y

2/p

2/p

p /4 p /2

y = sin x
x

Find upper and lower bounds for
∫ 1

0

dx√
5x3 + 4

.
81. Suppose that f (x) ≤ g(x) on [a, b]. By the Comparison Theorem,

∫ b
a f (x) dx ≤ ∫ b

a g(x) dx. Is it also true
that f ′(x) ≤ g′(x) for x ∈ [a, b]? If not, give a counterexample.

solution The assertion f ′(x) ≤ g′(x) is false. Consider a = 0, b = 1, f (x) = x, g(x) = 2. f (x) ≤ g(x) for all x in
the interval [0, 1], but f ′(x) = 1 while g′(x) = 0 for all x.

State whether true or false. If false, sketch the graph of a counterexample.

(a) If f (x) > 0, then
∫ b

a
f (x) dx > 0.

(b) If
∫ b

a
f (x) dx > 0, then f (x) > 0.

Further Insights and Challenges
83. Explain graphically: If f (x) is an odd function, then∫ a

−a
f (x) dx = 0.

solution If f is an odd function, then f (−x) = −f (x) for all x. Accordingly, for every positively signed area in the
right half-plane where f is above the x-axis, there is a corresponding negatively signed area in the left half-plane where
f is below the x-axis. Similarly, for every negatively signed area in the right half-plane where f is below the x-axis,
there is a corresponding positively signed area in the left half-plane where f is above the x-axis. We conclude that the
net area between the graph of f and the x-axis over [−a, a] is 0, since the positively signed areas and negatively signed
areas cancel each other out exactly.

1 2−2

−1

−2

−4

2

4

x

y

Compute
∫ 1

−1
sin(sin(x))(sin2(x) + 1) dx.

85. Let k and b be positive. Show, by comparing the right-endpoint approximations, that∫ b

0
xk dx = bk+1

∫ 1

0
xk dx

solution Let k and b be any positive numbers. Let f (x) = xk on [0, b]. Since f is continuous, both
∫ b

0 f (x) dx

and
∫ 1

0 f (x) dx exist. Let N be a positive integer and set �x = (b − 0) /N = b/N . Let xj = a + j�x = bj/N , j =
1, 2, . . . , N be the right endpoints of the N subintervals of [0, b]. Then the right-endpoint approximation to

∫ b
0 f (x) dx =∫ b

0 xk dx is

RN = �x

N∑
j=1

f (xj ) = b

N

N∑
j=1

(
bj

N

)k

= bk+1

⎛
⎝ 1

Nk+1

N∑
j=1

jk

⎞
⎠ .

In particular, if b = 1 above, then the right-endpoint approximation to
∫ 1

0 f (x) dx = ∫ 1
0 xk dx is

SN = �x

N∑
j=1

f (xj ) = 1

N

N∑
j=1

(
j

N

)k

= 1

Nk+1

N∑
j=1

jk = 1

bk+1
RN

In other words, RN = bk+1SN . Therefore,∫ b

0
xk dx = lim

N→∞ RN = lim
N→∞ bk+1SN = bk+1 lim

N→∞ SN = bk+1
∫ 1

0
xk dx.
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Suppose that f and g are continuous functions such that, for all a,∫ a

−a
f (x) dx =

∫ a

−a
g(x) dx

Give an intuitive argument showing that f (0) = g(0). Explain your idea with a graph.

87. Theorem 4 remains true without the assumption a ≤ b ≤ c. Verify this for the cases b < a < c and c < a < b.

solution The additivity property of definite integrals states for a ≤ b ≤ c, we have
∫ c
a f (x) dx = ∫ b

a f (x) dx +∫ c
b f (x) dx.

• Suppose that we have b < a < c. By the additivity property, we have
∫ c
b f (x) dx = ∫ a

b f (x) dx + ∫ c
a f (x) dx.

Therefore,
∫ c
a f (x) dx = ∫ c

b f (x) dx − ∫ a
b f (x) dx = ∫ b

a f (x) dx + ∫ c
b f (x) dx.

• Now suppose that we have c < a < b. By the additivity property, we have
∫ b
c f (x) dx = ∫ a

c f (x) dx + ∫ b
a f (x) dx.

Therefore,
∫ c
a f (x) dx = − ∫ a

c f (x) dx = ∫ b
a f (x) dx − ∫ b

c f (x) dx = ∫ b
a f (x) dx + ∫ c

b f (x) dx.

• Hence the additivity property holds for all real numbers a, b, and c, regardless of their relationship amongst each
other.

5.3 The Fundamental Theorem of Calculus, Part I

Preliminary Questions
1. Suppose that F ′(x) = f (x) and F(0) = 3, F(2) = 7.

(a) What is the area under y = f (x) over [0, 2] if f (x) ≥ 0?

(b) What is the graphical interpretation of F(2) − F(0) if f (x) takes on both positive and negative values?

solution

(a) If f (x) ≥ 0 over [0, 2], then the area under y = f (x) is F(2) − F(0) = 7 − 3 = 4.

(b) If f (x) takes on both positive and negative values, then F(2) − F(0) gives the signed area between y = f (x) and
the x-axis.

2. Suppose that f (x) is a negative function with antiderivative F such that F(1) = 7 and F(3) = 4. What is the area
(a positive number) between the x-axis and the graph of f (x) over [1, 3]?

solution
∫ 3

1
f (x) dx represents the signed area bounded by the curve and the interval [1, 3]. Since f (x) is negative

on [1, 3],
∫ 3

1
f (x) dx is the negative of the area. Therefore, if A is the area between the x-axis and the graph of f (x),

we have:

A = −
∫ 3

1
f (x) dx = − (F (3) − F(1)) = −(4 − 7) = −(−3) = 3.

3. Are the following statements true or false? Explain.

(a) FTC I is valid only for positive functions.

(b) To use FTC I, you have to choose the right antiderivative.

(c) If you cannot find an antiderivative of f (x), then the definite integral does not exist.

solution

(a) False. The FTC I is valid for continuous functions.

(b) False. The FTC I works for any antiderivative of the integrand.

(c) False. If you cannot find an antiderivative of the integrand, you cannot use the FTC I to evaluate the definite integral,
but the definite integral may still exist.

4. Evaluate
∫ 9

2
f ′(x) dx where f (x) is differentiable and f (2) = f (9) = 4.

solution Because f is differentiable,
∫ 9

2
f ′(x) dx = f (9) − f (2) = 4 − 4 = 0.
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Exercises
In Exercises 1–4, sketch the region under the graph of the function and find its area using FTC I.

1. f (x) = x2, [0, 1]
solution

0.2 0.4 0.6 0.8 1

0.2

0.4

0.8

0.6

1

x

y

We have the area

A =
∫ 1

0
x2 dx = 1

3
x3
∣∣∣∣1
0

= 1

3
.

f (x) = 2x − x2, [0, 2]3. f (x) = x−2, [1, 2]
solution

1.0
0.2

0.4

0.6

0.8

1.0

1.2 1.4 1.6 1.8 2.0

y

x

We have the area

A =
∫ 2

1
x−2 dx = x−1

−1

∣∣∣∣∣
2

1

= −1

2
+ 1 = 1

2
.

f (x) = cos x,
[
0, π

2

]In Exercises 5–34, evaluate the integral using FTC I.

5.
∫ 6

3
x dx

solution
∫ 6

3
x dx = 1

2
x2
∣∣∣∣6
3

= 1

2
(6)2 − 1

2
(3)2 = 27

2
.

∫ 9

0
2 dx

7.
∫ 5

−3
(3t − 4) dt

solution
∫ 5

−3
(3t − 4) dt =

(
3

2
t2 − 4t

) ∣∣∣∣5−3
= 3

2
52 − 4 · 5 − 3

2
(−3)2 + 4 · (−3) = −8

∫ 4

2
(24 − 5u) du

9.
∫ 1

0
(4x − 9x2) dx

solution
∫ 1

0
(4x − 9x2) dx = (2x2 − 3x3)

∣∣∣∣1
0

= (2 − 3) − (0 − 0) = −1.

∫ 2

−3
u2 du

11.
∫ 2

0
(12x5 + 3x2 − 4x) dx

solution
∫ 2

0
(12x5 + 3x2 − 4x) dx = (2x6 + x3 − 2x2)

∣∣∣∣2
0

= (128 + 8 − 8) − (0 + 0 − 0) = 128.

∫ 2

−2
(10x9 + 3x5) dx

13.
∫ 0

3
(2t3 − 6t2) dt

solution
∫ 0

3
(2t3 − 6t2) dt =

(
1

2
t4 − 2t3

)∣∣∣∣0
3

= (0 − 0) −
(

81

2
− 54

)
= 27

2
.
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∫ 1

−1
(5u4 + u2 − u) du

15.
∫ 4

0

√
y dy

solution
∫ 4

0

√
y dy =

∫ 4

0
y1/2 dy = 2

3
y3/2

∣∣∣∣4
0

= 2

3
(4)3/2 − 2

3
(0)3/2 = 16

3
.

∫ 8

1
x4/3 dx

17.
∫ 1

1/16
t1/4 dt

solution
∫ 1

1/16
t1/4 dt = 4

5
t5/4

∣∣∣∣1
1/16

= 4

5
− 1

40
= 31

40
.

∫ 1

4
t5/2 dt

19.
∫ 3

1

dt

t2

solution
∫ 3

1

dt

t2
=
∫ 3

1
t−2 dt = −t−1

∣∣∣∣3
1

= −1

3
+ 1 = 2

3
.

∫ 4

1
x−4 dx

21.
∫ 1

1/2

8

x3
dx

solution
∫ 1

1/2

8

x3
dx =

∫ 1

1/2
8x−3 dx = −4x−2

∣∣∣∣1
1/2

= −4 + 16 = 12.

∫ −1

−2

1

x3
dx

23.
∫ 2

1
(x2 − x−2) dx

solution
∫ 2

1
(x2 − x−2) dx =

(
1

3
x3 + x−1

) ∣∣∣∣2
1

=
(

8

3
+ 1

2

)
−
(

1

3
+ 1

)
= 11

6
.

∫ 9

1
t−1/2 dt

25.
∫ 27

1

t + 1√
t

dt

solution

∫ 27

1

t + 1√
t

dt =
∫ 27

1
(t1/2 + t−1/2) dt =

(
2

3
t3/2 + 2t1/2

) ∣∣∣∣27

1

=
(

2

3
(81

√
3) + 6

√
3

)
−
(

2

3
+ 2

)
= 60

√
3 − 8

3
.

∫ 1

8/27

10t4/3 − 8t1/3

t2
dt

27.
∫ 3π/4

π/4
sin θ dθ

solution
∫ 3π/4

π/4
sin θ dθ = − cos θ

∣∣∣∣3π/4

π/4
=

√
2

2
+

√
2

2
= √

2.

∫ 4π

2π
sin x dx

29.
∫ π/2

0
cos

(
1

3
θ

)
dθ

solution
∫ π/2

0
cos

(
1

3
θ

)
dθ = 3 sin

(
1

3
θ

)∣∣∣∣π/2

0
= 3

2
.

∫ 5π/8

π/4
cos 2x dx

31.
∫ π/6

0
sec2

(
3t − π

6

)
dt

solution
∫ π/6

0
sec2

(
3t − π

6

)
dt = 1

3
tan
(

3t − π

6

)∣∣∣∣π/6

0
= 1

3

(√
3 + 1√

3

)
= 4

3
√

3
.

∫ π/6

0
sec θ tan θ dθ

33.
∫ π/10

π/20
csc 5x cot 5x dx

solution
∫ π/10

π/20
csc 5x cot 5x dx = −1

5
csc 5x

∣∣∣∣π/10

π/20
= −1

5

(
1 − √

2
)

= 1

5
(
√

2 − 1).

∫ π/14

π/28
csc2 7y dy

In Exercises 35–40, write the integral as a sum of integrals without absolute values and evaluate.

35.
∫ 1

−2
|x| dx

solution

∫ 1

−2
|x| dx =

∫ 0

−2
(−x) dx +

∫ 1

0
x dx = −1

2
x2
∣∣∣∣0−2

+ 1

2
x2
∣∣∣∣1
0

= 0 −
(

−1

2
(4)

)
+ 1

2
= 5

2
.
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∫ 5

0
|3 − x| dx

37.
∫ 3

−2
|x3| dx

solution

∫ 3

−2
|x3| dx =

∫ 0

−2
(−x3) dx +

∫ 3

0
x3 dx = −1

4
x4
∣∣∣∣0−2

+ 1

4
x4
∣∣∣∣3
0

= 0 + 1

4
(−2)4 + 1

4
34 − 0 = 97

4
.

∫ 3

0
|x2 − 1| dx

39.
∫ π

0
|cos x| dx

solution

∫ π

0
|cos x| dx =

∫ π/2

0
cos x dx +

∫ π

π/2
(− cos x) dx = sin x

∣∣∣∣π/2

0
− sin x

∣∣∣∣π
π/2

= 1 − 0 − (−1 − 0) = 2.

∫ 5

0
|x2 − 4x + 3| dx

In Exercises 41–44, evaluate the integral in terms of the constants.

41.
∫ b

1
x3 dx

solution
∫ b

1
x3 dx = 1

4
x4
∣∣∣∣b
1

= 1

4
b4 − 1

4
(1)4 = 1

4

(
b4 − 1

)
for any number b.

∫ a

b
x4 dx

43.
∫ b

1
x5 dx

solution
∫ b

1
x5 dx = 1

6
x6
∣∣∣∣b
1

= 1

6
b6 − 1

6
(1)6 = 1

6
(b6 − 1) for any number b.

∫ x

−x
(t3 + t) dt

45. Calculate
∫ 3

−2
f (x) dx, where

f (x) =
{

12 − x2 for x ≤ 2

x3 for x > 2

solution

∫ 3

−2
f (x) dx =

∫ 2

−2
f (x) dx +

∫ 3

2
f (x) dx =

∫ 2

−2
(12 − x2) dx +

∫ 3

2
x3 dx

=
(

12x − 1

3
x3
)∣∣∣∣2−2

+ 1

4
x4
∣∣∣∣3
2

=
(

12(2) − 1

3
23
)

−
(

12(−2) − 1

3
(−2)3

)
+ 1

4
34 − 1

4
24

= 128

3
+ 65

4
= 707

12
.

Calculate
∫ 2π

0
f (x) dx, where

f (x) =
{

cos x for x ≤ π

cos x − sin 2x for x > π

47. Use FTC I to show that
∫ 1

−1
xn dx = 0 if n is an odd whole number. Explain graphically.

solution We have

∫ 1

−1
xn dx = xn+1

n + 1

∣∣∣∣1−1
= (1)n+1

n + 1
− (−1)n+1

n + 1
.

Because n is odd, n + 1 is even, which means that (−1)n+1 = (1)n+1 = 1. Hence

(1)n+1

n + 1
− (−1)n+1

n + 1
= 1

n + 1
− 1

n + 1
= 0.

Graphically speaking, for an odd function such as x3 shown here, the positively signed area from x = 0 to x = 1 cancels
the negatively signed area from x = −1 to x = 0.
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0.5 1−1

−0.5

−0.5

−1

0.5

1

x

y

Plot the function f (x) = sin 3x − x. Find the positive root of f (x) to three places and use it to find the area
under the graph of f (x) in the first quadrant.

49. Calculate F(4) given that F(1) = 3 and F ′(x) = x2. Hint: Express F(4) − F(1) as a definite integral.

solution By FTC I,

F(4) − F(1) =
∫ 4

1
x2 dx = 43 − 13

3
= 21

Therefore F(4) = F(1) + 21 = 3 + 21 = 24.

Calculate G(16), where dG/dt = t−1/2 and G(9) = −5.51. Does
∫ 1

0
xn dx get larger or smaller as n increases? Explain graphically.

solution Let n ≥ 0 and consider
∫ 1

0 xn dx. (Note: for n < 0 the integrand xn → ∞ as x → 0+, so we exclude this
possibility.) Now

∫ 1

0
xn dx =

(
1

n + 1
xn+1

)∣∣∣∣1
0

=
(

1

n + 1
(1)n+1

)
−
(

1

n + 1
(0)n+1

)
= 1

n + 1
,

which decreases as n increases. Recall that
∫ 1

0 xn dx represents the area between the positive curve f (x) = xn and the
x-axis over the interval [0, 1]. Accordingly, this area gets smaller as n gets larger. This is readily evident in the following
graph, which shows curves for several values of n.

1

y

10

1/4
1/2

1
2

4
8

x

Show that the area of the shaded parabolic arch in Figure 7 is equal to four-thirds the area of the triangle shown.Further Insights and Challenges
53. Prove a famous result of Archimedes (generalizing Exercise 52): For r < s, the area of the shaded region in Figure 8
is equal to four-thirds the area of triangle �ACE, where C is the point on the parabola at which the tangent line is parallel
to secant line AE.

(a) Show that C has x-coordinate (r + s)/2.

(b) Show that ABDE has area (s − r)3/4 by viewing it as a parallelogram of height s − r and base of length CF .

(c) Show that �ACE has area (s − r)3/8 by observing that it has the same base and height as the parallelogram.

(d) Compute the shaded area as the area under the graph minus the area of a trapezoid, and prove Archimedes’ result.

r s

y

B C D

A F E
x

2
r + s

FIGURE 8 Graph of f (x) = (x − a)(b − x).

solution

(a) The slope of the secant line AE is

f (s) − f (r)

s − r
= (s − a)(b − s) − (r − a)(b − r)

s − r
= a + b − (r + s)
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and the slope of the tangent line along the parabola is

f ′(x) = a + b − 2x.

If C is the point on the parabola at which the tangent line is parallel to the secant line AE, then its x-coordinate must
satisfy

a + b − 2x = a + b − (r + s) or x = r + s

2
.

(b) Parallelogram ABDE has height s − r and base of length CF . Since the equation of the secant line AE is

y = [a + b − (r + s)] (x − r) + (r − a)(b − r),

the length of the segment CF is(
r + s

2
− a

)(
b − r + s

2

)
− [a + b − (r + s)]

(
r + s

2
− r

)
− (r − a)(b − r) = (s − r)2

4
.

Thus, the area of ABDE is (s−r)3

4 .

(c) Triangle ACE is comprised of �ACF and �CEF . Each of these smaller triangles has height s−r
2 and base of length

(s−r)2

4 . Thus, the area of �ACE is

1

2

s − r

2
· (s − r)2

4
+ 1

2

s − r

2
· (s − r)2

4
= (s − r)3

8
.

(d) The area under the graph of the parabola between x = r and x = s is∫ s

r
(x − a)(b − x) dx =

(
−abx + 1

2
(a + b)x2 − 1

3
x3
)∣∣∣∣s

r

= −abs + 1

2
(a + b)s2 − 1

3
s3 + abr − 1

2
(a + b)r2 + 1

3
r3

= ab(r − s) + 1

2
(a + b)(s − r)(s + r) + 1

3
(r − s)(r2 + rs + s2),

while the area of the trapezoid under the shaded region is

1

2
(s − r) [(s − a)(b − s) + (r − a)(b − r)]

= 1

2
(s − r)

[
−2ab + (a + b)(r + s) − r2 − s2

]

= ab(r − s) + 1

2
(a + b)(s − r)(r + s) + 1

2
(r − s)(r2 + s2).

Thus, the area of the shaded region is

(r − s)

(
1

3
r2 + 1

3
rs + 1

3
s2 − 1

2
r2 − 1

2
s2
)

= (s − r)

(
1

6
r2 − 1

3
rs + 1

6
s2
)

= 1

6
(s − r)3,

which is four-thirds the area of the triangle ACE.

(a) Apply the Comparison Theorem (Theorem 5 in Section 5.2) to the inequality sin x ≤ x (valid for x ≥ 0) to prove
that

1 − x2

2
≤ cos x ≤ 1

(b) Apply it again to prove that

x − x3

6
≤ sin x ≤ x (for x ≥ 0)

(c) Verify these inequalities for x = 0.3.

55. Use the method of Exercise 54 to prove that

1 − x2

2
≤ cos x ≤ 1 − x2

2
+ x4

24

x − x3

6
≤ sin x ≤ x − x3

6
+ x5

120
(for x ≥ 0)

Verify these inequalities for x = 0.1. Why have we specified x ≥ 0 for sin x but not for cos x?

solution By Exercise 54, t − 1
6 t3 ≤ sin t ≤ t for t > 0. Integrating this inequality over the interval [0, x], and then

solving for cos x, yields:

1

2
x2 − 1

24
x4 ≤ 1 − cos x ≤ 1

2
x2

1 − 1

2
x2 ≤ cos x ≤ 1 − 1

2
x2 + 1

24
x4.

These inequalities apply for x ≥ 0. Since cos x, 1 − x2

2 , and 1 − x2

2 + x4

24 are all even functions, they also apply for
x ≤ 0.
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Having established that

1 − t2

2
≤ cos t ≤ 1 − t2

2
+ t4

24
,

for all t ≥ 0, we integrate over the interval [0, x], to obtain:

x − x3

6
≤ sin x ≤ x − x3

6
+ x5

120
.

The functions sin x, x − 1
6x3 and x − 1

6x3 + 1
120x5 are all odd functions, so the inequalities are reversed for x < 0.

Evaluating these inequalities at x = 0.1 yields

0.995000000 ≤ 0.995004165 ≤ 0.995004167

0.0998333333 ≤ 0.0998334166 ≤ 0.0998334167,

both of which are true.

Calculate the next pair of inequalities for sin x and cos x by integrating the results of Exercise 55. Can you guess
the general pattern?

57. Use FTC I to prove that if |f ′(x)| ≤ K for x ∈ [a, b], then |f (x) − f (a)| ≤ K|x − a| for x ∈ [a, b].
solution Let a > b be real numbers, and let f (x) be such that |f ′(x)| ≤ K for x ∈ [a, b]. By FTC,∫ x

a
f ′(t) dt = f (x) − f (a).

Since f ′(x) ≥ −K for all x ∈ [a, b], we get:

f (x) − f (a) =
∫ x

a
f ′(t) dt ≥ −K(x − a).

Since f ′(x) ≤ K for all x ∈ [a, b], we get:

f (x) − f (a) =
∫ x

a
f ′(t) dt ≤ K(x − a).

Combining these two inequalities yields

−K(x − a) ≤ f (x) − f (a) ≤ K(x − a),

so that, by definition,

|f (x) − f (a)| ≤ K|x − a|.

(a) Use Exercise 57 to prove that | sin a − sin b| ≤ |a − b| for all a, b.

(b) Let f (x) = sin(x + a) − sin x. Use part (a) to show that the graph of f (x) lies between the horizontal lines
y = ±a.

(c) Plot f (x) and the lines y = ±a to verify (b) for a = 0.5 and a = 0.2.

5.4 The Fundamental Theorem of Calculus, Part II

Preliminary Questions

1. Let G(x) =
∫ x

4

√
t3 + 1 dt .

(a) Is the FTC needed to calculate G(4)?
(b) Is the FTC needed to calculate G′(4)?

solution

(a) No. G(4) = ∫ 4
4

√
t3 + 1 dt = 0.

(b) Yes. By the FTC II, G′(x) =
√

x3 + 1, so G′(4) = √
65.

2. Which of the following is an antiderivative F(x) of f (x) = x2 satisfying F(2) = 0?

(a)
∫ x

2
2t dt (b)

∫ 2

0
t2 dt (c)

∫ x

2
t2 dt

solution The correct answer is (c):
∫ x

2
t2 dt .

3. Does every continuous function have an antiderivative? Explain.

solution Yes. All continuous functions have an antiderivative, namely
∫ x

a
f (t) dt .

4. Let G(x) =
∫ x3

4
sin t dt . Which of the following statements are correct?

(a) G(x) is the composite function sin(x3).
(b) G(x) is the composite function A(x3), where

A(x) =
∫ x

4
sin(t) dt
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(c) G(x) is too complicated to differentiate.

(d) The Product Rule is used to differentiate G(x).

(e) The Chain Rule is used to differentiate G(x).

(f) G′(x) = 3x2 sin(x3).

solution Statements (b), (e), and (f) are correct.

Exercises
1. Write the area function of f (x) = 2x + 4 with lower limit a = −2 as an integral and find a formula for it.

solution Let f (x) = 2x + 4. The area function with lower limit a = −2 is

A(x) =
∫ x

a
f (t) dt =

∫ x

−2
(2t + 4) dt.

Carrying out the integration, we find∫ x

−2
(2t + 4) dt = (t2 + 4t)

∣∣∣∣x−2
= (x2 + 4x) − ((−2)2 + 4(−2)) = x2 + 4x + 4

or (x + 2)2. Therefore, A(x) = (x + 2)2.

Find a formula for the area function of f (x) = 2x + 4 with lower limit a = 0.3. Let G(x) = ∫ x
1 (t2 − 2) dt . Calculate G(1), G′(1) and G′(2). Then find a formula for G(x).

solution Let G(x) = ∫ x
1 (t2 − 2) dt . Then G(1) = ∫ 1

1 (t2 − 2) dt = 0. Moreover, G′(x) = x2 − 2, so that
G′(1) = −1 and G′(2) = 2. Finally,

G(x) =
∫ x

1
(t2 − 2) dt =

(
1

3
t3 − 2t

)∣∣∣∣x
1

=
(

1

3
x3 − 2x

)
−
(

1

3
(1)3 − 2(1)

)
= 1

3
x3 − 2x + 5

3
.

Find F(0), F ′(0), and F ′(3), where F(x) =
∫ x

0

√
t2 + t dt .

5. Find G(1), G′(0), and G′(π/4), where G(x) =
∫ x

1
tan t dt .

solution By definition, G(1) = ∫ 1
1 tan t dt = 0. By FTC, G′(x) = tan x, so that G′(0) = tan 0 = 0 and G′( π

4 ) =
tan π

4 = 1.

Find H(−2) and H ′(−2), where H(x) =
∫ x

−2

du

u2 + 1
.

In Exercises 7–16, find formulas for the functions represented by the integrals.

7.
∫ x

2
u4 du

solution F(x) =
∫ x

2
u4 du = 1

5
u5
∣∣∣∣x
2

= 1

5
x5 − 32

5
.

∫ x

2
(12t2 − 8t) dt

9.
∫ x

0
sin u du

solution F(x) =
∫ x

0
sin u du = (− cos u)

∣∣∣∣x
0

= 1 − cos x.

∫ x

−π/4
sec2 θ dθ11.

∫ √
x

2

dt

t2

solution F(x) =
∫ √

x

2

dt

t2
= −1

t

∣∣∣∣
√

x

2
= 1

2
− 1√

x
.

∫ 4

sin θ
(5t + 9) dt

13.
∫ x2

1
t dt

solution F(x) =
∫ x2

1
t dt = 1

2
t2
∣∣∣∣x

2

1
= 1

2
x4 − 1

2
.

∫ x/4

x/2
sec2 u du

15.
∫ x3/2

3
√

x
t3 dt

solution F(x) =
∫ x3/2

3
√

x
t3 dt = 1

4
t4
∣∣∣∣x

3/2

3
√

x

= 1

4
x6 − 81

4
x2
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∫ x

−2x
sec2 t dt

In Exercises 17–20, express the antiderivative F(x) of f (x) satisfying the given initial condition as an integral.

17. f (x) =
√

x3 + 1, F(5) = 0

solution The antiderivative F(x) of
√

x3 + 1 satisfying F(5) = 0 is F(x) =
∫ x

5

√
t3 + 1 dt .

f (x) = x + 1

x2 + 9
, F(7) = 0

19. f (x) = sec x, F(0) = 0

solution The antiderivative F(x) of f (x) = sec x satisfying F(0) = 0 is F(x) =
∫ x

0
sec t dt .

f (θ) = sin(θ3), F(−π) = 0In Exercises 21–24, calculate the derivative.

21.
d

dx

∫ x

0
(t5 − 9t3) dt

solution By FTC II,
d

dx

∫ x

0
(t5 − 9t3) dt = x5 − 9x3.

d

dθ

∫ θ

1
cot u du

23.
d

dt

∫ t

100
sec(5x − 9) dx

solution By FTC II,
d

dt

∫ t

100
sec(5x − 9) dx = sec(5t − 9).

d

ds

∫ s

−2
tan

(
1

1 + u2

)
du

25. Let A(x) =
∫ x

0
f (t) dt for f (x) in Figure 8.

(a) Calculate A(2), A(3), A′(2), and A′(3).
(b) Find formulas for A(x) on [0, 2] and [2, 4] and sketch the graph of A(x).

4321

2

3

4

1

x

y

y = f (x)

FIGURE 8

solution

(a) A(2) = 2 · 2 = 4, the area under f (x) from x = 0 to x = 2, while A(3) = 2 · 3 + 1
2 = 6.5, the area under f (x)

from x = 0 to x = 3. By the FTC, A′(x) = f (x) so A′(2) = f (2) = 2 and A′(3) = f (3) = 3.
(b) For each x ∈ [0, 2], the region under the graph of y = f (x) is a rectangle of length x and height 2; for each x ∈ [2, 4],
the region is comprised of a square of side length 2 and a trapezoid of height x − 2 and bases 2 and x. Hence,

A(x) =
{

2x, 0 ≤ x < 2
1
2x2 + 2, 2 ≤ x ≤ 4

A graph of the area function A(x) is shown below.

4321
x

Area Function
A(x)

2

4

8

6

10

y

Make a rough sketch of the graph of A(x) =
∫ x

0
g(t) dt for g(x) in Figure 9.

FIGURE 9

27. Verify:
∫ x

0
|t | dt = 1

2
x|x|. Hint: Consider x ≥ 0 and x ≤ 0 separately.

solution Let f (t) = |t | =
{

t for t ≥ 0

−t for t < 0
. Then

F(x) =
∫ x

0
f (t) dt =

⎧⎪⎪⎨
⎪⎪⎩

∫ x

0
t dt for x ≥ 0

∫ x

0
−t dt for x < 0

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

2
t2
∣∣∣∣x
0

= 1

2
x2 for x ≥ 0

(
−1

2
t2
)∣∣∣∣x

0
= −1

2
x2 for x < 0

For x ≥ 0, we have F(x) = 1
2x2 = 1

2x |x| since |x| = x, while for x < 0, we have F(x) = − 1
2x2 = 1

2x |x| since

|x| = −x. Therefore, for all real x we have F(x) = 1
2x |x|.

Find G′(1), where G(x) =
∫ x2

0

√
t3 + 3 dt .
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In Exercises 29–34, calculate the derivative.

29.
d

dx

∫ x2

0

t dt

t + 1

solution By the Chain Rule and the FTC,
d

dx

∫ x2

0

t dt

t + 1
= x2

x2 + 1
· 2x = 2x3

x2 + 1
.

d

dx

∫ 1/x

1
cos3 t dt

31.
d

ds

∫ cos s

−6
u4 du

solution By the Chain Rule and the FTC,
d

ds

∫ cos s

−6
u4 du = cos4 s(− sin s) = − cos4 s sin s.

d

dx

∫ x4

x2

√
t dt

Hint for Exercise 32: F(x) = A(x4) − A(x2).

33.
d

dx

∫ x2

√
x

tan t dt

solution Let

G(x) =
∫ x2

√
x

tan t dt =
∫ x2

0
tan t dt −

∫ √
x

0
tan t dt.

Applying the Chain Rule combined with FTC twice, we have

G′(x) = tan(x2) · 2x − tan(
√

x) · 1

2
x−1/2 = 2x tan(x2) − tan(

√
x)

2
√

x
.

d

du

∫ 3u

−u

√
x2 + 1 dx

In Exercises 35–38, with f (x) as in Figure 10 let

A(x) =
∫ x

0
f (t) dt and B(x) =

∫ x

2
f (t) dt .

x

y

63 4 521

2

1

0

−1

−2

y = f (x)

FIGURE 10

35. Find the min and max of A(x) on [0, 6].
solution The minimum values of A(x) on [0, 6] occur where A′(x) = f (x) goes from negative to positive. This
occurs at one place, where x = 1.5. The minimum value of A(x) is therefore A(1.5) = −1.25. The maximum values of
A(x) on [0, 6] occur where A′(x) = f (x) goes from positive to negative. This occurs at one place, where x = 4.5. The
maximum value of A(x) is therefore A(4.5) = 1.25.

Find the min and max of B(x) on [0, 6].37. Find formulas for A(x) and B(x) valid on [2, 4].

solution On the interval [2, 4], A′(x) = B ′(x) = f (x) = 1. A(2) =
∫ 2

0
f (t) dt = −1 and B(2) =

∫ 2

2
f (t) dt = 0.

Hence A(x) = (x − 2) − 1 and B(x) = (x − 2).

Find formulas for A(x) and B(x) valid on [4, 5].39. Let A(x) =
∫ x

0
f (t) dt , with f (x) as in Figure 11.

(a) Does A(x) have a local maximum at P ?

(b) Where does A(x) have a local minimum?

(c) Where does A(x) have a local maximum?

(d) True or false? A(x) < 0 for all x in the interval shown.

x

y

SR

Q

P
y = f (x)

FIGURE 11 Graph of f (x).
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solution
(a) In order for A(x) to have a local maximum, A′(x) = f (x) must transition from positive to negative. As this does not
happen at P , A(x) does not have a local maximum at P .
(b) A(x) will have a local minimum when A′(x) = f (x) transitions from negative to positive. This happens at R, so
A(x) has a local minimum at R.
(c) A(x) will have a local maximum when A′(x) = f (x) transitions from positive to negative. This happens at S, so
A(x) has a local maximum at S.
(d) It is true that A(x) < 0 on I since the signed area from 0 to x is clearly always negative from the figure.

Determine f (x), assuming that
∫ x

0
f (t) dt = x2 + x.

41. Determine the function g(x) and all values of c such that∫ x

c
g(t) dt = x2 + x − 6

solution By the FTC II we have

g(x) = d

dx
(x2 + x − 6) = 2x + 1

and therefore, ∫ x

c
g(t) dt = x2 + x − (c2 + c)

We must choose c so that c2 + c = 6. We can take c = 2 or c = −3.

Find a ≤ b such that
∫ b

a
(x2 − 9) dx has minimal value.In Exercises 43 and 44, let A(x) =
∫ x

a
f (t) dt .

43. Area Functions and Concavity Explain why the following statements are true. Assume f (x) is differen-
tiable.

(a) If c is an inflection point of A(x), then f ′(c) = 0.
(b) A(x) is concave up if f (x) is increasing.
(c) A(x) is concave down if f (x) is decreasing.

solution
(a) If x = c is an inflection point of A(x), then A′′(c) = f ′(c) = 0.
(b) If A(x) is concave up, then A′′(x) > 0. Since A(x) is the area function associated with f (x), A′(x) = f (x) by FTC
II, so A′′(x) = f ′(x). Therefore f ′(x) > 0, so f (x) is increasing.
(c) If A(x) is concave down, then A′′(x) < 0. Since A(x) is the area function associated with f (x), A′(x) = f (x) by
FTC II, so A′′(x) = f ′(x). Therefore, f ′(x) < 0 and so f (x) is decreasing.

Match the property of A(x) with the corresponding property of the graph of f (x). Assume f (x) is differentiable.

Area function A(x)

(a) A(x) is decreasing.

(b) A(x) has a local maximum.

(c) A(x) is concave up.

(d) A(x) goes from concave up to concave down.

Graph of f (x)

(i) Lies below the x-axis.

(ii) Crosses the x-axis from positive to negative.

(iii) Has a local maximum.

(iv) f (x) is increasing.

45. Let A(x) =
∫ x

0
f (t) dt , with f (x) as in Figure 12. Determine:

(a) The intervals on which A(x) is increasing and decreasing
(b) The values x where A(x) has a local min or max
(c) The inflection points of A(x)

(d) The intervals where A(x) is concave up or concave down

2 4 6 8 10 12
x

y

y = f (x)

FIGURE 12

solution
(a) A(x) is increasing when A′(x) = f (x) > 0, which corresponds to the intervals (0, 4) and (8, 12). A(x) is decreasing
when A′(x) = f (x) < 0, which corresponds to the intervals (4, 8) and (12, ∞).
(b) A(x) has a local minimum when A′(x) = f (x) changes from − to +, corresponding to x = 8. A(x) has a local
maximum when A′(x) = f (x) changes from + to −, corresponding to x = 4 and x = 12.
(c) Inflection points of A(x) occur where A′′(x) = f ′(x) changes sign, or where f changes from increasing to decreasing
or vice versa. Consequently, A(x) has inflection points at x = 2, x = 6, and x = 10.
(d) A(x) is concave up when A′′(x) = f ′(x) is positive or f (x) is increasing, which corresponds to the intervals (0, 2)

and (6, 10). Similarly, A(x) is concave down when f (x) is decreasing, which corresponds to the intervals (2, 6) and
(10, ∞).
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Let f (x) = x2 − 5x − 6 and F(x) =
∫ x

0
f (t) dt .

(a) Find the critical points of F(x) and determine whether they are local minima or local maxima.

(b) Find the points of inflection of F(x) and determine whether the concavity changes from up to down or from
down to up.

(c) Plot f (x) and F(x) on the same set of axes and confirm your answers to (a) and (b).

47. Sketch the graph of an increasing function f (x) such that both f ′(x) and A(x) = ∫ x
0 f (t) dt are decreasing.

solution If f ′(x) is decreasing, then f ′′(x) must be negative. Furthermore, if A(x) =
∫ x

0
f (t) dt is decreasing, then

A′(x) = f (x) must also be negative. Thus, we need a function which is negative but increasing and concave down. The
graph of one such function is shown below.

x

y

Figure 13 shows the graph of f (x) = x sin x. Let F(x) =
∫ x

0
t sin t dt .

(a) Locate the local max and absolute max of F(x) on [0, 3π ].
(b) Justify graphically: F(x) has precisely one zero in [π, 2π ].
(c) How many zeros does F(x) have in [0, 3π ]?
(d) Find the inflection points of F(x) on [0, 3π ]. For each one, state whether the concavity changes from up to down
or from down to up.

49. Find the smallest positive critical point of

F(x) =
∫ x

0
cos(t3/2) dt

and determine whether it is a local min or max. Then find the smallest positive inflection point of F(x) and use a graph
of y = cos(x3/2) to determine whether the concavity changes from up to down or from down to up.

solution A critical point of F(x) occurs where F ′(x) = cos(x3/2) = 0. The smallest positive critical points occurs

where x3/2 = π/2, so that x = (π/2)2/3. F ′(x) goes from positive to negative at this point, so x = (π/2)2/3 corresponds
to a local maximum..

Candidate inflection points of F(x) occur where F ′′(x) = 0. By FTC, F ′(x) = cos(x3/2), so F ′′(x) =
−(3/2)x1/2 sin(x3/2). Finding the smallest positive solution of F ′′(x) = 0, we get:

−(3/2)x1/2 sin(x3/2) = 0

sin(x3/2) = 0 (since x > 0)

x3/2 = π

x = π2/3 ≈ 2.14503.

From the plot below, we see that F ′(x) = cos(x3/2) changes from decreasing to increasing at π2/3, so F(x) changes
from concave down to concave up at that point.

x

y

3

−1

−0.5

0.5

1

21

Further Insights and Challenges

Proof of FTC II The proof in the text assumes that f (x) is increasing. To prove it for all continuous functions,
let m(h) and M(h) denote the minimum and maximum of f (t) on [x, x + h] (Figure 14). The continuity of f (x)

implies that lim
h→0

m(h) = lim
h→0

M(h) = f (x). Show that for h > 0,

hm(h) ≤ A(x + h) − A(x) ≤ hM(h)

For h < 0, the inequalities are reversed. Prove that A′(x) = f (x).

51. Proof of FTC I FTC I asserts that
∫ b
a f (t) dt = F(b) − F(a) if F ′(x) = f (x). Use FTC II to give a new proof of

FTC I as follows. Set A(x) = ∫ x
a f (t) dt .

(a) Show that F(x) = A(x) + C for some constant.

(b) Show that F(b) − F(a) = A(b) − A(a) =
∫ b

a
f (t) dt .

solution Let F ′(x) = f (x) and A(x) = ∫ x
a f (t) dt .

(a) Then by the FTC, Part II, A′(x) = f (x) and thus A(x) and F(x) are both antiderivatives of f (x). Hence F(x) =
A(x) + C for some constant C.

(b)

F(b) − F(a) = (A(b) + C) − (A(a) + C) = A(b) − A(a)

=
∫ b

a
f (t) dt −

∫ a

a
f (t) dt =

∫ b

a
f (t) dt − 0 =

∫ b

a
f (t) dt

which proves the FTC, Part I.



June 9, 2011 LTSV SSM Second Pass

296 C H A P T E R 5 THE INTEGRAL

Can Every Antiderivative Be Expressed as an Integral? The area function
∫ x
a f (t) dt is an antiderivative of

f (x) for every value of a. However, not all antiderivatives are obtained in this way. The general antiderivative of
f (x) = x is F(x) = 1

2x2 + C. Show that F(x) is an area function if C ≤ 0 but not if C > 0.

53. Prove the formula

d

dx

∫ v(x)

u(x)
f (t) dt = f (v(x))v′(x) − f (u(x))u′(x)

solution Write

∫ v(x)

u(x)
f (x) dx =

∫ 0

u(x)
f (x) dx +

∫ v(x)

0
f (x) dx =

∫ v(x)

0
f (x) dx −

∫ u(x)

0
f (x) dx.

Then, by the Chain Rule and the FTC,

d

dx

∫ v(x)

u(x)
f (x) dx = d

dx

∫ v(x)

0
f (x) dx − d

dx

∫ u(x)

0
f (x) dx

= f (v(x))v′(x) − f (u(x))u′(x).

Use the result of Exercise 53 to calculate

d

dx

∫ √
x

1/
√

x
sin t dt

5.5 Net Change as the Integral of a Rate

Preliminary Questions
1. A hot metal object is submerged in cold water. The rate at which the object cools (in degrees per minute) is a function

f (t) of time. Which quantity is represented by the integral
∫ T

0 f (t) dt?

solution The definite integral
∫ T

0 f (t) dt represents the total drop in temperature of the metal object in the first T
minutes after being submerged in the cold water.

2. A plane travels 560 km from Los Angeles to San Francisco in 1 hour. If the plane’s velocity at time t is v(t) km/h,
what is the value of

∫ 1
0 v(t) dt?

solution The definite integral
∫ 1

0 v(t) dt represents the total distance traveled by the airplane during the one hour

flight from Los Angeles to San Francisco. Therefore the value of
∫ 1

0 v(t) dt is 560 km.

3. Which of the following quantities would be naturally represented as derivatives and which as integrals?

(a) Velocity of a train
(b) Rainfall during a 6-month period
(c) Mileage per gallon of an automobile
(d) Increase in the U.S. population from 1990 to 2010

solution Quantities (a) and (c) involve rates of change, so these would naturally be represented as derivatives.
Quantities (b) and (d) involve an accumulation, so these would naturally be represented as integrals.

Exercises
1. Water flows into an empty reservoir at a rate of 3000 + 20t liters per hour. What is the quantity of water in the

reservoir after 5 hours?

solution The quantity of water in the reservoir after five hours is

∫ 5

0
(3000 + 20t) dt =

(
3000t + 10t2

) ∣∣∣∣5
0

= 15,250 gallons.

A population of insects increases at a rate of 200 + 10t + 0.25t2 insects per day. Find the insect population after
3 days, assuming that there are 35 insects at t = 0.

3. A survey shows that a mayoral candidate is gaining votes at a rate of 2000t + 1000 votes per day, where t is the
number of days since she announced her candidacy. How many supporters will the candidate have after 60 days, assuming
that she had no supporters at t = 0?

solution The number of supporters the candidate has after 60 days is

∫ 60

0
(2000t + 1000) dt = (1000t2 + 1000t)

∣∣∣∣60

0
= 3,660,000.

A factory produces bicycles at a rate of 95 + 3t2 − t bicycles per week. How many bicycles were produced from
the beginning of week 2 to the end of week 3?

5. Find the displacement of a particle moving in a straight line with velocity v(t) = 4t − 3 m/s over the time interval
[2, 5].
solution The displacement is given by

∫ 5

2
(4t − 3) dt = (2t2 − 3t)

∣∣∣∣5
2

= (50 − 15) − (8 − 6) = 33m.

Find the displacement over the time interval [1, 6] of a helicopter whose (vertical) velocity at time t is v(t) =
0.02t2 + t m/s.
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7. A cat falls from a tree (with zero initial velocity) at time t = 0. How far does the cat fall between t = 0.5 and t = 1 s?
Use Galileo’s formula v(t) = −9.8t m/s.

solution Given v(t) = −9.8t m/s, the total distance the cat falls during the interval [ 1
2 , 1] is

∫ 1

1/2
|v(t)| dt =

∫ 1

1/2
9.8t dt = 4.9t2

∣∣∣∣1
1/2

= 4.9 − 1.225 = 3.675 m.

A projectile is released with an initial (vertical) velocity of 100 m/s. Use the formula v(t) = 100 − 9.8t for
velocity to determine the distance traveled during the first 15 seconds.

In Exercises 9–12, a particle moves in a straight line with the given velocity (in m/s). Find the displacement and distance
traveled over the time interval, and draw a motion diagram like Figure 3 (with distance and time labels).

9. v(t) = 12 − 4t , [0, 5]

solution Displacement is given by
∫ 5

0
(12 − 4t) dt = (12t − 2t2)

∣∣∣∣5
0

= 10 ft, while total distance is given by

∫ 5

0
|12 − 4t | dt =

∫ 3

0
(12 − 4t) dt +

∫ 5

3
(4t − 12) dt = (12t − 2t2)

∣∣∣∣3
0

+ (2t2 − 12t)

∣∣∣∣5
3

= 26 ft.

The displacement diagram is given here.

0 18

t  = 0

t  = 5
t  = 3

10
Distance

v(t) = 36 − 24t + 3t2, [0, 10]11. v(t) = t−2 − 1, [0.5, 2]

solution Displacement is given by
∫ 2

0.5
(t−2 − 1) dt = (−t−1 − t)

∣∣∣∣2
0.5

= 0 m, while total distance is given by

∫ 2

0.5

∣∣∣t−2 − 1
∣∣∣ dt =

∫ 1

0.5
(t−2 − 1) dt +

∫ 2

1
(1 − t−2) dt = (−t−1 − t)

∣∣∣∣1
0.5

+ (t + t−1)

∣∣∣∣2
1

= 1 m.

The displacement diagram is given here.

0 0.5

t  = 0

t  = 2
t  = 1

Distance

v(t) = cos t , [0, 3π ]13. Find the net change in velocity over [1, 4] of an object with a(t) = 8t − t2 m/s2.

solution The net change in velocity is

∫ 4

1
a(t) dt =

∫ 4

1
(8t − t2) dt =

(
4t2 − 1

3
t3
)∣∣∣∣4

1
= 39 m/s.

Show that if acceleration is constant, then the change in velocity is proportional to the length of the time interval.15. The traffic flow rate past a certain point on a highway is q(t) = 3000 + 2000t − 300t2 (t in hours), where t = 0 is
8 am. How many cars pass by in the time interval from 8 to 10 am?

solution The number of cars is given by

∫ 2

0
q(t) dt =

∫ 2

0
(3000 + 2000t − 300t2) dt =

(
3000t + 1000t2 − 100t3

) ∣∣∣∣2
0

= 3000(2) + 1000(4) − 100(8) = 9200 cars.

The marginal cost of producing x tablet computers is C′(x) = 120 − 0.06x + 0.00001x2 What is the cost of
producing 3000 units if the setup cost is $90,000? If production is set at 3000 units, what is the cost of producing 200
additional units?

17. A small boutique produces wool sweaters at a marginal cost of 40 − 5[[x/5]] for 0 ≤ x ≤ 20, where [[x]] is the
greatest integer function. Find the cost of producing 20 sweaters. Then compute the average cost of the first 10 sweaters
and the last 10 sweaters.

solution The total cost of producing 20 sweaters is

∫ 20

0
(40 − 5[[x/5]]) dx =

∫ 5

0
40 dx +

∫ 10

5
35 dx +

∫ 15

10
30 dx +

∫ 20

15
25 dx

= 40(5) + 35(5) + 30(5) + 25(5) = 650 dollars.

From this calculation, we see that the cost of the first 10 sweaters is $375 and the cost of the last ten sweaters is $275;
thus, the average cost of the first ten sweaters is $37.50 and the average cost of the last ten sweaters is $27.50.
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The rate (in liters per minute) at which water drains from a tank is recorded at half-minute intervals. Compute the
average of the left- and right-endpoint approximations to estimate the total amount of water drained during the first
3 minutes.

t (min) 0 0.5 1 1.5 2 2.5 3

r (l/min) 50 48 46 44 42 40 38

19. The velocity of a car is recorded at half-second intervals (in feet per second). Use the average of the left- and
right-endpoint approximations to estimate the total distance traveled during the first 4 seconds.

t 0 0.5 1 1.5 2 2.5 3 3.5 4

v(t) 0 12 20 29 38 44 32 35 30

solution Let �t = 0.5. Then

RN = 0.5 · (12 + 20 + 29 + 38 + 44 + 32 + 35 + 30) = 120 ft.

LN = 0.5 · (0 + 12 + 20 + 29 + 38 + 44 + 32 + 35) = 105 ft.

The average of RN and LN is 112.5 ft.

To model the effects of a carbon tax on CO2 emissions, policymakers study the marginal cost of abatement B(x),
defined as the cost of increasing CO2 reduction from x to x + 1 tons (in units of ten thousand tons—Figure 4). Which
quantity is represented by the area under the curve over [0, 3] in Figure 4?

21. A megawatt of power is 106 W, or 3.6 × 109 J/hour. Which quantity is represented by the area under the graph in
Figure 5? Estimate the energy (in joules) consumed during the period 4 pm to 8 pm.

18
19
20
21
22
23
24
25
26
27
28

00 02 04 06 08 10 12 14 16 18 20 22 24

Megawatts (in thousands)

Hour of the day

FIGURE 5 Power consumption over 1-day period in California (February 2010).

solution The area under the graph in Figure 5 represents the total power consumption over one day in California.
Assuming t = 0 corresponds to midnight, the period 4 pm to 8 pm corresponds to t = 16 to t = 20. The left and right
endpoint approximations are

L = 1(22.8 + 23.5 + 26.1 + 26.7) = 99.1megawatt · hours

R = 1(23.5 + 26.1 + 26.7 + 26.1) = 102.4megawatt · hours

The average of these values is

100.75megawatt · hours = 3.627 × 1011 joules.

Figure 6 shows the migration rate M(t) of Ireland in the period 1988–1998. This is the rate at which people (in
thousands per year) move into or out of the country.

(a) Is the following integral positive or negative? What does this quantity represent?

∫ 1998

1988
M(t) dt

(b) Did migration in the period 1988–1998 result in a net influx of people into Ireland or a net outflow of people
from Ireland?

(c) During which two years could the Irish prime minister announce, “We’ve hit an inflection point. We are still
losing population, but the trend is now improving.”

23. Let N(d) be the number of asteroids of diameter ≤ d kilometers. Data suggest that the diameters are distributed
according to a piecewise power law:

N ′(d) =
{

1.9 × 109d−2.3 for d < 70

2.6 × 1012d−4 for d ≥ 70

(a) Compute the number of asteroids with diameter between 0.1 and 100 km.

(b) Using the approximation N(d + 1) − N(d) ≈ N ′(d), estimate the number of asteroids of diameter 50 km.

solution

(a) The number of asteroids with diameter between 0.1 and 100 km is

∫ 100

0.1
N ′(d) dd =

∫ 70

0.1
1.9 × 109d−2.3 dd +

∫ 100

70
2.6 × 1012d−4 dd

= −1.9 × 109

1.3
d−1.3

∣∣∣∣∣
70

0.1

− 2.6 × 1012

3
d−3

∣∣∣∣∣
100

70

= 2.916 × 1010 + 1.66 × 106 ≈ 2.916 × 1010.

(b) Taking d = 49.5,

N(50.5) − N(49.5) ≈ N ′(49.5) = 1.9 × 10949.5−2.3 = 240,525.79.

Thus, there are approximately 240,526 asteroids of diameter 50 km.
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Heat Capacity The heat capacity C(T ) of a substance is the amount of energy (in joules) required to raise the
temperature of 1 g by 1◦C at temperature T .

(a) Explain why the energy required to raise the temperature from T1 to T2 is the area under the graph of C(T ) over
[T1, T2].
(b) How much energy is required to raise the temperature from 50 to 100◦C if C(T ) = 6 + 0.2

√
T ?

25. Figure 7 shows the rate R(t) of natural gas consumption (in billions of cubic feet per day) in the mid-Atlantic states
(New York, New Jersey, Pennsylvania). Express the total quantity of natural gas consumed in 2009 as an integral (with
respect to time t in days). Then estimate this quantity, given the following monthly values of R(t):

3.18, 2.86, 2.39, 1.49, 1.08, 0.80,
1.01, 0.89, 0.89, 1.20, 1.64, 2.52

Keep in mind that the number of days in a month varies with the month.

1

2

3

J A S O N DJ F M A M J

Natural gas consumption  (109 cubic ft/day)

FIGURE 7 Natural gas consumption in 2009 in the mid-Atlantic states

solution The total quantity of natural gas consumed is given by

∫ 365

0
R(t) dt.

With the given data, we find∫ 365

0
R(t) dt ≈ 31(3.18) + 28(2.86) + 31(2.39) + 30(1.49) + 31(1.08) + 30(0.80)

+31(1.01) + 31(0.89) + 30(0.89) + 31(1.20) + 30(1.64) + 31(2.52)

= 605.05 billion cubic feet.

Cardiac output is the rate R of volume of blood pumped by the heart per unit time (in liters per minute). Doctors
measure R by injecting A mg of dye into a vein leading into the heart at t = 0 and recording the concentration c(t)

of dye (in milligrams per liter) pumped out at short regular time intervals (Figure 8).

(a) Explain: The quantity of dye pumped out in a small time interval [t, t + �t] is approximately Rc(t)�t .

(b) Show that A = R
∫ T

0 c(t) dt , where T is large enough that all of the dye is pumped through the heart but not so
large that the dye returns by recirculation.

(c) Assume A = 5 mg. Estimate R using the following values of c(t) recorded at 1-second intervals from t = 0 to
t = 10:

0, 0.4, 2.8, 6.5, 9.8, 8.9,
6.1, 4, 2.3, 1.1, 0

Exercises 27 and 28: A study suggests that the extinction rate r(t) of marine animal families during the Phanerozoic Eon
can be modeled by the function r(t) = 3130/(t + 262) for 0 ≤ t ≤ 544, where t is time elapsed (in millions of years)
since the beginning of the eon 544 million years ago. Thus, t = 544 refers to the present time, t = 540 is 4 million years
ago, and so on.

27. Compute the average of RN and LN with N = 5 to estimate the total number of families that became extinct in the
periods 100 ≤ t ≤ 150 and 350 ≤ t ≤ 400.

solution

• (100 ≤ t ≤ 150) For N = 5,

�t = 150 − 100

5
= 10.

The table of values {r(ti )}i=0...5 is given below:

ti 100 110 120 130 140 150

r(ti ) 8.64641 8.41398 8.19372 7.98469 7.78607 7.59709

The endpoint approximations are:

RN = 10(8.41398 + 8.19372 + 7.98469 + 7.78607 + 7.59709) ≈ 399.756 families

LN = 10(8.64641 + 8.41398 + 8.19372 + 7.98469 + 7.78607) ≈ 410.249 families

The right endpoint approximation estimates 399.756 families became extinct in the period 100 ≤ t ≤ 150, the
left endpoint approximation estimates 410.249 families became extinct during this time. The average of the two is
405.362 families.

• (350 ≤ t ≤ 400) For N = 10,

�t = 400 − 350

5
= 19.

The table of values {r(ti )}i=0...5 is given below:

ti 350 360 370 380 390 400

r(ti ) 5.11438 5.03215 4.95253 4.87539 4.80061 4.72810
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The endpoint approximations are:

RN = 10(5.03215 + 4.95253 + 4.87539 + 4.80061 + 4.72810) ≈ 243.888 families

LN = 10(5.11438 + 5.03215 + 4.95253 + 4.87539 + 4.80061) ≈ 247.751 families

The right endpoint approximation estimates 243.888 families became extinct in the period 350 ≤ t ≤ 400, the
left endpoint approximation estimates 247.751 families became extinct during this time. The average of the two is
245.820 families.

Estimate the total number of extinct families from t = 0 to the present, using MN with N = 544.Further Insights and Challenges
29. Show that a particle, located at the origin at t = 1 and moving along the x-axis with velocity v(t) = t−2, will never
pass the point x = 2.

solution The particle’s velocity is v(t) = s′(t) = t−2, an antiderivative for which is F(t) = −t−1. Hence, the
particle’s position at time t is

s(t) =
∫ t

1
s′(u) du = F(u)

∣∣∣∣t
1

= F(t) − F(1) = 1 − 1

t
< 1

for all t ≥ 1. Thus, the particle will never pass x = 1, which implies it will never pass x = 2 either.

Show that a particle, located at the origin at t = 1 and moving along the x-axis with velocity v(t) = t−1/2 moves
arbitrarily far from the origin after sufficient time has elapsed.

5.6 Substitution Method

Preliminary Questions
1. Which of the following integrals is a candidate for the Substitution Method?

(a)
∫

5x4 sin(x5) dx (b)
∫

sin5 x cos x dx (c)
∫

x5 sin x dx

solution The function in (c): x5 sin x is not of the form g(u(x))u′(x). The function in (a) meets the prescribed pattern

with g(u) = sin u and u(x) = x5. Similarly, the function in (b) meets the prescribed pattern with g(u) = u5 and
u(x) = sin x.

2. Find an appropriate choice of u for evaluating the following integrals by substitution:

(a)
∫

x(x2 + 9)4 dx (b)
∫

x2 sin(x3) dx (c)
∫

sin x cos2 x dx

solution

(a) x(x2 + 9)4 = 1
2 (2x)(x2 + 9)4; hence, c = 1

2 , f (u) = u4, and u(x) = x2 + 9.

(b) x2 sin(x3) = 1
3 (3x2) sin(x3); hence, c = 1

3 , f (u) = sin u, and u(x) = x3.

(c) sin x cos2 x = −(− sin x) cos2 x; hence, c = −1, f (u) = u2, and u(x) = cos x.

3. Which of the following is equal to
∫ 2

0
x2(x3 + 1) dx for a suitable substitution?

(a)
1

3

∫ 2

0
u du (b)

∫ 9

0
u du (c)

1

3

∫ 9

1
u du

solution With the substitution u = x3 + 1, the definite integral
∫ 2

0 x2(x3 + 1) dx becomes 1
3

∫ 9
1 u du. The correct

answer is (c).

Exercises
In Exercises 1–6, calculate du.

1. u = x3 − x2

solution Let u = x3 − x2. Then du = (3x2 − 2x) dx.

u = 2x4 + 8x−13. u = cos(x2)

solution Let u = cos(x2). Then du = − sin(x2) · 2x dx = −2x sin(x2) dx.

u = tan x5. u = sin4 θ

solution Let u = sin4 θ . Then du = 4 sin3 θ cos θ dθ .

u = t

t + 1
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In Exercises 7–20, write the integral in terms of u and du. Then evaluate.

7.
∫

(x − 7)3 dx, u = x − 7

solution Let u = x − 7. Then du = dx. Hence∫
(x − 7)3 dx =

∫
u3 du = 1

4
u4 + C = 1

4
(x − 7)4 + C.

∫
(x + 25)−2 dx, u = x + 25

9.
∫

t
√

t2 + 1 dt , u = t2 + 1

solution Let u = t2 + 1. Then du = 2t dt . Hence,∫
t
√

t2 + 1 dt = 1

2

∫
u1/2 du = 1

3
u3/2 + C = 1

3
(t2 + 1)3/2 + C.

∫
(x3 + 1) cos(x4 + 4x) dx, u = x4 + 4x

11.
∫

t3

(4 − 2t4)11
dt , u = 4 − 2t4

solution Let u = 4 − 2t4. Then du = −8t3 dt . Hence,∫
t3

(4 − 2t4)11
dt = −1

8

∫
u−11 du = 1

80
u−10 + C = 1

80
(4 − 2t4)−10 + C.

∫ √
4x − 1 dx, u = 4x − 1

13.
∫

x(x + 1)9 dx, u = x + 1

solution Let u = x + 1. Then x = u − 1 and du = dx. Hence∫
x(x + 1)9 dx =

∫
(u − 1)u9 du =

∫
(u10 − u9) du

= 1

11
u11 − 1

10
u10 + C = 1

11
(x + 1)11 − 1

10
(x + 1)10 + C.

∫
x
√

4x − 1 dx, u = 4x − 1
15.

∫
x2√

x + 1 dx, u = x + 1

solution Let u = x + 1. Then x = u − 1 and du = dx. Hence∫
x2√

x + 1 dx =
∫

(u − 1)2u1/2 du =
∫

(u5/2 − 2u3/2 + u1/2) du

= 2

7
u7/2 − 4

5
u5/2 + 2

3
u3/2 + C

= 2

7
(x + 1)7/2 − 4

5
(x + 1)5/2 + 2

3
(x + 1)3/2 + C.

∫
sin(4θ − 7) dθ , u = 4θ − 7

17.
∫

sin2 θ cos θ dθ , u = sin θ

solution Let u = sin θ . Then du = cos θ dθ . Hence,∫
sin2 θ cos θ dθ =

∫
u2 du = 1

3
u3 + C = 1

3
sin3 θ + C.

∫
sec2 x tan x dx, u = tan x

19.
∫

x sec2(x2) dx, u = x2

solution Let u = x2. Then du = 2x dx, so that 1
2 du = x dx. Hence,∫

x sec2(x2) dx = 1

2

∫
sec2 u du = 1

2
tan u + C = 1

2
tan(x2) + C

∫
sec2(cos x) sin x dx, u = cos x

In Exercises 21–24, evaluate the integral in the form a sin(u(x)) + C for an appropriate choice of u(x) and constant a.

21.
∫

x3 cos(x4) dx

solution Let u = x4. Then du = 4x3 dx or 1
4 du = x3dx. Hence∫

x3 cos(x4) dx = 1

4

∫
cos u du = 1

4
sin u + C = 1

4
sin(x4) + C.
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∫
x2 cos(x3 + 1) dx

23.
∫

x1/2 cos(x3/2) dx

solution Let u = x3/2. Then du = 3
2x1/2 dx or 2

3 du = x1/2 dx. Hence∫
x1/2 cos(x3/2) dx = 2

3

∫
cos u du = 2

3
sin u + C = 2

3
sin(x3/2) + C.

∫
cos x cos(sin x) dx

In Exercises 25–60, evaluate the indefinite integral.

25.
∫

(4x + 5)9 dx

solution Let u = 4x + 5. Then du = 4 dx and∫
(4x + 5)9 dx = 1

4

∫
u9 du = 1

40
u10 + C = 1

40
(4x + 5)10 + C.

∫
dx

(x − 9)5

27.
∫

dt√
t + 12

solution Let u = t + 12. Then du = dt and∫
dt√

t + 12
=
∫

u−1/2 du = 2u1/2 + C = 2
√

t + 12 + C.

∫
(9t + 2)2/3 dt

29.
∫

x + 1

(x2 + 2x)3
dx

solution Let u = x2 + 2x. Then du = (2x + 2) dx or 1
2du = (x + 1) dx. Hence∫

x + 1

(x2 + 2x)3
dx = 1

2

∫
1

u3
du = 1

2

(
−1

2
u−2

)
+ C = −1

4
(x2 + 2x)−2 + C = −1

4(x2 + 2x)2
+ C.

∫
(x + 1)(x2 + 2x)3/4 dx

31.
∫

x√
x2 + 9

dx

solution Let u = x2 + 9. Then du = 2x dx or 1
2du = x dx. Hence∫

x√
x2 + 9

dx = 1

2

∫
1√
u

du = 1

2

√
u

1
2

+ C =
√

x2 + 9 + C.

∫
2x2 + x

(4x3 + 3x2)2
dx

33.
∫

(3x2 + 1)(x3 + x)2 dx

solution Let u = x3 + x. Then du = (3x2 + 1) dx. Hence∫
(3x2 + 1)(x3 + x)2 dx =

∫
u2 du = 1

3
u3 + C = 1

3
(x3 + x)3 + C.

∫
5x4 + 2x

(x5 + x2)3
dx

35.
∫

(3x + 8)11 dx

solution Let u = 3x + 8. Then du = 3 dx and∫
(3x + 8)11 dx = 1

3

∫
u11 du = 1

36
u12 + C = 1

36
(3x + 8)12 + C.

∫
x(3x + 8)11 dx

37.
∫

x2
√

x3 + 1 dx

solution Let u = x3 + 1. Then du = 3x2 dx and∫
x2
√

x3 + 1 dx = 1

3

∫
u1/2 du = 2

9
u3/2 + C = 2

9
(x3 + 1)3/2 + C.

∫
x5
√

x3 + 1 dx
39.

∫
dx

(x + 5)3

solution Let u = x + 5. Then du = dx and∫
dx

(x + 5)3
=
∫

u−3 du = −1

2
u−2 + C = −1

2
(x + 5)−2 + C.
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∫
x dx

(x + 5)3/2

41.
∫

z2(z3 + 1)12 dz

solution Let u = z3 + 1. Then du = 3z2 dz and∫
z2(z3 + 1)12 dz = 1

3

∫
u12 du = 1

39
u13 + C = 1

39
(z3 + 1)13 + C.

∫
(z5 + 4z2)(z3 + 1)12 dz

43.
∫

(x + 2)(x + 1)1/4 dx

solution Let u = x + 1. Then x = u − 1, du = dx and∫
(x + 2)(x + 1)1/4 dx =

∫
(u + 1)u1/4 du =

∫
(u5/4 + u1/4) du

= 4

9
u9/4 + 4

5
u5/4 + C

= 4

9
(x + 1)9/4 + 4

5
(x + 1)5/4 + C.

∫
x3(x2 − 1)3/2 dx

45.
∫

sin(8 − 3θ) dθ

solution Let u = 8 − 3θ . Then du = −3 dθ and∫
sin(8 − 3θ) dθ = −1

3

∫
sin u du = 1

3
cos u + C = 1

3
cos(8 − 3θ) + C.

∫
θ sin(θ2) dθ

47.
∫

cos
√

t√
t

dt

solution Let u = √
t = t1/2. Then du = 1

2 t−1/2 dt and

∫
cos

√
t√

t
dt = 2

∫
cos u du = 2 sin u + C = 2 sin

√
t + C.

∫
x2 sin(x3 + 1) dx

49.
∫

sin x cos x√
sin x + 1

dx

solution Let u = sin x + 1. Then du = cos x dx and sin x = u − 1. Hence∫
sin x cos x√

sin x + 1
dx =

∫
u − 1√

u
du =

∫ (
u1/2 − u−1/2

)
du = 2

3
u3/2 − 2u1/2 + C

= 2

3
(sin x + 1)3/2 − 2(sin x + 1)1/2 + C

∫
sin8 θ cos θ dθ

51.
∫

sec2 x(12 tan3 x − 6 tan2 x) dx

solution Let u = tan x. Then du = sec2 x dx and∫
sec2 x(12 tan3 x − 6 tan2 x) dx =

∫ (
12u3 − 6u2

)
du = 3u4 − 2u3 + C = 3 tan4 x − 2 tan3 x + C

∫
x−1/5 sec

(
x4/5

)
tan
(
x4/5

)
dx

53.
∫

sec2(4x + 9) dx

solution Let u = 4x + 9. Then du = 4 dx or 1
4 du = dx. Hence∫

sec2(4x + 9) dx = 1

4

∫
sec2 u du = 1

4
tan u + C = 1

4
tan(4x + 9) + C.

∫
sec2 x tan4 x dx

55.
∫

sec2(
√

x) dx√
x

solution Let u = √
x. Then du = 1

2
√

x
dx or 2 du = 1√

x
dx. Hence,

∫
sec2(

√
x) dx√
x

= 2
∫

sec2 u dx = 2 tan u + C = 2 tan(
√

x) + C.
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∫
cos 2x

(1 + sin 2x)2
dx

57.
∫

sin 4x
√

cos 4x + 1 dx

solution Let u = cos 4x + 1. Then du = −4 sin 4x or − 1
4du = sin 4x. Hence

∫
sin 4x

√
cos 4x + 1 dx = −1

4

∫
u1/2 du = −1

4

(
2

3
u3/2

)
+ C = −1

6
(cos 4x + 1)3/2 + C.

∫
cos x(3 sin x − 1) dx

59.
∫

sec θ tan θ(sec θ − 1) dθ

solution Let u = sec θ − 1. Then du = sec θ tan θ dθ and∫
sec θ tan θ(sec θ − 1) dθ =

∫
u du = 1

2
u2 + C = 1

2
(sec θ − 1)2 + C.

∫
cos t cos(sin t) dt

61. Evaluate
∫

dx

(1 + √
x)3

using u = 1 + √
x. Hint: Show that dx = 2(u − 1)du.

solution Let u = 1 + √
x. Then

du = 1

2
√

x
dx or dx = 2

√
x du = 2(u − 1) du.

Hence, ∫
dx

(1 + √
x)3

= 2
∫

u − 1

u3
du = 2

∫
(u−2 − u−3) du

= −2u−1 + u−2 + C = − 2

1 + √
x

+ 1

(1 + √
x)2

+ C.

Can They Both Be Right? Hannah uses the substitution u = tan x and Akiva uses u = sec x to evaluate∫
tan x sec2 x dx. Show that they obtain different answers, and explain the apparent contradiction.

63. Evaluate
∫

sin x cos x dx using substitution in two different ways: first using u = sin x and then using u = cos x.
Reconcile the two different answers.

solution First, let u = sin x. Then du = cos x dx and∫
sin x cos x dx =

∫
u du = 1

2
u2 + C1 = 1

2
sin2 x + C1.

Next, let u = cos x. Then du = − sin x dx or −du = sin x dx. Hence,∫
sin x cos x dx = −

∫
u du = −1

2
u2 + C2 = −1

2
cos2 x + C2.

To reconcile these two seemingly different answers, recall that any two antiderivatives of a specified function differ by a
constant. To show that this is true here, note that ( 1

2 sin2 x + C1) − (− 1
2 cos2 x + C2) = 1

2 + C1 − C2, a constant. Here

we used the trigonometric identity sin2 x + cos2 x = 1.

Some Choices Are Better Than Others Evaluate∫
sin x cos2 x dx

twice. First use u = sin x to show that ∫
sin x cos2 x dx =

∫
u
√

1 − u2 du

and evaluate the integral on the right by a further substitution. Then show that u = cos x is a better choice.

65. What are the new limits of integration if we apply the substitution u = 3x + π to the integral
∫ π

0 sin(3x + π) dx?

solution The new limits of integration are u(0) = 3 · 0 + π = π and u(π) = 3π + π = 4π .

Which of the following is the result of applying the substitution u = 4x − 9 to the integral
∫ 8

2 (4x − 9)20 dx?

(a)
∫ 8

2
u20 du (b)

1

4

∫ 8

2
u20 du

(c) 4
∫ 23

−1
u20 du (d)

1

4

∫ 23

−1
u20 du

In Exercises 67–78, use the Change-of-Variables Formula to evaluate the definite integral.

67.
∫ 3

1
(x + 2)3 dx

solution Let u = x + 2. Then du = dx. Hence

∫ 3

1
(x + 2)3 dx =

∫ 5

3
u3 du = 1

4
u4
∣∣∣∣5
3

= 54

4
− 34

4
= 136.

∫ 6

1

√
x + 3 dx

69.
∫ 1

0

x

(x2 + 1)3
dx

solution Let u = x2 + 1. Then du = 2x dx or 1
2 du = x dx. Hence

∫ 1

0

x

(x2 + 1)3
dx = 1

2

∫ 2

1

1

u3
du = 1

2

(
−1

2
u−2

)∣∣∣∣2
1

= − 1

16
+ 1

4
= 3

16
= 0.1875.
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∫ 2

−1

√
5x + 6 dx

71.
∫ 4

0
x
√

x2 + 9 dx

solution Let u = x2 + 9. Then du = 2x dx or 1
2 du = x dx. Hence

∫ 4

0

√
x2 + 9 dx = 1

2

∫ 25

9

√
u du = 1

2

(
2

3
u3/2

)∣∣∣∣25

9
= 1

3
(125 − 27) = 98

3
.

∫ 2

1

4x + 12

(x2 + 6x + 1)2
dx

73.
∫ 1

0
(x + 1)(x2 + 2x)5 dx

solution Let u = x2 + 2x. Then du = (2x + 2) dx = 2(x + 1) dx, and

∫ 1

0
(x + 1)(x2 + 2x)5 dx = 1

2

∫ 3

0
u5 du = 1

12
u6
∣∣∣∣3
0

= 729

12
= 243

4
.

∫ 17

10
(x − 9)−2/3 dx

75.
∫ π/2

−π/2

cos x dx√
sin x + 1

solution Let u = sin x + 1. Then du = cos x dx, and

∫ π/2

−π/2

cos x dx√
sin x + 1

=
∫ sin(π/2)+1

sin(−π/2)+1

1√
u

du = 2
√

u

∣∣∣∣2
0

= 2
√

2

∫ π/6

0
sec2

(
2x − π

6

)
dx

77.
∫ π/2

0
cos3 x sin x dx

solution Let u = cos x. Then du = − sin x dx. Hence

∫ π/2

0
cos3 x sin x dx = −

∫ 0

1
u3 du =

∫ 1

0
u3 du = 1

4
u4
∣∣∣∣1
0

= 1

4
− 0 = 1

4
.

∫ π/2

π/3
cot2

x

2
csc2 x

2
dx

79. Evaluate
∫ 2

0
r

√
5 −

√
4 − r2 dr .

solution Let u = 5 −
√

4 − r2. Then

du = r dr√
4 − r2

= r dr

5 − u

so that

r dr = (5 − u) du.

Hence, the integral becomes:∫ 2

0
r

√
5 −

√
4 − r2 dr =

∫ 5

3

√
u(5 − u) du =

∫ 5

3

(
5u1/2 − u3/2

)
du =

(
10

3
u3/2 − 2

5
u5/2

)∣∣∣∣5
3

=
(

50

3

√
5 − 10

√
5

)
−
(

10
√

3 − 18

5

√
3

)
= 20

3

√
5 − 32

5

√
3.

Find numbers a and b such that ∫ b

a
(u2 + 1) du =

∫ π/4

−π/4
sec4 θ dθ

and evaluate. Hint: Use the identity sec2 θ = tan2 θ + 1.

In Exercises 81 and 82, use substitution to evaluate the integral in terms of f (x).

81.
∫

f (x)3 f ′(x) dx

solution Let u = f (x). Then du = f ′(x) dx. Hence∫
f (x)3 f ′(x) dx =

∫
u3 du = 1

4
u4 + C = 1

4
f (x)4 + C.

∫
f ′(x)

f (x)2
dx

83. Show that
∫ π/6

0
f (sin θ) dθ =

∫ 1/2

0
f (u)

1√
1 − u2

du.

solution Let u = sin θ . Then u(π/6) = 1/2 and u(0) = 0, as required. Furthermore, du = cos θ dθ , so that

dθ = du

cos θ
.
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If sin θ = u, then u2 + cos2 θ = 1, so that cos θ =
√

1 − u2. Therefore dθ = du/
√

1 − u2. This gives∫ π/6

0
f (sin θ) dθ =

∫ 1/2

0
f (u)

1√
1 − u2

du.

Evaluate
∫ π/2

0
sinn x cos x dx for n ≥ 0.Further Insights and Challenges

85. Evaluate I =
∫ π/2

0

dθ

1 + tan6000 θ
. Hint: Use substitution to show that I is equal to J =

∫ π/2

0

dθ

1 + cot6000 θ
and

then check that I + J =
∫ π/2

0
dθ .

solution To evaluate

I =
∫ π/2

0

dx

1 + tan6000 x
,

we substitute t = π/2 − x. Then dt = −dx, x = π/2 − t , t (0) = π/2, and t (π/2) = 0. Hence,

I =
∫ π/2

0

dx

1 + tan6000 x
= −

∫ 0

π/2

dt

1 + tan6000(π/2 − t)
=
∫ π/2

0

dt

1 + cot6000 t
.

Let J = ∫ π/2
0

dt

1 + cot6000(t)
. We know I = J , so I + J = 2I . On the other hand, by the definition of I and J and the

linearity of the integral,

I + J =
∫ π/2

0

dx

1 + tan6000 x
+ dx

1 + cot6000 x
=
∫ π/2

0

(
1

1 + tan6000 x
+ 1

1 + cot6000 x

)
dx

=
∫ π/2

0

(
1

1 + tan6000 x
+ 1

1 + (1/ tan6000 x)

)
dx

=
∫ π/2

0

(
1

1 + tan6000 x
+ 1

(tan6000 x + 1)/ tan6000 x

)
dx

=
∫ π/2

0

(
1

1 + tan6000 x
+ tan6000 x

1 + tan6000 x

)
dx

=
∫ π/2

0

(
1 + tan6000 x

1 + tan6000 x

)
dx =

∫ π/2

0
1 dx = π/2.

Hence, I + J = 2I = π/2, so I = π/4.

Use the substitution u = 1 + x1/n to show that∫ √
1 + x1/n dx = n

∫
u1/2(u − 1)n−1 du

Evaluate for n = 2, 3.

87. Use substitution to prove that
∫ a

−a
f (x) dx = 0 if f is an odd function.

solution We assume that f is continuous. If f (x) is an odd function, then f (−x) = −f (x). Let u = −x. Then
x = −u and du = −dx or −du = dx. Accordingly,∫ a

−a
f (x) dx =

∫ 0

−a
f (x) dx +

∫ a

0
f (x) dx = −

∫ 0

a
f (−u) du +

∫ a

0
f (x) dx

=
∫ a

0
f (x) dx −

∫ a

0
f (u) du = 0.

Prove that
∫ b

a

1

x
dx =

∫ b/a

1

1

x
dx for a, b > 0. Then show that the regions under the hyperbola over the intervals

[1, 2], [2, 4], [4, 8], . . . all have the same area (Figure 4).

89. Show that the two regions in Figure 5 have the same area. Then use the identity cos2 u = 1
2 (1 + cos 2u) to compute

the second area.

(A) (B)

x
1 1

1 1

u

y = cos2 u

y y

y = �1 − x2

FIGURE 5
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solution The area of the region in Figure 5(A) is given by
∫ 1

0

√
1 − x2 dx. Let x = sin u. Then dx = cos u du and√

1 − x2 =
√

1 − sin2 u = cos u. Hence,∫ 1

0

√
1 − x2 dx =

∫ π/2

0
cos u · cos u du =

∫ π/2

0
cos2 u du.

This last integral represents the area of the region in Figure 5(B). The two regions in Figure 5 therefore have the same
area.

Let’s now focus on the definite integral
∫ π/2

0 cos2 u du. Using the trigonometric identity cos2 u = 1
2 (1 + cos 2u), we

have ∫ π/2

0
cos2 u du = 1

2

∫ π/2

0
1 + cos 2u du = 1

2

(
u + 1

2
sin 2u

)∣∣∣∣π/2

0
= 1

2
· π

2
− 0 = π

4
.

Area of an Ellipse Prove the formula A = πab for the area of the ellipse with equation (Figure 6)

x2

a2
+ y2

b2
= 1

Hint: Use a change of variables to show that A is equal to ab times the area of the unit circle.

CHAPTER REVIEW EXERCISES

In Exercises 1–4, refer to the function f (x) whose graph is shown in Figure 1.

1

2

3

1 2 3 4

y

x

FIGURE 1

1. Estimate L4 and M4 on [0, 4].
solution With n = 4 and an interval of [0, 4], �x = 4−0

4 = 1. Then,

L4 = �x(f (0) + f (1) + f (2) + f (3)) = 1

(
1

4
+ 1 + 5

2
+ 2

)
= 23

4

and

M4 = �x

(
f

(
1

2

)
+ f

(
3

2

)
+ f

(
5

2

)
+ f

(
7

2

))
= 1

(
1

2
+ 2 + 9

4
+ 9

4

)
= 7.

Estimate R4, L4, and M4 on [1, 3].3. Find an interval [a, b] on which R4 is larger than
∫ b

a
f (x) dx. Do the same for L4.

solution In general, RN is larger than
∫ b
a f (x) dx on any interval [a, b] over which f (x) is increasing. Given the

graph of f (x), we may take [a, b] = [0, 2]. In order for L4 to be larger than
∫ b
a f (x) dx, f (x) must be decreasing over

the interval [a, b]. We may therefore take [a, b] = [2, 3].

Justify
3

2
≤
∫ 2

1
f (x) dx ≤ 9

4
.

In Exercises 5–8, let f (x) = x2 + 3x.

5. Calculate R6, M6, and L6 for f (x) on the interval [2, 5]. Sketch the graph of f (x) and the corresponding rectangles
for each approximation.

solution Let f (x) = x2 + 3x. A uniform partition of [2, 5] with N = 6 subintervals has

�x = 5 − 2

6
= 1

2
, xj = a + j�x = 2 + j

2
,

and

x∗
j = a +

(
j − 1

2

)
�x = 7

4
+ j

2
.

Now,

R6 = �x

6∑
j=1

f (xj ) = 1

2

(
f

(
5

2

)
+ f (3) + f

(
7

2

)
+ f (4) + f

(
9

2

)
+ f (5)

)

= 1

2

(
55

4
+ 18 + 91

4
+ 28 + 135

4
+ 40

)
= 625

8
.
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The rectangles corresponding to this approximation are shown below.

10

2.0 2.5 3.0 3.5 4.0 4.5

15

20
25

30
35

y

x

Next,

M6 = �x

6∑
j=1

f (x∗
j ) = 1

2

(
f

(
9

4

)
+ f

(
11

4

)
+ f

(
13

4

)
+ f

(
15

4

)
+ f

(
17

4

)
+ f

(
19

4

))

= 1

2

(
189

16
+ 253

16
+ 325

16
+ 405

16
+ 493

16
+ 589

16

)
= 2254

32
= 1127

16
.

The rectangles corresponding to this approximation are shown below.

10

2.0 2.5 3.0 3.5 4.0 4.5

15

20
25

30
35

y

x

Finally,

L6 = �x

5∑
j=0

f (xj ) = 1

2

(
f (2) + f

(
5

2

)
+ f (3) + f

(
7

2

)
+ f (4) + f

(
9

2

))

= 1

2

(
10 + 55

4
+ 18 + 91

4
+ 28 + 135

4

)
= 505

8
.

The rectangles corresponding to this approximation are shown below.

10

2.0 2.5 3.0 3.5 4.0 4.5

15

20
25

30
35

y

x

Use FTC I to evaluate A(x) =
∫ x

−2
f (t) dt .

7. Find a formula for RN for f (x) on [2, 5] and compute
∫ 5

2
f (x) dx by taking the limit.

solution Let f (x) = x2 + 3x on the interval [2, 5]. Then �x = 5 − 2

N
= 3

N
and a = 2. Hence,

RN = �x

N∑
j=1

f (2 + j�x) = 3

N

N∑
j=1

((
2 + 3j

N

)2
+ 3

(
2 + 3j

N

))
= 3

N

N∑
j=1

(
10 + 21j

N
+ 9j2

N2

)

= 30 + 63

N2

N∑
j=1

j + 27

N3

N∑
j=1

j2

= 30 + 63

N2

(
N2

2
+ N

2

)
+ 27

N3

(
N3

3
+ N2

2
+ N

6

)

= 141

2
+ 45

N
+ 9

2N2
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and

lim
N→∞ RN = lim

N→∞

(
141

2
+ 45

N
+ 9

2N2

)
= 141

2
.

Find a formula for LN for f (x) on [0, 2] and compute
∫ 2

0
f (x) dx by taking the limit.

9. Calculate R5, M5, and L5 for f (x) = (x2 + 1)−1 on the interval [0, 1].
solution Let f (x) = (x2 + 1)−1. A uniform partition of [0, 1] with N = 5 subintervals has

�x = 1 − 0

5
= 1

5
, xj = a + j�x = j

5
,

and

x∗
j = a +

(
j − 1

2

)
�x = 2j − 1

10
.

Now,

R5 = �x

5∑
j=1

f (xj ) = 1

5

(
f

(
1

5

)
+ f

(
2

5

)
+ f

(
3

5

)
+ f

(
4

5

)
+ f (1)

)

= 1

5

(
25

26
+ 25

29
+ 25

34
+ 25

41
+ 1

2

)
≈ 0.733732.

Next,

M5 = �x

5∑
j=1

f (x∗
j ) = 1

5

(
f

(
1

10

)
+ f

(
3

10

)
+ f

(
1

2

)
+ f

(
7

10

)
+ f

(
9

10

))

= 1

5

(
100

101
+ 100

109
+ 4

5
+ 100

149
+ 100

181

)
≈ 0.786231.

Finally,

L5 = �x

4∑
j=0

f (xj ) = 1

5

(
f (0) + f

(
1

5

)
+ f

(
2

5

)
+ f

(
3

5

)
+ f

(
4

5

))

= 1

5

(
1 + 25

26
+ 25

29
+ 25

34
+ 25

41

)
≈ 0.833732.

Let RN be the N th right-endpoint approximation for f (x) = x3 on [0, 4] (Figure 2).

(a) Prove that RN = 64(N + 1)2

N2
.

(b) Prove that the area of the region within the right-endpoint rectangles above the graph is equal to

64(2N + 1)

N2

11. Which approximation to the area is represented by the shaded rectangles in Figure 3? Compute R5 and L5.

x

y

30

18

6

1 2 3 4 5

FIGURE 3

solution There are five rectangles and the height of each is given by the function value at the right endpoint of the
subinterval. Thus, the area represented by the shaded rectangles is R5.

From the figure, we see that �x = 1. Then

R5 = 1(30 + 18 + 6 + 6 + 30) = 90 and L5 = 1(30 + 30 + 18 + 6 + 6) = 90.

Calculate any two Riemann sums for f (x) = x2 on the interval [2, 5], but choose partitions with at least five
subintervals of unequal widths and intermediate points that are neither endpoints nor midpoints.

In Exercises 13–16, express the limit as an integral (or multiple of an integral) and evaluate.

13. lim
N→∞

π

6N

N∑
j=1

sin

(
π

3
+ πj

6N

)

solution Let f (x) = sin x and N be a positive integer. A uniform partition of the interval [π/3, π/2] with N

subintervals has

�x = π

6N
and xj = π

3
+ πj

6N
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for 0 ≤ j ≤ N . Then

π

6N

N∑
j=1

sin

(
π

3
+ πj

6N

)
= �x

N∑
j=1

f (xj ) = RN ;

consequently,

lim
N→∞

π

6N

N∑
j=1

sin

(
π

3
+ πj

6N

)
=
∫ π/2

π/3
sin x dx = − cos x

∣∣∣∣π/2

π/3
= 0 + 1

2
= 1

2
.

lim
N→∞

3

N

N−1∑
k=0

(
10 + 3k

N

)
15. lim

N→∞
5

N

N∑
j=1

√
4 + 5j/N

solution Let f (x) = √
x and N be a positive integer. A uniform partition of the interval [4, 9] with N subintervals

has

�x = 5

N
and xj = 4 + 5j

N

for 0 ≤ j ≤ N . Then

5

N

N∑
j=1

√
4 + 5j/N = �x

N∑
j=1

f (xj ) = RN ;

consequently,

lim
N→∞

5

N

N∑
j=1

√
4 + 5j/N =

∫ 9

4

√
x dx = 2

3
x3/2

∣∣∣∣9
4

= 54

3
− 16

3
= 38

3
.

lim
N→∞

1k + 2k + · · · + Nk

Nk+1
(k > 0)

In Exercises 17–20, use the given substitution to evaluate the integral.

17.
∫ 2

0

dt

(4t + 12)2
, u = 4t + 12

solution Let u = 4t + 12. Then du = 4dt , and the new limits of integration are u = 12 and u = 20. Thus,

∫ 2

0

dt

(4t + 12)2
= 1

4

∫ 20

12

du

u2
= −1

4
u−1

∣∣∣∣20

12
= 1

4

(
1

12
− 1

20

)
= 1

120

∫
(x2 + 1) dx

(x3 + 3x)4
, u = x3 + 3x

19.
∫ π/6

0
sin x cos4 x dx, u = cos x

solution Let u = cos x. Then du = − sin x dx and the new limits of integration are u = 1 and u = √
3/2. Thus,

∫ π/6

0
sin x cos4 x dx = −

∫ √
3/2

1
u4 du

= −1

5
u5
∣∣∣∣
√

3/2

1

= 1

5

(
1 − 9

√
3

32

)
.

∫
sec2(2θ) tan(2θ) dθ , u = tan(2θ)

In Exercises 21–48, evaluate the integral.

21.
∫

(20x4 − 9x3 − 2x) dx

solution
∫

(20x4 − 9x3 − 2x) dx = 4x5 − 9

4
x4 − x2 + C.

∫ 2

0
(12x3 − 3x2) dx

23.
∫

(2x2 − 3x)2 dx

solution
∫

(2x2 − 3x)2 dx =
∫

(4x4 − 12x3 + 9x2) dx = 4

5
x5 − 3x4 + 3x3 + C.

∫ 1

0
(x7/3 − 2x1/4) dx
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25.
∫

x5 + 3x4

x2
dx

solution
∫

x5 + 3x4

x2
dx =

∫
(x3 + 3x2) dx = 1

4
x4 + x3 + C.

∫ 3

1
r−4 dr

27.
∫ 3

−3
|x2 − 4| dx

solution

∫ 3

−3
|x2 − 4| dx =

∫ 2

−3
(x2 − 4) dx +

∫ 2

−2
(4 − x2) dx +

∫ 3

2
(x2 − 4) dx

=
(

1

3
x3 − 4x

)∣∣∣∣−2

−3
+
(

4x − 1

3
x3
)∣∣∣∣2−2

+
(

1

3
x3 − 4x

)∣∣∣∣3
2

=
(

16

3
− 3

)
+
(

16

3
+ 16

3

)
+
(

−3 + 16

3

)

= 46

3
.

∫ 4

−2
|(x − 1)(x − 3)| dx

29.
∫ 3

1
[t] dt

solution

∫ 3

1
[t] dt =

∫ 2

1
[t] dt +

∫ 3

2
[t] dt =

∫ 2

1
dt +

∫ 3

2
2 dt = t

∣∣∣∣2
1

+ 2t

∣∣∣∣3
2

= (2 − 1) + (6 − 4) = 3.

∫ 2

0
(t − [t])2 dt

31.
∫

(10t − 7)14 dt

solution Let u = 10t − 7. Then du = 10dt and∫
(10t − 7)14 dt = 1

10

∫
u14 du = 1

150
u15 + C = 1

150
(10t − 7)15 + C.

∫ 3

2

√
7y − 5 dy

33.
∫

(2x3 + 3x) dx

(3x4 + 9x2)5

solution Let u = 3x4 + 9x2. Then du = (12x3 + 18x) dx = 6(2x3 + 3x) dx and

∫
(2x3 + 3x) dx

(3x4 + 9x2)5
= 1

6

∫
u−5 du = − 1

24
u−4 + C = − 1

24
(3x4 + 9x2)−4 + C.

∫ −1

−3

x dx

(x2 + 5)2

35.
∫ 5

0
15x

√
x + 4 dx

solution Let u = x + 4. Then x = u − 4, du = dx and the new limits of integration are u = 4 and u = 9. Thus,

∫ 5

0
15x

√
x + 4 dx =

∫ 9

4
15(u − 4)

√
u du

= 15
∫ 9

4
(u3/2 − 4u1/2) du

= 15

(
2

5
u5/2 − 8

3
u3/2

)∣∣∣∣9
4

= 15

((
486

5
− 72

)
−
(

64

5
− 64

3

))

= 506.

∫
t2√

t + 8 dt
37.

∫ 1

0
cos
(π

3
(t + 2)

)
dt

solution
∫ 1

0
cos
(π

3
(t + 2)

)
dt = 3

π
sin
(π

3
(t + 2)

)∣∣∣∣1
0

= −3
√

3

2π
.
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∫ π

π/2
sin

(
5θ − π

6

)
dθ

39.
∫

t2 sec2(9t3 + 1) dt

solution Let u = 9t3 + 1. Then du = 27t2 dt and∫
t2 sec2(9t3 + 1) dt = 1

27

∫
sec2 u du = 1

27
tan u + C = 1

27
tan(9t3 + 1) + C.

∫
sin2(3θ) cos(3θ) dθ

41.
∫

csc2(9 − 2θ) dθ

solution Let u = 9 − 2θ . Then du = −2 dθ and∫
csc2(9 − 2θ) dθ = −1

2

∫
csc2 u du = 1

2
cot u + C = 1

2
cot(9 − 2θ) + C.

∫
sin θ

√
4 − cos θ dθ

43.
∫ π/3

0

sin θ

cos2/3 θ
dθ

solution Let u = cos θ . Then du = − sin θ dθ and when θ = 0, u = 1 and when θ = π
3 , u = 1

2 . Finally,

∫ π/3

0

sin θ

cos2/3 θ
dθ = −

∫ 1/2

1
u−2/3 du = −3u1/3

∣∣∣∣1/2

1
= −3(2−1/3 − 1) = 3 − 3 3√4

2
.

∫
sec2 t dt

(tan t − 1)2

45.
∫

y
√

2y + 3 dy

solution Let u = 2y + 3; then du = 2 dy so that dy = 1

2
du, and y = 1

2
(u − 3). Then

∫
y
√

2y + 3 dy = 1

4

∫
(u − 3)

√
u du = 1

4

∫ (
u3/2 − 3u1/2

)
du = 1

10
u5/2 − 1

2
u3/2 + C

= 1

10
(2y + 3)5/2 − 1

2
(2y + 3)3/2 + C

∫ 8

1
t2√

t + 8 dt
47.

∫ π/2

0
sec2(cos θ) sin θ dθ

solution Let u = cos θ ; then du = − sin θ dθ , and the new bounds of integration are cos 0 = 1 to cos π
2 = 0. Thus

∫ π/2

0
sec2(cos θ) sin θ dθ = −

∫ 0

1
sec2 u du = tan u

∣∣∣∣1
0

= tan 1

∫ −2

−4

12x dx

(x2 + 2)3

49. Combine to write as a single integral:

∫ 8

0
f (x) dx +

∫ 0

−2
f (x) dx +

∫ 6

8
f (x) dx

solution First, rewrite

∫ 8

0
f (x) dx =

∫ 6

0
f (x) dx +

∫ 8

6
f (x) dx

and observe that ∫ 6

8
f (x) dx = −

∫ 8

6
f (x) dx.

Thus, ∫ 8

0
f (x) dx +

∫ 6

8
f (x) dx =

∫ 6

0
f (x) dx.

Finally,

∫ 8

0
f (x) dx +

∫ 0

−2
f (x) dx +

∫ 6

8
f (x) dx =

∫ 6

0
f (x) dx +

∫ 0

−2
f (x) dx =

∫ 6

−2
f (x) dx.
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Let A(x) =
∫ x

0
f (x) dx, where f (x) is the function shown in Figure 4. Identify the location of the local minima,

the local maxima, and points of inflection of A(x) on the interval [0, E], as well as the intervals where A(x) is
increasing, decreasing, concave up, or concave down. Where does the absolute max of A(x) occur?

51. Find the inflection points of A(x) =
∫ x

3

t dt

t2 + 1
. However, do not evaluate A(x) explicitly.

solution Let

A(x) =
∫ x

3

t dt

t2 + 1
.

Then

A′(x) = x

x2 + 1

and

A′′(x) = (x2 + 1)(1) − x(2x)

(x2 + 1)2
= 1 − x2

(x2 + 1)2
.

Clearly A′′(x) < 0 for |x| > 1 and A′′(x) > 0 for |x| < 1. Thus A(x) is concave down for |x| > 1 and concave up for
|x| < 1. A(x) therefore has inflection points at x = ±1.

A particle starts at the origin at time t = 0 and moves with velocity v(t) as shown in Figure 5.

(a) How many times does the particle return to the origin in the first 12 seconds?

(b) What is the particle’s maximum distance from the origin?

(c) What is particle’s maximum distance to the left of the origin?

53. On a typical day, a city consumes water at the rate of r(t) = 100 + 72t − 3t2 (in thousands of gallons per hour),
where t is the number of hours past midnight. What is the daily water consumption? How much water is consumed
between 6 pm and midnight?

solution With a consumption rate of r(t) = 100 + 72t − 3t2 thousand gallons per hour, the daily consumption of
water is

∫ 24

0
(100 + 72t − 3t2) dt = (100t + 36t2 − t3)∣∣∣∣24

0
= 100(24) + 36(24)2 − (24)3 = 9312,

or 9.312 million gallons. From 6 PM to midnight, the water consumption is

∫ 24

18
(100 + 72t − 3t2) dt =

(
100t + 36t2 − t3

)∣∣∣24

18

= 100(24) + 36(24)2 − (24)3 − (100(18) + 36(18)2 − (18)3)
= 9312 − 7632 = 1680,

or 1.68 million gallons.

The learning curve in a certain bicycle factory is L(x) = 12x−1/5 (in hours per bicycle), which means that it
takes a bike mechanic L(n) hours to assemble the nth bicycle. If a mechanic has produced 24 bicycles, how long
does it take her or him to produce the second batch of 12?

55. Cost engineers at NASA have the task of projecting the cost P of major space projects. It has been found that the
cost C of developing a projection increases with P at the rate dC/dP ≈ 21P−0.65, where C is in thousands of dollars
and P in millions of dollars. What is the cost of developing a projection for a project whose cost turns out to be P = $35
million?

solution Assuming it costs nothing to develop a projection for a project with a cost of $0, the cost of developing a
projection for a project whose cost turns out to be $35 million is

∫ 35

0
21P−0.65 dP = 60P 0.35

∣∣∣∣35

0
= 60(35)0.35 ≈ 208.245,

or $208,245.

An astronomer estimates that in a certain constellation, the number of stars per magnitude m, per degree-squared
of sky, is equal to A(m) = 2.4 × 10−6m7.4 (fainter stars have higher magnitudes). Determine the total number of
stars of magnitude between 6 and 15 in a one-degree-squared region of sky.

57. Evaluate
∫ 8

−8

x15 dx

3 + cos2 x
, using the properties of odd functions.

solution Let f (x) = x15

3+cos2 x
and note that

f (−x) = (−x)15

3 + cos2(−x)
= − x15

cos2 x
= −f (x).

Because f (x) is an odd function and the interval −8 ≤ x ≤ 8 is symmetric about x = 0, it follows that

∫ 8

−8

x15 dx

3 + cos2 x
= 0.
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Evaluate
∫ 1

0 f (x) dx, assuming that f (x) is an even continuous function such that

∫ 2

1
f (x) dx = 5,

∫ 1

−2
f (x) dx = 8

59. Plot the graph of f (x) = sin mx sin nx on [0, π ] for the pairs (m, n) = (2, 4), (3, 5) and in each case guess
the value of I = ∫ π

0 f (x) dx. Experiment with a few more values (including two cases with m = n) and formulate a
conjecture for when I is zero.

solution The graphs of f (x) = sin mx sin nx with (m, n) = (2, 4) and (m, n) = (3, 5) are shown below. It appears
as if the positive areas balance the negative areas, so we expect that

I =
∫ π

0
f (x) dx = 0

in these cases.

−0.5

32.521.510.5

0.5

(2, 4)

x

y

−0.5

32.521.510.5

0.5

(3, 5)

x

y

We arrive at the same conclusion for the cases (m, n) = (4, 1) and (m, n) = (5, 2).

−0.5

32.521.510.5

0.5

(4, 1)

x

y

−0.5

32.521.510.5

0.5

(5, 2)

x

y

However, when (m, n) = (3, 3) and when (m, n) = (5, 5), the value of

I =
∫ π

0
f (x) dx

is clearly not zero as there is no negative area.

−0.5

32.521.510.5

0.5

(3, 3)

x

y

−0.5

32.521.510.5

0.5

(5, 5)

x

y

We therefore conjecture that I is zero whenever m �= n.

Show that ∫
x f (x) dx = xF(x) − G(x)

where F ′(x) = f (x) and G′(x) = F(x). Use this to evaluate
∫

x cos x dx.

61. Prove

2 ≤
∫ 2

1
2x dx ≤ 4 and

1

9
≤
∫ 2

1
3−x dx ≤ 1

3

solution The function f (x) = 2x is increasing, so 1 ≤ x ≤ 2 implies that 2 = 21 ≤ 2x ≤ 22 = 4. Consequently,

2 =
∫ 2

1
2 dx ≤

∫ 2

1
2x dx ≤

∫ 2

1
4 dx = 4.

On the other hand, the function f (x) = 3−x is decreasing, so 1 ≤ x ≤ 2 implies that

1

9
= 3−2 ≤ 3−x ≤ 3−1 = 1

3
.

It then follows that

1

9
=
∫ 2

1

1

9
dx ≤

∫ 2

1
3−x dx ≤

∫ 2

1

1

3
dx = 1

3
.
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Plot the graph of f (x) = x−2 sin x, and show that 0.2 ≤
∫ 2

1
f (x) dx ≤ 0.9.

63. Find upper and lower bounds for
∫ 1

0
f (x) dx, for f (x) in Figure 6.

1

1

2

y

x

f (x)y = x2 + 1

y = x1/2 + 1

FIGURE 6

solution From the figure, we see that the inequalities x2 + 1 ≤ f (x) ≤ √
x + 1 hold for 0 ≤ x ≤ 1. Because

∫ 1

0
(x2 + 1) dx =

(
1

3
x3 + x

)∣∣∣∣1
0

= 4

3

and ∫ 1

0
(
√

x + 1) dx =
(

2

3
x3/2 + x

)∣∣∣∣1
0

= 5

3
,

it follows that

4

3
≤
∫ 1

0
f (x) dx ≤ 5

3
.

In Exercises 64–69, find the derivative.

A′(x), where A(x) =
∫ x

3
sin(t3) dt

65. A′(π), where A(x) =
∫ x

2

cos t

1 + t
dt

solution Let A(x) =
∫ x

2

cos t

1 + t
dt . Then A′(x) = cos x

1 + x
and

A′(π) = cos π

1 + π
= − 1

1 + π
.

d

dy

∫ y

−2
3x dx

67. G′(x), where G(x) =
∫ sin x

−2
t3 dt

solution Let G(x) =
∫ sin x

−2
t3 dt . Then

G′(x) = sin3 x
d

dx
sin x = sin3 x cos x.

G′(2), where G(x) =
∫ x3

0

√
t + 1 dt

69. H ′(1), where H(x) =
∫ 9

4x2

1

t
dt

solution Let H(x) =
∫ 9

4x2

1

t
dt = −

∫ 4x2

9

1

t
dt . Then

H ′(x) = − 1

4x2

d

dx
4x2 = − 8x

4x2
= − 2

x

and H ′(1) = −2.

Explain with a graph: If f (x) is increasing and concave up on [a, b], then LN is more accurate than RN . Which
is more accurate if f (x) is increasing and concave down?

71. Explain with a graph: If f (x) is linear on [a, b], then the
∫ b

a
f (x) dx = 1

2
(RN + LN) for all N .

solution Consider the figure below, which displays a portion of the graph of a linear function.

x

y
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The shaded rectangles represent the differences between the right-endpoint approximation RN and the left-endpoint
approximation LN . In particular, the portion of each rectangle that lies below the graph of y = f (x) is the amount by
which LN underestimates the area under the graph, whereas the portion of each rectangle that lies above the graph of
y = f (x) is the amount by which RN overestimates the area. Because the graph of y = f (x) is a line, the lower portion
of each shaded rectangle is exactly the same size as the upper portion. Therefore, if we average LN and RN , the error in
the two approximations will exactly cancel, leaving

1

2
(RN + LN) =

∫ b

a
f (x) dx.

Let f (x) be a positive increasing continuous function on [a, b], where 0 ≤ a < b as in Figure 7. Show that the
shaded region has area

I = bf (b) − af (a) −
∫ b

a
f (x) dx

73. How can we interpret the quantity I in Eq. (1) if a < b ≤ 0? Explain with a graph.

solution We will consider each term on the right-hand side of (1) separately. For convenience, let I, II, III and IV
denote the area of the similarly labeled region in the diagram below.

y

x
ba

I

III

II

IV

f (b)

f (a)

Because b < 0, the expression bf (b) is the opposite of the area of the rectangle along the right; that is,

bf (b) = −II − IV.

Similarly,

−af (a) = III + IV and −
∫ b

a
f (x) dx = −I − III.

Therefore,

bf (b) − af (a) −
∫ b

a
f (x) dx = −I − II;

that is, the opposite of the area of the shaded region shown below.

y

x
ba

f (b)

f (a)
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6 APPLICATIONS OF THE
INTEGRAL

6.1 Area Between Two Curves

Preliminary Questions

1. What is the area interpretation of
∫ b

a

(
f (x) − g(x)

)
dx if f (x) ≥ g(x)?

solution Because f (x) ≥ g(x),
∫ b
a (f (x) − g(x)) dx represents the area of the region bounded between the graphs

of y = f (x) and y = g(x), bounded on the left by the vertical line x = a and on the right by the vertical line x = b.

2. Is
∫ b

a

(
f (x) − g(x)

)
dx still equal to the area between the graphs of f and g if f (x) ≥ 0 but g(x) ≤ 0?

solution Yes. Since f (x) ≥ 0 and g(x) ≤ 0, it follows that f (x) − g(x) ≥ 0.

3. Suppose that f (x) ≥ g(x) on [0, 3] and g(x) ≥ f (x) on [3, 5]. Express the area between the graphs over [0, 5] as a
sum of integrals.

solution Remember that to calculate an area between two curves, one must subtract the equation for the lower curve
from the equation for the upper curve. Over the interval [0, 3], y = f (x) is the upper curve. On the other hand, over the
interval [3, 5], y = g(x) is the upper curve. The area between the graphs over the interval [0, 5] is therefore given by

∫ 3

0
(f (x) − g(x)) dx +

∫ 5

3
(g(x) − f (x)) dx.

4. Suppose that the graph of x = f (y) lies to the left of the y-axis. Is
∫ b
a f (y) dy positive or negative?

solution If the graph of x = f (y) lies to the left of the y-axis, then for each value of y, the corresponding value of x

is less than zero. Hence, the value of
∫ b
a f (y) dy is negative.

Exercises
1. Find the area of the region between y = 3x2 + 12 and y = 4x + 4 over [−3, 3] (Figure 9).

50

25

y

x

y = 3x2 + 12

y = 4x + 4

3−1−3 1 2

FIGURE 9

solution As the graph of y = 3x2 + 12 lies above the graph of y = 4x + 4 over the interval [−3, 3], the area between
the graphs is

∫ 3

−3

(
(3x2 + 12) − (4x + 4)

)
dx =

∫ 3

−3
(3x2 − 4x + 8) dx =

(
x3 − 2x2 + 8x

)∣∣∣3−3
= 102.

317
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Find the area of the region between the graphs of f (x) = 3x + 8 and g(x) = x2 + 2x + 2 over [0, 2].3. Find the area of the region enclosed by the graphs of f (x) = x2 + 2 and g(x) = 2x + 5 (Figure 10).

g(x) = 2x + 5

f (x) = x2 + 2

−1 1 2 3

10

y

x

FIGURE 10

solution From the figure, we see that the graph of g(x) = 2x + 5 lies above the graph of f (x) = x2 + 2 over the
interval [−1, 3]. Thus, the area between the graphs is∫ 3

−1

[
(2x + 5) −

(
x2 + 2

)]
dx =

∫ 3

−1

(
−x2 + 2x + 3

)
dx

=
(

−1

3
x3 + x2 + 3x

)∣∣∣∣3−1

= 9 −
(

−5

3

)
= 32

3
.

Find the area of the region enclosed by the graphs of f (x) = x3 − 10x and g(x) = 6x (Figure 11).
In Exercises 5 and 6, sketch the region between y = sin x and y = cos x over the interval and find its area.

5.
[π

4
,
π

2

]
solution Over the interval [π

4 , π
2 ], the graph of y = cos x lies below that of y = sin x (see the sketch below). Hence,

the area between the two curves is∫ π/2

π/4
(sin x − cos x) dx = (− cos x − sin x)

∣∣∣π/2

π/4
= (0 − 1) −

(
−

√
2

2
−

√
2

2

)
= √

2 − 1.

y

x

0.2

0.5 1.0 1.5

0.4

0.6

0.8

1.0
y = sin x

y = cos x

[0, π ]In Exercises 7 and 8, let f (x) = 20 + x − x2 and g(x) = x2 − 5x.

7. Sketch the region enclosed by the graphs of f (x) and g(x) and compute its area.

solution Setting f (x) = g(x) gives 20 + x − x2 = x2 − 5x, which simplifies to

0 = 2x2 − 6x − 20 = 2(x − 5)(x + 2).

Thus, the curves intersect at x = −2 and x = 5. With y = 20 + x − x2 being the upper curve (see the sketch below), the
area between the two curves is∫ 5

−2

(
(20 + x − x2) − (x2 − 5x)

)
dx =

∫ 5

−2

(
20 + 6x − 2x2

)
dx =

(
20x + 3x2 − 2

3
x3

)∣∣∣∣5−2
= 343

3
.

y

x

−5

5

10

15

−2 2 4

y = 20 + x − x2

y = x2 − 5x
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Sketch the region between the graphs of f (x) and g(x) over [4, 8] and compute its area as a sum of two integrals.9. Find the points of intersection of y = x(x2 − 1) and y = 1 − x2. Sketch the region enclosed by these curves
over [−1, 1] and compute its area.

solution A sketch of the region bounded by y = x(x2 − 1) and y = 1 − x2 is shown below; the region extends from
x = −1 to x = 1.

−3

−2

−1

2

3

−2 10 2
x

y

x(x2 − 1)

1 − x2

As the graph of y = 1 − x2 lies above the graph of y = x(x2 − 1), the area between the graphs is

∫ 1

−1

(
(1 − x2) − x(x2 − 1)

)
dx =

∫ 1

−1

(
−x3 − x2 + x + 1

)
dx =

(
−1

4
x4 − 1

3
x3 + 1

2
x2 + x

) ∣∣∣∣1−1
= 4

3

Find the points of intersection of y = x(4 − x) and y = x2(4 − x). Sketch the region enclosed by these curves
over [0, 4] and compute its area.

11. Sketch the region bounded by the line y = 2 and the graph of y = sec2 x for −π
2 < x < π

2 and find its area.

solution A sketch of the region bounded by y = sec2 x and y = 2 is shown below. Note the region extends from

x = −π
4 on the left to x = π

4 on the right. As the graph of y = 2 lies above the graph of y = sec2 x, the area between
the graphs is

∫ π/4

−π/4
(2 − sec2 x) dx = (2x − tan x)

∣∣∣∣π/4

−π/4
=

(π

2
− 1

)
−

(
−π

2
+ 1

)
= π − 2.

–0.5 0.5

0.5

1

1.5

2

y = sec2 x

Sketch the region bounded by

y = x√
1 − x2

and y = − x√
1 − x2

for 0 ≤ x ≤ 0.8 and find its area.

In Exercises 13–16, find the area of the shaded region in Figures 12–15.

13. y

x
2

y = 3x2 + 4x − 10

y = x3 − 2x2 + 10

−2

FIGURE 12

solution As the graph of y = x3 − 2x2 + 10 lies above the graph of y = 3x2 + 4x − 10, the area of the shaded
region is

∫ 2

−2

(
(x3 − 2x2 + 10) − (3x2 + 4x − 10)

)
dx =

∫ 2

−2

(
x3 − 5x2 − 4x + 20

)
dx

=
(

1

4
x4 − 5

3
x3 − 2x2 + 20x

)∣∣∣∣2−2
= 160

3
.
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15.
π

6
�3
2

π

3
1
2

x

y

y = cos x

( )  ,

( )  ,

π

6
π

3
π

2

FIGURE 14

solution The line on the top-left has equation y = 3
√

3
π x, and the line on the bottom-right has equation y = 3

2π
x.

Thus, the area to the left of x = π
6 is

∫ π/6

0

(
3
√

3

π
x − 3

2π
x

)
dx =

(
3
√

3

2π
x2 − 3

4π
x2

)∣∣∣∣∣
π/6

0

= 3
√

3

2π

π2

36
− 3

4π

π2

36
= (2

√
3 − 1)π

48
.

The area to the right of x = π
6 is

∫ π/3

π/6

(
cos x − 3

2π
x

)
dx =

(
sin x − 3

4π
x2

)∣∣∣∣π/3

π/6
= 8

√
3 − 8 − π

16
.

The entire area is then

(2
√

3 − 1)π

48
+ 8

√
3 − 8 − π

16
= 12

√
3 − 12 + (

√
3 − 2)π

24
.

In Exercises 17 and 18, find the area between the graphs of x = sin y and x = 1 − cos y over the given interval
(Figure 16).

x = 1 − cos y

x = sin y

x

y

−

π

2

π

2

2

2

FIGURE 16

17. 0 ≤ y ≤ π

2

solution As shown in the figure, the graph on the right is x = sin y and the graph on the left is x = 1 − cos y.
Therefore, the area between the two curves is given by

∫ π/2

0
(sin y − (1 − cos y)) dy = (− cos y − y + sin y)

∣∣∣π/2

0
=

(
−π

2
+ 1

)
− (−1) = 2 − π

2
.

−π

2
≤ y ≤ π

2

19. Find the area of the region lying to the right of x = y2 + 4y − 22 and to the left of x = 3y + 8.

solution Setting y2 + 4y − 22 = 3y + 8 yields

0 = y2 + y − 30 = (y + 6)(y − 5),

so the two curves intersect at y = −6 and y = 5. The area in question is then given by

∫ 5

−6

(
(3y + 8) − (y2 + 4y − 22)

)
dy =

∫ 5

−6

(
−y2 − y + 30

)
dy =

(
−y3

3
− y2

2
+ 30y

)∣∣∣∣∣
5

−6

= 1331

6
.
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Find the area of the region lying to the right of x = y2 − 5 and to the left of x = 3 − y2.
21. Figure 17 shows the region enclosed by x = y3 − 26y + 10 and x = 40 − 6y2 − y3. Match the equations with the
curves and compute the area of the region.

x

y

3

−1

−5

FIGURE 17

solution Substituting y = 0 into the equations for both curves indicates that the graph of x = y3 − 26y + 10 passes

through the point (10, 0) while the graph of x = 40 − 6y2 − y3 passes through the point (40, 0). Therefore, over the
y-interval [−1, 3], the graph of x = 40 − 6y2 − y3 lies to the right of the graph of x = y3 − 26y + 10. The orientation
of the two graphs is reversed over the y-interval [−5, −1]. Hence, the area of the shaded region is

∫ −1

−5

(
(y3 − 26y + 10) − (40 − 6y2 − y3)

)
dy +

∫ 3

−1

(
(40 − 6y2 − y3) − (y3 − 26y + 10)

)
dy

=
∫ −1

−5

(
2y3 + 6y2 − 26y − 30

)
dy +

∫ 3

−1

(
−2y3 − 6y2 + 26y + 30

)
dy

=
(

1

2
y4 + 2y3 − 13y2 − 30y

)∣∣∣∣−1

−5
+

(
−1

2
y4 − 2y3 + 13y2 + 30y

)∣∣∣∣3−1
= 256.

Figure 18 shows the region enclosed by y = x3 − 6x and y = 8 − 3x2. Match the equations with the curves and
compute the area of the region.

In Exercises 23 and 24, find the area enclosed by the graphs in two ways: by integrating along the x-axis and by integrating
along the y-axis.

23. x = 9 − y2, x = 5

solution Along the y-axis, we have points of intersection at y = ±2. Therefore, the area enclosed by the two curves
is

∫ 2

−2

(
9 − y2 − 5

)
dy =

∫ 2

−2

(
4 − y2

)
dy =

(
4y − 1

3
y3

)∣∣∣∣2−2
= 32

3
.

Along the x-axis, we have integration limits of x = 5 and x = 9. Therefore, the area enclosed by the two curves is

∫ 9

5
2
√

9 − x dx = −4

3
(9 − x)3/2

∣∣∣∣9
5

= 0 −
(

−32

3

)
= 32

3
.

The semicubical parabola y2 = x3 and the line x = 1.
In Exercises 25 and 26, find the area of the region using the method (integration along either the x- or the y-axis) that
requires you to evaluate just one integral.

25. Region between y2 = x + 5 and y2 = 3 − x

solution From the figure below, we see that integration along the x-axis would require two integrals, but integration

along the y-axis requires only one integral. Setting y2 − 5 = 3 − y2 yields points of intersection at y = ±2. Thus, the
area is given by

∫ 2

−2

(
(3 − y2) − (y2 + 5)

)
dy =

∫ 2

−2

(
8 − 2y2

)
dy =

(
8y − 2

3
y3

)∣∣∣∣2−2
= 64

3
.

2

1

−1

−2

y

x
2−4 −2

x = y2 − 5

x = 3 − y2
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Region between y = x and x + y = 8 over [2, 3]In Exercises 27–44, sketch the region enclosed by the curves and compute its area as an integral along the x- or y-axis.

27. y = 4 − x2, y = x2 − 4

solution Setting 4 − x2 = x2 − 4 yields 2x2 = 8 or x2 = 4. Thus, the curves y = 4 − x2 and y = x2 − 4 intersect

at x = ±2. From the figure below, we see that y = 4 − x2 lies above y = x2 − 4 over the interval [−2, 2]; hence, the
area of the region enclosed by the curves is

∫ 2

−2

(
(4 − x2) − (x2 − 4)

)
dx =

∫ 2

−2
(8 − 2x2) dx =

(
8x − 2

3
x3

)∣∣∣∣2−2
= 64

3
.

2

4

−2

−4

y

x
21−2 −1

y = x2 − 4

y = 4 − x2

y = x2 − 6, y = 6 − x3, y-axis
29. x + y = 4, x − y = 0, y + 3x = 4

solution From the graph below, we see that the top of the region enclosed by the three lines is always bounded by
x + y = 4. On the other hand, the bottom of the region is bounded by y + 3x = 4 for 0 ≤ x ≤ 1 and by x − y = 0 for
1 ≤ x ≤ 2. The total area of the region is then

∫ 1

0
((4 − x) − (4 − 3x)) dx +

∫ 2

1
((4 − x) − x) dx =

∫ 1

0
2x dx +

∫ 2

1
(4 − 2x) dx

= x2
∣∣∣1
0

+ (4x − x2)

∣∣∣2
1

= 1 + (8 − 4) − (4 − 1) = 2.

210.5 1.5
x

y = x
y + 3x = 4

x + y = 4

1

4

3

2

y

y = 8 − 3x, y = 6 − x, y = 2
31. y = 8 − √

x, y = √
x, x = 0

solution Setting 8 − √
x = √

x yields
√

x = 4 or x = 16. Using the graph shown below, we see that y = 8 − √
x

lies above y = √
x over the interval [0, 16]. The area of the region enclosed by these two curves and the y-axis is then

∫ 16

0

(
8 − √

x − √
x
)

dx =
∫ 16

0

(
8 − 2

√
x
)

dx =
(

8x − 4

3
x3/2

)∣∣∣∣16

0
= 128

3
.

y

x

2

2 4 6 8 10 12 14 16

4

6

8

y = 8 − x1/2

y = x1/2

y = |x2 − 4|, y = 5
33. x = |y|, x = 1 − |y|
solution From the graph below, we see that the region enclosed by the curves x = |y| and x = 1 − |y| is symmetric
with respect to the x-axis. We can therefore determine the total area by doubling the area in the first quadrant. For y > 0,
setting y = 1 − y yields y = 1

2 as the point of intersection. Moreover, x = 1 − |y| = 1 − y lies to the right of x = |y| = y,
so the total area of the region is

2
∫ 1/2

0

(
(1 − y) − y

)
dy = 2

(
y − y2)∣∣∣∣1/2

0
= 2

(
1

2
− 1

4

)
= 1

2
.
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10.2 0.6 0.80.4
x

0.4

0.2

y

−0.2

−0.4 x = ⎥ y⎥
x = 1 −⎥ y⎥

y = |x|, y = x2 − 6
35. x = y3 − 18y, y + 2x = 0

solution Setting y3 − 18y = − y
2 yields

0 = y3 − 35

2
y = y

(
y2 − 35

2

)
,

so the points of intersection occur at y = 0 and y = ±
√

70
2 . From the graph below, we see that both curves are symmetric

with respect to the origin. It follows that the portion of the region enclosed by the curves in the second quadrant is identical
to the region enclosed in the fourth quadrant. We can therefore determine the total area enclosed by the two curves by
doubling the area enclosed in the second quadrant. In the second quadrant, y + 2x = 0 lies to the right of x = y3 − 18y,
so the total area enclosed by the two curves is

2
∫ √

70/2

0

(
−y

2
− (y3 − 18y)

)
dy = 2

(
35

4
y2 − 1

4
y4

)∣∣∣∣
√

70/2

0
= 2

(
1225

8
− 1225

16

)
= 1225

8
.

2010
x

2

y

−2
−10−20

y + 2x = 0

x = y3 − 18y

y = x
√

x − 2, y = −x
√

x − 2, x = 4
37. x = 2y, x + 1 = (y − 1)2

solution Setting 2y = (y − 1)2 − 1 yields

0 = y2 − 4y = y(y − 4),

so the two curves intersect at y = 0 and at y = 4. From the graph below, we see that x = 2y lies to the right of
x + 1 = (y − 1)2 over the interval [0, 4] along the y-axis. Thus, the area of the region enclosed by the two curves is∫ 4

0

(
2y − ((y − 1)2 − 1)

)
dy =

∫ 4

0

(
4y − y2

)
dy =

(
2y2 − 1

3
y3

)∣∣∣∣4
0

= 32

3
.

x
2 4 6 8

x + 1 = ( y − 1)2

x = 2y

1

2

3

4

y

x + y = 1, x1/2 + y1/2 = 139. y = cos x, y = cos 2x, x = 0, x = 2π

3
solution From the graph below, we see that y = cos x lies above y = cos 2x over the interval [0, 2π

3 ]. The area of
the region enclosed by the two curves is therefore∫ 2π/3

0
(cos x − cos 2x) dx =

(
sin x − 1

2
sin 2x

)∣∣∣∣2π/3

0
= 3

√
3

4
.

0.5 1 1.5 2
x

1

0.5

y

−0.5

−1

y = cos x

y = cos 2x
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y = tan x, y = − tan x, x = π

4

41. y = sin x, y = csc2 x, x = π

4

solution Over the interval [π
4 , π

2 ], y = csc2 x lies above y = sin x. The area of the region enclosed by the two curves
is then

∫ π/2

π/4

(
csc2 x − sin x

)
dx = (− cot x + cos x

)∣∣∣∣π/2

π/4
= (0 − 0) −

(
−1 +

√
2

2

)
= 1 −

√
2

2
.

y

x
0.2

0.5

1.0

1.5

2.0

0.4 0.6 0.8 1.0 1.2 1.4

y = csc2 x

y = sin x

x = sin y, x = 2

π
y

43. y = sin x, y = x sin(x2), 0 ≤ x ≤ 1

solution A sketch of the region is shown below:

0.1

0.2 0.4 0.6 0.8 1.0

0.2
0.3
0.4
0.5
0.6
0.7
0.8

0 x

y

sin(x)

x sin(x2)

The area of the region is then

A =
∫ 1

0

(
sin x − x sin(x2)

)
dx =

∫ 1

0
sin x dx −

∫ 1

0
x sin(x2) dx

= − cos x

∣∣∣∣1
0

−
∫ 1

0
x sin(x2) dx = 1 − cos 1 −

∫ 1

0
x sin(x2) dx

For the remaining integral, use the substitution u = x2; then du = 2x dx and the new bound of integration are u = 0 to
u = 1. Thus

A = 1 − cos 1 −
∫ 1

0
x sin(x2) dx = 1 − cos 1 − 1

2

∫ 1

0
sin u du = 1 − cos 1 − 1

2
(− cos x)

∣∣∣∣1
0

= 1

2
(1 − cos 1)

y = sin(
√

x)√
x

, y = 0, π2 ≤ x ≤ 9π2
45. Plot

y = x√
x2 + 1

and y = (x − 1)2

on the same set of axes. Use a computer algebra system to find the points of intersection numerically and compute the
area between the curves.

solution Using a computer algebra system, we find that the curves

y = x√
x2 + 1

and y = (x − 1)2

intersect at x = 0.3943285581 and at x = 1.942944418. From the graph below, we see that y = x√
x2+1

lies above

y = (x − 1)2, so the area of the region enclosed by the two curves is

∫ 1.942944418

0.3943285581

(
x√

x2 + 1
− (x − 1)2

)
dx = 0.7567130951

The value of the definite integral was also obtained using a computer algebra system.
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y = (x − 1)2

21.510.5
x

1

0.8

0.6

0.4

0.2

y

y =
x2 + 1

x

Sketch a region whose area is represented by

∫ √
2/2

−√
2/2

(√
1 − x2 − |x|) dx

and evaluate using geometry.

47. Athletes 1 and 2 run along a straight track with velocities v1(t) and v2(t) (in m/s) as shown in Figure 19.

(a) Which of the following is represented by the area of the shaded region over [0, 10]?
i. The distance between athletes 1 and 2 at time t = 10 s.
ii. The difference in the distance traveled by the athletes over the time interval [0, 10].

(b) Does Figure 19 give us enough information to determine who is ahead at time t = 10 s?
(c) If the athletes begin at the same time and place, who is ahead at t = 10 s? At t = 25 s?

v1

v2

5 10 15 20 25 30

1

2

3

4

5

6

7

(m/s)

t (s)

FIGURE 19

solution
(a) The area of the shaded region over [0, 10] represents (ii): the difference in the distance traveled by the athletes over
the time interval [0, 10].
(b) No, Figure 19 does not give us enough information to determine who is ahead at time t = 10 s. We would additionally
need to know the relative position of the runners at t = 0 s.
(c) If the athletes begin at the same time and place, then athlete 1 is ahead at t = 10 s because the velocity graph for
athlete 1 lies above the velocity graph for athlete 2 over the interval [0, 10]. Over the interval [10, 25], the velocity graph
for athlete 2 lies above the velocity graph for athlete 1 and appears to have a larger area than the area between the graphs
over [0, 10]. Thus, it appears that athlete 2 is ahead at t = 25 s.

Express the area (not signed) of the shaded region in Figure 20 as a sum of three integrals involving f (x) and
g(x).

49. Find the area enclosed by the curves y = c − x2 and y = x2 − c as a function of c. Find the value of c for which
this area is equal to 1.

solution The curves intersect at x = ±√
c, with y = c − x2 above y = x2 − c over the interval [−√

c,
√

c]. The
area of the region enclosed by the two curves is then

∫ √
c

−√
c

(
c − x2) − (x2 − c)

)
dx =

∫ √
c

−√
c

(
2c − 2x2

)
dx =

(
2cx − 2

3
x3

)∣∣∣∣
√

c

−√
c

= 8

3
c3/2.

In order for the area to equal 1, we must have 8
3 c3/2 = 1, which gives

c = 91/3

4
≈ 0.520021.

Set up (but do not evaluate) an integral that expresses the area between the circles x2 + y2 = 2 and x2 +
(y − 1)2 = 1.

51. Set up (but do not evaluate) an integral that expresses the area between the graphs of y = (1 + x2)−1 and y = x2.

solution Setting (1 + x2)−1 = x2 yields x4 + x2 − 1 = 0. This is a quadratic equation in the variable x2. By the
quadratic formula,

x2 = −1 ± √
1 − 4(−1)

2
= −1 ± √

5

2
.

As x2 must be nonnegative, we discard −1−√
5

2 . Finally, we find the two curves intersect at x = ±
√

−1+√
5

2 . From the

graph below, we see that y = (1 + x2)−1 lies above y = x2. The area enclosed by the two curves is then

∫ √
−1+√

5
2

−
√

−1+√
5

2

(
(1 + x2)−1 − x2

)
dx.
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y = x2

y = (1 + x2)−1

0.5 1

1

0.5

−0.5−1
x

y

Find a numerical approximation to the area above y = 1 − (x/π) and below y = sin x (find the points of
intersection numerically).

53. Find a numerical approximation to the area above y = |x| and below y = cos x.

solution The region in question is shown in the figure below. We see that the region is symmetric with respect to the
y-axis, so we can determine the total area of the region by doubling the area of the portion in the first quadrant. Using
a computer algebra system, we find that y = cos x and y = |x| intersect at x = 0.7390851332. The area of the region
between the two curves is then

2
∫ 0.7390851332

0
(cos x − x) dx = 0.8009772242,

where the definite integral was evaluated using a computer algebra system.

y = cos x

y = |x|

0.5 1

1

0.5

−0.5−1
x

y

Use a computer algebra system to find a numerical approximation to the number c (besides zero) in
[
0, π

2

]
,

where the curves y = sin x and y = tan2 x intersect. Then find the area enclosed by the graphs over [0, c].
55. The back of Jon’s guitar (Figure 21) is 19 inches long. Jon measured the width at 1-in. intervals, beginning and ending
1
2 in. from the ends, obtaining the results

6, 9, 10.25, 10.75, 10.75, 10.25, 9.75, 9.5, 10, 11.25,

12.75, 13.75, 14.25, 14.5, 14.5, 14, 13.25, 11.25, 9

Use the midpoint rule to estimate the area of the back.

10
.7

5

11
.2

5
910
.2

5
96

FIGURE 21 Back of guitar.

solution Note that the measurements were taken at the midpoint of each one-inch section of the guitar. For example,

in the 0 to 1 inch section, the midpoint would be at 1
2 inch, and thus the approximate area of the first rectangle would be

1 · 6 inches2. An approximation for the entire area is then

A = 1(6 + 9 + 10.25 + 10.75 + 10.75 + 10.25 + 9.75 + 9.5 + 10 + 11.25

+ 12.75 + 13.75 + 14.25 + 14.5 + 14.5 + 14 + 13.25 + 11.25 + 9)

= 214.75 in2.

Referring to Figure 1 at the beginning of this section, estimate the projected number of additional joules produced
in the years 2009–2030 as a result of government stimulus spending in 2009–2010. Note: One watt is equal to one
joule per second, and one gigawatt is 109 watts.

Exercises 57 and 58 use the notation and results of Exercises 49–51 of Section 3.4. For a given country, F(r) is the
fraction of total income that goes to the bottom rth fraction of households. The graph of y = F(r) is called the Lorenz
curve.

57. Let A be the area between y = r and y = F(r) over the interval [0, 1] (Figure 22). The Gini index is the
ratio G = A/B, where B is the area under y = r over [0, 1].
(a) Show that G = 2

∫ 1

0
(r − F(r)) dr.

(b) Calculate G if

F(r) =
{ 1

3 r for 0 ≤ r ≤ 1
2

5
3 r − 2

3 for 1
2 ≤ r ≤ 1
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(c) The Gini index is a measure of income distribution, with a lower value indicating a more equal distribution. Calculate
G if F(r) = r (in this case, all households have the same income by Exercise 51(b) of Section 3.4).
(d) What is G if all of the income goes to one household? Hint: In this extreme case, F(r) = 0 for 0 ≤ r < 1.

0.8

1.0

0.4 0.6 1.00.2

0.8

0.4

0.6

0.2

y

x

y = F(r)y = r

FIGURE 22 Lorenz Curve for U.S. in 2001.

solution
(a) Because the graph of y = r lies above the graph of y = F ¨ in Figure 22,

A =
∫ 1

0
(r − F(r)) dr.

Moreover,

B =
∫ 1

0
r dr = 1

2
r2

∣∣∣∣1
0

= 1

2
.

Thus,

G = A

B
= 2

∫ 1

0
(r − F(r)) dr.

(b) With the given F(r),

G = 2
∫ 1/2

0

(
r − 1

3
r

)
dr + 2

∫ 1

1/2

(
r −

(
5

3
r − 2

3

))
dr

= 4

3

∫ 1/2

0
r dr − 4

3

∫ 1

1/2
(r − 1) dr

= 2

3
r2

∣∣∣∣1/2

0
− 4

3

(
1

2
r2 − r

)∣∣∣∣1
1/2

= 1

6
− 4

3

(
−1

2

)
+ 4

3

(
−3

8

)
= 1

3
.

(c) If F(r) = r , then

G = 2
∫ 1

0
(r − r) dr = 0.

(d) If F(r) = 0 for 0 ≤ r < 1, then

G = 2
∫ 1

0
(r − 0) dr = 2

(
1

2
r2

)∣∣∣∣1
0

= 2

(
1

2

)
= 1.

Calculate the Gini index of the United States in the year 2001 from the Lorenz curve in Figure 22, which consists
of segments joining the data points in the following table.

r 0 0.2 0.4 0.6 0.8 1
F(r) 0 0.035 0.123 0.269 0.499 1

Further Insights and Challenges
59. Find the line y = mx that divides the area under the curve y = x(1 − x) over [0, 1] into two regions of equal area.

solution First note that

∫ 1

0
x(1 − x) dx =

∫ 1

0

(
x − x2

)
dx =

(
1

2
x2 − 1

3
x3

)∣∣∣∣1
0

= 1

6
.

Now, the line y = mx and the curve y = x(1 − x) intersect when mx = x(1 − x), or at x = 0 and at x = 1 − m. The
area of the region enclosed by the two curves is then

∫ 1−m

0
(x(1 − x) − mx) dx =

∫ 1−m

0

(
(1 − m)x − x2

)
dx =

(
(1 − m)

x2

2
− 1

3
x3

)∣∣∣∣∣
1−m

0

= 1

6
(1 − m)3.
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To have 1
6 (1 − m)3 = 1

2 · 1
6 requires

m = 1 −
(

1

2

)1/3
≈ 0.206299.

Let c be the number such that the area under y = sin x over [0, π ] is divided in half by the line y = cx (Figure
23). Find an equation for c and solve this equation numerically using a computer algebra system.

61. Explain geometrically (without calculation):

∫ 1

0
xn dx +

∫ 1

0
x1/n dx = 1 (for n > 0)

solution Let A1 denote the area of region 1 in the figure below. Define A2 and A3 similarly. It is clear from the figure
that

A1 + A2 + A3 = 1.

Now, note that xn and x1/n are inverses of each other. Therefore, the graphs of y = xn and y = x1/n are symmetric
about the line y = x, so regions 1 and 3 are also symmetric about y = x. This guarantees that A1 = A3. Finally,∫ 1

0
xn dx +

∫ 1

0
x1/n dx = A3 + (A2 + A3) = A1 + A2 + A3 = 1.

y

x

1

1

3

2

0 1

Let f (x) be an increasing function with inverse g(x). Explain geometrically:

∫ a

0
f (x) dx +

∫ f (a)

f (0)
g(x) dx = af (a)

6.2 Setting Up Integrals: Volume, Density, Average Value

Preliminary Questions
1. What is the average value of f (x) on [0, 4] if the area between the graph of f (x) and the x-axis is equal to 12?

solution Assuming that f (x) ≥ 0 over the interval [1, 4], the fact that the area between the graph of f and the x-axis

is equal to 9 indicates that
∫ 4

1 f (x) dx = 9. The average value of f over the interval [1, 4] is then

∫ 4
1 f (x) dx

4 − 1
= 9

3
= 3.

2. Find the volume of a solid extending from y = 2 to y = 5 if every cross section has area A(y) = 5.

solution Because the cross-sectional area of the solid is constant, the volume is simply the cross-sectional area times
the length, or 5 × 3 = 15.

3. What is the definition of flow rate?

solution The flow rate of a fluid is the volume of fluid that passes through a cross-sectional area at a given point per
unit time.

4. Which assumption about fluid velocity did we use to compute the flow rate as an integral?

solution To express flow rate as an integral, we assumed that the fluid velocity depended only on the radial distance
from the center of the tube.

5. The average value of f (x) on [1, 4] is 5. Find
∫ 4

1
f (x) dx.

solution

∫ 4

1
f (x) dx = average value on [1, 4] × length of [1, 4]

= 5 × 3 = 15.
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Exercises
1. Let V be the volume of a pyramid of height 20 whose base is a square of side 8.

(a) Use similar triangles as in Example 1 to find the area of the horizontal cross section at a height y.

(b) Calculate V by integrating the cross-sectional area.

solution

(a) We can use similar triangles to determine the side length, s, of the square cross section at height y. Using the diagram
below, we find

8

20
= s

20 − y
or s = 2

5
(20 − y).

The area of the cross section at height y is then given by 4
25 (20 − y)2.

s
20

8

20 − y

(b) The volume of the pyramid is

∫ 20

0

4

25
(20 − y)2 dy = − 4

75
(20 − y)3

∣∣∣∣20

0
= 1280

3
.

Let V be the volume of a right circular cone of height 10 whose base is a circle of radius 4 [Figure 17(A)].

(a) Use similar triangles to find the area of a horizontal cross section at a height y.

(b) Calculate V by integrating the cross-sectional area.

3. Use the method of Exercise 2 to find the formula for the volume of a right circular cone of height h whose base is a
circle of radius R [Figure 17(B)].

solution

(a) From similar triangles (see Figure 17),

h

h − y
= R

r0
,

where r0 is the radius of the cone at a height of y. Thus, r0 = R − Ry
h

.

(b) The volume of the cone is

π

∫ h

0

(
R − Ry

h

)2
dy = −hπ

R

(
R − Ry

h

)3

3

∣∣∣∣∣∣∣
h

0

= hπ

R

R3

3
= πR2h

3
.

Calculate the volume of the ramp in Figure 18 in three ways by integrating the area of the cross sections:

(a) Perpendicular to the x-axis (rectangles).

(b) Perpendicular to the y-axis (triangles).

(c) Perpendicular to the z-axis (rectangles).

5. Find the volume of liquid needed to fill a sphere of radius R to height h (Figure 19).

R

y

h

FIGURE 19 Sphere filled with liquid to height h.

solution The radius r at any height y is given by r =
√

R2 − (R − y)2. Thus, the volume of the filled portion of the
sphere is

π

∫ h

0
r2 dy = π

∫ h

0

(
R2 − (R − y)2

)
dy = π

∫ h

0
(2Ry − y2) dy = π

(
Ry2 − y3

3

)∣∣∣∣∣
h

0

= π

(
Rh2 − h3

3

)
.
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Find the volume of the wedge in Figure 20(A) by integrating the area of vertical cross sections.
7. Derive a formula for the volume of the wedge in Figure 20(B) in terms of the constants a, b, and c.

solution The line from c to a is given by the equation (z/c) + (x/a) = 1 and the line from b to a is given by
(y/b) + (x/a) = 1. The cross sections perpendicular to the x-axis are right triangles with height c(1 − x/a) and base
b(1 − x/a). Thus we have

∫ a

0

1

2
bc (1 − x/a)2 dx = −1

6
abc

(
1 − x

a

)3
∣∣∣∣a
0

= 1

6
abc.

Let B be the solid whose base is the unit circle x2 + y2 = 1 and whose vertical cross sections perpendicular to
the x-axis are equilateral triangles. Show that the vertical cross sections have area A(x) = √

3(1 − x2) and compute
the volume of B.

In Exercises 9–14, find the volume of the solid with the given base and cross sections.

9. The base is the unit circle x2 + y2 = 1, and the cross sections perpendicular to the x-axis are triangles whose height
and base are equal.

solution At each location x, the side of the triangular cross section that lies in the base of the solid extends from the

top half of the unit circle (with y =
√

1 − x2) to the bottom half (with y = −
√

1 − x2). The triangle therefore has base

and height equal to 2
√

1 − x2 and area 2(1 − x2). The volume of the solid is then

∫ 1

−1
2(1 − x2) dx = 2

(
x − 1

3
x3

)∣∣∣∣1−1
= 8

3
.

The base is the triangle enclosed by x + y = 1, the x-axis, and the y-axis. The cross sections perpendicular to the
y-axis are semicircles.

11. The base is the semicircle y =
√

9 − x2, where −3 ≤ x ≤ 3. The cross sections perpendicular to the x-axis are
squares.

solution For each x, the base of the square cross section extends from the semicircle y =
√

9 − x2 to the x-axis. The

square therefore has a base with length
√

9 − x2 and an area of
(√

9 − x2
)2 = 9 − x2. The volume of the solid is then

∫ 3

−3

(
9 − x2

)
dx =

(
9x − 1

3
x3

)∣∣∣∣3−3
= 36.

The base is a square, one of whose sides is the interval [0, �] along the x-axis. The cross sections perpendicular
to the x-axis are rectangles of height f (x) = x2.

13. The base is the region enclosed by y = x2 and y = 3. The cross sections perpendicular to the y-axis are squares.

solution At any location y, the distance to the parabola from the y-axis is
√

y. Thus the base of the square will have
length 2

√
y. Therefore the volume is

∫ 3

0

(
2
√

y
) (

2
√

y
)

dy =
∫ 3

0
4y dy = 2y2

∣∣∣3
0

= 18.

The base is the region enclosed by y = x2 and y = 3. The cross sections perpendicular to the y-axis are rectangles
of height y3.

15. Find the volume of the solid whose base is the region |x| + |y| ≤ 1 and whose vertical cross sections perpendicular
to the y-axis are semicircles (with diameter along the base).

solution The region R in question is a diamond shape connecting the points (1, 0), (0, −1), (−1, 0), and (0, 1). Thus,
in the lower half of the xy-plane, the radius of the circles is y + 1 and in the upper half, the radius is 1 − y. Therefore,
the volume is

π

2

∫ 0

−1
(y + 1)2 dy + π

2

∫ 1

0
(1 − y)2 dy = π

2

(
1

3
+ 1

3

)
= π

3
.

Show that a pyramid of height h whose base is an equilateral triangle of side s has volume
√

3
12 hs2.

17. The area of an ellipse is πab, where a and b are the lengths of the semimajor and semiminor axes (Figure 21).
Compute the volume of a cone of height 12 whose base is an ellipse with semimajor axis a = 6 and semiminor axis b = 4.

Ellipse

12

64

FIGURE 21
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solution At each height y, the elliptical cross section has major axis 1
2 (12 − y) and minor axis 1

3 (12 − y). The

cross-sectional area is then π
6 (12 − y)2, and the volume is

∫ 12

0

π

6
(12 − y)2 dy = − π

18
(12 − y)3

∣∣∣∣12

0
= 96π.

Find the volume V of a regular tetrahedron (Figure 22) whose face is an equilateral triangle of side s. The
tetrahedron has height h = √

2/3s.

19. A frustum of a pyramid is a pyramid with its top cut off [Figure 23(A)]. Let V be the volume of a frustum of height
h whose base is a square of side a and whose top is a square of side b with a > b ≥ 0.

(a) Show that if the frustum were continued to a full pyramid, it would have height ha/(a − b) [Figure 23(B)].

(b) Show that the cross section at height x is a square of side (1/h)(a(h − x) + bx).

(c) Show that V = 1
3h(a2 + ab + b2). A papyrus dating to the year 1850 bce indicates that Egyptian mathematicians

had discovered this formula almost 4000 years ago.

(B)(A)

h

a

b

FIGURE 23

solution

(a) Let H be the height of the full pyramid. Using similar triangles, we have the proportion

H

a
= H − h

b

which gives

H = ha

a − b
.

(b) Let w denote the side length of the square cross section at height x. By similar triangles, we have

a

H
= w

H − x
.

Substituting the value for H from part (a) gives

w = a(h − x) + bx

h
.

(c) The volume of the frustrum is

∫ h

0

(
1

h
(a(h − x) + bx)

)2
dx = 1

h2

∫ h

0

(
a2(h − x)2 + 2ab(h − x)x + b2x2

)
dx

= 1

h2

(
−a2

3
(h − x)3 + abhx2 − 2

3
abx3 + 1

3
b2x3

)∣∣∣∣∣
h

0

= h

3

(
a2 + ab + b2

)
.

A plane inclined at an angle of 45◦ passes through a diameter of the base of a cylinder of radius r . Find the volume
of the region within the cylinder and below the plane (Figure 24).

21. The solid S in Figure 25 is the intersection of two cylinders of radius r whose axes are perpendicular.

(a) The horizontal cross section of each cylinder at distance y from the central axis is a rectangular strip. Find the strip’s
width.

(b) Find the area of the horizontal cross section of S at distance y.

(c) Find the volume of S as a function of r .
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S

y

FIGURE 25 Two cylinders intersecting at right angles.

solution

(a) The horizontal cross section at distance y from the central axis (for −r ≤ y ≤ r) is a square of width w = 2
√

r2 − y2.

(b) The area of the horizontal cross section of S at distance y from the central axis is w2 = 4(r2 − y2).

(c) The volume of the solid S is then

4
∫ r

−r

(
r2 − y2

)
dy = 4

(
r2y − 1

3
y3

)∣∣∣∣r−r

= 16

3
r3.

Let S be the intersection of two cylinders of radius r whose axes intersect at an angle θ . Find the volume of S as
a function of r and θ .

23. Calculate the volume of a cylinder inclined at an angle θ = 30◦ with height 10 and base of radius 4 (Figure 26).

30°

4

10

FIGURE 26 Cylinder inclined at an angle θ = 30◦.

solution The area of each circular cross section is π(4)2 = 16π , hence the volume of the cylinder is

∫ 10

0
16π dx = (16πx)

∣∣∣∣10

0
= 160π

The areas of cross sections of Lake Nogebow at 5-meter intervals are given in the table below. Figure 27 shows
a contour map of the lake. Estimate the volume V of the lake by taking the average of the right- and left-endpoint
approximations to the integral of cross-sectional area.

Depth (m) 0 5 10 15 20

Area (million m2) 2.1 1.5 1.1 0.835 0.217

25. Find the total mass of a 1-m rod whose linear density function is ρ(x) = 10(x + 1)−2 kg/m for 0 ≤ x ≤ 1.

solution The total mass of the rod is

∫ 1

0
ρ(x) dx =

∫ 1

0

(
10(x + 1)−2

)
dx =

(
−10(x + 1)−1

) ∣∣∣∣1
0

= 5 kg.

Find the total mass of a 2-m rod whose linear density function is ρ(x) = 1 + 0.5 sin(πx) kg/m for 0 ≤ x ≤ 2.
27. A mineral deposit along a strip of length 6 cm has density s(x) = 0.01x(6 − x) g/cm for 0 ≤ x ≤ 6. Calculate the
total mass of the deposit.

solution The total mass of the deposit is

∫ 6

0
s(x) dx =

∫ 6

0
0.01x(6 − x) dx =

(
0.03x2 − 0.01

3
x3

)∣∣∣∣6
0

= 0.36 g.

Charge is distributed along a glass tube of length 10 cm with linear charge density ρ(x) = x(x2 + 1)−2 × 10−4

coulombs per centimeter for 0 ≤ x ≤ 10. Calculate the total charge.

29. Calculate the population within a 10-mile radius of the city center if the radial population density is ρ(r) = 4(1 +
r2)1/3 (in thousands per square mile).

solution The total population is

2π

∫ 10

0
r · ρ(r) dr = 2π

∫ 10

0
4r(1 + r2)1/3 dr = 3π(1 + r2)4/3

∣∣∣∣10

0

≈ 4423.59 thousand ≈ 4.4 million.
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Odzala National Park in the Republic of the Congo has a high density of gorillas. Suppose that the radial population
density is ρ(r) = 52(1 + r2)−2 gorillas per square kilometer, where r is the distance from a grassy clearing with a
source of water. Calculate the number of gorillas within a 5-km radius of the clearing.

31. Table 1 lists the population density (in people per square kilometer) as a function of distance r (in kilometers) from
the center of a rural town. Estimate the total population within a 1.2-km radius of the center by taking the average of the
left- and right-endpoint approximations.

TABLE 1 Population Density

r ρ(r) r ρ(r)

0.0 125.0 0.8 56.2
0.2 102.3 1.0 46.0
0.4 83.8 1.2 37.6
0.6 68.6

solution The total population is given by

2π

∫ 1.2

0
r · ρ(r) dr.

With �r = 0.2, the left- and right-endpoint approximations to the required definite integral are

L6 = 0.2(2π)[0(125) + (0.2)(102.3) + (0.4)(83.8) + (0.6)(68.6) + (0.8)(56.2) + (1)(46)]
= 233.86;

R10 = 0.2(2π)[(0.2)(102.3) + (0.4)(83.8) + (0.6)(68.6) + (0.8)(56.2) + (1)(46) + (1.2)(37.6)]
= 290.56.

This gives an average of 262.21. Thus, there are roughly 262 people within a 1.2-km radius of the town center.

Find the total mass of a circular plate of radius 20 cm whose mass density is the radial function ρ(r) = 0.03 +
0.01 cos(πr2) g/cm2.

33. The density of deer in a forest is the radial function ρ(r) = 150(r2 + 2)−2 deer per square kilometer, where r is the
distance (in kilometers) to a small meadow. Calculate the number of deer in the region 2 ≤ r ≤ 5 km.

solution The number of deer in the region 2 ≤ r ≤ 5 km is

2π

∫ 5

2
r (150)

(
r2 + 2

)−2
dr = −150π

(
1

r2 + 2

)∣∣∣∣5
2

= −150π

(
1

27
− 1

6

)
≈ 61 deer.

Show that a circular plate of radius 2 cm with radial mass density ρ(r) = 4
r g/cm2 has finite total mass, even

though the density becomes infinite at the origin.

35. Find the flow rate through a tube of radius 4 cm, assuming that the velocity of fluid particles at a distance r cm from
the center is v(r) = (16 − r2) cm/s.

solution The flow rate is

2π

∫ R

0
rv(r) dr = 2π

∫ 4

0
r
(

16 − r2
)

dr = 2π

(
8r2 − 1

4
r4

)∣∣∣∣4
0

= 128π
cm3

s
.

The velocity of fluid particles flowing through a tube of radius 5 cm is v(r) = (10 − 0.3r − 0.34r2) cm/s, where
r cm is the distance from the center. What quantity per second of fluid flows through the portion of the tube where
0 ≤ r ≤ 2?

37. A solid rod of radius 1 cm is placed in a pipe of radius 3 cm so that their axes are aligned. Water flows through
the pipe and around the rod. Find the flow rate if the velocity of the water is given by the radial function v(r) =
0.5(r − 1)(3 − r) cm/s.

solution The flow rate is

2π

∫ 3

1
r(0.5)(r − 1)(3 − r) dr = π

∫ 3

1

(
−r3 + 4r2 − 3r

)
dr = π

(
−1

4
r4 + 4

3
r3 − 3

2
r2

)∣∣∣∣3
1

= 8π

3

cm3

s
.

Let v(r) be the velocity of blood in an arterial capillary of radius R = 4 × 10−5 m. Use Poiseuille’s Law (Exam-
ple 6) with k = 106 (m-s)−1 to determine the velocity at the center of the capillary and the flow rate (use correct
units).

In Exercises 39–48, calculate the average over the given interval.

39. f (x) = x3, [0, 4]
solution The average is

1

4 − 0

∫ 4

0
x3 dx = 1

4

∫ 4

0
x3 dx = 1

16
x4

∣∣∣∣4
0

= 16.
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f (x) = x3, [−1, 1]
41. f (x) = cos x,

[
0, π

6

]
solution The average is

1

π/6 − 0

∫ π/6

0
cos x dx = 6

π

∫ π/6

0
cos x dx = 6

π
sin x

∣∣∣∣π/6

0
= 3

π
.

f (x) = sec2 x,
[
π
6 , π

3

]43. f (s) = s−2, [2, 5]
solution The average is

1

5 − 2

∫ 5

2
s−2 ds = −1

3
s−1

∣∣∣∣5
2

= 1

10
.

f (x) = sin(π/x)

x2
, [1, 2]

45. f (x) = 2x3 − 6x2, [−1, 3]
solution The average is

1

3 − (−1)

∫ 3

−1
(2x3 − 6x2) dx = 1

4

∫ 3

−1
(2x3 − 6x2) dx = 1

4

(
1

2
x4 − 2x3

)∣∣∣∣3−1
= 1

4

(
−27

2
− 5

2

)
= −4.

f (x) = x

(x2 + 16)3/2
, [0, 3]

47. f (x) = xn for n ≥ 0, [0, 1]
solution For n > −1, the average is

1

1 − 0

∫ 1

0
xn dx =

∫ 1

0
xn dx = 1

n + 1
xn+1

∣∣∣∣1
0

= 1

n + 1
.

f (x) = sin(nx), [0, π ]49. The temperature (in ◦C) at time t (in hours) in an art museum varies according to T (t) = 20 + 5 cos
(

π
12 t

)
. Find the

average over the time periods [0, 24] and [2, 6].
solution

• The average temperature over the 24-hour period is

1

24 − 0

∫ 24

0

(
20 + 5 cos

( π

12
t
))

dt = 1

24

(
20t + 60

π
sin

( π

12
t
))∣∣∣∣24

0
= 20◦C.

• The average temperature over the 4-hour period is

1

6 − 2

∫ 6

2

(
20 + 5 cos

( π

12
t
))

dt = 1

4

(
20t + 60

π
sin

( π

12
t
))∣∣∣∣6

2
= 22.4◦C.

A ball thrown in the air vertically from ground level with initial velocity 18 m/s has height h(t) = 18t − 9.8t2 at
time t (in seconds). Find the average height and the average speed over the time interval extending from the ball’s
release to its return to ground level.

51. Find the average speed over the time interval [1, 5] of a particle whose position at time t is s(t) = t3 − 6t2 m/s.

solution The average speed over the time interval [1, 5] is

1

5 − 1

∫ 5

1
|s′(t)| dt.

Because s′(t) = 3t2 − 12t = 3t (t − 4), it follows that

∫ 5

1
|s′(t)| dt =

∫ 4

1
(12t − 3t2) dt +

∫ 5

4
(3t2 − 12t) dt

= (6t2 − t3)

∣∣∣∣4
1

+ (t3 − 6t2)

∣∣∣∣5
4

= (96 − 64) − (6 − 1) + (125 − 150) − (64 − 96)

= 34.

Thus, the average speed is

34

4
= 17

2
m/s.
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An object with zero initial velocity accelerates at a constant rate of 10 m/s2. Find its average velocity during the
first 15 seconds.

53. The acceleration of a particle is a(t) = 60t − 4t3 m/s2. Compute the average acceleration and the average speed
over the time interval [2, 6], assuming that the particle’s initial velocity is zero.

solution The average acceleration over the time interval [2, 6] is

1

6 − 2

∫ 6

2
(60t − 4t3) dt = 1

4
(30t2 − t4)

∣∣∣∣6
2

= 1

4
[(1080 − 1296) − (120 − 16)]

= −320

4
= −80 m/s2.

Given a(t) = 60t − 4t3 and v(0) = 0, it follows that v(t) = 30t2 − t4. Now, average speed is given by

1

6 − 2

∫ 6

2
|v(t)| dt.

Based on the formula for v(t),

∫ 6

2
|v(t)| dt =

∫ √
30

2
(30t2 − t4) dt +

∫ 6

√
30

(t4 − 30t2) dt

=
(

10t3 − 1

5
t5

)∣∣∣∣
√

30

2
+

(
1

5
t5 − 10t3

)∣∣∣∣6√
30

= 120
√

30 − 368

5
− 3024

5
+ 120

√
30

= 240
√

30 − 3392

5
.

Finally, the average speed is

1

4

(
240

√
30 − 3392

5

)
= 60

√
30 − 848

5
≈ 159.03 m/s.

What is the average area of the circles whose radii vary from 0 to R?55. Let M be the average value of f (x) = x4 on [0, 3]. Find a value of c in [0, 3] such that f (c) = M .

solution We have

M = 1

3 − 0

∫ 3

0
x4 dx = 1

3

∫ 3

0
x4 dx = 1

15
x5

∣∣∣∣3
0

= 81

5
.

Then M = f (c) = c4 = 81
5 implies c = 3

51/4 = 2.006221.

Let f (x) = √
x. Find a value of c in [4, 9] such that f (c) is equal to the average of f on [4, 9].57. Let M be the average value of f (x) = x3 on [0, A], where A > 0. Which theorem guarantees that f (c) = M has a

solution c in [0, A]? Find c.

solution The Mean Value Theorem for Integrals guarantees that f (c) = M has a solution c in [0, A]. With f (x) = x3

on [0, A],

M = 1

A − 0

∫ A

0
x3 dx = 1

A

1

4
x4

∣∣∣∣A
0

= A3

4
.

Solving f (c) = c3 = A3

4 for c yields

c = A
3√4

.

Let f (x) = 2 sin x − x. Use a computer algebra system to plot f (x) and estimate:

(a) The positive root α of f (x).

(b) The average value M of f (x) on [0, α].
(c) A value c ∈ [0, α] such that f (c) = M .

59. Which of f (x) = x sin2 x and g(x) = x2 sin2 x has a larger average value over [0, 1]? Over [1, 2]?
solution The functions f and g differ only in the power of x multiplying sin2 x. It is also important to note that

sin2 x ≥ 0 for all x. Now, for each x ∈ (0, 1), x > x2 so

f (x) = x sin2 x > x2 sin2 x = g(x).

Thus, over [0, 1], f (x) will have a larger average value than g(x). On the other hand, for each x ∈ (1, 2), x2 > x, so

g(x) = x2 sin2 x > x sin2 x = f (x).

Thus, over [1, 2], g(x) will have the larger average value.
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Find the average of f (x) = ax + b over the interval [−M, M], where a, b, and M are arbitrary constants.61. Sketch the graph of a function f (x) such that f (x) ≥ 0 on [0, 1] and f (x) ≤ 0 on [1, 2], whose average on
[0, 2] is negative.

solution Many solutions will exist. One could be

−1

−2

1

y

x
1 2

Give an example of a function (necessarily discontinuous) that does not satisfy the conclusion of the MVT for
Integrals.Further Insights and Challenges

63. An object is tossed into the air vertically from ground level with initial velocity v0 ft/s at time t = 0. Find the average
speed of the object over the time interval [0, T ], where T is the time the object returns to earth.

solution The height is given by h(t) = v0t − 16t2. The ball is at ground level at time t = 0 and T = v0/16. The
velocity is given by v(t) = v0 − 32t and thus the speed is given by s(t) = |v0 − 32t |. The average speed is

1

v0/16 − 0

∫ v0/16

0
|v0 − 32t | dt = 16

v0

∫ v0/32

0
(v0 − 32t) dt + 16

v0

∫ v0/16

v0/32
(32t − v0) dt

= 16

v0

(
v0t − 16t2

)∣∣∣v0/32

0
+ 16

v0

(
16t2 − v0t

)∣∣∣v0/16

v0/32
= v0/2.

Review the MVT stated in Section 4.3 (Theorem 1, p. 194) and show how it can be used, together with the
Fundamental Theorem of Calculus, to prove the MVT for Integrals.6.3 Volumes of Revolution

Preliminary Questions
1. Which of the following is a solid of revolution?

(a) Sphere (b) Pyramid (c) Cylinder (d) Cube

solution The sphere and the cylinder have circular cross sections; hence, these are solids of revolution. The pyramid
and cube do not have circular cross sections, so these are not solids of revolution.

2. True or false? When the region under a single graph is rotated about the x-axis, the cross sections of the solid
perpendicular to the x-axis are circular disks.

solution True. The cross sections will be disks with radius equal to the value of the function.

3. True or false? When the region between two graphs is rotated about the x-axis, the cross sections to the solid
perpendicular to the x-axis are circular disks.

solution False. The cross sections may be washers.

4. Which of the following integrals expresses the volume obtained by rotating the area between y = f (x) and y = g(x)

over [a, b] around the x-axis? [Assume f (x) ≥ g(x) ≥ 0.]

(a) π

∫ b

a

(
f (x) − g(x)

)2
dx (b) π

∫ b

a

(
f (x)2 − g(x)2)

dx

solution The correct answer is (b). Cross sections of the solid will be washers with outer radius f (x) and inner radius

g(x). The area of the washer is then πf (x)2 − πg(x)2 = π(f (x)2 − g(x)2).

Exercises
In Exercises 1–4, (a) sketch the solid obtained by revolving the region under the graph of f (x) about the x-axis over the
given interval, (b) describe the cross section perpendicular to the x-axis located at x, and (c) calculate the volume of the
solid.

1. f (x) = x + 1, [0, 3]
solution
(a) A sketch of the solid of revolution is shown below:

−2

2

y

x
1 2 3
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(b) Each cross section is a disk with radius x + 1.

(c) The volume of the solid of revolution is

π

∫ 3

0
(x + 1)2 dx = π

∫ 3

0
(x2 + 2x + 1) dx = π

(
1

3
x3 + x2 + x

)∣∣∣∣3
0

= 21π.

f (x) = x2, [1, 3]3. f (x) = √
x + 1, [1, 4]

solution

(a) A sketch of the solid of revolution is shown below:

−2

−1

2

1

y

x
1 2 3 4

(b) Each cross section is a disk with radius
√

x + 1.

(c) The volume of the solid of revolution is

π

∫ 4

1
(
√

x + 1)2 dx = π

∫ 4

1
(x + 1) dx = π

(
1

2
x2 + x

)∣∣∣∣4
1

= 21π

2
.

f (x) = x−1, [1, 4]In Exercises 5–12, find the volume of revolution about the x-axis for the given function and interval.

5. f (x) = 3x − x2, [0, 3]
solution The volume of the solid of revolution is

π

∫ 3

0
(3x − x2)2 dx = π

∫ 3

0
(9x2 − 6x3 + x4) dx = π

(
3x3 − 3

2
x4 + 1

5
x5

)∣∣∣∣3
0

= 81π

10
.

f (x) = 1

x2
, [1, 4]

7. f (x) = x5/3, [1, 8]
solution The volume of the solid of revolution is

π

∫ 8

1
(x5/3)2 dx = π

∫ 8

1
x10/3 dx = 3π

13
x13/3

∣∣∣∣8
1

= 3π

13
(213 − 1) = 24573π

13
.

f (x) = 4 − x2, [0, 2]9. f (x) = 2

x + 1
, [1, 3]

solution The volume of the solid of revolution is

π

∫ 3

1

(
2

x + 1

)2
dx = 4π

∫ 3

1
(x + 1)−2 dx = −4π (x + 1)−1

∣∣∣∣3
1

= π.

f (x) =
√

x4 + 1, [1, 3]11. f (x) = csc x,

[
π

4
,

3π

4

]

solution The volume of the solid of revolution is

π

∫ 3π/4

π/4
csc2 x dx = −π cot x

∣∣∣∣3π/4

π/4
= 2π

f (x) = √
cos x sin x,

[
0, π

2

]
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In Exercises 13 and 14, R is the shaded region in Figure 11.

x

y

a b

y = f (x)

9

−2

y = g(x)

R

FIGURE 11

13. Which of the integrands (i)–(iv) is used to compute the volume obtained by rotating region R about y = −2?
(i) (f (x)2 + 22) − (g(x)2 + 22)

(ii) (f (x) + 2)2 − (g(x) + 2)2

(iii) (f (x)2 − 22) − (g(x)2 − 22)

(iv) (f (x) − 2)2 − (g(x) − 2)2

solution when the region R is rotated about y = −2, the outer radius is f (x) − (−2) = f (x) + 2 and the inner

radius is g(x) − (−2) = g(x) + 2. Thus, the appropriate integrand is (ii): (f (x) + 2)2 − (g(x) + 2)2.

Which of the integrands (i)–(iv) is used to compute the volume obtained by rotating R about y = 9?
(i) (9 + f (x))2 − (9 + g(x))2

(ii) (9 + g(x))2 − (9 + f (x))2

(iii) (9 − f (x))2 − (9 − g(x))2

(iv) (9 − g(x))2 − (9 − f (x))2

In Exercises 15–20, (a) sketch the region enclosed by the curves, (b) describe the cross section perpendicular to the x-axis
located at x, and (c) find the volume of the solid obtained by rotating the region about the x-axis.

15. y = x2 + 2, y = 10 − x2

solution

(a) Setting x2 + 2 = 10 − x2 yields 2x2 = 8, or x2 = 4. The two curves therefore intersect at x = ±2. The region
enclosed by the two curves is shown in the figure below.

4

8

y

−2 −1
x

1 2

y = 10 − x2

y = x2 + 2

(b) When the region is rotated about the x-axis, each cross section is a washer with outer radius R = 10 − x2 and inner
radius r = x2 + 2.

(c) The volume of the solid of revolution is

π

∫ 2

−2

(
(10 − x2)2 − (x2 + 2)2

)
dx = π

∫ 2

−2
(96 − 24x2) dx = π

(
96x − 8x3

) ∣∣∣∣2−2
= 256π.

y = x2, y = 2x + 3
17. y = 16 − x, y = 3x + 12, x = −1

solution

(a) Setting 16 − x = 3x + 12, we find that the two lines intersect at x = 1. The region enclosed by the two curves is
shown in the figure below.

10

y

−1 −0.5
x

0.5 1

y = 16 − x

y = 3x + 12

(b) When the region is rotated about the x-axis, each cross section is a washer with outer radius R = 16 − x and inner
radius r = 3x + 12.
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(c) The volume of the solid of revolution is

π

∫ 1

−1

(
(16 − x)2 − (3x + 12)2

)
dx = π

∫ 1

−1
(112 − 104x − 8x2) dx = π

(
112x − 52x2 − 8

3
x3

)∣∣∣∣1−1
= 656π

3
.

y = 1

x
, y = 5

2
− x

19. y = sec x, y = 0, x = −π

4
, x = π

4
solution
(a) The region in question is shown in the figure below.

0.8

1.2

0.4

y
y = sec x

−0.4
x

0.4

(b) When the region is rotated about the x-axis, each cross section is a circular disk with radius R = sec x.
(c) The volume of the solid of revolution is

π

∫ π/4

−π/4
(sec x)2 dx = π (tan x)

∣∣∣∣π/4

−π/4
= 2π.

y = sec x, y = 0, x = 0, x = π

4

In Exercises 21–24, find the volume of the solid obtained by rotating the region enclosed by the graphs about the y-axis
over the given interval.

21. x = √
y, x = 0; 1 ≤ y ≤ 4

solution When the region in question (shown in the figure below) is rotated about the y-axis, each cross section is a
disk with radius

√
y. The volume of the solid of revolution is

π

∫ 4

1

(√
y
)2

dy = πy2

2

∣∣∣∣4
1

= 15π

2
.

y

x

2

1

0

4

3

21 1.50.5

x = y

x = √
sin y, x = 0; 0 ≤ y ≤ π

23. x = y2, x = √
y

solution Setting y2 = √
y and then squaring both sides yields

y4 = y or y4 − y = y(y3 − 1) = 0,

so the two curves intersect at y = 0 and y = 1. When the region in question (shown in the figure below) is rotated about
the y-axis, each cross section is a washer with outer radius R = √

y and inner radius r = y2. The volume of the solid of
revolution is

π

∫ 1

0

(
(
√

y)2 − (y2)2
)

dy = π

(
y2

2
− y5

5

)∣∣∣∣∣
1

0

= 3π

10
.

x = y2

x = y

y

x

1

0 1
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x = 4 − y, x = 16 − y2
25. Rotation of the region in Figure 12 about the y-axis produces a solid with two types of different cross sections.
Compute the volume as a sum of two integrals, one for −12 ≤ y ≤ 4 and one for 4 ≤ y ≤ 12.

y

2

−12

12

4

x
y

y = 12 − 4x

y = 8x − 12

FIGURE 12

solution For −12 ≤ y ≤ 4, the cross section is a disk with radius 1
8 (y + 12); for 4 ≤ y ≤ 12, the cross section is a

disk with radius 1
4 (12 − y). Therefore, the volume of the solid of revolution is

V = π

8

∫ 4

−12
(y + 12)2 dy + π

4

∫ 12

4
(12 − y)2 dy

= π

24
(y + 12)3

∣∣∣4−12
− π

12
(12 − y)3

∣∣∣12

4

= 512π

3
+ 128π

3
= 640π

3
.

Let R be the region enclosed by y = x2 + 2, y = (x − 2)2 and the axes x = 0 and y = 0. Compute the volume
V obtained by rotating R about the x-axis. Hint: Express V as a sum of two integrals.

In Exercises 27–32, find the volume of the solid obtained by rotating region A in Figure 13 about the given axis.

x

y

1 2

6

2

y = x2 + 2

A

B

FIGURE 13

27. x-axis

solution Rotating region A about the x-axis produces a solid whose cross sections are washers with outer radius

R = 6 and inner radius r = x2 + 2. The volume of the solid of revolution is

π

∫ 2

0

(
(6)2 − (x2 + 2)2

)
dx = π

∫ 2

0
(32 − 4x2 − x4) dx = π

(
32x − 4

3
x3 − 1

5
x5

)∣∣∣∣2
0

= 704π

15
.

y = −2
29. y = 2

solution Rotating the region A about y = 2 produces a solid whose cross sections are washers with outer radius

R = 6 − 2 = 4 and inner radius r = x2 + 2 − 2 = x2. The volume of the solid of revolution is

π

∫ 2

0

(
42 − (x2)2

)
dx = π

(
16x − 1

5
x5

)∣∣∣∣2
0

= 128π

5
.

y-axis
31. x = −3

solution Rotating region A about x = −3 produces a solid whose cross sections are washers with outer radius
R = √

y − 2 − (−3) = √
y − 2 + 3 and inner radius r = 0 − (−3) = 3. The volume of the solid of revolution is

π

∫ 6

2

(
(3 + √

y − 2)2 − (3)2
)

dy = π

∫ 6

2
(6

√
y − 2 + y − 2) dy = π

(
4(y − 2)3/2 + 1

2
y2 − 2y

)∣∣∣∣6
2

= 40π.

x = 2In Exercises 33–38, find the volume of the solid obtained by rotating region B in Figure 13 about the given axis.

33. x-axis

solution Rotating region B about the x-axis produces a solid whose cross sections are disks with radius R = x2 + 2.
The volume of the solid of revolution is

π

∫ 2

0
(x2 + 2)2 dx = π

∫ 2

0
(x4 + 4x2 + 4) dx = π

(
1

5
x5 + 4

3
x3 + 4x

)∣∣∣∣2
0

= 376π

15
.
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y = −2
35. y = 6

solution Rotating region B about y = 6 produces a solid whose cross sections are washers with outer radius R =
6 − 0 = 6 and inner radius r = 6 − (x2 + 2) = 4 − x2. The volume of the solid of revolution is

π

∫ 2

0

(
62 − (4 − x2)2

)
dy = π

∫ 2

0

(
20 + 8x2 − x4

)
dy = π

(
20x + 8

3
x3 − 1

5
x5

)∣∣∣∣2
0

= 824π

15
.

y-axis

Hint for Exercise 36: Express the volume as a sum of two integrals along the y-axis or use Exercise 30.

37. x = 2

solution Rotating region B about x = 2 produces a solid with two different cross sections. For each y ∈ [0, 2], the
cross section is a disk with radius R = 2; for each y ∈ [2, 6], the cross section is a disk with radius R = 2 − √

y − 2.
The volume of the solid of revolution is

π

∫ 2

0
(2)2 dy + π

∫ 6

2
(2 − √

y − 2)2 dy = π

∫ 2

0
4 dy + π

∫ 6

2
(2 + y − 4

√
y − 2) dy

= π (4y)

∣∣∣∣2
0

+ π

(
2y + 1

2
y2 − 8

3
(y − 2)3/2

)∣∣∣∣6
2

= 32π

3
.

x = −3In Exercises 39–52, find the volume of the solid obtained by rotating the region enclosed by the graphs about the given
axis.

39. y = x2, y = 12 − x, x = 0, about y = −2

solution Rotating the region enclosed by y = x2, y = 12 − x and the y-axis (shown in the figure below) about
y = −2 produces a solid whose cross sections are washers with outer radius R = 12 − x − (−2) = 14 − x and inner
radius r = x2 − (−2) = x2 + 2. The volume of the solid of revolution is

π

∫ 3

0

(
(14 − x)2 − (x2 + 2)2

)
dx = π

∫ 3

0
(192 − 28x − 3x2 − x4) dx

= π

(
192x − 14x2 − x3 − 1

5
x5

)∣∣∣∣3
0

= 1872π

5
.

y = x2

y = 12 − x

y

x

8

4

0

12

2 31

y = x2, y = 12 − x, x = 0, about y = 15
41. y = 16 − 2x, y = 6, x = 0, about x-axis

solution Rotating the region enclosed by y = 16 − 2x, y = 6 and the y-axis (shown in the figure below) about the
x-axis produces a solid whose cross sections are washers with outer radius R = 16 − 2x and inner radius r = 6. The
volume of the solid of revolution is

π

∫ 5

0

(
(16 − 2x)2 − 62

)
dx = π

∫ 5

0
(220 − 64x + 4x2) dx

= π

(
220x − 32x2 + 4

3
x3

)∣∣∣∣5
0

= 1400π

3
.

y

x
1

2
4
6
8

10
12
14
16

2 3 4 5

y = 16 − 2x

y = 6
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y = 32 − 2x, y = 2 + 4x, x = 0, about y-axis43. y = sec x, y = 1 + 3

π
x, about x-axis

solution We first note that y = sec x and y = 1 + (3/π)x intersect at x = 0 and x = π/3. Rotating the region
enclosed by y = sec x and y = 1 + (3/π)x (shown in the figure below) about the x-axis produces a cross section that is
a washer with outer radius R = 1 + (3/π)x and inner radius r = sec x. The volume of the solid of revolution is

V = π

∫ π/3

0

((
1 + 3

π
x

)2
− sec2 x

)
dx

= π

∫ π/3

0

(
1 + 6

π
x + 9

π2
x2 − sec2 x

)
dx

= π

(
x + 3

π
x2 + 3

π2
x3 − tan x

)∣∣∣∣π/3

0

= π
(π

3
+ π

3
+ π

9
− √

3
)

= 7π2

9
− √

3π.

y

x

0.5

0.2 0.4 0.6 0.8 1.0

1.0

1.5

2.0 y = 1 + (3/π)x

y = sec x

x = 2, x = 3, y = 16 − x4, y = 0, about y-axis
45. y = 2

√
x, y = x, about x = −2

solution Setting 2
√

x = x and squaring both sides yields

4x = x2 or x(x − 4) = 0,

so the two curves intersect at x = 0 and x = 4. Rotating the region enclosed by y = 2
√

x and y = x (see the figure
below) about x = −2 produces a solid whose cross sections are washers with outer radius R = y − (−2) = y + 2 and
inner radius r = 1

4y2 − (−2) = 1
4y2 + 2. The volume of the solid of revolution is

V = π

∫ 4

0

(
(y + 2)2 −

(
1

4
y2 + 2

)2
)

dy

= π

∫ 4

0

(
4y − 1

16
y4

)
dy

= π

(
2y2 − 1

80
y5

)∣∣∣∣4
0

= π

(
32 − 64

5

)
= 96π

5
.

y

x

1

1 2 3 4

2

3

4

y = 2x1/2

y = x

y = 2
√

x, y = x, about y = 4
47. y = x3, y = x1/3, for x ≥ 0, about y-axis

solution Rotating the region enclosed by y = x3 and y = x1/3 (shown in the figure below) about the y-axis produces

a solid whose cross sections are washers with outer radius R = y1/3 and inner radius r = y3. The volume of the solid of
revolution is

π

∫ 1

0

(
(y1/3)2 − (y3)2

)
dy = π

∫ 1

0
(y2/3 − y6) dy = π

(
3

5
y5/3 − 1

7
y7

)∣∣∣∣1
0

= 16π

35
.
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y

x

0.2

0.2 0.4 0.6 0.8 1.0

0.4

0.6

0.8

1.0
y = x1/3

y = x3

y = x2, y = x1/2, about x = −249. y = 9

x2
, y = 10 − x2, x ≥ 0, about y = 12

solution The region enclosed by the two curves is shown in the figure below. Rotating this region about y = 12

produces a solid whose cross sections are washers with outer radius R = 12 − 9x−2 and inner radius r = 12 − (10 − x2) =
2 + x2. The volume of the solid of revolution is

π

∫ 3

1

(
(12 − 9x−2)2 − (x2 + 2)2

)
dx = π

∫ 3

1

(
140 − 4x2 − x4 − 216x−2 + 81x−4

)
dx

= π

(
140x − 4

3
x3 − 1

5
x5 + 216x−1 − 27x−3

)∣∣∣∣3
1

= 1184π

15
.

y

x

2
3
4
5
6
7
8
9

0.5 1.0 1.5 2.0 2.5 3.0

y = 10 − x2

y = 9
x2

y = 9

x2
, y = 10 − x2, x ≥ 0, about x = −1

51. y = 1

x
, y = 5

2
− x, about y-axis

solution We will rotate about the y-axis, so solving for x gives the curves x = 1

y
and x = 5

2
− y. These curves

intersect at y = 1

2
and at y = 2. Rotating the region enclosed by these curves (see figure below) produces a solid whose

cross sections are washers with outer radius R = 5

2
− y and inner radius r = 1

y
. The volume of the solid of revolution is

then

π

∫ 2

1/2

((
5

2
− y

)2
− 1

y2

)
dy = π

(
−1

3

(
5

2
− y

)3
+ y−1

) ∣∣∣∣2
1/2

= 9

8
π

1 2 3

−1

1

0

2

3

4

x

y

1
x

5
2

− x

y2 = 4x, y = x, about y = 8
53. The bowl in Figure 14(A) is 21 cm high, obtained by rotating the curve in Figure 14(B) as indicated. Estimate the
volume capacity of the bowl shown by taking the average of right- and left-endpoint approximations to the integral with
N = 7. The inner radii (in cm) starting from the top are 0, 4, 7, 8, 10, 13, 14, 20.
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20

(A) (B)

21 cm

y

x

19

25

16

21

12
9

30

FIGURE 14

solution Using the given values for the inner radii and the values in Figure 14(B), which indicate the difference
between the inner and outer radii, we find

R7 = 3π
(
(232 − 142) + (252 − 132) + (262 − 102) + (272 − 82) + (282 − 72) + (292 − 42) + (302 − 02)

)
= 3π(4490) = 13470π

and

L7 = 3π
(
(202 − 202) + (232 − 142) + (252 − 132) + (262 − 102) + (272 − 82) + (282 − 72) + (292 − 42)

)
= 3π(3590) = 10770π

Averaging these two values, we estimate that the volume capacity of the bowl is

V = 12120π ≈ 38076.1 cm3.

The region between the graphs of f (x) and g(x) over [0, 1] is revolved about the line y = −3. Use the midpoint
approximation with values from the following table to estimate the volume V of the resulting solid.

x 0.1 0.3 0.5 0.7 0.9
f (x) 8 7 6 7 8
g(x) 2 3.5 4 3.5 2

55. Find the volume of the cone obtained by rotating the region under the segment joining (0, h) and (r, 0) about the
y-axis.

solution The segment joining (0, h) and (r, 0) has the equation

y = −h

r
x + h or x = r

h
(h − y).

Rotating the region under this segment about the y-axis produces a cone with volume

πr2

h2

∫ h

0
(h − y)2 dx = −πr2

3h2
(h − y)3

∣∣∣∣∣
h

0

= 1

3
πr2h.

The torus (doughnut-shaped solid) in Figure 15 is obtained by rotating the circle (x − a)2 + y2 = b2 around the
y-axis (assume that a > b). Show that it has volume 2π2ab2. Hint: Evaluate the integral by interpreting it as the area
of a circle.

57. Sketch the hypocycloid x2/3 + y2/3 = 1 and find the volume of the solid obtained by revolving it about the
x-axis.

solution A sketch of the hypocycloid is shown below.

1

−1

y

x
1−1

For the hypocycloid, y = ±
(

1 − x2/3
)3/2

. Rotating this region about the x-axis will produce a solid whose cross sections

are disks with radius R =
(

1 − x2/3
)3/2

. Thus the volume of the solid of revolution will be

π

∫ 1

−1

(
(1 − x2/3)3/2

)2
dx = π

(
−x3

3
+ 9

7
x7/3 − 9

5
x5/3 + x

)∣∣∣∣∣
1

−1

= 32π

105
.
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The solid generated by rotating the region between the branches of the hyperbola y2 − x2 = 1 about the x-axis
is called a hyperboloid (Figure 16). Find the volume of the hyperboloid for −a ≤ x ≤ a.

59. A “bead” is formed by removing a cylinder of radius r from the center of a sphere of radius R (Figure 17). Find the
volume of the bead with r = 1 and R = 2.

y

x

h

r

y

x
R

FIGURE 17 A bead is a sphere with a cylinder removed.

solution The equation of the outer circle is x2 + y2 = 22, and the inner cylinder intersects the sphere when y = ±√
3.

Each cross section of the bead is a washer with outer radius
√

4 − y2 and inner radius 1, so the volume is given by

π

∫ √
3

−√
3

((√
4 − y2

)2
− 12

)
dy = π

∫ √
3

−√
3

(
3 − y2

)
dy = 4π

√
3.

Further Insights and Challenges

Find the volume V of the bead (Figure 17) in terms of r and R. Then show that V = π
6 h3, where h is the height

of the bead. This formula has a surprising consequence: Since V can be expressed in terms of h alone, it follows that
two beads of height 1 cm, one formed from a sphere the size of an orange and the other from a sphere the size of the
earth, would have the same volume! Can you explain intuitively how this is possible?

61. The solid generated by rotating the region inside the ellipse with equation
(
x
a

)2 + ( y
b

)2 = 1 around the x-axis is

called an ellipsoid. Show that the ellipsoid has volume 4
3πab2. What is the volume if the ellipse is rotated around the

y-axis?

solution

• Rotating the ellipse about the x-axis produces an ellipsoid whose cross sections are disks with radius R =
b
√

1 − (x/a)2. The volume of the ellipsoid is then

π

∫ a

−a

(
b

√
1 − (x/a)2

)2
dx = b2π

∫ a

−a

(
1 − 1

a2
x2

)
dx = b2π

(
x − 1

3a2
x3

)∣∣∣∣a−a

= 4

3
πab2.

• Rotating the ellipse about the y-axis produces an ellipsoid whose cross sections are disks with radius R =
a
√

1 − (y/b)2. The volume of the ellipsoid is then∫ b

−b

(
a

√
1 − (y/b)2

)2
dy = a2π

∫ b

−b

(
1 − 1

b2
y2

)
dy = a2π

(
y − 1

3b2
y3

)∣∣∣∣b−b

= 4

3
πa2b.

The curve y = f (x) in Figure 18, called a tractrix, has the following property: the tangent line at each point
(x, y) on the curve has slope

dy

dx
= −y√

1 − y2

Let R be the shaded region under the graph of 0 ≤ x ≤ a in Figure 18. Compute the volume V of the solid obtained
by revolving R around the x-axis in terms of the constant c = f (a). Hint: Use the substitution u = f (x) to show
that

V = π

∫ 1

c
u
√

1 − u2 du

63. Verify the formula ∫ x2

x1

(x − x1)(x − x2) dx = 1

6
(x1 − x2)3 3

Then prove that the solid obtained by rotating the shaded region in Figure 19 about the x-axis has volume V = π
6 BH 2,

with B and H as in the figure. Hint: Let x1 and x2 be the roots of f (x) = ax + b − (mx + c)2, where x1 < x2. Show
that

V = π

∫ x2

x1

f (x) dx

and use Eq. (3).

x

y

B

y = mx + c

y2 = ax + b

H

FIGURE 19 The line y = mx + c intersects the parabola y2 = ax + b at two points above the x-axis.
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solution First, we calculate∫ x2

x1

(x − x1)(x − x2) dx =
(

1

3
x3 − 1

2
(x1 + x2)x2 + x1x2x

)∣∣∣∣x2

x1

= 1

6
x3

1 − 1

2
x2

1x2 + 1

2
x1x2

2 − 1

6
x3

2

= 1

6

(
x3

1 − 3x2
1x2 + 3x1x2

2 − x3
2

)
= 1

6
(x1 − x2)3.

Now, consider the region enclosed by the parabola y2 = ax + b and the line y = mx + c, and let x1 and x2 denote the
x-coordinates of the points of intersection between the two curves with x1 < x2. Rotating the region about the y-axis
produces a solid whose cross sections are washers with outer radius R = √

ax + b and inner radius r = mx + c. The
volume of the solid of revolution is then

V = π

∫ x2

x1

(
ax + b − (mx + c)2

)
dx

Because x1 and x2 are roots of the equation ax + b − (mx + c)2 = 0 and ax + b − (mx + c)2 is a quadratic polynomial
in x with leading coefficient −m2, it follows that ax + b − (mx + c)2 = −m2(x − x1)(x − x2). Therefore,

V = −πm2
∫ x2

x1

(x − x1)(x − x2) dx = π

6
m2(x2 − x1)3,

where we have used Eq. (3). From the diagram, we see that

B = x2 − x1 and H = mB,

so

V = π

6
m2B3 = π

6
B (mB)2 = π

6
BH 2.

Let R be the region in the unit circle lying above the cut with the line y = mx + b (Figure 20). Assume the points
where the line intersects the circle lie above the x-axis. Use the method of Exercise 63 to show that the solid obtained
by rotating R about the x-axis has volume V = π

6 hd2, with h and d as in the figure.
6.4 The Method of Cylindrical Shells

Preliminary Questions
1. Consider the region R under the graph of the constant function f (x) = h over the interval [0, r]. Give the height

and the radius of the cylinder generated when R is rotated about:

(a) the x-axis (b) the y-axis

solution
(a) When the region is rotated about the x-axis, each shell will have radius h and height r.
(b) When the region is rotated about the y-axis, each shell will have radius r and height h.

2. Let V be the volume of a solid of revolution about the y-axis.

(a) Does the Shell Method for computing V lead to an integral with respect to x or y?
(b) Does the Disk or Washer Method for computing V lead to an integral with respect to x or y?

solution
(a) The Shell method requires slicing the solid parallel to the axis of rotation. In this case, that will mean slicing the solid
in the vertical direction, so integration will be with respect to x.
(b) The Disk or Washer method requires slicing the solid perpendicular to the axis of rotation. In this case, that means
slicing the solid in the horizontal direction, so integration will be with respect to y.

Exercises
In Exercises 1–6, sketch the solid obtained by rotating the region underneath the graph of the function over the given
interval about the y-axis, and find its volume.

1. f (x) = x3, [0, 1]
solution A sketch of the solid is shown below. Each shell has radius x and height x3, so the volume of the solid is

2π

∫ 1

0
x · x3 dx = 2π

∫ 1

0
x4 dx = 2π

(
1

5
x5

)∣∣∣∣1
0

= 2

5
π.

1

y

x
−1 1
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f (x) = √
x, [0, 4]3. f (x) = x−1, [1, 3]

solution A sketch of the solid is shown below. Each shell has radius x and height x−1, so the volume of the solid is

2π

∫ 3

1
x(x−1) dx = 2π

∫ 3

1
1 dx = 2π (x)

∣∣∣∣3
1

= 4π.

321

0.2

0.6

0.8

−3 −2 −1
x

y

f (x) = 4 − x2, [0, 2]5. f (x) =
√

x2 + 9, [0, 3]
solution A sketch of the solid is shown below. Each shell has radius x and height

√
x2 + 9, so the volume of the solid

is

2π

∫ 3

0
x
√

x2 + 9 dx.

Let u = x2 + 9. Then du = 2x dx and

2π

∫ 3

0
x
√

x2 + 9 dx = π

∫ 18

9

√
u du = π

(
2

3
u3/2

)∣∣∣∣18

9
= 18π(2

√
2 − 1).

321

1

2

4

−3 −2 −1
x

y

f (x) = x√
1 + x3

, [1, 4]In Exercises 7–12, use the Shell Method to compute the volume obtained by rotating the region enclosed by the graphs as
indicated, about the y-axis.

7. y = 3x − 2, y = 6 − x, x = 0

solution The region enclosed by y = 3x − 2, y = 6 − x and x = 0 is shown below. When rotating this region about
the y-axis, each shell has radius x and height 6 − x − (3x − 2) = 8 − 4x. The volume of the resulting solid is

2π

∫ 2

0
x(8 − 4x) dx = 2π

∫ 2

0
(8x − 4x2) dx = 2π

(
4x2 − 4

3
x3

)∣∣∣∣2
0

= 32

3
π.

y

x

2

−2

4

6

0.5 1.0 1.5 2.0

y = 6 − x

y = 3x − 2

y = √
x, y = x29. y = x2, y = 8 − x2, x = 0, for x ≥ 0

solution The region enclosed by y = x2, y = 8 − x2 and the y-axis is shown below. When rotating this region about

the y-axis, each shell has radius x and height 8 − x2 − x2 = 8 − 2x2. The volume of the resulting solid is

2π

∫ 2

0
x(8 − 2x2) dx = 2π

∫ 2

0
(8x − 2x3) dx = 2π

(
4x2 − 1

2
x4

)∣∣∣∣2
0

= 16π.
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y = 8 − x2

y = x2

y

x

4

2

0

8

6

21 1.50.5

y = 8 − x3, y = 8 − 4x, for x ≥ 0
11. y = (x2 + 1)−2, y = 2 − (x2 + 1)−2, x = 2

solution The region enclosed by y = (x2 + 1)−2, y = 2 − (x2 + 1)−2 and x = 2 is shown below. When rotating

this region about the y-axis, each shell has radius x and height 2 − (x2 + 1)−2 − (x2 + 1)−2 = 2 − 2(x2 + 1)−2. The
volume of the resulting solid is

2π

∫ 2

0
x(2 − 2(x2 + 1)−2) dx = 2π

∫ 2

0

(
2x − 2x

(x2 + 1)−2

)
dx = 2π

(
x2 + 1

x2 + 1

)∣∣∣∣2
0

= 32

5
π.

y

x

0.5

1.0

1.5

2.0

0.5 1.0 1.5 2.0

y = 2 − (x2 + 1)−2

y = (x2 + 1)−2

y = 1 − |x − 1|, y = 0In Exercises 13 and 14, use a graphing utility to find the points of intersection of the curves numerically and then compute
the volume of rotation of the enclosed region about the y-axis.

13. y = 1
2x2, y = sin(x2), x ≥ 0

solution The region enclosed by y = 1
2x2 and y = sin x2 is shown below. When rotating this region about the y-axis,

each shell has radius x and height sin x2 − 1
2x2. Using a computer algebra system, we find that the x-coordinate of the

point of intersection on the right is x = 1.376769504. Thus, the volume of the resulting solid of revolution is

2π

∫ 1.376769504

0
x

(
sin x2 − 1

2
x2

)
dx = 1.321975576.

y = sin x2

y

x
0

1

1

x2

2
y =

y = 1 − x4, y = x, x ≥ 0In Exercises 15–20, sketch the solid obtained by rotating the region underneath the graph of f (x) over the interval about
the given axis, and calculate its volume using the Shell Method.

15. f (x) = x3, [0, 1], about x = 2

solution A sketch of the solid is shown below. Each shell has radius 2 − x and height x3, so the volume of the solid is

2π

∫ 1

0
(2 − x)

(
x3

)
dx = 2π

∫ 1

0
(2x3 − x4) dx = 2π

(
x4

2
− x5

5

)∣∣∣∣∣
1

0

= 3π

5
.

y

x
0

1

4
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f (x) = x3, [0, 1], about x = −2
17. f (x) = x−4, [−3, −1], about x = 4

solution A sketch of the solid is shown below. Each shell has radius 4 − x and height x−4, so the volume of the solid
is

2π

∫ −1

−3
(4 − x)

(
x−4

)
dx = 2π

∫ −1

−3
(4x−4 − x−3) dx = 2π

(
1

2
x−2 − 4

3
x−3

)∣∣∣∣−1

−3
= 280π

81
.

0.8

0.4

y

−2
x

10

f (x) = 1√
x2 + 1

, [0, 2], about x = 0
19. f (x) = a − x with a > 0, [0, a], about x = −1

solution A sketch of the solid is shown below. Each shell has radius x − (−1) = x + 1 and height a − x, so the
volume of the solid is

2π

∫ a

0
(x + 1) (a − x) dx = 2π

∫ a

0

(
a + (a − 1)x − x2

)
dx

= 2π

(
ax + a − 1

2
x2 − 1

3
x3

)∣∣∣∣a
0

= 2π

(
a2 + a2(a − 1)

2
− a3

3

)
= a2(a + 3)

3
π.

−2 − a
−1−2

a

a

f (x) = 1 − x2, [−1, 1], x = c with c > 1
In Exercises 21–26, sketch the enclosed region and use the Shell Method to calculate the volume of rotation about the
x-axis.

21. x = y, y = 0, x = 1

solution When the region shown below is rotated about the x-axis, each shell has radius y and height 1 − y. The
volume of the resulting solid is

2π

∫ 1

0
y(1 − y) dy = 2π

∫ 1

0
(y − y2) dy = 2π

(
1

2
y2 − 1

3
y3

)∣∣∣∣1
0

= π

3
.

y = x

y

x
0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

x = 1
4y + 1, x = 3 − 1

4y, y = 0
23. x = y(4 − y), y = 0

solution When the region shown below is rotated about the x-axis, each shell has radius y and height y(4 − y). The
volume of the resulting solid is

2π

∫ 4

0
y2(4 − y) dy = 2π

∫ 4

0
(4y2 − y3) dy = 2π

(
4

3
y3 − 1

4
y4

)∣∣∣∣4
0

= 128π

3
.
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y

x

1

2

3

4

1 2 3 4

x = y(4 − y)

x = y(4 − y), x = (y − 2)225. y = 4 − x2, x = 0, y = 0

solution When the region shown below is rotated about the x-axis, each shell has radius y and height
√

4 − y. The
volume of the resulting solid is

2π

∫ 4

0
y
√

4 − y dy.

Let u = 4 − y. Then du = −dy, y = 4 − u, and

2π

∫ 4

0
y
√

4 − y dy = −2π

∫ 0

4
(4 − u)

√
u du = 2π

∫ 4

0

(
4
√

u − u3/2
)

du

= 2π

(
8

3
u3/2 − 2

5
u5/2

)∣∣∣∣4
0

= 256π

15
.

x

1

2

3

4

y

20 1.510.5

y = 4 − x2

y = x1/3 − 2, y = 0, x = 27
27. Use both the Shell and Disk Methods to calculate the volume obtained by rotating the region under the graph of
f (x) = 8 − x3 for 0 ≤ x ≤ 2 about:

(a) the x-axis (b) the y-axis

solution

(a) x-axis: Using the disk method, the cross sections are disks with radius R = 8 − x3; hence the volume of the solid is

π

∫ 2

0
(8 − x3)2 dx = π

(
64x − 4x4 + 1

7
x7

)∣∣∣∣2
0

= 576π

7
.

With the shell method, each shell has radius y and height (8 − y)1/3. The volume of the solid is

2π

∫ 8

0
y (8 − y)1/3 dy

Let u = 8 − y. Then dy = −du, y = 8 − u and

2π

∫ 8

0
y (8 − y)1/3 dy = 2π

∫ 8

0
(8 − u) · u1/3 du = 2π

∫ 8

0
(8u1/3 − u4/3) du

= 2π

(
6u4/3 − 3

7
u7/3

)∣∣∣∣8
0

= 576π

7
.

(b) y-axis: With the shell method, each shell has radius x and height 8 − x3. The volume of the solid is

2π

∫ 2

0
x(8 − x3) dx = 2π

(
4x2 − 1

5
x5

)∣∣∣∣2
0

= 96π

5
.

Using the disk method, the cross sections are disks with radius R = (8 − y)1/3. The volume is then given by

π

∫ 8

0
(8 − y)2/3 dy = −3π

5
(8 − y)5/3

∣∣∣∣8
0

= 96π

5
.



June 9, 2011 LTSV SSM Second Pass

S E C T I O N 6.4 The Method of Cylindrical Shells 351

Sketch the solid of rotation about the y-axis for the region under the graph of the constant function f (x) = c

(where c > 0) for 0 ≤ x ≤ r .

(a) Find the volume without using integration.

(b) Use the Shell Method to compute the volume.

29. The graph in Figure 11(A) can be described by both y = f (x) and x = h(y), where h is the inverse of f . Let V be
the volume obtained by rotating the region under the graph about the y-axis.
(a) Describe the figures generated by rotating segments AB and CB about the y-axis.
(b) Set up integrals that compute V by the Shell and Disk Methods.

x

y

x

y

1.3

A´ B ´A
B

C ´C

(B)(A)

y = g(x)y = f (x)

x = h(y)

22

FIGURE 11

solution

(a) When rotated about the y-axis, the segment AB generates a disk with radius R = h(y) and the segment CB generates
a shell with radius x and height f (x).
(b) Based on Figure 11(A) and the information from part (a), when using the Shell Method,

V = 2π

∫ 2

0
xf (x) dx;

when using the Disk Method,

V = π

∫ 1.3

0
(h(y))2 dy.

Let W be the volume of the solid obtained by rotating the region under the graph in Figure 11(B) about the
y-axis.

(a) Describe the figures generated by rotating segments A′B ′ and A′C′ about the y-axis.

(b) Set up an integral that computes W by the Shell Method.

(c) Explain the difficulty in computing W by the Washer Method.

31. Let R be the region under the graph of y = 9 − x2 for 0 ≤ x ≤ 2. Use the Shell Method to compute the volume of
rotation of R about the x-axis as a sum of two integrals along the y-axis. Hint: The shells generated depend on whether
y ∈ [0, 5] or y ∈ [5, 9].
solution The region R is sketched below. When rotating this region about the x-axis, we produce a solid with two
different shell structures. For 0 ≤ y ≤ 5, the shell has radius y and height 2; for 5 ≤ y ≤ 9, the shell has radius y and
height

√
9 − y. The volume of the solid is therefore

V = 2π

∫ 5

0
2y dy + 2π

∫ 9

5
y
√

9 − y dy

For the first integral, we calculate

2π

∫ 5

0
2y dy = 2πy2

∣∣∣∣5
0

= 50π.

For the second integral, we make the substitution u = 9 − y, du = −dy and find

2π

∫ 9

5
y
√

9 − y dy = −2π

∫ 0

4
(9 − u)

√
u du

= 2π

∫ 4

0
(9u1/2 − u3/2) du

= 2π

(
6u3/2 − 2

5
u5/2

)∣∣∣∣4
0

= 2π

(
48 − 64

5

)
= 352π

5
.

Thus, the total volume is

V = 50π + 352π

5
= 602π

5
.

y

x

2

0.5 1.0 1.5 2.0

3
4
5
6
7
8
9



June 9, 2011 LTSV SSM Second Pass

352 C H A P T E R 6 APPLICATIONS OF THE INTEGRAL

Let R be the region under the graph of y = 4x−1 for 1 ≤ y ≤ 4. Use the Shell Method to compute the volume
of rotation of R about the y-axis as a sum of two integrals along the x-axis.

In Exercises 33–38, use the Shell Method to find the volume obtained by rotating region A in Figure 12 about the given
axis.

x

y

6

2

y = x2 + 2

A

B

1 2

FIGURE 12

33. y-axis

solution When rotating region A about the y-axis, each shell has radius x and height 6 − (x2 + 2) = 4 − x2. The
volume of the resulting solid is

2π

∫ 2

0
x(4 − x2) dx = 2π

∫ 2

0
(4x − x3) dx = 2π

(
2x2 − 1

4
x4

)∣∣∣∣2
0

= 8π.

x = −3
35. x = 2

solution When rotating region A about x = 2, each shell has radius 2 − x and height 6 − (x2 + 2) = 4 − x2. The
volume of the resulting solid is

2π

∫ 2

0
(2 − x)

(
4 − x2

)
dx = 2π

∫ 2

0

(
8 − 2x2 − 4x + x3

)
dx = 2π

(
8x − 2

3
x3 − 2x2 + 1

4
x4

)∣∣∣∣2
0

= 40π

3
.

x-axis
37. y = −2

solution When rotating region A about y = −2, each shell has radius y − (−2) = y + 2 and height
√

y − 2. The
volume of the resulting solid is

2π

∫ 6

2
(y + 2)

√
y − 2 dy

Let u = y − 2. Then du = dy, y + 2 = u + 4 and

2π

∫ 6

2
(y + 2)

√
y − 2 dy = 2π

∫ 4

0
(u + 4)

√
u du = 2π

(
2

5
u5/2 + 8

3
u3/2

)∣∣∣∣4
0

= 1024π

15
.

y = 6In Exercises 39–44, use the most convenient method (Disk or Shell Method) to find the volume obtained by rotating region
B in Figure 12 about the given axis.

39. y-axis

solution Because a vertical slice of region B will produce a solid with a single cross section while a horizontal slice
will produce a solid with two different cross sections, we will use a vertical slice. Now, because a vertical slice is parallel
to the axis of rotation, we will use the Shell Method. Each shell has radius x and height x2 + 2. The volume of the resulting
solid is

2π

∫ 2

0
x(x2 + 2) dx = 2π

∫ 2

0
(x3 + 2x) dx = 2π

(
1

4
x4 + x2

)∣∣∣∣2
0

= 16π.

x = −3
41. x = 2

solution Because a vertical slice of region B will produce a solid with a single cross section while a horizontal slice
will produce a solid with two different cross sections, we will use a vertical slice. Now, because a vertical slice is parallel
to the axis of rotation, we will use the Shell Method. Each shell has radius 2 − x and height x2 + 2. The volume of the
resulting solid is

2π

∫ 2

0
(2 − x)

(
x2 + 2

)
dx = 2π

∫ 2

0

(
2x2 − x3 + 4 − 2x

)
dx = 2π

(
2

3
x3 − 1

4
x4 + 4x − x2

)∣∣∣∣2
0

= 32π

3
.

x-axis
43. y = −2

solution Because a vertical slice of region B will produce a solid with a single cross section while a horizontal slice will
produce a solid with two different cross sections, we will use a vertical slice. Now, because a vertical slice is perpendicular
to the axis of rotation, we will use the Disk Method. Each disk has outer radius R = x2 + 2 − (−2) = x2 + 4 and inner
radius r = 0 − (−2) = 2. The volume of the solid is then
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π

∫ 2

0

(
(x2 + 4)2 − 22

)
dx = π

∫ 2

0
(x4 + 8x2 + 12) dx

= π

(
1

5
x5 + 8

3
x3 + 12x

)∣∣∣∣2
0

= π

(
32

5
+ 64

3
+ 24

)
= 776π

15
.

y = 8In Exercises 45–50, use the most convenient method (Disk or Shell Method) to find the given volume of rotation.

45. Region between x = y(5 − y) and x = 0, rotated about the y-axis

solution Examine the figure below, which shows the region bounded by x = y(5 − y) and x = 0. If the indicated
region is sliced vertically, then the top of the slice lies along one branch of the parabola x = y(5 − y) and the bottom
lies along the other branch. On the other hand, if the region is sliced horizontally, then the right endpoint of the slice
always lies along the parabola and left endpoint always lies along the y-axis. Clearly, it will be easier to slice the region
horizontally.

Now, suppose the region is rotated about the y-axis. Because a horizontal slice is perpendicular to the y-axis, we will
calculate the volume of the resulting solid using the disk method. Each cross section is a disk of radius R = y(5 − y), so
the volume is

π

∫ 5

0
y2(5 − y)2 dy = π

∫ 5

0
(25y2 − 10y3 + y4) dy = π

(
25

3
y3 − 5

2
y4 + 1

5
y5

)∣∣∣∣5
0

= 625π

6
.

y

x

1

1 2 3 4 5 6

2

3

4

5 x = y(5 − y)

Region between x = y(5 − y) and x = 0, rotated about the x-axis
47. Region in Figure 13, rotated about the x-axis

x

y

y = x − x12

1

FIGURE 13

solution Examine Figure 13. If the indicated region is sliced vertically, then the top of the slice lies along the curve

y = x − x12 and the bottom lies along the curve y = 0 (the x-axis). On the other hand, if the region is sliced horizontally,
the equation y = x − x12 must be solved for x in order to determine the endpoint locations. Clearly, it will be easier to
slice the region vertically.

Now, suppose the region in Figure 13 is rotated about the x-axis. Because a vertical slice is perpendicular to the
x-axis, we will calculate the volume of the resulting solid using the disk method. Each cross section is a disk of radius
R = x − x12, so the volume is

π

∫ 1

0

(
x − x12

)2
dx = π

(
1

3
x3 − 1

7
x14 + 1

25
x25

)∣∣∣∣1
0

= 121π

525
.

Region in Figure 13, rotated about the y-axis
49. Region in Figure 14, rotated about x = 4

x

y

y = x3 + 2

y = 4 − x2

1 2

FIGURE 14
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solution Examine Figure 14. If the indicated region is sliced vertically, then the top of the slice lies along the curve

y = x3 + 2 and the bottom lies along the curve y = 4 − x2. On the other hand, the left end of a horizontal slice switches
from y = 4 − x2 to y = x3 + 2 at y = 3. Here, vertical slices will be more convenient.

Now, suppose the region in Figure 14 is rotated about x = 4. Because a vertical slice is parallel to x = 4, we will
calculate the volume of the resulting solid using the shell method. Each shell has radius 4 − x and height x3 + 2 − (4 −
x2) = x3 + x2 − 2, so the volume is

2π

∫ 2

1
(4 − x)(x3 + x2 − 2) dx = 2π

(
−1

5
x5 + 3

4
x4 + 4

3
x3 + x2 − 8x

)∣∣∣∣2
1

= 563π

30
.

Region in Figure 14, rotated about y = −2In Exercises 51–54, use the Shell Method to find the given volume of rotation.

51. A sphere of radius r

solution A sphere of radius r can be generated by rotating the region under the semicircle y =
√

r2 − x2 about the
x-axis. Each shell has radius y and height√

r2 − y2 −
(

−
√

r2 − y2
)

= 2
√

r2 − y2.

Thus, the volume of the sphere is

2π

∫ r

0
2y

√
r2 − y2 dy.

Let u = r2 − y2. Then du = −2y dy and

2π

∫ r

0
2y

√
r2 − y2 dy = 2π

∫ r2

0

√
u du = 2π

(
2

3
u3/2

)∣∣∣∣r
2

0
= 4

3
πr3.

The “bead” formed by removing a cylinder of radius r from the center of a sphere of radius R (compare with
Exercise 59 in Section 6.3)

53. The torus obtained by rotating the circle (x − a)2 + y2 = b2 about the y-axis, where a > b (compare with Exercise 56
in Section 6.3). Hint: Evaluate the integral by interpreting part of it as the area of a circle.

solution When rotating the region enclosed by the circle (x − a)2 + y2 = b2 about the y-axis each shell has radius
x and height √

b2 − (x − a)2 −
(

−
√

b2 − (x − a)2
)

= 2
√

b2 − (x − a)2.

The volume of the resulting torus is then

2π

∫ a+b

a−b
2x

√
b2 − (x − a)2 dx.

Let u = x − a. Then du = dx, x = u + a and

2π

∫ a+b

a−b
2x

√
b2 − (x − a)2 dx = 2π

∫ b

−b
2(u + a)

√
b2 − u2 du

= 4π

∫ b

−b
u
√

b2 − u2 du + 4aπ

∫ b

−b

√
b2 − u2 du.

Now,

∫ b

−b
u
√

b2 − u2 du = 0

because the integrand is an odd function and the integration interval is symmetric with respect to zero. Moreover, the
other integral is one-half the area of a circle of radius b; thus,

∫ b

−b

√
b2 − u2 du = 1

2
πb2.

Finally, the volume of the torus is

4π(0) + 4aπ

(
1

2
πb2

)
= 2π2ab2.

The “paraboloid” obtained by rotating the region between y = x2 and y = c (c > 0) about the y-axis
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Further Insights and Challenges
55. The surface area of a sphere of radius r is 4πr2. Use this to derive the formula for the volume V of a sphere
of radius R in a new way.

(a) Show that the volume of a thin spherical shell of inner radius r and thickness �r is approximately 4πr2�r .

(b) Approximate V by decomposing the sphere of radius R into N thin spherical shells of thickness �r = R/N .

(c) Show that the approximation is a Riemann sum that converges to an integral. Evaluate the integral.

solution

(a) The volume of a thin spherical shell of inner radius r and thickness �x is given by the product of the surface area of
the shell, 4πr2 and the thickness. Thus, we have 4πr2�x.

(b) The volume of the sphere is approximated by

RN = 4π

(
R

N

) N∑
k=1

(xk)
2

where xk = k R
N

.

(c) V = 4π lim
N→∞

(
R

N

) N∑
k=1

(xk)
2 = 4π

∫ R

0
x2 dx = 4π

(
1

3
x3

)∣∣∣∣R
0

= 4

3
πR3.

Show that the solid (an ellipsoid) obtained by rotating the region R in Figure 15 about the y-axis has volume
4
3πa2b.

57. The bell-shaped curve y = f (x) in Figure 16 satisfies dy/dx = −xy. Use the Shell Method and the substitution
u = f (x) to show that the solid obtained by rotating the region R about the y-axis has volume V = 2π(1 − c), where
c = f (a). Observe that as c → 0, the region R becomes infinite but the volume V approaches 2π .

1

y = f (x)

R
c

y

x
a

FIGURE 16 The bell-shaped curve.

solution Let y = f (x) be the exponential function depicted in Figure 16. When rotating the region R about the
y-axis, each shell in the resulting solid has radius x and height f (x). The volume of the solid is then

V = 2π

∫ a

0
xf (x) dx.

Now, let u = f (x). Then du = f ′(x) dx = −xf (x) dx; hence, xf (x)dx = −du, and

V = 2π

∫ c

1
(−du) = 2π

∫ 1

c
du = 2π(1 − c).

6.5 Work and Energy

Preliminary Questions
1. Why is integration needed to compute the work performed in stretching a spring?

solution Recall that the force needed to extend or compress a spring depends on the amount by which the spring has
already been extended or compressed from its equilibrium position. In other words, the force needed to move a spring is
variable. Whenever the force is variable, work needs to be computed with an integral.

2. Why is integration needed to compute the work performed in pumping water out of a tank but not to compute the
work performed in lifting up the tank?

solution To lift a tank through a vertical distance d, the force needed to move the tank remains constant; hence, no
integral is needed to calculate the work done in lifting the tank. On the other hand, pumping water from a tank requires
that different layers of the water be lifted through different distances, and, depending on the shape of the tank, may require
different forces. Thus, pumping water from a tank requires that an integral be evaluated.
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3. Which of the following represents the work required to stretch a spring (with spring constant k) a distance x beyond
its equilibrium position: kx, −kx, 1

2mk2, 1
2kx2, or 1

2mx2?

solution The work required to stretch a spring with spring constant k a distance x beyond its equilibrium position is

∫ x

0
ky dy = 1

2
ky2

∣∣∣∣x
0

= 1

2
kx2.

Exercises
1. How much work is done raising a 4-kg mass to a height of 16 m above ground?

solution The force needed to lift a 4-kg object is a constant

(4 kg)(9.8 m/s2) = 39.2 N.

The work done in lifting the object to a height of 16 m is then

(39.2 N)(16 m) = 627.2 J.

How much work is done raising a 4-lb mass to a height of 16 ft above ground?In Exercises 3–6, compute the work (in joules) required to stretch or compress a spring as indicated, assuming a spring
constant of k = 800 N/m.

3. Stretching from equilibrium to 12 cm past equilibrium

solution The work required to stretch the spring 12 cm past equilibrium is

∫ 0.12

0
800x dx = 400x2

∣∣∣0.12

0
= 5.76 J.

Compressing from equilibrium to 4 cm past equilibrium
5. Stretching from 5 cm to 15 cm past equilibrium

solution The work required to stretch the spring from 5 cm to 15 cm past equilibrium is

∫ 0.15

0.05
800x dx = 400x2

∣∣∣0.15

0.05
= 8 J.

Compressing 4 cm more when it is already compressed 5 cm
7. If 5 J of work are needed to stretch a spring 10 cm beyond equilibrium, how much work is required to stretch it 15 cm

beyond equilibrium?

solution First, we determine the value of the spring constant as follows:

∫ 0.1

0
kx dx = 1

2
kx2

∣∣∣∣0.1

0
= 0.005k = 5 J.

Thus, k = 1000 N/m. Next, we calculate the work required to stretch the spring 15 cm beyond equilibrium:

∫ 0.15

0
1000x dx = 500x2

∣∣∣∣0.15

0
= 11.25 J.

To create images of samples at the molecular level, atomic force microscopes use silicon micro-cantilevers that
obey Hooke’s Law F(x) = −kx, where x is the distance through which the tip is deflected (Figure 6). Suppose that
10−17 J of work are required to deflect the tip a distance 10−8 m. Find the deflection if a force of 10−9 N is applied
to the tip.

9. A spring obeys a force law F(x) = −kx1.1 with k = 100 N/m1.1. Find the work required to stretch the spring 0.3 m
past equilibrium.

solution The work required to stretch this spring 0.3 m past equilibrium is

∫ 0.3

0
100x1.1 dx = 100

1.1
x2.1

∣∣∣∣0.3

0
≈ 7.25 J.

Show that the work required to stretch a spring from position a to position b is 1
2k(b2 − a2), where k is the

spring constant. How do you interpret the negative work obtained when |b| < |a|?
In Exercises 11–14, use the method of Examples 2 and 3 to calculate the work against gravity required to build the
structure out of a lightweight material of density 600 kg/m3.

11. Box of height 3 m and square base of side 2 m

solution The volume of one layer is 4�y m3 and so the weight of one layer is 23520�y N. Thus, the work done
against gravity to build the tower is

W =
∫ 3

0
23520y dy = 11760y2

∣∣∣∣3
0

= 105840 J.
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Cylindrical column of height 4 m and radius 0.8 m
13. Right circular cone of height 4 m and base of radius 1.2 m

solution By similar triangles, the layer of the cone at a height y above the base has radius r = 0.3(4 − y) meters.

Thus, the volume of the small layer at this height is 0.09π(4 − y)2�y m3, and the weight is 529.2π(4 − y)2�y N.
Finally, the total work done against gravity to build the tower is∫ 4

0
529.2π(4 − y)2y dy = 11289.6π J ≈ 35467.3 J.

Hemisphere of radius 0.8 m
15. Built around 2600 bce, the Great Pyramid of Giza in Egypt (Figure 7) is 146 m high and has a square base of side
230 m. Find the work (against gravity) required to build the pyramid if the density of the stone is estimated at 2000 kg/m3.

FIGURE 7 The Great Pyramid in Giza, Egypt.

solution From similar triangles, the area of one layer is

(
230 − 230

146
y

)2
m2,

so the volume of each small layer is

(
230 − 230

146
y

)2
�y m3.

The weight of one layer is then

19600

(
230 − 230

146
y

)2
�y N.

Finally, the total work needed to build the pyramid was

∫ 146

0
19600

(
230 − 230

146
y

)2
y dy ≈ 1.84 × 1012 J.

Calculate the work (against gravity) required to build a box of height 3 m and square base of side 2 m out of
material of variable density, assuming that the density at height y is f (y) = 1000 − 100y kg/m3.

In Exercises 17–22, calculate the work (in joules) required to pump all of the water out of a full tank. Distances are in
meters, and the density of water is 1000 kg/m3.

17. Rectangular tank in Figure 8; water exits from a small hole at the top.

8

4

5

Water exits here.
1

FIGURE 8

solution Place the origin on the top of the box, and let the positive y-axis point downward. The volume of one layer

of water is 32�y m3, so the force needed to lift each layer is

(9.8)(1000)32�y = 313600�y N.

Each layer must be lifted y meters, so the total work needed to empty the tank is

∫ 5

0
313600y dy = 156800y2

∣∣∣∣5
0

= 3.92 × 106 J.
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Rectangular tank in Figure 8; water exits through the spout.
19. Hemisphere in Figure 9; water exits through the spout.

10
2

FIGURE 9

solution Place the origin at the center of the hemisphere, and let the positive y-axis point downward. The radius of a

layer of water at depth y is
√

100 − y2 m, so the volume of the layer is π(100 − y2)�y m3, and the force needed to lift
the layer is 9800π(100 − y2)�y N. The layer must be lifted y + 2 meters, so the total work needed to empty the tank is

∫ 10

0
9800π(100 − y2)(y + 2) dy = 112700000π

3
J ≈ 1.18 × 108 J.

Conical tank in Figure 10; water exits through the spout.
21. Horizontal cylinder in Figure 11; water exits from a small hole at the top. Hint: Evaluate the integral by interpreting
part of it as the area of a circle.

r

Water exits here.

FIGURE 11

solution Place the origin along the axis of the cylinder. At location y, the layer of water is a rectangular slab of length

�, width 2
√

r2 − y2 and thickness �y. Thus, the volume of the layer is 2�
√

r2 − y2�y, and the force needed to lift the
layer is 19,600�

√
r2 − y2�y. The layer must be lifted a distance r − y, so the total work needed to empty the tank is

given by ∫ r

−r
19,600�

√
r2 − y2(r − y) dy = 19,600�r

∫ r

−r

√
r2 − y2 dy − 19,600�

∫ r

−r
y

√
r2 − y2 dy.

Now, ∫ r

−r
y

√
r2 − y2 du = 0

because the integrand is an odd function and the integration interval is symmetric with respect to zero. Moreover, the
other integral is one-half the area of a circle of radius r; thus,∫ r

−r

√
r2 − y2 dy = 1

2
πr2.

Finally, the total work needed to empty the tank is

19,600�r

(
1

2
πr2

)
− 19,600�(0) = 9800�πr3 J.

Trough in Figure 12; water exits by pouring over the sides.
23. Find the work W required to empty the tank in Figure 8 through the hole at the top if the tank is half full of water.

solution Place the origin on the top of the box, and let the positive y-axis point downward. Note that with this
coordinate system, the bottom half of the box corresponds to y values from 2.5 to 5. The volume of one layer of water is
32�y m3, so the force needed to lift each layer is

(9.8)(1000)32�y = 313,600�y N.

Each layer must be lifted y meters, so the total work needed to empty the tank is

∫ 5

2.5
313,600y dy = 156,800y2

∣∣∣∣5
2.5

= 2.94 × 106 J.



June 9, 2011 LTSV SSM Second Pass

S E C T I O N 6.5 Work and Energy 359

Assume the tank in Figure 8 is full of water and let W be the work required to pump out half of the water
through the hole at the top. Do you expect W to equal the work computed in Exercise 23? Explain and then compute
W .

25. Assume the tank in Figure 10 is full. Find the work required to pump out half of the water. Hint: First, determine the
level H at which the water remaining in the tank is equal to one-half the total capacity of the tank.

solution Our first step is to determine the level H at which the water remaining in the tank is equal to one-half the
total capacity of the tank. From Figure 10 and similar triangles, we see that the radius of the cone at level H is H/2 so
the volume of water is

V = 1

3
πr2H = 1

3
π

(
H

2

)2
H = 1

12
πH 3.

The total capacity of the tank is 250π/3 m3, so the water level when the water remaining in the tank is equal to one-half
the total capacity of the tank satisfies

1

12
πH 3 = 125

3
π or H = 10

21/3
m.

Place the origin at the vertex of the inverted cone, and let the positive y-axis point upward. Now, consider a layer of
water at a height of y meters. From similar triangles, the area of the layer is

π
(y

2

)2
m2,

so the volume is

π
(y

2

)2
�y m3.

Thus the weight of one layer is

9800π
(y

2

)2
�y N.

The layer must be lifted 12 − y meters, so the total work needed to empty the half-full tank is

∫ 10

10/21/3
9800π

(y

2

)2
(12 − y) dy ≈ 3.79 × 106 J.

Assume that the tank in Figure 10 is full.

(a) Calculate the work F(y) required to pump out water until the water level has reached level y.

(b) Plot F(y).

(c) What is the significance of F ′(y) as a rate of change?

(d) If your goal is to pump out all of the water, at which water level y0 will half of the work be done?

27. Calculate the work required to lift a 10-m chain over the side of a building (Figure 13) Assume that the chain has a
density of 8 kg/m. Hint: Break up the chain into N segments, estimate the work performed on a segment, and compute
the limit as N → ∞ as an integral.

Segment of

length �y

y

FIGURE 13 The small segment of the chain of length �y located y meters from the top is lifted through a vertical
distance y.

solution In this example, each part of the chain is lifted a different distance. Therefore, we divide the chain into
N small segments of length �y = 10/N . Suppose that the ith segment is located a distance yi from the top of the
building. This segment weighs 8(9.8)�y kilograms and it must be lifted approximately yi meters (not exactly yi meters,
because each point along the segment is a slightly different distance from the top). The work Wi done on this segment is
approximately Wi ≈ 78.4yi�y N. The total work W is the sum of the Wi and we have

W =
N∑

j=1

Wi ≈
N∑

j=1

78.4yj �y.

Passing to the limit as N → ∞, we obtain

W =
∫ 10

0
78.4 y dy = 39.2y2

∣∣∣∣10

0
= 3920 J.
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How much work is done lifting a 3-m chain over the side of a building if the chain has mass density 4 kg/m?
29. A 6-m chain has mass 18 kg. Find the work required to lift the chain over the side of a building.

solution First, note that the chain has a mass density of 3 kg/m. Now, consider a segment of the chain of length �y

located a distance yj feet from the top of the building. The work needed to lift this segment of the chain to the top of the
building is approximately

Wj ≈ (3�y)9.8yj ft-lb.

Summing over all segments of the chain and passing to the limit as �y → 0, it follows that the total work is

∫ 6

0
29.4y dy = 14.7y2

∣∣∣∣6
0

= 529.2 J.

A 10-m chain with mass density 4 kg/m is initially coiled on the ground. How much work is performed in lifting
the chain so that it is fully extended (and one end touches the ground)?

31. How much work is done lifting a 12-m chain that has mass density 3 kg/m (initially coiled on the ground) so that its
top end is 10 m above the ground?

solution Consider a segment of the chain of length �y that must be lifted yj feet off the ground. The work needed to
lift this segment of the chain is approximately

Wj ≈ (3�y)9.8yj J.

Summing over all segments of the chain and passing to the limit as �y → 0, it follows that the total work is

∫ 10

0
29.4y dy = 14.7y2

∣∣∣∣10

0
= 1470 J.

A 500-kg wrecking ball hangs from a 12-m cable of density 15 kg/m attached to a crane. Calculate the work done
if the crane lifts the ball from ground level to 12 m in the air by drawing in the cable.

33. Calculate the work required to lift a 3-m chain over the side of a building if the chain has variable density of
ρ(x) = x2 − 3x + 10 kg/m for 0 ≤ x ≤ 3.

solution Consider a segment of the chain of length �x that must be lifted xj feet. The work needed to lift this segment
is approximately

Wj ≈ (
ρ(xj )�x

)
9.8xj J.

Summing over all segments of the chain and passing to the limit as �x → 0, it follows that the total work is

∫ 3

0
9.8ρ(x)x dx = 9.8

∫ 3

0

(
x3 − 3x2 + 10x

)
dx

= 9.8

(
1

4
x4 − x3 + 5x2

)∣∣∣∣3
0

= 374.85 J.

A 3-m chain with linear mass density ρ(x) = 2x(4 − x) kg/m lies on the ground. Calculate the work required to
lift the chain so that its bottom is 2 m above ground.

Exercises 35–37: The gravitational force between two objects of mass m and M , separated by a distance r , has magnitude
GMm/r2, where G = 6.67 × 10−11 m3kg−1s−1.

35. Show that if two objects of mass M and m are separated by a distance r1, then the work required to increase the
separation to a distance r2 is equal to W = GMm(r−1

1 − r−1
2 ).

solution The work required to increase the separation from a distance r1 to a distance r2 is

∫ r2

r1

GMm

r2
dr = −GMm

r

∣∣∣∣r2

r1

= GMm(r−1
1 − r−1

2 ).

Use the result of Exercise 35 to calculate the work required to place a 2000-kg satellite in an orbit 1200 km above
the surface of the earth.Assume that the earth is a sphere of radius Re = 6.37 × 106 m and mass Me = 5.98 × 1024 kg.
Treat the satellite as a point mass.

37. Use the result of Exercise 35 to compute the work required to move a 1500-kg satellite from an orbit 1000 to an orbit
1500 km above the surface of the earth.

solution The satellite will move from a distance r1 = Re + 1,000,000 to a distance r2 = Re + 1,500,000. Thus,
from Exercise 35,

W = (6.67 × 10−11)(5.98 × 1024)(1500) ×
(

1

6.37 × 106 + 1,000,000
− 1

6.37 × 106 + 1,500,000

)

≈ 5.16 × 109 J.
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The pressure P and volume V of the gas in a cylinder of length 0.8 meters and radius 0.2 meters, with a movable
piston, are related by PV 1.4 = k, where k is a constant (Figure 14). When the piston is fully extended, the gas
pressure is 2000 kilopascals (one kilopascal is 103 newtons per square meter).

(a) Calculate k.

(b) The force on the piston is PA, where A is the piston’s area. Calculate the force as a function of the length x of
the column of gas.

(c) Calculate the work required to compress the gas column from 0.8 m to 0.5 m.

Further Insights and Challenges
39. Work-Energy Theorem An object of mass m moves from x1 to x2 during the time interval [t1, t2] due to a force
F(x) acting in the direction of motion. Let x(t), v(t), and a(t) be the position, velocity, and acceleration at time t . The
object’s kinetic energy is KE = 1

2mv2.

(a) Use the change-of-variables formula to show that the work performed is equal to

W =
∫ x2

x1

F(x) dx =
∫ t2

t1

F(x(t))v(t) dt

(b) Use Newton’s Second Law, F(x(t)) = ma(t), to show that

d

dt

(
1

2
mv(t)2

)
= F(x(t))v(t)

(c) Use the FTC to prove the Work-Energy Theorem: The change in kinetic energy during the time interval [t1, t2] is
equal to the work performed.

solution

(a) Let x1 = x(t1) and x2 = x(t2), then x = x(t) gives dx = v(t) dt . By substitution we have

W =
∫ x2

x1

F(x) dx =
∫ t2

t1

F(x(t))v(t) dt.

(b) Knowing F(x(t)) = m · a(t), we have

d

dt

(
1

2
m · v(t)2

)
= m · v(t) v′(t) (Chain Rule)

= m · v(t) a(t)

= v(t) · F(x(t)) (Newton’s 2nd law)

(c) From the FTC,

1

2
m · v(t)2 =

∫
F(x(t)) v(t) dt.

Since KE = 1
2 m v2,

�KE = KE(t2) − KE(t1) = 1

2
m v(t2)2 − 1

2
m v(t1)2 =

∫ t2

t1

F(x(t)) v(t) dt.

(d) W =
∫ x2

x1

F(x) dx =
∫ t2

t1

F(x(t)) v(t) dt (Part (a))

= KE(t2) − KE(t1)

= �KE (as required)

A model train of mass 0.5 kg is placed at one end of a straight 3-m electric track. Assume that a force F(x) =
(3x − x2) N acts on the train at distance x along the track. Use the Work-Energy Theorem (Exercise 39) to determine
the velocity of the train when it reaches the end of the track.

41. With what initial velocity v0 must we fire a rocket so it attains a maximum height r above the earth? Hint: Use the
results of Exercises 35 and 39. As the rocket reaches its maximum height, its KE decreases from 1

2mv2
0 to zero.

solution The work required to move the rocket a distance r from the surface of the earth is

W(r) = GMem

(
1

Re
− 1

r + Re

)
.

As the rocket climbs to a height r , its kinetic energy is reduced by the amount W(r). The rocket reaches its maximum
height when its kinetic energy is reduced to zero, that is, when

1

2
mv2

0 = GMem

(
1

Re
− 1

r + Re

)
.

Therefore, its initial velocity must be

v0 =
√

2GMe

(
1

Re
− 1

r + Re

)
.
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With what initial velocity must we fire a rocket so it attains a maximum height of r = 20 km above the surface
of the earth?

43. Calculate escape velocity, the minimum initial velocity of an object to ensure that it will continue traveling into space
and never fall back to earth (assuming that no force is applied after takeoff). Hint: Take the limit as r → ∞ in Exercise 41.

solution The result of Exercise 41 leads to an interesting conclusion. The initial velocity v0 required to reach a height
r does not increase beyond all bounds as r tends to infinity; rather, it approaches a finite limit, called the escape velocity:

vesc = lim
r→∞

√
2GMe

(
1

Re
− 1

r + Re

)
=

√
2GMe

Re

In other words, vesc is large enough to insure that the rocket reaches a height r for every value of r! Therefore, a rocket
fired with initial velocity vesc never returns to earth. It continues traveling indefinitely into outer space.

Now, let’s see how large escape velocity actually is:

vesc =
(

2 · 6.67 × 10−11 · 5.989 × 1024

6.37 × 106

)1/2

≈ 11,190 m/sec.

Since one meter per second is equal to 2.236 miles per hour, escape velocity is approximately 11,190(2.236) = 25,020
miles per hour.

CHAPTER REVIEW EXERCISES

1. Compute the area of the region in Figure 1(A) enclosed by y = 2 − x2 and y = −2.

y

x
2−2 −2

−2
−2

y

x
1

y = 2 − x2 y = 2 − x2

y = x

(A) (B)

y = −2

FIGURE 1

solution The graphs of y = 2 − x2 and y = −2 intersect where 2 − x2 = −2, or x = ±2. Therefore, the enclosed

area lies over the interval [−2, 2]. The region enclosed by the graphs lies below y = 2 − x2 and above y = −2, so the
area is ∫ 2

−2

(
(2 − x2) − (−2)

)
dx =

∫ 2

−2
(4 − x2) dx =

(
4x − 1

3
x3

)∣∣∣∣2−2
= 32

3
.

Compute the area of the region in Figure 1(B) enclosed by y = 2 − x2 and y = x.In Exercises 3–12, find the area of the region enclosed by the graphs of the functions.

3. y = x3 − 2x2 + x, y = x2 − x

solution The region bounded by the graphs of y = x3 − 2x2 + x and y = x2 − x over the interval [0, 2] is shown

below. For x ∈ [0, 1], the graph of y = x3 − 2x2 + x lies above the graph of y = x2 − x, whereas, for x ∈ [1, 2], the
graph of y = x2 − x lies above the graph of y = x3 − 2x2 + x. The area of the region is therefore given by∫ 1

0

(
(x3 − 2x2 + x) − (x2 − x)

)
dx +

∫ 2

1

(
(x2 − x) − (x3 − 2x2 + x)

)
dx

=
(

1

4
x4 − x3 + x2

)∣∣∣∣1
0

+
(

x3 − x2 − 1

4
x4

)∣∣∣∣2
1

= 1

4
− 1 + 1 + (8 − 4 − 4) −

(
1 − 1 − 1

4

)
= 1

2
.

x

y

y = x3 − 2x2 + x

y = x2 − x

0.5

1

1.5

2

0.5 1 1.5 2
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y = x2 + 2x, y = x2 − 1, h(x) = x2 + x − 2
5. x = 4y, x = 24 − 8y, y = 0

solution The region bounded by the graphs x = 4y, x = 24 − 8y and y = 0 is shown below. For each 0 ≤ y ≤ 2,
the graph of x = 24 − 8y lies to the right of x = 4y. The area of the region is therefore

A =
∫ 2

0
(24 − 8y − 4y) dy =

∫ 2

0
(24 − 12y) dy

= (24y − 6y2)

∣∣∣∣2
0

= 24.

2.0

y

x

1.5

1.0

0.5

5 10 15 20 25

x = 4y

x = 24 − 8y

x = y2 − 9, x = 15 − 2y
7. y = 4 − x2, y = 3x, y = 4

solution The region bounded by the graphs of y = 4 − x2, y = 3x and y = 4 is shown below. For x ∈ [0, 1], the

graph of y = 4 lies above the graph of y = 4 − x2, whereas, for x ∈ [1, 4
3 ], the graph of y = 4 lies above the graph of

y = 3x. The area of the region is therefore given by

∫ 1

0
(4 − (4 − x2)) dx +

∫ 4/3

1
(4 − 3x) dx = 1

3
x3

∣∣∣∣1
0

+
(

4x − 3

2
x2

)∣∣∣∣4/3

1
= 1

3
+

(
16

3
− 8

3

)
−

(
4 − 3

2

)
= 1

2
.

y = 4

y = 4 − x2 y = 3x

y

x

4

2

3

1

0 0.8 1.20.4 0.6 10.2

x = 1

2
y, x = y

√
1 − y2, 0 ≤ y ≤ 1

9. y = sin x, y = cos x, 0 ≤ x ≤ 5π

4

solution The region bounded by the graphs of y = sin x and y = cos x over the interval [0, 5π
4 ] is shown below. For

x ∈ [0, π
4 ], the graph of y = cos x lies above the graph of y = sin x, whereas, for x ∈ [π

4 , 5π
4 ], the graph of y = sin x

lies above the graph of y = cos x. The area of the region is therefore given by

∫ π/4

0
(cos x − sin x) dx +

∫ 5π/4

π/4
(sin x − cos x) dx

= (sin x + cos x)

∣∣∣π/4

0
+ (− cos x − sin x)

∣∣∣5π/4

π/4

=
√

2

2
+

√
2

2
− (0 + 1) +

(√
2

2
+

√
2

2

)
−

(
−

√
2

2
−

√
2

2

)
= 3

√
2 − 1.

x

y = sin x

y = cos x

y

−0.5

0.5

1

−1

4321
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f (x) = sin x, g(x) = sin 2x,
π

3
≤ x ≤ π

11. y = sec2
(πx

4

)
, y = sec2

(πx

8

)
, 0 ≤ x ≤ 1

solution The region bounded by these curves for 0 ≤ x ≤ 1 is shown below. As the graph of sec2
(πx

4

)
lies above

the graph of sec2
(πx

8

)
, the area of the region is given by

∫ 1

0

(
sec2

(πx

4

)
− sec2

(πx

8

))
dx =

(
4

π
tan

(πx

4

)
− 8

π
tan

(πx

8

)) ∣∣∣∣1
0

= 4

π
− 8

π
tan

(π

8

)

0.5

0.2 0.4 0.6 0.8 1.0

1.0

1.5

2.0

0 x

y

sec( πx)21
4

sec( πx)21
8

y = x√
x2 + 1

, y = x√
x2 + 4

, −1 ≤ x ≤ 1
13. Use a graphing utility to locate the points of intersection of y = x2 and y = cos x, and find the area between
the two curves (approximately).

solution Using a computer algebra system, the points of intersection are x = ±0.8241323123. The region bounded
by the two curves between these points is shown below. By symmetry, we can compute the area from x = 0 to x =
0.8241323123 and double it. Since cos x lies above x2 in this range, the area of the region is given by

2
∫ 0.8241323123

0
(cos x − x2) dx = 2

(
sin x − 1

3
x3

) ∣∣∣∣0.8241323123

0
≈ 1.094753609

−0.8 −0.4

0.2

0.4

0.6

0.8

1.0

0 0.4 0.8
x

y

cos(x)

x2

Figure 2 shows a solid whose horizontal cross section at height y is a circle of radius (1 + y)−2 for 0 ≤ y ≤ H .
Find the volume of the solid.

15. The base of a solid is the unit circle x2 + y2 = 1, and its cross sections perpendicular to the x-axis are rectangles of
height 4. Find its volume.

solution Because the cross sections are rectangles of constant height 4, the figure is a cylinder of radius 1 and height

4. The volume is therefore πr2h = 4π .

The base of a solid is the triangle bounded by the axes and the line 2x + 3y = 12, and its cross sections
perpendicular to the y-axis have area A(y) = (y + 2). Find its volume.

17. Find the total mass of a rod of length 1.2 m with linear density ρ(x) = (1 + 2x + 2
9x3) kg/m.

solution The total weight of the rod is

∫ 1.2

0
ρ(x) dx =

(
x + x2 + 1

18
x4

)∣∣∣∣1.2

0
= 2.7552 kg.

Find the flow rate (in the correct units) through a pipe of diameter 6 cm if the velocity of fluid particles at a distance
r from the center of the pipe is v(r) = (3 − r) cm/s.

In Exercises 19–24, find the average value of the function over the interval.

19. f (x) = x3 − 2x + 2, [−1, 2]
solution The average value is

1

2 − (−1)

∫ 2

−1

(
x3 − 2x + 2

)
dx = 1

3

(
1

4
x4 − x2 + 2x

)∣∣∣∣2−1
= 1

3

[
(4 − 4 + 4) −

(
1

4
− 1 − 2

)]
= 9

4
.

f (x) = |x|, [−4, 4]21. f (x) = (x + 1)(x2 + 2x + 1)4/5, [0, 4]
solution Use the substitution u = x2 + 2x + 1, so that du = 2(x + 1) dx. The new bounds of integration are from
u = 1 to u = 25. Then the average value is

1

4 − 0

∫ 4

0
(x + 1)(x2 + 2x + 1)4/5 dx = 1

8

∫ 25

1
u4/5 du = 5

72
u9/5

∣∣∣∣25

1
= 625

72
53/5 − 5

72
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f (x) = |x2 − 1|, [0, 4]23. f (x) =
√

9 − x2, [0, 3] Hint: Use geometry to evaluate the integral.

solution The region below the graph of y =
√

9 − x2 but above the x-axis over the interval [0, 3] is one-quarter of a
circle of radius 3; consequently,

∫ 3

0

√
9 − x2 dx = 1

4
π(3)2 = 9π

4
.

The average value is then

1

3 − 0

∫ 3

0

√
9 − x2 dx = 1

3

(
9π

4

)
= 3π

4
.

f (x) = x[x], [0, 3], where [x] is the greatest integer function.25. Find
∫ 5

2
g(t) dt if the average value of g(t) on [2, 5] is 9.

solution The average value of the function g(t) on [2, 5] is given by

1

5 − 2

∫ 5

2
g(t) dt = 1

3

∫ 5

2
g(t) dt.

Therefore, ∫ 5

2
g(t) dt = 3(average value) = 3(9) = 27.

The average value of R(x) over [0, x] is equal to x for all x. Use the FTC to determine R(x).
27. Use the Washer Method to find the volume obtained by rotating the region in Figure 3 about the x-axis.

y = x2

y = mx

y

x

FIGURE 3

solution Setting x2 = mx yields x(x − m) = 0, so the two curves intersect at (0, 0) and (m, m2). To use the washer
method, we must slice the solid perpendicular to the axis of rotation; as we are revolving about the y-axis, this implies a
horizontal slice and integration in y. For each y ∈ [0, m2], the cross section is a washer with outer radius R = √

y and
inner radius r = y

m . The volume of the solid is therefore given by

π

∫ m2

0

(
(
√

y)2 −
( y

m

)2
)

dy = π

(
1

2
y2 − y3

3m2

)∣∣∣∣∣
m2

0

= π

(
m4

2
− m4

3

)
= π

6
m4.

Use the Shell Method to find the volume obtained by rotating the region in Figure 3 about the x-axis.In Exercises 29–40, use any method to find the volume of the solid obtained by rotating the region enclosed by the curves
about the given axis.

29. y = x2 + 2, y = x + 4, x-axis

solution Let’s choose to slice the region bounded by the graphs of y = x2 + 2 and y = x + 4 (see the figure below)
vertically. Because a vertical slice is perpendicular to the axis of rotation, we will use the washer method to calculate the
volume of the solid of revolution. For each x ∈ [−1, 2], the washer has outer radius x + 4 and inner radius x2 + 2. The
volume of the solid is therefore given by

π

∫ 2

−1
((x + 4)2 − (x2 + 2)2) dx = π

∫ 2

−1
(−x4 − 3x2 + 8x + 12) dx

= π

(
−1

5
x5 − x3 + 4x2 + 12x

)∣∣∣∣2−1

= π

(
128

5
+ 34

5

)
= 162π

5
.
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y

x
−1.0 −0.5 0.5 1.0 1.5 2.0

1

3

4
5

6 y = x + 4

y = x2 + 2

y = x2 + 6, y = 8x − 1, y-axis
31. x = y2 − 3, x = 2y, axis y = 4

solution Let’s choose to slice the region bounded by the graphs of x = y2 − 3 and x = 2y (see the figure below)
horizontally. Because a horizontal slice is parallel to the axis of rotation, we will use the shell method to calculate the
volume of the solid of revolution. For each y ∈ [−1, 3], the shell has radius 4 − y and height 2y − (y2 − 3) = 3 + 2y − y2.
The volume of the solid is therefore given by

2π

∫ 3

−1
(4 − y)(3 + 2y − y2) dy = 2π

∫ 3

−1
(12 + 5y − 6y2 + y3) dy

= 2π

(
12y + 5

2
y2 − 2y3 + 1

4
y4

)∣∣∣∣3−1

= 2π

(
99

4
+ 29

4

)
= 64π.

y

x

−1
−2−3 1 2 3 4 5 6

1

2

3 x = y2 − 3

x = 2y

y = 2x, y = 0, x = 8, axis x = −333. y = x2 − 1, y = 2x − 1, axis x = −2

solution The region bounded by the graphs of y = x2 − 1 and y = 2x − 1 is shown below. Let’s choose to
slice the region vertically. Because a vertical slice is parallel to the axis of rotation, we will use the shell method to
calculate the volume of the solid of revolution. For each x ∈ [0, 2], the shell has radius x − (−2) = x + 2 and height
(2x − 1) − (x2 − 1) = 2x − x2. The volume of the solid is therefore given by

2π

∫ 2

0
(x + 2)(2x − x2) dx = 2π

(
2x2 − 1

4
x4

)∣∣∣∣2
0

= 2π(8 − 4) = 8π.

y = x2 − 1

x

y = 2x − 1

y

2

1

3

−1

21

y = x2 − 1, y = 2x − 1, axis y = 4
35. y = −x2 + 4x − 3, y = 0, axis y = −1

solution The region bounded by the graph of y = −x2 + 4x − 3 and the x-axis is shown below. Let’s choose to
slice the region vertically. Because a vertical slice is perpendicular to the axis of rotation, we will use the washer method
to calculate the volume of the solid of revolution. For each x ∈ [1, 3], the cross section is a washer with outer radius
R = −x2 + 4x − 3 − (−1) = −x2 + 4x − 2 and inner radius r = 0 − (−1) = 1. The volume of the solid is therefore
given by

π

∫ 3

1

(
(−x2 + 4x − 2)2 − 1

)
dx = π

(
1

5
x5 − 2x4 + 20

3
x3 − 8x2 + 3x

)∣∣∣∣3
1

= π

[(
243

5
− 162 + 180 − 72 + 9

)
−

(
1

5
− 2 + 20

3
− 8 + 3

)]
= 56π

15
.
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y = −x2 + 4x − 3

y

x

0.8

1

0.4

0.6

0.2

0 2 31 1.5 2.50.5

y = −x2 + 4x − 3, y = 0, axis x = 4
37. x = 4y − y3, x = 0, y ≥ 0, x-axis

solution The region bounded by the graphs of x = 4y − y3 and x = 0 for y ≥ 0 is shown below. Let’s choose to
slice this region horizontally. Because a horizontal slice is parallel to the axis of rotation, we will use the shell method to
calculate the volume of the solid of revolution. For each y ∈ [0, 2], the shell has radius y and height 4y − y3. The volume
of the solid is therefore given by

2π

∫ 2

0
y(4y − y3) dy = 2π

∫ 2

0
(4y2 − y4) dy

= 2π

(
4

3
y3 − 1

5
y5

)∣∣∣∣2
0

= 2π

(
32

3
− 32

5

)
= 128π

15
.

x = 4y − y3

0.5 1 1.5 2 2.5 30
x

0.5

1

1.5

2

y

y2 = x−1, x = 1, x = 3, axis y = −339. y = cos(x2), y = 0, 0 ≤ x ≤
√

π

2
, y-axis

solution The region is shown below.

0.2

0.2 0.4 0.6 0.8 1.0 1.2

0.4

0.6

0.8

1.0

0 x

y

We will slice the region vertically and use the shell method. For each x ∈
[

0,

√
π

2

]
, the shell has radius x and height

cos(x2). The volume of the solid is thus given by

V = 2π

∫ √
π/2

0
x cos(x2) dx

Using the substitution u = x2, we have du = 2x dx; the new bounds of integration are u = 0 to u = π

2
, so we have

V = 1

2
· 2π

∫ π/2

0
cos u du = π sin u

∣∣∣∣π/2

0
= π
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y = sec x, y = csc x, y = 0, x = 0, x = π

2
, x-axis

In Exercises 41–44, find the volume obtained by rotating the region about the given axis. The regions refer to the graph
of the hyperbola y2 − x2 = 1 in Figure 4.

x

y

−c c

3

2

1

−1

−2

−3

y = x

y2 − x2 = 1

FIGURE 4

41. The shaded region between the upper branch of the hyperbola and the x-axis for −c ≤ x ≤ c, about the x-axis.

solution Let’s choose to slice the region vertically. Because a vertical slice is perpendicular to the axis of rotation,
we will use the washer method to calculate the volume of the solid of revolution. For each x ∈ [−c, c], cross sections are
circular disks with radius R =

√
1 + x2. The volume of the solid is therefore given by

π

∫ c

−c
(1 + x2) dx = π

(
x + 1

3
x3

)∣∣∣∣c−c

= π

[(
c + c3

3

)
−

(
−c − c3

3

)]
= 2π

(
c + c3

3

)
.

The region between the upper branch of the hyperbola and the x-axis for 0 ≤ x ≤ c, about the y-axis.
43. The region between the upper branch of the hyperbola and the line y = x for 0 ≤ x ≤ c, about the x-axis.

solution Let’s choose to slice the region vertically. Because a vertical slice is perpendicular to the axis of rotation,
we will use the washer method to calculate the volume of the solid of revolution. For each x ∈ [0, c], cross sections are
washers with outer radius R =

√
1 + x2 and inner radius r = x. The volume of the solid is therefore given by

π

∫ c

0

(
(1 + x2) − x2

)
dx = πx

∣∣∣∣c
0

= cπ.

The region between the upper branch of the hyperbola and y = 2, about the y-axis.
45. Let R be the intersection of the circles of radius 1 centered at (1, 0) and (0, 1). Express as an integral (but do not
evaluate): (a) the area of R and (b) the volume of revolution of R about the x-axis.

solution The region R is shown below.

x2 + (y − 1)2 = 1

(x − 1)2 + y2 = 1

y

x
0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

(a) A vertical slice of R has its top along the upper left arc of the circle (x − 1)2 + y2 = 1 and its bottom along the lower
right arc of the circle x2 + (y − 1)2 = 1. The area of R is therefore given by∫ 1

0

(√
1 − (x − 1)2 − (1 −

√
1 − x2)

)
dx.

(b) If we revolve R about the x-axis and use the washer method, each cross section is a washer with outer radius√
1 − (x − 1)2 and inner radius 1 −

√
1 − x2. The volume of the solid is therefore given by

π

∫ 1

0

[
(1 − (x − 1)2) − (1 −

√
1 − x2)2

]
dx.

Let a > 0. Show that the volume obtained when the region between y = a
√

x − ax2 and the x-axis is rotated
about the x-axis is independent of the constant a.

47. If 12 J of work are needed to stretch a spring 20 cm beyond equilibrium, how much work is required to compress it
6 cm beyond equilibrium?

solution First, we determine the value of the spring constant k as follows:

1

2
k(0.2)2 = 12 so k = 600 N/m.
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Now, the work needed to compress the spring 6 cm beyond equilibrium is

W =
∫ 0.06

0
600x dx = 300x2

∣∣∣∣0.06

0
= 1.08 J.

A spring whose equilibrium length is 15 cm exerts a force of 50 N when it is stretched to 20 cm. Find the work
required to stretch the spring from 22 to 24 cm.

49. If 18 ft-lb of work are needed to stretch a spring 1.5 ft beyond equilibrium, how far will the spring stretch if a 12-lb
weight is attached to its end?

solution First, we determine the value of the spring constant as follows:

1

2
k(1.5)2 = 18 so k = 16 lb/ft.

Now, if a 12-lb weight is attached to the end of the spring, balancing the forces acting on the weight, we have 12 = 16d,
which implies d = 0.75 ft. A 12-lb weight will therefore stretch the spring 9 inches.

Let W be the work (against the sun’s gravitational force) required to transport an 80-kg person from Earth to Mars
when the two planets are aligned with the sun at their minimal distance of 55.7 × 106 km. Use Newton’s Universal
Law of Gravity (see Exercises 35–37 in Section 6.5) to express W as an integral and evaluate it. The sun has mass
Ms = 1.99 × 1030 kg, and the distance from the sun to the earth is 149.6 × 106 km.

In Exercises 51 and 52, water is pumped into a spherical tank of radius 2 m from a source located 1 m below a hole at
the bottom (Figure 5). The density of water is 1000 kg/m3.

2

1

Water source

FIGURE 5

51. Calculate the work required to fill the tank.

solution Place the origin at the base of the sphere with the positive y-axis pointing upward. The equation for the

great circle of the sphere is then x2 + (y − 2)2 = 4. At location y, the horizontal cross section is a circle of radius√
4 − (y − 2)2 =

√
4y − y2; the volume of the layer is then π(4y − y2)�y m3, and the force needed to lift the layer is

1000(9.8)π(4y − y2)�y N. The layer of water must be lifted y + 1 meters, so the work required to fill the tank is given
by

9800π

∫ 4

0
(y + 1)(4y − y2) dy = 9800π

∫ 4

0
(3y2 + 4y − y3) dy

= 9800π

(
y3 + 2y2 − 1

4
y4

)∣∣∣∣4
0

= 313,600π ≈ 985,203.5 J.

Calculate the work F(h) required to fill the tank to level h meters in the sphere.53. A tank of mass 20 kg containing 100 kg of water (density 1000 kg/m3) is raised vertically at a constant speed of
100 m/min for one minute, during which time it leaks water at a rate of 40 kg/min. Calculate the total work performed in
raising the container.

solution Let t denote the elapsed time in minutes and let y denote the height of the container. Given that the speed of
ascent is 100 m/min, y = 100t ; moreover, the mass of water in the container is

100 − 40t = 100 − 0.4ykg.

The force needed to lift the container and its contents is then

9.8 (20 + (100 − 0.4y)) = 1176 − 3.92y N,

and the work required to lift the container and its contents is

∫ 100

0
(1176 − 3.92y) dy = (1176y − 1.96y2)

∣∣∣∣100

0
= 98,000J.
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7 EXPONENTIAL FUNCTIONS

7.1 Derivative of f (x) = bx and the Number e

Preliminary Questions
1. Which of the following equations is incorrect?

(a) 32 · 35 = 37 (b) (
√

5)4/3 = 52/3

(c) 32 · 23 = 1 (d) (2−2)−2 = 16

solution

(a) This equation is correct: 32 · 35 = 32+5 = 37.

(b) This equation is correct: (
√

5)4/3 = (51/2)4/3 = 5(1/2)·(4/3) = 52/3.

(c) This equation is incorrect: 32 · 23 = 9 · 8 = 72 �= 1.

(d) this equation is correct: (2−2)−2 = 2(−2)·(−2) = 24 = 16.

2. What are the domain and range of ln x? When is ln x negative?

solution The domain of ln x is x > 0 and the range is all real numbers. ln x is negative for 0 < x < 1.

3. To which of the following does the Power Rule apply?

(a) f (x) = x2 (b) f (x) = 2e (c) f (x) = xe

(d) f (x) = ex (e) f (x) = xx (f) f (x) = x−4/5

solution The Power Rule applies when the function has a variable base and a constant exponent. Therefore, the Power

Rule applies to (a) x2,(c) xe and (f) x−4/5.

4. For which values of b does bx have a negative derivative?

solution The function bx has a negative derivative when 0 < b < 1.

5. For which values of b is the graph of y = bx concave up?

solution The graph of y = bx is concave up for all b > 0 except b = 1.

6. Which point lies on the graph of y = bx for all b?

solution The point (0, 1) lies on the graph of y = bx for all b.

7. Which of the following statements is not true?

(a) (ex)′ = ex

(b) lim
h→0

eh − 1

h
= 1

(c) The tangent line to y = ex at x = 0 has slope e.

(d) The tangent line to y = ex at x = 0 has slope 1.

solution

(a) This statement is true: (ex)′ = ex .

(b) This statement is true:

lim
h→0

eh − 1

h
= d

dx
ex

∣∣∣∣
x=0

= e0 = 1.

(c) This statement is false: the tangent line to y = ex at x = 0 has slope e0 = 1.

(d) This statement is true: the tangent line to y = ex at x = 0 has slope e0 = 1.

370
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Exercises
1. Rewrite as a whole number (without using a calculator):

(a) 70 (b) 102(2−2 + 5−2)

(c)
(43)5

(45)3
(d) 274/3

(e) 8−1/3 · 85/3 (f) 3 · 41/4 − 12 · 2−3/2

solution

(a) 70 = 1.

(b) 102(2−2 + 5−2) = 100(1/4 + 1/25) = 25 + 4 = 29.

(c) (43)5/(45)3 = 415/415 = 1.

(d) (27)4/3 = (271/3)4 = 34 = 81.

(e) 8−1/3 · 85/3 = (81/3)5/81/3 = 25/2 = 24 = 16.

(f) 3 · 41/4 − 12 · 2−3/2 = 3 · 21/2 − 3 · 22 · 2−3/2 = 0.

Compute (16−1/16)4.
In Exercises 3–10, solve for the unknown variable.

3. 92x = 98

solution If 92x = 98, then 2x = 8, and x = 4.

et2 = e4t−35. 3x = ( 1
3

)x+1

solution Rewrite ( 1
3 )x+1 as (3−1)x+1 = 3−x−1. Then 3x = 3−x−1, which requires x = −x − 1. Thus, x = −1/2.

(
√

5)x = 125
7. 4−x = 2x+1

solution Rewrite 4−x as (22)−x = 2−2x . Then 2−2x = 2x+1, which requires −2x = x + 1. Solving for x gives
x = −1/3.

b4 = 10129. k3/2 = 27

solution Raise both sides of the equation to the two-thirds power. This gives k = (27)2/3 = (271/3)2 = 32 = 9.

(b2)x+1 = b−6In Exercises 11–14, determine the limit.

11. lim
x→∞ 4x

solution lim
x→∞ 4x = ∞.

lim
x→∞ 4−x13. lim

x→∞
(1

4

)−x

solution lim
x→∞

(1

4

)−x = lim
x→∞ 4x = ∞.

lim
x→∞ ex−x2In Exercises 15–18, find the equation of the tangent line at the point indicated.

15. y = 4ex , x0 = 0

solution Let f (x) = 4ex . Then f ′(x) = 4ex and f ′(0) = 4. At x0 = 0, f (0) = 4, so the equation of the tangent
line is y = 4(x − 0) + 4 = 4x + 4.

y = e4x , x0 = 0
17. y = ex+2, x0 = −1

solution Let f (x) = ex+2. Then f ′(x) = ex+2 and f ′(−1) = e1. At x0 = −1, f (−1) = e, so the equation of the
tangent line is y = e(x + 1) + e = ex + 2e.

y = ex2
, x0 = 1

In Exercises 19–40, find the derivative.

19. f (x) = 7e2x + 3e4x

solution
d

dx
(7e2x + 3e4x) = 14e2x + 12e4x .

f (x) = e−5x
21. f (x) = eπx

solution
d

dx
eπx = πeπx .

f (x) = e323. f (x) = e−4x+9

solution
d

dx
e−4x+9 = −4e−4x+9.

f (x) = 4e−x + 7e−2x
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25. f (x) = ex2

x

solution
d

dx

(
ex2

x

)
= x

(
ex2

(2x)
) − ex2

(1)

x2
= 2x2ex2 − ex2

x2
.

f (x) = x2e2x
27. f (x) = (1 + ex)4

solution
d

dx
(1 + ex)4 = 4(1 + ex)3ex .

f (x) = (2e3x + 2e−2x)429. f (x) = ex2+2x−3

solution
d

dx
ex2+2x−3 = (2x + 2)ex2+2x−3.

f (x) = e1/x31. f (x) = esin x

solution
d

dx
esin x = cos xesin x .

f (x) = e(x2+2x+3)233. f (θ) = sin(eθ )

solution
d

dθ
sin(eθ ) = eθ cos(eθ ).

f (t) = e
√

t35. f (t) = 1

1 − e−3t

solution
d

dt

(
1

1 − e−3t

)
= d

dt
(1 − e−3t )−1 = −(1 − e−3t )−2(3e−3t ).

f (t) = cos(te−2t )37. f (x) = ex

3x + 1

solution
d

dx

(
ex

3x + 1

)
= (3x + 1) ex − 3ex

(3x + 1)2
= 3xex − 2ex

(3x + 1)2
.

f (x) = tan(e5−6x)39. f (x) = ex+1 + x

2ex − 1

solution

d

dx

(
ex+1 + x

2ex − 1

)
= (2ex − 1)(ex+1 + 1) − (ex+1 + x)(2ex)

(2ex − 1)2
= 2e2x+1 + 2ex − ex+1 − 1 − 2e2x+1 − 2xex

(2ex − 1)2

= 2ex − ex+1 − 2xex − 1

(2ex − 1)2
.

f (x) = eexIn Exercises 41–46, calculate the derivative indicated.

41. f ′′(x); f (x) = e4x−3

solution Let f (x) = e4x−3. Then f ′(x) = 4e4x−3 and f ′′(x) = 16e4x−3.

f ′′′(x); f (x) = e12−3x43.
d2y

dt2
; y = et sin t

solution Let y = et sin t . Then

dy

dt
= et cos t + et sin t = et (cos t + sin t),

and

d2y

dt2
= et (− sin t + cos t) + et (cos t + sin t) = 2et cos t.

d2y

dt2
; y = e−2t sin 3t

45.
d2

dt2
et−t2

solution
d

dt
et−t2 = (1 − 2t)et−t2

and

d2

dt2
et−t2 = (1 − 2t)2et−t2 − 2et−t2 = (4t2 − 4t − 1)et−t2

.
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d3

dθ3
cos(eθ )

In Exercises 47–52, find the critical points and determine whether they are local minima, maxima, or neither.

47. f (x) = ex − x

solution Setting f ′(x) = ex − 1 equal to zero and solving for x gives ex = 1, which is true if and only if x = 0.

f ′′(x) = ex , so f ′′(0) = e0 = 1 > 0. Therefore, x = 0 corresponds to a local minimum.

f (x) = x + e−x49. f (x) = ex

x
for x > 0

solution Setting

f ′(x) = exx − ex

x2

equal to zero and solving for x gives ex(x − 1) = 0 which is true if and only if x = 1. Now,

f ′′(x) = (ex(x − 1) + ex)x2 − 2x(ex(x − 1))

x4
,

so

f ′′(1) = (e(0) + e) − 2(e(0))

1
= e > 0.

Therefore, x = 1 corresponds to a local minimum.

f (x) = x2ex51. g(t) = et

t2 + 1

solution

g′(t) = (t2 + 1)et − et (2t)

(t2 + 1)2
.

The only critical point is when et (t2 − 2t + 1) = et (t − 1)2 = 0. Thus, the critical point is t = 1. Notice that g′(t) > 0
for all t �= 1. Thus, g′(t) does not change sign and therefore t = 1 corresponds to neither a maximum nor a minimum.

g(t) = (t3 − 2t)etIn Exercises 53–58, find the critical points and points of inflection. Then sketch the graph.

53. y = xe−x

solution Let f (x) = xe−x . Then

f ′(x) = e−x − xe−x = (1 − x)e−x,

so x = 1 is a critical point. Further, f ′(x) > 0 for x < 1 and f ′(x) < 0 for x > 1. Hence, f (x) is increasing for x < 1
and decreasing for x > 1. With

f ′′(x) = −e−x − e−x + xe−x = (x − 2)e−x,

it follows that f (x) is concave down for x < 2, is concave up for x > 2 and has a point of inflection at x = 2. A graph
of y = f (x) is shown below.

−2

−1
−1

1

y

x
4321

y = e−x + ex
55. y = e−x cos x on

[ − π
2 , π

2

]
solution Let f (x) = e−x cos x. Then

f ′(x) = e−x(− sin x) + (−e−x) cos x = −e−x(sin x + cos x).

On the interval [−π
2 , π

2 ], there is only one critical point, at x = −π
4 , and f (x) is increasing for −π

2 < x < −π
4 and

decreasing for −π
4 < x < π

2 . Now,

f ′′(x) = −e−x(cos x − sin x) + e−x(sin x + cos x) = 2e−x sin x,

so f (x) is concave down for −π
2 < x < 0, is concave up for 0 < x < π

2 , and has an inflection point at x = 0. A graph
of y = f (x) is shown below.
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−1 −0.5−1.5 1.510.5
x

0.4

0.8

1.6

1.2

y

y = e−x2
57. y = ex − x

solution Let f (x) = ex − x. Then f ′(x) = ex − 1, and x = 0 is the only critical point. Further, f (x) is decreasing
for x < 0 and increasing for x > 0. Observe that f ′′(x) = ex > 0 for all x, so f (x) is concave up for all x, and there are
no points of inflection. A graph of y = f (x) is shown below.

5

2

1

4

3

y

x
−1−2 1 2

y = x2e−x on [0, 10]59. Find a > 0 such that the tangent line to the graph of f (x) = x2e−x at x = a passes through the origin (Figure 6).

y

x
a

f (x) = x2e−x

FIGURE 6

solution Let f (x) = x2e−x . Then f (a) = a2e−a ,

f ′(x) = −x2e−x + 2xe−x = e−x(2x − x2),

f ′(a) = (2a − a2)e−a , and the equation of the tangent line to f at x = a is

y = f ′(a)(x − a) + f (a) = (2a − a2)e−a(x − a) + a2e−a.

For this line to pass through the origin, we must have

0 = (2a − a2)e−a(−a) + a2e−a = e−a
(
a2 − 2a2 + a3

)
= a2e−a(a − 1).

Thus, a = 0 or a = 1. The only value a > 0 such that the tangent line to f (x) = x2e−x passes through the origin is
therefore a = 1.

Use Newton’s Method to find the two solutions of ex = 5x to three decimal places (Figure 7).61. Compute the linearization of f (x) = e−2x sin x at a = 0.

solution Let f (x) = e−2x sin x. Then

f ′(x) = e−2x cos x − 2e−2x sin x, f (a) = 0, and f ′(a) = 1,

so the linearization of f (x) at a is

L(x) = f ′(a)(x − a) + f (a) = x.

Compute the linearization of f (x) = xe6−3x at a = 2.
63. Find the linearization of f (x) = ex at a = 0 and use it to estimate e−0.1.

solution Let f (x) = ex . Then

f ′(x) = ex, f (a) = 1, and f ′(a) = 1,
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so the linearization of f (x) at a is

L(x) = f ′(a)(x − a) + f (a) = (x − 0) + 1 = x + 1.

Using the linearization, we find

e−0.1 = f (−0.1) ≈ L(−0.1) = −0.1 + 1 = 0.9.

Use the linear approximation to estimate f (1.03) − f (1) where y = x1/3ex−1.
65. A 2005 study by the Fisheries Research Services in Aberdeen Scotland showed that the average length of the species
Clupea Harengus (Atlantic herring) as a function of age t (in years) can be modeled by L(t) = 32(1 − e−0.37t ) cm for
0 ≤ t ≤ 13.

(a) How fast is the average length changing at age t = 6 yrs?
(b) At what age is the average length changing at a rate of 5 cm/yr?
(c) Calculate L = lim

t→∞ L(t).

solution Given L(t) = 32(1 − e−0.37t ), it follows that L′(t) = 11.84e−0.37t cm/year.

(a) At age t = 6 years,

L′(6) = 11.84e−0.37(6) = 1.28 cm/year.

(b) Setting L′(t) = 5 and solving for t yields

t = − 1

0.37
ln

5

11.84
≈ 2.33 years.

(c) L = lim
t→∞(32 − 32e−0.37t ) = 32 − 32 lim

t→∞ e−0.37t = 32 − 0 = 32 cm.

According to a 1999 study by Starkey and Scarnecchia, the average weight (kg) at age t (years) of channel catfish
in the Lower Yellowstone River can be modeled by

W(t) =
(

3.46293 − 3.32173e−0.03456t
)3.4026

Find the rate at which weight is changing at age t = 10.

67. The functions in Exercises 65 and 66 are examples of the Von Bertalanffy growth function

M(t) = (
a + (b − a)ekmt

)1/m

introduced in the 1930’s byAustrian-born biologist Karl Ludwig Von Bertalanffy. Calculate M ′(0) in terms of the constants
a, b, k, and m.

solution Given M(t) = (
a + (b − a)ekmt

)1/m, we find

M ′(t) = 1

m

(
a + (b − a)ekmt

)1/m−1
(km(b − a)ekmt ) = k(b − a)ekmt

(
a + (b − a)ekmt

)1/m−1

and M ′(0) = kb1/m−1(b − a).

Find an approximation to m(4) using the limit definition and estimate the slope of the tangent line to y = 4x at
x = 0 and x = 2.

In Exercises 69–86, evaluate the integral.

69.
∫

(ex + 2) dx

solution
∫

(ex + 2) dx = ex + 2x + C.

∫
e4x dx

71.
∫ 1

0
e−3x dx

solution
∫ 1

0
e−3x dx = −1

3
e−3x

∣∣∣∣1
0

= −1

3
e−3 + 1

3
= 1

3
(1 − e−3).

∫ 6

2
e−x/2 dx

73.
∫ 3

0
e1−6t dt

solution
∫ 3

0
e1−6t dt = −1

6
e1−6t

∣∣∣∣3
0

= −1

6
e−17 + 1

6
e = 1

6
(e − e−17).

∫ 3

2
e4t−3 dt

75.
∫

(e4x + 1) dx

solution Use the substitution u = 4x, du = 4 dx. Then∫
(e4x + 1) dx = 1

4

∫
(eu + 1) du = 1

4
(eu + u) + C = 1

4
e4x + x + C.

∫
(ex + e−x) dx

77.
∫ 1

0
xe−x2/2 dx

solution Let u = −x2/2. Then du = −x dx and

∫ 1

0
xe−x2/2 dx = −

∫ −1/2

0
eu du = −eu

∣∣∣∣−1/2

0
= −e−1/2 + 1.
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∫ 2

0
ye3y2

dy
79.

∫
et

√
et + 1 dt

solution Use the substitution u = et + 1, du = et dt . Then∫
et

√
et + 1 dt =

∫ √
u du = 2

3
u3/2 + C = 2

3
(et + 1)3/2 + C.

∫
(e−x − 4x) dx

81.
∫

e2x − e4x

ex
dx

solution

∫ (
e2x − e4x

ex

)
dx =

∫
(ex − e3x) dx = ex − e3x

3
+ C.

∫
ex cos(ex) dx

83.
∫

ex

√
ex + 1

dx

solution Use the substitution u = ex + 1, du = ex dx. Then∫
ex

√
ex + 1

dx =
∫

du√
u

= 2
√

u + C = 2
√

ex + 1 + C.

∫
ex(e2x + 1)3 dx85.

∫
e
√

x dx√
x

solution Let u = √
x. Then

du = 1

2
√

x
dx

and ∫
e
√

x dx√
x

= 2
∫

eu du = 2eu + C = 2e
√

x + C.

∫
x−2/3ex1/3

dx

87. Find the area between y = ex and y = e2x over [0, 1].
solution Over [0, 1], the graph of y = e2x lies above the graph of y = ex . Hence, the area between the graphs is

∫ 1

0
(e2x − ex) dx =

(
e2x

2
− ex

)∣∣∣∣∣
1

0

= e2

2
− e −

(
1

2
− 1

)
= e2

2
− e + 1

2
.

Find the area between y = ex and y = e−x over [0, 2].89. Find the area bounded by y = e2, y = ex , and x = 0.

solution The graphs of y = e2 and y = ex intersect at x = 2. Over the interval [0, 2], the graph of y = e2 lies above
the graph of y = ex , so the area between the graphs is∫ 2

0
(e2 − ex) dx = (xe2 − ex)

∣∣∣∣2
0

= 2e2 − e2 − (0 − 1) = e2 + 1.

Find the volume obtained by revolving y = ex about the x-axis for 0 ≤ x ≤ 1.
91. Wind engineers have found that wind speed v (in m/s) at a given location follows a Rayleigh distribution of the type

W(v) = 1

32
ve−v2/64

This means that the probability that v lies between a and b is equal to the shaded area in Figure 8.

(a) Show that the probability that v ∈ [0, b] is 1 − e−b2/64.
(b) Calculate the probability that v ∈ [2, 5].

20

0.05

0.1

a b

y = W(v)

v (m/s)

y

FIGURE 8 The shaded area is the probability that v lies between a and b.
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solution

(a) The probability that v ∈ [0, b] is

∫ b

0

1

32
ve−v2/64 dv.

Let u = −v2/64. Then du = − v
32 dv and

∫ b

0

1

32
ve−v2/64 dv = −

∫ −b2/64

0
eu du = 1 − e−b2/64.

(b) The probability that v ∈ [2, 5] is the probability that v ∈ [0, 5] minus the probability that v ∈ [0, 2]. Using part (a),
it follows that the probability that v ∈ [2, 5] is

(1 − e−25/64) − (1 − e−4/64) = e−1/16 − e−25/64 ≈ 0.263.

The function f (x) = ex satisfies f ′(x) = f (x). Show that if g(x) is another function satisfying g′(x) = g(x),
then g(x) = Cex for some constant C. Hint: Compute the derivative of g(x)e−x .

Further Insights and Challenges
93. Prove that f (x) = ex is not a polynomial function. Hint: Differentiation lowers the degree of a polynomial by 1.

solution Assume f (x) = ex is a polynomial function of degree n. Then f (n+1)(x) = 0. But we know that any
derivative of ex is ex and ex �= 0. Hence, ex cannot be a polynomial function.

Recall the following property of integrals: If f (t) ≥ g(t) for all t ≥ 0, then for all x ≥ 0,∫ x

0
f (t) dt ≥

∫ x

0
g(t) dt

The inequality et ≥ 1 holds for t ≥ 0 because e > 1. Use Eq. (4) to prove that ex ≥ 1 + x for x ≥ 0. Then prove,
by successive integration, the following inequalities (for x ≥ 0):

ex ≥ 1 + x + 1

2
x2, ex ≥ 1 + x + 1

2
x2 + 1

6
x3

95. Generalize Exercise 94; that is, use induction (if you are familiar with this method of proof) to prove that for all
n ≥ 0,

ex ≥ 1 + x + 1

2
x2 + 1

6
x3 + · · · + 1

n!x
n (x ≥ 0)

solution For n = 1, ex ≥ 1 + x by Exercise 94. Assume the statement is true for n = k. We need to prove the
statement is true for n = k + 1. By the Induction Hypothesis,

ex ≥ 1 + x + x2/2 + · · · + xk/k!.
Integrating both sides of this inequality yields∫ x

0
et dt = ex − 1 ≥ x + x2/2 + · · · + xk+1/(k + 1)!

or

ex ≥ 1 + x + x2/2 + · · · + xk+1/(k + 1)!
as required.

Use Exercise 94 to show that
ex

x2
≥ x

6
and conclude that lim

x→∞
ex

x2
= ∞. Then use Exercise 95 to prove more

generally that lim
x→∞

ex

xn
= ∞ for all n.

97. Calculate the first three derivatives of f (x) = xex . Then guess the formula for f (n)(x) (use induction to prove it if
you are familiar with this method of proof).

solution f ′(x) = ex + xex , f ′′(x) = ex + ex + xex = 2ex + xex , f ′′′(x) = 2ex + ex + xex = 3ex + xex . So

one would guess that f (n)(x) = nex + xex . Assuming this is true for f (n)(x), we verify that f (n+1)(x) = (f (n)(x))′ =
nex + ex + xex = (n + 1)ex + xex .

Consider the equation ex = λx, where λ is a constant.

(a) For which λ does it have a unique solution? For intuition, draw a graph of y = ex and the line y = λx.

(b) For which λ does it have at least one solution?

99. Prove in two ways that the numbers m(a) satisfy

m(ab) = m(a) + m(b)

(a) First method: Use the limit definition of mb and

(ab)h − 1

h
= bh

(
ah − 1

h

)
+ bh − 1

h

(b) Second method: Apply the Product Rule to axbx = (ab)x .

solution

(a) m(ab) = lim
h→0

(ab)h − 1

h
= lim

h→0

bh(ah − 1)

h
+ bh − 1

h
= lim

h→0
bh lim

h→0

ah − 1

h
+ lim

h→0

bh − 1

h

= lim
h→0

ah − 1

h
+ lim

h→0

bh − 1

h
= m(a) + m(b).

So, m(ab) = m(a) + m(b).
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(b) m(ab)(ab)x = ((ab)x)′ = (axbx)′ = (ax)′bx + (bx)′ax = m(a)axbx + m(b)axbx

= axbx(m(a) + m(b)) = (ab)x(m(a) + m(b)).

Therefore, we have m(ab)(ab)x = (ab)x(m(a) + m(b)). Dividing both sides by (ab)x , we see that m(ab) = m(a) +
m(b).

7.2 Inverse Functions

Preliminary Questions
1. Which of the following satisfy f −1(x) = f (x)?

(a) f (x) = x (b) f (x) = 1 − x

(c) f (x) = 1 (d) f (x) = √
x

(e) f (x) = |x| (f) f (x) = x−1

solution The functions (a) f (x) = x, (b) f (x) = 1 − x and (f) f (x) = x−1 satisfy f −1(x) = f (x).

2. The graph of a function looks like the track of a roller coaster. Is the function one-to-one?

solution Because the graph looks like the track of a roller coaster, there will be several locations at which the graph
has the same height. The graph will therefore fail the horizontal line test, meaning that the function is not one-to-one.

3. The function f maps teenagers in the United States to their last names. Explain why the inverse function f −1 does
not exist.

solution Many different teenagers will have the same last name, so this function will not be one-to-one. Consequently,
the function does not have an inverse.

4. The following fragment of a train schedule for the New Jersey Transit System defines a function f from towns to
times. Is f one-to-one? What is f −1(6:27)?

Trenton 6:21

Hamilton Township 6:27

Princeton Junction 6:34

New Brunswick 6:38

solution This function is one-to-one, and f −1(6:27) = Hamilton Township.

5. A homework problem asks for a sketch of the graph of the inverse of f (x) = x + cos x. Frank, after trying but failing
to find a formula for f −1(x), says it’s impossible to graph the inverse. Bianca hands in an accurate sketch without solving
for f −1. How did Bianca complete the problem?

solution The graph of the inverse function is the reflection of the graph of y = f (x) through the line y = x.

6. What is the slope of the line obtained by reflecting the line y = x
2 through the line y = x?

solution The line obtained by reflecting the line y = x/2 through the line y = x has slope 2.

7. Suppose that P = (2, 4) lies on the graph of f (x) and that the slope of the tangent line through P is m = 3. Assuming
that f −1(x) exists, what is the slope of the tangent line to the graph of f −1(x) at the point Q = (4, 2)?

solution The tangent line to the graph of f −1(x) at the point Q = (4, 2) has slope 1
3 .

Exercises
1. Show that f (x) = 7x − 4 is invertible and find its inverse.

solution Solving y = 7x − 4 for x yields x = y + 4

7
. Thus, f −1(x) = x + 4

7
.

Is f (x) = x2 + 2 one-to-one? If not, describe a domain on which it is one-to-one.
3. What is the largest interval containing zero on which f (x) = sin x is one-to-one?

solution Looking at the graph of sin x, the function is one-to-one on the interval [−π/2, π/2].

Show that f (x) = x − 2

x + 3
is invertible and find its inverse.

(a) What is the domain of f (x)? The range of f −1(x)?

(b) What is the domain of f −1(x)? The range of f (x)?

5. Verify that f (x) = x3 + 3 and g(x) = (x − 3)1/3 are inverses by showing that f (g(x)) = x and g(f (x)) = x.

solution

• f (g(x)) =
(
(x − 3)1/3

)3 + 3 = x − 3 + 3 = x.

• g(f (x)) =
(
x3 + 3 − 3

)1/3 =
(
x3

)1/3 = x.
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Repeat Exercise 5 for f (t) = t + 1

t − 1
and g(t) = t + 1

t − 1
.7. The escape velocity from a planet of radius R is v(R) =
√

2GM

R
, where G is the universal gravitational constant

and M is the mass. Find the inverse of v(R) expressing R in terms of v.

solution To find the inverse, we solve

y =
√

2GM

R

for R. This yields

R = 2GM

y2
.

Therefore,

v−1(R) = 2GM

R2
.

In Exercises 8–15, find a domain on which f is one-to-one and a formula for the inverse of f restricted to this domain.
Sketch the graphs of f and f −1.

f (x) = 3x − 2
9. f (x) = 4 − x

solution The linear function f (x) = 4 − x is one-to-one for all real numbers. Solving y = x − 4 for x gives

x = 4 − y. Thus, f −1(x) = 4 − x.

1 2 3 4
x

2

1

3

4

y

f(x) = f −1(x) = 4 − x

f (x) = 1

x + 1

11. f (x) = 1

7x − 3

solution The graph of f (x) = 1/(7x − 3) given below shows that f passes the horizontal line test, and is therefore

one-to-one, on its entire domain {x : x �= 3
7 }. Solving y = 1/(7x − 3) for x gives

x = 1

7y
+ 3

7
; thus, f −1(x) = 1

7x
+ 3

7
.

4

2

−4

−2
−2−4 2 4

x

y

4

2

−4

−2
−2−4 2 4

x

y

y = f(x) y = f −1(x)

f (s) = 1

s2

13. f (x) = 1√
x2 + 1

solution To make the function f (x) = 1√
x2 + 1

one-to-one, we must restrict the domain to either {x : x ≥ 0} or

{x : x ≤ 0}. If we choose the domain {x : x ≥ 0}, then solving y = 1√
x2 + 1

for x yields

x =
√

1 − y2

y
; hence, f −1(x) =

√
1 − x2

x
.

Had we chosen the domain {x : x ≤ 0}, the inverse would have been

f −1(x) = −
√

1 − x2

x
.
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x
−1−2 1 2

1

0.5

1.5

y

y = f −1(x)

y = f(x)

f (z) = z315. f (x) =
√

x3 + 9

solution The graph of f (x) =
√

x3 + 9 given below shows that f passes the horizontal line test, and therefore

is one-to-one, on its entire domain {x : x ≥ −91/3}. Solving y =
√

x3 + 9 for x yields x = (y2 − 9)1/3. Thus,
f −1(x) = (x2 − 9)1/3.

−2
−2

4

2

6

8

y

x
842 6

y = f −1(x)

y = f(x)

For each function shown in Figure 15, sketch the graph of the inverse (restrict the function’s domain if necessary).17. Which of the graphs in Figure 16 is the graph of a function satisfying f −1 = f ?

(A)

x

(B)

y

x

(D)

y

(C)

x

y

x

y

FIGURE 16

solution Figures (B) and (C) would not change when reflected around the line y = x. Therefore, these two satisfy

f −1 = f .

Let n be a nonzero integer. Find a domain on which f (x) = (1 − xn)1/n coincides with its inverse. Hint: The
answer depends on whether n is even or odd.

19. Let f (x) = x7 + x + 1.

(a) Show that f −1 exists (but do not attempt to find it). Hint: Show that f is increasing.
(b) What is the domain of f −1?
(c) Find f −1(3).

solution

(a) The graph of f (x) = x7 + x + 1 is shown below. From this graph, we see that f (x) is a strictly increasing function;
by Example 3, it is therefore one-to-one. Because f is one-to-one, by Theorem 3, f −1 exists.

−1 1

−20

−10

10

20

y

x

(b) The domain of f −1(x) is the range of f (x) : (−∞, ∞).
(c) Note that f (1) = 17 + 1 + 1 = 3; therefore, f −1(3) = 1.
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Show that f (x) = (x2 + 1)−1 is one-to-one on (−∞, 0], and find a formula for f −1 for this domain of f .
21. Let f (x) = x2 − 2x. Determine a domain on which f −1 exists, and find a formula for f −1 for this domain of f .

solution From the graph of y = x2 − 2x shown below, we see that if the domain of f is restricted to either x ≤ 1 or

x ≥ 1, then f is one-to-one and f −1 exists. To find a formula for f −1, we solve y = x2 − 2x for x as follows:

y + 1 = x2 − 2x + 1 = (x − 1)2

x − 1 = ±√
y + 1

x = 1 ± √
y + 1

If the domain of f is restricted to x ≤ 1, then we choose the negative sign in front of the radical and f −1(x) = 1 − √
x + 1.

If the domain of f is restricted to x ≥ 1, we choose the positive sign in front of the radical and f −1(x) = 1 + √
x + 1.

y = x2 − 2x

x
−1 2 3

4

2

6

y

Show that the inverse of f (x) = e−x exists (without finding it explicitly). What is the domain of f −1?
23. Find the inverse g(x) of f (x) =

√
x2 + 9 with domain x ≥ 0 and calculate g′(x) in two ways: using Theorem 2 and

by direct calculation.

solution To find a formula for g(x) = f −1(x), solve y =
√

x2 + 9 for x. This yields x = ±
√

y2 − 9. Because the
domain of f was restricted to x ≥ 0, we must choose the positive sign in front of the radical. Thus

g(x) = f −1(x) =
√

x2 − 9.

Because x2 + 9 ≥ 9 for all x, it follows that f (x) ≥ 3 for all x. Thus, the domain of g(x) = f −1(x) is x ≥ 3. The range
of g is the restricted domain of f : y ≥ 0.

By Theorem 2,

g′(x) = 1

f ′(g(x))
.

With

f ′(x) = x√
x2 + 9

,

it follows that

f ′(g(x)) =
√

x2 − 9√(√
x2 − 9

)2 + 9

=
√

x2 − 9√
x2

=
√

x2 − 9

x

since the domain of g is x ≥ 3. Thus,

g′(x) = 1

f ′(g(x))
= x√

x2 − 9
.

This agrees with the answer we obtain by differentiating directly:

g′(x) = 2x

2
√

x2 − 9
= x√

x2 − 9
.

Let g(x) be the inverse of f (x) = x3 + 1. Find a formula for g(x) and calculate g′(x) in two ways: using Theorem
2 and then by direct calculation.

In Exercises 25–30, use Theorem 2 to calculate g′(x), where g(x) is the inverse of f (x).

25. f (x) = 7x + 6

solution Let f (x) = 7x + 6 then f ′(x) = 7. Solving y = 7x + 6 for x and switching variables, we obtain the inverse
g(x) = (x − 6)/7. Thus,

g′(x) = 1

f ′(g(x))
= 1

7
.
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f (x) = √
3 − x

27. f (x) = x−5

solution Let f (x) = x−5, then f ′(x) = −5x−6. Solving y = x−5 for x and switching variables, we obtain the

inverse g(x) = x−1/5. Thus,

g′(x) = 1

−5(x−1/5)−6
= −1

5
x−6/5.

f (x) = 4x3 − 129. f (x) = x

x + 1

solution Let f (x) = x
x+1 , then

f ′(x) = (x + 1) − x

(x + 1)2
= 1

(x + 1)2
.

Solving y = x
x+1 for x and switching variables, we obtain the inverse g(x) = x

1−x
. Thus

g′(x) = 1

/
1

(x/(1 − x) + 1)2
= 1

(1 − x)2
.

f (x) = 2 + x−131. Let g(x) be the inverse of f (x) = x3 + 2x + 4. Calculate g(7) [without finding a formula for g(x)], and then
calculate g′(7).

solution Let g(x) be the inverse of f (x) = x3 + 2x + 4. Because

f (1) = 13 + 2(1) + 4 = 7,

it follows that g(7) = 1. Moreover, f ′(x) = 3x2 + 2, and

g′(7) = 1

f ′(g(7))
= 1

f ′(1)
= 1

5
.

Find g′( − 1
2

)
, where g(x) is the inverse of f (x) = x3

x2 + 1
.

In Exercises 33–38, calculate g(b) and g′(b), where g is the inverse of f (in the given domain, if indicated).

33. f (x) = x + cos x, b = 1

solution f (0) = 1, so g(1) = 0. f ′(x) = 1 − sin x so f ′(g(1)) = f ′(0) = 1 − sin 0 = 1. Thus, g′(1) = 1/1 = 1.

f (x) = 4x3 − 2x, b = −2
35. f (x) =

√
x2 + 6x for x ≥ 0, b = 4

solution To determine g(4), we solve f (x) =
√

x2 + 6x = 4 for x. This yields:

x2 + 6x = 16

x2 + 6x − 16 = 0

(x + 8)(x − 2) = 0

or x = −8, 2. Because the domain of f has been restricted to x ≥ 0, we have g(4) = 2. With

f ′(x) = x + 3√
x2 + 6x

,

it then follows that

g′(4) = 1

f ′(g(4))
= 1

f ′(2)
= 4

5
.

f (x) =
√

x2 + 6x for x ≤ −6, b = 437. f (x) = 1

x + 1
, b = 1

4

solution f (3) = 1/4, so g(1/4) = 3. f ′(x) = −1
(x+1)2 so f ′(g(1/4)) = f ′(3) = −1

(3+1)2 = −1/16. Thus, g′(1/4) =
−16.

f (x) = ex , b = e
39. Let f (x) = xn and g(x) = x1/n. Compute g′(x) using Theorem 2 and check your answer using the Power Rule.

solution Note that g(x) = f −1(x). Therefore,

g′(x) = 1

f ′(g(x))
= 1

n(g(x))n−1
= 1

n(x1/n)n−1
= 1

n(x1−1/n)
= x1/n−1

n
= 1

n
(x1/n−1)

which agrees with the Power Rule.
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Show that f (x) = 1

1 + x
and g(x) = 1 − x

x
are inverses. Then compute g′(x) directly and verify that g′(x) =

1/f ′(g(x)).

41. Use graphical reasoning to determine if the following statements are true or false. If false, modify the statement
to make it correct.

(a) If f (x) is increasing, then f −1(x) is increasing.
(b) If f (x) is decreasing, then f −1(x) is decreasing.
(c) If f (x) is concave up, then f −1(x) is concave up.
(d) If f (x) is concave down, then f −1(x) is concave down.
(e) Linear functions f (x) = ax + b (a �= 0) are always one-to-one.
(f) Quadratic polynomials f (x) = ax2 + bx + c (a �= 0) are always one-to-one.
(g) sin x is not one-to-one.

solution
(a) This statement is true. Reflecting the graph of an increasing function across the line y = x produces another increasing
function.
(b) This statement is true. Reflecting the graph of an decreasing function across the line y = x produces another decreasing
function.
(c) This statement is false. Reflecting the graph of a concave up function across the line y = x produces a graph that is
concave down. The correct statement is: If f (x) is concave up, then f −1(x) is concave down.
(d) This statement is false. Reflecting the graph of a concave down function across the line y = x produces a graph that
is concave up. The correct statement is: If f (x) is concave down, then f −1(x) is concave up.
(e) This statement is true. Any linear function f (x) = ax + b with a �= 0 is either always increasing (if a > 0) or always
decreasing (if a < 0) and is thus one-to-one.
(f) This statement is false. Every quadratic polynomial f (x) = ax2 + bx + c with a �= 0 fails the horizontal line test.
The correct statement is: Quadratic polynomials f (x) = ax2 + bx + c (a �= 0) are never one-to-one.
(g) This statement is true. The graph of sin x fails the horizontal line test.

Further Insights and Challenges

Show that if f (x) is odd and f −1(x) exists, then f −1(x) is odd. Show, on the other hand, that an even function
does not have an inverse.

43. Let g be the inverse of a function f satisfying f ′(x) = f (x). Show that g′(x) = x−1. We will apply this in the next
section to show that the inverse of f (x) = ex (the natural logarithm) is an antiderivative of x−1.

solution

g′(x) = 1

f ′(g(x))
= 1

f ′(f −1(x))
= 1

f (f −1(x))
= 1

x
.

7.3 Logarithms and Their Derivatives

Preliminary Questions
1. Compute logb2(b

4).

solution Because b4 = (b2)2, logb2(b
4) = 2.

2. When is ln x negative?

solution ln x is negative for 0 < x < 1.

3. What is ln(−3)? Explain.

solution ln(−3) is not defined.

4. Explain the phrase “The logarithm converts multiplication into addition.”

solution This phrase is a verbal description of the general property of logarithms that states

log(ab) = log a + log b.

5. What are the domain and range of ln x?

solution The domain of ln x is x > 0 and the range is all real numbers.

6. Does x−1 have an antiderivative for x < 0? If so, describe one.

solution Yes, ln(−x) is an antiderivative of f (x) = x−1 for x < 0.

7. What is the slope of the tangent line to y = 4x at x = 0?

solution The slope of the tangent line to y = 4x at x = 0 is

d

dx
4x

∣∣∣∣
x=0

= 4x ln 4

∣∣∣∣
x=0

= ln 4.
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8. What is the rate of change of y = ln x at x = 10?

solution The rate of change of y = ln x at x = 10 is

d

dx
ln x

∣∣∣∣
x=10

= 1

x

∣∣∣∣
x=10

= 1

10
.

Exercises
In Exercises 1–16, calculate without using a calculator.

1. log3 27

solution log3 27 = log3 33 = 3 log3 3 = 3.

log5
1
25

3. ln 1

solution ln 1 = 0

log5(54)
5. log2(25/3)

solution log2 25/3 = 5

3
log2 2 = 5

3
.

log2(85/3)
7. log64 4

solution log64 4 = log64 641/3 = 1

3
log64 64 = 1

3
.

log7(492)
9. log8 2 + log4 2

solution log8 2 + log4 2 = log8 81/3 + log4 41/2 = 1

3
+ 1

2
= 5

6
.

log25 30 + log25
5
6

11. log4 48 − log4 12

solution log4 48 − log4 12 = log4
48

12
= log4 4 = 1.

ln(
√

e · e7/5)
13. ln(e3) + ln(e4)

solution ln(e3) + ln(e4) = 3 + 4 = 7.

log2
4
3 + log2 24

15. 7log7(29)

solution 7log7(29) = 29.

83 log8(2)
17. Write as the natural log of a single expression:

(a) 2 ln 5 + 3 ln 4 (b) 5 ln(x1/2) + ln(9x)

solution

(a) 2 ln 5 + 3 ln 4 = ln 52 + ln 43 = ln 25 + ln 64 = ln(25 · 64) = ln 1600.
(b) 5 ln x1/2 + ln 9x = ln x5/2 + ln 9x = ln(x5/2 · 9x) = ln(9x7/2).

Solve for x: ln(x2 + 1) − 3 ln x = ln(2).
In Exercises 19–24, solve for the unknown.

19. 7e5t = 100

solution Divide the equation by 7 and then take the natural logarithm of both sides. This gives

5t = ln

(
100

7

)
or t = 1

5
ln

(
100

7

)
.

6e−4t = 221. 2x2−2x = 8

solution Since 8 = 23, we have x2 − 2x − 3 = 0 or (x − 3)(x + 1) = 0. Thus, x = −1 or x = 3.

e2t+1 = 9e1−t23. ln(x4) − ln(x2) = 2

solution ln(x4) − ln(x2) = ln

(
x4

x2

)
= ln(x2) = 2 ln x. Thus, 2 ln x = 2 or ln x = 1. Hence, x = e.

log3 y + 3 log3(y2) = 14
25. Show, by producing a counterexample, that ln(ab) is not equal to (ln a)(ln b).

solution Let a = e and b = e2. Then

ln(ab) = ln e3 = 3 ln e = 3;
but

(ln a)(ln b) = (ln e)(ln e2) = 1(2) = 2.
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What is b if (logb x)′ = 1

3x
?

27. The population of a city (in millions) at time t (years) is P(t) = 2.4e0.06t , where t = 0 is the year 2000. When will
the population double from its size at t = 0?

solution Population doubles when 4.8 = 2.4e0.06t . Thus, 0.06t = ln 2 or t = ln 2

0.06
≈ 11.55 years.

The Gutenberg–Richter Law states that the number N of earthquakes per year worldwide of Richter magnitude
at least M satisfies an approximate relation log10 N = a − M for some constant a. Find a, assuming that there is
one earthquake of magnitude M ≥ 8 per year. How many earthquakes of magnitude M ≥ 5 occur per year?

In Exercises 29–48, find the derivative.

29. y = x ln x

solution
d

dx
x ln x = ln x + x

x
= ln x + 1.

y = t ln t − t
31. y = (ln x)2

solution
d

dx
(ln x)2 = (2 ln x)

1

x
= 2

x
ln x.

y = ln(x5)
33. y = ln(9x2 − 8)

solution
d

dx
ln(9x2 − 8) = 1

9x2 − 8
(18x) = 18x

9x2 − 8
.

y = ln(t5t )
35. y = ln(sin t + 1)

solution
d

dt
ln(sin t + 1) = cos t

sin t + 1
.

y = x2 ln x37. y = ln x

x

solution
d

dx

ln x

x
=

1
x (x) − ln x

x2
= 1 − ln x

x2
.

y = e(ln x)2
39. y = ln(ln x)

solution
d

dx
ln(ln x) = 1

x ln x
.

y = ln(cot x)41. y = (
ln(ln x)

)3

solution
d

dx
(ln(ln x))3 = 3(ln(ln x))2

(
1

ln x

) (
1

x

)
= 3(ln(ln x))2

x ln x
.

y = ln
(
(ln x)3)43. y = ln

(
(x + 1)(2x + 9)

)
solution

d

dx
ln ((x + 1)(2x + 9)) = 1

(x + 1)(2x + 9)
· ((x + 1)2 + (2x + 9)) = 4x + 11

(x + 1)(2x + 9)
.

Alternately, because ln((x + 1)(2x + 9)) = ln(x + 1) + ln(2x + 9),

d

dx
ln((x + 1)(2x + 9)) = 1

x + 1
+ 2

2x + 9
= 4x + 11

(x + 1)(2x + 9)
.

y = ln

(
x + 1

x3 + 1

)45. y = 11x

solution
d

dx
11x = ln 11 · 11x .

y = 74x−x247. y = 2x − 3−x

x

solution
d

dx

2x − 3−x

x
= x(2x ln 2 + 3−x ln 3) − (2x − 3−x)

x2
.

y = 16sin xIn Exercises 49–52, compute the derivative.

49. f ′(x), f (x) = log2 x

solution f (x) = log2 x = ln x

ln 2
. Thus, f ′(x) = 1

x
· 1

ln 2
.

f ′(3), f (x) = log5 x51.
d

dt
log3(sin t)

solution
d

dt
log3(sin t) = d

dt

(
ln(sin t)

ln 3

)
= 1

ln 3
· 1

sin t
· cos t = cot t

ln 3
.

d

dt
log10(t + 2t )
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In Exercises 53–64, find an equation of the tangent line at the point indicated.

53. f (x) = 6x , x = 2

solution Let f (x) = 6x . Then f (2) = 36, f ′(x) = 6x ln 6 and f ′(2) = 36 ln 6. The equation of the tangent line is
therefore y = 36 ln 6(x − 2) + 36.

y = (
√

2)x , x = 8
55. s(t) = 39t , t = 2

solution Let s(t) = 39t . Then s(2) = 318, s′(t) = 39t9 ln 3, and s′(2) = 318 · 9 ln 3 = 320 ln 3. The equation of the

tangent line is therefore y = 320 ln 3(t − 2) + 318.

y = π5x−2, x = 157. f (x) = 5x2−2x , x = 1

solution Let f (x) = 5x2−2x+9. Then f (1) = 58. f ′(x) = ln 5 · 5x2−2x+9(2x − 2), so f ′(1) = ln 5(0) = 0.

Therefore, the equation of the tangent line is y = 58.

s(t) = ln t , t = 5
59. s(t) = ln(8 − 4t), t = 1

solution Let s(t) = ln(8 − 4t). Then s(1) = ln(8 − 4) = ln 4. s′(t) = −4
8−4t

, so s′(1) = −4/4 = −1. Therefore the
equation of the tangent line is y = −1(t − 1) + ln 4.

f (x) = ln(x2), x = 4
61. R(z) = log5(2z2 + 7), z = 3

solution Let R(z) = log5(2z2 + 7). Then R(3) = log5(25) = 2,

R′(z) = 4z

(2z2 + 7) ln 5
, and R′(3) = 12

25 ln 5
.

The equation of the tangent line is therefore

y = 12

25 ln 5
(z − 3) + 2.

y = ln(sin x), x = π

4

63. f (w) = log2 w, w = 1
8

solution Let f (w) = log2 w. Then

f

(
1

8

)
= log2

1

8
= log2 2−3 = −3,

f ′(w) = 1
w ln 2 , and

f ′
(

1

8

)
= 8

ln 2
.

The equation of the tangent line is therefore

y = 8

ln 2

(
w − 1

8

)
− 3.

y = log2(1 + 4x−1), x = 4
In Exercises 65–72, find the derivative using logarithmic differentiation as in Example 8.

65. y = (x + 5)(x + 9)

solution Let y = (x + 5)(x + 9). Then ln y = ln((x + 5)(x + 9)) = ln(x + 5) + ln(x + 9). By logarithmic
differentiation

y′
y

= 1

x + 5
+ 1

x + 9

or

y′ = (x + 5)(x + 9)

(
1

x + 5
+ 1

x + 9

)
= (x + 9) + (x + 5) = 2x + 14.

y = (3x + 5)(4x + 9)
67. y = (x − 1)(x − 12)(x + 7)

solution Let y = (x − 1)(x − 12)(x + 7). Then ln y = ln(x − 1) + ln(x − 12) + ln(x + 7). By logarithmic
differentiation,

y′
y

= 1

x − 1
+ 1

x − 12
+ 1

x + 7

or

y′ = (x − 12)(x + 7) + (x − 1)(x + 7) + (x − 1)(x − 12) = 3x2 − 12x − 79.
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y = x(x + 1)3

(3x − 1)2

69. y = x(x2 + 1)√
x + 1

solution Let y = x(x2+1)√
x+1

. Then ln y = ln x + ln(x2 + 1) − 1
2 ln(x + 1). By logarithmic differentiation

y′
y

= 1

x
+ 2x

x2 + 1
− 1

2(x + 1)
,

so

y′ = x(x2 + 1)√
x + 1

(
1

x
+ 2x

x2 + 1
− 1

2(x + 1)

)
.

y = (2x + 1)(4x2)
√

x − 971. y =
√

x(x + 2)

(2x + 1)(3x + 2)

solution Let y =
√

x(x+2)
(2x+1)(2x+2)

. Then ln y = 1
2 [ln(x) + ln(x + 2) − ln(2x + 1) − ln(2x + 2)]. By logarithmic

differentiation

y′
y

= 1

2

(
1

x
+ 1

x + 2
− 2

2x + 1
− 2

2x + 2

)
,

so

y′ = 1

2

√
x(x + 2)

(2x + 1)(2x + 2)
·
(

1

x
+ 1

x + 2
− 2

2x + 1
− 1

x + 1

)
.

y = (x3 + 1)(x4 + 2)(x5 + 3)2In Exercises 73–78, find the derivative using either method of Example 9.

73. f (x) = x3x

solution Method 1: x3x = e3x ln x , so

d

dx
x3x = e3x ln x(3 + 3 ln x) = x3x(3 + 3 ln x).

Method 2: Let y = x3x . Then, ln y = 3x ln x. By logarithmic differentiation

y′
y

= 3x · 1

x
+ 3 ln x,

so

y′ = y(3 + 3 ln x) = x3x (3 + 3 ln x) .

f (x) = xcos x75. f (x) = xex

solution Method 1: xex = eex ln x , so

d

dx
xex = eex ln x

(
ex

x
+ ex ln x

)
= xex

(
ex

x
+ ex ln x

)
.

Method 2: Let y = xex
. Then ln y = ex ln x. By logarithmic differentiation

y′
y

= ex · 1

x
+ ex ln x,

so

y′ = y

(
ex

x
+ ex ln x

)
= xex

(
ex

x
+ ex ln x

)
.

f (x) = xx277. f (x) = x3x

solution Method 1: x3x = e3x ln x , so

d

dx
x3x = e3x ln x

(
3x

x
+ (ln x)(ln 3)3x

)
= x3x

(
3x

x
+ (ln x)(ln 3)3x

)
.
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Method 2: Let y = x3x
. Then ln y = 3x ln x. By logarithmic differentiation

y′
y

= 3x 1

x
+ (ln x)(ln 3)3x,

so

y′ = x3x
(

3x

x
+ (ln x)(ln 3)3x

)
.

f (x) = exxIn Exercises 79–82, find the local extreme values in the domain {x : x > 0} and use the Second Derivative Test to
determine whether these values are local minima or maxima.

79. g(x) = ln x

x

solution Let g(x) = ln x
x . Then

g′(x) = x(1/x) − ln x

x2
= 1 − ln x

x2
.

We know g′(x) = 0 when 1 − ln x = 0, or when x = e.

g′′(x) = x2(−1/x) − (1 − ln x)(2x)

x4
= −3 + 2 ln x

x3

so g′′(e) = −1

e3
< 0. Thus, g(e) is a local maximum.

g(x) = x ln x81. g(x) = ln x

x3

solution Let g(x) = ln x
x3 . Then

g′(x) = x3(1/x) − 3x2 ln x

x6
= 1 − 3 ln x

x4
.

We know g′(x) = 0 when 1 − 3 ln x = 0, or when x = e1/3.

g′′(x) = x4(−3/x) − (1 − 3 ln x)(4x3)

x8
= −7 + 12 ln x

x5

so g′′(e1/3) = −3

e5/3
< 0. Thus, g(e) is a local maximum.

g(x) = x − ln xIn Exercises 83 and 84, find the local extreme values and points of inflection, and sketch the graph of y = f (x) over the
interval [1, 4].

83. f (x) = 10 ln x

x2

solution Let f (x) = 10 ln x

x2
. Then

f ′(x) = x2(10/x) − 20x ln x

x4
= 10(1 − 2 ln x)

x3

and

f ′′(x) = x3(−20/x) − 30x2(1 − 2 ln x)

x6
= 10(6 ln x − 5)

x4
.

Thus, f is increasing for 1 ≤ x <
√

e, is decreasing for
√

e < x ≤ 4 and has a local maximum value of 5/e at x = √
e.

Moreover, f is concave down for 1 ≤ x < e5/6, is concave up for e5/6 < x ≤ 4 and has a point of inflection at x = e5/6.
A graph of y = f (x) is shown below.

2.0

1.5

1.0

0.5

1 2 3 4
x

y



June 9, 2011 LTSV SSM Rough

S E C T I O N 7.3 Logarithms and Their Derivatives 389

f (x) = x2 − 8 ln x
In Exercises 85–105, evaluate the indefinite integral, using substitution if necessary.

85.
∫

7 dx

x

solution
∫

7 dx

x
= 7

∫
dx

x
= 7 ln |x| + C.

∫
dx

x + 7

87.
∫

dx

2x + 4

solution Let u = 2x + 4. Then du = 2 dx, and

∫
dx

2x + 4
= 1

2

∫
1

u
du = 1

2
ln |2x + 4| + C.

∫
dx

9x − 3

89.
∫

t dt

t2 + 4

solution Let u = t2 + 4. Then du = 2t dt or 1
2du = t dt , and

∫
t

t2 + 4
dt = 1

2

∫
1

u
du = 1

2
ln

(
t2 + 4

)
+ C,

where we have used the fact that t2 + 4 ≥ 4 to drop the absolute value.

∫
x2 dx

x3 + 2

91.
∫

(3x − 1) dx

9 − 2x + 3x2

solution Let u = 9 − 2x + 3x2. Then du = (−2 + 6x) dx = 2(3x − 1) dx, and

∫
(3x − 1)dx

9 − 2x + 3x2
= 1

2

∫
du

u
= 1

2
ln(9 − 2x + 3x2) + C,

where we have used the fact that 9 − 2x + 3x2 > 0 for all x to drop the absolute value.

∫
tan(4x + 1) dx

93.
∫

cot x dx

solution We rewrite
∫

cot x dx as
∫ cos x

sin x
dx. Let u = sin x. Then du = cos x dx, and

∫
cos x

sin x
dx =

∫
du

u
= ln | sin x| + C.

∫
cos x

2 sin x + 3
dx

95.
∫

ln x

x
dx

solution Let u = ln x. Then du = (1/x) dx, and

∫
ln x

x
dx =

∫
u du = u2

2
+ C = (ln x)2

2
+ C.

∫
4 ln x + 5

x
dx

97.
∫

(ln x)2

x
dx

solution Let u = ln x. Then du = (1/x)dx, and

∫
(ln x)2

x
dx =

∫
u2 du = 1

3
u3 + C = (ln x)3

3
+ C.

∫
dx

x ln x

99.
∫

dx

(4x − 1) ln(8x − 2)

solution Let u = ln(8x − 2). Then du = 8

8x − 2
dx = 4

4x − 1
dx, and

∫
dx

(4x − 1) ln(8x − 2)
= 1

4

∫
du

u
= 1

4
ln |u| + C = 1

4
ln | ln(8x − 2)| + C.
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∫
ln(ln x)

x ln x
dx

101.
∫

cot x ln(sin x) dx

solution Let u = ln(sin x). Then

du = 1

sin x
· cos x dx = cot x dx,

and ∫
cot x ln(sin x) dx =

∫
u du = u2

2
+ C = (ln(sin x))2

2
+ C.

∫
3x dx

103.
∫

x3x2
dx

solution Let u = x2. Then du = 2x dx, and

∫
x3x2

dx = 1

2

∫
3udu = 1

2

3u

ln 3
+ C = 3x2

2 ln 3
+ C.

∫
cos x 3sin x dx105.

∫ (
1

2

)3x+2
dx

solution Let u = 3x + 2. Then du = 3 dx, and

∫ (
1

2

)3x+2
dx = 1

3

∫ (
1

2

)u

du = 1

3

(1/2)u

ln 1/2
+ C = (1/2)3x+2

3 ln(1/2)
+ C.

In Exercises 106–111, evaluate the definite integral.

∫ 2

1

1

x
dx

107.
∫ 12

4

1

x
dx

solution
∫ 12

4

1

x
dx = ln |x|

∣∣∣∣12

4
= ln 12 − ln 4 = ln(12/4) = ln 3.

∫ e

1

1

x
dx

109.
∫ 4

2

dt

3t + 4

solution Let u = 3t + 4. Then du = 3 dt and

∫ 4

2

dt

3t + 4
= 1

3

∫ 16

10

du

u
= 1

3
ln |u|

∣∣∣∣16

10
= 1

3
(ln 16 − ln 10) .

∫ −e

−e2

1

t
dt

111.
∫ e2

e

1

t ln t
dt

solution Let u = ln t . Then du = (1/t)dt and

∫ e2

e

1

t ln t
dt =

∫ 2

1

du

u
= ln |u|

∣∣∣2
1

= ln 2 − ln 1 = ln 2.

Find a good numerical approximation to the coordinates of the point on the graph of y = ln x − x closest to
the origin (Figure 9).

113. Find the minimum value of f (x) = xx for x > 0.

solution Let f (x) = xx . By Example 9 from the text, we know that f ′(x) = xx(1 + ln x). Thus, x = 1
e is the only

critical point. Because f ′(x) < 0 for 0 < x < 1
e and f ′(x) > 0 for x > 1

e ,

f

(
1

e

)
=

(
1

e

)1/e

≈ 0.692201

is the minimum value.

Use the formula (ln f (x))′ = f ′(x)/f (x) to show that ln x and ln(2x) have the same derivative. Is there a
simpler explanation of this result?

115. According to one simplified model, the purchasing power of a dollar in the year 2000 + t is equal to P(t) =
0.68(1.04)−t (in 1983 dollars). Calculate the predicted rate of decline in purchasing power (in cents per year) in the year
2020.

solution First, note that

P ′(t) = −0.68(1.04)−t ln 1.04;
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thus, the rate of change in the year 2020 is

P ′(20) = −0.68(1.04)−20 ln 1.04 = −0.0122.

That is, the rate of decline is 1.22 cents per year.

The energy E (in joules) radiated as seismic waves by an earthquake of Richter magnitude M satisfies log10 E =
4.8 + 1.5M .

(a) Show that when M increases by 1, the energy increases by a factor of approximately 31.5.

(b) Calculate dE/dM .

117. The Palermo Technical Impact Hazard Scale P is used to quantify the risk associated with the impact of an asteroid
colliding with the earth:

P = log10

(
piE

0.8

0.03T

)

where pi is the probability of impact, T is the number of years until impact, and E is the energy of impact (in megatons
of TNT). The risk is greater than a random event of similar magnitude if P > 0.

(a) Calculate dP/dT , assuming that pi = 2 × 10−5 and E = 2 megatons.

(b) Use the derivative to estimate the change in P if T increases from 8 to 9 years.

solution

(a) Observe that

P = log10

(
piE

0.8

0.03T

)
= log10

(
piE

0.8

0.03

)
− log10 T ,

so

dP

dT
= − 1

T ln 10
.

(b) If T increases to 26 years from 25 years, then

�P ≈ dP

dT

∣∣∣∣
T =25

· �T = − 1

(25 yr) ln 10
· (1 yr) = −0.017

Further Insights and Challenges

(a) Show that if f and g are differentiable, then

d

dx
ln(f (x)g(x)) = f ′(x)

f (x)
+ g′(x)

g(x)

(b) Give a new proof of the Product Rule by observing that the left-hand side of Eq. (8) is equal to
(f (x)g(x))′
f (x)g(x)

.

119. Prove the formula

logb x = loga x

loga b

for all positive numbers a, b with a �= 1 and b �= 1.

solution Let y = logb x. Then x = by and loga x = loga by = y loga b. Thus, y = loga x

loga b
.

Prove the formula loga b logb a = 1 for all positive numbers a, b with a �= 1 and b �= 1.Exercises 121–123 develop an elegant approach to the exponential and logarithm functions. Define a function G(x) for
x > 0:

G(x) =
∫ x

1

1

t
dt

121. Defining ln x as an Integral This exercise proceeds as if we didn’t know that G(x) = ln x and shows directly
that G(x) has all the basic properties of the logarithm. Prove the following statements.

(a)
∫ ab

a

1

t
dt =

∫ b

1

1

t
dt for all a, b > 0. Hint: Use the substitution u = t/a.

(b) G(ab) = G(a) + G(b). Hint: Break up the integral from 1 to ab into two integrals and use (a).

(c) G(1) = 0 and G(a−1) = −G(a) for a > 0.

(d) G(an) = nG(a) for all a > 0 and integers n.

(e) G(a1/n) = 1

n
G(a) for all a > 0 and integers n �= 0.

(f) G(ar ) = rG(a) for all a > 0 and rational numbers r .

(g) G(x) is increasing. Hint: Use FTC II.

(h) There exists a number a such that G(a) > 1. Hint: Show that G(2) > 0 and take a = 2m for m > 1/G(2).

(i) lim
x→∞ G(x) = ∞ and lim

x→0+ G(x) = −∞
(j) There exists a unique number E such that G(E) = 1.

(k) G(Er) = r for every rational number r .
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solution

(a) Let u = t/a. Then du = dt/a, u(a) = 1, u(ab) = b and

∫ ab

a

1

t
dt =

∫ ab

a

a

at
dt =

∫ b

1

1

u
du =

∫ b

1

1

t
dt.

(b) Using part (a),

G(ab) =
∫ ab

1

1

t
dt =

∫ a

1

1

t
dt +

∫ ab

a

1

t
dt =

∫ a

1

1

t
dt +

∫ b

1

1

t
dt = G(a) + G(b).

(c) First,

G(1) =
∫ 1

1

1

t
dt = 0.

Next,

G(a−1) = G

(
1

a

)
=

∫ 1/a

1

1

t
dt =

∫ 1

a

1

t
dt by part (a) with b = 1

a

= −
∫ a

1

1

t
dt = −G(a).

(d) Using part (a),

G(an) =
∫ an

1

1

t
dt =

∫ a

1

1

t
dt +

∫ a2

a

1

t
dt + · · · +

∫ an

an−1

1

t
dt

=
∫ a

1

1

t
dt +

∫ a

1

1

t
dt + · · · +

∫ a

1

1

t
dt = nG(a).

(e) G(a) = G((a1/n)n = nG(a1/n). Thus, G(a1/n) = 1

n
G(a).

(f) Let r = m/n where m and n are integers. Then

G(ar ) = G(am/n) = G((am)1/n)

= 1

n
G(am) by part (e)

= m

n
G(a) by part d

= rG(a).

(g) By the Fundamental Theorem of Calculus, G(x) is continuous on (0, ∞) and G′(x) = 1
x > 0 for x > 0. Thus, G(x)

is increasing and one-to-one for x > 0.

(h) First note that

G(2) =
∫ 2

1

1

t
dt >

1

2
> 0

because
1

t
>

1

2
for t ∈ (1, 2). Now, let a = 2m for m an integer greater than 1/G(2). Then

G(a) = G(2m) = mG(2) >
1

G(2)
· G(2) = 1.

(i) First, let a be the value from part (h) for which G(a) > 1 (note that a itself is greater than 1). Now,

lim
x→∞ G(x) = lim

m→∞ G(am) = G(a) lim
m→∞ m = ∞.

For the other limit, let t = 1/x and note

lim
x→0+ G(x) = lim

t→∞ G

(
1

t

)
= − lim

t→∞ G(t) = −∞.

(j) By part (c), G(1) = 0 and by part (h) there exists an a such that G(a) > 1. the Intermediate Value Theorem then
guarantees there exists a number E such that 1 < E < a and G(E) = 1. We know that E is unique because G is
one-to-one.
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(k) Using part (f) and then part (j),

G(Er) = rG(E) = r · 1 = r.

Defining ex Use Exercise 121 to prove the following statements.

(a) G(x) has an inverse with domain R and range {x : x > 0}. Denote the inverse by F(x).

(b) F(x + y) = F(x)F (y) for all x, y. Hint: it suffices to show that G(F(x)F (y)) = G(F(x + y)).

(c) F(r) = Er for all numbers. In particular, F(0) = 1.

(d) F ′(x) = F(x). Hint: Use the formula for the derivative of an inverse function.

This shows that E = e and that F(x) is the function ex as defined in the text.

123. Defining bx Let b > 0 and let f (x) = F(xG(b)) with F as in Exercise 122. Use Exercise 121 (f) to prove that
f (r) = br for every rational number r . This gives us a way of defining bx for irrational x, namely bx = f (x). With this
definition, bx is a differentiable function of x (because F is differentiable).

solution By Exercise 121 (f),

f (r) = F(rG(b)) = F(G(br )) = br ,

for every rational number r .

7.4 Exponential Growth and Decay

Preliminary Questions
1. Two quantities increase exponentially with growth constants k = 1.2 and k = 3.4, respectively. Which quantity

doubles more rapidly?

solution Doubling time is inversely proportional to the growth constant. Consequently, the quantity with k = 3.4
doubles more rapidly.

2. A cell population grows exponentially beginning with one cell. Which takes longer: increasing from one to two cells
or increasing from 15 million to 20 million cells?

solution It takes longer for the population to increase from one cell to two cells, because this requires doubling the
population. Increasing from 15 million to 20 million is less than doubling the population.

3. Referring to his popular book A Brief History of Time, the renowned physicist Stephen Hawking said, “Someone told
me that each equation I included in the book would halve its sales.” Find a differential equation satisfied by the function
S(n), the number of copies sold if the book has n equations.

solution Let S(0) denote the sales with no equations in the book. Translating Hawking’s observation into an equation
yields

S(n) = S(0)

2n
.

Differentiating with respect to n then yields

dS

dn
= S(0)

d

dn
2−n = − ln 2S(0)2−n = − ln 2S(n).

4. Carbon dating is based on the assumption that the ratio R of C14 to C12 in the atmosphere has been constant over
the past 50,000 years. If R were actually smaller in the past than it is today, would the age estimates produced by carbon
dating be too ancient or too recent?

solution If R were actually smaller in the past than it is today, then we would be overestimating the amount of decay
and therefore overestimating the age. Our estimates would be too ancient.

Exercises
1. A certain population P of bacteria obeys the exponential growth law P(t) = 2000e1.3t (t in hours).

(a) How many bacteria are present initially?
(b) At what time will there be 10,000 bacteria?

solution

(a) P(0) = 2000e0 = 2000 bacteria initially.
(b) We solve 2000e1.3t = 10, 000 for t . Thus, e1.3t = 5 or

t = 1

1.3
ln 5 ≈ 1.24 hours.

A quantity P obeys the exponential growth law P(t) = e5t (t in years).

(a) At what time t is P = 10?

(b) What is the doubling time for P ?

3. Write f (t) = 5(7)t in the form f (t) = P0ekt for some P0 and k.

solution Because 7 = eln 7, it follows that

f (t) = 5(7)t = 5(eln 7)t = 5et ln 7.

Thus, P0 = 5 and k = ln 7.
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Write f (t) = 9e1.4t in the form f (t) = P0bt for some P0 and b.
5. A certain RNA molecule replicates every 3 minutes. Find the differential equation for the number N(t) of molecules

present at time t (in minutes). How many molecules will be present after one hour if there is one molecule at t = 0?

solution The doubling time is
ln 2

k
so k = ln 2

doubling time
. Thus, the differential equation is N ′(t) = kN(t) =

ln 2

3
N(t). With one molecule initially,

N(t) = e(ln 2/3)t = 2t/3.

Thus, after one hour, there are

N(60) = 260/3 = 1,048,576

molecules present.

A quantity P obeys the exponential growth law P(t) = Cekt (t in years). Find the formula for P(t), assuming
that the doubling time is 7 years and P(0) = 100.

7. Find all solutions to the differential equation y′ = −5y. Which solution satisfies the initial condition y(0) = 3.4?

solution y′ = −5y, so y(t) = Ce−5t for some constant C. The initial condition y(0) = 3.4 determines C = 3.4.

Therefore, y(t) = 3.4e−5t .

Find the solution to y′ = √
2y satisfying y(0) = 20.

9. Find the solution to y′ = 3y satisfying y(2) = 1000.

solution y′ = 3y, so y(t) = Ce3t for some constant C. The initial condition y(2) = 1000 determines C = 1000

e6
.

Therefore, y(t) = 1000

e6
e3t = 1000e3(t−2).

Find the function y = f (t) that satisfies the differential equation y′ = −0.7y and the initial condition y(0) = 10.
11. The decay constant of cobalt-60 is 0.13 year−1. Find its half-life.

solution Half-life = ln 2

0.13
≈ 5.33 years.

The half-life radium-226 is 1622 years. Find its decay constant.
13. One of the world’s smallest flowering plants, Wolffia globosa (Figure 11), has a doubling time of approximately 30
hours. Find the growth constant k and determine the initial population if the population grew to 1000 after 48 hours.

FIGURE 11 The tiny plants are Wolffia, with plant bodies smaller than the head of a pin.

solution By the formula for the doubling time, 30 = ln 2

k
. Therefore,

k = ln 2

30
≈ 0.023 hours−1.

The plant population after t hours is P(t) = P0e0.023t . If P(48) = 1000, then

P0e(0.023)48 = 1000 ⇒ P0 = 1000e−(0.023)48 ≈ 332

A 10-kg quantity of a radioactive isotope decays to 3 kg after 17 years. Find the decay constant of the isotope.15. The population of a city is P(t) = 2 · e0.06t (in millions), where t is measured in years. Calculate the time it takes
for the population to double, to triple, and to increase seven-fold.

solution Since k = 0.06, the doubling time is

ln 2

k
≈ 11.55 years.

The tripling time is calculated in the same way as the doubling time. Solve for � in the equation

P(t + �) = 3P(t)

2 · e0.06(t+�) = 3(2e0.06t )

2 · e0.06t e0.06� = 3(2e0.06t )

e0.06� = 3

0.06� = ln 3,
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or � = ln 3/0.06 ≈ 18.31 years. Working in a similar fashion, we find that the time required for the population to increase
seven-fold is

ln 7

k
= ln 7

0.06
≈ 32.43 years.

What is the differential equation satisfied by P(t), the number of infected computer hosts in Example 4? Over
which time interval would P(t) increase one hundred-fold?

17. The decay constant for a certain drug is k = 0.35 day−1. Calculate the time it takes for the quantity present in the
bloodstream to decrease by half, by one-third, and by one-tenth.

solution The time required for the quantity present in the bloodstream to decrease by half is

ln 2

k
= ln 2

0.35
≈ 1.98 days.

To decay by one-third (meaning that two-thirds remains in the bloodstream), the time is

ln 3/2

k
= ln 3/2

0.35
≈ 1.16 days.

Finally, to decay by one-tenth (meaning that nine-tenths remains in the bloodstream), the time is

ln 10/9

k
= ln 10/9

0.35
≈ 0.30 days.

Light Intensity The intensity of light passing through an absorbing medium decreases exponentially with the

distance traveled. Suppose the decay constant for a certain plastic block is k = 4 m−1. How thick must the block be
to reduce the intensity by a factor of one-third?

19. Assuming that population growth is approximately exponential, which of the following two sets of data is most likely
to represent the population (in millions) of a city over a 5-year period?

Year 2000 2001 2002 2003 2004

Set I 3.14 3.36 3.60 3.85 4.11
Set II 3.14 3.24 3.54 4.04 4.74

solution If the population growth is approximately exponential, then the ratio between successive years’ data needs
to be approximately the same.

Year 2000 2001 2002 2003 2004

Data I 3.14 3.36 3.60 3.85 4.11
Ratios 1.07006 1.07143 1.06944 1.06753

Data II 3.14 3.24 3.54 4.04 4.74
Ratios 1.03185 1.09259 1.14124 1.17327

As you can see, the ratio of successive years in the data from “Data I” is very close to 1.07. Therefore, we would expect
exponential growth of about P(t) ≈ (3.14)(1.07t ).

The atmospheric pressure P(h) (in kilopascals) at a height h meters above sea level satisfies a differential
equation P ′ = −kP for some positive constant k.

(a) Barometric measurements show that P(0) = 101.3 and P(30, 900) = 1.013. What is the decay constant k?

(b) Determine the atmospheric pressure at h = 500.

21. Degrees in Physics One study suggests that from 1955 to 1970, the number of bachelor’s degrees in physics awarded
per year by U.S. universities grew exponentially, with growth constant k = 0.1.

(a) If exponential growth continues, how long will it take for the number of degrees awarded per year to increase 14-fold?
(b) If 2500 degrees were awarded in 1955, in which year were 10,000 degrees awarded?

solution
(a) The time required for the number of degrees to increase 14-fold is

ln 14

k
= ln 14

0.1
≈ 26.39 years.

(b) The doubling time is (ln 2)/0.1 ≈ 0.693/0.1 = 6.93 years. Since degrees are usually awarded once a year, we round
off the doubling time to 7 years. The number quadruples after 14 years, so 10, 000 degrees would be awarded in 1969.

The Beer–Lambert Law is used in spectroscopy to determine the molar absorptivity α or the concentration c of
a compound dissolved in a solution at low concentrations (Figure 12). The law states that the intensity I of light as
it passes through the solution satisfies ln(I/I0) = αcx, where I0 is the initial intensity and x is the distance traveled
by the light. Show that I satisfies a differential equation dI/dx = −kI for some constant k.

23. A sample of sheepskin parchment discovered by archaeologists had a C14-to-C12 ratio equal to 40% of that found in
the atmosphere. Approximately how old is the parchment?

solution The ratio of C14 to C12 is Re−0.000121t = 0.4R so −0.000121t = ln(0.4) or t = 7572.65 ≈ 7600 years.

Chauvet Caves In 1994, three French speleologists (geologists specializing in caves) discovered a cave in

southern France containing prehistoric cave paintings. A C14 analysis carried out by archeologist Helene Valladas
showed the paintings to be between 29,700 and 32,400 years old, much older than any previously known human art.
Given that the C14-to-C12 ratio of the atmosphere is R = 10−12, what range of C14-to-C12 ratios did Valladas find
in the charcoal specimens?

25. A paleontologist discovers remains of animals that appear to have died at the onset of the Holocene ice age, between
10,000 and 12,000 years ago. What range of C14-to-C12 ratio would the scientist expect to find in the animal remains?

solution The scientist would expect to find C14-C12 ratios ranging from

10−12e−0.000121(12,000) ≈ 2.34 × 10−13

to

10−12e−0.000121(10,000) ≈ 2.98 × 10−13.
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Inversion of Sugar When cane sugar is dissolved in water, it converts to invert sugar over a period of several
hours. The percentage f (t) of unconverted cane sugar at time t (in hours) satisfies f ′ = −0.2f . What percentage of
cane sugar remains after 5 hours? After 10 hours?

27. Continuing with Exercise 26, suppose that 50 grams of sugar are dissolved in a container of water. After how many
hours will 20 grams of invert sugar be present?

solution If there are 20 grams of invert sugar present, then there are 30 grams of unconverted sugar. This means that
f (t) = 60. Solving

100e−0.2t = 60

for t yields

t = − 1

0.2
ln 0.6 ≈ 2.55 hours.

Two bacteria colonies are cultivated in a laboratory. The first colony has a doubling time of 2 hours and the second
a doubling time of 3 hours. Initially, the first colony contains 1000 bacteria and the second colony 3000 bacteria. At
what time t will the sizes of the colonies be equal?

29. Moore’s Law In 1965, Gordon Moore predicted that the number N of transistors on a microchip would increase
exponentially.

(a) Does the table of data below confirm Moore’s prediction for the period from 1971 to 2000? If so, estimate the growth
constant k.
(b) Plot the data in the table.

(c) Let N(t) be the number of transistors t years after 1971. Find an approximate formula N(t) ≈ Cekt , where t is the
number of years after 1971.
(d) Estimate the doubling time in Moore’s Law for the period from 1971 to 2000.
(e) How many transistors will a chip contain in 2015 if Moore’s Law continues to hold?
(f) Can Moore have expected his prediction to hold indefinitely?

Processor Year No. Transistors

4004 1971 2250
8008 1972 2500
8080 1974 5000
8086 1978 29,000
286 1982 120,000
386 processor 1985 275,000
486 DX processor 1989 1,180,000
Pentium processor 1993 3,100,000
Pentium II processor 1997 7,500,000
Pentium III processor 1999 24,000,000
Pentium 4 processor 2000 42,000,000

Xeon processor 2008 1,900,000,000

solution
(a) Yes, the graph looks like an exponential graph especially towards the latter years. We estimate the growth constant
by setting 1971 as our starting point, so P0 = 2250. Therefore, P(t) = 2250ekt . In 2008, t = 37. Therefore, P(37) =
2250e37k = 1,900,000,000, so k = ln 844,444.444

37 ≈ 0.369. Note: A better estimate can be found by calculating k for
each time period and then averaging the k values.
(b)

y

x

1×107

2×107

3×107

4×107

20001995199019851980

(c) N(t) = 2250e0.369t

(d) The doubling time is ln 2/0.369 ≈ 1.88 years.
(e) In 2015, t = 44 years. Therefore, N(44) = 2250e0.369(44) ≈ 2.53 × 1010.
(f) No, you can’t make a microchip smaller than an atom.

Assume that in a certain country, the rate at which jobs are created is proportional to the number of people who
already have jobs. If there are 15 million jobs at t = 0 and 15.1 million jobs 3 months later, how many jobs will there
be after 2 years?

31. The only functions with a constant doubling time are the exponential functions P0ekt with k > 0. Show that the
doubling time of linear function f (t) = at + b at time t0 is t0 + b/a (which increases with t0). Compute the doubling
times of f (t) = 3t + 12 at t0 = 10 and t0 = 20.

solution Let f (t) = at + b and suppose f (t0) = P0. The time at which the value of f will have doubled is the
solution of the equation

2P0 = 2(at0 + b) = at + b or t = 2t0 + b/a.
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Thus, the time it takes to double is

t − t0 = 2t0 + b/a − t0 = t0 + b/a.

For the function f (t) = 3t + 12, a = 3, b = 12 and b/a = 4. With t0 = 10, the doubling time is then 14; with t0 = 20,
the doubling time is 24.

Verify that the half-life of a quantity that decays exponentially with decay constant k is equal to (ln 2)/k.33. Drug Dosing Interval Let y(t) be the drug concentration (in mg/kg) in a patient’s body at time t . The
initial concentration is y(0) = L. Additional doses that increase the concentration by an amount d are administered at
regular time intervals of length T . In between doses, y(t) decays exponentially—that is, y′ = −ky. Find the value of T

(in terms of k and d) for which the the concentration varies between L and L − d as in Figure 13.

L

L − d

t

y (mcg/ml)

T 2T 3T

Exponential decay

Dose administered

FIGURE 13 Drug concentration with periodic doses.

solution Because y′ = −ky and y(0) = L, it follows that y(t) = Le−kt . We want y(T ) = L − d, thus

Le−kT = L − d or T = −1

k
ln

(
1 − d

L

)
.

Exercises 34 and 35: The Gompertz differential equation

dy

dt
= ky ln

( y

M

)
2

(where M and k are constants) was introduced in 1825 by the English mathematician Benjamin Gompertz and is still
used today to model aging and mortality.

Show that y = Meaekt
satisfies Eq. (2) for any constant a.

35. To model mortality in a population of 200 laboratory rats, a scientist assumes that the number P(t) of rats alive at
time t (in months) satisfies Eq. (2) with M = 204 and k = 0.15 month−1 (Figure 14). Find P(t) [note that P(0) = 200]
and determine the population after 20 months.

40302010

Rat population P(t)

t (mo)

100

200

FIGURE 14

solution The solution to the Gompertz equation with M = 204 and k = 0.15 is of the form:

P(t) = 204eae0.15t

Applying the initial condition allows us to solve for a:

200 = 204ea

200

204
= ea

ln

(
200

204

)
= a

so that a ≈ −0.02. After t = 20 months,

P(20) = 204e−0.02e0.15(20) = 136.51,

so there are 136 rats.

Isotopes for Dating Which of the following would be most suitable for dating extremely old rocks: carbon-14
(half-life 5570 years), lead-210 (half-life 22.26 years), or potassium-49 (half-life 1.3 billion years)? Explain why.
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Further Insights and Challenges
37. Let P = P(t) be a quantity that obeys an exponential growth law with growth constant k. Show that P increases
m-fold after an interval of (ln m)/k years.

solution For m-fold growth, P(t) = mP0 for some t . Solving mP0 = P0ekt for t , we find t = ln m

k
.

Average Time of Decay Physicists use the radioactive decay law R = R0e−kt to compute the average or

mean time M until an atom decays. Let F(t) = R/R0 = e−kt be the fraction of atoms that have survived to time t

without decaying.

(a) Find the inverse function t (F ).

(b) By definition of t (F ), a fraction 1/N of atoms decays in the time interval[
t

(
j

N

)
, t

(
j − 1

N

)]

Use this to justify the approximation M ≈ 1

N

N∑
j=1

t

(
j

N

)
. Then argue, by passing to the limit as N → ∞, that

M = ∫ 1
0 t (F ) dF . Strictly speaking, this is an improper integral because t (0) is infinite (it takes an infinite amount

of time for all atoms to decay). Therefore, we define M as a limit

M = lim
c→0

∫ 1

c
t (F ) dF

(c) Verify the formula
∫

ln x dx = x ln x − x by differentiation and use it to show that for c > 0,

M = lim
c→0

(
1

k
+ 1

k
(c ln c − c)

)

(d) Verify numerically that lim
c→0

(c − ln c) = 0 (we will prove this using L’Hôpital’s Rule in Section 7.7). Use this to

show that M = 1/k.

(e) What is the mean time to decay for radon (with a half-life of 3.825 days)?

7.5 Compound Interest and Present Value

Preliminary Questions
1. Which is preferable: an interest rate of 12% compounded quarterly, or an interest rate of 11% compounded continu-

ously?

solution To answer this question, we need to determine the yearly multiplier associated with each interest rate. The
multiplier associated with an interest rate of 12% compounded quarterly is(

1 + 0.12

4

)4
≈ 1.1255,

while the multiplier associated with an interest rate of 11% compounded continuously is

e0.11 ≈ 1.11627.

Thus, the compounded quarterly rate is preferable.

2. Find the yearly multiplier if r = 9% and interest is compounded (a) continuously and (b) quarterly.

solution With r = 9%, the yearly multiplier for continuously compounded interest is

e0.09 ≈ 1.09417,

and the yearly multiplier for compounded quarterly interest is(
1 + 0.09

4

)4
≈ 1.09308.

3. The PV of N dollars received at time T is (choose the correct answer):

(a) The value at time T of N dollars invested today
(b) The amount you would have to invest today in order to receive N dollars at time T

solution The correct response is (b): the PV of N dollars received at time T is the amount you would have to invest
today in order to receive N dollars at time T .

4. In one year, you will be paid $1. Will the PV increase or decrease if the interest rate goes up?

solution If the interest rate goes up, the present value of $1 a year from now will decrease.

5. Xavier expects to receive a check for $1000 one year from today. Explain using the concept of PV, whether he will
be happy or sad to learn that the interest rate has just increased from 6% to 7%.

solution If the interest rate goes up, the present value of $1,000 one year from today decreases. Therefore, Xavier
will be sad if the interest rate has just increased from 6 to 7%.

Exercises
1. Compute the balance after 10 years if $2000 is deposited in an account paying 9% interest and interest is compounded

(a) quarterly, (b) monthly, and (c) continuously.

solution

(a) P(10) = 2000(1 + 0.09/4)4(10) = $4870.38
(b) P(10) = 2000(1 + 0.09/12)12(10) = $4902.71
(c) P(10) = 2000e0.09(10) = $4919.21

Suppose $500 is deposited into an account paying interest at a rate of 7%, continuously compounded. Find a
formula for the value of the account at time t . What is the value of the account after 3 years?

3. A bank pays interest at a rate of 5%. What is the yearly multiplier if interest is compounded

(a) three times a year? (b) continuously?

solution

(a) P(t) = P0

(
1 + 0.05

3

)3t

, so the yearly multiplier is

(
1 + 0.05

3

)3
≈ 1.0508.

(b) P(t) = P0e0.05t , so the yearly multiplier is e0.05 ≈ 1.0513.
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How long will it take for $4000 to double in value if it is deposited in an account bearing 7% interest, continuously
compounded?

5. How much must one invest today in order to receive $20,000 after 5 years if interest is compounded continuously at
the rate r = 9%?

solution Solving 20,000 = P0e0.09(5) for P0 yields

P0 = 20,000

e0.45
≈ $12,752.56.

An investment increases in value at a continuously compounded rate of 9%. How large must the initial investment
be in order to build up a value of $50,000 over a 7-year period?

7. Compute the PV of $5000 received in 3 years if the interest rate is (a) 6% and (b) 11%. What is the PV in these two
cases if the sum is instead received in 5 years?

solution In 3 years:

(a) PV = 5000e−0.06(3) = $4176.35

(b) PV = 5000e−0.11(3) = $3594.62

In 5 years:

(a) PV = 5000e−0.06(5) = $3704.09

(b) PV = 5000e−0.11(5) = $2884.75

Is it better to receive $1000 today or $1300 in 4 years? Consider r = 0.08 and r = 0.03.
9. Find the interest rate r if the PV of $8000 to be received in 1 year is $7300.

solution Solving 7300 = 8000e−r(1) for r yields

r = − ln

(
7300

8000

)
= 0.0916,

or 9.16%.

A company can earn additional profits of $500,000/year for 5 years by investing $2 million to upgrade its factory.
Is the investment worthwhile if the interest rate is 6%? (Assume the savings are received as a lump sum at the end of
each year.)

11. A new computer system costing $25,000 will reduce labor costs by $7000/year for 5 years.

(a) Is it a good investment if r = 8%?

(b) How much money will the company actually save?

solution
(a) The present value of the reduced labor costs is

7000(e−0.08 + e−0.16 + e−0.24 + e−0.32 + e−0.4) = $27,708.50.

This is more than the $25,000 cost of the computer system, so the computer system should be purchased.

(b) The present value of the savings is

$27,708.50 − $25,000 = $2708.50.

After winning $25 million in the state lottery, Jessica learns that she will receive five yearly payments of $5 million
beginning immediately.

(a) What is the PV of Jessica’s prize if r = 6%?

(b) How much more would the prize be worth if the entire amount were paid today?

13. Use Eq. (2) to compute the PV of an income stream paying out R(t) = $5000/year continuously for 10 years,
assuming r = 0.05.

solution PV =
∫ 10

0
5000e−0.05t dt = −100,000e−0.05t

∣∣∣∣10

0
= $39,346.93.

Find the PV of an investment that pays out continuously at a rate of $800/year for 5 years, assuming r = 0.08.
15. Find the PV of an income stream that pays out continuously at a rate R(t) = $5000e0.1t /year for 7 years, assuming
r = 0.05.

solution PV =
∫ 7

0
5000e0.1t e−0.05t dt =

∫ 7

0
5000e0.05t dt = 100,000e0.05t

∣∣∣∣7
0

= $41,906.75.

A commercial property generates income at the rate R(t). Suppose that R(0) = $70,000/year and that R(t)

increases at a continuously compounded rate of 5%. Find the PV of the income generated in the first 4 years if
r = 6%.

17. Show that an investment that pays out R dollars per year continuously for T years has a PV of R(1 − e−rT )/r .

solution The present value of an investment that pays out R dollars/year continuously for T years is

PV =
∫ T

0
Re−rt dt.

Let u = −rt, du = −r dt . Then

PV = −1

r

∫ −rT

0
Reu du = −R

r
eu

∣∣∣∣−rT

0
= −R

r
(e−rT − 1) = R

r
(1 − e−rT ).

Explain this statement: If T is very large, then the PV of the income stream described in Exercise 17 is
approximately R/r .

19. Suppose that r = 0.06. Use the result of Exercise 18 to estimate the payout rate R needed to produce an income
stream whose PV is $20,000, assuming that the stream continues for a large number of years.

solution From Exercise 18, PV = R

r
so 20000 = R

0.06
or R = $1200.

Verify by differentiation: ∫
te−rt dt = −e−rt (1 + rt)

r2
+ C

Use Eq. (4) to compute the PV of an investment that pays out income continuously at a rate R(t) = (5000 + 1000t)
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21. Use Eq. (4) to compute the PV of an investment that pays out income continuously at a rate R(t) = (5000 +
1000t)e0.02t dollars per year for 10 years, assuming r = 0.08.

solution

PV =
∫ 10

0
(5000 + 1000t)(e0.02t )e−0.08t dt =

∫ 10

0
5000e−0.06t dt +

∫ 10

0
1000te−0.06t dt

= 5000

−0.06
(e−0.06(10) − 1) − 1000

(
e−0.06(10)(1 + 0.06(10))

(0.06)2

)
+ 1000

1

(0.06)2

= 37,599.03 − 243,916.28 + 277,777.78 ≈ $71,460.53.

Banker’s Rule of 70 If you earn an interest rate of R percent, continuously compounded, your money doubles
after approximately 70/R years. For example, at R = 5%, your money doubles after 70/5 or 14 years. Use the concept
of doubling time to justify the Banker’s Rule. (Note: Sometimes, the rule 72/R is used. It is less accurate but easier
to apply because 72 is divisible by more numbers than 70.)

In Exercises 23–26, calculate the limit.

23. lim
n→∞

(
1 + 1

n

)6n

solution

lim
n→∞

(
1 + 1

n

)6n

= lim
n→∞

[(
1 + 1

n

)n]6

=
[

lim
n→∞

(
1 + 1

n

)n]6

= e6.

lim
n→∞

(
1 + 3

n

)n25. lim
n→∞

(
1 + 3

n

)2n

solution Let t = n/3. Then n = 3t and

lim
n→∞

(
1 + 3

n

)2n

= lim
t→∞

(
1 + 1

t

)6t

= lim
t→∞

[(
1 + 1

t

)t
]6

=
[

lim
t→∞

(
1 + 1

t

)t
]6

= e6.

lim
n→∞

(
1 + 1

4n

)12nFurther Insights and Challenges
27. Modify the proof of the relation e = lim

n→∞
(
1 + 1

n

)n given in the text to prove ex = lim
n→∞

(
1 + x

n

)n. Hint: Express

ln(1 + xn−1) as an integral and estimate above and below by rectangles.

solution Start by expressing

ln
(

1 + x

n

)
=

∫ 1+x/n

1

dt

t
.

Following the proof in the text, we note that

x

n + x
≤ ln

(
1 + x

n

)
≤ x

n

provided x > 0, while

x

n
≤ ln

(
1 + x

n

)
≤ x

n + x

when x < 0. Multiplying both sets of inequalities by n and passing to the limit as n → ∞, the squeeze theorem guarantees
that

lim
n→∞

(
ln

(
1 + x

n

))n = x.

Finally,

lim
n→∞

(
1 + x

n

)n = ex .

Prove that, for n > 0,

(
1 + 1

n

)n

≤ e ≤
(

1 + 1

n

)n+1

Hint: Take logarithms and use Eq. (3).

29. A bank pays interest at the rate r , compounded M times yearly. The effective interest rate re is the rate at which
interest, if compounded annually, would have to be paid to produce the same yearly return.

(a) Find re if r = 9% compounded monthly.

(b) Show that re = (1 + r/M)M − 1 and that re = er − 1 if interest is compounded continuously.

(c) Find re if r = 11% compounded continuously.

(d) Find the rate r that, compounded weekly, would yield an effective rate of 20%.
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solution

(a) Compounded monthly, P(t) = P0(1 + r/12)12t . By the definition of re,

P0(1 + 0.09/12)12t = P0(1 + re)
t

so

(1 + 0.09/12)12t = (1 + re)
t or re = (1 + 0.09/12)12 − 1 = 0.0938,

or 9.38%

(b) In general,

P0(1 + r/M)Mt = P0(1 + re)
t ,

so (1 + r/M)Mt = (1 + re)
t or re = (1 + r/M)M − 1. If interest is compounded continuously, then P0ert = P0(1 + re)

t

so ert = (1 + re)
t or re = er − 1.

(c) Using part (b), re = e0.11 − 1 ≈ 0.1163 or 11.63%.

(d) Solving

0.20 =
(

1 + r

52

)52 − 1

for r yields r = 52(1.21/52 − 1) = 0.1826 or 18.26%.

7.6 Models Involving y′ = k ( y − b)

Preliminary Questions
1. Write down a solution to y′ = 4(y − 5) that tends to −∞ as t → ∞.

solution The general solution is y(t) = 5 + Ce4t for any constant C; thus the solution tends to −∞ as t → ∞
whenever C < 0. One specific example is y(t) = 5 − e4t .

2. Does y′ = −4(y − 5) have a solution that tends to ∞ as t → ∞?

solution The general solution is y(t) = 5 + Ce−4t for any constant C. As t → ∞, y(t) → 5. Thus, there is no
solution of y′ = −4(y − 5) that tends to ∞ as t → ∞.

3. True or false? If k > 0, then all solutions of y′ = −k(y − b) approach the same limit as t → ∞.

solution True. The general solution of y′ = −k(y − b) is y(t) = b + Ce−kt for any constant C. If k > 0, then
y(t) → b as t → ∞.

4. As an object cools, its rate of cooling slows. Explain how this follows from Newton’s Law of Cooling.

solution Newton’s Law of Cooling states that y′ = −k(y − T0) where y(t) is the temperature and T0 is the ambient
temperature. Thus as y(t) gets closer to T0, y′(t), the rate of cooling, gets smaller and the rate of cooling slows.

Exercises
1. Find the general solution of

y′ = 2(y − 10)

Then find the two solutions satisfying y(0) = 25 and y(0) = 5, and sketch their graphs.

solution The general solution of y′ = 2(y − 10) is y(t) = 10 + Ce2t for any constant C. If y(0) = 25, then

10 + C = 25, or C = 15; therefore, y(t) = 10 + 15e2t . On the other hand, if y(0) = 5, then 10 + C = 5, or C = −5;
therefore, y(t) = 10 − 5e2t . Graphs of these two functions are given below.

y

x

200

400

600

800

1.5

y(0) = 25

10.5

x

y

−50

−100

−150

−200

−250

y(0) = 5

1.510.5
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Verify directly that y = 12 + Ce−3t satisfies

y′ = −3(y − 12) for all C

Then find the two solutions satisfying y(0) = 20 and y(0) = 0, and sketch their graphs.

3. Solve y′ = 4y + 24 subject to y(0) = 5.

solution Rewrite

y′ = 4y + 24 as
1

4y + 24
dy = 1 dt

Integrating gives

1

4
ln |4y + 24| = t + C

ln |4y + 24| = 4t + C

4y + 24 = ±e4t+C

y = Ae4t − 6

where A = ±eC/4 is any constant. Since y(0) = 5 we have 5 = A − 6 so that A = 11, and the solution is y = 11e4t − 6.

Solve y′ + 6y = 12 subject to y(2) = 10.In Exercises 5–12, use Newton’s Law of Cooling.

5. A hot anvil with cooling constant k = 0.02 s−1 is submerged in a large pool of water whose temperature is 10◦C.
Let y(t) be the anvil’s temperature t seconds later.

(a) What is the differential equation satisfied by y(t)?

(b) Find a formula for y(t), assuming the object’s initial temperature is 100◦C.

(c) How long does it take the object to cool down to 20◦?

solution

(a) By Newton’s Law of Cooling, the differential equation is

y′ = −0.02(y − 10)

(b) Separating variables gives

1

y − 10
dy = −0.02 dt

Integrate to get

ln |y − 10| = −0.02t + C

y − 10 = ±e−0.02t+C

y = 10 + Ae−0.02t

where A = ±eC is a constant. Since the initial temperature is 100◦C, we have y(0) = 100 = 10 + A so that A = 90,
and y = 10 + 90e−0.02t .

(c) We must find the value of t such that y(t) = 20, so we need to solve 20 = 10 + 90e−0.02t . Thus

10 = 90e−0.02t ⇒ 1

9
= e−0.02t ⇒ − ln 9 = −0.02t ⇒ t = 50 ln 9 ≈ 109.86 s

Frank’s automobile engine runs at 100◦C. On a day when the outside temperature is 21◦C, he turns off the ignition
and notes that five minutes later, the engine has cooled to 70◦C.

(a) Determine the engine’s cooling constant k.

(b) What is the formula for y(t)?

(c) When will the engine cool to 40◦C?

7. At 10:30 am, detectives discover a dead body in a room and measure its temperature at 26◦C. One hour later, the
body’s temperature had dropped to 24.8◦C. Determine the time of death (when the body temperature was a normal 37◦C),
assuming that the temperature in the room was held constant at 20◦C.

solution Let t = 0 be the time when the person died, and let t0 denote 10:30am. The differential equation satisfied
by the body temperature, y(t), is

y′ = −k(y − 20)

by Newton’s Law of Cooling. Separating variables gives
1

y − 20
dy = −k dt . Integrate to get

ln |y − 20| = −kt + C

y − 20 = ±e−kt+C

y = 20 + Ae−kt
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where A = ±eC is a constant. Since normal body temperature is 37◦C, we have y(0) = 37 = 20 + A so that A = 17.
To determine k, note that

26 = 20 + 17e−kt0 and 24.8 = 20 + 17e−k(t0+1)

kt0 = − ln
6

17
kt0 + k = − ln

4.8

17

Subtracting these equations gives

k = ln
6

17
− ln

4.8

17
= ln

6

4.8
≈ 0.223

We thus have

y = 20 + 17e−0.223t

as the equation for the body temperature at time t . Since y(t0) = 26, we have

26 = 20 + 17e−0.223t0 ⇒ e−0.223t0 = 6

17
⇒ t0 = − 1

0.223
ln

6

17
≈ 4.667 h

so that the time of death was approximately 4 hours and 40 minutes ago.

A cup of coffee with cooling constant k = 0.09 min−1 is placed in a room at temperature 20◦C.

(a) How fast is the coffee cooling (in degrees per minute) when its temperature is T = 80◦C?

(b) Use the Linear Approximation to estimate the change in temperature over the next 6 s when T = 80◦C.

(c) If the coffee is served at 90◦C, how long will it take to reach an optimal drinking temperature of 65◦C?

9. A cold metal bar at −30◦C is submerged in a pool maintained at a temperature of 40◦C. Half a minute later, the
temperature of the bar is 20◦C. How long will it take for the bar to attain a temperature of 30◦C?

solution With T0 = 40◦C, the temperature of the bar is given by F(t) = 40 + Ce−kt for some constants C and k.

From the initial condition, F(0) = 40 + C = −30, so C = −70. After 30 seconds, F(30) = 40 − 70e−30k = 20, so

k = − 1

30
ln

(
20

70

)
≈ 0.0418 seconds−1.

To attain a temperature of 30◦C we must solve 40 − 70e−0.0418t = 30 for t . This yields

t =
ln

(
10
70

)
−0.0418

≈ 46.55 seconds.

When a hot object is placed in a water bath whose temperature is 25◦C, it cools from 100 to 50◦C in 150 s. In
another bath, the same cooling occurs in 120 s. Find the temperature of the second bath.

11. Objects A and B are placed in a warm bath at temperature T0 = 40◦C. Object A has initial temperature

−20◦C and cooling constant k = 0.004 s−1. Object B has initial temperature 0◦C and cooling constant k = 0.002 s−1.
Plot the temperatures of A and B for 0 ≤ t ≤ 1000. After how many seconds will the objects have the same temperature?

solution With T0 = 40◦C, the temperature of A and B are given by

A(t) = 40 + CAe−0.004t B(t) = 40 + CBe−0.002t

Since A(0) = −20 and B(0) = 0, we have

A(t) = 40 − 60e−0.004t B(t) = 40 − 40e−0.002t

The two objects will have the same temperature whenever A(t) = B(t), so we must solve

40 − 60e−0.004t = 40 − 40e−0.002t ⇒ 3e−0.004t = 2e−0.002t

Take logs to get

−0.004t + ln 3 = −0.002t + ln 2 ⇒ t = ln 3 − ln 2

0.002
≈ 202.7 s

or about 3 minutes 22 seconds.

−20

−10

0
100 200 300

40 − 40e−0.002t

40 − 60e−0.004t

400

10

20

y

t
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In Newton’s Law of Cooling, the constant τ = 1/k is called the “characteristic time.” Show that τ is the time
required for the temperature difference (y − T0) to decrease by the factor e−1 ≈ 0.37. For example, if y(0) = 100◦C
and T0 = 0◦C, then the object cools to 100/e ≈ 37◦C in time τ , to 100/e2 ≈ 13.5◦C in time 2τ , and so on.

In Exercises 13–16, use Eq. (3) as a model for free-fall with air resistance.

13. A 60-kg skydiver jumps out of an airplane. What is her terminal velocity, in meters per second, assuming that
k = 10 kg/s for free-fall (no parachute)?

solution The free-fall terminal velocity is

−gm

k
= −9.8(60)

10
= −58.8 m/s.

Find the terminal velocity of a skydiver of weight w = 192 lb if k = 1.2 lb-s/ft. How long does it take him to
reach half of his terminal velocity if his initial velocity is zero? Mass and weight are related by w = mg, and Eq. (3)
becomes v′ = −(kg/w)(v + w/k) with g = 32 ft/s2.

15. A80-kg skydiver jumps out of an airplane (with zero initial velocity).Assume that k = 12 kg/s with a closed parachute
and k = 70 kg/s with an open parachute. What is the skydiver’s velocity at t = 25 s if the parachute opens after 20 s of
free fall?

solution We first compute the skydiver’s velocity after 20 s of free fall, then use that as the initial velocity to calculate
her velocity after an additional 5 s of restrained fall. We have m = 80 and g = 9.8; for free fall, k = 12, so

k

m
= 12

80
= 0.15, −mg

k
= −80 · 9.8

12
≈ −65.33

The general solution is thus v(t) = −65.33 + Ce−0.15t . Since v(0) = 0, we have C = 65.33, so that

v(t) = −65.33(1 − e−0.15t )

After 20 s of free fall, the diver’s velocity is thus

v(20) = −65.33(1 − e−0.15·20) ≈ −62.08 m/s

Once the parachute opens, k = 70, so

k

m
= 70

80
= 0.875, −mg

k
= −80 · 9.8

70
= −11.2

so that the general solution for the restrained fall model is vr (t) = −11.2 + Ce−0.875t . Here vr (0) = −62.08, so that
C = 11.2 − 62.08 = −50.88 and vr (t) = −11.20 − 50.88e−0.875t . After 5 additional seconds, the diver’s velocity is
therefore

vr (5) = −11.20 − 50.88e−0.875·5 ≈ −11.84 m/s

Does a heavier or a lighter skydiver reach terminal velocity faster?
17. A continuous annuity with withdrawal rate N = $5000/year and interest rate r = 5% is funded by an initial deposit
of P0 = $50,000.

(a) What is the balance in the annuity after 10 years?

(b) When will the annuity run out of funds?

solution
(a) From Equation 7, the value of the annuity is given by

P(t) = 5000

0.05
+ Ce0.05t = 100,000 + Ce0.05t

for some constant C. Since P(0) = 50,000, we have C = −50,000 and P(t) = 100,000 − 50,000e0.05t . After ten years,
then, the balance in the annuity is

P(10) = 100,000 − 50,000e0.05·10 = 100,000 − 50,000e0.5 ≈ $17,563.94

(b) The annuity will run out of funds when P(t) = 0:

0 = 100,000 − 50,000e0.05t ⇒ e0.05t = 2 ⇒ t = ln 2

0.05
≈ 13.86

The annuity will run out of funds after approximately 13 years 10 months.

Show that a continuous annuity with withdrawal rate N = $5000/year and interest rate r = 8%, funded by an
initial deposit of P0 = $75,000, never runs out of money.

19. Find the minimum initial deposit P0 that will allow an annuity to pay out $6000/year indefinitely if it earns interest
at a rate of 5%.

solution Let P(t) denote the balance of the annuity at time t measured in years. Then

P(t) = N

r
+ Cert = 6000

0.05
+ Ce0.05t = 120,000 + Ce0.05t

for some constant C. To fund the annuity indefinitely, we must have C ≥ 0. If the initial deposit is P0, then P0 =
120,000 + C and C = P0 − 120,000. Thus, to fund the annuity indefinitely, we must have P0 ≥ $120,000.
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Find the minimum initial deposit P0 necessary to fund an annuity for 20 years if withdrawals are made at a rate
of $10,000/year and interest is earned at a rate of 7%.

21. An initial deposit of 100,000 euros are placed in an annuity with a French bank. What is the minimum interest rate
the annuity must earn to allow withdrawals at a rate of 8000 euros/year to continue indefinitely?

solution Let P(t) denote the balance of the annuity at time t measured in years. Then

P(t) = N

r
+ Cert = 8000

r
+ Cert

for some constant C. To fund the annuity indefinitely, we need C ≥ 0. If the initial deposit is 100,000 euros, then
100,000 = 8000

r + C and C = 100,000 − 8000
r . Thus, to fund the annuity indefinitely, we need 100,000 − 8000

r ≥ 0, or
r ≥ 0.08. The bank must pay at least 8%.

Show that a continuous annuity never runs out of money if the initial balance is greater than or equal to N/r ,
where N is the withdrawal rate and r the interest rate.

23. Sam borrows $10,000 from a bank at an interest rate of 9% and pays back the loan continuously at a rate of
N dollars per year. Let P(t) denote the amount still owed at time t .

(a) Explain why P(t) satisfies the differential equation

y′ = 0.09y − N

(b) How long will it take Sam to pay back the loan if N = $1200?

(c) Will the loan ever be paid back if N = $800?

solution

(a)

Rate of Change of Loan = (Amount still owed)(Interest rate) − (Payback rate)

= P(t) · r − N = r

(
P − N

r

)
.

Therefore, if y = P(t),

y′ = r

(
y − N

r

)
= ry − N

(b) From the differential equation derived in part (a), we know that P(t) = N
r + Cert = 13,333.33 + Ce0.09t . Since

$10,000 was initially borrowed, P(0) = 13,333.33 + C = 10,000, and C = −3333.33. The loan is paid off when
P(t) = 13,333.33 − 3333.33e0.09t = 0. This yields

t = 1

0.09
ln

(
13,333.33

3333.33

)
≈ 15.4 years.

(c) If the annual rate of payment is $800, then P(t) = 800/0.09 + Ce0.09t = 8888.89 + Ce0.09t . With P(0) =
8888.89 + C = 10,000, it follows that C = 1111.11. Since C > 0 and e0.09t → ∞ as t → ∞, P (t) → ∞, and the
loan will never be paid back.

April borrows $18,000 at an interest rate of 5% to purchase a new automobile. At what rate (in dollars per year)
must she pay back the loan, if the loan must be paid off in 5 years? Hint: Set up the differential equation as in Exercise
23).

25. Let N(t) be the fraction of the population who have heard a given piece of news t hours after its initial release.
According to one model, the rate N ′(t) at which the news spreads is equal to k times the fraction of the population that
has not yet heard the news, for some constant k > 0.

(a) Determine the differential equation satisfied by N(t).

(b) Find the solution of this differential equation with the initial condition N(0) = 0 in terms of k.

(c) Suppose that half of the population is aware of an earthquake 8 hours after it occurs. Use the model to calculate k

and estimate the percentage that will know about the earthquake 12 hours after it occurs.

solution

(a) N ′(t) = k(1 − N(t)) = −k(N(t) − 1).

(b) The general solution of the differential equation from part (a) is N(t) = 1 + Ce−kt . The initial condition determines
the value of C: N(0) = 1 + C = 0 so C = −1. Thus, N(t) = 1 − e−kt .

(c) Knowing that N(8) = 1 − e−8k = 1
2 , we find that

k = −1

8
ln

(
1

2

)
≈ 0.0866 hours−1.

With the value of k determined, we estimate that

N(12) = 1 − e−0.0866(12) ≈ 0.6463 = 64.63%

of the population will know about the earthquake after 12 hours.

Current in a Circuit When the circuit in Figure 6 (which consists of a battery of V volts, a resistor of R ohms,
and an inductor of L henries) is connected, the current I (t) flowing in the circuit satisfies

L
dI

dt
+ RI = V
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Further Insights and Challenges
27. Show that the cooling constant of an object can be determined from two temperature readings y(t1) and y(t2) at times
t1 �= t2 by the formula

k = 1

t1 − t2
ln

(
y(t2) − T0

y(t1) − T0

)

solution We know that y(t1) = T0 + Ce−kt1 and y(t2) = T0 + Ce−kt2 . Thus, y(t1) − T0 = Ce−kt1 and y(t2) − T0 =
Ce−kt2 . Dividing the latter equation by the former yields

e−kt2+kt1 = y(t2) − T0

y(t1) − T0
,

so that

k(t1 − t2) = ln

(
y(t2) − T0

y(t1) − T0

)
and k = 1

t1 − t2
ln

(
y(t2) − T0

y(t1) − T0

)
.

Show that by Newton’s Law of Cooling, the time required to cool an object from temperature A to temperature B

is

t = 1

k
ln

(
A − T0

B − T0

)

where T0 is the ambient temperature.

29. Air Resistance A projectile of mass m = 1 travels straight up from ground level with initial velocity v0. Suppose
that the velocity v satisfies v′ = −g − kv.

(a) Find a formula for v(t).

(b) Show that the projectile’s height h(t) is given by

h(t) = C(1 − e−kt ) − g

k
t

where C = k−2(g + kv0).

(c) Show that the projectile reaches its maximum height at time tmax = k−1 ln(1 + kv0/g).

(d) In the absence of air resistance, the maximum height is reached at time t = v0/g. In view of this, explain why we
should expect that

lim
k→0

ln(1 + kv0
g )

k
= v0

g
8

(e) Verify Eq. (8). Hint: Use Theorem 1 in Section 7.5 to show that lim
k→0

(
1 + kv0

g

)1/k

= ev0/g .

solution

(a) Since v′ = −g − kv = −k

(
v − −g

k

)
it follows that v(t) = −g

k
+ Be−kt for some constant B. The initial condition

v(0) = v0 determines B: v0 = − g
k

+ B, so B = v0 + g
k

. Thus,

v(t) = −g

k
+

(
v0 + g

k

)
e−kt .

(b) v(t) = h′(t) so

h(t) =
∫ (

−g

k
+

(
v0 + g

k

)
e−kt

)
dt = −g

k
t − 1

k

(
v0 + g

k

)
e−kt + D.

The initial condition h(0) = 0 determines

D = 1

k

(
v0 + g

k

)
= 1

k2
(v0k + g).

Let C = 1
k2 (v0k + g). Then

h(t) = C(1 − e−kt ) − g

k
t.

(c) The projectile reaches its maximum height when v(t) = 0. This occurs when

−g

k
+

(
v0 + g

k

)
e−kt = 0,

or

t = 1

−k
ln

(
g

kv0 + g

)
= 1

k
ln

(
1 + kv0

g

)
.
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(d) Recall that k is the proportionality constant for the force due to air resistance. Thus, as k → 0, the effect of air
resistance disappears. We should therefore expect that, as k → 0, the time at which the maximum height is achieved from
part (c) should approach v0/g. In other words, we should expect

lim
k→0

1

k
ln

(
1 + kv0

g

)
= v0

g
.

(e) Recall that

ex = lim
n→∞

(
1 + x

n

)n
.

If we substitute x = v0/g and k = 1/n, we find

ev0/g = lim
k→0

(
1 + v0k

g

)1/k

.

Then

lim
k→0

1

k
ln

(
1 + kv0

g

)
= lim

k→0
ln

(
1 + v0k

g

)1/k

= ln

(
lim
k→0

(
1 + v0k

g

)1/k
)

= ln(ev0/g) = v0

g
.

7.7 L’Hôpital’s Rule

Preliminary Questions

1. What is wrong with applying L’Hôpital’s Rule to lim
x→0

x2 − 2x

3x − 2
?

solution As x → 0,

x2 − 2x

3x − 2

is not of the form 0
0 or ∞∞ , so L’Hôpital’s Rule cannot be used.

2. Does L’Hôpital’s Rule apply to lim
x→a

f (x)g(x) if f (x) and g(x) both approach ∞ as x → a?

solution No. L’Hôpital’s Rule only applies to limits of the form 0
0 or ∞∞ .

Exercises
In Exercises 1–10, use L’Hôpital’s Rule to evaluate the limit, or state that L’Hôpital’s Rule does not apply.

1. lim
x→3

2x2 − 5x − 3

x − 4

solution Because the quotient is not indeterminate at x = 3,

2x2 − 5x − 3

x − 4

∣∣∣∣
x=3

= 18 − 15 − 3

3 − 4
= 0

−1
,

L’Hôpital’s Rule does not apply.

lim
x→−5

x2 − 25

5 − 4x − x2

3. lim
x→4

x3 − 64

x2 + 16
solution Because the quotient is not indeterminate at x = 4,

x3 − 64

x2 + 16

∣∣∣∣
x=4

= 64 − 64

16 + 16
= 0

32
,

L’Hôpital’s Rule does not apply.

lim
x→−1

x4 + 2x + 1

x5 − 2x − 1

5. lim
x→9

x1/2 + x − 6

x3/2 − 27
solution Because the quotient is not indeterminate at x = 9,

x1/2 + x − 6

x3/2 − 27

∣∣∣∣
x=9

= 3 + 9 − 6

27 − 27
= 6

0
,

L’Hôpital’s Rule does not apply.
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lim
x→3

√
x + 1 − 2

x3 − 7x − 6

7. lim
x→0

sin 4x

x2 + 3x + 1

solution Because the quotient is not indeterminate at x = 0,

sin 4x

x2 + 3x + 1

∣∣∣∣
x=0

= 0

0 + 0 + 1
= 0

1
,

L’Hôpital’s Rule does not apply.

lim
x→0

x3

sin x − x

9. lim
x→0

cos 2x − 1

sin 5x

solution The functions cos 2x − 1 and sin 5x are differentiable, but the quotient is indeterminate at x = 0,

cos 2x − 1

sin 5x

∣∣∣∣
x=0

= 1 − 1

0
= 0

0
,

so L’Hôpital’s Rule applies. We find

lim
x→0

cos 2x − 1

sin 5x
= lim

x→0

−2 sin 2x

5 cos 5x
= 0

5
= 0.

lim
x→0

cos x − sin2 x

sin x

In Exercises 11–16, show that L’Hôpital’s Rule is applicable to the limit as x → ±∞ and evaluate.

11. lim
x→∞

9x + 4

3 − 2x

solution As x → ∞, the quotient
9x + 4

3 − 2x
is of the form

∞
∞ , so L’Hôpital’s Rule applies. We find

lim
x→∞

9x + 4

3 − 2x
= lim

x→∞
9

−2
= −9

2
.

lim
x→−∞ x sin

1

x

13. lim
x→∞

ln x

x1/2

solution As x → ∞, the quotient
ln x

x1/2
is of the form

∞
∞ , so L’Hôpital’s Rule applies. We find

lim
x→∞

ln x

x1/2
= lim

x→∞
1
x

1
2x−1/2

= lim
x→∞

1

2x1/2
= 0.

lim
x→∞

x

ex
15. lim

x→−∞
ln(x4 + 1)

x

solution As x → ∞, the quotient
ln(x4 + 1)

x
is of the form

∞
∞ , so L’Hôpital’s Rule applies. Here, we use L’Hôpital’s

Rule twice to find

lim
x→∞

ln(x4 + 1)

x
= lim

x→∞

4x3

x4+1

1
= lim

x→∞
12x2

4x3
= lim

x→∞
3

x
= 0.

lim
x→∞

x2

ex

In Exercises 17–50, evaluate the limit.

17. lim
x→1

√
8 + x − 3x1/3

x2 − 3x + 2

solution lim
x→1

√
8 + x − 3x1/3

x2 − 3x + 2
= lim

x→1

1
2 (8 + x)−1/2 − x−2/3

2x − 3
=

1
6 − 1

−1
= 5

6
.

lim
x→4

[
1√

x − 2
− 4

x − 4

]
19. lim

x→−∞
3x − 2

1 − 5x

solution lim
x→−∞

3x − 2

1 − 5x
= lim

x→−∞
3

−5
= −3

5
.

lim
x→∞

x2/3 + 3x

x5/3 − x

21. lim
x→−∞

7x2 + 4x

9 − 3x2

solution lim
x→−∞

7x2 + 4x

9 − 3x2
= lim

x→−∞
14x + 4

−6x
= lim

x→−∞
14

−6
= −7

3
.
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lim
x→∞

3x3 + 4x2

4x3 − 7

23. lim
x→1

(1 + 3x)1/2 − 2

(1 + 7x)1/3 − 2

solution Apply L’Hôpital’s Rule once:

lim
x→1

(1 + 3x)1/2 − 2

(1 + 7x)1/3 − 2
= lim

x→1

3
2 (1 + 3x)−1/2

7
3 (1 + 7x)−2/3

= ( 3
2 ) 1

2

( 7
3 )( 1

4 )
= 9

7

lim
x→8

x5/3 − 2x − 16

x1/3 − 2

25. lim
x→0

sin 2x

sin 7x

solution lim
x→0

sin 2x

sin 7x
= lim

x→0

2 cos 2x

7 cos 7x
= 2

7
.

lim
x→π/2

tan 4x

tan 5x

27. lim
x→0

tan x

x

solution lim
x→0

tan x

x
= lim

x→0

sec2 x

1
= 1.

lim
x→0

(
cot x − 1

x

)
29. lim

x→0

sin x − x cos x

x − sin x

solution

lim
x→0

sin x − x cos x

x − sin x
= lim

x→0

x sin x

1 − cos x
= lim

x→0

sin x + x cos x

sin x
= lim

x→0

cos x + cos x − x sin x

cos x
= 2.

lim
x→π/2

(
x − π

2

)
tan x31. lim

x→0

cos(x + π
2 )

sin x

solution lim
x→0

cos(x + π
2 )

sin x
= lim

x→0

− sin(x + π
2 )

cos x
= −1.

lim
x→0

x2

1 − cos x

33. lim
x→π/2

cos x

sin(2x)

solution lim
x→π/2

cos x

sin(2x)
= lim

x→π/2

− sin x

2 cos(2x)
= 1

2
.

lim
x→0

(
1

x2
− csc2 x

)35. lim
x→π/2

(sec x − tan x)

solution

lim
x→ π

2

( sec x − tan x) = lim
x→ π

2

(
1

cos x
− sin x

cos x

)
= lim

x→ π
2

(
1 − sin x

cos x

)
= lim

x→ π
2

( − cos x

− sin x

)
= 0.

lim
x→2

ex2 − e4

x − 2

37. lim
x→1

tan
(πx

2

)
ln x

solution lim
x→1

tan
(πx

2

)
ln x = lim

x→1

ln x

cot( πx
2 )

= lim
x→1

1
x

−π
2 csc2( πx

2 )
= lim

x→1

−2

πx
sin2

(π

2
x
)

= − 2

π
.

lim
x→1

x(ln x − 1) + 1

(x − 1) ln x

39. lim
x→0

ex − 1

sin x

solution lim
x→0

ex − 1

sin x
= lim

x→0

ex

cos x
= 1.

lim
x→1

ex − e

ln x

41. lim
x→0

e2x − 1 − x

x2

solution lim
x→0

e2x − 1 − x

x2
= lim

x→0

2e2x − 1

2x
which does not exist.

lim
x→∞

e2x − 1 − x

x2

43. lim
t→0+(sin t)(ln t)

solution

lim
t→0+(sin t)(ln t) = lim

t→0+
ln t

csc t
= lim

t→0+
1
t

− csc t cot t
= lim

t→0+
− sin2 t

t cos t
= lim

t→0+
−2 sin t cos t

cos t − t sin t
= 0.
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lim
x→∞ e−x(x3 − x2 + 9)45. lim

x→0

ax − 1

x
(a > 0)

solution lim
x→0

ax − 1

x
= lim

x→0

ln a · ax

1
= ln a.

lim
x→∞ x1/x247. lim

x→1
(1 + ln x)1/(x−1)

solution lim
x→1

ln(1 + ln x)1/(x−1) = lim
x→1

ln(1 + ln x)

x − 1
= lim

x→1

1

x(1 + ln x)
= 1. Hence,

lim
x→1

(1 + ln x)1/(x−1) = lim
x→1

e(1+ln x)1/(x−1) = e.

lim
x→0+ xsin x49. lim

x→0
(cos x)3/x2

solution

lim
x→0

ln(cos x)3/x2 = lim
x→0

3 ln cos x

x2
= lim

x→0
−3 tan x

2x
= lim

x→0
−3 sec2 x

2
= −3

2
.

Hence, lim
x→0

(cos x)3/x2 = e−3/2.

lim
x→∞

(
x

x + 1

)x51. Evaluate lim
x→π/2

cos mx

cos nx
, where m, n �= 0 are integers.

solution Suppose m and n are even. Then there exist integers k and l such that m = 2k and n = 2l and

lim
x→π/2

cos mx

cos nx
= cos kπ

cos lπ
= (−1)k−l .

Now, suppose m is even and n is odd. Then

lim
x→π/2

cos mx

cos nx

does not exist (from one side the limit tends toward −∞, while from the other side the limit tends toward +∞). Third,
suppose m is odd and n is even. Then

lim
x→π/2

cos mx

cos nx
= 0.

Finally, suppose m and n are odd. This is the only case when the limit is indeterminate. Then there exist integers k and l

such that m = 2k + 1, n = 2l + 1 and, by L’Hôpital’s Rule,

lim
x→π/2

cos mx

cos nx
= lim

x→π/2

−m sin mx

−n sin nx
= (−1)k−l m

n
.

To summarize,

lim
x→π/2

cos mx

cos nx
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(−1)(m−n)/2, m, n even

does not exist, m even, n odd

0 m odd, n even

(−1)(m−n)/2 m
n , m, n odd

Evaluate lim
x→1

xm − 1

xn − 1
for any numbers m, n �= 0.

53. Prove the following limit formula for e:

e = lim
x→0

(1 + x)1/x

Then find a value of x such that |(1 + x)1/x − e| ≤ 0.001.

solution Using L’Hôpital’s Rule,

lim
x→0

ln(1 + x)

x
= lim

x→0

1
1+x

1
= 1.

Thus,

lim
x→0

ln
(
(1 + x)1/x

)
= lim

x→0

1

x
ln(1 + x) = lim

x→0

ln(1 + x)

x
= 1,
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and lim
x→0

(1 + x)1/x = e1 = e. For x = 0.0005,

∣∣∣(1 + x)1/x − e

∣∣∣ = |(1.0005)2000 − e| ≈ 6.79 × 10−4 < 0.001.

Can L’Hôpital’s Rule be applied to lim
x→0+ xsin(1/x)? Does a graphical or numerical investigation suggest that

the limit exists?

55. Let f (x) = x1/x for x > 0.

(a) Calculate lim
x→0+ f (x) and lim

x→∞ f (x).

(b) Find the maximum value of f (x), and determine the intervals on which f (x) is increasing or decreasing.

solution

(a) Let f (x) = x1/x . Note that limx→0+ x1/x is not indeterminate. As x → 0+, the base of the function tends toward
0 and the exponent tends toward +∞. Both of these factors force x1/x toward 0. Thus, limx→0+ f (x) = 0. On the other
hand, limx→∞ f (x) is indeterminate. We calculate this limit as follows:

lim
x→∞ ln f (x) = lim

x→∞
ln x

x
= lim

x→∞
1

x
= 0,

so limx→∞ f (x) = e0 = 1.
(b) Again, let f (x) = x1/x , so that ln f (x) = 1

x ln x. To find the derivative f ′, we apply the derivative to both sides:

d

dx
ln f (x) = d

dx

(
1

x
ln x

)

1

f (x)
f ′(x) = − ln x

x2
+ 1

x2

f ′(x) = f (x)

(
− ln x

x2
+ 1

x2

)
= x1/x

x2
(1 − ln x)

Thus, f is increasing for 0 < x < e, is decreasing for x > e and has a maximum at x = e. The maximum value is
f (e) = e1/e ≈ 1.444668.

(a) Use the results of Exercise 55 to prove that x1/x = c has a unique solution if 0 < c ≤ 1 or c = e1/e, two
solutions if 1 < c < e1/e, and no solutions if c > e1/e.

(b) Plot the graph of f (x) = x1/x and verify that it confirms the conclusions of (a).

57. Determine whether f  g or g  f (or neither) for the functions f (x) = log10 x and g(x) = ln x.

solution Because

lim
x→∞

f (x)

g(x)
= lim

x→∞
log10 x

ln x
= lim

x→∞
ln x
ln 10
ln x

= 1

ln 10
,

neither f  g or g  f is satisfied.

Show that (ln x)2  √
x and (ln x)4  x1/10.

59. Just as exponential functions are distinguished by their rapid rate of increase, the logarithm functions grow particularly
slowly. Show that ln x  xa for all a > 0.

solution Using L’Hôpital’s Rule:

lim
x→∞

ln x

xa
= lim

x→∞
x−1

axa−1
= lim

x→∞
1

a
x−a = 0;

hence, ln x  (xa).

Show that (ln x)N  xa for all N and all a > 0.61. Determine whether
√

x  e

√
ln x or e

√
ln x  √

x. Hint: Use the substitution u = ln x instead of L’Hôpital’s Rule.

solution Let u = ln x, then x = eu, and as x → ∞, u → ∞. So

lim
x→∞

e
√

ln x

√
x

= lim
u→∞

e
√

u

eu/2
= lim

u→∞ e
√

u− u
2 .

We need to examine lim
u→∞(

√
u − u

2 ). Since

lim
u→∞

u/2√
u

= lim
u→∞

1
2
1

2
√

u

= lim
u→∞

√
u = ∞,

√
u = o(u/2) and lim

u→∞
(√

u − u

2

)
= −∞. Thus

lim
u→∞ e

√
u− u

2 = e−∞ = 0 so lim
x→∞

e
√

ln x

√
x

= 0

and e
√

ln x  √
x.
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Show that lim
x→∞ xne−x = 0 for all whole numbers n > 0.

63. Assumptions Matter Let f (x) = x(2 + sin x) and g(x) = x2 + 1.

(a) Show directly that lim
x→∞ f (x)/g(x) = 0.

(b) Show that lim
x→∞ f (x) = lim

x→∞ g(x) = ∞, but lim
x→∞ f ′(x)/g′(x) does not exist.

Do (a) and (b) contradict L’Hôpital’s Rule? Explain.

solution
(a) 1 ≤ 2 + sin x ≤ 3, so

x

x2 + 1
≤ x(2 + sin x)

x2 + 1
≤ 3x

x2 + 1
.

Since,

lim
x→∞

x

x2 + 1
= lim

x→∞
3x

x2 + 1
= 0,

it follows by the Squeeze Theorem that

lim
x→∞

x(2 + sin x)

x2 + 1
= 0.

(b) lim
x→∞ f (x) = lim

x→∞ x(2 + sin x) ≥ lim
x→∞ x = ∞ and lim

x→∞ g(x) = lim
x→∞(x2 + 1) = ∞, but

lim
x→∞

f ′(x)

g′(x)
= lim

x→∞
x(cos x) + (2 + sin x)

2x

does not exist since cos x oscillates. This does not violate L’Hôpital’s Rule since the theorem clearly states

lim
x→∞

f (x)

g(x)
= lim

x→∞
f ′(x)

g′(x)

“provided the limit on the right exists.”

Let H(b) = lim
x→∞

ln(1 + bx)

x
for b > 0.

(a) Show that H(b) = ln b if b ≥ 1

(b) Determine H(b) for 0 < b ≤ 1.

65. Let G(b) = lim
x→∞(1 + bx)1/x .

(a) Use the result of Exercise 64 to evaluate G(b) for all b > 0.

(b) Verify your result graphically by plotting y = (1 + bx)1/x together with the horizontal line y = G(b) for the
values b = 0.25, 0.5, 2, 3.

solution

(a) Using Exercise 64, we see that G(b) = eH(b). Thus, G(b) = 1 if 0 ≤ b ≤ 1 and G(b) = b if b > 1.

(b)

1

5 10 15

2

3

4

y

x

b = 0.25

1

5 10 15

2

3

4

y

x

b = 0.5

1

5 10 15

2

3

4

y

x

b = 2.0

1

5 10 15

2

3

4

5

6

y

x

b = 3.0

Show that lim
t→∞ tke−t2 = 0 for all k. Hint: Compare with lim

t→∞ tke−t = 0.
In Exercises 67–69, let

f (x) =
{

e−1/x2
for x �= 0

0 for x = 0

These exercises show that f (x) has an unusual property: All of its derivatives at x = 0 exist and are equal to zero.
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67. Show that lim
x→0

f (x)

xk
= 0 for all k. Hint: Let t = x−1 and apply the result of Exercise 66.

solution lim
x→0

f (x)

xk
= lim

x→0

1

xke1/x2 . Let t = 1/x. As x → 0, t → ∞. Thus,

lim
x→0

1

xke1/x2 = lim
t→∞

tk

et2 = 0

by Exercise 66.

Show that f ′(0) exists and is equal to zero. Also, verify that f ′′(0) exists and is equal to zero.
69. Show that for k ≥ 1 and x �= 0,

f (k)(x) = P(x)e−1/x2

xr

for some polynomial P(x) and some exponent r ≥ 1. Use the result of Exercise 67 to show that f (k)(0) exists and is
equal to zero for all k ≥ 1.

solution For x �= 0, f ′(x) = e−1/x2
(

2

x3

)
. Here P(x) = 2 and r = 3. Assume f (k)(x) = P(x)e−1/x2

xr
. Then

f (k+1)(x) = e−1/x2

(
x3P ′(x) + (2 − rx2)P (x)

xr+3

)

which is of the form desired.
Moreover, from Exercise 68, f ′(0) = 0. Suppose f (k)(0) = 0. Then

f (k+1)(0) = lim
x→0

f (k)(x) − f (k)(0)

x − 0
= lim

x→0

P(x)e−1/x2

xr+1
= P(0) lim

x→0

f (x)

xr+1
= 0.

(a) Verify for r �= 0:

∫ T

0
tert dt = erT (rT − 1) + 1

r2

Hint: For fixed r , let F(T ) be the value of the integral on the left. By FTC II, F ′(t) = tert and F(0) = 0. Show that
the same is true of the function on the right.
(b) Use L’Hôpital’s Rule to show that for fixed T , the limit as r → 0 of the right-hand side of Eq. (1) is equal to the
value of the integral for r = 0.

71. The formula
∫ x

1
tndt = xn+1 − 1

n + 1
is valid for n �= −1. Use L’Hôpital’s Rule to prove that

lim
n→−1

xn+1 − 1

n + 1
= ln x

Use this to show that

lim
n→−1

∫ x

1
tndt =

∫ x

1
t−1dt

Thus, the definite integral of x−1 is a limit of the definite integrals of xn as n approaches −1.

solution

lim
n→−1

∫ x

1
tn dt = lim

n→−1

tn+1

n + 1

∣∣∣∣∣
x

1

= lim
n→−1

(
xn+1

n + 1
− 1n+1

n + 1

)

= lim
n→−1

xn+1 − 1

n + 1
= lim

n→−1
(xn+1) ln x = ln x =

∫ x

1
t−1 dt

Note that when using L’Hôpital’s Rule in the second line, we need to differentiate with respect to n.

Further Insights and Challenges

Show that L’Hôpital’s Rule applies to lim
x→∞

x√
x2 + 1

but that it does not help. Then evaluate the limit directly.
73. The Second Derivative Test for critical points fails if f ′′(c) = 0. This exercise develops a Higher Derivative Test
based on the sign of the first nonzero derivative. Suppose that

f ′(c) = f ′′(c) = · · · = f (n−1)(c) = 0, but f (n)(c) �= 0

(a) Show, by applying L’Hôpital’s Rule n times, that

lim
x→c

f (x) − f (c)

(x − c)n
= 1

n! f (n)(c)

where n! = n(n − 1)(n − 2) · · · (2)(1).
(b) Use (a) to show that if n is even, then f (c) is a local minimum if f (n)(c) > 0 and is a local maximum if f (n)(c) < 0.
Hint: If n is even, then (x − c)n > 0 for x �= a, so f (x) − f (c) must be positive for x near c if f (n)(c) > 0.
(c) Use (a) to show that if n is odd, then f (c) is neither a local minimum nor a local maximum.
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solution

(a) Repeated application of L’Hôpital’s rule yields

lim
x→c

f (x) − f (c)

(x − c)n
= lim

x→c

f ′(x)

n(x − c)n−1

= lim
x→c

f ′′(x)

n(n − 1)(x − c)n−2

= lim
x→c

f ′′′(x)

n(n − 1)(n − 2)(x − c)n−3

= · · ·
= 1

n!f
(n)(c)

(b) Suppose n is even. Then (x − c)n > 0 for all x �= c. If f (n)(c) > 0, it follows that f (x) − f (c) must be positive
for x near c. In other words, f (x) > f (c) for x near c and f (c) is a local minimum. On the other hand, if f (n)(c) < 0,
it follows that f (x) − f (c) must be negative for x near c. In other words, f (x) < f (c) for x near c and f (c) is a local
maximum.

(c) If n is odd, then (x − c)n > 0 for x > c but (x − c)n < 0 for x < c. If f (n)(c) > 0, it follows that f (x) − f (c)

must be positive for x near c and x > c but is negative for x near c and x < c. In other words, f (x) > f (c) for x near
c and x > c but f (x) < f (c) for x near c and x < c. Thus, f (c) is neither a local minimum nor a local maximum. We
obtain a similar result if f (n)(c) < 0.

When a spring with natural frequency λ/2π is driven with a sinusoidal force sin(ωt) with ω �= λ, it oscillates
according to

y(t) = 1

λ2 − ω2

(
λ sin(ωt) − ω sin(λt)

)
Let y0(t) = lim

ω→λ
y(t).

(a) Use L’Hôpital’s Rule to determine y0(t).

(b) Show that y0(t) ceases to be periodic and that its amplitude |y0(t)| tends to ∞ as t → ∞ (the system is said to
be in resonance; eventually, the spring is stretched beyond its limits).

(c) Plot y(t) for λ = 1 and ω = 0.8, 0.9, 0.99, and 0.999. Do the graphs confirm your conclusion in (b)?

75. We expended a lot of effort to evaluate lim
x→0

sin x

x
in Chapter 2. Show that we could have evaluated it easily

using L’Hôpital’s Rule. Then explain why this method would involve circular reasoning.

solution lim
x→0

sin x

x
= lim

x→0

cos x

1
= 1. To use L’Hôpital’s Rule to evaluate lim

x→0

sin x

x
, we must know that the

derivative of sin x is cos x, but to determine the derivative of sin x, we must be able to evaluate lim
x→0

sin x

x
.

By a fact from algebra, if f , g are polynomials such that f (a) = g(a) = 0, then there are polynomials f1, g1
such that

f (x) = (x − a)f1(x), g(x) = (x − a)g1(x)

Use this to verify L’Hôpital’s Rule directly for lim
x→a

f (x)/g(x).

77. Patience Required Use L’Hôpital’s Rule to evaluate and check your answers numerically:

(a) lim
x→0+

(
sin x

x

)1/x2

(b) lim
x→0

(
1

sin2 x
− 1

x2

)

solution

(a) We start by evaluating

lim
x→0+ ln

(
sin x

x

)1/x2

= lim
x→0+

ln(sin x) − ln x

x2
.

Repeatedly using L’Hôpital’s Rule, we find

lim
x→0+ ln

(
sin x

x

)1/x2

= lim
x→0+

cot x − x−1

2x
= lim

x→0+
x cos x − sin x

2x2 sin x
= lim

x→0+
−x sin x

2x2 cos x + 4x sin x

= lim
x→0+

−x cos x − sin x

8x cos x + 4 sin x − 2x2 sin x
= lim

x→0+
−2 cos x + x sin x

12 cos x − 2x2 cos x − 12x sin x

= − 2

12
= −1

6
.

Therefore, lim
x→0+

( sin x

x

)1/x2

= e−1/6. Numerically we find:

x 1 0.1 0.01

( sin x

x

)1/x2

0.841471 0.846435 0.846481

Note that e−1/6 ≈ 0.846481724.
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(b) Repeatedly using L’Hôpital’s Rule and simplifying, we find

lim
x→0

(
1

sin2 x
− 1

x2

)
= lim

x→0

x2 − sin2 x

x2 sin2 x
= lim

x→0

2x − 2 sin x cos x

x2(2 sin x cos x) + 2x sin2 x
= lim

x→0

2x − 2 sin 2x

x2 sin 2x + 2x sin2 x

= lim
x→0

2 − 2 cos 2x

2x2 cos 2x + 2x sin 2x + 4x sin x cos x + 2 sin2 x

= lim
x→0

2 − 2 cos 2x

2x2 cos 2x + 4x sin 2x + 2 sin2 x

= lim
x→0

4 sin 2x

−4x2 sin 2x + 4x cos 2x + 8x cos 2x + 4 sin 2x + 4 sin x cos x

= lim
x→0

4 sin 2x

(6 − 4x2) sin 2x + 12x cos 2x

= lim
x→0

8 cos 2x

(12 − 8x2) cos 2x − 8x sin 2x + 12 cos 2x − 24x sin 2x
= 1

3
.

Numerically we find:

x 1 0.1 0.01

1

sin2 x
− 1

x2
0.412283 0.334001 0.333340

In the following cases, check that x = c is a critical point and use Exercise 73 to determine whether f (c) is a
local minimum or a local maximum.

(a) f (x) = x5 − 6x4 + 14x3 − 16x2 + 9x + 12 (c = 1)

(b) f (x) = x6 − x3 (c = 0)

7.8 Inverse Trigonometric Functions

Preliminary Questions
1. Which of the following quantities is undefined?

(a) sin−1(− 1
2

)
(b) cos−1(2)

(c) csc−1( 1
2

)
(d) csc−1(2)

solution (b) and (c) are undefined. sin−1(− 1
2

) = −π
6 and csc−1(2) = π

6 .

2. Give an example of an angle θ such that cos−1(cos θ) �= θ . Does this contradict the definition of inverse function?

solution Any angle θ < 0 or θ > π will work. No, this does not contradict the definition of inverse function.

3. What is the geometric interpretation of the identity

sin−1 x + cos−1 x = π

2

What does this identity tell us about the derivatives of sin−1 x and cos−1 x?

solution Geometrically, the identity tells us that angles whose sine and cosine are x are complementary. Because π/2

is a constant, it follows that the derivatives of sin−1 x and cos−1 x sum to zero.

4. Find b such that
∫ b

0

dx

1 + x2
= π

3
.

solution In general,

∫ b

0

dx

1 + x2
= tan−1 x

∣∣∣∣b
0

= tan−1 b − tan−1 0 = tan−1 b.

For the value of the definite integral to equal π
3 , we must have

tan−1 b = π

3
or b = tan

π

3
= √

3.

5. Which relation between x and u yields
√

16 + x2 = 4
√

1 + u2?

solution To transform
√

16 + x2 into 4
√

1 + u2, make the substitution x = 4u.
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Exercises
In Exercises 1–6, evaluate without using a calculator.

1. cos−1 1

solution cos−1 1 = 0.

sin−1 1

2

3. cot−1 1

solution cot−1 1 = π
4 .

sec−1 2√
3

5. tan−1
√

3

solution tan−1
√

3 = tan−1(√
3/2

1/2

) = π
3 .

sin−1(−1)
In Exercises 7–16, compute without using a calculator.

7. sin−1
(

sin
π

3

)
solution sin−1(sin π

3 ) = π
3 .

sin−1
(

sin
4π

3

)
9. cos−1

(
cos

3π

2

)

solution cos−1(cos 3π
2 ) = cos−1(0) = π

2 . The answer is not 3π
2 because 3π

2 is not in the range of the inverse cosine
function.

sin−1
(

sin

(
−5π

6

))
11. tan−1

(
tan

3π

4

)

solution tan−1(tan 3π
4 ) = tan−1(−1) = −π

4 . The answer is not 3π
4 because 3π

4 is not in the range of the inverse
tangent function.

tan−1(tan π)
13. sec−1(sec 3π)

solution sec−1(sec 3π) = sec−1(−1) = π . The answer is not 3π because 3π is not in the range of the inverse secant
function.

sec−1
(

sec
3π

2

)15. csc−1(
csc(−π)

)
solution No inverse since csc(−π) = 1

sin(−π)
= 1

0 −→ ∞.

cot−1
(

cot
(
−π

4

))In Exercises 17–20, simplify by referring to the appropriate triangle or trigonometric identity.

17. tan(cos−1 x)

solution Let θ = cos−1 x. Then cos θ = x and we generate the triangle shown below. From the triangle,

tan(cos−1 x) = tan θ =
√

1 − x2

x
.

1

x

θ

�1 − x2

cos(tan−1 x)
19. cot(sec−1 x)

solution Let θ = sec−1 x. Then sec θ = x and we generate the triangle shown below. From the triangle,

cot(sec−1 x) = cot θ = 1√
x2 − 1

.

x

1

θ

�x2 − 1
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cot(sin−1 x)
In Exercises 21–28, refer to the appropriate triangle or trigonometric identity to compute the given value.

21. cos
(
sin−1 2

3

)
solution Let θ = sin−1 2

3 . Then sin θ = 2
3 and we generate the triangle shown below. From the triangle,

cos

(
sin−1 2

3

)
= cos θ =

√
5

3
.

3

θ

2

�5

tan
(
cos−1 2

3

)23. tan
(
sin−1 0.8

)
solution Let θ = sin−1 0.8. Then sin θ = 0.8 = 4

5 and we generate the triangle shown below. From the triangle,

tan(sin−1 0.8) = tan θ = 4

3
.

5

θ

4

3

cos
(
cot−1 1

)25. cot
(
csc−1 2

)
solution csc−1 2 = π

6 . Hence, cot(csc−1 2) = cot π
6 = √

3.

tan
(
sec−1(−2)

)27. cot
(
tan−1 20

)
solution Let θ = tan−1 20. Then tan θ = 20, so cot(tan−1 20) = cot θ = 1

tan θ = 1
20 .

sin
(
csc−1 20

)In Exercises 29–32, compute the derivative at the point indicated without using a calculator.

29. y = sin−1 x, x = 3
5

solution Let y = sin−1 x. Then y′ = 1√
1−x2

and

y′
(

3

5

)
= 1√

1 − 9/25
= 1

4/5
= 5

4
.

y = tan−1 x, x = 1
2

31. y = sec−1 x, x = 4

solution Let y = sec−1 x. Then y′ = 1
|x|

√
x2−1

and

y′(4) = 1

4
√

15
.

y = arccos(4x), x = 1
5

In Exercises 33–48, find the derivative.

33. y = sin−1(7x)

solution
d

dx
sin−1(7x) = 1√

1 − (7x)2
· d

dx
7x = 7√

1 − (7x)2
.

y = arctan
(x

3

)35. y = cos−1(x2)

solution
d

dx
cos−1(x2) = −1√

1 − x4
· d

dx
x2 = −2x√

1 − x4
.

y = sec−1(t + 1)
37. y = x tan−1 x

solution
d

dx
x tan−1 x = x

(
1

1 + x2

)
+ tan−1 x.

y = ecos−1 x
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39. y = arcsin(ex)

solution
d

dx
sin−1(ex) = 1√

1 − e2x
· d

dx
ex = ex√

1 − e2x
.

y = csc−1(x−1)
41. y =

√
1 − t2 + sin−1 t

solution
d

dt

(√
1 − t2 + sin−1 t

)
= 1

2
(1 − t2)−1/2(−2t) + 1√

1 − t2
= −t√

1 − t2
+ 1√

1 − t2
= 1 − t√

1 − t2
.

y = tan−1
(

1 + t

1 − t

)43. y = (tan−1 x)3

solution
d

dx

(
(tan−1 x)3

)
= 3(tan−1 x)2 d

dx
tan−1 x = 3(tan−1 x)2

x2 + 1
.

y = cos−1 x

sin−1 x

45. y = cos−1 t−1 − sec−1 t

solution
d

dx
(cos−1 t−1 − sec−1 t)= −1√

1 − (1/t)2

(−1

t2

)
− 1

|t |
√

t2 − 1

= 1√
t4 − t2

− 1

|t |
√

t2 − 1
= 1

|t |
√

t2 − 1
− 1

|t |
√

t2 − 1
= 0.

Alternately, let t = sec θ . Then t−1 = cos θ and cos−1 t−1 − sec−1 t = θ − θ = 0. Consequently,

d

dx
(cos−1 t−1 − sec−1 t) = 0.

y = cos−1(x + sin−1 x)
47. y = arccos(ln x)

solution
d

dx
arccos(ln x) = − 1

x
√

1 − (ln x)2
.

y = ln(arcsin x)49. Use Figure 10 to prove that (cos−1 x)′ = − 1√
1 − x2

.

1

x

�1 − x2

θ

FIGURE 10 Right triangle with θ = cos−1 x.

solution Let θ = cos−1 x. Then cos θ = x and

− sin θ
dθ

dx
= 1 or

dθ

dx
= − 1

sin θ
= − 1

sin(cos−1 x)
.

From Figure 10, we see that sin(cos−1 x) = sin θ =
√

1 − x2; hence,

d

dx
cos−1 x = 1

− sin(cos−1 x)
= − 1√

1 − x2
.

Show that (tan−1 x)′ = cos2(tan−1 x) and then use Figure 11 to prove that (tan−1 x)′ = (x2 + 1)−1.
51. Let θ = sec−1 x. Show that tan θ =

√
x2 − 1 if x ≥ 1 and that tan θ = −

√
x2 − 1 if x ≤ −1. Hint: tan θ ≥ 0 on(

0, π
2

)
and tan θ ≤ 0 on

(
π
2 , π

)
.

solution In general, 1 + tan2 θ = sec2 θ , so tan θ = ±
√

sec2 θ − 1. With θ = sec−1 x, it follows that sec θ = x, so

tan θ = ±
√

x2 − 1. Finally, if x ≥ 1 then θ = sec−1 x ∈ [0, π/2) so tan θ is positive; on the other hand, if x ≤ 1 then
θ = sec−1 x ∈ (−π/2, 0] so tan θ is negative.

Use Exercise 51 to verify the formula

(sec−1 x)′ = 1

|x|
√

x2 − 1

In Exercises 53–56, evaluate the definite integral.

53.
∫ tan 8

tan 1

dx

x2 + 1

solution
∫ tan 8

tan 1

dx

1 + x2
= tan−1 x

∣∣∣∣tan 8

tan 1
= tan−1(tan 8) − tan−1(tan 1) = 8 − 1 = 7.
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∫ 7

2

x dx

x2 + 1

55.
∫ 1/2

0

dx√
1 − x2

solution
∫ 1/2

0

dx√
1 − x2

= sin−1 x

∣∣∣∣1/2

0
= sin−1 1

2
− sin−1 0 = π

6
.

∫ −2/
√

3

−2

dx

|x|
√

x2 − 1

57. Use the substitution u = x/3 to prove ∫
dx

9 + x2
= 1

3
tan−1 x

3
+ C

solution Let u = x/3. Then, x = 3u, dx = 3 du, 9 + x2 = 9(1 + u2), and∫
dx

9 + x2
=

∫
3 du

9(1 + u2)
= 1

3

∫
du

1 + u2
= 1

3
tan−1 u + C = 1

3
tan−1 x

3
+ C.

Use the substitution u = 2x to evaluate
∫

dx

4x2 + 1
.

In Exercises 59–72, calculate the integral.

59.
∫ 3

0

dx

x2 + 3

solution Let x = √
3u. Then dx = √

3 du and

∫ 3

0

dx

x2 + 3
= 1√

3

∫ √
3

0

du

u2 + 1
= 1√

3
tan−1 u

∣∣∣∣
√

3

0
= 1√

3
(tan−1

√
3 − tan−1 0) = π

3
√

3
.

∫ 4

0

dt

4t2 + 9

61.
∫

dt√
1 − 16t2

solution Let u = 4t . Then du = 4 dt , and∫
dt√

1 − 16t2
=

∫
du

4
√

1 − u2
= 1

4
sin−1 u + C = 1

4
sin−1(4t) + C.

∫ 1/5

−1/5

dx√
4 − 25x2

63.
∫

dt√
5 − 3t2

solution Let t = √
5/3u. Then dt = √

5/3 du and

∫
dt√

5 − 3t2
=

∫ √
5/3 du√

5
√

1 − u2
= 1√

3

∫
du√

1 − u2
= 1√

3
sin−1 u + C = 1√

3
sin−1

√
3

5
t + C.

∫ 1/2

1/2
√

2

dx

x
√

16x2 − 1

65.
∫

dx

x
√

12x2 − 3

solution Let u = 2x. Then du = 2 dx and∫
dx

x
√

12x2 − 3
= 1√

3

∫
du

u
√

u2 − 1
= 1√

3
sec−1 u + C = 1√

3
sec−1(2x) + C.

∫
x dx

x4 + 1

67.
∫

dx

x
√

x4 − 1

solution Let u = x2. Then du = 2x dx, and∫
dx

x
√

x4 − 1
=

∫
du

2u
√

u2 − 1
= 1

2
sec−1 u + C = 1

2
sec−1 x2 + C.

∫ 0

−1/2

(x + 1) dx√
1 − x2

69.
∫

ln(cos−1 x) dx

(cos−1 x)
√

1 − x2

solution Let u = ln cos−1 x. Then du = 1

cos−1 x
· −1√

1 − x2
, and

∫
ln(cos−1 x) dx

(cos−1 x)
√

1 − x2
= −

∫
u du = −1

2
u2 + C = −1

2
(ln cos−1 x)2 + C.
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∫
tan−1 x dx

1 + x2
71.

∫ √
3

1

dx

(tan−1 x)(1 + x2)

solution Let u = tan−1 x. Then du = dx

1 + x2
, and

∫ √
3

1

dx

(tan−1 x)(1 + x2)
=

∫ π/3

π/4

1

u
du = ln |u|

∣∣∣∣π/3

π/4
= ln

π

3
− ln

π

4
= ln

4

3
.

∫
dx√

52x − 1

In Exercises 73–110, evaluate the integral using the methods covered in the text so far.

73.
∫

yey2
dy

solution Use the substitution u = y2, du = 2y dy. Then∫
yey2

dy = 1

2

∫
eu du = 1

2
eu + C = 1

2
ey2 + C.

∫
dx

3x + 5

75.
∫

x dx√
4x2 + 9

solution Let u = 4x2 + 9. Then du = 8x dx and∫
x√

4x2 + 9
dx = 1

8

∫
u−1/2 du = 1

4
u1/2 + C = 1

4

√
4x2 + 9 + C.

∫
(x − x−2)2 dx

77.
∫

7−x dx

solution Let u = −x. Then du = −dx and

∫
7−x dx = −

∫
7u du = − 7u

ln 7
+ C = −7−x

ln 7
+ C.

∫
e9−12t dt

79.
∫

sec2 θ tan7 θ dθ

solution Let u = tan θ . Then du = sec2 θ dθ and∫
sec2 θ tan7 θ dθ =

∫
u7 du = 1

8
u8 + C = 1

8
tan8 θ + C.

∫
cos(ln t) dt

t

81.
∫

t dt√
7 − t2

solution Let u = 7 − t2. Then du = −2t dt and∫
t dt√
7 − t2

= −1

2

∫
u−1/2 du = −u1/2 + C = −

√
7 − t2 + C.

∫
2xe4x dx

83.
∫

(3x + 2) dx

x2 + 4

solution Write ∫
(3x + 2) dx

x2 + 4
=

∫
3x dx

x2 + 4
+

∫
2 dx

x2 + 4
.

In the first integral, let u = x2 + 4. Then du = 2x dx and∫
3x dx

x2 + 4
= 3

2

∫
du

u
− 3

2
ln |u| + C1 = 3

2
ln(x2 + 4) + C1.

For the second integral, let x = 2u. Then dx = 2 du and∫
2 dx

x2 + 4
=

∫
du

u2 + 1
= tan−1 u + C2 = tan−1(x/2) + C2.
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Combining these two results yields∫
(3x + 2) dx

x2 + 4
= 3

2
ln(x2 + 4) + tan−1(x/2) + C.

∫
tan(4x + 1) dx

85.
∫

dx√
1 − 16x2

solution Let u = 4x. Then du = 4 dx and∫
dx√

1 − 16x2
= 1

4

∫
du√

1 − u2
= 1

4
sin−1 u + C = 1

4
sin−1(4x) + C.

∫
et

√
et + 1 dt

87.
∫

(e−x − 4x) dx

solution First, observe that∫
(e−x − 4x) dx =

∫
e−x dx −

∫
4x dx =

∫
e−x dx − 2x2.

In the remaining integral, use the substitution u = −x, du = −dx. Then∫
e−x dx = −

∫
eu du = −eu + C = −e−x + C.

Finally, ∫
(e−x − 4x) dx = −e−x − 2x2 + C.

∫
(7 − e10x) dx

89.
∫

e2x − e4x

ex
dx

solution

∫ (
e2x − e4x

ex

)
dx =

∫
(ex − e3x) dx = ex − e3x

3
+ C.

∫
dx

x
√

25x2 − 1

91.
∫

(x + 5) dx√
4 − x2

solution Write ∫
(x + 5) dx√

4 − x2
=

∫
x dx√
4 − x2

+
∫

5 dx√
4 − x2

.

In the first integral, let u = 4 − x2. Then du = −2x dx and∫
x dx√
4 − x2

= −1

2

∫
u−1/2 du = −u1/2 + C1 = −

√
4 − x2 + C1.

In the second integral, let x = 2u. Then dx = 2 du and∫
5 dx√
4 − x2

= 5
∫

du√
1 − u2

= 5 sin−1 u + C2 = 5 sin−1(x/2) + C2.

Combining these two results yields∫
(x + 5) dx√

4 − x2
= −

√
4 − x2 + 5 sin−1(x/2) + C.

∫
(t + 1)

√
t + 1 dt

93.
∫

ex cos(ex) dx

solution Use the substitution u = ex, du = ex dx. Then∫
ex cos(ex) dx =

∫
cos u du = sin u + C = sin(ex) + C.

∫
ex

√
ex + 1

dx
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95.
∫

dx√
9 − 16x2

solution First rewrite ∫
dx√

9 − 16x2
= 1

3

∫
dx√

1 −
(

4
3x

)2
.

Now, let u = 4
3x. Then du = 4

3 dx and∫
dx√

9 − 16x2
= 1

4

∫
du√

1 − u2
= 1

4
sin−1 u + C = 1

4
sin−1

(
4x

3

)
+ C.

∫
dx

(4x − 1) ln(8x − 2)

97.
∫

ex(e2x + 1)3 dx

solution Use the substitution u = ex, du = ex dx. Then∫
ex(e2x + 1)3 dx =

∫ (
u2 + 1

)3
du =

∫ (
u6 + 3u4 + 3u2 + 1

)
du

= 1

7
u7 + 3

5
u5 + u3 + u + C = 1

7
(ex)7 + 3

5
(ex)5 + (ex)3 + ex + C

= e7x

7
+ 3e5x

5
+ e3x + ex + C.

∫
dx

x(ln x)5
99.

∫
x2 dx

x3 + 2

solution Let u = x3 + 2. Then du = 3x2 dx, and

∫
x2 dx

x3 + 2
= 1

3

∫
du

u
= 1

3
ln |x3 + 2| + C.

∫
(3x − 1) dx

9 − 2x + 3x2

101.
∫

cot x dx

solution We rewrite
∫

cot x dx as
∫ cos x

sin x
dx. Let u = sin x. Then du = cos x dx, and∫

cos x

sin x
dx =

∫
du

u
= ln | sin x| + C.

∫
cos x

2 sin x + 3
dx

103.
∫

4 ln x + 5

x
dx

solution Let u = 4 ln x + 5. Then du = (4/x)dx, and∫
4 ln x + 5

x
dx = 1

4

∫
u du = 1

8
u2 + C = 1

8
(4 ln x + 5)2 + C.

∫
(sec θ tan θ)5sec θ dθ

105.
∫

x3x2
dx

solution Let u = x2. Then du = 2x dx, and

∫
x3x2

dx = 1

2

∫
3udu = 1

2

3u

ln 3
+ C = 3x2

2 ln 3
+ C.

∫
ln(ln x)

x ln x
dx

107.
∫

cot x ln(sin x) dx

solution Let u = ln(sin x). Then

du = 1

sin x
· cos x dx = cot x dx,

and ∫
cot x ln(sin x) dx =

∫
u du = u2

2
+ C = (ln(sin x))2

2
+ C.

∫
t dt√
1 − t4
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109.
∫

t2√
t − 3 dt

solution Let u = t − 3. Then t = u + 3, du = dt and∫
t2√

t − 3 dt =
∫

(u + 3)2√
u du

=
∫

(u2 + 6u + 9)
√

u du =
∫

(u5/2 + 6u3/2 + 9u1/2) du

= 2

7
u7/2 + 12

5
u5/2 + 6u3/2 + C

= 2

7
(t − 3)7/2 + 12

5
(t − 3)5/2 + 6(t − 3)3/2 + C.

∫
cos x5−2 sin x dx

111. Use Figure 12 to prove ∫ x

0

√
1 − t2 dt = 1

2
x
√

1 − x2 + 1

2
sin−1 x

x
x

y

1

FIGURE 12

solution The definite integral
∫ x

0

√
1 − t2 dt represents the area of the region under the upper half of the unit circle

from 0 to x. The region consists of a sector of the circle and a right triangle. The sector has a central angle of π
2 − θ ,

where cos θ = x. Hence, the sector has an area of

1

2
(1)2

(π

2
− cos−1 x

)
= 1

2
sin−1 x.

The right triangle has a base of length x, a height of
√

1 − x2, and hence an area of 1
2x

√
1 − x2. Thus,

∫ x

0

√
1 − t2 dt = 1

2
x
√

1 − x2 + 1

2
sin−1 x.

Use the substitution u = tan x to evaluate ∫
dx

1 + sin2 x

Hint: Show that

dx

1 + sin2 x
= du

1 + 2u2

113. Prove: ∫
sin−1 t dt =

√
1 − t2 + t sin−1 t

solution Let G(t) =
√

1 − t2 + t sin−1 t . Then

G′(t) = d

dt

√
1 − t2 + d

dt

(
t sin−1 t

)
= −t√

1 − t2
+

(
t · d

dt
sin−1 t + sin−1 t

)

= −t√
1 − t2

+
(

t√
1 − t2

+ sin−1 t

)
= sin−1 t.

This proves the formula
∫

sin−1 t dt =
√

1 − t2 + t sin−1 t .

Further Insights and Challenges

A cylindrical tank of radius R and length L lying horizontally as in Figure 13 is filled with oil to height h.

(a) Show that the volume V (h) of oil in the tank as a function of height h is

V (h) = L

(
R2 cos−1

(
1 − h

R

)
− (R − h)

√
2hR − h2

)

(b) Show that
dV

dh
= 2L

√
h(2R − h).

(c) Suppose that R = 2 m and L = 12 m, and that the tank is filled at a constant rate of 1.5 m3/min. How fast is the
height h increasing when h = 3 m?

115. (a) Explain why the shaded region in Figure 14 has area
∫ ln a

0 ey dy.

(b) Prove the formula
∫ a

1 ln x dx = a ln a − ∫ ln a
0 ey dy.

(c) Conclude that
∫ a

1 ln x dx = a ln a − a + 1.

(d) Use the result of (a) to find an antiderivative of ln x.
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solution
(a) Interpreting the graph with y as the independent variable, we see that the function is x = ey . Integrating in y then

gives the area of the shaded region as
∫ ln a

0 ey dy

(b) We can obtain the area under the graph of y = ln x from x = 1 to x = a by computing the area of the rectangle
extending from x = 0 to x = a horizontally and from y = 0 to y = ln a vertically and then subtracting the area of the
shaded region. This yields ∫ a

1
ln x dx = a ln a −

∫ ln a

0
ey dy.

(c) By direct calculation ∫ ln a

0
ey dy = ey

∣∣∣∣ln a

0
= a − 1.

Thus, ∫ a

1
ln x dx = a ln a − (a − 1) = a ln a − a + 1.

(d) Based on these results it appears that ∫
ln x dx = x ln x − x + C.

x

y

a

ln a

y = ln x

1

FIGURE 14

7.9 Hyperbolic Functions

Preliminary Questions
1. Which hyperbolic functions take on only positive values?

solution cosh x and sech x take on only positive values.

2. Which hyperbolic functions are increasing on their domains?

solution sinh x and tanh x are increasing on their domains.

3. Describe three properties of hyperbolic functions that have trigonometric analogs.

solution Hyperbolic functions have the following analogs with trigonometric functions: parity, identities and deriva-
tive formulas.

4. What are y(100) and y(101) for y = cosh x?

solution Let y = cosh x. Then y′ = sinh x, y′′ = cosh x, and this pattern repeats indefinitely. Thus, y(100) = cosh x

and y(101) = sinh x.

Exercises
1. Use a calculator to compute sinh x and cosh x for x = −3, 0, 5.

solution

x −3 0 5

sinh x = ex − e−x

2

e−3 − e3

2
= −10.0179

e0 − e0

2
= 0

e5 − e−5

2
= 74.203

cosh x = ex + e−x

2

e−3 + e3

2
= 10.0677

e0 + e0

2
= 1

e5 + e−5

2
= 74.210
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Compute sinh(ln 5) and tanh(3 ln 5) without using a calculator.
3. For which values of x are y = sinh x and y = cosh x increasing and decreasing?

solution The graph of y = sinh x is shown below on the left. From this graph, we see that sinh x is increasing for all
x. On the other hand, from the graph of y = cosh x shown below on the right, we see that cosh x is decreasing for x < 0
and is increasing for x > 0.

−2 2

−20

−10

10

20

y

x

y = sinh x

−2 2

5

10

15

20

25 y = cosh x

y

x

Show that y = tanh x is an odd function.5. Refer to the graphs to explain why the equation sinh x = t has a unique solution for every t and why
cosh x = t has two solutions for every t > 1.

solution From its graph we see that sinh x is a one-to-one function with lim
x→−∞ sinh x = −∞ and lim

x→∞ sinh x = ∞.

Thus, for every real number t , the equation sinh x = t has a unique solution. On the other hand, from its graph, we see
that cosh x is not one-to-one. Rather, it is an even function with a minimum value of cosh 0 = 1. Thus, for every t > 1,
the equation cosh x = t has two solutions: one positive, the other negative.

Compute cosh x and tanh x, assuming that sinh x = 0.8.
7. Prove the addition formula for cosh x.

solution

cosh(x + y) = ex+y + e−(x+y)

2
= 2ex+y + 2e−(x+y)

4

= ex+y + e−x+y + ex−y + e−(x+y)

4
+ ex+y − e−x+y − ex−y + e−(x+y)

4

=
(

ex + e−x

2

) (
ey + e−y

2

)
+

(
ex − e−x

2

) (
ey − e−y

2

)

= cosh x cosh y + sinh x sinh y.

Use the addition formulas to prove

sinh(2x) = 2 cosh x sinh x

cosh(2x) = cosh2 x + sinh2 x

In Exercises 9–32, calculate the derivative.

9. y = sinh(9x)

solution
d

dx
sinh(9x) = 9 cosh(9x).

y = sinh(x2)
11. y = cosh2(9 − 3t)

solution
d

dt
cosh2(9 − 3t) = 2 cosh(9 − 3t) · (−3 sinh(9 − 3t)) = −6 cosh(9 − 3t) sinh(9 − 3t).

y = tanh(t2 + 1)
13. y = √

cosh x + 1

solution
d

dx

√
cosh x + 1 = 1

2
(cosh x + 1)−1/2 sinh x.

y = sinh x tanh x15. y = coth t

1 + tanh t

solution
d

dt

coth t

1 + tanh t
= − csch2 t (1 + tanh t) − coth t (sech2 t)

(1 + tanh t)2
= −csch2 t + 2 csch t sech t

(1 + tanh t)2
.

y = (ln(cosh x))5
17. y = sinh(ln x)

solution
d

dx
sinh(ln x) = cosh(ln x)

x
.

y = ecoth x
19. y = tanh(ex)

solution
d

dx
tanh(ex) = ex sech2(ex).

y = sinh(cosh3 x)
21. y = sech(

√
x)

solution
d

dx
sech(

√
x) = −1

2
x−1/2 sech

√
x tanh

√
x.

y = ln(coth x)
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23. y = sech x coth x

solution
d

dx
sech x coth x = d

dx
csch x = − csch x coth x.

y = xsinh x
25. y = cosh−1(3x)

solution
d

dx
cosh−1(3x) = 3√

9x2 − 1
.

y = tanh−1(ex + x2)
27. y = (sinh−1(x2))3

solution
d

dx
(sinh−1(x2))3 = 3(sinh−1(x2))2 2x√

x4 + 1
.

y = (csch−1 3x)429. y = ecosh−1 x

solution
d

dx
ecosh−1 x = ecosh−1 x

(
1√

x2 − 1

)
.

y = sinh−1(
√

x2 + 1)
31. y = tanh−1(ln t)

solution
d

dt
tanh−1(ln t) = 1

t (1 − (ln t)2)
.

y = ln(tanh−1 x)
33. Show that for any constants M , k, and a, the function

y(t) = 1

2
M

(
1 + tanh

(
k(t − a)

2

))

satisfies the logistic equation:
y′
y

= k
(

1 − y

M

)
.

solution Let

y(t) = 1

2
M

(
1 + tanh

(
k(t − a)

2

))
.

Then

1 − y(t)

M
= 1

2

(
1 − tanh

(
k(t − a)

2

))
,

and

ky(t)

(
1 − y(t)

M

)
= 1

4
Mk

(
1 − tanh2

(
k(t − a)

2

))
= 1

4
Mk sech2

(
k(t − a)

2

)
.

Finally,

y′(t) = 1

4
Mk sech2

(
k(t − a)

2

)
= ky(t)

(
1 − y(t)

M

)
.

Show that V (x) = 2 ln(tanh(x/2)) satisfies the Poisson-Boltzmann equation V ′′(x) = sinh(V (x)), which is
used to describe electrostatic forces in certain molecules.

In Exercises 35–46, calculate the integral.

35.
∫

cosh(3x) dx

solution
∫

cosh(3x) dx = 1

3
sinh 3x + C.

∫
sinh(x + 1) dx

37.
∫

x sinh(x2 + 1) dx

solution
∫

x sinh(x2 + 1) dx = 1

2
cosh(x2 + 1) + C.

∫
sinh2 x cosh x dx

39.
∫

sech2(1 − 2x) dx

solution
∫

sech2(1 − 2x) dx = −1

2
tanh(1 − 2x) + C.

∫
tanh(3x) sech(3x) dx

41.
∫

tanh x sech2 x dx

solution Let u = tanh x. Then du = sech2 x dx nd

∫
tanh x sech2 x dx =

∫
u du = 1

2
u2 + C = tanh2 x

2
+ C.
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∫
cosh x

3 sinh x + 4
dx

43.
∫

tanh x dx

solution
∫

tanh x dx = ln cosh x + C.

∫
cosh x

sinh x
dx

45.
∫

e−x sinh x dx

solution Since sinh x = ex−e−x

2 we can combine the two functions to get∫
e−x sinh x dx = 1

2

∫
e−x(ex − e−x) dx = 1

2

∫ (
1 − e−2x

)
dx = 1

2
x + 1

4
e−2x + C.

∫
cosh x

sinh2 x
dx

In Exercises 47–52, prove the formula.

47.
d

dx
tanh x = sech2 x

solution
d

dx
tanh x = d

dx

sinh x

cosh x
= cosh2 x − sinh2 x

cosh2 x
= 1

cosh2 x
= sech2 x.

d

dx
sech x = − sech x tanh x

49. cosh(sinh−1 t) =
√

t2 + 1

solution Let w = sinh−1 t , so that sinh w = t and the stated problem becomes evaluating cosh w given that

sinh w = t . From the identity cosh2 w − sinh2 w = 1 we find cosh2 w = sinh2 w + 1, or cosh w = ±
√

sinh2 w + 1.
Because hyperbolic cosine is always positive, we know to choose the positive square root. Finally, returning to the variable
t we have

cosh(sinh−1 t) =
√

t2 + 1.

sinh(cosh−1 t) =
√

t2 − 1 for t ≥ 151.
d

dt
sinh−1 t = 1√

t2 + 1

solution Let x = sinh−1 t . Then t = sinh x and

1 = cosh x
dx

dt
or

dx

dt
= 1

cosh x
.

Thus,

d

dt
sinh−1 t = 1

cosh(sinh−1 t)
= 1√

t2 + 1

by Exercise 49.

d

dt
cosh−1 t = 1√

t2 − 1
for t > 1

In Exercises 53–60, calculate the integral in terms of inverse hyperbolic functions.

53.
∫ 4

2

dx√
x2 − 1

solution
∫ 4

2

dx√
x2 − 1

= cosh−1 x

∣∣∣∣4
2

= cosh−1 4 − cosh−1 2.

∫
dx√

x2 − 4

55.
∫

dx√
9 + x2

solution
∫

dt√
9 + x2

=
∫

dx

3
√

1 + (x/3)2
= sinh−1 x

3
+ C.

∫
dx√

1 + 9x2

57.
∫ 1/2

1/3

dx

1 − x2

solution
∫ 1/2

1/3

dx

1 − x2
= tanh−1 x

∣∣∣∣1/2

1/3
= tanh−1 1

2
− tanh−1 1

3
.

∫ 1

0

dx√
1 + x2

59.
∫ 10

2

dx

4x2 − 1

solution
∫ 10

2

dx

4x2 − 1
= −1

2
coth−1(2x)

∣∣∣∣10

2
= 1

2
(coth−1 4 − coth−1 20).

∫ −1

−3

dx

x
√

x2 + 16
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61. Prove that sinh−1 t = ln(t +
√

t2 + 1). Hint: Let t = sinh x. Prove that cosh x =
√

t2 + 1 and use the relation

sinh x + cosh x = ex

solution Let t = sinh x. Then

cosh x =
√

1 + sinh2 x =
√

1 + t2.

Moreover, because

sinh x + cosh x = ex − e−x

2
+ ex + e−x

2
= ex,

it follows that

sinh−1 t = x = ln(sinh x + cosh x) = ln(t +
√

t2 + 1).

Prove that cosh−1 t = ln(t +
√

t2 − 1) for t > 1.63. Prove that tanh−1 t = 1

2
ln

(
1 + t

1 − t

)
for |t | < 1.

solution Let A = tanh−1 t . Then

t = tanh A = sinh A

cosh A
= eA − e−A

eA + e−A
.

Solving for A yields

A = 1

2
ln

t + 1

1 − t
;

hence,

tanh−1 t = 1

2
ln

t + 1

1 − t
.

Use the substitution u = sinh x to prove∫
sech x dx = tan−1(sinh x) + C

65. An (imaginary) train moves along a track at velocity v. Bionica walks down the aisle of the train with velocity u

in the direction of the train’s motion. Compute the velocity w of Bionica relative to the ground using the laws of both
Galileo and Einstein in the following cases.

(a) v = 500 m/s and u = 10 m/s. Is your calculator accurate enough to detect the difference between the two laws?

(b) v = 107 m/s and u = 106 m/s.

solution Recall that the speed of light is c ≈ 3 × 108 m/s.

(a) By Galileo’s law, w = 500 + 10 = 510 m/s. Using Einstein’s law and a calculator,

tanh−1 w

c
= tanh−1 500

c
+ tanh−1 10

c
= 1.7 × 10−6;

so w = c · tanh(1.7 × 10−6) ≈ 510 m/s. No, the calculator was not accurate enough to detect the difference between the
two laws.

(b) By Galileo’s law, u + v = 107 + 106 = 1.1 × 107 m/s. By Einstein’s law,

tanh−1 w

c
= tanh−1 107

3 × 108
+ tanh−1 106

3 × 108
≈ 0.036679,

so w ≈ c · tanh(0.036679) ≈ 1.09988 × 107 m/s.

Further Insights and Challenges

Show that the linearization of the function y = tanh−1 x at x = 0 is tanh−1 x ≈ x. Use this to explain the
following assertion: Einstein’s Law of Velocity Addition [Eq. (2)] reduces to Galileo’s Law if the velocities are small
relative to the speed of light.

67. (a) Use the addition formulas for sinh x and cosh x to prove

tanh(u + v) = tanh u + tanh v

1 + tanh u tanh v

(b) Use (a) to show that Einstein’s Law of Velocity Addition [Eq. (2)] is equivalent to

w = u + v

1 + uv

c2
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solution
(a)

tanh(u + v) = sinh(u + v)

cosh(u + v)
= sinh u cosh v + cosh u sinh v

cosh u cosh v + sinh u sinh v

= sinh u cosh v + cosh u sinh v

cosh u cosh v + sinh u sinh v
· 1/(cosh u cosh v)

1/(cosh u cosh v)
= tanh u + tanh v

1 + tanh u tanh v

(b) Einstein’s law states: tanh−1(w/c) = tanh−1(u/c) + tanh−1(v/c). Thus

w

c
= tanh

(
tanh−1(u/c) + tanh−1(v/c)

)
= tanh(tanh−1(v/c)) + tanh(tanh−1(u/c))

1 + tanh(tanh−1(v/c)) tanh(tanh−1(u/c))

=
v
c + u

c

1 + v
c

u
c

= (1/c)(u + v)

1 + uv
c2

.

Hence,

w = u + v

1 + uv
c2

.

Prove that
∫ a

−a
cosh x sinh x dx = 0 for all a.

69. (a) Show that y = tanh t satisfies the differential equation dy/dt = 1 − y2 with initial condition y(0) = 0.
(b) Show that for arbitrary constants A, B, the function

y = A tanh(Bt)

satisfies

dy

dt
= AB − B

A
y2, y(0) = 0

(c) Let v(t) be the velocity of a falling object of mass m. For large velocities, air resistance is proportional to the square
of velocity v(t)2. If we choose coordinates so that v(t) > 0 for a falling object, then by Newton’s Law of Motion, there
is a constant k > 0 such that

dv

dt
= g − k

m
v2

Solve for v(t) by applying the result of (b) with A = √
gm/k and B = √

gk/m.
(d) Calculate the terminal velocity lim

t→∞ v(t).

(e) Find k if m = 150 lb and the terminal velocity is 100 mph.

solution

(a) First, note that if we divide the identity cosh2 t − sinh2 t = 1 by cosh2 t , we obtain the identity 1 − tanh2 t = sech2 t .
Now, let y = tanh t . Then

dy

dt
= sech2 t = 1 − tanh2 t = 1 − y2.

Furthermore, y(0) = tanh 0 = 0.
(b) Let y = A tanh(Bt). Then

dy

dt
= AB sech2(Bt) = AB(1 − tanh2(Bt)) = AB

(
1 − y2

A2

)
= AB − By2

A
.

Furthermore, y(0) = A tanh(0) = 0.
(c) Matching the differential equation

dv

dt
= g − k

m
v2

with the template

dv

dt
= AB − B

A
v2

from part (b) yields

AB = g and
B

A
= k

m
.
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Solving for A and B gives

A =
√

mg

k
and B =

√
kg

m
.

Thus

v(t) = A tanh(Bt) =
√

mg

k
tanh

(√
kg

m
t

)
.

(d) lim
t→∞ v(t) =

√
mg

k
lim

t→∞ tanh

(√
kg
m t

)
=

√
mg

k

(e) Substitute m = 150 lb and g = 32 ft/sec2 = 78545.5 miles/hr2 into the equation for the terminal velocity obtained
in part (d) and then solve for k. This gives

k = 150(78545.5)

1002
= 1178.18 lb/mile.

In Exercises 70–72, a flexible chain of length L is suspended between two poles of equal height separated by a distance
2M (Figure 9). By Newton’s laws, the chain describes a curve (called a catenary) with equation y = a cosh(x/a) + C.
The constant C is arbitrary and a is the number such that L = 2a sinh(M/a). The sag s is the vertical distance from the
highest to the lowest point on the chain.

y = a cosh(x/a)

2 M

s

x

y

FIGURE 9 Chain hanging between two poles describes the curve y = a cosh(x/a).

Suppose that L = 120 and M = 50. Experiment with your calculator to find an approximate value of a

satisfying L = 2a sinh(M/a) (for greater accuracy, use Newton’s method or a computer algebra system).

71. Let M be a fixed constant. Show that the sag is given by s = a cosh(M/a) − a.

(a) Calculate
ds

da
.

(b) Calculate da/dL by implicit differentiation using the relation L = 2a sinh(M/a).

(c) Use (a) and (b) and the Chain Rule to show that

ds

dL
= ds

da

da

dL
= cosh(M/a) − (M/a) sinh(M/a) − 1

2 sinh(M/a) − (2M/a) cosh(M/a)
6

solution The sag in the curve is

s = y(M) − y(0) = a cosh

(
M

a

)
+ C − (a cosh 0 + C) = a cosh

(
M

a

)
− a.

(a)
ds

da
= cosh

(
M

a

)
− M

a
sinh

(
M

a

)
− 1

(b) If we differentiate the relation L = 2a sinh

(
M

a

)
with respect to a, we find

0 = 2
da

dL
sinh

(
M

a

)
− 2M

a

da

dL
cosh

(
M

a

)
.

Solving for da/dL yields

da

dL
=

(
2 sinh

(
M

a

)
− 2M

a
cosh

(
M

a

))−1
.

(c) By the Chain Rule,

ds

dL
= ds

da
· da

dL
.

The formula for ds/dL follows upon substituting the results from parts (a) and (b).

Assume that M = 50 and L = 160. In this case, a CAS can be used to show that a ≈ 28.46.

(a) Use Eq. (6) and the Linear Approximation to estimate the increase in sag if L is increased from L = 160 to
L = 161 and from L = 160 to L = 165.

(b) If you have a CAS, compute s(161) − s(160) and s(165) − s(160) directly and compare with your estimates
i ( )
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73. Prove that every function f (x) is the sum of an even function f+(x) and an odd function f−(x). [Hint:f±(x) =
1
2 (f (x) ± f (−x)).] Express f (x) = 5ex + 8e−x in terms of cosh x and sinh x.

solution Let f+(x) = f (x)+f (−x)
2 and f−(x) = f (x)−f (−x)

2 . Then f+ + f− = 2f (x)
2 = f (x). Moreover,

f+(−x) = f (−x) + f (−(−x))

2
= f (−x) + f (x)

2
= f+(x),

so f+(x) is an even function, while

f−(−x) = f (−x) − f (−(−x))

2
= f (−x) − f (x)

2
= − (f (x) − f (−x))

2
= −f−(x),

so f−(x) is an odd function.
For f (x) = 5ex + 8e−x , we have

f+(x) = 5ex + 8e−x + 5e−x + 8ex

2
= 8 cosh x + 5 cosh x = 13 cosh x

and

f−(x) = 5ex + 8e−x − 5e−x − 8ex

2
= 5 sinh x − 8 sinh x = −3 sinh x.

Therefore, f (x) = f+(x) + f−(x) = 13 cosh x − 3 sinh x.

Use the method of the previous problem to express

f (x) = 7e−3x + 4e3x

in terms of sinh(3x) and cosh(3x).

75. In the Excursion, we discussed the relations

cosh(it) = cos t and sinh(it) = i sin t

Use these relations to show that the identity cos2 t + sin2 t = 1 results from the identity cosh2 x − sinh2 x = 1 by setting
x = it .

solution Substituting x = it into cosh2 x − sinh2 x = 1 yields cosh2(it) − sinh2(it) = 1. Since cosh2(it) = cos2 t

and sinh2(it) = (i sin t)2 = − sin2 t , it follows that cos2 t + sin2 t = 1.

CHAPTER REVIEW EXERCISES

1. Match each quantity (a)–(d) with (i), (ii), or (iii) if possible, or state that no match exists.

(a) 2a3b (b)
2a

3b

(c) (2a)b (d) 2a−b3b−a

(i) 2ab (ii) 6a+b (iii)
( 2

3

)a−b

solution

(a) No match.

(b) No match.

(c) (i): (2a)b = 2ab.

(d) (iii): 2a−b3b−a = 2a−b

(
1

3

)a−b

=
(

2

3

)a−b

.

Match each quantity (a)–(d) with (i), (ii), or (iii) if possible, or state that no match exists.

(a) ln
(a

b

)
(b)

ln a

ln b

(c) eln a−ln b (d) (ln a)(ln b)

(i) ln a + ln b (ii) ln a − ln b (iii)
a

b

3. Which of the following is equal to
d

dx
2x?

(a) 2x (b) (ln 2)2x

(c) x2x−1 (d)
1

ln 2
2x

solution The derivative of f (x) = 2x is

d

dx
2x = 2x ln 2.

Hence, the correct answer is (b).
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Find the inverse of f (x) =
√

x3 − 8 and determine its domain and range.5. Find the inverse of f (x) = x − 2

x − 1
and determine its domain and range.

solution To find the inverse of f (x) = x−2
x−1 , we solve y = x−2

x−1 for x as follows:

x − 2 = y(x − 1) = yx − y

x − yx = 2 − y

x = 2 − y

1 − y
.

Therefore,

f −1(x) = 2 − x

1 − x
= x − 2

x − 1
.

The domain of f −1 is the range of f , namely {x : x �= 1}; the range of f −1 is the domain of f , namely {y : y �= 1}.

Find a domain on which h(t) = (t − 3)2 is one-to-one and determine the inverse on this domain.
7. Show that g(x) = x

x − 1
is equal to its inverse on the domain {x : x �= 1}.

solution To show that g(x) = x
x−1 is equal to its inverse, we need to show that for x �= 1,

g (g(x)) = x.

First, we notice that for x �= 1, g(x) �= 1. Therefore,

g (g(x)) = g

(
x

x − 1

)
=

x
x−1

x
x−1 − 1

= x

x − (x − 1)
= x

1
= x.

Describe the graphical interpretation of the relation g′(x) = 1/f ′(g(x)), where f (x) and g(x) are inverses of
each other.

9. Suppose that g(x) is the inverse of f (x). Match the functions (a)–(d) with their inverses (i)–(iv).

(a) f (x) + 1
(b) f (x + 1)

(c) 4f (x)

(d) f (4x)

(i) g(x)/4
(ii) g(x/4)

(iii) g(x − 1)

(iv) g(x) − 1

solution
(a) (iii): f (x) + 1 and g(x − 1) are inverse functions:

f (g(x − 1)) + 1 = (x − 1) + 1 = x;
g(f (x) + 1 − 1) = g(f (x)) = x.

(b) (iv): f (x + 1) and g(x) − 1 are inverse functions:

f (g(x) − 1 + 1) = f (g(x)) = x;
g(f (x + 1)) − 1 = (x + 1) − 1 = x.

(c) (ii): 4f (x) and g(x/4) are inverse functions:

4f (g(x/4)) = 4(x/4) = x;
g(4f (x)/4) = g(f (x)) = x.

(d) (i): f (4x) and g(x)/4 are inverse functions:

f (4 · g(x)/4) = f (g(x)) = x;
1

4
g(f (4x)) = 1

4
(4x) = x.

Find g′(8) where g(x) is the inverse of a differentiable function f (x) such that f (−1) = 8 and f ′(−1) = 12.11. Suppose that f (g(x)) = ex2
, where g(1) = 2 and g′(1) = 4. Find f ′(2).

solution We differentiate both sides of the equation f (g(x)) = ex2
to obtain,

f ′ (g(x)) g′(x) = 2xex2
.
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Setting x = 1 yields

f ′ (g(1)) g′(1) = 2e.

Since g(1) = 2 and g′(1) = 4, we find

f ′(2) · 4 = 2e,

or

f ′(2) = e

2
.

Show that if f (x) is a function satisfying f ′(x) = f (x)2, then its inverse g(x) satisfies g′(x) = x−2.In Exercises 13–42, find the derivative.

13. f (x) = 9e−4x

solution
d

dx
9e−4x = −36e−4x .

f (x) = ln(4x2 + 1)15. f (x) = e−x

x

solution
d

dx

(
e−x

x

)
= −xe−x − e−x

x2
= −e−x(x + 1)

x2
.

f (x) = ln(x + ex)
17. G(s) = (ln(s))2

solution
d

ds
(ln s)2 = 2 ln s

s
.

G(s) = ln(s2)
19. g(t) = e4t−t2

solution
d

dt
e4t−t2 = (4 − 2t)e4t−t2

.

g (t) = t2e1/t
21. f (θ) = ln(sin θ)

solution
d

dθ
ln(sin θ) = cos θ

sin θ
= cot θ .

f (θ) = sin(ln θ)
23. f (x) = ln(ex − 4x)

solution
d

dx
ln(ex − 4x) = ex − 4

ex − 4x
.

h(z) = sec(z + ln z)25. f (x) = ex+ln x

solution
d

dx
ex+ln x =

(
1 + 1

x

)
ex+ln x .

f (x) = esin2x
27. h(y) = 21−y

solution
d

dy
21−y = −21−y ln 2.

h (y) = 1 + ey

1 − ey

29. f (x) = 7−2x

solution
d

dx
7−2x = −2 ln 7 · 7−2x .

g(x) = tan−1(ln x)
31. G(s) = cos−1(s−1)

solution
d

ds
cos−1(s−1) = −1√

1 −
(

1
s

)2

(
− 1

s2

)
= 1√

s4 − s2
.

G(s) = tan−1(
√

s)
33. f (x) = ln(csc−1 x)

solution
d

dx
ln(csc−1 x) = − 1

|x|
√

x2 − 1 csc−1 x
.

f (x) = esec−1 x
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35. R(s) = sln s

solution Rewrite

R(s) =
(
eln s

)ln s = e(ln s)2
.

Then

dR

ds
= e(ln s)2 · 2 ln s · 1

s
= 2 ln s

s
sln s .

Alternately, R(s) = sln s implies that ln R = ln
(
sln s

)
= (ln s)2. Thus,

1

R

dR

ds
= 2 ln s · 1

s
or

dR

ds
= 2 ln s

s
sln s .

f (x) = (cos2 x)cos x37. G(t) = (sin2 t)t

solution Rewrite

G(t) =
(
eln sin2 t

)t = e2t ln sin t .

Then

dG

dt
= e2t ln sin t

(
2t · cos t

sin t
+ 2 ln sin t

)
= 2(sin2 t)t (t cot t + ln sin t).

Alternately, G(t) = (sin2 t)t implies that ln G = t ln sin2 t = 2t ln sin t . Thus,

1

G

dG

dt
= 2t · cos t

sin t
+ 2 ln sin t,

and

dG

dt
= 2(sin2 t)t (t cot t + ln sin t).

h(t) = t (t
t )

39. g(t) = sinh(t2)

solution
d

dt
sinh(t2) = 2t cosh(t2).

h(y) = y tanh(4y)
41. g(x) = tanh−1(ex)

solution
d

dx
tanh−1(ex) = 1

1 − (ex)2
ex = ex

1 − e2x
.

g(t) =
√

t2 − 1 sinh−1 t
43. The tangent line to the graph of y = f (x) at x = 4 has equation y = −2x + 12. Find the equation of the tangent

line to y = g(x) at x = 4, where g(x) is the inverse of f (x).

solution Because the tangent line to the graph of y = f (x) at x = 4 has equation y = −2x + 12, it follows that

f (4) = −2(4) + 12 = 4 and f ′(4) = −2.

Thus, g(4) = 4 and

g′(4) = 1

f ′(g(4))
= 1

f ′(4)
= −1

2
,

where g(x) is the inverse of f (x). Finally, the equation of the tangent line to y = g(x) at x = 4 is

y = −1

2
(x − 4) + 4 = −1

2
x + 6.

In Exercises 44–46, let f (x) = xe−x .

Plot f (x) and use the zoom feature to find two solutions of f (x) = 0.3.
45. Show that f (x) has an inverse on [1, ∞). Let g(x) be this inverse. Find the domain and range of g(x) and compute

g′(2e−2).

solution Let f (x) = xe−x . Then f ′(x) = e−x(1 − x). On [1,∞), f ′(x) < 0, so f (x) is decreasing and therefore

one-to-one. It follows that f (x) has an inverse on [1, ∞). Let g(x) denote this inverse. Because f (1) = e−1 and f (x) → 0
as x → ∞, the domain of g(x) is (0, e−1], and the range is [1, ∞).
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To determine g′(2e−2), we use the formula g′(x) = 1/f ′(g(x)). Because f (2) = 2e−2, it follows that g(2e−2) = 2.
Then,

g′(2e−2) = 1

f ′(g(2e−2))
= 1

f ′(2)
= 1

−e−2
= −e2.

Show that f (x) = c has two solutions if 0 < c < e−1.
47. Find the local extrema of f (x) = e2x − 4ex .

solution Let f (x) = e2x − 4ex . Then f ′(x) = 2e2x − 4ex = 0 when x = ln 2. Next, we use the Second Derivative

Test. With f ′′(x) = 4e2x − 4ex , it follows that

f ′′(ln 2) = 4e2 ln 2 − 4eln 2 = 16 − 8 = 8 > 0.

Hence, x = ln 2 corresponds to a local minimum. Since

f (ln 2) = e2 ln 2 − 4eln 2 = 4 − 8 = −4,

we conclude that the point (ln 2,−4) is a local minimum.

Find the points of inflection of f (x) = ln(x2 + 1) and determine whether the concavity changes from up to down
or vice versa.

In Exercises 49–52, find the local extrema and points of inflection, and sketch the graph over the interval specified. Use
L’Hôpital’s Rule to determine the limits as x → 0+ or x → ±∞ if necessary.

49. y = x ln x, x > 0

solution Let y = x ln x. Then

y′ = ln x + x

(
1

x

)
= 1 + ln x,

and y′′ = 1
x . Solving y′ = 0 yields the critical point x = e−1. Since y′′(e−1) = e > 0, the function has a local minimum

at x = e−1. y′′ is positive for x > 0, hence the function is concave up for x > 0 and there are no points of inflection. As
x → 0+ and as x → ∞, we find

lim
x→0+ x ln x = lim

x→0+
ln x

x−1
= lim

x→0+
x−1

−x−2
= lim

x→0+(−x) = 0;

lim
x→∞ x ln x = ∞.

The graph is shown below:

2

1 2 3 4

4

6

y

x

y = xe−x2/2
51. y = x(ln x)2, x > 0

solution Let y = x(log x)2. Then

y′ = (log x)2 + x · 2 log x

x ln 10
= (log x)

(
2

ln 10
+ log x

)
,

and

y′′ = 2 log x

x ln 10
+ 2

ln 10
· 1

x ln 10
= 2

x ln 10

(
log x + 1

ln 10

)
.

Solving y′ = 0 yields the critical points x = 1 and x = e−2. Because

y′′(1) = 2

(ln 10)2
> 0 and y′′(e−2) = −2(log e)2

e−2
< 0,
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we conclude that the function has a local minimum at x = 1 and a local maximum at x = e−2. We see that y′′ > 0 for
x > e−1 and y′′ < 0 for 0 < x < e−1. Therefore, there is a point of inflection at x = e−1. As x → 0+ and as x → ∞,
we find

lim
x→0+ x(log x)2 = lim

x→0+
(log x)2

1/x
= lim

x→0+
2 log x 1

ln 10 · 1
x

−1/x2

= − 2

ln 10
lim

x→0+
log x

1/x
= − 2

ln 10
lim

x→0+

1
ln 10 · 1

x

−1/x2

= 2

(ln 10)2
lim

x→0+ x = 0; and

lim
x→∞ x(log x)2 = ∞.

The graph is shown below:

0.5
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0.8

1.0
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y

x

y = tan−1

(
x2

4

)In Exercises 53–58, use logarithmic differentiation to find the derivative.

53. y = (x + 1)3

(4x − 2)2

solution Let y = (x + 1)3

(4x − 2)2
. Then

ln y = ln

(
(x + 1)3

(4x − 2)2

)
= ln (x + 1)3 − ln (4x − 2)2 = 3 ln(x + 1) − 2 ln(4x − 2).

By logarithmic differentiation,

y′
y

= 3

x + 1
− 2

4x − 2
· 4 = 3

x + 1
− 4

2x − 1
,

so

y′ = (x + 1)3

(4x − 2)2

(
3

x + 1
− 4

2x − 1

)
.

y = (x + 1)(x + 2)2

(x + 3)(x + 4)

55. y = e(x−1)2
e(x−3)2

solution Let y = e(x−1)2
e(x−3)2

. Then

ln y = ln
(
e(x−1)2

e(x−3)2) = ln
(
e(x−1)2+(x−3)2) = (x − 1)2 + (x − 3)2.

By logarithmic differentiation,

y′
y

= 2(x − 1) + 2(x − 3) = 4x − 8,

so

y′ = 4e(x−1)2
e(x−3)2

(x − 2).

y = ex sin−1 x

ln x

57. y = e3x(x − 2)2

(x + 1)2

solution Let y = e3x(x − 2)2

(x + 1)2
. Then

ln y = ln

(
e3x(x − 2)2

(x + 1)2

)
= ln e3x + ln (x − 2)2 − ln (x + 1)2

= 3x + 2 ln(x − 2) − 2 ln(x + 1).



June 9, 2011 LTSV SSM Rough

Chapter Review Exercises 437

By logarithmic differentiation,

y′
y

= 3 + 2

x − 2
− 2

x + 1
,

so

y = e3x(x − 2)2

(x + 1)2

(
3 + 2

x − 2
− 2

x + 1

)
.

y = x
√

x(xln x)
59. Image Processing The intensity of a pixel in a digital image is measured by a number u between 0 and 1. Often,

images can be enhanced by rescaling intensities (Figure 1), where pixels of intensity u are displayed with intensity g(u)

for a suitable function g(u). One common choice is the sigmoidal correction, defined for constants a, b by

g(u) = f (u) − f (0)

f (1) − f (0)
where f (u) = (

1 + eb(a−u)
)−1

Figure 2 shows that g(u) reduces the intensity of low-intensity pixels (where g(u) < u) and increases the intensity of
high-intensity pixels.

(a) Verify that f ′(u) > 0 and use this to show that g(u) increases from 0 to 1 for 0 ≤ u ≤ 1.

(b) Where does g(u) have a point of inflection?

Original Sigmoidal correction

FIGURE 1

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

u

y

y = g(u)

y = u

FIGURE 2 Sigmoidal correction with
a = 0.47, b = 12.

solution

(a) With f (u) = (1 + eb(a−u))−1, it follows that

f ′(u) = −(1 + eb(a−u))−2 · −beb(a−u) = beb(a−u)

(1 + eb(a−u))2
> 0

for all u. Next, observe that

g(0) = f (0) − f (0)

f (1) − f (0)
= 0, g(1) = f (1) − f (0)

f (1) − f (0)
= 1,

and

g′(u) = 1

f (1) − f (0)
f ′(u) > 0

for all u. Thus, g(u) increases from 0 to 1 for 0 ≤ u ≤ 1.

(b) Working from part (a), we find

f ′′(u) = b2eb(a−u)(2eb(a−u) − 1)

(1 + eb(a−u))3
.

Because

g′′(u) = 1

f (1) − f (0)
f ′′(u),

it follows that g(u) has a point of inflection when

2eb(a−u) − 1 = 0 or u = a + 1

b
ln 2.

Let N(t) be the size of a tumor (in units of 106 cells) at time t (in days). According to the Gompertz Model,
dN/dt = N(a − b ln N) where a, b are positive constants. Show that the maximum value of N is e

a
b and that the

tumor increases most rapidly when N = e
a
b
−1.
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In Exercises 61–66, use the given substitution to evaluate the integral.

61.
∫

(ln x)2 dx

x
, u = ln x

solution Let u = ln x. Then du = dx
x , and

∫
(ln x)2 dx

x
=

∫
u2 du = u3

3
+ C = (ln x)3

3
+ C.

∫
dx

4x2 + 9
, u = 2x

3

63.
∫

dx√
e2x − 1

, u = e−x

solution We first rewrite the integrand in terms of e−x . That is,

∫
1√

e2x − 1
dx =

∫
1√

e2x
(
1 − e−2x

) dx =
∫

1

ex
√

1 − e−2x
dx =

∫
e−x dx√
1 − e−2x

Now, let u = e−x . Then du = −e−x dx, and∫
1√

e2x − 1
dx = −

∫
du√

1 − u2
= −sin−1u + C = −sin−1(e−x) + C.

∫
cos−1 t dt√

1 − t2
, u = cos−1 t

65.
∫

dt

t (1 + (ln t)2)
, u = ln t

solution Let u = ln t . Then, du = 1
t dt and∫

dt

t (1 + (ln t)2)
=

∫
du

1 + u2
= tan−1u + C = tan−1(ln t) + C.

∫
dt

cosh2 t + sinh2 t
, u = tanh t

In Exercises 67–92, calculate the integral.

67.
∫

e9−2x dx

solution Let u = 9 − 2x. Then du = −2 dx, and∫
e9−2x dx = −1

2

∫
eu du = −1

2
eu + C = −1

2
e9−2x + C.

∫
x2ex3

dx
69.

∫
e−2x sin(e−2x) dx

solution Let u = e−2x . Then du = −2e−2xdx, and∫
e−2x sin

(
e−2x

)
dx = −1

2

∫
sin u du = cos u

2
+ C = 1

2
cos

(
e−2x

)
+ C.

∫
cos(ln x) dx

x

71.
∫ 3

1
e4x−3 dx

solution
∫ 3

1
e4x−3 dx = 1

4
e4x−3

∣∣∣∣3
1

= 1

4
(e9 − e).

∫
dx

x
√

ln x

73.
∫ e

1

ln x dx

x

solution Let u = ln x. Then du = dx
x and the new limits of integration are u = ln 1 = 0 and u = ln e = 1. Thus,

∫ e

1

ln x dx

x
=

∫ 1

0
u du = 1

2
u2

∣∣∣∣1
0

= 1

2
.

∫ ln 3

0
ex−ex

dx
75.

∫ 2/3

1/3

dx√
1 − x2

solution
∫ 2/3

1/3

dx√
1 − x2

= sin−1 x

∣∣∣∣2/3

1/3
= sin−1 2

3
− sin−1 1

3
.
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∫ 12

4

dx

x
√

x2 − 1

77.
∫ 1

0
cosh(2t) dt

solution Let u = 2t . Then t = u
2 and dt = du

2 . The new limits of integration are u = 0 and u = 2. Thus,

∫ 1

0
cosh(2t) dt = 1

2

∫ 2

0
cosh u du = 1

2
sinh u

∣∣∣∣2
0

= 1

2
(sinh 2 − sinh 0) = 1

2
sinh 2.

∫ 2

0

dt

4t + 12

79.
∫ 3

0

x dx

x2 + 9

solution Let u = x2 + 9. Then du = 2x dx, and the new limits of integration are u = 9 and u = 18. Thus,

∫ 3

0

x dx

x2 + 9
= 1

2

∫ 18

9

du

u
= 1

2
ln u

∣∣∣∣18

9
= 1

2
(ln 18 − ln 9) = 1

2
ln

18

9
= 1

2
ln 2.

∫ 3

0

dx

x2 + 9

81.
∫

x dx√
1 − x4

solution Let u = x2. Then du = 2x dx, and
√

1 − x4 =
√

1 − u2. Thus,∫
x dx√
1 − x4

= 1

2

∫
du√

1 − u2
= 1

2
sin−1u + C = 1

2
sin−1(x2) + C.

∫
ex10x dx

83.
∫

e−x dx

(e−x + 2)3

solution Let u = e−x + 2. Then du = −e−x dx and

∫
e−x dx

(e−x + 2)3
= −

∫
u−3 du = 1

2u2
+ C = 1

2(e−x + 2)2
+ C.

∫
sin θ cos θecos2 θ+1 dθ

85.
∫ π/6

0
tan 2θ dθ

solution
∫ π/6

0
tan 2θ dθ = 1

2
ln | sec 2θ |

∣∣∣∣π/6

0
= 1

2
ln 2.

∫ 2π/3

π/3
cot

(
1

2
θ

)
dθ

87.
∫

sin−1 x dx√
1 − x2

solution Let u = sin−1x. Then du = 1√
1−x2

dx and

∫
sin−1x dx√

1 − x2
=

∫
u du = 1

2
u2 + C = 1

2
(sin−1x)

2 + C.

∫
tanh 5x dx

89.
∫

sinh3 x cosh x dx

solution Let u = sinh x. Then du = cosh x dx and

∫
sinh3x cosh x dx =

∫
u3 du = u4

4
+ C = sinh4x

4
+ C.

∫ 1

0

dx

25 − x2

91.
∫ 4

0

dx

2x2 + 1

solution Let u = √
2x. Then du = √

2 dx, and the new limits of integration are u = 0 and u = 4
√

2. Thus,

∫ 4

0

dx

2x2 + 1
=

∫ 4
√

2

0

1√
2

du

u2 + 1
= 1√

2

∫ 4
√

2

0

du

u2 + 1

= 1√
2

tan−1u

∣∣∣∣4
√

2

0
= 1√

2

(
tan−1(4

√
2) − tan−10

)
= 1√

2
tan−1(4

√
2).
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∫ 6

2

dx

x
√

x2 + 12

93. The isotope Thorium-234 has a half-life of 24.5 days.

(a) Find the differential equation satisfied by the amount y(t) of Thorium-234 in a sample at time t .

(b) At t = 0, a sample contains 2 kg of Thorium-234. How much remains after 1 year?

solution

(a) By the equation for half-life,

24.5 = ln 2

k
, so k = ln 2

24.5
≈ 0.028 days−1.

Therefore, the differential equation for y(t) is

y′ = −0.028y.

(b) If there are 2 kg of Thorium-234 at t = 0, then y(t) = 2e−0.028t .After one year (365 days), the amount of Thorium-234
is

y(365) = 2e−0.028(365) = 7.29 × 10−5 kg = 0.0729 grams.

The Oldest Snack Food In Bat Cave, New Mexico, archaeologists found ancient human remains, including

cobs of popping corn, that had a C14 to C12 ratio equal to around 48% of that found in living matter. Estimate the
age of the corn cobs.

95. The C14 to C12 ratio of a sample is proportional to the disintegration rate (number of beta particles emitted per
minute) that is measured directly with a Geiger counter. The disintegration rate of carbon in a living organism is 15.3 beta
particles/min per gram. Find the age of a sample that emits 9.5 beta particles/min per gram.

solution Let t be the age of the sample in years. Because the disintegration rate for the sample has dropped from

15.3 beta particles/min per gram to 9.5 beta particles/min per gram and the C14 to C12 ratio is proportional to the
disintegration rate, it follows that

e−0.000121t = 9.5

15.3
,

so

t = − 1

0.000121
ln

9.5

15.3
≈ 3938.5.

We conclude that the sample is approximately 3938.5 years old.

An investment pays out $5000 at the end of the year for 3 years. Compute the PV, assuming an interest rate of 8%.
97. In a first-order chemical reaction, the quantity y(t) of reactant at time t satisfies y′ = −ky, where k > 0. The

dependence of k on temperature T (in kelvins) is given by the Arrhenius equation k = Ae−Ea/(RT ), where Ea is the
activation energy (J-mol−1), R = 8.314 J-mol−1-K−1, and A is a constant. Assume that A = 72 × 1012 hour−1 and
Ea = 1.1 × 105. Calculate dk/dT for T = 500 and use the Linear Approximation to estimate the change in k if T is
raised from 500 to 510 K.

solution Let

k = Ae−Ea/(RT ).

Then

dk

dT
= AEa

RT 2
e−Ea/(RT ).

For A = 72 × 1012, R = 8.314 and Ea = 1.1 × 105 we have

dk

dT
= 72 × 1012 · 1.1 × 105

8.314

e− 1.1×105
8.314T

T 2
= 9.53 × 1017e− 1.32×104

T

T 2
.

The derivative for T = 500 is thus

dk

dT

∣∣∣∣
T =500

= 9.53 × 1017e− 1.32×104
500

5002
≈ 12.27 hours−1K−1.

Using the linear approximation we find

�k ≈ dk

dT

∣∣∣∣
T =500

· (510 − 500) = 12.27 · 10 = 122.7 hours−1.
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Find the solutions to y′ = 4(y − 12) satisfying y(0) = 20 and y(0) = 0, and sketch their graphs.
99. Find the solutions to y′ = −2y + 8 satisfying y(0) = 3 and y(0) = 4, and sketch their graphs.

solution First, rewrite the differential equation as y′ = −2(y − 4); from here we see that the general solution is

y(t) = 4 + Ce−2t ,

for some constant C. If y(0) = 3, then

3 = 4 + Ce0 and C = −1.

Thus, y(t) = 4 − e−2t . If y(0) = 4, then

4 = 4 + Ce0 and C = 0;
hence, y(t) = 4. The graphs of the two solutions are shown below.

−0.5

−2

2

4

y

y = 4

y = 4 − e−2t

x
0.5 1.0 1.5

Show that y = sin−1 x satisfies the differential equation y′ = sec y with initial condition y(0) = 0.
101. What is the limit lim

t→∞ y(t) if y(t) is a solution of:

(a)
dy

dt
= −4(y − 12)? (b)

dy

dt
= 4(y − 12)?

(c)
dy

dt
= −4y − 12?

solution

(a) The general solution of
dy

dt
= −4(y − 12) is y(t) = 12 + Ce−4t , where C is an arbitrary constant. Regardless of

the value of C,

lim
t→∞ y(t) = lim

t→∞(12 + Ce−4t ) = 12.

(b) The general solution of
dy

dt
= 4(y − 12) is y(t) = 12 + Ce4t , where C is an arbitrary constant. Here, the limit

depends on the value of C. Specifically,

lim
t→∞ y(t) = lim

t→∞(12 + Ce4t ) =

⎧⎪⎨
⎪⎩

∞, C > 0

12, C = 0

−∞, C < 0

(c) The general solution of
dy

dt
= −4y − 12 = −4(y + 3) is y(t) = −3 + Ce−4t , where C is an arbitrary constant.

Regardless of the value of C,

lim
t→∞ y(t) = lim

t→∞(−3 + Ce−4t ) = −3.

Let A and B be constants. Prove that if A > 0, then all solutions of dy
dt

+ Ay = B approach the same limit as
t → ∞.

103. An equipment upgrade costing $1 million will save a company $320,000 per year for 4 years. Is this a good investment
if the interest rate is r = 5%? What is the largest interest rate that would make the investment worthwhile? Assume that
the savings are received as a lump sum at the end of each year.

solution With an interest rate of r = 5%, the present value of the four payments is

$320,000
(
e−0.05 + e−0.1 + e−0.15 + e−0.2) = $1,131,361.78.

As this is greater than the $1 million cost of the upgrade, this is a good investment. To determine the largest interest rate
that would make the investment worthwhile, we must solve the equation

320,000
(
e−r + e−2r + e−3r + e−4r

) = 1,000,000

for r . Using a computer algebra system, we find r = 10.13%.

Find the PV of an income stream paying out continuously at a rate of 5000e−0.1t dollars per year for 5 years,
assuming an interest rate of r = 4%.
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In Exercises 105–108, let P(t) denote the balance at time t (years) of an annuity that earns 5% interest continuously
compounded and pays out $2000/year continuously.

105. Find the differential equation satisfied by P(t).

solution Since money is withdrawn continuously at a rate of $2000 a year and the growth due to interest is 0.05P ,
the rate of change of the balance is

P ′(t) = 0.05P − 2000.

Thus, the differential equation satisfied by P(t) is

P ′(t) = 0.05(P − 40, 000).

Determine P(2) if P(0) = $5000.
107. When does the annuity run out of money if P(0) = $2000?

solution In the previous exercise, we found that

P(t) = 40,000 + Ce0.05t .

If P(0) = 2000, then

2000 = 40,000 + Ce0.05·0 = 40,000 + C

or

C = −38,000.

Thus,

P(t) = 40,000 − 38,000e0.05t .

The annuity runs out of money when P(t) = 0; that is, when

40,000 − 38,000e0.05t = 0.

Solving for t yields

t = 1

0.05
ln

(
40,000

38,000

)
≈ 1.03.

The money runs out after roughly 1.03 years.

What is the minimum initial balance that will allow the annuity to make payments indefinitely?In Exercises 109–120, verify that L’Hôpital’s Rule applies and evaluate the limit.

109. lim
x→3

4x − 12

x2 − 5x + 6

solution The given expression is an indeterminate form of type 0
0 , therefore L’Hôpital’s Rule applies. We find

lim
x→3

4x − 12

x2 − 5x + 6
= lim

x→3

4

2x − 5
= 4

2 · 3 − 5
= 4.

lim
x→−2

x3 + 2x2 − x − 2

x4 + 2x3 − 4x − 8

111. lim
x→0+ x1/2 ln x

solution First rewrite the function as ln x
x−1/2 . The limit is now an indeterminate form of type ∞∞ , hence we may apply

L’Hôpital’s Rule. We find

lim
x→0+ x1/2 ln x = lim

x→0+
ln x

x−1/2
= lim

x→0+
x−1

− 1
2x−3/2

= lim
x→0+ −2x1/2 = 0.

lim
t→∞

ln(et + 1)

t

113. lim
θ→0

2 sin θ − sin 2θ

sin θ − θ cos θ

solution The given expression is an indeterminate form of type 0
0 ; hence, we may apply L’Hôpital’s Rule. We find

lim
θ→0

2 sin θ − sin 2θ

sin θ − θ cos θ
= lim

θ→0

2 cos θ − 2 cos 2θ

cos θ − (cos θ − θ sin θ)
= lim

θ→0

2 cos θ − 2 cos 2θ

θ sin θ

= lim
θ→0

−2 sin θ + 4 sin 2θ

sin θ + θ cos θ
= lim

θ→0

−2 cos θ + 8 cos 2θ

cos θ + cos θ − θ sin θ
= −2 + 8

1 + 1 − 0
= 3.
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lim
x→0

√
4 + x − 2 8√1 + x

x2

115. lim
t→∞

ln(t + 2)

log2 t

solution The limit is an indeterminate form of type ∞∞ ; hence, we may apply L’Hôpital’s Rule. We find

lim
t→∞

ln(t + 2)

log2 t
= lim

t→∞
1

t+2
1

t ln 2

= lim
t→∞

t ln 2

t + 2
= lim

t→∞
ln 2

1
= ln 2.

lim
x→0

(
ex

ex − 1
− 1

x

)
117. lim

y→0

sin−1 y − y

y3

solution The limit is an indeterminate form of type 0
0 ; hence, we may apply L’Hôpital’s Rule. We find

lim
y→0

sin−1 y − y

y3
= lim

y→0

1√
1−y2

− 1

3y2
= lim

y→0

y(1 − y2)−3/2

6y
= lim

y→0

(1 − y2)−3/2

6
= 1

6
.

lim
x→1

√
1 − x2

cos−1 x

119. lim
x→0

sinh(x2)

cosh x − 1

solution The limit is an indeterminate form of type 0
0 ; hence, we may apply L’Hôpital’s Rule. We find

lim
x→0

sinh(x2)

cosh x − 1
= lim

x→0

2x cosh(x2)

sinh x
= lim

x→0

2 cosh(x2) + 4x2 sinh(x2)

cosh x
= 2 + 0

1
= 2.

lim
x→0

tanh x − sinh x

sin x − x

121. Explain why L’Hôpital’s Rule gives no information about lim
x→∞

2x − sin x

3x + cos 2x
. Evaluate the limit by another

method.

solution As x → ∞, both 2x − sin x and 3x + cos 2x tend toward infinity, so L’Hôpital’s Rule applies to

lim
x→∞

2x − sin x

3x + cos 2x
; however, the resulting limit, lim

x→∞
2 − cos x

3 − 2 sin 2x
, does not exist due to the oscillation of sin x and

cos x.
To evaluate the limit, we note

lim
x→∞

2x − sin x

3x + cos 2x
= lim

x→∞
2 − sin x

x

3 + cos 2x
x

= 2

3
.

Let f (x) be a differentiable function with inverse g(x) such that f (0) = 0 and f ′(0) �= 0. Prove that

lim
x→0

f (x)

g(x)
= f ′(0)2

123. Calculate the limit

lim
n→∞

(
1 + 4

n

)n

solution Let t = n/4. Then n = 4t and

lim
n→∞

(
1 + 4

n

)n

= lim
t→∞

(
1 + 1

t

)4t

= lim
t→∞

[(
1 + 1

t

)t
]4

=
[

lim
t→∞

(
1 + 1

t

)t
]4

= e4.

Calculate the limit

lim
n→∞

(
1 + 4

n

)3n

125. In this exercise, we prove that for all x > 0,

x − x2

2
≤ ln(1 + x) ≤ x 1

(a) Show that ln(1 + x) =
∫ x

0

dt

1 + t
for x > 0.

(b) Verify that 1 − t ≤ 1

1 + t
≤ 1 for all t > 0.

(c) Use (b) to prove Eq. (1).

(d) Verify Eq. (1) for x = 0.5, 0.1, and 0.01.
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solution
(a) Let x > 0. Then ∫ x

0

dt

1 + t
= ln(1 + t)

∣∣∣∣x
0

= ln(1 + x) − ln 1 = ln(1 + x).

(b) For t > 0, 1 + t > 1, so 1
1+t

< 1. Moreover, (1 − t)(1 + t) = 1 − t2 < 1. Because 1 + t > 0, it follows that

1 − t < 1
1+t

. Hence,

1 − t ≤ 1

1 + t
≤ 1.

(c) Integrating each expression in the result from part (b) from t = 0 to t = x yields

x − x2

2
≤ ln(1 + x) ≤ x.

(d) For x = 0.5, x = 0.1 and x = 0.01, we obtain the string of inequalities

0.375 ≤ 0.405465 ≤ 0.5

0.095 ≤ 0.095310 ≤ 0.1

0.00995 ≤0.00995033≤ 0.01,

respectively.

Let

F(x) = x
√

x2 − 1 − 2
∫ x

1

√
t2 − 1 dt

Prove that F(x) and cosh−1 x differ by a constant by showing that they have the same derivative. Then prove they
are equal by evaluating both at x = 1.

In Exercises 127–130, let gd(y) = tan−1(sinh y) be the so-called gudermannian, which arises in cartography. In a map
of the earth constructed by Mercator projection, points located y radial units from the equator correspond to points on
the globe of latitude gd(y).

127. Prove that
d

dy
gd(y) = sech y.

solution Let gd(y) = tan−1(sinh y). Then

d

dy
gd(y) = 1

1 + sinh2 y
cosh y = 1

cosh y
= sech y,

where we have used the identity 1 + sinh2 y = cosh2 y.

Let f (y) = 2 tan−1(ey) − π/2. Prove that gd(y) = f (y). Hint: Show that gd ′(y) = f ′(y) and f (0) = gd(0).
129. Show that t (y) = sinh−1(tan y) is the inverse of gd(y) for 0 ≤ y < π/2.

solution Let x = gd(y) = tan−1(sinh y). Solving for y yields y = sinh−1(tan x). Therefore,

gd−1(y) = sinh−1(tan y).

Verify that t (y) in Exercise 129 satisfies t ′(y) = sec y and find a value of a such that

t (y) =
∫ y

a

dt

cos t

131. Use L’Hôpital’s Rule to prove that for all a > 0 and b > 0,

lim
n→∞

(
a1/n + b1/n

2

)n

= √
ab

solution

lim
n→∞ ln

(
a1/n + b1/n

2

)n

= lim
n→∞ n ln

(
a1/n + b1/n

2

)
= lim

n→∞
ln

(
a1/n+b1/n

2

)
1
n

= lim
n→∞

1
a1/n+b1/n

(
− a1/n ln a

n2 − b1/n ln b
n2

)
− 1

n2

= lim
n→∞

1

a1/n + b1/n

(
a1/n ln a + b1/n ln b

)
= 1

2
(ln a + ln b) = ln

√
ab.

Hence,

lim
n→∞

(
a1/n + b1/n

2

)n

= eln
√

ab = √
ab.

Let

F(x) =
∫ x

2

dt

ln t
and G(x) = x

ln x

Verify that L’Hôpital’s Rule may be applied to the limit L lim
F(x)

and evaluate L
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133. Let f (x) = e−Ax2/2, where A > 0. Given any n numbers a1, a2, . . . , an, set

	(x) = f (x − a1)f (x − a2) · · · f (x − an)

(a) Assume n = 2 and prove that 	(x) attains its maximum value at the average x = 1
2 (a1 + a2). Hint: Show that

d/dx ln(f (x)) = −Ax and calculate 	′(x) using logarithmic differentiation.

(b) Show that for any n, 	(x) attains its maximum value at x = 1
n (a1 + a2 + · · · + an). This fact is related to the role

of f (x) (whose graph is a bell-shaped curve) in statistics.

solution

(a) For n = 2 we have,

	(x) = f (x − a1) f (x − a2) = e− A
2 (x−a1)

2 · e− A
2 (x−a2)

2 = e− A
2

(
(x−a1)

2+(x−a2)
2)

.

Since e− A
2 y is a decreasing function of y, it attains its maximum value where y is minimum. Therefore, we must find the

minimum value of

y = (x − a1)2 + (x − a2)2 = 2x2 − 2 (a1 + a2) x + a2
1 + a2

2 .

Now, y′ = 4x − 2(a1 + a2) = 0 when

x = a1 + a2

2
.

We conclude that 	(x) attains a maximum value at this point.

(b) We have

	(x) = e− A
2 (x−a1)

2 · e− A
2 (x−a2)

2 · · · · · e− A
2 (x−an)2 = e− A

2

(
(x−a1)

2+···+(x−an)2)
.

Since the function e− A
2 y is a decreasing function of y, it attains a maximum value where y is minimum. Therefore we

must minimize the function

y = (x − a1)2 + (x − a2)2 + · · · + (x − an)2.

We find the critical points by solving:

y′ = 2 (x − a1) + 2 (x − a2) + · · · + 2 (x − an) = 0

2nx = 2 (a1 + a2 + · · · + an)

x = a1 + · · · + an

n
.

We verify that this point corresponds the minimum value of y by examining the sign of y′′ at this point: y′′ = 2n > 0. We
conclude that y attains a minimum value at the point x = a1+···+an

n , hence 	(x) attains a maximum value at this point.
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8 TECHNIQUES OF
INTEGRATION

8.1 Integration by Parts

Preliminary Questions
1. Which derivative rule is used to derive the Integration by Parts formula?

solution The Integration by Parts formula is derived from the Product Rule.

2. For each of the following integrals, state whether substitution or Integration by Parts should be used:∫
x cos(x2) dx,

∫
x cos x dx,

∫
x2ex dx,

∫
xex2

dx

solution

(a)
∫

x cos(x2) dx: use the substitution u = x2.

(b)
∫

x cos x dx: use Integration by Parts.

(c)
∫

x2ex dx; use Integration by Parts.

(d)
∫

xex2
dx; use the substitution u = x2.

3. Why is u = cos x, v′ = x a poor choice for evaluating
∫

x cos x dx?

solution Transforming v′ = x into v = 1
2x2 increases the power of x and makes the new integral harder than the

original.

Exercises
In Exercises 1–6, evaluate the integral using the Integration by Parts formula with the given choice of u and v′.

1.
∫

x sin x dx; u = x, v′ = sin x

solution Using the given choice of u and v′ results in

u = x v = − cos x

u′ = 1 v′ = sin x

Using Integration by Parts,∫
x sin x dx = x(− cos x) −

∫
(1)(− cos x) dx = −x cos x +

∫
cos x dx = −x cos x + sin x + C.

∫
xe2x dx; u = x, v′ = e2x

3.
∫

(2x + 9)ex dx; u = 2x + 9, v′ = ex

solution Using u = 2x + 9 and v′ = ex gives us

u = 2x + 9 v = ex

u′ = 2 v′ = ex

Integration by Parts gives us∫
(2x + 9)ex dx = (2x + 9)ex −

∫
2exdx = (2x + 9)ex − 2ex + C = ex(2x + 7) + C.

446
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∫
x cos 4x dx; u = x, v′ = cos 4x

5.
∫

x3 ln x dx; u = ln x, v′ = x3

solution Using u = ln x and v′ = x3 gives us

u = ln x v = 1
4x4

u′ = 1
x v′ = x3

Integration by Parts gives us∫
x3 ln x dx = (ln x)

(
1

4
x4
)

−
∫ (

1

x

)(
1

4
x4
)

dx

= 1

4
x4 ln x − 1

4

∫
x3 dx = 1

4
x4 ln x − 1

16
x4 + C = x4

16
(4 ln x − 1) + C.

∫
tan−1 x dx; u = tan−1 x, v′ = 1

In Exercises 7–36, evaluate using Integration by Parts.

7.
∫

(4x − 3)e−x dx

solution Let u = 4x − 3 and v′ = e−x . Then we have

u = 4x − 3 v = −e−x

u′ = 4 v′ = e−x

Using Integration by Parts, we get∫
(4x − 3)e−x dx = (4x − 3)(−e−x) −

∫
(4)(−e−x) dx

= −e−x(4x − 3) + 4
∫

e−x dx = −e−x(4x − 3) − 4e−x + C = −e−x(4x + 1) + C.

∫
(2x + 1)ex dx

9.
∫

x e5x+2 dx

solution Let u = x and v′ = e5x+2. Then we have

u = x v = 1

5
e5x+2

u′ = 1 v′ = e5x+2

Using Integration by Parts, we get∫
xe5x+2 dx = x

(
1

5
e5x+2

)
−
∫

(1)

(
1

5
e5x+2

)
dx = 1

5
xe5x+2 − 1

5

∫
e5x+2 dx

= 1

5
xe5x+2 − 1

25
e5x+2 + C =

(
x

5
− 1

25

)
e5x+2 + C

∫
x2ex dx

11.
∫

x cos 2x dx

solution Let u = x and v′ = cos 2x. Then we have

u = x v = 1
2 sin 2x

u′ = 1 v′ = cos 2x

Using Integration by Parts, we get∫
x cos 2x dx = x

(
1

2
sin 2x

)
−
∫

(1)

(
1

2
sin 2x

)
dx

= 1

2
x sin 2x − 1

2

∫
sin 2x dx = 1

2
x sin 2x + 1

4
cos 2x + C.
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∫
x sin(3 − x) dx

13.
∫

x2 sin x dx

solution Let u = x2 and v′ = sin x. Then we have

u = x2 v = − cos x

u′ = 2x v′ = sin x

Using Integration by Parts, we get∫
x2 sin x dx = x2(− cos x) −

∫
2x(− cos x) dx = −x2 cos x + 2

∫
x cos x dx.

We must apply Integration by Parts again to evaluate
∫

x cos x dx. Taking u = x and v′ = cos x, we get

∫
x cos x dx = x sin x −

∫
sin x dx = x sin x + cos x + C.

Plugging this into the original equation gives us∫
x2 sin x dx = −x2 cos x + 2(x sin x + cos x) + C = −x2 cos x + 2x sin x + 2 cos x + C.

∫
x2 cos 3x dx

15.
∫

e−x sin x dx

solution Let u = e−x and v′ = sin x. Then we have

u = e−x v = − cos x

u′ = −e−x v′ = sin x

Using Integration by Parts, we get∫
e−x sin x dx = −e−x cos x −

∫
(−e−x)(− cos x) dx = −e−x cos x −

∫
e−x cos x dx.

We must apply Integration by Parts again to evaluate
∫

e−x cos x dx. Using u = e−x and v′ = cos x, we get

∫
e−x cos x dx = e−x sin x −

∫
(−e−x)(sin x) dx = e−x sin x +

∫
e−x sin x dx.

Plugging this into the original equation, we get∫
e−x sin x dx = −e−x cos x −

[
e−x sin x +

∫
e−x sin x dx

]
.

Solving this equation for
∫

e−x sin x dx gives us

∫
e−x sin x dx = −1

2
e−x(sin x + cos x) + C.

∫
ex sin 2x dx

17.
∫

e−5x sin x dx

solution Let u = sin x and v′ = e−5x . Then we have

u = sin x v = −1

5
e−5x

u′ = cos x v′ = e−5x

Using Integration by Parts, we get∫
e−5x sin x dx = −1

5
e−5x sin x −

∫
cos x

(
−1

5
e−5x

)
dx = −1

5
e−5x sin x + 1

5

∫
e−5x cos x dx

Apply Integration by Parts again to this integral, with u = cos x and v′ = e−5x to get∫
e−5x cos x dx = −1

5
e−5x cos x − 1

5

∫
e−5x sin x dx
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Plugging this into the original equation, we get∫
e−5x sin x dx = −1

5
e−5x sin x + 1

5

(
−1

5
e−5x cos x − 1

5

∫
e−5x sin x dx

)

= −1

5
e−5x sin x − 1

25
e−5x cos x − 1

25

∫
e−5x sin x dx

Solving this equation for
∫

e−5x sin x dx gives us

∫
e−5x sin x dx = − 5

26
e−5x sin x − 1

26
e−5x cos x + C = − 1

26
e−5x(5 sin x + cos x) + C

∫
e3x cos 4x dx

19.
∫

x ln x dx

solution Let u = ln x and v′ = x. Then we have

u = ln x v = 1
2x2

u′ = 1
x v′ = x

Using Integration by Parts, we get∫
x ln x dx = 1

2
x2 ln x −

∫ (
1

x

)(
1

2
x2
)

dx

= 1

2
x2 ln x − 1

2

∫
x dx = 1

2
x2 ln x − 1

2

(
x2

2

)
+ C = 1

4
x2(2 ln x − 1) + C.

∫
ln x

x2
dx

21.
∫

x2 ln x dx

solution Let u = ln x and v′ = x2. Then we have

u = ln x v = 1
3x3

u′ = 1
x v′ = x2

Using Integration by Parts, we get∫
x2 ln x dx = 1

3
x3 ln x −

∫
1

x

(
1

3
x3
)

dx = 1

3
x3 ln x − 1

3

∫
x2 dx

= 1

3
x3 ln x − 1

3

(
x3

3

)
+ C = x3

3

(
ln x − 1

3

)
+ C.

∫
x−5 ln x dx

23.
∫

(ln x)2 dx

solution Let u = (ln x)2 and v′ = 1. Then we have

u = (ln x)2 v = x

u′ = 2

x
ln x v′ = 1

Using Integration by Parts, we get∫
(ln x)2 dx = (ln x)2(x) −

∫ (
2

x
ln x

)
x dx = x(ln x)2 − 2

∫
ln x dx.

We must apply Integration by Parts again to evaluate
∫

ln x dx. Using u = ln x and v′ = 1, we have

∫
ln x dx = x ln x −

∫
1

x
· x dx = x ln x −

∫
dx = x ln x − x + C.

Plugging this into the original equation, we get∫
(ln x)2 dx = x(ln x)2 − 2 (x ln x − x) + C = x

[
(ln x)2 − 2 ln x + 2

]
+ C.
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∫
x(ln x)2 dx

25.
∫

x sec2 x dx

solution Let u = x and v′ = sec2 x. Then we have

u = x v = tan x

u′ = 1 v′ = sec2 x

Using Integration by Parts, we get∫
x sec2 x dx = x tan x −

∫
(1) tan x dx = x tan x − ln | sec x| + C.

∫
x tan x sec x dx

27.
∫

cos−1 x dx

solution Let u = cos−1 x and v′ = 1. Then we have

u = cos−1 x v = x

u′ = −1√
1 − x2

v′ = 1

Using Integration by Parts, we get ∫
cos−1 x dx = x cos−1 x −

∫ −x√
1 − x2

dx.

We can evaluate
∫ −x√

1 − x2
dx by making the substitution w = 1 − x2. Then dw = −2x dx, and we have

∫
cos−1 x dx = x cos−1 x − 1

2

∫ −2x dx√
1 − x2

= x cos−1 x − 1

2

∫
w−1/2 dw

= x cos−1 x − 1

2
(2w1/2) + C = x cos−1 x −

√
1 − x2 + C.

∫
sin−1 x dx

29.
∫

sec−1 x dx

solution We are forced to choose u = sec−1 x, v′ = 1, so that u′ = 1
x
√

x2−1
and v = x. Using Integration by parts,

we get: ∫
sec−1 x dx = x sec−1 x −

∫
x dx

x
√

x2 − 1
= x sec−1 x −

∫
dx√

x2 − 1
.

Via the substitution
√

x2 − 1 = tan θ (so that x = sec θ and dx = sec θ tan θdθ ), we get:∫
sec−1 x dx = x sec−1 x −

∫
sec θ tan θdθ

tan θ
= x sec−1 x −

∫
sec θdθ

= x sec−1 x − ln | sec θ + tan θ | + C = x sec−1 x − ln |x +
√

x2 − 1| + C.

∫
x5x dx

31.
∫

3x cos x dx

solution Let u = cos x and v′ = 3x . Then we have

u = cos x v = 3x

ln 3

u′ = − sin x v′ = 3x

Using Integration by Parts, we get ∫
3x cos x dx = 3x

ln 3
cos x + 1

ln 3

∫
3x sin x dx

Apply Integration by Parts to the remaining integral, with u = sin x and v′ = 3x ; then∫
3x sin x dx = 3x

ln 3
sin x − 1

ln 3

∫
3x cos x dx
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Plug this into the first equation to get∫
3x cos x dx = 3x

ln 3
cos x + 1

ln 3

(
3x

ln 3
sin x − 1

ln 3

∫
3x cos x dx

)

= 3x

ln 3
cos x + 3x

(ln 3)2
sin x − 1

(ln 3)2

∫
3x cos x dx

Solving for
∫

3x cos x dx gives

∫
3x cos x dx = 3x ln 3 cos x

1 + (ln 3)2
+ 3x sin x

1 + (ln 3)2
+ C = 3x

1 + (ln 3)2
(ln 3 cos x + sin x) + C

∫
x sinh x dx

33.
∫

x2 cosh x dx

solution Let u = x2, v′ = cosh x. Then

u = x2 v = sinh x

u′ = 2x v′ = cosh x

Integration by Parts gives us (along with Exercise 32)∫
x2 cosh x dx = x2 sinh x − 2

∫
x sinh x, dx = x2 sinh x − 2x cosh x + 2 sinh x + C

∫
cos x cosh x dx

35.
∫

tanh−1 4x dx

solution Using u = tanh−1 4x and v′ = 1 gives us

u = tanh−1 4x v = x

u′ = 4

1 − 16x2
v′ = 1

Integration by Parts gives us ∫
tanh−1 4x dx = x tanh−1 4x −

∫ (
4

1 − 16x2

)
x dx.

For the integral on the right we’ll use the substitution w = 1 − 16x2, dw = −32x dx. Then we have∫
tanh−1 4x dx = x tanh−1 4x + 1

8

∫
dw

w
= x tanh−1 4x + 1

8
ln |w| + C

= x tanh−1 4x + 1

8
ln |1 − 16x2| + C.

∫
sinh−1 x dx

In Exercises 37 and 38, evaluate using substitution and then Integration by Parts.

37.
∫

e
√

x dx Hint: Let u = x1/2

solution Let w = x1/2. Then dw = 1
2x−1/2dx, or dx = 2 x1/2 dw = 2w dw. Now,∫

e
√

x dx = 2
∫

wew dw.

Using Integration by Parts with u = w and v′ = ew , we get

2
∫

wew dw = 2(wew − ew) + C.

Substituting back, we find ∫
e
√

x dx = 2e
√

x(
√

x − 1) + C.
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∫
x3ex2

dx
In Exercises 39–48, evaluate using Integration by Parts, substitution, or both if necessary.

39.
∫

x cos 4x dx

solution Let u = x and v′ = cos 4x. Then we have

u = x v = 1
4 sin 4x

u′ = 1 v′ = cos 4x

Using Integration by Parts, we get∫
x cos 4x dx = 1

4
x sin 4x −

∫
(1)

1

4
sin 4x dx = 1

4
x sin 4x − 1

4

(
−1

4
cos 4x

)
+ C

= 1

4
x sin 4x + 1

16
cos 4x + C.

∫
ln(ln x) dx

x

41.
∫

x dx√
x + 1

solution Let u = x + 1. Then du = dx, x = u − 1, and∫
x dx√
x + 1

=
∫

(u − 1) du√
u

=
∫ (

u√
u

− 1√
u

)
du =

∫
(u1/2 − u−1/2) du

= 2

3
u3/2 − 2u1/2 + C = 2

3
(x + 1)3/2 − 2(x + 1)1/2 + C.

∫
x2(x3 + 9)15 dx

43.
∫

cos x ln(sin x) dx

solution Let w = sin x. Then dw = cos x dx, and∫
cos x ln(sin x) dx =

∫
ln w dw.

Now use Integration by Parts with u = ln w and v′ = 1. Then u′ = 1/w and v = w, which gives us∫
cos x ln(sin x) dx =

∫
ln w dw = w ln w − w + C = sin x ln(sin x) − sin x + C.

∫
sin

√
x dx

45.
∫ √

xe
√

x dx

solution Let w = √
x. Then dw = 1

2
√

x
dx and

∫ √
xe

√
x dx = 2

∫
w2ew dw.

Now, use Integration by Parts with u = w2 and v′ = ew . This gives∫ √
xe

√
x dx = 2

∫
w2ew dw = 2w2ew − 4

∫
wew dw.

We need to use Integration by Parts again, this time with u = w and v′ = ew . We find∫
wew dw = wew −

∫
ew dw = wew − ew + C;

finally, ∫ √
xe

√
x dx = 2w2ew − 4wew + 4ew + C = 2xe

√
x − 4

√
xe

√
x + 4e

√
x + C.

∫
tan

√
x dx√
x

47.
∫

ln(ln x) ln x dx

x

solution Let w = ln x. Then dw = dx/x, and∫
ln(ln x) ln x dx

x
=
∫

w ln w dw.
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Now use Integration by Parts, with u = ln w and v′ = w. Then,

u = ln w v = 1

2
w2

u′ = w−1 v′ = w

and ∫
ln(ln x) ln x dx

x
= 1

2
w2 ln w − 1

2

∫
w dw = 1

2
w2 ln w − 1

2

(
w2

2

)
+ C

= 1

2
(ln x)2 ln(ln x) − 1

4
(ln x)2 + C = 1

4
(ln x)2[2 ln(ln x) − 1] + C.

∫
sin(ln x) dx

In Exercises 49–54, compute the definite integral.

49.
∫ 3

0
xe4x dx

solution Let u = x, v′ = e4x . Then u′ = 1 and v = 1

4
e4x . Using Integration by Parts,

∫ 3

0
xe4x dx =

(
1

4
xe4x

) ∣∣∣∣3
0

− 1

4

∫ 3

0
e4x dx = 3

4
e12 − 1

16
e12 + 1

16
= 11

16
e12 + 1

16

∫ π/4

0
x sin 2x dx

51.
∫ 2

1
x ln x dx

solution Let u = ln x and v′ = x. Then u′ = 1
x and v = 1

2x2. Using Integration by Parts gives

∫ 2

1
x ln x dx =

(
1

2
x2 ln x

) ∣∣∣∣2
1

− 1

2

∫ 2

1
x dx = 2 ln 2 − 1

4
x2
∣∣∣∣2
1

= 2 ln 2 − 3

4

∫ e

1

ln x dx

x2

53.
∫ π

0
ex sin x dx

solution Let u = sin x and v′ = ex ; then u′ = cos x and v = ex . Integration by Parts gives

∫ π

0
ex sin x dx = ex sin x

∣∣∣∣π
0

−
∫ π

0
ex cos x dx = −

∫ π

0
ex cos x dx

Apply integration by parts again to this integral, with u = cos x and v′ = ex ; then u′ = − sin x and v = ex , so we get∫ π

0
ex sin x dx = −

((
ex cos x

) ∣∣∣∣π
0

+
∫ π

0
ex sin x dx

)
= eπ + 1 −

∫ π

0
ex sin x dx

Solving for
∫ π

0
ex sin x dx gives

∫ π

0
ex sin x dx = eπ + 1

2

∫ 1

0
tan−1 x dx

55. Use Eq. (5) to evaluate
∫

x4ex dx.

solution

∫
x4ex dx = x4ex − 4

∫
x3ex dx = x4ex − 4

[
x3ex − 3

∫
x2ex dx

]

= x4ex − 4x3ex + 12
∫

x2ex dx = x4ex − 4x3ex + 12

[
x2ex − 2

∫
xex dx

]

= x4ex − 4x3ex + 12x2ex − 24
∫

xex dx = x4ex − 4x3ex + 12x2ex − 24

[
xex −

∫
ex dx

]

= x4ex − 4x3ex + 12x2ex − 24
[
xex − ex

]+ C.
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Thus, ∫
x4ex dx = ex(x4 − 4x3 + 12x2 − 24x + 24) + C.

Use substitution and then Eq. (5) to evaluate
∫

x4e7x dx.
57. Find a reduction formula for

∫
xne−x dx similar to Eq. (5).

solution Let u = xn and v′ = e−x . Then

u = xn v = −e−x

u′ = nxn−1 v′ = e−x

Using Integration by Parts, we get∫
xne−x dx = −xne−x −

∫
nxn−1(−e−x) dx = −xne−x + n

∫
xn−1e−x dx.

Evaluate
∫

xn ln x dx for n �= −1. Which method should be used to evaluate
∫

x−1 ln x dx?
In Exercises 59–66, indicate a good method for evaluating the integral (but do not evaluate). Your choices are algebraic
manipulation, substitution (specify u and du), and Integration by Parts (specify u and v′). If it appears that the techniques
you have learned thus far are not sufficient, state this.

59.
∫ √

x ln x dx

solution Use Integration by Parts, with u = ln x and v′ = √
x.

∫
x2 − √

x

2x
dx

61.
∫

x3 dx√
4 − x2

solution Use substitution, followed by algebraic manipulation: Let u = 4 − x2. Then du = −2x dx, x2 = 4 − u,
and ∫

x3√
4 − x2

dx = −1

2

∫
(x2)(−2x dx)√

u
= −1

2

∫
(4 − u)(du)√

u
= −1

2

∫ (
4√
u

− u√
u

)
du.

∫
dx√

4 − x2

63.
∫

x + 2

x2 + 4x + 3
dx

solution Use substitution. Let u = x2 + 4x + 3; then du = 2x + 4 dx = 2(x + 2) dx, and∫
x + 2

x2 + 4x + 3
dx = 1

2

∫
1

u
du

∫
dx

(x + 2)(x2 + 4x + 3)

65.
∫

x sin(3x + 4) dx

solution Use Integration by Parts, with u = x and v′ = sin(3x + 4).

∫
x cos(9x2) dx

67. Evaluate
∫

(sin−1 x)2 dx. Hint: Use Integration by Parts first and then substitution.

solution First use integration by parts with v′ = 1 to get

∫
(sin−1 x)2 dx = x(sin−1 x)2 − 2

∫
x sin−1 x dx√

1 − x2
.

Now use substitution on the integral on the right, with u = sin−1 x. Then du = dx/
√

1 − x2 and x = sin u, and we get
(using Integration by Parts again)

∫
x sin−1 x dx√

1 − x2
=
∫

u sin u du = −u cos u + sin u + C = −
√

1 − x2 sin−1 x + x + C.

where cos u =
√

1 − sin2 u =
√

1 − x2. So the final answer is∫
(sin−1 x)2 dx = x(sin−1 x)2 + 2

√
1 − x2 sin−1 x − 2x + C.
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Evaluate
∫

(ln x)2 dx

x2
. Hint: Use substitution first and then Integration by Parts.

69. Evaluate
∫

x7 cos(x4) dx.

solution First, let w = x4. Then dw = 4x3 dx and∫
x7 cos(x4) dx = 1

4

∫
w cos x dw.

Now, use Integration by Parts with u = w and v′ = cos w. Then∫
x7 cos(x4) dx = 1

4

(
w sin w −

∫
sin w dw

)
= 1

4
w sin w + 1

4
cos w + C = 1

4
x4 sin(x4) + 1

4
cos(x4) + C.

Find f (x), assuming that ∫
f (x)ex dx = f (x)ex −

∫
x−1ex dx

71. Find the volume of the solid obtained by revolving the region under y = ex for 0 ≤ x ≤ 2 about the y-axis.

solution By the Method of Cylindrical Shells, the volume V of the solid is

V =
∫ b

a
(2πr)h dx = 2π

∫ 2

0
xex dx.

Using Integration by Parts with u = x and v′ = ex , we find

V = 2π (xex − ex)

∣∣∣2
0

= 2π
[
(2e2 − e2) − (0 − 1)

] = 2π(e2 + 1).

Find the area enclosed by y = ln x and y = (ln x)2.
73. Recall that the present value (PV) of an investment that pays out income continuously at a rate R(t) for T years is∫ T

0
R(t)e−rt dt , where r is the interest rate. Find the PV if R(t) = 5000 + 100t $/year, r = 0.05 and T = 10 years.

solution The present value is given by

PV =
∫ T

0
R(t)e−rt dt =

∫ 10

0
(5000 + 100t)e−rt dt = 5000

∫ 10

0
e−rt dt + 100

∫ 10

0
te−rt dt.

Using Integration by Parts for the integral on the right, with u = t and v′ = e−rt , we find

PV = 5000

(
−1

r
e−rt

)∣∣∣∣10

0
+ 100

[(
− t

r
e−rt

)∣∣∣∣10

0
−
∫ 10

0

−1

r
e−rt dt

]

= −5000

r
e−rt

∣∣∣∣10

0
− 100

r

(
te−rt + 1

r
e−rt

)∣∣∣∣10

0

= −5000

r
(e−10r − 1) − 100

r

[(
10e−10r + 1

r
e−10r

)
−
(

0 + 1

r

)]

= e−10r

[
−5000

r
− 1000

r
− 100

r2

]
+ 5000

r
+ 100

r2

= 5000r + 100 − e−10r (6000r + 100)

r2
.

Derive the reduction formula ∫
(ln x)k dx = x(ln x)k − k

∫
(ln x)k−1 dx

75. Use Eq. (6) to calculate
∫

(ln x)k dx for k = 2, 3.

solution∫
(ln x)2 dx = x(ln x)2 − 2

∫
ln x dx = x(ln x)2 − 2(x ln x − x) + C = x(ln x)2 − 2x ln x + 2x + C;

∫
(ln x)3 dx = x(ln x)3 − 3

∫
(ln x)2 dx = x(ln x)3 − 3

[
x(ln x)2 − 2x ln x + 2x

]
+ C

= x(ln x)3 − 3x(ln x)2 + 6x ln x − 6x + C.

Derive the reduction formulas∫
xn cos x dx = xn sin x − n

∫
xn−1 sin x dx

∫
xn sin x dx = −xn cos x + n

∫
xn−1 cos x dx

77. Prove that
∫

xbx dx = bx

(
x

ln b
− 1

ln2 b

)
+ C.

solution Let u = x and v′ = bx . Then u′ = 1 and v = bx/ ln b. Using Integration by Parts, we get∫
x bx dx = xbx

ln b
− 1

ln b

∫
bx dx = xbx

ln b
− 1

ln b
· bx

ln b
+ C = bx

(
x

ln b
− 1

(ln b)2

)
+ C.

Define Pn(x) by ∫
xnex dx = Pn(x) ex + C
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Further Insights and Challenges
79. The Integration by Parts formula can be written∫

u(x)v(x) dx = u(x)V (x) −
∫

u′(x)V (x) dx 7

where V (x) satisfies V ′(x) = v(x).

(a) Show directly that the right-hand side of Eq. (7) does not change if V (x) is replaced by V (x) + C, where C is a
constant.

(b) Use u = tan−1 x and v = x in Eq. (7) to calculate
∫

x tan−1 x dx, but carry out the calculation twice: first with

V (x) = 1
2x2 and then with V (x) = 1

2x2 + 1
2 . Which choice of V (x) results in a simpler calculation?

solution
(a) Replacing V (x) with V (x) + C in the expression u(x)V (x) − ∫ V (x)u′(x) dx, we get

u(x)(V (x) + C) −
∫

(V (x) + C)u′(x) dx = u(x)V (x) + u(x)C −
∫

V (x)u′(x) dx − C

∫
u′(x) dx

= u(x)V (x) −
∫

V (x)u′(x) dx + C

[
u(x) −

∫
u′(x) dx

]

= u(x)V (x) −
∫

V (x)u′(x) dx + C [u(x) − u(x)]

= u(x)V (x) −
∫

V (x)u′(x) dx.

(b) If we evaluate
∫

x tan−1 x dx with u = tan−1 x and v′ = x, and if we don’t add a constant to v, Integration by Parts

gives us ∫
x tan−1 x dx = x2

2
tan−1 x − 1

2

∫
x2dx

x2 + 1
.

The integral on the right requires algebraic manipulation in order to evaluate. But if we take V (x) = 1
2x2 + 1

2 instead of

V (x) = 1
2x2, then

∫
x tan−1 x dx =

(
1

2
x2 + 1

2

)
tan−1 x − 1

2

∫
x2 + 1

x2 + 1
dx = 1

2
(x2 + 1) tan−1 x − 1

2
x + C

= 1

2
(x2 tan−1 x − x + tan−1 x) + C.

Prove in two ways that ∫ a

0
f (x) dx = af (a) −

∫ a

0
xf ′(x) dx

First use Integration by Parts. Then assume f (x) is increasing. Use the substitution u = f (x) to prove that∫ a

0
xf ′(x) dx is equal to the area of the shaded region in Figure 1 and derive Eq. (8) a second time.

81. Assume that f (0) = f (1) = 0 and that f ′′ exists. Prove∫ 1

0
f ′′(x)f (x) dx = −

∫ 1

0
f ′(x)2 dx 9

Use this to prove that if f (0) = f (1) = 0 and f ′′(x) = λf (x) for some constant λ, then λ < 0. Can you think of a
function satisfying these conditions for some λ?

solution Let u = f (x) and v′ = f ′′(x). Using Integration by Parts, we get

∫ 1

0
f ′′(x)f (x) dx = f (x)f ′(x)

∣∣∣1
0

−
∫ 1

0
f ′(x)2 dx = f (1)f ′(1) − f (0)f ′(0) −

∫ 1

0
f ′(x)2 dx = −

∫ 1

0
f ′(x)2 dx.

Now assume that f ′′(x) = λf (x) for some constant λ. Then∫ 1

0
f ′′(x)f (x) dx = λ

∫ 1

0
[f (x)]2 dx = −

∫ 1

0
f ′(x)2 dx < 0.

Since
∫ 1

0
[f (x)]2 dx > 0, we must have λ < 0. An example of a function satisfying these properties for some λ is

f (x) = sin πx.

Set I (a, b) =
∫ 1

0
xa(1 − x)b dx, where a, b are whole numbers.

(a) Use substitution to show that I (a, b) = I (b, a).

(b) Show that I (a, 0) = I (0, a) = 1

a + 1
.

(c) Prove that for a ≥ 1 and b ≥ 0,

I (a, b) = a

b + 1
I (a − 1, b + 1)

(d) Use (b) and (c) to calculate I (1, 1) and I (3, 2).

( ) Sh h I ( b)
a! b!

83. Let In =
∫

xn cos(x2) dx and Jn =
∫

xn sin(x2) dx.

(a) Find a reduction formula that expresses In in terms of Jn−2. Hint: Write xn cos(x2) as xn−1(x cos(x2)).

(b) Use the result of (a) to show that In can be evaluated explicitly if n is odd.
(c) Evaluate I3.
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solution

(a) Integration by Parts with u = xn−1 and v′ = x cos(x2) dx yields

In = 1

2
xn−1 sin(x2) − n − 1

2

∫
xn−2 sin(x2) dx = 1

2
xn−1 sin(x2) − n − 1

2
Jn−2.

(b) If n is odd, the reduction process will eventually lead to either∫
x cos(x2) dx or

∫
x sin(x2) dx,

both of which can be evaluated using the substitution u = x2.
(c) Starting with the reduction formula from part (a), we find

I3 = 1

2
x2 sin(x2) − 2

2

∫
x sin(x2) dx = 1

2
x2 sin(x2) + 1

2
cos(x2) + C.

8.2 Trigonometric Integrals

Preliminary Questions
1. Describe the technique used to evaluate

∫
sin5 x dx.

solution Because the sine function is raised to an odd power, rewrite sin5 x = sin x sin4 x = sin x(1 − cos2 x)2 and
then substitute u = cos x.

2. Describe a way of evaluating
∫

sin6 x dx.

solution Repeatedly use the reduction formula for powers of sin x.

3. Are reduction formulas needed to evaluate
∫

sin7 x cos2 x dx? Why or why not?

solution No, a reduction formula is not needed because the sine function is raised to an odd power.

4. Describe a way of evaluating
∫

sin6 x cos2 x dx.

solution Because both trigonometric functions are raised to even powers, write cos2 x = 1 − sin2 x and then apply
the reduction formula for powers of the sine function.

5. Which integral requires more work to evaluate?∫
sin798 x cos x dx or

∫
sin4 x cos4 x dx

Explain your answer.

solution The first integral can be evaluated using the substitution u = sin x, whereas the second integral requires the
use of reduction formulas. The second integral therefore requires more work to evaluate.

Exercises
In Exercises 1–6, use the method for odd powers to evaluate the integral.

1.
∫

cos3 x dx

solution Use the identity cos2 x = 1 − sin2 x to rewrite the integrand:∫
cos3 x dx =

∫ (
1 − sin2 x

)
cos x dx.

Now use the substitution u = sin x, du = cos x dx:∫
cos3 x dx =

∫ (
1 − u2

)
du = u − 1

3
u3 + C = sin x − 1

3
sin3 x + C.

∫
sin5 x dx

3.
∫

sin3 θ cos2 θ dθ

solution Write sin3 θ = sin2 θ sin θ = (1 − cos2 θ) sin θ . Then∫
sin3 θ cos2 θ dθ =

∫ (
1 − cos2 θ

)
cos2 θ sin θ dθ.
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Now use the substitution u = cos θ , du = − sin θ dθ :∫
sin3 θ cos2 θ dθ = −

∫ (
1 − u2

)
u2 du = −

∫ (
u2 − u4

)
du

= −1

3
u3 + 1

5
u5 + C = −1

3
cos3 θ + 1

5
cos5 θ + C.

∫
sin5 x cos x dx

5.
∫

sin3 t cos3 t dt

solution Write sin3 t = (1 − cos2 t) sin t dt . Then∫
sin3 t cos3 t dt =

∫
(1 − cos2 t) cos3 t sin t dt =

∫ (
cos3 t − cos5 t

)
sin t dt.

Now use the substitution u = cos t , du = − sin t dt :∫
sin3 t cos3 t dt = −

∫ (
u3 − u5

)
du = −1

4
u4 + 1

6
u6 + C = −1

4
cos4 t + 1

6
cos6 t + C.

∫
sin2 x cos5 x dx

7. Find the area of the shaded region in Figure 1.

x

y

y = cos3 x
1

−1

p 3p
2

p
2

FIGURE 1 Graph of y = cos3 x.

solution First evaluate the indefinite integral by writing cos3 x = (1 − sin2 x) cos x, and using the substitution
u = sin x, du = cos x dx:∫

cos3 x dx =
∫ (

1 − sin2 x
)

cos x dx =
∫ (

1 − u2
)

du = u − 1

3
u3 + C = sin x − 1

3
sin3 x + C.

The area is given by

A =
∫ π/2

0
cos3 x dx −

∫ 3π/2

π/2
cos3 x dx =

(
sin x − 1

3
sin3 x

)∣∣∣∣π/2

0
−
(

sin x − 1

3
sin3 x

)∣∣∣∣3π/2

π/2

=
[(

sin
π

2
− 1

3
sin3 π

2

)
− 0

]
−
[(

sin
3π

2
− 1

3
sin3 3π

2

)
−
(

sin
π

2
− 1

3
sin3 π

2

)]

= 1 − 1

3
(1)3 − (−1) + 1

3
(−1)3 + 1 − 1

3
(1)3 = 2.

Use the identity sin2 x = 1 − cos2 x to write
∫

sin2 x cos2 x dx as a sum of two integrals, and then evaluate using
the reduction formula.

In Exercises 9–12, evaluate the integral using methods employed in Examples 3 and 4.

9.
∫

cos4 y dy

solution Using the reduction formula for cosm y, we get

∫
cos4 y dy = 1

4
cos3 y sin y + 3

4

∫
cos2 y dy = 1

4
cos3 y sin y + 3

4

(
1

2
cos y sin y + 1

2

∫
dy

)

= 1

4
cos3 y sin y + 3

8
cos y sin y + 3

8
y + C.

∫
cos2 θ sin2 θ dθ

11.
∫

sin4 x cos2 x dx

solution Use the identity cos2 x = 1 − sin2 x to write:∫
sin4 x cos2 x dx =

∫
sin4 x

(
1 − sin2 x

)
dx =

∫
sin4 x dx −

∫
sin6 x dx.
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Using the reduction formula for sinm x:∫
sin4 x cos2 x dx =

∫
sin4 x dx −

[
−1

6
sin5 x cos x + 5

6

∫
sin4 x dx

]

= 1

6
sin5 x cos x + 1

6

∫
sin4 x dx = 1

6
sin5 x cos x + 1

6

(
−1

4
sin3 x cos x + 3

4

∫
sin2 x dx

)

= 1

6
sin5 x cos x − 1

24
sin3 x cos x + 1

8

∫
sin2 x dx

= 1

6
sin5 x cos x − 1

24
sin3 x cos x + 1

8

(
−1

2
sin x cos x + 1

2

∫
dx

)

= 1

6
sin5 x cos x − 1

24
sin3 x cos x − 1

16
sin x cos x + 1

16
x + C.

∫
sin2 x cos6 x dx

In Exercises 13 and 14, evaluate using Eq. (13).

13.
∫

sin3 x cos2 x dx

solution First rewrite sin3 x = sin x · sin2 x = sin x(1 − cos2 x), so that∫
sin3 x cos2 x dx =

∫
sin x(1 − cos2 x) cos2 x dx =

∫
sin x(cos2 x − cos4 x) dx

Now make the substitution u = cos x, du = − sin x dx:∫
sin x(cos2 x − cos4 x) dx = −

∫
u2 − u4 du = 1

5
u5 − 1

3
u3 + C = 1

5
cos5 x − 1

3
cos3 x + C

∫
sin2 x cos4 x dx

In Exercises 15–18, evaluate the integral using the method described on page 409 and the reduction formulas on page
423 as necessary.

15.
∫

tan3 x sec x dx

solution Use the identity tan2 x = sec2 x − 1 to rewrite tan3 x sec x = (sec2 x − 1) sec x tan x. Then use the
substitution u = sec x, du = sec x tan x dx:∫

tan3 x sec x dx =
∫

(sec2 x − 1) sec x tan x dx =
∫

u2 − 1 du = 1

3
u3 − u + C = 1

3
sec3 x − sec x + C

∫
tan2 x sec x dx

17.
∫

tan2 x sec4 x dx

solution First use the identity tan2 x = sec2 x − 1:∫
tan2 x sec4 x dx =

∫
(sec2 x − 1) sec4 x dx =

∫
sec6 x − sec4 x dx =

∫
sec6 x dx −

∫
sec4 x, dx

We evaluate the second integral using the reduction formula:∫
sec4 x dx = 1

3
tan x sec2 x + 2

3

∫
sec2 x dx

= 1

3
tan x sec2 x + 2

3
tan x

Then ∫
sec6 x dx = 1

5
tan x sec4 x + 4

5

∫
sec4 x dx

= 1

5
tan x sec4 x + 4

5

(
1

3
tan x sec2 x + 2

3
tan x

)

= 1

5
tan x sec4 x + 4

15
tan x sec2 x + 8

15
tan x

so that ∫
tan2 x sec4 x dx =

∫
sec6 x dx −

∫
sec4 x dx

= 1

5
tan x sec4 x − 1

15
tan x sec2 x − 2

15
tan x + C
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∫
tan8 x sec2 x dx

In Exercises 19–22, evaluate using methods similar to those that apply to integral tanm x secn.

19.
∫

cot3 x dx

solution Using the reduction formula for cotm x, we get∫
cot3 x dx = −1

2
cot2 x −

∫
cot x dx = −1

2
cot2 x + ln | csc x| + C.

∫
sec3 x dx

21.
∫

cot5 x csc2 x dx

solution Make the substitution u = cot x, du = − csc2 x dx; then∫
cot5 x csc2 x dx = −

∫
u5 du = −1

6
u6 = −1

6
cot6 x + C

∫
cot4 x csc x dx

In Exercises 23–46, evaluate the integral.

23.
∫

cos5 x sin x dx

solution Use the substitution u = cos x, du = − sin x dx. Then∫
cos5 x sin x dx = −

∫
u5 du = −1

6
u6 + C = −1

6
cos6 x + C.

∫
cos3(2 − x) sin(2 − x) dx

25.
∫

cos4(3x + 2) dx

solution First use the substitution u = 3x + 2, du = 3 dx and then apply the reduction formula for cosn x:∫
cos4(3x + 2) dx = 1

3
cos4 u du = 1

3

(
1

4
cos3 u sin u + 3

4

∫
cos2 u du

)

= 1

12
cos3 u sin u + 1

4

(
u

2
+ sin 2u

4

)
+ C

= 1

12
cos3(3x + 2) sin(3x + 2) + 1

8
(3x + 2) + 1

16
sin(6x + 4) + C

∫
cos7 3x dx

27.
∫

cos3(πθ) sin4(πθ) dθ

solution Use the substitution u = πθ , du = π dθ , and the identity cos2 u = 1 − sin2 u to write∫
cos3(πθ) sin4(πθ) dθ = 1

π

∫
cos3 u sin4 u du = 1

π

∫ (
1 − sin2 u

)
sin4 u cos u du.

Now use the substitution w = sin u, dw = cos u du:∫
cos3(πθ) sin4(πθ) dθ = 1

π

∫ (
1 − w2

)
w4 dw = 1

π

∫ (
w4 − w6

)
dw = 1

5π
w5 − 1

7π
w7 + C

= 1

5π
sin5(πθ) − 1

7π
sin7(πθ) + C.

∫
cos498 y sin3 y dy

29.
∫

sin4(3x) dx

solution Use the substitution u = 3x, du = 3 dx and the reduction formula for sinm x:∫
sin4(3x) dx = 1

3

∫
sin4 u du = − 1

12
sin3 u cos u + 1

4

∫
sin2 u du

= − 1

12
sin3 u cos u + 1

4

(
−1

2
sin u cos u + 1

2

∫
du

)

= − 1

12
sin3 u cos u − 1

8
sin u cos u + 1

8
u + C

= − 1

12
sin3(3x) cos(3x) − 1

8
sin(3x) cos(3x) + 3

8
x + C.
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∫
sin2 x cos6 x dx

31.
∫

csc2(3 − 2x) dx

solution First make the substitution u = 3 − 2x, du = −2 dx, so that∫
csc2(3 − 2x) dx = 1

2

∫
(− csc2 u) du = 1

2
cot u + C = 1

2
cot(3 − 2x) + C

∫
csc3 x dx

33.
∫

tan x sec2 x dx

solution Use the substitution u = tan x, du = sec2 x dx. Then∫
tan x sec2 x dx =

∫
u du = 1

2
u2 + C = 1

2
tan2 x + C.

∫
tan3 θ sec3 θ dθ

35.
∫

tan5 x sec4 x dx

solution Use the identity tan2 x = sec2 x − 1 to write∫
tan5 x sec4 x dx =

∫ (
sec2 x − 1

)2
sec3 x(sec x tan x dx).

Now use the substitution u = sec x, du = sec x tan x dx:∫
tan5 x sec4 x dx =

∫ (
u2 − 1

)2
u3 du =

∫ (
u7 − 2u5 + u3

)
du

= 1

8
u8 − 1

3
u6 + 1

4
u4 + C = 1

8
sec8 x − 1

3
sec6 x + 1

4
sec4 x + C.

∫
tan4 x sec x dx

37.
∫

tan6 x sec4 x dx

solution Use the identity sec2 x = tan2 x + 1 to write∫
tan6 x sec4 x dx =

∫
tan6 x

(
tan2 x + 1

)
sec2 x dx.

Now use the substitution u = tan x, du = sec2 x dx:∫
tan6 x sec4 x dx =

∫
u6
(
u2 + 1

)
du =

∫ (
u8 + u6

)
du = 1

9
u9 + 1

7
u7 + C = 1

9
tan9 x + 1

7
tan7 x + C.

∫
tan2 x sec3 x dx

39.
∫

cot5 x csc5 x dx

solution First use the identity cot2 x = csc2 x − 1 to rewrite the integral:∫
cot5 x csc5 x dx =

∫
(csc2 x − 1)2 csc4 x(cot x csc x) dx =

∫
(csc8 x − 2 csc6 x + csc4 x)(cot x csc x) dx

Now use the substitution u = csc x and du = − cot x csc x dx to get∫
cot5 x csc5 x dx = −

∫
u8 − 2u6 + u4 du = −1

9
u9 + 2

7
u7 − 1

5
u5 + C

= −1

9
csc9 x + 2

7
csc7 x − 1

5
csc5 x + C

∫
cot2 x csc4 x dx

41.
∫

sin 2x cos 2x dx

solution Use the substitution u = sin 2x, du = 2 cos 2x dx:∫
sin 2x cos 2x dx = 1

2

∫
sin 2x(2 cos 2x dx) = 1

2

∫
u du = 1

4
u2 + C = 1

4
sin2 2x + C.

∫
cos 4x cos 6x dx

43.
∫

t cos3(t2) dt

solution Use the substitution u = t2, du = 2t dt , followed by the reduction formula for cosm x:∫
t cos3(t2) dt = 1

2

∫
cos3 u du = 1

6
cos2 u sin u + 1

3

∫
cos u du

= 1

6
cos2 u sin u + 1

3
sin u + C = 1

6
cos2(t2) sin(t2) + 1

3
sin(t2) + C.
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∫
tan3(ln t)

t
dt

45.
∫

cos2(sin t) cos t dt

solution Use the substitution u = sin t , du = cos t dt , followed by the reduction formula for cosm x:∫
cos2(sin t) cos t dt =

∫
cos2 u du = 1

2
cos u sin u + 1

2

∫
du

= 1

2
cos u sin u + 1

2
u + C = 1

2
cos(sin t) sin(sin t) + 1

2
sin t + C.

∫
ex tan2(ex) dx

In Exercises 47–60, evaluate the definite integral.

47.
∫ 2π

0
sin2 x dx

solution Use the formula for
∫

sin2 x dx:

∫ 2π

0
sin2 x dx =

(
x

2
− sin 2x

4

)∣∣∣∣2π

0
=
(

2π

2
− sin 4π

4

)
−
(

0

2
− sin 0

4

)
= π.

∫ π/2

0
cos3 x dx

49.
∫ π/2

0
sin5 x dx

solution Use the identity sin2 x = 1 − cos2 x followed by the substitution u = cos x, du = − sin x dx to get∫ π/2

0
sin5 x dx =

∫ π/2

0
(1 − cos2 x)2 sin x dx =

∫ π/2

0
(1 − 2 cos2 x + cos4 x) sin x dx

= −
∫ 0

1
(1 − 2u2 + u4) du = −

(
u − 2

3
u3 + 1

5
u5
) ∣∣∣∣0

1
= 1 − 2

3
+ 1

5
= 8

15

∫ π/2

0
sin2 x cos3 x dx

51.
∫ π/4

0

dx

cos x

solution Use the definition of sec x to simplify the integral:∫ π/4

0

dx

cos x
=
∫ π/4

0
sec x dx = ln | sec x + tan x|

∣∣∣π/4

0
= ln

∣∣∣√2 + 1
∣∣∣− ln |1 + 0| = ln

(√
2 + 1

)
.

∫ π/2

π/4

dx

sin x

53.
∫ π/3

0
tan x dx

solution Use the formula for
∫

tan x dx:∫ π/3

0
tan x dx = ln | sec x|

∣∣∣π/3

0
= ln 2 − ln 1 = ln 2.

∫ π/4

0
tan5 x dx

55.
∫ π/4

−π/4
sec4 x dx

solution First use the reduction formula for secm x to evaluate the indefinite integral:∫
sec4 x dx = 1

3
tan x sec2 x + 2

3

∫
sec2 x dx = 1

3
tan x sec2 x + 2

3
tan x + C.

Now compute the definite integral:∫ π/4

−π/4
sec4 x dx =

(
1

3
tan x sec2 x + 2

3
tan x

)∣∣∣∣π/4

−π/4

=
[

1

3
(1)
(√

2
)2 + 2

3
(1)

]
−
[

1

3
(−1)

(√
2
)2 + 2

3
(−1)

]
= 4

3
−
(

−4

3

)
= 8

3
.

∫ 3π/4

π/4
cot4 x csc2 x dx

57.
∫ π

0
sin 3x cos 4x dx

solution Use the formula for
∫

sin mx cos nx dx:∫ π

0
sin 3x cos 4x dx =

(
−cos(3 − 4)x

2(3 − 4)
− cos(3 + 4)x

2(3 + 4)

)∣∣∣∣π
0

=
(

−cos(−x)

−2
− cos 7x

14

)∣∣∣∣π
0

=
(

1

2
cos x − 1

14
cos 7x

)∣∣∣∣π
0

=
[

1

2
(−1) − 1

14
(−1)

]
−
[

1

2
(1) − 1

14
(1)

]
= −6

7
.
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∫ π

0
sin x sin 3x dx

59.
∫ π/6

0
sin 2x cos 4x dx

solution Using the formula for
∫

sin mx cos nx dx, we have

∫ π/6

0
sin 2x cos 4x dx =

(
− 1

−4
cos(−2x) − 1

2 · 6
cos(6x)

) ∣∣∣∣π/6

0
=
(

1

4
cos 2x − 1

12
cos 6x

) ∣∣∣∣π/6

0

=
(

1

4
· 1

2
− 1

12
· (−1)

)
−
(

1

4
− 1

12

)
= 1

24

Here we’ve used the fact that cos x is an even function: cos(−x) = cos x.

∫ π/4

0
sin 7x cos 2x dx

61. Use the identities for sin 2x and cos 2x on page 407 to verify that the following formulas are equivalent.∫
sin4 x dx = 1

32
(12x − 8 sin 2x + sin 4x) + C

∫
sin4 x dx = −1

4
sin3 x cos x − 3

8
sin x cos x + 3

8
x + C

solution First, observe

sin 4x = 2 sin 2x cos 2x = 2 sin 2x(1 − 2 sin2 x)

= 2 sin 2x − 4 sin 2x sin2 x = 2 sin 2x − 8 sin3 x cos x.

Then

1

32
(12x − 8 sin 2x + sin 4x) + C = 3

8
x − 3

16
sin 2x − 1

4
sin3 x cos x + C

= 3

8
x − 3

8
sin x cos x − 1

4
sin3 x cos x + C.

Evaluate
∫

sin2 x cos3 x dx using the method described in the text and verify that your result is equivalent to the
following result produced by a computer algebra system.∫

sin2 x cos3 x dx = 1

30
(7 + 3 cos 2x) sin3 x + C

63. Find the volume of the solid obtained by revolving y = sin x for 0 ≤ x ≤ π about the x-axis.

solution Using the disk method, the volume is given by

V =
∫ π

0
π(sin x)2 dx = π

∫ π

0
sin2 x dx = π

(
x

2
− sin 2x

4

)∣∣∣∣π
0

= π
[(π

2
− 0
)

− (0)
]

= π2

2
.

Use Integration by Parts to prove Eqs. (1) and (2).In Exercises 65–68, use the following alternative method for evaluating the integral J = ∫ sinm x cosn x dx when m and
n are both even. Use the identities

sin2 x = 1

2
(1 − cos 2x), cos2 x = 1

2
(1 + cos 2x)

to write J = 1
4

∫
(1 − cos 2x)m/2(1 + cos 2x)n/2 dx, and expand the right-hand side as a sum of integrals involving

smaller powers of sine and cosine in the variable 2x.

65.
∫

sin2 x cos2 x dx

solution Using the identities sin2 x = 1
2 (1 − cos 2x) and cos2 x = 1

2 (1 + cos 2x), we have

J =
∫

sin2 x cos2 x dx = 1

4

∫
(1 − cos 2x)(1 + cos 2x) dx

= 1

4

∫ (
1 − cos2 2x

)
dx = 1

4

∫
dx − 1

4

∫
cos2 2x dx.

Now use the substitution u = 2x, du = 2 dx, and the formula for
∫

cos2 u du:

J = 1

4
x − 1

8

∫
cos2 u du = 1

4
x − 1

8

(
u

2
+ 1

2
sin u cos u

)
+ C

= 1

4
x − 1

16
(2x) − 1

16
sin 2x cos 2x + C = 1

8
x − 1

16
sin 2x cos 2x + C.
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∫
cos4 x dx

67.
∫

sin4 x cos2 x dx

solution Using the identities sin2 x = 1
2 (1 − cos 2x) and cos2 x = 1

2 (1 + cos 2x), we have

J =
∫

sin4 x cos2 x dx = 1

8

∫
(1 − cos 2x)2(1 + cos 2x) dx

= 1

8

∫ (
1 − 2 cos 2x + cos2 2x

)
(1 + cos 2x) dx

= 1

8

∫ (
1 − cos 2x − cos2 2x + cos3 2x

)
dx.

Now use the substitution u = 2x, du = 2 dx, together with the reduction formula for cosm x:

J = 1

8
x − 1

16

∫
cos u du − 1

16

∫
cos2 u du + 1

16

∫
cos3 u du

= 1

8
x − 1

16
sin u − 1

16

(
u

2
+ 1

2
sin u cos u

)
+ 1

16

(
1

3
cos2 u sin u + 2

3

∫
cos u du

)

= 1

8
x − 1

16
sin 2x − 1

32
(2x) − 1

32
sin 2x cos 2x + 1

48
cos2 2x sin 2x + 1

24
sin 2x + C

= 1

16
x − 1

48
sin 2x − 1

32
sin 2x cos 2x + 1

48
cos2 2x sin 2x + C.

∫
sin6 x dx

69. Prove the reduction formula ∫
tank x dx = tank−1 x

k − 1
−
∫

tank−2 x dx

Hint: tank x = (sec2 x − 1) tank−2 x.

solution Use the identity tan2 x = sec2 x − 1 to write∫
tank x dx =

∫
tank−2 x

(
sec2 x − 1

)
dx =

∫
tank−2 x sec2 x dx −

∫
tank−2 x dx.

Now use the substitution u = tan x, du = sec2 x dx:∫
tank x dx =

∫
uk−2 du −

∫
tank−2 x dx = 1

k − 1
uk−1 −

∫
tank−2 x dx = tank−1 x

k − 1
−
∫

tank−2 x dx.

Use the substitution u = csc x − cot x to evaluate
∫

csc x dx (see Example 5).71. Let Im =
∫ π/2

0
sinm x dx.

(a) Show that I0 = π
2 and I1 = 1.

(b) Prove that, for m ≥ 2,

Im = m − 1

m
Im−2

(c) Use (a) and (b) to compute Im for m = 2, 3, 4, 5.

solution
(a) We have

I0 =
∫ π/2

0
sin0 x dx =

∫ π/2

0
1 dx = π

2

I1 =
∫ π/2

0
sin x dx = − cos x

∣∣∣∣π/2

0
= 1

(b) Using the reduction formula for sinm x, we get for m ≥ 2

Im =
∫ π/2

0
sinm x dx = − 1

m
sinm−1 x cos x

∣∣∣∣π/2

0
+ m − 1

m

∫ π/2

0
sinm−2 x dx

= − 1

m
sinm−1

(π

2

)
cos
(π

2

)
+ 1

m
sinm−1(0) cos(0) + m − 1

m
Im−2

= 1

m
(−1 · 0 + 0 · 1) + m − 1

m
Im−2

= m − 1

m
Im−2
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(c)

I2 = 1

2
I0 = 1

2
· π

2
= π

4

I3 = 2

3
I1 = 2

3

I4 = 3

4
I2 = 3

4
· π

4
= 3

16
π

I5 = 4

5
I3 = 8

15

Evaluate
∫ π

0
sin2 mx dx for m an arbitrary integer.

73. Evaluate
∫

sin x ln(sin x) dx. Hint: Use Integration by Parts as a first step.

solution Start by using integration by parts with u = ln(sin x) and v′ = sin x, so that u′ = cot x and v = − cos x.
Then

I =
∫

sin x ln(sin x) dx = − cos x ln(sin x) +
∫

cot x cos x dx = − cos x ln(sin x) +
∫

cos2 x

sin x
dx

= − cos x ln(sin x) +
∫

1 − sin2 x

sin x
dx = − cos x ln(sin x) −

∫
sin x dx +

∫
csc x dx

= − cos x ln(sin x) + cos x +
∫

csc x dx

Using the table,
∫

csc x dx = ln | csc x − cot x| + C, so finally

I = − cos x ln(sin x) + cos x + ln | csc x − cot x| + C

Total Energy A 100-W light bulb has resistance R = 144 � (ohms) when attached to household current, where
the voltage varies as V = V0 sin(2πf t) (V0 = 110 V, f = 60 Hz). The energy (in joules) expended by the bulb over
a period of T seconds is

U =
∫ T

0
P(t) dt

where P = V 2/R (J/s) is the power. Compute U if the bulb remains on for 5 hours.

75. Let m, n be integers with m �= ±n. Use Eqs. (23)–(25) to prove the so-called orthogonality relations that play a
basic role in the theory of Fourier Series (Figure 2):∫ π

0
sin mx sin nx dx = 0

∫ π

0
cos mx cos nx dx = 0

∫ 2π

0
sin mx cos nx dx = 0

y = sin 2x sin 4x

y

x
p

y = sin 3x cos 4x

y

p
x

2p

FIGURE 2 The integrals are zero by the orthogonality relations.

solution If m, n are integers, then m − n and m + n are integers, and therefore sin(m − n)π = sin(m + n)π = 0,
since sin kπ = 0 if k is an integer. Thus we have∫ π

0
sin mx sin nx dx =

(
sin(m − n)x

2(m − n)
− sin(m + n)x

2(m + n)

)∣∣∣∣π
0

=
(

sin(m − n)π

2(m − n)
− sin(m + n)π

2(m + n)

)
− 0 = 0;

∫ π

0
cos mx cos nx dx =

(
sin(m − n)x

2(m − n)
+ sin(m + n)x

2(m + n)

)∣∣∣∣π
0

=
(

sin(m − n)π

2(m − n)
+ sin(m + n)π

2(m + n)

)
− 0 = 0.

If k is an integer, then cos 2kπ = 1. Using this fact, we have∫ 2π

0
sin mx cos nx dx =

(
−cos(m − n)x

2(m − n)
− cos(m + n)x

2(m + n)

)∣∣∣∣2π

0

=
(

−cos(m − n)2π

2(m − n)
− cos(m + n)2π

2(m + n)

)
−
(

− 1

2(m − n)
− 1

2(m + n)

)

=
(

− 1

2(m − n)
− 1

2(m + n)

)
−
(

− 1

2(m − n)
− 1

2(m + n)

)
= 0.
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Further Insights and Challenges

Use the trigonometric identity

sin mx cos nx = 1

2

(
sin(m − n)x + sin(m + n)x

)
to prove Eq. (24) in the table of integrals on page 423.

77. Use Integration by Parts to prove that (for m �= 1)

∫
secm x dx = tan x secm−2 x

m − 1
+ m − 2

m − 1

∫
secm−2 x dx

solution Using Integration by Parts with u = secm−2 x and v′ = sec2 x, we have v = tan x and

u′ = (m − 2) secm−3 x(sec x tan x) = (m − 2) tan x secm−2 x.

Then, ∫
secm x dx = tan x secm−2 x − (m − 2)

∫
tan2 x secm−2 x dx

= tan x secm−2 x − (m − 2)

∫ (
sec2 x − 1

)
secm−2 x dx

= tan x secm−2 x − (m − 2)

∫
secm x dx + (m − 2)

∫
secm−2 x dx.

Solving this equation for
∫

secm x dx, we get

(m − 1)

∫
secm x dx = tan x secm−2 x + (m − 2)

∫
secm−2 x dx

∫
secm x dx = tan x secm−2 x

m − 1
+ m − 2

m − 1

∫
secm−2 x dx.

Set Im =
∫ π/2

0
sinm x dx. Use Exercise 71 to prove that

I2m = 2m − 1

2m

2m − 3

2m − 2
· · · 1

2
· π

2

I2m+1 = 2m

2m + 1

2m − 2

2m − 1
· · · 2

3

Conclude that

π

2
= 2 · 2

1 · 3
· 4 · 4

3 · 5
· · · 2m · 2m

(2m − 1)(2m + 1)

I2m

I2m+1

79. This is a continuation of Exercise 78.

(a) Prove that I2m+1 ≤ I2m ≤ I2m−1. Hint: sin2m+1 x ≤ sin2m x ≤ sin2m−1 x for 0 ≤ x ≤ π
2 .

(b) Show that
I2m−1

I2m+1
= 1 + 1

2m
.

(c) Show that 1 ≤ I2m

I2m+1
≤ 1 + 1

2m
.

(d) Prove that lim
m→∞

I2m

I2m+1
= 1.

(e) Finally, deduce the infinite product for π
2 discovered by English mathematician John Wallis (1616–1703):

π

2
= lim

m→∞
2

1
· 2

3
· 4

3
· 4

5
· · · 2m · 2m

(2m − 1)(2m + 1)

solution

(a) For 0 ≤ x ≤ π
2 , 0 ≤ sin x ≤ 1. Multiplying this last inequality by sin x, we obtain

0 ≤ sin2 x ≤ sin x.

Continuing to multiply this inequality by sin x, we obtain, more generally,

sin2m+1 x ≤ sin2m x ≤ sin2m−1 x.

Integrating these functions over [0, π
2 ], we get

∫ π/2

0
sin2m+1 x dx ≤

∫ π/2

0
sin2m x dx ≤

∫ π/2

0
sin2m−1 x dx,

which is the same as

I2m+1 ≤ I2m ≤ I2m−1.

(b) Using the relation Im = ((m − 1)/m)Im−2, we have

I2m−1

I2m+1
= I2m−1(

2m
2m+1

)
I2m−1

= 2m + 1

2m
= 2m

2m
+ 1

2m
= 1 + 1

2m
.
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(c) First start with the inequality of part (a):

I2m+1 ≤ I2m ≤ I2m−1.

Divide through by I2m+1:

1 ≤ I2m

I2m+1
≤ I2m−1

I2m+1
.

Use the result from part (b):

1 ≤ I2m

I2m+1
≤ 1 + 1

2m
.

(d) Taking the limit of this inequality, and applying the Squeeze Theorem, we have

lim
m→∞ 1 ≤ lim

m→∞
I2m

I2m+1
≤ lim

m→∞

(
1 + 1

2m

)
.

Because

lim
m→∞ 1 = 1 and lim

m→∞

(
1 + 1

2m

)
= 1,

we obtain

1 ≤ lim
m→∞

I2m

I2m+1
≤ 1.

Therefore

lim
m→∞

I2m

I2m+1
= 1.

(e) Take the limit of both sides of the equation obtained in Exercise 78(d):

lim
m→∞

π

2
= lim

m→∞
2 · 2

1 · 3
· 4 · 4

3 · 5
· · · 2m · 2m

(2m − 1)(2m + 1)

I2m

I2m+1

π

2
=
(

lim
m→∞

2 · 2

1 · 3
· 4 · 4

3 · 5
· · · 2m · 2m

(2m − 1)(2m + 1)

)(
lim

m→∞
I2m

I2m+1

)
.

Finally, using the result from (d), we have

π

2
= lim

m→∞
2 · 2

1 · 3
· 4 · 4

3 · 5
· · · 2m · 2m

(2m − 1)(2m + 1)
.

8.3 Trigonometric Substitution

Preliminary Questions
1. State the trigonometric substitution appropriate to the given integral:

(a)
∫ √

9 − x2 dx (b)
∫

x2(x2 − 16)3/2 dx

(c)
∫

x2(x2 + 16)3/2 dx (d)
∫

(x2 − 5)−2 dx

solution

(a) x = 3 sin θ (b) x = 4 sec θ (c) x = 4 tan θ (d) x = √
5 sec θ

2. Is trigonometric substitution needed to evaluate
∫

x
√

9 − x2 dx?

solution No. There is a factor of x in the integrand outside the radical and the derivative of 9 − x2 is −2x, so we may

use the substitution u = 9 − x2, du = −2x dx to evaluate this integral.

3. Express sin 2θ in terms of x = sin θ .

solution First note that if sin θ = x, then cos θ =
√

1 − sin2 θ =
√

1 − x2. Thus,

sin 2θ = 2 sin θ cos θ = 2x
√

1 − x2.
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4. Draw a triangle that would be used together with the substitution x = 3 sec θ .

solution

	x2 − 9

3

x

Exercises
In Exercises 1–4, evaluate the integral by following the steps given.

1. I =
∫

dx√
9 − x2

(a) Show that the substitution x = 3 sin θ transforms I into
∫

dθ , and evaluate I in terms of θ .

(b) Evaluate I in terms of x.

solution

(a) Let x = 3 sin θ . Then dx = 3 cos θ dθ , and

√
9 − x2 =

√
9 − 9 sin2 θ = 3

√
1 − sin2 θ = 3

√
cos2 θ = 3 cos θ.

Thus,

I =
∫

dx√
9 − x2

=
∫

3 cos θ dθ

3 cos θ
=
∫

dθ = θ + C.

(b) If x = 3 sin θ , then θ = sin−1( x
3 ). Thus,

I = θ + C = sin−1
(x

3

)
+ C.

I =
∫

dx

x2
√

x2 − 2

(a) Show that the substitution x = √
2 sec θ transforms the integral I into

1

2

∫
cos θdθ , and evaluate I in terms of

θ .

(b) Use a right triangle to show that with the above substitution, sin θ =
√

x2 − 2/x.

(c) Evaluate I in terms of x.

3. I =
∫

dx√
4x2 + 9

(a) Show that the substitution x = 3
2 tan θ transforms I into

1

2

∫
sec θ dθ .

(b) Evaluate I in terms of θ (refer to the table of integrals on page 423 in Section 8.2 if necessary).

(c) Express I in terms of x.

solution

(a) If x = 3
2 tan θ , then dx = 3

2 sec2 θ dθ , and

√
4x2 + 9 =

√
4 ·
(

3

2
tan θ

)2
+ 9 =

√
9 tan2 θ + 9 = 3

√
sec2 θ = 3 sec θ

Thus,

I =
∫

dx√
4x2 + 9

=
∫ 3

2 sec2 θ dθ

3 sec θ
= 1

2

∫
sec θ dθ

(b)

I = 1

2

∫
sec θ dθ = 1

2
ln | sec θ + tan θ | + C

(c) Since x = 3
2 tan θ , we construct a right triangle with tan θ = 2x

3 :

	4x2 + 9
2x

3
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From this triangle, we see that sec θ = 1
3

√
4x2 + 9, and therefore

I = 1

2
ln | sec θ + tan θ | + C = 1

2
ln

∣∣∣∣13
√

4x2 + 9 + 2x

3

∣∣∣∣+ C

= 1

2
ln

∣∣∣∣∣
√

4x2 + 9 + 2x

3

∣∣∣∣∣+ C = 1

2
ln |
√

4x2 + 9 + 2x| − 1

2
ln 3 + C = 1

2
ln |
√

4x2 + 9 + 2x| + C

I =
∫

dx

(x2 + 4)2

(a) Show that the substitution x = 2 tan θ transforms the integral I into
1

8

∫
cos2 θ dθ .

(b) Use the formula
∫

cos2 θ dθ = 1

2
θ + 1

2
sin θ cos θ to evaluate I in terms of θ .

(c) Show that sin θ = x√
x2 + 4

and cos θ = 2√
x2 + 4

.

(d) Express I in terms of x.

In Exercises 5–10, use the indicated substitution to evaluate the integral.

5.
∫ √

16 − 5x2 dx, x = 4√
5

sin θ

solution Let x = 4√
5

sin θ . Then dx = 4√
5

cos θ dθ , and

I =
∫ √

16 − 5x2 dx =
∫ √

16 − 5

(
4√
5

sin θ

)2
· 4√

5
cos θ dθ = 4√

5

∫ √
16 − 16 sin2 θ · cos θ dθ

= 4√
5

· 4
∫

cos θ · cos θ dθ = 16√
5

∫
cos2 θ dθ

= 16√
5

(
1

2
θ + 1

2
sin θ cos θ

)
+ C = 8√

5
(θ + sin θ cos θ) + C

Since x = 4√
5

sin θ , we construct a right triangle with sin θ = x
√

5
4 :

	16 − 5x2

x	5
4

From this triangle we see that cos θ = 1
4

√
16 − 5x2, so we have

I = 8√
5
(θ + sin θ cos θ) + C

= 8√
5

(
sin−1

(
x
√

5

4

)
+ x

√
5

4
· 1

4

√
16 − 5x2

)
+ C

= 8√
5

sin−1

(
x
√

5

4

)
+ 1

2
x
√

16 − 5x2 + C

∫ 1/2

0

x2√
1 − x2

dx, x = sin θ
7.
∫

dx

x
√

x2 − 9
, x = 3 sec θ

solution Let x = 3 sec θ . Then dx = 3 sec θ tan θ dθ , and√
x2 − 9 =

√
9 sec2 θ − 9 = 3

√
sec2 θ − 1 = 3

√
tan2 θ = 3 tan θ.

Thus, ∫
dx

x
√

x2 − 9
=
∫

(3 sec θ tan θ dθ)

(3 sec θ)(3 tan θ)
= 1

3

∫
dθ = 1

3
θ + C.

Since x = 3 sec θ , θ = sec−1( x
3 ), and ∫

dx

x
√

x2 − 9
= 1

3
sec−1

(x

3

)
+ C.

∫ 1

1/2

dx

x2
√

x2 + 4
, x = 2 tan θ

9.
∫

dx

(x2 − 4)3/2
, x = 2 sec θ

solution Let x = 2 sec θ . Then dx = 2 sec θ tan θ dθ , and

x2 − 4 = 4 sec2 θ − 4 = 4(sec2 θ − 1) = 4 tan2 θ.
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This gives

I =
∫

dx

(x2 − 4)3/2
=
∫

2 sec θ tan θ dθ

(4 tan2 θ)3/2
=
∫

2 sec θ tan θ dθ

8 tan3 θ
= 1

4

∫
sec θ dθ

tan2 θ
= 1

4

∫
cos θ

sin2 θ
dθ.

Now use substitution with u = sin θ and du = cos θ dθ . Then

I = 1

4

∫
u−2 du = −1

4
u−1 + C = −1

4 sin θ
+ C.

Since x = 2 sec θ , we construct a right triangle with sec θ = x
2 :

q
2

x
x2 − 4

From this triangle we see that sin θ =
√

x2 − 4/x, so therefore

I = −1

4(
√

x2 − 4/x)
+ C = −x

4
√

x2 − 4
+ C.

∫ 1

0

dx

(4 + 9x2)2
, x = 2

3 tan θ
11. Evaluate

∫
x dx√
x2 − 4

in two ways: using the direct substitution u = x2 − 4 and by trigonometric substitution.

solution Let u = x2 − 4. Then du = 2x dx, and

I1 =
∫

x dx√
x2 − 4

= 1

2

∫
du√

u
= 1

2

(
2u1/2

)
+ C = √

u + C =
√

x2 − 4 + C.

To use trigonometric substitution, let x = 2 sec θ . Then dx = 2 sec θ tan θ dθ , x2 − 4 = 4 sec2 θ − 4 = 4 tan2 θ , and

I1 =
∫

x dx√
x2 − 4

=
∫

2 sec θ(2 sec θ tan θ dθ)

2 tan θ
= 2

∫
sec2 θ dθ = 2 tan θ + C.

Since x = 2 sec θ , we construct a right triangle with sec θ = x
2 :

q
2

x
x2 − 4

From this triangle we see that

I1 = 2

(√
x2 − 4

2

)
+ C =

√
x2 − 4 + C.

Is the substitution u = x2 − 4 effective for evaluating the integral
∫

x2 dx√
x2 − 4

? If not, evaluate using trigonometric

substitution.

13. Evaluate using the substitution u = 1 − x2 or trigonometric substitution.

(a)
∫

x√
1 − x2

dx (b)
∫

x2
√

1 − x2 dx

(c)
∫

x3
√

1 − x2 dx (d)
∫

x4√
1 − x2

dx

solution

(a) Let u = 1 − x2. Then du = −2x dx, and we have∫
x√

1 − x2
dx = −1

2

∫ −2x dx√
1 − x2

= −1

2

∫
du

u1/2
.

(b) Let x = sin θ . Then dx = cos θ dθ , 1 − x2 = cos2 θ , and so∫
x2
√

1 − x2 dx =
∫

sin2 θ(cos θ) cos θ dθ =
∫

sin2 θ cos2 θ dθ.
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(c) Use the substitution u = 1 − x2. Then du = −2x dx, x2 = 1 − u, and so∫
x3
√

1 − x2 dx = −1

2

∫
x2
√

1 − x2(−2x dx) = −1

2

∫
(1 − u)u1/2 du.

(d) Let x = sin θ . Then dx = cos θ dθ , 1 − x2 = cos2 θ , and so

∫
x4√

1 − x2
dx =

∫
sin4 θ

cos θ
cos θ dθ =

∫
sin4 θ dθ.

Evaluate:

(a)
∫

dt

(t2 + 1)3/2
(b)

∫
t dt

(t2 + 1)3/2

In Exercises 15–32, evaluate using trigonometric substitution. Refer to the table of trigonometric integrals as necessary.

15.
∫

x2 dx√
9 − x2

solution Let x = 3 sin θ . Then dx = 3 cos θ dθ ,

9 − x2 = 9 − 9 sin2 θ = 9(1 − sin2 θ) = 9 cos2 θ,

and

I =
∫

x2 dx√
9 − x2

=
∫

9 sin2 θ(3 cos θ dθ)

3 cos θ
= 9

∫
sin2 θ dθ = 9

[
1

2
θ − 1

2
sin θ cos θ

]
+ C.

Since x = 3 sin θ , we construct a right triangle with sin θ = x
3 :

q

x
3

9 − x2

From this we see that cos θ =
√

9 − x2/3, and so

I = 9

2
sin−1

(x

3

)
− 9

2

(x

3

)(√9 − x2

3

)
+ C = 9

2
sin−1

(x

3

)
− 1

2
x
√

9 − x2 + C.

∫
dt

(16 − t2)3/2

17.
∫

dx

x
√

x2 + 16

solution Use the substitution x = 4 tan θ , so that dx = 4 sec2 θ dθ . Then

x
√

x2 + 16 = 4 tan θ

√
(4 tan θ)2 + 16 = 4 tan θ

√
16(tan2 θ + 1) = 16 tan θ sec θ

so that

I =
∫

dx

x
√

x2 + 16
=
∫

4 sec2 θ

16 tan θ sec θ
dθ = 1

4

∫
sec θ

tan θ
dθ = 1

4

∫
csc θ dθ = −1

4
ln | csc x + cot x| + C

Since x = 4 tan θ , we construct a right triangle with tan θ = x
4 :

	16 + x2

4

x

From this, we see that csc x =
√

x2+16
x and cot x = 4

x , so that

I = −1

4
ln | csc x + cot x| + C = −1

4
ln

∣∣∣∣∣
√

x2 + 16

x
+ 4

x

∣∣∣∣∣+ C = −1

4
ln

∣∣∣∣∣4 +
√

x2 + 16

x

∣∣∣∣∣+ C
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∫ √
12 + 4t2 dt

19.
∫

dx√
x2 − 9

solution Let x = 3 sec θ . Then dx = 3 sec θ tan θ dθ ,

x2 − 9 = 9 sec2 θ − 9 = 9(sec2 θ − 1) = 9 tan2 θ,

and

I =
∫

dx√
x2 − 9

=
∫

3 sec θ tan θ dθ

3 tan θ
=
∫

sec θ dθ = ln | sec θ + tan θ | + C.

Since x = 3 sec θ , we construct a right triangle with sec θ = x
3 :

q
3

x
x2 − 9

From this we see that tan θ =
√

x2 − 9/3, and so

I = ln

∣∣∣∣∣x3 +
√

x2 − 9

3

∣∣∣∣∣+ C1 = ln
∣∣∣x +

√
x2 − 9

∣∣∣+ ln

(
1

3

)
+ C1 = ln

∣∣∣x +
√

x2 − 9
∣∣∣+ C,

where C = ln
( 1

3

)+ C1.

∫
dt

t2
√

t2 − 25

21.
∫

dy

y2
√

5 − y2

solution Let y = √
5 sin θ . Then dy = √

5 cos θ dθ ,

5 − y2 = 5 − 5 sin2 θ = 5(1 − sin2 θ) = 5 cos2 θ,

and

I =
∫

dy

y2
√

5 − y2
=
∫ √

5 cos θ dθ

(5 sin2 θ)(
√

5 cos θ)
= 1

5

∫
dθ

sin2 θ
= 1

5

∫
csc2 θ dθ = 1

5
(− cot θ) + C.

Since y = √
5 sin θ , we construct a right triangle with sin θ = y√

5
:

q

y

5 − y2

5

From this we see that cot θ =
√

5 − y2/y, which gives us

I = 1

5

(
−
√

5 − y2

y

)
+ C = −

√
5 − y2

5y
+ C.

∫
x3
√

9 − x2 dx
23.

∫
dx√

25x2 + 2

solution Let x =
√

2
5 tan θ . Then dx =

√
2

5 sec2 θ dθ , 25x2 + 2 = 2 tan2 θ + 2 = 2 sec2 θ , and

I =
∫

dx√
25x2 + 2

=
∫ √

2
5 sec2 θ dθ√

2 sec θ
= 1

5

∫
sec θ dθ = 1

5
ln | sec θ + tan θ | + C.

Since x =
√

2
5 tan θ , we construct a right triangle with tan θ = 5x√

2
:

	25x2 + 2
5x

	2
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From this we see that sec θ = 1√
2

√
25x2 + 2, so that

I = 1

5
ln | sec θ + tan θ | + C = 1

5
ln

∣∣∣∣∣
√

25x2 + 2√
2

+ 5x√
2

∣∣∣∣∣+ C

= 1

5
ln

∣∣∣∣∣5x +
√

25x2 + 2√
2

∣∣∣∣∣+ C = 1

5
ln
∣∣∣5x +

√
25x2 + 2

∣∣∣− 1

5
ln

√
2 + C

= 1

5
ln
∣∣∣5x +

√
25x2 + 2

∣∣∣+ C

∫
dt

(9t2 + 4)2

25.
∫

dz

z3
√

z2 − 4

solution Let z = 2 sec θ . Then dz = 2 sec θ tan θ dθ ,

z2 − 4 = 4 sec2 θ − 4 = 4(sec2 θ − 1) = 4 tan2 θ,

and

I =
∫

dz

z3
√

z2 − 4
=
∫

2 sec θ tan θ dθ

(8 sec3 θ)(2 tan θ)
= 1

8

∫
dθ

sec2 θ
= 1

8

∫
cos2 θ dθ

= 1

8

[
1

2
θ + 1

2
sin θ cos θ

]
+ C = 1

16
θ + 1

16
sin θ cos θ + C.

As explained in the text, this computation is valid if we choose θ in [0, π/2) if z ≥ 2 and in [π, 3π/2) if z ≤ −2. If z ≥ 2,
we construct a right triangle with sec θ = z

2 :

q
2

z
z2 − 4

From this we see that sin θ =
√

z2 − 4/z and cos θ = 2/z. Then

I = 1

16
sec−1

( z

2

)
+ 1

16

(√
z2 − 4

z

)(
2

z

)
+ C = 1

16
sec−1

( z

2

)
+
√

z2 − 4

8z2
+ C.

However, if z ≤ −2, then sec−1
( z

2

)
lies in ( π

2 , π ] according to the definition of sec−1 x used in the text. But since θ is

the angle in [π, 3π
2 ) satisfying sec θ = z/2, we find that θ = 2π − sec−1

( z

2

)
. Similarly,

sin θ = −
√

z2 − 4

z
and cos θ = −2

z

So for z ≤ −2,

I = − 1

16
sec−1

( z

2

)
+
√

z2 − 4

8z2
+ C

Note that although θ = 2π − sec−1
( z

2

)
, the 2π is not needed in the expression for I because it may be absorbed in the

constant C.

∫
dy√

y2 − 9

27.
∫

x2 dx

(6x2 − 49)1/2

solution Let x = 7√
6

sec θ ; then dx = 7√
6

sec θ tan θ dθ , and

6x2 − 49 = 6

(
7√
6

sec θ

)2
− 49 = 49(sec2 θ − 1) = 49 tan2 θ
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so that

I =
∫

x2 dx

(6x2 − 49)1/2
=
∫ 49

6 sec2 θ( 7√
6

sec θ tan θ)

7 tan θ
dθ

= 49

6
√

6

∫
sec3 θ dθ = 49

6
√

6

(
1

2
tan θ sec θ + 1

2

∫
sec θ dθ

)

= 49

12
√

6
(tan θ sec θ + ln | sec θ + tan θ |) + C

Since x = 7√
6

sec θ , we construct a right triangle with sec θ = x
√

6
7 :

	6x2 − 49
x	6

7

From this we see that tan θ = 1
7

√
6x2 − 49, so that

I = 49

12
√

6

(
x
√

6
√

6x2 − 49

49
+ ln

∣∣∣∣∣x
√

6 +
√

6x2 − 49

7

∣∣∣∣∣
)

+ C

= 49

12
√

6

(
x
√

6
√

6x2 − 49

49
+ ln

∣∣∣x√
6 +

√
6x2 − 49

∣∣∣− ln 7

)
+ C

= 1

12
√

6

(
x
√

6
√

6x2 − 49 + 49 ln
∣∣∣x√

6 +
√

6x2 − 49
∣∣∣)+ C

∫
dx

(x2 − 4)2

29.
∫

dt

(t2 + 9)2

solution Let t = 3 tan θ . Then dt = 3 sec2 θ dθ ,

t2 + 9 = 9 tan2 θ + 9 = 9(tan2 θ + 1) = 9 sec2 θ,

and

I =
∫

dt

(t2 + 9)2
=
∫

3 sec2 θ dθ

81 sec4 θ
= 1

27

∫
cos2 θ dθ = 1

27

[
1

2
θ + 1

2
sin θ cos θ

]
+ C.

Since t = 3 tan θ , we construct a right triangle with tan θ = t
3 :

	t2 + 9
t

3

From this we see that sin θ = t/
√

t2 + 9 and cos θ = 3/
√

t2 + 9. Thus

I = 1

54
tan−1

(
t

3

)
+ 1

54

(
t√

t2 + 9

)(
3√

t2 + 9

)
+ C = 1

54
tan−1

(
t

3

)
+ t

18(t2 + 9)
+ C.

∫
dx

(x2 + 1)3
31.

∫
x2 dx

(x2 − 1)3/2

solution Let x = sec θ . Then dx = sec θ tan θ dθ , and x2 − 1 = sec2 θ − 1 = tan2 θ . Thus

I =
∫

x2

(x2 − 1)3/2
dx =

∫
sec2 θ

(tan2 θ)3/2
sec θ tan θ dθ

=
∫

sec2 θ sec θ tan θ

tan3 θ
dθ =

∫
sec3 θ

tan2 θ
dθ

=
∫

sec2 θ

tan2 θ
sec θ dθ =

∫
csc2 θ sec θ dθ =

∫
(1 + cot2 θ) sec θ dθ

=
∫

sec θ + cot θ csc θ dθ = ln | sec θ + tan θ | − csc θ + C
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Since x = sec θ , we construct the following right triangle:

	x2 − 1
x

1

From this we see that tan θ =
√

x2 − 1 and that csc θ = x√
x2−1

, so that

I = ln
∣∣∣x +

√
x2 − 1

∣∣∣− x√
x2 − 1

+ C

∫
x2 dx

(x2 + 1)3/2

33. Prove for a > 0: ∫
dx

x2 + a
= 1√

a
tan−1 x√

a
+ C

solution Let x = √
a u. Then, x2 = au2, dx = √

a du, and∫
dx

x2 + a
= 1√

a

∫
du

u2 + 1
= 1√

a
tan−1 u + C = 1√

a
tan−1

(
x√
a

)
+ C.

Prove for a > 0: ∫
dx

(x2 + a)2
= 1

2a

(
x

x2 + a
+ 1√

a
tan−1 x√

a

)
+ C

35. Let I =
∫

dx√
x2 − 4x + 8

.

(a) Complete the square to show that x2 − 4x + 8 = (x − 2)2 + 4.

(b) Use the substitution u = x − 2 to show that I =
∫

du√
u2 + 22

. Evaluate the u-integral.

(c) Show that I = ln
∣∣∣√(x − 2)2 + 4 + x − 2

∣∣∣+ C.

solution
(a) Completing the square, we get

x2 − 4x + 8 = x2 − 4x + 4 + 4 = (x − 2)2 + 4.

(b) Let u = x − 2. Then du = dx, and

I =
∫

dx√
x2 − 4x + 8

=
∫

dx√
(x − 2)2 + 4

=
∫

du√
u2 + 4

.

Now let u = 2 tan θ . Then du = 2 sec2 θ dθ ,

u2 + 4 = 4 tan2 θ + 4 = 4(tan2 θ + 1) = 4 sec2 θ,

and

I =
∫

2 sec2 θ dθ

2 sec θ
=
∫

sec θ dθ = ln | sec θ + tan θ | + C.

Since u = 2 tan θ , we construct a right triangle with tan θ = u
2 :

q

u2 + 4
u

2

From this we see that sec θ =
√

u2 + 4/2. Thus

I = ln

∣∣∣∣∣
√

u2 + 4

2
+ u

2

∣∣∣∣∣+ C1 = ln
∣∣∣√u2 + 4 + u

∣∣∣+ (ln
1

2
+ C1

)
= ln

∣∣∣√u2 + 4 + u

∣∣∣+ C.

(c) Substitute back for x in the result of part (b):

I = ln

∣∣∣∣
√

(x − 2)2 + 4 + x − 2

∣∣∣∣+ C.
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Evaluate
∫

dx√
12x − x2

. First complete the square to write 12x − x2 = 36 − (x − 6)2.
In Exercises 37–42, evaluate the integral by completing the square and using trigonometric substitution.

37.
∫

dx√
x2 + 4x + 13

solution First complete the square:

x2 + 4x + 13 = x2 + 4x + 4 + 9 = (x + 2)2 + 9.

Let u = x + 2. Then du = dx, and

I =
∫

dx√
x2 + 4x + 13

=
∫

dx√
(x + 2)2 + 9

=
∫

du√
u2 + 9

.

Now let u = 3 tan θ . Then du = 3 sec2 θ dθ ,

u2 + 9 = 9 tan2 θ + 9 = 9(tan2 θ + 1) = 9 sec2 θ,

and

I =
∫

3 sec2 θ dθ

3 sec θ
=
∫

sec θ dθ = ln | sec θ + tan θ | + C.

Since u = 3 tan θ , we construct the following right triangle:

q

u2 + 9
u

3

From this we see that sec θ =
√

u2 + 9/3. Thus

I = ln

∣∣∣∣∣
√

u2 + 9

3
+ u

3

∣∣∣∣∣+ C1 = ln
∣∣∣√u2 + 9 + u

∣∣∣+ (ln
1

3
+ C1

)

= ln

∣∣∣∣
√

(x + 2)2 + 9 + x + 2

∣∣∣∣+ C = ln
∣∣∣√x2 + 4x + 13 + x + 2

∣∣∣+ C.

∫
dx√

2 + x − x2

39.
∫

dx√
x + 6x2

solution First complete the square:

6x2 + x =
(

6x2 + x + 1

24

)
− 1

24
=
(√

6x + 1

2
√

6

)2
− 1

24

Let u = √
6x + 1

2
√

6
so that du = √

6 dx. Then

I =
∫

1√
x + 6x2

dx =
∫

1√(√
6x + 1

2
√

6

)2 − 1
24

dx = 1√
6

∫
1√

u2 − 1
24

du

Now let u = 1
2
√

6
sec θ . Then du = 1

2
√

6
sec θ tan θ , and

u2 − 1

24
= 1

24
(sec2 θ − 1) = 1

24
tan2 θ

so that

I = 1√
6

∫
1

1
2
√

6
tan θ

1

2
√

6
sec θ tan θ dθ = 1√

6

∫
sec θ dθ = 1√

6
ln | sec θ + tan θ | + C

Since u = 1
2
√

6
sec θ , we construct the following right triangle:

	24u2 − 1
2u	6

1
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from which we see that tan θ =
√

24u2 − 1 and sec θ = 2u
√

6. Thus

I = 1√
6

ln
∣∣∣2u

√
6 +

√
24u2 − 1

∣∣∣+ C = 1√
6

ln

∣∣∣∣∣2
√

6

(√
6x + 1

2
√

6

)
+
√

24

(
6x2 + x + 1

24

)
− 1

∣∣∣∣∣+ C

= 1√
6

ln
∣∣∣12x + 1 +

√
144x2 + 24x

∣∣∣+ C

∫ √
x2 − 4x + 7 dx

41.
∫ √

x2 − 4x + 3 dx

solution First complete the square:

x2 − 4x + 3 = x2 − 4x + 4 − 1 = (x − 2)2 − 1.

Let u = x − 2. Then du = dx, and

I =
∫ √

x2 − 4x + 3 dx =
∫ √

(x − 2)2 − 1 dx =
∫ √

u2 − 1 du.

Now let u = sec θ . Then du = sec θ tan θ dθ , u2 − 1 = sec2 θ − 1 = tan2 θ , and

I =
∫ √

tan2 θ(sec θ tan θ dθ) =
∫

tan2 θ sec θ dθ =
∫ (

sec2 θ − 1
)

sec θ dθ

=
∫

sec3 θ dθ −
∫

sec θ dθ =
(

tan θ sec θ

2
+ 1

2

∫
sec θ dθ

)
−
∫

sec θ dθ

= 1

2
tan θ sec θ − 1

2

∫
sec θ dθ = 1

2
tan θ sec θ − 1

2
ln | sec θ + tan θ | + C.

Since u = sec θ , we construct the following right triangle:

q
1

u
u2 − 1

From this we see that tan θ =
√

u2 − 1. Thus

I = 1

2
u
√

u2 − 1 − 1

2
ln
∣∣∣u +

√
u2 − 1

∣∣∣+ C = 1

2
(x − 2)

√
(x − 2)2 − 1 − 1

2
ln

∣∣∣∣x − 2 +
√

(x − 2)2 − 1

∣∣∣∣+ C

= 1

2
(x − 2)

√
x2 − 4x + 3 − 1

2
ln
∣∣∣x − 2 +

√
x2 − 4x + 3

∣∣∣+ C.

∫
dx

(x2 + 6x + 6)2

In Exercises 43–52, indicate a good method for evaluating the integral (but do not evaluate). Your choices are: substitution
(specify u and du), Integration by Parts (specify u and v′), a trigonometric method, or trigonometric substitution (specify).
If it appears that these techniques are not sufficient, state this.

43.
∫

x dx√
12 − 6x − x2

solution Complete the square so the the denominator is
√

15 − (x + 3)2 and then use trigonometric substitution with
x + 3 = sin θ .

∫ √
4x2 − 1 dx

45.
∫

sin3 x cos3 x dx

solution Use one of the following trigonometric methods: rewrite sin3 x = (1 − cos2 x) sin x and let u = cos x, or

rewrite cos3 x = (1 − sin2 x) cos x and let u = sin x.

∫
x sec2 x dx

47.
∫

dx√
9 − x2

solution Either use the substitution x = 3u and then recognize the formula for the inverse sine:∫
du√

1 − u2
= sin−1 u + C,

or use trigonometric substitution, with x = 3 sin θ .

∫ √
1 − x3 dx
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49.
∫

sin3/2 x dx

solution Not solvable by any method yet considered.

∫
x2√

x + 1 dx
51.

∫
dx

(x + 1)(x + 2)3

solution The techniques we have covered thus far are not sufficient to treat this integral. This integral requires a
technique known as partial fractions.

∫
dx

(x + 12)4

In Exercises 53–56, evaluate using Integration by Parts as a first step.

53.
∫

sec−1 x dx

solution Let u = sec−1 x and v′ = 1. Then v = x, u′ = 1/x
√

x2 − 1, and

I =
∫

sec−1 x dx = x sec−1 x −
∫

x

x
√

x2 − 1
dx = x sec−1 x −

∫
dx√

x2 − 1
.

To evaluate the integral on the right, let x = sec θ . Then dx = sec θ tan θ dθ , x2 − 1 = sec2 θ − 1 = tan2 θ , and∫
dx√

x2 − 1
=
∫

sec θ tan θ dθ

tan θ
=
∫

sec θ dθ = ln | sec θ + tan θ | + C = ln
∣∣∣x +

√
x2 − 1

∣∣∣+ C.

Thus, the final answer is

I = x sec−1 x − ln
∣∣∣x +

√
x2 − 1

∣∣∣+ C.

∫
sin−1 x

x2
dx

55.
∫

ln(x2 + 1) dx

solution Start by using integration by parts, with u = ln(x2 + 1) and v′ = 1; then u′ = 2x
x2+1

and v = x, so that

I =
∫

ln(x2 + 1) dx = x ln(x2 + 1) − 2
∫

x2

x2 + 1
dx = x ln(x2 + 1) − 2

∫ (
1 − 1

x2 + 1

)
dx

= x ln(x2 + 1) − 2x + 2
∫

1

x2 + 1
dx

To deal with the remaining integral, use the substitution x = tan θ , so that dx = sec2 θ dθ and

∫
1

x2 + 1
dx =

∫
sec2 θ

tan2 θ + 1
dθ =

∫
sec2 θ

sec2 θ
dθ =

∫
1 dθ = θ = tan−1 x + C

so that finally

I = x ln(x2 + 1) − 2x + 2 tan−1 x + C

∫
x2 ln(x2 + 1) dx

57. Find the average height of a point on the semicircle y =
√

1 − x2 for −1 ≤ x ≤ 1.

solution The average height is given by the formula

yave = 1

1 − (−1)

∫ 1

−1

√
1 − x2 dx = 1

2

∫ 1

−1

√
1 − x2 dx

Let x = sin θ . Then dx = cos θ dθ , 1 − x2 = cos2 θ , and∫ √
1 − x2 dx =

∫
(cos θ)(cos θ dθ) =

∫
cos2 θ dθ = 1

2
θ + 1

2
sin θ cos θ + C.

Since x = sin θ , we construct the following right triangle:

q

1

1 − x2

x
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From this we see that cos θ =
√

1 − x2. Therefore,

yave = 1

2

(
1

2
sin−1 x + 1

2
x
√

1 − x2
)∣∣∣∣1−1

= 1

2

[(
1

2
π + 0

)
−
(

−1

2
π + 0

)]
= π

4
.

Find the volume of the solid obtained by revolving the graph of y = x
√

1 − x2 over [0, 1] about the y-axis.
59. Find the volume of the solid obtained by revolving the region between the graph of y2 − x2 = 1 and the line y = 2
about the line y = 2.

solution First solve the equation y2 − x2 = 1 for y:

y = ±
√

x2 + 1.

The region in question is bounded in part by the top half of this hyperbola, which is the equation

y =
√

x2 + 1.

The limits of integration are obtained by finding the points of intersection of this equation with y = 2:

2 =
√

x2 + 1 ⇒ x = ±√
3.

The radius of each disk is given by 2 −
√

x2 + 1; the volume is therefore given by

V =
∫ √

3

−√
3
πr2 dx = 2π

∫ √
3

0

(
2 −

√
x2 + 1

)2
dx = 2π

∫ √
3

0

[
4 − 4

√
x2 + 1 + (x2 + 1)

]
dx

= 8π

∫ √
3

0
dx − 8π

∫ √
3

0

√
x2 + 1 dx + 2π

∫ √
3

0
(x2 + 1) dx.

To evaluate the integral
∫ √

x2 + 1 dx, let x = tan θ . Then dx = sec2 θ dθ , x2 + 1 = sec2 θ , and

∫ √
x2 + 1 dx =

∫
sec3 θ dθ = 1

2
tan θ sec θ + 1

2

∫
sec θ dθ

= 1

2
tan θ sec θ + 1

2
ln | sec θ + tan θ | + C = 1

2
x
√

x2 + 1 + 1

2
ln
∣∣∣√x2 + 1 + x

∣∣∣+ C.

Now we can compute the volume:

V =
[

8πx − 8π

(
1

2
x
√

x2 + 1 + 1

2
ln
∣∣∣√x2 + 1 + x

∣∣∣)+ 2

3
πx3 + 2πx

]∣∣∣∣
√

3

0

=
(

10πx + 2

3
πx3 − 4πx

√
x2 + 1 − 4π ln

∣∣∣√x2 + 1 + x

∣∣∣)∣∣∣∣
√

3

0

=
(

10π
√

3 + 2π
√

3 − 8π
√

3 − 4π ln
∣∣∣2 + √

3
∣∣∣)− (0) = 4π

[√
3 − ln

∣∣∣2 + √
3
∣∣∣] .

Find the volume of revolution for the region in Exercise 59, but revolve around y = 3.61. Compute
∫

dx

x2 − 1
in two ways and verify that the answers agree: first via trigonometric substitution and then using

the identity

1

x2 − 1
= 1

2

(
1

x − 1
− 1

x + 1

)

solution Using trigonometric substitution, let x = sec θ . Then dx = sec θ tan θdθ , x2 − 1 = sec2 θ − 1 = tan2 θ ,
and

I =
∫

dx

x2 − 1
=
∫

sec θ tan θ dθ

tan2 θ
=
∫

sec θ

tan θ
dθ =

∫
dθ

sin θ
=
∫

csc θ dθ = ln | csc θ − cot θ | + C.

Since x = sec θ , we construct the following right triangle:

q
1

x
x2 − 1
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From this we see that csc θ = x/
√

x2 − 1 and cot θ = 1/
√

x2 − 1. This gives us

I = ln

∣∣∣∣∣ x√
x2 − 1

− 1√
x2 − 1

∣∣∣∣∣+ C = ln

∣∣∣∣∣ x − 1√
x2 − 1

∣∣∣∣∣+ C.

Using the given identity, we get

I =
∫

dx

x2 − 1
= 1

2

∫ (
1

x − 1
− 1

x + 1

)
dx = 1

2

∫
dx

x − 1
− 1

2

∫
dx

x + 1
= 1

2
ln |x − 1| − 1

2
ln |x + 1| + C.

To confirm that these answers agree, note that

1

2
ln |x − 1| − 1

2
ln |x + 1| = 1

2
ln

∣∣∣∣x − 1

x + 1

∣∣∣∣ = ln

√∣∣∣∣x − 1

x + 1

∣∣∣∣ = ln

∣∣∣∣∣
√

x − 1√
x + 1

·
√

x − 1√
x − 1

∣∣∣∣∣ = ln

∣∣∣∣∣ x − 1√
x2 − 1

∣∣∣∣∣ .

You want to divide an 18-inch pizza equally among three friends using vertical slices at ±x as in Figure 6. Find
an equation satisfied by x and find the approximate value of x using a computer algebra system.

63. A charged wire creates an electric field at a point P located at a distance D from the wire (Figure 7). The component
E⊥ of the field perpendicular to the wire (in N/C) is

E⊥ =
∫ x2

x1

kλD

(x2 + D2)3/2
dx

where λ is the charge density (coulombs per meter), k = 8.99 × 109 N·m2/C2 (Coulomb constant), and x1, x2 are as in
the figure. Suppose that λ = 6 × 10−4 C/m, and D = 3 m. Find E⊥ if (a) x1 = 0 and x2 = 30 m, and (b) x1 = −15 m
and x2 = 15 m.

x1 x2

P

D

y

x

FIGURE 7

solution Let x = D tan θ . Then dx = D sec2 θ dθ ,

x2 + D2 = D2 tan2 θ + D2 = D2(tan2 θ + 1) = D2 sec2 θ,

and

E⊥ =
∫ x2

x1

kλD

(x2 + D2)3/2
dx = kλD

∫ x2

x1

D sec2 θ dθ

(D2 sec2 θ)3/2

= kλD2

D3

∫ x2

x1

sec2 θ dθ

sec3 θ
= kλ

D

∫ x2

x1

cos θ dθ = kλ

D
sin θ

∣∣∣∣x2

x1

Since x = D tan θ , we construct a right triangle with tan θ = x/D:

q

x2 + D2
x

D

From this we see that sin θ = x/
√

x2 + D2. Then

E⊥ = kλ

D

(
x√

x2 + D2

)∣∣∣∣∣
x2

x1

(a) Plugging in the values for the constants k, λ, D, and evaluating the antiderivative for x1 = 0 and x2 = 30, we get

E⊥ = (8.99 × 109)(6 × 10−4)

3

[
30√

302 + 32
− 0

]
≈ 1.789 × 106 V

m

(b) If x1 = −15 m and x2 = 15 m, we get

E⊥ = (8.99 × 109)(6 × 10−4)

3

[
15√

152 + 32
− −15√

(−15)2 + 32

]
≈ 3.526 × 106 V

m
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Further Insights and Challenges

Let Jn =
∫

dx

(x2 + 1)n
. Use Integration by Parts to prove

Jn+1 =
(

1 − 1

2n

)
Jn +

(
1

2n

)
x

(x2 + 1)n

Then use this recursion relation to calculate J2 and J3.

65. Prove the formula ∫ √
1 − x2 dx = 1

2
sin−1 x + 1

2
x
√

1 − x2 + C

using geometry by interpreting the integral as the area of part of the unit circle.

solution The integral
∫ a

0

√
1 − x2 dx is the area bounded by the unit circle, the x-axis, the y-axis, and the line x = a.

This area can be divided into two regions as follows:

1

I

II

a0
x

y

1

q

Region I is a triangle with base a and height
√

1 − a2. Region II is a sector of the unit circle with central angle θ =
π
2 − cos−1 a = sin−1 a. Thus,

∫ a

0

√
1 − x2 dx = 1

2
a
√

1 − a2 + 1

2
sin−1 a =

(
1

2
x
√

1 − x2 + 1

2
sin−1 x

)∣∣∣∣a
0

.

8.4 Integrals Involving Hyperbolic and Inverse Hyperbolic Functions

Preliminary Questions
1. Which hyperbolic substitution can be used to evaluate the following integrals?

(a)
∫

dx√
x2 + 1

(b)
∫

dx√
x2 + 9

(c)
∫

dx√
9x2 + 1

solution The appropriate hyperbolic substitutions are

(a) x = sinh t

(b) x = 3 sinh t

(c) 3x = sinh t

2. Which two of the hyperbolic integration formulas differ from their trigonometric counterparts by a minus sign?

solution The integration formulas for sinh x and tanh x differ from their trigonometric counterparts by a minus sign.

3. Which antiderivative of y = (1 − x2)−1 should we use to evaluate the integral
∫ 5

3
(1 − x2)−1 dx?

solution Because the integration interval lies outside −1 < x < 1, the appropriate antiderivative of y = (1 − x2)−1

is 1
2 ln

∣∣∣ 1+x
1−x

∣∣∣.
Exercises
In Exercises 1–16, calculate the integral.

1.
∫

cosh(3x) dx

solution
∫

cosh(3x) dx = 1

3
sinh 3x + C.

∫
sinh(x + 1) dx

3.
∫

x sinh(x2 + 1) dx

solution
∫

x sinh(x2 + 1) dx = 1

2
cosh(x2 + 1) + C.

∫
sinh2 x cosh x dx
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5.
∫

sech2(1 − 2x) dx

solution
∫

sech2(1 − 2x) dx = −1

2
tanh(1 − 2x) + C.

∫
tanh(3x) sech(3x) dx

7.
∫

tanh x sech2 x dx

solution Let u = tanh x. Then du = sech2 x dx nd

∫
tanh x sech2 x dx =

∫
u du = 1

2
u2 + C = tanh2 x

2
+ C.

∫
cosh x

3 sinh x + 4
dx

9.
∫

tanh x dx

solution
∫

tanh x dx = ln cosh x + C.

∫
x csch(x2) coth(x2) dx

11.
∫

cosh x

sinh x
dx

solution
∫

cosh x

sinh x
dx = ln | sinh x| + C.

∫
cosh x

sinh2 x
dx

13.
∫

sinh2(4x − 9) dx

solution
∫

sinh2(4x − 9) dx = 1

2

∫
(cosh(8x − 18) − 1) dx = 1

16
sinh(8x − 18) − 1

2
x + C.

∫
sinh3 x cosh6 x dx

15.
∫

sinh2 x cosh2 x dx

solution ∫
sinh2 x cosh2 x dx = 1

4

∫
sinh2 2x dx = 1

8

∫
(cosh 4x − 1) dx = 1

32
sinh 4x − 1

8
x + C.

∫
tanh3 x dx

In Exercises 17–30, calculate the integral in terms of the inverse hyperbolic functions.

17.
∫

dx√
x2 − 1

solution
∫

dx√
x2 − 1

= cosh−1 x + C.

∫
dx√

9x2 − 4

19.
∫

dx√
16 + 25x2

solution
∫

dx√
16 + 25x2

= 1

5
sinh−1

(
5x

4

)
+ C.

∫
dx√

1 + 3x2

21.
∫ √

x2 − 1 dx

solution Let x = cosh t . Then dx = sinh t dt and∫ √
x2 − 1 dx =

∫
sinh2 t dt = 1

2

∫
(cosh 2t − 1) dt = 1

4
sinh 2t − 1

2
t + C

= 1

2
sinh t cosh t − 1

2
t + C = 1

2
x
√

x2 − 1 − 1

2
cosh−1 x + C.

∫
x2 dx√
x2 + 1

23.
∫ 1/2

−1/2

dx

1 − x2

solution

∫ 1/2

−1/2

dx

1 − x2
= tanh−1 x

∣∣∣∣1/2

−1/2
= tanh−1

(
1

2

)
− tanh−1

(
−1

2

)
= 2 tanh−1

(
1

2

)
.
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∫ 5

4

dx

1 − x2

25.
∫ 1

0

dx√
1 + x2

solution
∫ 1

0

dx√
1 + x2

= sinh−1
∣∣∣∣1
0

= sinh−1(1) − sinh−1(0) = sinh−1 1.

∫ 10

2

dx

4x2 − 1

27.
∫ −1

−3

dx

x
√

x2 + 16

solution
∫ −1

−3

dx

x
√

x2 + 16
= 1

4
csch−1

(x

4

) ∣∣∣∣−1

−3
= 1

4

(
csch−1

(
−1

4

)
− csch−1

(
−3

4

))
.

∫ 0.8

0.2

dx

x
√

1 − x2

29.
∫ √

x2 − 1 dx

x2

solution Let x = cosh t . Then dx = sinh t dt and

∫ √
x2 − 1 dx

x2
=
∫

sinh2 t

cosh2 t
dt =

∫
tanh2 t dt =

∫
(1 − sech2 t) dt

= t − tanh t + C = cosh−1 x −
√

x2 − 1

x
+ C.

∫ 9

1

dx

x
√

x4 + 1

31. Verify the formulas

sinh−1 x = ln |x +
√

x2 + 1|
cosh−1 x = ln |x +

√
x2 − 1| (for x ≥ 1)

solution Let x = sinh t . Then

cosh t =
√

1 + sinh2 t =
√

1 + x2.

Moreover, because

sinh t + cosh t = et − e−t

2
+ et + e−t

2
= et ,

it follows that

sinh−1 x = t = ln(sinh t + cosh t) = ln(x +
√

x2 + 1).

Now, Let x = cosh t . Then

sinh t =
√

cosh2 t − 1 =
√

x2 − 1.

and

cosh−1 x = t = ln(sinh t + cosh t) = ln(x +
√

x2 − 1).

Because cosh t ≥ 1 for all t , this last expression is only valid for x = cosh t ≥ 1.

Verify that tanh−1 x = 1

2
ln

∣∣∣∣1 + x

1 − x

∣∣∣∣ for |x| < 1.
33. Evaluate

∫ √
x2 + 16 dx using trigonometric substitution. Then use Exercise 31 to verify that your answer agrees

with the answer in Example 3.

solution Let x = 4 tan θ . Then dx = 4 sec2 θ dθ and∫ √
x2 + 16 dx = 16

∫
sec3 θ dθ = 8 tan θ sec θ + 8

∫
sec θ dθ = 8 tan θ sec θ + 8 ln |sec θ + tan θ | + C

= 8 · x

4
·
√

x2 + 16

4
+ 8 ln

∣∣∣∣∣
√

x2 + 16

4
+ x

4

∣∣∣∣∣+ C

= 1

2
x
√

x2 + 16 + 8 ln

∣∣∣∣∣x4 +
√(x

4

)2 + 1

∣∣∣∣∣+ C.

Using Exercise 31,

ln

∣∣∣∣∣x4 +
√(x

4

)2 + 1

∣∣∣∣∣ = sinh−1
(x

4

)
,
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so we can write the antiderivative as

1

2
x
√

x2 + 16 + 8 sinh−1
(x

4

)
+ C,

which agrees with the answer in Example 3.

Evaluate
∫ √

x2 − 9 dx in two ways: using trigonometric substitution and using hyperbolic substitution. Then

use Exercise 31 to verify that the two answers agree.

35. Prove the reduction formula for n ≥ 2:∫
coshn x dx = 1

n
coshn−1 x sinh x + n − 1

n

∫
coshn−2 x dx 2

solution Using Integration by Parts with u = coshn−1 x and v′ = cosh x, we have∫
coshn x dx = coshn−1 x sinh x − (n − 1)

∫
coshn−2 x sinh2 x dx

= coshn−1 x sinh x − (n − 1)

∫
coshn x dx + (n − 1)

∫
coshn−2 x dx.

Adding (n − 1)
∫

coshn x dx to both sides then yields

n

∫
coshn x dx = coshn−1 x sinh x + (n − 1)

∫
coshn−2 x dx.

Finally, ∫
coshn x dx = 1

n
coshn−1 x sinh x + n − 1

n

∫
coshn−2 x dx.

Use Eq. (2) to evaluate
∫

cosh4 x dx.
In Exercises 37–40, evaluate the integral.

37.
∫

tanh−1 x dx

x2 − 1

solution Let u = tanh−1 x. Then du = 1

1 − x2
dx = − 1

x2 − 1
dx and

∫
tanh−1 x

x2 − 1
dx = −

∫
u du = −1

2
u2 + C = −1

2

(
tanh−1 x

)2 + C.

∫
sinh−1 x dx

39.
∫

tanh−1 x dx

solution Using Integration by Parts with u = tanh−1 x and v′ = 1,∫
tanh−1 x dx = x tanh−1 x −

∫
x

1 − x2
dx = x tanh−1 x + 1

2
ln |1 − x2| + C.

∫
x tanh−1 x dx

Further Insights and Challenges
41. Show that if u = tanh(x/2), then

cosh x = 1 + u2

1 − u2
, sinh x = 2u

1 − u2
, dx = 2du

1 − u2

Hint: For the first relation, use the identities

sinh2
(x

2

)
= 1

2
(cosh x − 1), cosh2

(x

2

)
= 1

2
(cosh x + 1)

solution Let u = tanh(x/2). Then

u = sinh(x/2)

cosh(x/2)
=
√

cosh x − 1

cosh x + 1
.

Solving for cosh x yields

cosh x = 1 + u2

1 − u2
.
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Next,

sinh x =
√

cosh2 x − 1 =
√

(1 + u2)2 − (1 − u2)2

(1 − u2)2
= 2u

1 − u2
.

Finally, if u = tanh(x/2), then x = 2 tanh−1 u and

dx = 2 du

1 − u2
.

Exercises 42 and 43: evaluate using the substitution of Exercise 41.

∫
sech x dx

43.
∫

dx

1 + cosh x

solution Let u = tanh(x/2). Then, by Exercise 41,

1 + cosh x = 1 + 1 + u2

1 − u2
= 2

1 − u2
and dx = 2 du

1 − u2
,

so ∫
dx

1 + cosh x
=
∫

du = u + C = tanh
x

2
+ C.

Suppose that y = f (x) satisfies y′′ = y. Prove:

(a) f (x)2 − (f ′(x))2 is constant.

(b) If f (0) = f ′(0) = 0, then f (x) is the zero function.

(c) f (x) = f (0) cosh x + f ′(0) sinh x.

Hint: Refer to Theorem 1 in Section 5.8.

Exercises 45–48 refer to the function gd(y) = tan−1(sinh y), called the gudermannian. In a map of the earth constructed
by Mercator projection, points located y radial units from the equator correspond to points on the globe of latitude gd(y).

45. Prove that
d

dy
gd(y) = sech y.

solution Let gd(y) = tan−1(sinh y). Then

d

dy
gd(y) = 1

1 + sinh2 y
cosh y = 1

cosh y
= sech y,

where we have used the identity 1 + sinh2 y = cosh2 y.

Let f (y) = 2 tan−1(ey) − π/2. Prove that gd(y) = f (y). Hint: Show that gd ′(y) = f ′(y) and f (0) = g(0).
47. Let t (y) = sinh−1(tan y). Show that t (y) is the inverse of gd(y) for 0 ≤ y < π/2.

solution Let x = gd(y) = tan−1(sinh y). Solving for y yields y = sinh−1(tan x). Therefore,

gd−1(y) = sinh−1(tan y).

Verify that t (y) in Exercise 47 satisfies t ′(y) = sec y, and find a value of a such that

t (y) =
∫ y

a

dt

cos t

49. The relations cosh(it) = cos t and sinh(it) = i sin t were discussed in the Excursion. Use these relations to show
that the identity cos2 t + sin2 t = 1 results from setting x = it in the identity cosh2 x − sinh2 x = 1.

solution Let x = it . Then

cosh2 x = (cosh(it))2 = cos2 t

and

sinh2 x = (sinh(it))2 = i2 sin2 t = − sin2 t.

Thus,

1 = cosh2(it) − sinh2(it) = cos2 t − (− sin2 t) = cos2 t + sin2 t,

as desired.

8.5 The Method of Partial Fractions

Preliminary Questions
1. Suppose that

∫
f (x) dx = ln x + √

x + 1 + C. Can f (x) be a rational function? Explain.

solution No, f (x) cannot be a rational function because the integral of a rational function cannot contain a term with
a non-integer exponent such as

√
x + 1.
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2. Which of the following are proper rational functions?

(a)
x

x − 3
(b)

4

9 − x

(c)
x2 + 12

(x + 2)(x + 1)(x − 3)
(d)

4x3 − 7x

(x − 3)(2x + 5)(9 − x)

solution
(a) No, this is not a proper rational function because the degree of the numerator is not less than the degree of the
denominator.
(b) Yes, this is a proper rational function.
(c) Yes, this is a proper rational function.
(d) No, this is not a proper rational function because the degree of the numerator is not less than the degree of the
denominator.

3. Which of the following quadratic polynomials are irreducible? To check, complete the square if necessary.

(a) x2 + 5 (b) x2 − 5

(c) x2 + 4x + 6 (d) x2 + 4x + 2

solution
(a) Square is already completed; irreducible.
(b) Square is already completed; factors as (x − √

5)(x + √
5).

(c) x2 + 4x + 6 = (x + 2)2 + 2; irreducible.
(d) x2 + 4x + 2 = (x + 2)2 − 2; factors as (x + 2 − √

2)(x + 2 + √
2).

4. Let P(x)/Q(x) be a proper rational function where Q(x) factors as a product of distinct linear factors (x − ai). Then∫
P(x) dx

Q(x)

(choose the correct answer):

(a) is a sum of logarithmic terms Ai ln(x − ai) for some constants Ai .
(b) may contain a term involving the arctangent.

solution The correct answer is (a): the integral is a sum of logarithmic terms Ai ln(x − ai) for some constants Ai .

Exercises
1. Match the rational functions (a)–(d) with the corresponding partial fraction decompositions (i)–(iv).

(a)
x2 + 4x + 12

(x + 2)(x2 + 4)
(b)

2x2 + 8x + 24

(x + 2)2(x2 + 4)

(c)
x2 − 4x + 8

(x − 1)2(x − 2)2
(d)

x4 − 4x + 8

(x + 2)(x2 + 4)

(i) x − 2 + 4

x + 2
− 4x − 4

x2 + 4

(ii)
−8

x − 2
+ 4

(x − 2)2
+ 8

x − 1
+ 5

(x − 1)2

(iii)
1

x + 2
+ 2

(x + 2)2
+ −x + 2

x2 + 4
(iv)

1

x + 2
+ 4

x2 + 4

solution

(a)
x2 + 4x + 12

(x + 2)(x2 + 4)
= 1

x + 2
+ 4

x2 + 4
.

(b)
2x2 + 8x + 24

(x + 2)2(x2 + 4)
= 1

x + 2
+ 2

(x + 2)2
+ −x + 2

x2 + 4
.

(c)
x2 − 4x + 8

(x − 1)2(x − 2)2
= −8

x − 2
+ 4

(x − 2)2
+ 8

x − 1
+ 5

(x − 1)2
.

(d)
x4 − 4x + 8

(x + 2)(x2 + 4)
= x − 2 + 4

x + 2
− 4x − 4

x2 + 4
.

Determine the constants A, B:

2x − 3

(x − 3)(x − 4)
= A

x − 3
+ B

x − 4

3. Clear denominators in the following partial fraction decomposition and determine the constant B (substitute a value
of x or use the method of undetermined coefficients).

3x2 + 11x + 12

(x + 1)(x + 3)2
= 1

x + 1
− B

x + 3
− 3

(x + 3)2
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solution Clearing denominators gives

3x2 + 11x + 12 = (x + 3)2 − B(x + 1)(x + 3) − 3(x + 1).

Setting x = 0 then yields

12 = 9 − B(1)(3) − 3(1) or B = −2.

To use the method of undetermined coefficients, expand the right-hand side and gather like terms:

3x2 + 11x + 12 = (1 − B)x2 + (3 − 4B)x + (6 − 3B).

Equating x2-coefficients on both sides, we find

3 = 1 − B or B = −2.

Find the constants in the partial fraction decomposition

2x + 4

(x − 2)(x2 + 4)
= A

x − 2
+ Bx + C

x2 + 4

In Exercises 5–8, evaluate using long division first to write f (x) as the sum of a polynomial and a proper rational function.

5.
∫

x dx

3x − 4

solution Long division gives us

x

3x − 4
= 1

3
+ 4/3

3x − 4

Therefore the integral is ∫
x

3x − 4
dx =

∫
1

3
− 4

9x − 12
dx = 1

3
x − 4

9
ln |9x − 12| + C

∫
(x2 + 2) dx

x + 3

7.
∫

(x3 + 2x2 + 1) dx

x + 2

solution Long division gives us

x3 + 2x2 + 1

x + 2
= x2 + 1

x + 2

Therefore the integral is

∫
x3 + 2x2 + 1

x + 2
dx =

∫
x2 + 1

x + 2
dx = 1

3
x3 + ln |x + 2| + C

∫
(x3 + 1) dx

x2 + 1

In Exercises 9–44, evaluate the integral.

9.
∫

dx

(x − 2)(x − 4)

solution The partial fraction decomposition has the form:

1

(x − 2)(x − 4)
= A

x − 2
+ B

x − 4
.

Clearing denominators gives us

1 = A(x − 4) + B(x − 2).

Setting x = 2 then yields

1 = A(2 − 4) + 0 or A = −1

2
,

while setting x = 4 yields

1 = 0 + B(4 − 2) or B = 1

2
.

The result is:

1

(x − 2)(x − 4)
= − 1

2
x − 2

+
1
2

x − 4
.
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Thus, ∫
dx

(x − 2)(x − 4)
= −1

2

∫
dx

x − 2
+ 1

2

∫
dx

x − 4
= −1

2
ln |x − 2| + 1

2
ln |x − 4| + C.

∫
(x + 3) dx

x + 4

11.
∫

dx

x(2x + 1)

solution The partial fraction decomposition has the form:

1

x(2x + 1)
= A

x
+ B

2x + 1
.

Clearing denominators gives us

1 = A(2x + 1) + Bx.

Setting x = 0 then yields

1 = A(1) + 0 or A = 1,

while setting x = − 1
2 yields

1 = 0 + B

(
−1

2

)
or B = −2.

The result is:

1

x(2x + 1)
= 1

x
+ −2

2x + 1
.

Thus, ∫
dx

x(2x + 1)
=
∫

dx

x
−
∫

2 dx

2x + 1
= ln |x| − ln |2x + 1| + C.

For the integral on the right, we have used the substitution u = 2x + 1, du = 2 dx.

∫
(2x − 1) dx

x2 − 5x + 6
13.

∫
x2 dx

x2 + 9

solution

∫
x2

x2 + 9
dx =

∫
1 − 9

x2 + 9
dx = x − 3 tan−1

(x

3

)
+ C

∫
dx

(x − 2)(x − 3)(x + 2)

15.
∫

(x2 + 3x − 44) dx

(x + 3)(x + 5)(3x − 2)

solution The partial fraction decomposition has the form:

x2 + 3x − 44

(x + 3)(x + 5)(3x − 2)
= A

x + 3
+ B

x + 5
+ C

3x − 2
.

Clearing denominators gives us

x2 + 3x − 44 = A(x + 5)(3x − 2) + B(x + 3)(3x − 2) + C(x + 3)(x + 5).

Setting x = −3 then yields

9 − 9 − 44 = A(2)(−11) + 0 + 0 or A = 2,

while setting x = −5 yields

25 − 15 − 44 = 0 + B(−2)(−17) + 0 or B = −1,

and setting x = 2
3 yields

4

9
+ 2 − 44 = 0 + 0 + C

(
11

3

)(
17

3

)
or C = −2.
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The result is:

x2 + 3x − 44

(x + 3)(x + 5)(3x − 2)
= 2

x + 3
+ −1

x + 5
+ −2

3x − 2
.

Thus,

∫
(x2 + 3x − 44) dx

(x + 3)(x + 5)(3x − 2)
= 2

∫
dx

x + 3
−
∫

dx

x + 5
− 2

∫
dx

3x − 2

= 2 ln |x + 3| − ln |x + 5| − 2

3
ln |3x − 2| + C.

To evaluate the last integral, we have made the substitution u = 3x − 2, du = 3 dx.

∫
3 dx

(x + 1)(x2 + x)

17.
∫

(x2 + 11x) dx

(x − 1)(x + 1)2

solution The partial fraction decomposition has the form:

x2 + 11x

(x − 1)(x + 1)2
= A

x − 1
+ B

x + 1
+ C

(x + 1)2
.

Clearing denominators gives us

x2 + 11x = A(x + 1)2 + B(x − 1)(x + 1) + C(x − 1).

Setting x = 1 then yields

12 = A(4) + 0 + 0 or A = 3,

while setting x = −1 yields

−10 = 0 + 0 + C(−2) or C = 5.

Plugging in these values results in

x2 + 11x = 3(x + 1)2 + B(x − 1)(x + 1) + 5(x − 1).

The constant B can be determined by plugging in for x any value other than 1 or −1. If we plug in x = 0, we get

0 = 3 + B(−1)(1) + 5(−1) or B = −2.

The result is

x2 + 11x

(x − 1)(x + 1)2
= 3

x − 1
+ −2

x + 1
+ 5

(x + 1)2
.

Thus,

∫
(x2 + 11x) dx

(x − 1)(x + 1)2
= 3

∫
dx

x − 1
− 2

∫
dx

x + 1
+ 5

∫
dx

(x + 1)2
= 3 ln |x − 1| − 2 ln |x + 1| − 5

x + 1
+ C.

∫
(4x2 − 21x) dx

(x − 3)2(2x + 3)

19.
∫

dx

(x − 1)2(x − 2)2

solution The partial fraction decomposition has the form:

1

(x − 1)2(x − 2)2
= A

x − 1
+ B

(x − 1)2
+ C

x − 2
+ D

(x − 2)2
.

Clearing denominators gives us

1 = A(x − 1)(x − 2)2 + B(x − 2)2 + C(x − 2)(x − 1)2 + D(x − 1)2.

Setting x = 1 then yields

1 = B(1) or B = 1,

while setting x = 2 yields

1 = D(1) or D = 1.
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Plugging in these values gives us

1 = A(x − 1)(x − 2)2 + (x − 2)2 + C(x − 2)(x − 1)2 + (x − 1)2.

Setting x = 0 now yields

1 = A(−1)(4) + 4 + C(−2)(1) + 1 or − 4 = −4A − 2C,

while setting x = 3 yields

1 = A(2)(1) + 1 + C(1)(4) + 4 or − 4 = 2A + 4C.

Solving this system of two equations in two unknowns gives A = 2 and C = −2. The result is

1

(x − 1)2(x − 2)2
= 2

x − 1
+ 1

(x − 1)2
+ −2

x − 2
+ 1

(x − 2)2
.

Thus, ∫
dx

(x − 1)2(x − 2)2
= 2

∫
dx

x − 1
+
∫

dx

(x − 1)2
− 2

∫
dx

x − 2
+
∫

dx

(x − 2)2

= 2 ln |x − 1| − 1

x − 1
− 2 ln |x − 2| − 1

x − 2
+ C.

∫
(x2 − 8x) dx

(x + 1)(x + 4)3

21.
∫

8 dx

x(x + 2)3

solution The partial fraction decomposition is

8

x(x + 2)3
= A

x
+ B

x + 2
+ C

(x + 2)2
+ D

(x + 2)3

Clearing fractions gives

8 = A(x + 2)3 + Bx(x + 2)2 + Cx(x + 2) + Dx

Setting x = 0 gives 8 = 8A so A = 1; setting x = −2 gives 8 = −2D so that D = −4; the result is

8 = (x + 2)3 + Bx(x + 2)2 + Cx(x + 2) − 4x

The coefficient of x3 on the right-hand side must be zero, since it is zero on the left. We compute it to be 1 + B, so that
B = −1. Finally, we look at the coefficient of x2 on the right-hand side; it must be zero as well. We compute it to be

3 · 2 − 4 + C = C + 2

so that C = −2 and the partial fraction decomposition is

8

x(x + 2)3
= 1

x
− 1

x + 2
− 2

(x + 2)2
− 4

(x + 2)3

and∫
8

x(x + 2)3
dx =

∫
1

x
dx − 1

x + 2
dx − 2

∫
(x + 2)−2 dx − 4

∫
(x + 2)−3 dx

= ln |x| − ln |x + 2| + 2(x + 2)−1 + 2(x + 2)−2 + C = ln

∣∣∣∣ x

x + 2

∣∣∣∣+ 2

x + 2
+ 2

(x + 2)2
+ C

∫
x2 dx

x2 + 3

23.
∫

dx

2x2 − 3

solution The partial fraction decomposition has the form

1

2x2 − 3
= 1

(
√

2x − √
3)(

√
2x + √

3)
= A√

2x − √
3

+ B√
2x + √

3
.

Clearing denominators, we get

1 = A
(√

2x + √
3
)

+ B
(√

2x − √
3
)

.
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Setting x = √
3/

√
2 then yields

1 = A
(√

3 + √
3
)

+ 0 or A = 1

2
√

3
,

while setting x = −√
3/

√
2 yields

1 = 0 + B
(
−√

3 − √
3
)

or B = −1

2
√

3
.

The result is

1

2x2 − 3
= 1/2

√
3√

2x − √
3

− 1/2
√

3√
2x + √

3
.

Thus, ∫
dx

2x2 − 3
= 1

2
√

3

∫
dx√

2x − √
3

− 1

2
√

3

∫
dx√

2x + √
3
.

For the first integral, let u = √
2x − √

3, du = √
2 dx, and for the second, let w = √

2x + √
3, dw = √

2 dx. Then we
have ∫

dx

2x2 − 3
= 1

2
√

3(
√

2)

∫
du

u
− 1

2
√

3(
√

2)

∫
dw

w
= 1

2
√

6
ln
∣∣∣√2x − √

3
∣∣∣− 1

2
√

6
ln
∣∣∣√2x + √

3
∣∣∣+ C.

∫
dx

(x − 4)2(x − 1)

25.
∫

4x2 − 20

(2x + 5)3
dx

solution The partial fraction decomposition is

4x2 − 20

(2x + 5)3
= A

2x + 5
+ B

(2x + 5)2
+ C

(2x + 5)3

Clearing fractions gives

4x2 − 20 = A(2x + 5)2 + B(2x + 5) + C

Setting x = −5/2 gives 5 = C so that C = 5. The coefficient of x2 on the left-hand side is 4, and on the right-hand side
is 4A, so that A = 1 and we have

4x2 − 20 = (2x + 5)2 + B(2x + 5) + 5

Considering the constant terms now gives −20 = 25 + 5B + 5 so that B = −10. Thus

∫
4x2 − 20

(2x + 5)3
=
∫

1

2x + 5
dx − 10

∫
1

(2x + 5)2
dx + 5

∫
1

(2x + 5)3
dx

= 1

2
ln |2x + 5| + 5

2x + 5
− 5

4(2x + 5)2
+ C

∫
3x + 6

x2(x − 1)(x − 3)
dx

27.
∫

dx

x(x − 1)3

solution The partial fraction decomposition has the form:

1

x(x − 1)3
= A

x
+ B

x − 1
+ C

(x − 1)2
+ D

(x − 1)3
.

Clearing denominators, we get

1 = A(x − 1)3 + Bx(x − 1)2 + Cx(x − 1) + Dx.

Setting x = 0 then yields

1 = A(−1) + 0 + 0 + 0 or A = −1,

while setting x = 1 yields

1 = 0 + 0 + 0 + D(1) or D = 1.
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Plugging in A = −1 and D = 1 gives us

1 = −(x − 1)3 + Bx(x − 1)2 + Cx(x − 1) + x.

Now, setting x = 2 yields

1 = −1 + 2B + 2C + 2 or 2B + 2C = 0,

and setting x = 3 yields

1 = −8 + 12B + 6C + 3 or 2B + C = 1.

Solving these two equations in two unknowns, we find B = 1 and C = −1. The result is

1

x(x − 1)3
= −1

x
+ 1

x − 1
+ −1

(x − 1)2
+ 1

(x − 1)3
.

Thus, ∫
dx

x(x − 1)3
= −

∫
dx

x
+
∫

dx

x − 1
−
∫

dx

(x − 1)2
+
∫

dx

(x − 1)3

= − ln |x| + ln |x − 1| + 1

x − 1
− 1

2(x − 1)2
+ C.

∫
(3x2 − 2) dx

x − 4

29.
∫

(x2 − x + 1) dx

x2 + x

solution First use long division to write

x2 − x + 1

x2 + x
= 1 + −2x + 1

x2 + x
= 1 + −2x + 1

x(x + 1)
.

The partial fraction decomposition of the term on the right has the form:

−2x + 1

x(x + 1)
= A

x
+ B

x + 1
.

Clearing denominators gives us

−2x + 1 = A(x + 1) + Bx.

Setting x = 0 then yields

1 = A(1) + 0 or A = 1,

while setting x = −1 yields

3 = 0 + B(−1) or B = −3.

The result is

−2x + 1

x(x + 1)
= 1

x
+ −3

x + 1
.

Thus,

∫
(x2 − x + 1) dx

x2 + x
=
∫

dx +
∫

dx

x
− 3

∫
dx

x + 1
= x + ln |x| − 3 ln |x + 1| + C.

∫
dx

x(x2 + 1)

31.
∫

(3x2 − 4x + 5) dx

(x − 1)(x2 + 1)

solution The partial fraction decomposition has the form:

3x2 − 4x + 5

(x − 1)(x2 + 1)
= A

x − 1
+ Bx + C

x2 + 1
.

Clearing denominators, we get

3x2 − 4x + 5 = A(x2 + 1) + (Bx + C)(x − 1).



June 13, 2011 LTSV SSM Second Pass

S E C T I O N 8.5 The Method of Partial Fractions 493

Setting x = 1 then yields

3 − 4 + 5 = A(2) + 0 or A = 2.

This gives us

3x2 − 4x + 5 = 2(x2 + 1) + (Bx + C)(x − 1) = (B + 2)x2 + (C − B)x + (2 − C).

Equating x2-coefficients, we find

3 = B + 2 or B = 1;
while equating constant coefficients yields

5 = 2 − C or C = −3.

The result is

3x2 − 4x + 5

(x − 1)(x2 + 1)
= 2

x − 1
+ x − 3

x2 + 1
.

Thus, ∫
(3x2 − 4x + 5) dx

(x − 1)(x2 + 1)
= 2

∫
dx

x − 1
+
∫

(x − 3) dx

x2 + 1
= 2

∫
dx

x − 1
+
∫

x dx

x2 + 1
− 3

∫
dx

x2 + 1
.

For the second integral, use the substitution u = x2 + 1, du = 2x dx. The final answer is∫
(3x2 − 4x + 5) dx

(x − 1)(x2 + 1)
= 2 ln |x − 1| + 1

2
ln |x2 + 1| − 3 tan−1 x + C.

∫
x2

(x + 1)(x2 + 1)
dx

33.
∫

dx

x(x2 + 25)

solution The partial fraction decomposition has the form:

1

x(x2 + 25)
= A

x
+ Bx + C

x2 + 25
.

Clearing denominators, we get

1 = A(x2 + 25) + (Bx + C)x.

Setting x = 0 then yields

1 = A(25) + 0 or A = 1

25
.

This gives us

1 = 1

25
x2 + 1 + Bx2 + Cx =

(
B + 1

25

)
x2 + Cx + 1.

Equating x2-coefficients, we find

0 = B + 1

25
or B = − 1

25
,

while equating x-coefficients yields C = 0. The result is

1

x(x2 + 25)
=

1
25
x

+ − 1
25x

x2 + 25
.

Thus, ∫
dx

x(x2 + 25)
= 1

25

∫
dx

x
− 1

25

∫
x dx

x2 + 25
.

For the integral on the right, use u = x2 + 25, du = 2x dx. Then we have∫
dx

x(x2 + 25)
= 1

25
ln |x| − 1

50
ln |x2 + 25| + C.

∫
dx

x2(x2 + 25)
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35.
∫

(6x2 + 2) dx

x2 + 2x − 3

solution Long division gives

6x2 + 2

x2 + 2x − 3
= 6 − 12x − 20

x2 + 2x − 3
= 6 − 12x − 20

(x + 3)(x − 1)

The partial fraction decomposition of the second term is

12x − 20

(x + 3)(x − 1)
= A

x + 3
+ B

x − 1

Clear fractions to get

12x − 20 = A(x − 1) + B(x + 3)

Set x = 1 to get −8 = 4B so that B = −2. Set x = −3 to get −56 = −4A so that A = 14, and we have

∫
6x2 + 2

x2 + 2x − 3
=
∫

6 − 14

x + 3
+ 2

x − 1
dx =

∫
6 dx − 14

∫
1

x + 3
dx + 2

∫
1

x − 1
dx

= 6x − 14 ln |x + 3| + 2 ln |x − 1| + C

∫
6x2 + 7x − 6

(x2 − 4)(x + 2)
dx

37.
∫

10 dx

(x − 1)2(x2 + 9)

solution The partial fraction decomposition has the form:

10

(x − 1)2(x2 + 9)
= A

x − 1
+ B

(x − 1)2
+ Cx + D

x2 + 9
.

Clearing denominators, we get

10 = A(x − 1)(x2 + 9) + B(x2 + 9) + (Cx + D)(x − 1)2.

Setting x = 1 then yields

10 = 0 + B(10) + 0 or B = 1.

Expanding the right-hand side, we have

10 = (A + C)x3 + (1 − A − 2C + D)x2 + (9A + C − 2D)x + (9 − 9A + D).

Equating coefficients of like powers of x then yields

A + C = 0

1 − A − 2C + D = 0

9A + C − 2D = 0

9 − 9A + D = 10

From the first equation, we have C = −A, and from the fourth equation we have D = 1 + 9A. Substituting these into
the second equation, we get

1 − A − 2(−A) + (1 + 9A) = 0 or A = −1

5
.

Finally, C = 1
5 and D = − 4

5 . The result is

10

(x − 1)2(x2 + 9)
= − 1

5
x − 1

+ 1

(x − 1)2
+

1
5x − 4

5

x2 + 9
.

Thus, ∫
10 dx

(x − 1)2(x2 + 9)
= −1

5

∫
dx

x − 1
+
∫

dx

(x − 1)2
+ 1

5

∫
x dx

x2 + 9
− 4

5

∫
dx

x2 + 9

= −1

5
ln |x − 1| − 1

x − 1
+ 1

10
ln |x2 + 9| − 4

15
tan−1

(x

3

)
+ C.

∫
10 dx

(x + 1)(x2 + 9)2
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39.
∫

dx

x(x2 + 8)2

solution The partial fraction decomposition has the form:

1

x(x2 + 8)2
= A

x
+ Bx + C

x2 + 8
+ Dx + E

(x2 + 8)2
.

Clearing denominators, we get

1 = A(x2 + 8)2 + (Bx + C)x(x2 + 8) + (Dx + E)x.

Expanding the right-hand side gives us

1 = (A + B)x4 + Cx3 + (16A + 8B + D)x2 + (8C + E)x + 64A.

Equating coefficients of like powers of x yields

A + B = 0

C = 0

16A + 8B + D = 0

8C + E = 0

64A = 1

The solution to this system of equations is

A = 1

64
, B = − 1

64
, C = 0, D = −1

8
, E = 0.

Therefore

1

x(x2 + 8)2
=

1
64
x

+ − 1
64x

x2 + 8
+ − 1

8x

(x2 + 8)2
,

and ∫
dx

x(x2 + 8)2
= 1

64

∫
dx

x
− 1

64

∫
x dx

x2 + 8
− 1

8

∫
x dx

(x2 + 8)2
.

For the second and third integrals, use the substitution u = x2 + 8, du = 2x dx. Then we have∫
dx

x(x2 + 8)2
= 1

64
ln |x| − 1

128
ln |x2 + 8| + 1

16(x2 + 8)
+ C.

∫
100x dx

(x − 3)(x2 + 1)2

41.
∫

dx

(x + 2)(x2 + 4x + 10)

solution The partial fraction decomposition has the form:

1

(x + 2)(x2 + 4x + 10)
= A

x + 2
+ Bx + C

x2 + 4x + 10
.

Clearing denominators, we get

1 = A(x2 + 4x + 10) + (Bx + C)(x + 2).

Setting x = −2 then yields

1 = A(6) + 0 or A = 1

6
.

Expanding the right-hand side gives us

1 =
(

1

6
+ B

)
x2 +

(
2

3
+ 2B + C

)
x +

(
5

3
+ 2C

)
.

Equating x2-coefficients yields

0 = 1

6
+ B or B = −1

6
,
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while equating constant coefficients yields

1 = 5

3
+ 2C or C = −1

3
.

The result is

1

(x + 2)(x2 + 4x + 10)
=

1
6

x + 2
+ − 1

6x − 1
3

x2 + 4x + 10
.

Thus, ∫
dx

(x + 2)(x2 + 4x + 10)
= 1

6

∫
dx

x + 2
− 1

6

∫
(x + 2) dx

x2 + 4x + 10
.

For the second integral, let u = x2 + 4x + 10. Then du = (2x + 4) dx, and∫
dx

(x + 2)(x2 + 4x + 10)
= 1

6
ln |x + 2| − 1

12

∫
(2x + 4) dx

x2 + 4x + 10

= 1

6
ln |x + 2| − 1

12
ln |x2 + 4x + 10| + C.

∫
9 dx

(x + 1)(x2 − 2x + 6)

43.
∫

25 dx

x(x2 + 2x + 5)2

solution The partial fraction decomposition has the form

25

x(x2 + 2x + 5)2
= A

x
+ Bx + C

x2 + 2x + 5
+ Dx + E

(x2 + 2x + 5)2
.

Clearing denominators yields:

25 = A(x2 + 2x + 5)2 + x(Bx + C)(x2 + 2x + 5) + x(Dx + E)

= (Ax4 + 4Ax3 + 14Ax2 + 20Ax + 25A) + (Bx4 + Cx3 + 2Bx3 + 2Cx2 + 5Bx2 + 5Cx) + Dx2 + Ex.

Equating constant terms yields

25A = 25 or A = 1,

while equating x4-coefficients yields

A + B = 0 or B = −A = −1.

Equating x3-coefficients yields

4A + C + 2B = 0 or C = −2,

and equating x2-coefficients yields

14A + 2C + 5B + D = 0 or D = −5.

Finally, equating x-coefficients yields

20A + 5C + E = 0 or E = −10.

Thus, ∫
25 dx

x(x2 + 2x + 5)2
=
∫ (

1

x
− x + 2

x2 + 2x + 5
− 5

x + 2

(x2 + 2x + 5)2

)
dx

= ln |x| −
∫

x + 2

x2 + 2x + 5
dx − 5

∫
x + 2

(x2 + 2x + 5)2
dx.

The two integrals on the right both require the substitution u = x + 1, so that x2 + 2x + 5 = (x + 1)2 + 4 = u2 + 4
and du = dx. This means:∫

25 dx

x(x2 + 2x + 5)2
= ln |x| −

∫
u + 1

u2 + 4
du − 5

∫
u + 1

(u2 + 4)2
du

= ln |x| −
∫

u

u2 + 4
du −

∫
1

u2 + 4
du − 5

∫
u

(u2 + 4)2
du − 5

∫
1

(u2 + 4)2
du.
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For the first and third integrals, we make the substitution w = u2 + 4, dw = 2u du. Then we have∫
25 dx

x(x2 + 2x + 5)2
= ln |x| − 1

2
ln |u2 + 4| − 1

2
tan−1

(u

2

)
+ 5

2(u2 + 4)
− 5

∫
du

(u2 + 4)2

= ln |x| − 1

2
ln |x2 + 2x + 5| − 1

2
tan−1

(
x + 1

2

)
+ 5

2(x2 + 2x + 5)
− 5

∫
du

(u2 + 4)2
.

For the remaining integral, we use the trigonometric substitution 2 tan w = u, so that u2 + 4 = 4 tan2 w + 4 = 4 sec2 w

and du = 2 sec2 w dw. This means∫
1

(u2 + 4)2
du = 1

8

∫
1

sec4 w
sec2 w dw = 1

8

∫
cos2 w dw

= 1

8

(
1

4
sin 2w + w

2

)
+ C =

(
1

16
sin w cos w + w

16

)
+ C

= 1

16

u√
u2 + 4

2√
u2 + 4

+ 1

16
tan−1

(u

2

)
+ C = 1

8

u

u2 + 4
+ 1

16
tan−1

(u

2

)
+ C

= 1

8

x + 1

x2 + 2x + 5
+ 1

16
tan−1

(
x + 1

2

)
.

Hence, the integral is∫
25 dx

x(x2 + 2x + 5)2
= ln |x| − 1

2
ln |x2 + 2x + 5| − 1

2
tan−1

(
x + 1

2

)

+ 5

2(x2 + 2x + 5)
− 5

8

x + 1

x2 + 2x + 5
− 5

16
tan−1

(
x + 1

2

)

= ln |x| + 15 − 5x

8(x2 + 2x + 5)
− 13

16
tan−1

(
x + 1

2

)
− 1

2
ln |x2 + 2x + 5| + C.

∫
(x2 + 3) dx

(x2 + 2x + 3)2

In Exercises 45–48, evaluate by using first substitution and then partial fractions if necessary.

45.
∫

x dx

x4 + 1

solution Use the substitution u = x2 so that du = 2x dx, and∫
x

x4 + 1
dx = 1

2

∫
1

u2 + 1
du = 1

2
tan−1 u = 1

2
tan−1(x2)

∫
x dx

(x + 2)4
47.

∫
ex dx

e2x − ex

solution Use the substitution u = ex . Then du = ex dx = u dx so that dx = 1
u du. Then

∫
ex dx

e2x − ex
=
∫

u · 1
u du

u2 − u
=
∫

1

u(u − 1)
du

Using partial fractions, we have

1

u(u − 1)
= A

u
+ B

u − 1
= (A + B)u − A

u(u − 1)

Upon equating coefficients in the numerators, we have A + B = 0, A = −1 so that B = 1. Then∫
ex dx

e2x − ex
= −

∫
1

u
du +

∫
1

u − 1
du = ln |u − 1| − ln |u| + C = ln |ex − 1| − ln ex + C

∫
sec2 θ dθ

tan2 θ − 1

49. Evaluate
∫ √

x dx

x − 1
. Hint: Use the substitution u = √

x (sometimes called a rationalizing substitution).

solution Let u = √
x. Then du = (1/2

√
x) dx = (1/2u) dx. Thus

∫ √
x dx

x − 1
=
∫

u(2u du)

u2 − 1
= 2

∫
u2 du

u2 − 1
= 2

∫
(u2 − 1 + 1) du

u2 − 1

= 2
∫ (

u2 − 1

u2 − 1
+ 1

u2 − 1

)
du = 2

∫
du +

∫
2 du

u2 − 1
= 2u +

∫
2 du

u2 − 1
.
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The partial fraction decomposition of the remaining integral has the form:

2

u2 − 1
= 2

(u − 1)(u + 1)
= A

u − 1
+ B

u + 1
.

Clearing denominators gives us

2 = A(u + 1) + B(u − 1).

Setting u = 1 yields 2 = A(2) + 0 or A = 1, while setting u = −1 yields 2 = 0 + B(−2) or B = −1. The result is

2

u2 − 1
= 1

u − 1
+ −1

u + 1
.

Thus, ∫
2 du

u2 − 1
=
∫

du

u − 1
−
∫

du

u + 1
= ln |u − 1| − ln |u + 1| + C.

The final answer is∫ √
x dx

x − 1
= 2u + ln |u − 1| − ln |u + 1| + C = 2

√
x + ln |√x − 1| − ln |√x + 1| + C.

Evaluate
∫

dx

x1/2 − x1/3
.

51. Evaluate
∫

dx

x2 − 1
in two ways: using partial fractions and using trigonometric substitution. Verify that the two

answers agree.

solution The partial fraction decomposition has the form:

1

x2 − 1
= 1

(x − 1)(x + 1)
= A

x − 1
+ B

x + 1
.

Clearing denominators gives us

1 = A(x + 1) + B(x − 1).

Setting x = 1, we get 1 = A(2) or A = 1
2 ; while setting x = −1, we get 1 = B(−2) or B = − 1

2 . The result is

1

x2 − 1
=

1
2

x − 1
+ − 1

2
x + 1

.

Thus, ∫
dx

x2 − 1
= 1

2

∫
dx

x − 1
− 1

2

∫
dx

x + 1
= 1

2
ln |x − 1| − 1

2
ln |x + 1| + C.

Using trigonometric substitution, let x = sec θ . Then dx = tan θ sec θ dθ , and x2 − 1 = sec2 θ − 1 = tan2 θ . Thus∫
dx

x2 − 1
=
∫

tan θ sec θ dθ

tan2 θ
=
∫

sec θ dθ

tan θ
=
∫

cos θ dθ

sin θ cos θ

=
∫

csc θ dθ = ln | csc θ − cot θ | + C.

Now we construct a right triangle with sec θ = x:

q
1

x
x2 − 1

From this we see that csc θ = x/
√

x2 − 1 and cot θ = 1/
√

x2 − 1. Thus

∫
dx

x2 − 1
= ln

∣∣∣∣∣ x√
x2 − 1

− 1√
x2 − 1

∣∣∣∣∣+ C = ln

∣∣∣∣∣ x − 1√
x2 − 1

∣∣∣∣∣+ C.

To check that these two answers agree, we write

1

2
ln |x − 1| − 1

2
ln |x + 1| = 1

2

∣∣∣∣x − 1

x + 1

∣∣∣∣ = ln

∣∣∣∣∣
√

x − 1

x + 1

∣∣∣∣∣ = ln

∣∣∣∣∣
√

x − 1√
x + 1

·
√

x − 1√
x − 1

∣∣∣∣∣ = ln

∣∣∣∣∣ x − 1√
x2 − 1

∣∣∣∣∣ .
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Graph the equation (x − 40)y2 = 10x(x − 30) and find the volume of the solid obtained by revolving the
region between the graph and the x-axis for 0 ≤ x ≤ 30 around the x-axis.

In Exercises 53–66, evaluate the integral using the appropriate method or combination of methods covered thus far in
the text.

53.
∫

dx

x2
√

4 − x2

solution Use the trigonometric substitution x = 2 sin θ . Then dx = 2 cos θ dθ ,

4 − x2 = 4 − 4 sin2 θ = 4(1 − sin2 θ) = 4 cos2 θ,

and ∫
dx

x2
√

4 − x2
=
∫

2 cos θ dθ

(4 sin2 θ)(2 cos θ)
= 1

4

∫
csc2 θ dθ = −1

4
cot θ + C.

Now construct a right triangle with sin θ = x/2:

q

x
2

4 − x2

From this we see that cot θ =
√

4 − x2/x. Thus

∫
dx

x2
√

4 − x2
= −1

4

(√
4 − x2

x

)
+ C = −

√
4 − x2

4x
+ C.

∫
dx

x(x − 1)2

55.
∫

cos2 4x dx

solution Use the substitution u = 4x, du = 4 dx. Then we have∫
cos2(4x) dx = 1

4

∫
cos2(4x)4 dx = 1

4

∫
cos2 u du = 1

4

[
1

2
u + 1

2
sin u cos u

]
+ C

= 1

8
u + 1

8
sin u cos u + C = 1

2
x + 1

8
sin 4x cos 4x + C.

∫
x sec2 x dx

57.
∫

dx

(x2 + 9)2

solution Use the trigonometric substitution x = 3 tan θ . Then dx = 3 sec2 θ dθ ,

x2 + 9 = 9 tan2 θ + 9 = 9(tan2 θ + 1) = 9 sec2 θ,

and ∫
dx

(x2 + 9)2
=
∫

3 sec2 θ dθ

(9 sec2 θ)2
= 3

81

∫
sec2 θ dθ

sec4 θ
= 1

27

∫
cos2 θ dθ = 1

27

(
1

2
θ + 1

2
sin θ cos θ

)
+ C.

Now construct a right triangle with tan θ = x/3:

q

x2 + 9
x

3

From this we see that sin θ = x/
√

x2 + 9 and cos θ = 3/
√

x2 + 9. Thus

∫
dx√

x2 + 9
2

= 1

54
tan−1

(x

3

)
+ 1

54

(
x√

x2 + 9

)(
3√

x2 + 9

)
+ C = 1

54
tan−1

(x

3

)
+ x

18(x2 + 9)
+ C.

∫
θ sec−1 θ dθ

59.
∫

tan5 x sec x dx

solution Use the trigonometric identity tan2 x = sec2 x − 1 to write∫
tan5 x sec x dx =

∫ (
sec2 x − 1

)2
tan x sec x dx.



June 13, 2011 LTSV SSM Second Pass

500 C H A P T E R 8 TECHNIQUES OF INTEGRATION

Now use the substitution u = sec x, du = sec x tan x dx:∫
tan5 x sec x dx =

∫
(u2 − 1)2 du =

∫ (
u4 − 2u2 + 1

)
du

= 1

5
u5 − 2

3
u3 + u + C = 1

5
sec5 x − 2

3
sec3 x + sec x + C.

∫
(3x2 − 1) dx

x(x2 − 1)

61.
∫

ln(x4 − 1) dx

solution Apply integration by parts with u = ln(x4 − 1), v′ = 1; then u′ = 4x3

x4−1
and v = x, so after simplification,

∫
ln(x4 − 1) dx = x ln(x4 − 1) − 4

∫
x4

x4 − 1
dx = x ln(x4 − 1) − 4

∫
1 + 1

x4 − 1
dx

= x ln(x4 − 1) − 4
∫

1 dx − 4
∫

1

x4 − 1
dx

= x ln(x4 − 1) − 4x − 4
∫

1

2

(
1

x2 − 1
− 1

x2 + 1

)
dx

= x ln(x4 − 1) − 4x − 2
∫

1

x2 − 1
dx + 2

∫
1

x2 + 1
dx

= x ln(x4 − 1) − 4x + 2 tanh−1 x + 2 tan−1 x + C

∫
x dx

(x2 − 1)3/2
63.

∫
x2 dx

(x2 − 1)3/2

solution Use the trigonometric substitution x = sec θ . Then dx = sec θ tan θ dθ ,

x2 − 1 = sec2 θ − 1 = tan2 θ,

and ∫
x2 dx

(x2 − 1)3/2
=
∫

(sec2 θ) sec θ tan θ dθ

(tan2 θ)3/2
=
∫

sec3 θ dθ

tan2 θ
=
∫

(tan2 θ + 1) sec θ dθ

tan2 θ

=
∫

tan2 θ sec θ dθ

tan2 θ
+
∫

sec θ dθ

tan2 θ
=
∫

sec θ dθ +
∫

csc θ cot θ dθ

= ln | sec θ + tan θ | − csc θ + C.

Now construct a right triangle with sec θ = x:

q
1

x
x2 − 1

From this we see that tan θ =
√

x2 − 1 and csc θ = x/
√

x2 − 1. So the final answer is

∫
x2 dx

(x2 − 1)3/2
= ln

∣∣∣x +
√

x2 − 1
∣∣∣− x√

x2 − 1
+ C.

∫
(x + 1) dx

(x2 + 4x + 8)2
65.

∫ √
x dx

x3 + 1

solution Use the substitution u = x3/2, du = 3
2x1/2 dx. Then x3 = (x3/2)2 = u2, so we have

∫ √
x dx

x3 + 1
= 2

3

∫
du

u2 + 1
= 2

3
tan−1 u + C = 2

3
tan−1(x3/2) + C.

∫
x1/2 dx

x1/3 + 1

67. Show that the substitution θ = 2 tan−1 t (Figure 2) yields the formulas

cos θ = 1 − t2

1 + t2
, sin θ = 2t

1 + t2
, dθ = 2 dt

1 + t2
10
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This substitution transforms the integral of any rational function of cos θ and sin θ into an integral of a rational function

of t (which can then be evaluated using partial fractions). Use it to evaluate
∫

dθ

cos θ + 3
4 sin θ

.

1

q /2

t1 + t2

FIGURE 2

solution If θ = 2 tan−1 t , then dθ = 2 dt/(1 + t2). We also have that cos( θ
2 ) = 1/

√
1 + t2 and sin( θ

2 ) = t/
√

1 + t2.

To find cos θ , we use the double angle identity cos θ = 1 − 2 sin2( θ
2 ). This gives us

cos θ = 1 − 2

(
t√

1 + t2

)2

= 1 − 2t2

1 + t2
= 1 + t2 − 2t2

1 + t2
= 1 − t2

1 + t2
.

To find sin θ , we use the double angle identity sin θ = 2 sin( θ
2 ) cos( θ

2 ). This gives us

sin θ = 2

(
t√

1 + t2

)(
1√

1 + t2

)
= 2t

1 + t2
.

With these formulas, we have

∫
dθ

cos θ + (3/4) sin θ
=
∫ 2 dt

1+t2(
1−t2

1+t2

)
+ 3

4

(
2t

1+t2

) =
∫

8 dt

4(1 − t2) + 3(2t)
=
∫

8 dt

4 + 6t − 4t2
=
∫

4 dt

2 + 3t − 2t2
.

The partial fraction decomposition has the form

4

2 + 3t − 2t2
= A

2 − t
+ B

1 + 2t
.

Clearing denominators gives us

4 = A(1 + 2t) + B(2 − t).

Setting t = 2 then yields

4 = A(5) + 0 or A = 4

5
,

while setting t = − 1
2 yields

4 = 0 + B

(
5

2

)
or B = 8

5
.

The result is

4

2 + 3t − 2t2
=

4
5

2 − t
+

8
5

1 + 2t
.

Thus, ∫
4

2 + 3t − 2t2
dt = 4

5

∫
dt

2 − t
+ 8

5

∫
dt

1 + 2t
= −4

5
ln |2 − t | + 4

5
ln |1 + 2t | + C.

The original substitution was θ = 2 tan−1 t , which means that t = tan( θ
2 ). The final answer is then

∫
dθ

cos θ + 3
4 sin θ

= −4

5
ln

∣∣∣∣2 − tan

(
θ

2

)∣∣∣∣+ 4

5
ln

∣∣∣∣1 + 2 tan

(
θ

2

)∣∣∣∣+ C.

Use the substitution of Exercise 67 to evaluate
∫

dθ

cos θ + sin θ
.
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Further Insights and Challenges
69. Prove the general formula ∫

dx

(x − a)(x − b)
= 1

a − b
ln

x − a

x − b
+ C

where a, b are constants such that a �= b.

solution The partial fraction decomposition has the form:

1

(x − a)(x − b)
= A

x − a
+ B

x − b
.

Clearing denominators, we get

1 = A(x − b) + B(x − a).

Setting x = a then yields

1 = A(a − b) + 0 or A = 1

a − b
,

while setting x = b yields

1 = 0 + B(b − a) or B = 1

b − a
.

The result is

1

(x − a)(x − b)
=

1
a−b

x − a
+

1
b−a

x − b
.

Thus, ∫
dx

(x − a)(x − b)
= 1

a − b

∫
dx

x − a
+ 1

b − a

∫
dx

x − b
= 1

a − b
ln |x − a| + 1

b − a
ln |x − b| + C

= 1

a − b
ln |x − a| − 1

a − b
ln |x − b| + C = 1

a − b
ln

∣∣∣∣x − a

x − b

∣∣∣∣+ C.

The method of partial fractions shows that∫
dx

x2 − 1
= 1

2
ln
∣∣x − 1

∣∣− 1

2
ln
∣∣x + 1

∣∣+ C

The computer algebra system Mathematica evaluates this integral as − tanh−1 x, where tanh−1 x is the inverse
hyperbolic tangent function. Can you reconcile the two answers?

71. Suppose that Q(x) = (x − a)(x − b), where a �= b, and let P(x)/Q(x) be a proper rational function so that

P(x)

Q(x)
= A

(x − a)
+ B

(x − b)

(a) Show that A = P(a)

Q′(a)
and B = P(b)

Q′(b)
.

(b) Use this result to find the partial fraction decomposition for P(x) = 3x − 2 and Q(x) = x2 − 4x − 12.

solution
(a) Clearing denominators gives us

P(x) = A(x − b) + B(x − a).

Setting x = a then yields

P(a) = A(a − b) + 0 or A = P(a)

a − b
,

while setting x = b yields

P(b) = 0 + B(b − a) or B = P(b)

b − a
.

Now use the product rule to differentiate Q(x):

Q′(x) = (x − a)(1) + (1)(x − b) = x − a + x − b = 2x − a − b;
therefore,

Q′(a) = 2a − a − b = a − b

Q′(b) = 2b − a − b = b − a
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Substituting these into the above results, we find

A = P(a)

Q′(a)
and B = P(b)

Q′(b)
.

(b) The partial fraction decomposition has the form:

P(x)

Q(x)
= 3x − 2

x2 − 4x − 12
= 3x − 2

(x − 6)(x + 2)
= A

x − 6
+ B

x + 2
;

A = P(6)

Q′(6)
= 3(6) − 2

2(6) − 4
= 16

8
= 2;

B = P(−2)

Q′(−2)
= 3(−2) − 2

2(−2) − 4
= −8

−8
= 1.

The result is

3x − 2

x2 − 4x − 12
= 2

x − 6
+ 1

x + 2
.

Suppose that Q(x) = (x − a1)(x − a2) · · · (x − an), where the roots aj are all distinct. Let P(x)/Q(x) be a
proper rational function so that

P(x)

Q(x)
= A1

(x − a1)
+ A2

(x − a2)
+ · · · + An

(x − an)

(a) Show that Aj = P(aj )

Q′(aj )
for j = 1, . . . , n.

(b) Use this result to find the partial fraction decomposition for P(x) = 2x2 − 1, Q(x) = x3 − 4x2 + x + 6 =
(x + 1)(x − 2)(x − 3).

8.6 Improper Integrals

Preliminary Questions
1. State whether the integral converges or diverges:

(a)
∫ ∞

1
x−3 dx (b)

∫ 1

0
x−3 dx

(c)
∫ ∞

1
x−2/3 dx (d)

∫ 1

0
x−2/3 dx

solution
(a) The integral is improper because one of the limits of integration is infinite. Because the power of x in the integrand
is less than −1, this integral converges.

(b) The integral is improper because the integrand is undefined at x = 0. Because the power of x in the integrand is less
than −1, this integral diverges.

(c) The integral is improper because one of the limits of integration is infinite. Because the power of x in the integrand
is greater than −1, this integral diverges.

(d) The integral is improper because the integrand is undefined at x = 0. Because the power of x in the integrand is
greater than −1, this integral converges.

2. Is
∫ π/2

0
cot x dx an improper integral? Explain.

solution Because the integrand cot x is undefined at x = 0, this is an improper integral.

3. Find a value of b > 0 that makes
∫ b

0

1

x2 − 4
dx an improper integral.

solution Any value of b satisfying |b| ≥ 2 will make this an improper integral.

4. Which comparison would show that
∫ ∞

0

dx

x + ex
converges?

solution Note that, for x > 0,

1

x + ex
<

1

ex
= e−x .

Moreover ∫ ∞
0

e−x dx

converges. Therefore, ∫ ∞
0

1

x + ex
dx

converges by the comparison test.
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5. Explain why it is not possible to draw any conclusions about the convergence of
∫ ∞

1

e−x

x
dx by comparing with

the integral
∫ ∞

1

dx

x
.

solution For 1 ≤ x < ∞,

e−x

x
<

1

x
,

but ∫ ∞
1

dx

x

diverges. Knowing that an integral is smaller than a divergent integral does not allow us to draw any conclusions using
the comparison test.

Exercises
1. Which of the following integrals is improper? Explain your answer, but do not evaluate the integral.

(a)
∫ 2

0

dx

x1/3
(b)

∫ ∞
1

dx

x0.2
(c)

∫ ∞
−1

e−x dx

(d)
∫ 1

0
e−x dx (e)

∫ π/2

0
sec x dx (f)

∫ ∞
0

sin x dx

(g)
∫ 1

0
sin x dx (h)

∫ 1

0

dx√
3 − x2

(i)
∫ ∞

1
ln x dx

(j)
∫ 3

0
ln x dx

solution

(a) Improper. The function x−1/3 is infinite at 0.
(b) Improper. Infinite interval of integration.
(c) Improper. Infinite interval of integration.
(d) Proper. The function e−x is continuous on the finite interval [0, 1].
(e) Improper. The function sec x is infinite at π

2 .
(f) Improper. Infinite interval of integration.
(g) Proper. The function sin x is continuous on the finite interval [0, 1].
(h) Proper. The function 1/

√
3 − x2 is continuous on the finite interval [0, 1].

(i) Improper. Infinite interval of integration.
(j) Improper. The function ln x is infinite at 0.

Let f (x) = x−4/3.

(a) Evaluate
∫ R

1
f (x) dx.

(b) Evaluate
∫ ∞

1
f (x) dx by computing the limit

lim
R→∞

∫ R

1
f (x) dx

3. Prove that
∫ ∞

1
x−2/3 dx diverges by showing that

lim
R→∞

∫ R

1
x−2/3 dx = ∞

solution First compute the proper integral:

∫ R

1
x−2/3 dx = 3x1/3

∣∣∣∣R
1

= 3R1/3 − 3 = 3
(
R1/3 − 1

)
.

Then show divergence: ∫ ∞
1

x−2/3 dx = lim
R→∞

∫ R

1
x−2/3 dx = lim

R→∞ 3
(
R1/3 − 1

)
= ∞.

Determine whether
∫ 3

0

dx

(3 − x)3/2
converges by computing

lim
R→3−

∫ R

0

dx

(3 − x)3/2

In Exercises 5–40, determine whether the improper integral converges and, if so, evaluate it.

5.
∫ ∞

1

dx

x19/20

solution First evaluate the integral over the finite interval [1, R] for R > 1:

∫ R

1

dx

x19/20
= 20x1/20

∣∣∣∣R
1

= 20R1/20 − 20.
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Now compute the limit as R → ∞:

∫ ∞
1

dx

x19/20
= lim

R→∞

∫ R

1

dx

x19/20
= lim

R→∞
(

20R1/20 − 20
)

= ∞.

The integral does not converge.

∫ ∞
1

dx

x20/19
7.
∫ 4

−∞
e0.0001t dt

solution First evaluate the integral over the finite interval [R, 4] for R < 4:

∫ 4

R
e(0.0001)t dt = e(0.0001)t

0.0001

∣∣∣∣∣
4

R

= 10,000
(
e0.0004 − e(0.0001)R

)
.

Now compute the limit as R → −∞:

∫ 4

−∞
e(0.0001)t dt = lim

R→−∞

∫ 4

R
e(0.0001)t dt = lim

R→−∞ 10,000
(
e0.0004 − e(0.0001)R

)

= 10,000
(
e0.0004 − 0

)
= 10,000e0.0004.

∫ ∞
20

dt

t

9.
∫ 5

0

dx

x20/19

solution The function x−20/19 is infinite at the endpoint 0, so we’ll first evaluate the integral on the finite interval
[R, 5] for 0 < R < 5:

∫ 5

R

dx

x20/19
= −19x−1/19

∣∣∣∣5
R

= −19
(

5−1/19 − R−1/19
)

= 19

(
1

R1/19
− 1

51/19

)
.

Now compute the limit as R → 0+:

∫ 5

0

dx

x20/19
= lim

R→0+

∫ 5

R

dx

x20/19
= lim

R→0+ 19

(
1

R1/19
− 1

51/19

)
= ∞;

thus, the integral does not converge.

∫ 5

0

dx

x19/20

11.
∫ 4

0

dx√
4 − x

solution The function 1/
√

4 − x is infinite at x = 4, so we’ll first evaluate the integral on the interval [0, R] for
0 < R < 4: ∫ R

0

dx√
4 − x

= −2
√

4 − x

∣∣∣R
0

= −2
√

4 − R − (−2)
√

4 = 4 − 2
√

4 − R.

Now compute the limit as R → 4−:

∫ 4

0

dx√
4 − x

= lim
R→4−

∫ R

0

dx√
4 − x

= lim
R→4−

(
4 − 2

√
4 − R

)
= 4 − 0 = 4.

∫ 6

5

dx

(x − 5)3/2

13.
∫ ∞

2
x−3 dx

solution First evaluate the integral on the finite interval [2, R] for 2 < R:

∫ R

2
x−3 dx = x−2

−2

∣∣∣∣∣
R

2

= −1

2R2
− −1

2(22)
= 1

8
− 1

2R2
.

Now compute the limit as R → ∞:

∫ ∞
2

x−3 dx = lim
R→∞

∫ R

2
x−3 dx = lim

R→∞

(
1

8
− 1

2R2

)
= 1

8
.
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∫ ∞
0

dx

(x + 1)3

15.
∫ ∞
−3

dx

(x + 4)3/2

solution First evaluate the integral on the finite interval [−3, R] for R > −3:

∫ R

−3

dx

(x + 4)3/2
= −2(x + 4)−1/2

∣∣∣∣R−3
= −2√

R + 4
− −2√

1
= 2 − 2√

R + 4
.

Now compute the limit as R → ∞:∫ ∞
−3

dx

(x + 4)3/2
= lim

R→∞

∫ R

−3

dx

(x + 4)3/2
= lim

R→∞

(
2 − 2√

R + 4

)
= 2 − 0 = 2.

∫ ∞
2

e−2x dx
17.

∫ 1

0

dx

x0.2

solution The function x−0.2 is infinite at x = 0, so we’ll first evaluate the integral on the interval [R, 1] for 0 < R < 1:

∫ 1

R

dx

x0.2
= x0.8

0.8

∣∣∣∣∣
1

R

= 1.25
(

1 − R0.8
)

.

Now compute the limit as R → 0+:∫ 1

0

dx

x0.2
= lim

R→0+

∫ 1

R

dx

x0.2
= lim

R→0+ 1.25
(

1 − R0.8
)

= 1.25(1 − 0) = 1.25.

∫ ∞
2

x−1/3 dx
19.

∫ ∞
4

e−3x dx

solution First evaluate the integral on the finite interval [4, R] for R > 4:

∫ R

4
e−3x dx = e−3x

−3

∣∣∣∣∣
R

4

= −1

3

(
e−3R − e−12

)
= 1

3

(
e−12 − e−3R

)
.

Now compute the limit as R → ∞:∫ ∞
4

e−3x dx = lim
R→∞

∫ R

4
e−3x dx = lim

R→∞
1

3

(
e−12 − e−3R

)
= 1

3

(
e−12 − 0

)
= 1

3e12
.

∫ ∞
4

e3x dx
21.

∫ 0

−∞
e3x dx

solution First evaluate the integral on the finite interval [R, 0] for R < 0:

∫ 0

R
e3x dx = e3x

3

∣∣∣∣∣
0

R

= 1

3
− e3R

3
.

Now compute the limit as R → −∞:

∫ 0

−∞
e3x dx = lim

R→−∞

∫ 0

R
e3x dx = lim

R→−∞

(
1

3
− e3R

3

)
= 1

3
− 0 = 1

3
.

∫ 2

1

dx

(x − 1)2

23.
∫ 3

1

dx√
3 − x

solution The function f (x) = 1/
√

3 − x is infinite at x = 3, so we first evaluate the integral on the interval [1, R]
for 1 < R < 3: ∫ R

1

dx√
3 − x

= −2
√

3 − x

∣∣∣∣R
1

= −2
√

3 − R + 2
√

2.

Now compute the limit as R → 3−:∫ 3

1

dx√
3 − x

= lim
R→3−

∫ R

1

dx√
3 − x

= 0 + 2
√

2 = 2
√

2.
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∫ 4

−2

dx

(x + 2)1/3

25.
∫ ∞

0

dx

1 + x

solution First evaluate the integral on the finite interval [0, R] for R > 0:

∫ R

0

dx

1 + x
= ln |1 + x|∣∣R0 = ln |1 + R| − ln 1 = ln |1 + R|.

Now compute the limit as R → ∞:

∫ ∞
0

dx

1 + x
= lim

R→∞

∫ R

0

dx

1 + x
= lim

R→∞ ln |1 + R| = ∞;

thus, the integral does not converge.

∫ 0

−∞
xe−x2

dx
27.

∫ ∞
0

x dx

(1 + x2)2

solution First evaluate the indefinite integral, using the substitution u = x2, du = 2x dx; then∫
x dx

(1 + x2)2
= 1

2

∫
1

(1 + u)2
du = − 1

2(u + 1)
+ C = − 1

2(x2 + 1)
+ C

Thus, for R > 0,

∫ R

0

x dx

(x2 + 1)2
=
(

− 1

2(x2 + 1)

) ∣∣∣∣R
0

= − 1

2(R2 + 1)
+ 1

2

and thus in the limit ∫ ∞
0

x dx

(x2 + 1)2
= lim

R→∞

∫ R

0

x dx

(x2 + 1)2
= 1

2
− lim

R→∞
1

2(R2 + 1)
= 1

2

∫ 6

3

x dx√
x − 3

29.
∫ ∞

0
e−x cos x dx

solution First evaluate the indefinite integral using Integration by Parts, with u = e−x , v′ = cos x. Then u′ = −e−x ,
v = sin x, and ∫

e−x cos x dx = e−x sin x −
∫

sin x(−e−x) dx = e−x sin x +
∫

e−x sin x dx.

Now use Integration by Parts again, with u = e−x , v′ = sin x. Then u′ = −e−x , v = − cos x, and∫
e−x cos x dx = e−x sin x +

[
−e−x cos x −

∫
e−x cos x dx

]
.

Solving this equation for
∫

e−x cos x dx, we find∫
e−x cos x dx = 1

2
e−x(sin x − cos x) + C.

Thus,

∫ R

0
e−x cos x dx = 1

2
e−x(sin x − cos x)

∣∣∣∣R
0

= sin R − cos R

2eR
− sin 0 − cos 0

2
= sin R − cos R

2eR
+ 1

2
,

and ∫ ∞
0

e−x cos x dx = lim
R→∞

(
sin R − cos R

2eR
+ 1

2

)
= 0 + 1

2
= 1

2
.

∫ ∞
1

xe−2x dx
31.

∫ 3

0

dx√
9 − x2

solution The function (9 − x2)−1/2 is infinite at x = 3, so we’ll first evaluate the integral on the interval [0, R] for
0 < R < 3: ∫ R

0

dx√
9 − x2

= sin−1 x

3

∣∣∣R
0

= sin−1 R

3
− sin−1 0 = sin−1 R

3
.
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Thus,

∫ 3

0

dx√
9 − x2

= lim
R→3− sin−1 R

3
= sin−1 1 = π

2
.

∫ 1

0

e
√

x dx√
x

33.
∫ ∞

1

e
√

x dx√
x

solution Let u = √
x, du = 1

2x−1/2 dx. Then

∫
e
√

x dx√
x

= 2
∫

e
√

x

(
dx

2
√

x

)
= 2

∫
eu du = 2eu + C = 2e

√
x + C,

and

∫ ∞
1

e
√

x dx√
x

= lim
R→∞

∫ R

1

e
√

x dx√
x

= lim
R→∞ 2e

√
x
∣∣∣R
1

= lim
R→∞

(
2e

√
R − 2e

)
= ∞.

The integral does not converge.

∫ π/2

0
sec θ dθ

35.
∫ ∞

0
sin x dx

solution First evaluate the integral on the finite interval [0, R] for R > 0:

∫ R

0
sin x dx = − cos x

∣∣∣∣R
0

= − cos R + cos 0 = 1 − cos R.

Thus,

∫ R

0
sin x dx = lim

R→∞(1 − cos R) = 1 − lim
R→∞ cos R.

This limit does not exist, since the value of cos R oscillates between 1 and −1 as R approaches infinity. Hence the integral
does not converge.

∫ π/2

0
tan x dx

37.
∫ 1

0
ln x dx

solution The function ln x is infinite at x = 0, so we’ll first evaluate the integral on [R, 1] for 0 < R < 1. Use
Integration by Parts with u = ln x and v′ = 1. Then u′ = 1/x, v = x, and we have

∫ 1

R
ln x dx = x ln x

∣∣∣∣1
R

−
∫ 1

R
dx = (x ln x − x)

∣∣∣∣1
R

= (ln 1 − 1) − (R ln R − R) = R − 1 − R ln R.

Thus,

∫ 1

0
ln x dx = lim

R→0+(R − 1 − R ln R) = −1 − lim
R→0+ R ln R.

To compute the limit, rewrite the function as a quotient and apply L’Hôpital’s Rule:

∫ 1

0
ln x dx = −1 − lim

R→0+
ln R

1
R

= −1 − lim
R→0+

1
R
−1
R2

= −1 − lim
R→0+(−R) = −1 − 0 = −1.

∫ 2

1

dx

x ln x

39.
∫ 1

0

ln x

x2
dx

solution Use Integration by Parts, with u = ln x and v′ = x−2. Then u′ = 1/x, v = −x−1, and

∫
ln x

x2
dx = − 1

x
ln x +

∫
dx

x2
= − 1

x
ln x − 1

x
+ C.

The function is infinite at x = 0, so we’ll first evaluate the integral on [R, 1] for 0 < R < 1:

∫ 1

a

ln x

x2
dx =

(
− 1

x
ln x − 1

x

)∣∣∣∣1
R

=
(

−1

1
ln 1 − 1

1

)
−
(

− 1

R
ln R − 1

R

)
= 1

R
ln R + 1

R
− 1.
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Thus,

∫ 1

0

ln x

x2
dx = lim

R→0+
1

R
ln R + 1

R
− 1 = −1 + lim

R→0+
ln R + 1

R
= −∞.

The integral does not converge.

∫ ∞
1

ln x

x2
dx

41. Let I =
∫ ∞

4

dx

(x − 2)(x − 3)
.

(a) Show that for R > 4,

∫ R

4

dx

(x − 2)(x − 3)
= ln

∣∣∣∣R − 3

R − 2

∣∣∣∣− ln
1

2

(b) Then show that I = ln 2.

solution

(a) The partial fraction decomposition takes the form

1

(x − 2)(x − 3)
= A

x − 2
+ B

x − 3
.

Clearing denominators gives us

1 = A(x − 3) + B(x − 2).

Setting x = 2 then yields A = −1, while setting x = 3 yields B = 1. Thus,∫
dx

(x − 2)(x − 3)
=
∫

dx

x − 3
−
∫

dx

x − 2
= ln |x − 3| − ln |x − 2| + C = ln

∣∣∣∣x − 3

x − 2

∣∣∣∣+ C,

and, for R > 4,

∫ R

4

dx

(x − 2)(x − 3)
= ln

∣∣∣∣x − 3

x − 2

∣∣∣∣
∣∣∣∣R
4

= ln

∣∣∣∣R − 3

R − 2

∣∣∣∣− ln
1

2
.

(b) Using the result from part (a),

I = lim
R→∞

(
ln

∣∣∣∣R − 3

R − 2

∣∣∣∣− ln
1

2

)
= ln 1 − ln

1

2
= ln 2.

Evaluate the integral I =
∫ ∞

1

dx

x(2x + 5)
.

43. Evaluate I =
∫ 1

0

dx

x(2x + 5)
or state that it diverges.

solution The partial fraction decomposition takes the form

1

x(2x + 5)
= A

x
+ B

2x + 5
.

Clearing denominators gives us

1 = A(2x + 5) + Bx.

Setting x = 0 then yields A = 1
5 , while setting x = − 5

2 yields B = − 2
5 . Thus,

∫
dx

x(2x + 5)
= 1

5

∫
dx

x
− 2

5

∫
dx

2x + 5
= 1

5
ln |x| − 1

5
ln |2x + 5| + C = 1

5
ln

∣∣∣∣ x

2x + 5

∣∣∣∣+ C,

and, for 0 < R < 1,

∫ 1

R

dx

x(2x + 5)
= 1

5
ln

∣∣∣∣ x

2x + 5

∣∣∣∣
∣∣∣∣1
R

= 1

5
ln

1

7
− 1

5
ln

∣∣∣∣ R

2R + 5

∣∣∣∣ .
Thus,

I = lim
R→0+

(
1

5
ln

1

7
− 1

5
ln

∣∣∣∣ R

2R + 5

∣∣∣∣
)

= ∞.

The integral does not converge.

Evaluate I =
∫ ∞

2

dx

(x + 3)(x + 1)2
or state that it diverges.
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In Exercises 45–48, determine whether the doubly infinite improper integral converges and, if so, evaluate it. Use defini-
tion (2).

45.
∫ ∞
−∞

x dx

1 + x2

solution Using the substitution u = x2 + 1, du = 2x dx, we obtain

∫
x dx

1 + x2
= 1

2
ln(x2 + 1) + C.

Thus,

∫ ∞
0

x dx

1 + x2
= lim

R→∞

∫ R

0

x dx

1 + x2
= lim

R→∞
1

2
ln(R2 + 1) = ∞;

∫ 0

−∞
x dx

1 + x2
= lim

R→−∞

∫ 0

R

x dx

1 + x2
= lim

R→−∞
1

2
ln(R2 + 1) = ∞;

It follows that ∫ ∞
−∞

x dx

1 + x2

diverges.

∫ ∞
−∞

e−|x| dx
47.

∫ ∞
−∞

xe−x2
dx

solution First note that

∫
xe−x2

dx = −1

2
e−x2 + C.

Thus,

∫ ∞
0

xe−x2
dx = lim

R→∞

∫ R

0
xe−x2

dx = lim
R→∞

(
1

2
− 1

2
e−R2

)
= 1

2
;

∫ 0

−∞
xe−x2

dx = lim
R→−∞

∫ 0

R
xe−x2

dx = lim
R→−∞

(
−1

2
+ 1

2
e−R2

)
= −1

2
;

and ∫ ∞
−∞

xe−x2
dx = 1

2
− 1

2
= 0.

∫ ∞
−∞

dx

(x2 + 1)3/2
49. Define J =

∫ 1

−1

dx

x1/3
as the sum of the two improper integrals

∫ 0

−1

dx

x1/3
+
∫ 1

0

dx

x1/3
. Show that J converges and

that J = 0.

solution Note that since x−1/3 is an odd function, one might expect this integral over a symmetric interval to be zero.
To prove this, we start by evaluating the indefinite integral:∫

dx

x1/3
= 3

2
x2/3 + C

Then

∫ 0

−1

dx

x1/3
= lim

R→0−

∫ R

−1

dx

x1/3
= lim

R→0−
3

2
x2/3

∣∣∣∣R−1
= lim

R→0−
3

2
R2/3 − 3

2
= −3

2∫ 1

0

dx

x1/3
= lim

R→0+

∫ 1

R

dx

x1/3
= lim

R→0+
3

2
x2/3

∣∣∣∣1
R

= 3

2
− lim

R→0+
3

2
R2/3 = 3

2

so that

J =
∫ 1

−1

dx

x1/3
=
∫ 0

−1

dx

x1/3
+
∫ 1

0

dx

x1/3
= −3

2
+ 3

2
= 0
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Determine whether J =
∫ 1

−1

dx

x2
(defined as in Exercise 49) converges.

51. For which values of a does
∫ ∞

0
eax dx converge?

solution First evaluate the integral on the finite interval [0, R] for R > 0:

∫ R

0
eax dx = 1

a
eax

∣∣∣∣R
0

= 1

a

(
eaR − 1

)
.

Thus, ∫ ∞
0

eax dx = lim
R→∞

1

a

(
eaR − 1

)
.

If a > 0, then eaR → ∞ as R → ∞. If a < 0, then eaR → 0 as R → ∞, and∫ ∞
0

eax dx = lim
R→∞

1

a

(
eaR − 1

)
= − 1

a
.

The integral converges for a < 0.

Show that
∫ 1

0

dx

xp
converges if p < 1 and diverges if p ≥ 1.

53. Sketch the region under the graph of f (x) = 1

1 + x2
for −∞ < x < ∞, and show that its area is π .

solution The graph is shown below.

1

0.4

0.2

0.8

0.6

y

x
−2−4 2 4

Since (1 + x2)−1 is an even function, we can first compute the area under the graph for x > 0:

∫ R

0

dx

1 + x2
= tan−1 x

∣∣∣R
0

= tan−1 R − tan−1 0 = tan−1 R.

Thus, ∫ ∞
0

dx

1 + x2
= lim

R→∞ tan−1 R = π

2
.

By symmetry, we have

∫ ∞
−∞

dx

1 + x2
=
∫ 0

−∞
dx

1 + x2
+
∫ ∞

0

dx

1 + x2
= π

2
+ π

2
= π.

Show that
1√

x4 + 1
≤ 1

x2
for all x, and use this to prove that

∫ ∞
1

dx√
x4 + 1

converges.
55. Show that

∫ ∞
1

dx

x3 + 4
converges by comparing with

∫ ∞
1

x−3 dx.

solution The integral
∫ ∞

1
x−3 dx converges because 3 > 1. Since x3 + 4 ≥ x3, it follows that

1

x3 + 4
≤ 1

x3
.

Therefore, by the comparison test, ∫ ∞
1

dx

x3 + 4
converges.

Show that
∫ ∞

2

dx

x3 − 4
converges by comparing with∫ ∞

2
2x−3 dx.

57. Show that 0 ≤ e−x2 ≤ e−x for x ≥ 1 (Figure 10). Use the Comparison Test to show that
∫∞

0 e−x2
dx

converges. Hint: It suffices (why?) to make the comparison for x ≥ 1 because

∫ ∞
0

e−x2
dx =

∫ 1

0
e−x2

dx +
∫ ∞

1
e−x2

dx
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y

y = e− |x |

y = e−x2

x
1

1

2 4−2−3−4 −1 3

FIGURE 10 Comparison of y = e−|x| and y = e−x2
.

solution For x ≥ 1, x2 ≥ x, so −x2 ≤ −x and e−x2 ≤ e−x . Now

∫ ∞
1

e−x dx converges, so
∫ ∞

1
e−x2

dx converges

by the comparison test. Finally, because e−x2
is continuous on [0, 1],∫ ∞

0
e−x2

dx converges.

We conclude that our integral converges by writing it as a sum:

∫ ∞
0

e−x2
dx =

∫ 1

0
e−x2

dx +
∫ ∞

1
e−x2

dx

Prove that
∫ ∞
−∞

e−x2
dx converges by comparing with

∫ ∞
−∞

e−|x| dx (Figure 10).
59. Show that

∫ ∞
1

1 − sin x

x2
dx converges.

solution Let f (x) = 1 − sin x

x2
. Since f (x) ≤ 2

x2
and

∫ ∞
1

2x−2 dx = 2, it follows that

∫ ∞
1

1 − sin x

x2
dx converges

by the comparison test.

Let a > 0. Use L’Hôpital’s Rule to prove that lim
x→∞

xa

ln x
= ∞. Then:

(a) Show that xa > 2 ln x for all x sufficiently large.

(b) Show that e−xa
< x−2 for all x sufficiently large.

(c) Show that
∫ ∞

1
e−xa

dx converges.

In Exercises 61–74, use the Comparison Test to determine whether or not the integral converges.

61.
∫ ∞

1

1√
x5 + 2

dx

solution Since
√

x5 + 2 ≥ √
x5 = x5/2, it follows that

1√
x5 + 2

≤ 1

x5/2
.

The integral
∫ ∞

1
dx/x5/2 converges because 5

2 > 1. Therefore, by the comparison test:

∫ ∞
1

dx√
x5 + 2

also converges.

∫ ∞
1

dx

(x3 + 2x + 4)1/2

63.
∫ ∞

3

dx√
x − 1

solution Since
√

x ≥ √
x − 1, we have (for x > 1)

1√
x

≤ 1√
x − 1

.

The integral
∫ ∞

1
dx/

√
x =

∫ ∞
1

dx/x1/2 diverges because 1
2 < 1. Since the function x−1/2 is continuous (and therefore

finite) on [1, 3], we also know that
∫ ∞

3
dx/x1/2 diverges. Therefore, by the comparison test,

∫ ∞
3

dx√
x − 1

also diverges.
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∫ 5

0

dx

x1/3 + x3

65.
∫ ∞

1
e−(x+x−1) dx

solution For all x ≥ 1, 1
x > 0 so x + 1

x ≥ x. Then

−(x + x−1) ≤ −x and e−(x+x−1) ≤ e−x .

The integral
∫ ∞

1
e−x dx converges by direct computation:

∫ ∞
1

e−x dx = lim
R→∞

∫ R

1
e−x dx = lim

R→∞ −e−x

∣∣∣∣R
1

= lim
R→∞ −e−R + e−1 = 0 + e−1 = e−1.

Therefore, by the comparison test, ∫ ∞
1

e−(x+x−1) also converges.

∫ 1

0

| sin x|√
x

dx
67.

∫ 1

0

ex

x2
dx

solution For 0 < x < 1, ex > 1, and therefore

1

x2
<

ex

x2
.

The integral
∫ 1

0
dx/x2 diverges since 2 > 1. Therefore, by the comparison test,

∫ 1

0

ex

x2
also diverges.

∫ ∞
1

1

x4 + ex
dx

69.
∫ 1

0

1

x4 + √
x

dx

solution For 0 < x < 1, x4 + √
x ≥ √

x, and

1

x4 + √
x

≤ 1√
x

.

The integral
∫ 1

0
(1/

√
x) dx converges, since p = 1

2 < 1. Therefore, by the comparison test,

∫ 1

0

dx

x4 + √
x

also converges.

∫ ∞
1

ln x

sinh x
dx

71.
∫ ∞

1

dx√
x1/3 + x3

solution For x ≥ 0,
√

x1/3 + x3 ≥
√

x3 = x3/2, so that

1√
x1/3 + x3

≤ 1

x3/2

The integral
∫ ∞

1
x−3/2 dx converges since p = 3/2 > 1. Therefore, by the comparison test,

∫
1√

x1/3 + x3
dx also converges.

∫ 1

0

dx

(8x2 + x4)1/3

73.
∫ ∞

1

dx

(x + x2)1/3

Hint for Exercise 73: Show that for x ≥ 1,

1

(x + x2)1/3
≥ 1

21/3x2/3
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solution For x > 1, x < x2 so that x + x2 < 2x2; then

∫ ∞
1

1

(x + x2)1/3
dx ≥

∫ ∞
1

1

(2x2)1/3
dx = 1

21/3

∫ ∞
1

1

x2/3
dx

But
∫ ∞

1

1

x2/3
dx diverges since p = 2/3 < 1. Therefore, by the comparison test,

∫ ∞
1

1

(x + x2)1/3
dx diverges as well.

∫ 1

0

dx

xex + x2

Hint for Exercise 74: Show that for 0 ≤ x ≤ 1,

1

xex + x2
≥ 1

(e + 1)x

75. Define J =
∫ ∞

0

dx

x1/2(x + 1)
as the sum of the two improper integrals

∫ 1

0

dx

x1/2(x + 1)
+
∫ ∞

1

dx

x1/2(x + 1)

Use the Comparison Test to show that J converges.

solution For the first integral, note that for 0 ≤ x ≤ 1, we have 1 ≤ 1 + x, so that x1/2(x + 1) ≥ x1/2. It follows
that ∫ 1

0

1

x1/2(x + 1)
dx ≤

∫ 1

0

1

x1/2
dx

which converges since p = 1/2 < 1. Thus the first integral converges by the comparison test. For the second integral,
for 1 ≤ x, we have x1/2(x + 1) = x3/2 + x1/2 ≥ x3/2, so that∫ ∞

1

1

x1/2(x + 1)
dx =

∫ ∞
1

1

x3/2 + x1/2
dx ≤

∫ ∞
1

1

x3/2
dx

which converges since p = 3/2 > 1. Thus the second integral converges as well by the comparison test, and therefore J ,
which is the sum of the two, converges.

Determine whether J =
∫ ∞

0

dx

x3/2(x + 1)
(defined as in Exercise 75) converges.

77. An investment pays a dividend of $250/year continuously forever. If the interest rate is 7%, what is the present value
of the entire income stream generated by the investment?

solution The present value of the income stream after T years is

∫ T

0
250e−0.07t dt = 250e−0.07t

−0.07

∣∣∣∣∣
T

0

= −250

0.07

(
e−0.07T − 1

)
= 250

0.07

(
1 − e−0.07T

)
.

Therefore the present value of the entire income stream is

∫ ∞
0

250e−0.07t = lim
T →∞

∫ T

0
250e−0.07t = lim

T →∞
250

0.07

(
1 − e−0.07T

)
= 250

0.07
(1 − 0) = 250

0.07
= $3571.43.

An investment is expected to earn profits at a rate of 10,000e0.01t dollars per year forever. Find the present value
of the income stream if the interest rate is 4%.

79. Compute the present value of an investment that generates income at a rate of 5000te0.01t dollars per year forever,
assuming an interest rate of 6%.

solution The present value of the income stream after T years is

∫ T

0

(
5000te0.01t

)
e−0.06t dt = 5000

∫ T

0
te−0.05t dt

Compute the indefinite integral using Integration by Parts, with u = t and v′ = e−0.05t . Then u′ = 1, v =
(−1/0.05)e−0.05t , and∫

te−0.05t dt = −t

0.05
e−0.05t + 1

0.05

∫
e−0.05t dt = −20te−0.05t + 20

−0.05
e−0.05t + C

= e−0.05t (−20t − 400) + C.

Thus,

5000
∫ T

0
te−0.05t dt = 5000e−0.05t (−20t − 400)

∣∣T
0 = 5000e−0.05T (−20T − 400) − 5000(−400)

= 2,000,000 − 5000e−0.05T (20T + 400).
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Use L’Hôpital’s Rule to compute the limit:

lim
T →∞

(
2,000,000 − 5000(20T + 400)

e0.05T

)
= 2,000,000 − lim

T →∞
5000(20)

0.05e0.05T
= 2,000,000 − 0 = $2,000,000.

Find the volume of the solid obtained by rotating the region below the graph of y = e−x about the x-axis for
0 ≤ x < ∞.

81. The solid S obtained by rotating the region below the graph of y = x−1 about the x-axis for 1 ≤ x < ∞ is called
Gabriel’s Horn (Figure 11).

(a) Use the Disk Method (Section 6.3) to compute the volume of S. Note that the volume is finite even though S is an
infinite region.

(b) It can be shown that the surface area of S is

A = 2π

∫ ∞
1

x−1
√

1 + x−4 dx

Show that A is infinite. If S were a container, you could fill its interior with a finite amount of paint, but you could not
paint its surface with a finite amount of paint.

y = x−1

y

x

FIGURE 11

solution

(a) The volume is given by

V =
∫ ∞

1
π

(
1

x

)2
dx.

First compute the volume over a finite interval:

∫ R

1
π

(
1

x

)2
dx = π

∫ R

1
x−2 dx = π

x−1

−1

∣∣∣∣∣
R

1

= π

(−1

R
− −1

1

)
= π

(
1 − 1

R

)
.

Thus,

V = lim
R→∞

∫ ∞
1

πx−2 dx = lim
R→∞ π

(
1 − 1

R

)
= π.

(b) For x > 1, we have

1

x

√
1 + 1

x4
= 1

x

√
x4 + 1

x4
=
√

x4 + 1

x3
≥

√
x4

x3
= x2

x3
= 1

x
.

The integral
∫ ∞

1

1

x
dx diverges, since p = 1 ≥ 1. Therefore, by the comparison test,

∫ ∞
1

1

x

√
1 + 1

x4
dx also diverges.

Finally,

A = 2π

∫ ∞
1

1

x

√
1 + 1

x4
dx

diverges.
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Compute the volume of the solid obtained by rotating the region below the graph of y = e−|x|/2 about the x-axis
for −∞ < x < ∞.

83. When a capacitor of capacitance C is charged by a source of voltage V , the power expended at time t is

P(t) = V 2

R
(e−t/RC − e−2t/RC)

where R is the resistance in the circuit. The total energy stored in the capacitor is

W =
∫ ∞

0
P(t) dt

Show that W = 1
2CV 2.

solution The total energy contained after the capacitor is fully charged is

W = V 2

R

∫ ∞
0

(
e−t/RC − e−2t/RC

)
dt.

The energy after a finite amount of time (t = T ) is

V 2

R

∫ T

0

(
e−t/RC − e−2t/RC

)
dt = V 2

R

(
−RCe−t/RC + RC

2
e−2t/RC

)∣∣∣∣∣
T

0

= V 2C

[(
−e−T/RC + 1

2
e−2T/RC

)
−
(

−1 + 1

2

)]

= CV 2
(

1

2
− e−T/RC + 1

2
e−2T/RC

)
.

Thus,

W = lim
T →∞ CV 2

(
1

2
− e−T/RC + 1

2
e−2T/RC

)
= CV 2

(
1

2
− 0 + 0

)
= 1

2
CV 2.

For which integers p does
∫ 1/2

0

dx

x(ln x)p
converge?

85. Conservation of Energy can be used to show that when a mass m oscillates at the end of a spring with spring constant
k, the period of oscillation is

T = 4
√

m

∫ √
2E/k

0

dx√
2E − kx2

where E is the total energy of the mass. Show that this is an improper integral with value T = 2π
√

m/k.

solution The integrand is infinite at the upper limit of integration, x = √
2E/k, so the integral is improper. Now, let

T (R) = 4
√

m

∫ R

0

dx√
2E − kx2

= 4
√

m
1√
2E

∫ R

0

dx√
1 − ( k

2E
)x2

= 4

√
m

2E

√
2E

k
sin−1

(√
k

2E
R

)
= 4
√

m/k sin−1

(√
k

2E
R

)
.

Therefore

T = lim
R→√

2E/k
T (R) = 4

√
m

k
sin−1(1) = 2π

√
m

k
.

In Exercises 86–89, the Laplace transform of a function f (x) is the function Lf (s) of the variable s defined by the
improper integral (if it converges):

Lf (s) =
∫ ∞

0
f (x)e−sx dx

Laplace transforms are widely used in physics and engineering.

Show that if f (x) = C, where C is a constant, then Lf (s) = C/s for s > 0.87. Show that if f (x) = sin αx, then Lf (s) = α

s2 + α2
.

solution If f (x) = sin αx, then the Laplace transform of f (x) is

Lf (s) =
∫ ∞

0
e−sx sin αx dx
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First evaluate the indefinite integral using Integration by Parts, with u = sin αx and v′ = e−sx . Then u′ = α cos αx,
v = − 1

s e−sx , and ∫
e−sx sin αx dx = −1

s
e−sx sin αx + α

s

∫
e−sx cos αx dx.

Use Integration by Parts again, with u = cos αx, v′ = e−sx . Then u′ = −α sin αx, v = − 1
s e−sx , and∫

e−sx cos αx dx = −1

s
e−sx cos αx − α

s

∫
e−sx sin αx dx.

Substituting this into the first equation and solving for
∫

e−sx sin αx dx, we get

∫
e−sx sin αx dx = −1

s
e−sx sin αx − α

s2
e−sx cos αx − α2

s2

∫
e−sx sin αx dx

∫
e−sx sin αx dx =

−e−sx
(

1
s sin αx + α

s2 cos αx
)

(
1 + α2

s2

) = −e−sx(s sin αx + α cos αx)

s2 + α2

Thus, ∫ R

0
e−sx sin αx dx = 1

s2 + α2

[
s sin αR + α cos αR

−esR
− 0 + α

−1

]
= 1

s2 + α2

[
α − s sin αR + α cos αR

esR

]
.

Finally we take the limit, noting the fact that, for all values of R, |s sin αR + α cos αR| ≤ s + |α|

Lf (s) = lim
R→∞

1

s2 + α2

[
α − s sin αR + α cos αR

esR

]
= 1

s2 + α2
(α − 0) = α

s2 + α2
.

Compute Lf (s), where f (x) = eαx and s > α.
89. Compute Lf (s), where f (x) = cos αx and s > 0.

solution If f (x) = cos αx, then the Laplace transform of f (x) is

Lf (x) =
∫ ∞

0
e−sx cos αx dx

First evaluate the indefinite integral using Integration by Parts, with u = cos αx and v′ − e−sx . Then u′ = −α sin αx,
v = − 1

s e−sx , and ∫
e−sx cos αx dx = −1

s
e−sx cos αx − α

s

∫
e−sx sin αx dx.

Use Integration by Parts again, with u = sin αx dx and v′ = −e−sx . Then u′ = α cos αx, v = − 1
s e−sx , and∫

e−sx sin αx dx = −1

s
e−sx sin αx + α

s

∫
e−sx cos αx dx.

Substituting this into the first equation and solving for
∫

e−sx cos αx dx, we get∫
e−sx cos αx dx = −1

s
e−sx cos αx − α

s

[
−1

s
e−sx sin αx + α

s

∫
e−sx cos α dx

]

= −1

s
e−sx cos αx + α

s2
e−sx sin αx − α2

s2

∫
e−sx cos αx dx

∫
e−sx cos αx dx =

e−sx
(

α
s2 sin αx − 1

s cos αx
)

1 + α2

s2

= e−sx(α sin αx − s cos αx)

s2 + α2

Thus, ∫ R

0
e−sx cos αx dx = 1

s2 + α2

[
α sin αR − s cos αR

esR
− 0 − s

1

]
.

Finally we take the limit, noting the fact that, for all values of R, |α sin αR − s cos αR| ≤ |α| + s

Lf (s) = lim
R→∞

1

s2 + α2

[
s + α sin αR − s cos αR

esR

]
= 1

s2 + α2
(s + 0) = s

s2 + α2
.
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When a radioactive substance decays, the fraction of atoms present at time t is f (t) = e−kt , where k > 0 is
the decay constant. It can be shown that the average life of an atom (until it decays) is A = − ∫∞

0 tf ′(t) dt . Use
Integration by Parts to show that A = ∫∞

0 f (t) dt and compute A. What is the average decay time of radon-222,
whose half-life is 3.825 days?

91. Let Jn =
∫ ∞

0
xn e−αx dx, where n ≥ 1 is an integer and α > 0. Prove that

Jn = n

α
Jn−1

and J0 = 1/α. Use this to compute J4. Show that Jn = n!/αn+1.

solution Using Integration by Parts, with u = xn and v′ = e−αx , we get u′ = nxn−1, v = − 1
α e−αx , and

∫
xne−αx dx = − 1

α
xne−αx + n

α

∫
xn−1e−αx dx.

Thus,

Jn =
∫ ∞

0
xne−αx dx = lim

R→∞

(
− 1

α
xne−αx

)∣∣∣∣R
0

+ n

α

∫ ∞
0

xn−1e−αx dx = lim
R→∞

−Rn

αeαR
+ 0 + n

α
Jn−1.

Use L’Hôpital’s Rule repeatedly to compute the limit:

lim
R→∞

−Rn

αeαR
= lim

R→∞
−nRn−1

α2eαR
= lim

R→∞
−n(n − 1)Rn−2

α3eαR
= · · · = lim

R→∞
−n(n − 1)(n − 2) · · · (3)(2)(1)

αn+1eαR
= 0.

Finally,

Jn = 0 + n

α
Jn−1 = n

α
Jn−1.

J0 can be computed directly:

J0 =
∫ ∞

0
e−αx dx = lim

R→∞

∫ R

0
e−αx dx = lim

R→∞ − 1

α
e−αx

∣∣∣∣R
0

= lim
R→∞ − 1

α

(
e−αR − 1

)
= − 1

α
(0 − 1) = 1

α
.

With this starting point, we can work up to J4:

J1 = 1

α
J0 = 1

α

(
1

α

)
= 1

α2
;

J2 = 2

α
J1 = 2

α

(
1

α2

)
= 2

α3
= 2!

α2+1
;

J3 = 3

α
J2 = 3

α

(
2

α3

)
= 6

α4
= 3!

α3+1
;

J4 = 4

α
J3 = 4

α

(
6

α4

)
= 24

α5 = 4!
α4+1

.

We can use induction to prove the formula for Jn. If

Jn−1 = (n − 1)!
αn

,

then we have

Jn = n

α
Jn−1 = n

α
· (n − 1)!

αn
= n!

αn+1
.

Let a > 0 and n > 1. Define f (x) = xn

eax − 1
for x �= 0 and f (0) = 0.

(a) Use L’Hôpital’s Rule to show that f (x) is continuous at x = 0.

(b) Show that
∫∞

0 f (x) dx converges. Hint: Show that f (x) ≤ 2xne−ax if x is large enough. Then use the Com-
parison Test and Exercise 91.

93. According to Planck’s Radiation Law, the amount of electromagnetic energy with frequency between ν

and ν + �ν that is radiated by a so-called black body at temperature T is proportional to F(ν) �ν, where

F(ν) =
(

8πh

c3

)
ν3

ehν/kT − 1

where c, h, k are physical constants. Use Exercise 92 to show that the total radiated energy

E =
∫ ∞

0
F(ν) dν

is finite. To derive his law, Planck introduced the quantum hypothesis in 1900, which marked the birth of quantum
mechanics.
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solution The total radiated energy E is given by

E =
∫ ∞

0
F(ν) dν = 8πh

c3

∫ ∞
0

ν3

ehν/kT − 1
dν.

Let α = h/kT . Then

E = 8πh

c3

∫ ∞
0

ν3

eαν − 1
dν.

Because α > 0 and 8πh/c3 is a constant, we know E is finite by Exercise 92.

Further Insights and Challenges

Let I =
∫ 1

0
xp ln x dx.

(a) Show that I diverges for p = −1.

(b) Show that if p �= −1, then

∫
xp ln x dx = xp+1

p + 1

(
ln x − 1

p + 1

)
+ C

(c) Use L’Hôpital’s Rule to show that I converges if p > −1 and diverges if p < −1.

95. Let

F(x) =
∫ x

2

dt

ln t
and G(x) = x

ln x

Verify that L’Hôpital’s Rule applies to the limit L = lim
x→∞

F(x)

G(x)
and evaluate L.

solution Because ln t < t for t > 2, we have 1
ln t

> 1
t for t > 2, and so

F(x) =
∫ x

2

dt

ln t
>

∫ x

2

dt

t
= ln x − ln 2

Thus, F(x) → ∞ as x → ∞. Moreover, by L’Hôpital’s Rule

lim
x→∞ G(x) = lim

x→∞
1

1/x
= lim

x→∞ x = ∞.

Thus, lim
x→∞

F(x)

G(x)
is of the form ∞/∞, and L’Hôpital’s Rule applies. Finally,

L = lim
x→∞

F(x)

G(x)
= lim

x→∞
1

ln x
ln x−1
(ln x)2

= lim
x→∞

ln x

ln x − 1
= lim

x→∞
1

1 − (1/ ln x)
= 1.

In Exercises 96–98, an improper integral I = ∫∞
a f (x) dx is called absolutely convergent if

∫∞
a |f (x)| dx converges.

It can be shown that if I is absolutely convergent, then it is convergent.

Show that
∫ ∞

1

sin x

x2
dx is absolutely convergent.

97. Show that
∫ ∞

1
e−x2

cos x dx is absolutely convergent.

solution By the result of Exercise 57, we know that
∫ ∞

0
e−x2

dx is convergent. Then
∫ ∞

1
e−x2

dx is also convergent.

Because | cos x| ≤ 1 for all x, we have∣∣∣e−x2
cos x

∣∣∣ = | cos x|
∣∣∣e−x2

∣∣∣ ≤ ∣∣∣e−x2
∣∣∣ = e−x2

.

Therefore, by the comparison test, we have∫ ∞
1

∣∣∣e−x2
cos x

∣∣∣ dx also converges.

Since
∫ ∞

1
e−x2

cos x dx converges absolutely, it itself converges.

Let f (x) = sin x/x and I = ∫∞
0 f (x) dx. We define f (0) = 1. Then f (x) is continuous and I is not improper

at x = 0.

(a) Show that

∫ R

1

sin x

x
dx = −cos x

x

∣∣∣∣R
1

−
∫ R

1

cos x

x2
dx

(b) Show that
∫∞

1 (cos x/x2) dx converges. Conclude that the limit as R → ∞ of the integral in (a) exists and is
finite.

(c) Show that I converges.

It is known that I = π
2 . However, I is not absolutely convergent. The convergence depends on cancellation, as shown

in Figure 12.

99. The gamma function, which plays an important role in advanced applications, is defined for n ≥ 1 by

	(n) =
∫ ∞

0
tn−1e−t dt

(a) Show that the integral defining 	(n) converges for n ≥ 1 (it actually converges for all n > 0). Hint: Show that
tn−1e−t < t−2 for t sufficiently large.

(b) Show that 	(n + 1) = n	(n) using Integration by Parts.

(c) Show that 	(n + 1) = n! if n ≥ 1 is an integer. Hint: Use (a) repeatedly. Thus, 	(n) provides a way of defining
n-factorial when n is not an integer.
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solution

(a) By repeated use of L’Hôpital’s Rule, we can compute the following limit:

lim
t→∞

et

tn+1
= lim

t→∞
et

(n + 1)tn
= · · · = lim

t→∞
et

(n + 1)! = ∞.

This implies that, for t sufficiently large, we have

et ≥ tn+1;
therefore

et

tn−1
≥ tn+1

tn−1
= t2 or tn−1e−t ≤ t−2.

The integral
∫ ∞

1
t−2 dt converges because p = 2 > 1. Therefore, by the comparison test,

∫ ∞
M

tn−1e−t dt also converges,

where M is the value above which the above comparisons hold. Finally, because the function tn−1e−t is continuous for
all t , we know that

	(n) =
∫ ∞

0
tn−1e−t dt converges for all n ≥ 1.

(b) Using Integration by Parts, with u = tn and v′ − e−t , we have u′ = ntn−1, v = −e−t , and

	(n + 1) =
∫ ∞

0
tne−t dt = −tne−t

∣∣∞
0 + n

∫ ∞
0

tn−1e−t dt

= lim
R→∞

(−Rn

eR
− 0

)
+ n	(n) = 0 + n	(n) = n	(n).

Here, we’ve computed the limit as in part (a) with repeated use of L’Hôpital’s Rule.

(c) By the result of part (b), we have

	(n + 1) = n	(n) = n(n − 1)	(n − 1) = n(n − 1)(n − 2)	(n − 2) = · · · = n! 	(1).

If n = 1, then

	(1) =
∫ ∞

0
e−t dt = lim

R→∞ −e−t

∣∣∣∣R
0

= lim
R→∞

(
1 − e−R

)
= 1.

Thus

	(n + 1) = n! (1) = n!

Use the results of Exercise 99 to show that the Laplace transform (see Exercises 86–89 above) of xn is
n!

sn+1
.

8.7 Probability and Integration

Preliminary Questions
1. The function p(x) = cos x satisfies

∫ π

−π/2
p(x) dx = 1. Is p(x) a probability density function on [−π/2, π ]?

solution Since p(x) = cos x < 0 for some points in (−π/2, π), p(x) is not a probability density function.

2. Estimate P(2 ≤ X ≤ 2.1) assuming that the probability density function of X satisfies p(2) = 0.2.

solution P(2 ≤ X ≤ 2.1) ≈ p(2) · (2.1 − 2) = 0.02.

3. Which exponential probability density has mean μ = 1
4 ?

solution
1

1/4
e−x/(1/4) = 4e−4x .
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Exercises
In Exercises 1–6, find a constant C such that p(x) is a probability density function on the given interval, and compute the
probability indicated.

1. p(x) = C

(x + 1)3
on [0, ∞); P(0 ≤ X ≤ 1)

solution Compute the indefinite integral using the substitution u = x + 1, du = dx:∫
p(x) dx =

∫
C

(x + 1)3
dx = −1

2
C(x + 1)−2 + K

For p(x) to be a probability density function, we must have

1 =
∫ ∞

0
p(x) dx = −1

2
C lim

R→∞(x + 1)−2
∣∣∣∣R
0

= 1

2
C − 1

2
C lim

R→∞(R + 1)−2 = 1

2
C

so that C = 2, and p(x) = 2
(x+1)3 . Then using the indefinite integral above,

P(0 ≤ X ≤ 1) =
∫ 1

0

2

(x + 1)3
= −1

2
· 2 · (x + 1)−2

∣∣∣∣1
0

= −1

4
+ 1 = 3

4

p(x) = Cx(4 − x) on [0, 4]; P(3 ≤ X ≤ 4)3. p(x) = C√
1 − x2

on (−1, 1); P
(− 1

2 ≤ X ≤ 1
2

)
solution Compute the indefinite integral:∫

p(x) dx = C

∫
1√

1 − x2
dx = C sin−1 x + K

valid for −1 < x < 1. For p(x) to be a probability density function, we must have

1 =
∫ 1

−1
p(x) dx =

∫ 0

−1
p(x) dx +

∫ 1

0
p(x) dx = C

(
lim

R→−1+ sin−1 x

∣∣∣∣0
R

+ lim
R→1− sin−1 x

∣∣∣∣R
0

)

= C

(
sin−1(0) − lim

R→−1+ sin−1(R) + lim
R→1− sin−1 R − sin−1(0)

)

= C
(
− sin−1(−1) + sin−1(1)

)
= πC

so that C = 1
π and p(x) = 1

π
√

1−x2
. Then using the indefinite integral above,

P

(
−1

2
≤ X ≤ 1

2

)
=
∫ 1/2

−1/2
p(x) dx = 1

π
sin−1 x

∣∣∣∣1/2

−1/2
= 1

π

(
π

6
− −π

6

)
= 1

3

p(x) = Ce−x

1 + e−2x
on (−∞, ∞); P(X ≤ −4)

5. p(x) = C
√

1 − x2 on (−1, 1); P
(− 1

2 ≤ X ≤ 1
)

solution Compute the indefinite integral using the substitution x = sin u, so that dx = cos u du:∫
p(x) dx = C

∫ √
1 − x2 dx = C

∫ √
1 − sin2 u cos u du = C

∫
cos2 u du

= C

(
1

2
u + 1

2
cos u sin u

)
+ K

Since x = sin u, we construct the following right triangle:

	1 − x2

x1

and we see that cos u =
√

1 − x2, so that∫
p(x) dx = 1

2
C
(

sin−1 x + x
√

1 − x2
)

+ K
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For p(x) to be a probability density function, we must have

1 =
∫ 1

−1
p(x) dx = 1

2
C
(

sin−1 x + x
√

1 − x2
) ∣∣∣∣1−1

= 1

2
C(sin−1 1 − sin−1(−1)) = π

2
C

so that C = 2
π and p(x) = 2

π

√
1 − x2. Then using the indefinite integral above,

P

(
−1

2
≤ X ≤ 1

)
=
∫ 1

−1/2

2

π

√
1 − x2 dx = 1

π

(
sin−1 x + x

√
1 − x2

) ∣∣∣∣1−1/2

= 1

π

(
sin−1 1 + 0 − sin−1

(
−1

2

)
− −1

2

√
1 − 1

4

)

= 1

π

(
π

2
− −π

6
+

√
3

4

)
= 2

3
+

√
3

4π
≈ 0.804

p(x) = Ce−xe−e−x
on (−∞, ∞); P(−4 ≤ X ≤ 4) This function, called the Gumbel density, is used to

model extreme events such as floods and earthquakes.

7. Verify that p(x) = 3x−4 is a probability density function on [1, ∞) and calculate its mean value.

solution We have

∫ ∞
1

3x−4 dx = lim
R→∞

(
−x−3

) ∣∣∣∣R
1

= lim
R→∞

(
− 1

R3

)
+ 1 = 1

so that p(x) is a probability density function on [1, ∞). Its mean value is∫ ∞
1

x · 3x−4 dx =
∫ ∞

1
3x−3 dx = −3

2
x−2

∣∣∣∣R
1

= lim
R→∞

(
− 3

2R2

)
+ 3

2
= 3

2

Show that the density function p(x) = 2

π(x2 + 1)
on [0, ∞) has infinite mean.

9. Verify that p(t) = 1
50 e−t/50 satisfies the condition∫∞

0 p(t) dt = 1.

solution Use the substitution u = t
50 , so that du = 1

50 dt . Then

∫ ∞
0

p(t) dt =
∫ ∞

0

1

50
e−t/50 dt =

∫ ∞
0

e−u du = lim
R→∞(−e−u)

∣∣∣∣R
0

= lim
R→∞ 1 − e−R = 1

Verify that for all r > 0, the exponential density function p(t) = 1
r e−t/r satisfies the condition

∫∞
0 p(t) dt = 1.

11. The life X (in hours) of a battery in constant use is a random variable with exponential density. What is the probability
that the battery will last more than 12 hours if the average life is 8 hours?

solution If the average life is 8 hours, then the mean of the exponential distribution is 8, so that the distribution is

p(x) = 1

8
e−x/8

The probability that the battery will last more than 12 hours is given by (using the substitution u = x/8, so that du = 1/8 dx

and x = 12 corresponds to u = 3/2)

P(X ≥ 12) =
∫ ∞

12
p(x) dx =

∫ ∞
12

1

8
e−x/8 dx =

∫ ∞
3/2

e−u du = lim
R→∞(−e−u)

∣∣∣∣R
3/2

= e−3/2 − lim
R→∞ e−R = e−3/2 ≈ 0.223

The time between incoming phone calls at a call center is a random variable with exponential density. There is a
50% probability of waiting 20 seconds or more between calls. What is the average time between calls?

13. The distance r between the electron and the nucleus in a hydrogen atom (in its lowest energy state) is a random
variable with probability density p(r) = 4a−3

0 r2e−2r/a0 for r ≥ 0, where a0 is the Bohr radius (Figure 7). Calculate the

probability P that the electron is within one Bohr radius of the nucleus. The value of a0 is approximately 5.29 × 10−11

m, but this value is not needed to compute P .

a0 2a0 3a0 4a0

p(r)

r

0.4

FIGURE 7 Probability density function p(r) = 4a−3
0 r2e−2r/a0 .
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solution The probability P is the area of the shaded region in Figure 7. To calculate p, use the substitution u = 2r/a0:

P =
∫ a0

0
p(r) dr = 4

a3
0

∫ a0

0
r2e−2r/a0 dr =

(
4

a3
0

)(
a3

0
8

)∫ 2

0
u2e−u du

The constant in front simplifies to 1
2 and the formula in the margin gives us

P = 1

2

∫ 2

0
u2e−u du = 1

2

(
−(u2 + 2u + 2)e−u

) ∣∣∣2
0

= 1

2

(
2 − 10e−2

)
≈ 0.32

Thus, the electron within a distance a0 of the nucleus with probability 0.32.

Show that the distance r between the electron and the nucleus in Exercise 13 has mean μ = 3a0/2.In Exercises 15–21, F(z) denotes the cumulative normal distribution function. Refer to a calculator, computer algebra
system, or online resource to obtain values of F(z).

15. Express the area of region A in Figure 8 in terms of F(z) and compute its value.

55 100 120 165
x

y

A

B

FIGURE 8 Normal density function with μ = 120 and σ = 30.

solution The area of region A is P(55 ≤ X ≤ 100). By Theorem 1, we have

P(55 ≤ X ≤ 100) = F

(
100 − 120

30

)
− F

(
55 − 120

30

)
= F

(
−2

3

)
− F

(
−13

6

)
≈ 0.237

Show that the area of region B in Figure 8 is equal to 1 − F(1.5) and compute its value. Verify numerically that
this area is also equal to F(−1.5) and explain why graphically.

17. Assume X has a standard normal distribution (μ = 0, σ = 1). Find:

(a) P(X ≤ 1.2) (b) P(X ≥ −0.4)

solution

(a) P(X ≤ 1.2) = F(1.2) ≈ 0.8849

(b) P(X ≥ −0.4) = 1 − P(X ≤ −0.4) = 1 − F(−0.4) ≈ 1 − 0.3446 ≈ 0.6554

Evaluate numerically:
1

3
√

2π

∫ ∞
14.5

e−(z−10)2/18 dz.
19. Use a graph to show that F(−z) = 1 − F(z) for all z. Then show that if p(x) is a normal density function
with mean μ and standard deviation σ , then for all r ≥ 0,

P(μ − rσ ≤ X ≤ μ + rσ ) = 2F(r) − 1

solution Consider the graph of the standard normal density function in Figure 5. This graph is symmetric around the
y-axis, so that the area under the curve from z to ∞, which is 1 − F(z), is equal to the area under the curve from −∞
to −z, which is F(−z). Thus 1 − F(z) = F(−z). Now, if p(x) is a normal density function with mean μ and standard
deviation σ , then for r ≥ 0 (so that the range μ − rσ ≤ X ≤ μ + rσ is nonempty),

P(μ − rσ ≤ X ≤ μ + rσ ) = F

(
μ + rσ − μ

σ

)
− F

(
μ − rσ − μ

σ

)

= F(r) − F(−r) = F(r) − (1 − F(r)) = 2F(r) − 1

The average September rainfall in Erie, Pennsylvania, is a random variable X with mean μ = 102 mm. Assume
that the amount of rainfall is normally distributed with standard deviation σ = 48.

(a) Express P(128 ≤ X ≤ 150) in terms of F(z) and compute its value numerically.

(b) Let P be the probability that September rainfall will be at least 120 mm. Express P as an integral of an appropriate
density function and compute its value numerically.

21. A bottling company produces bottles of fruit juice that are filled, on average, with 32 ounces of juice. Due to random
fluctuations in the machinery, the actual volume of juice is normally distributed with a standard deviation of 0.4 ounce.
Let P be the probability of a bottle having less than 31 ounces. Express P as an integral of an appropriate density function
and compute its value numerically.

solution The associated cumulative distribution function is

f (z) = 1

0.4
√

2π

∫ z

−∞
e−(x−32)2/(2·0.42) dx



June 13, 2011 LTSV SSM Second Pass

524 C H A P T E R 8 TECHNIQUES OF INTEGRATION

To compute the value numerically, we use the standard normal cumulative distribution function F(z):

P(X ≤ 31) = F

(
31 − 32

0.4

)
= F

(
−5

2

)
= 1√

2π

∫ −5/2

−∞
e−x2/2 dx ≈ 0.0062

According to Maxwell’s Distribution Law, in a gas of molecular mass m, the speed v of a molecule in a gas at
temperature T (kelvins) is a random variable with density

p(v) = 4π
( m

2πkT

)3/2
v2e−mv2/(2kT ) (v ≥ 0)

where k is Boltzmann’s constant. Show that the average molecular speed is equal to (8kT /πm)1/2. The average
speed of oxygen molecules at room temperature is around 450 m/s.

In Exercises 23–26, calculate μ and σ , where σ is the standard deviation, defined by

σ 2 =
∫ ∞
−∞

(x − μ)2 p(x) dx

The smaller the value of σ , the more tightly clustered are the values of the random variable X about the mean μ.

23. p(x) = 5

2x7/2
on [1, ∞)

solution The mean is

∫ ∞
1

xp(x) dx =
∫ ∞

1

5

2
x−5/2 dx = −5

3
x−3/2

∣∣∣∣∞
1

= 5

3

and

σ 2 =
∫ ∞

1
(x − μ)2p(x) dx =

∫ ∞
1

(x2 − 2μx + μ2)
5

2
x−7/2 dx

= 5

2

∫ ∞
1

x−3/2 − 2μx−5/2 + μ2x−7/2 dx = 5

2

(
−2x−1/2 + 4

3
μx−3/2 − 2

5
μ2x−5/2

) ∣∣∣∣∞
1

= 5

2

(
2 − 4

3
μ + 2

5
μ2
)

= 5

2

(
2 − 4

3
· 5

3
+ 2

5
· 25

9

)
= 20

9

p(x) = 1

π
√

1 − x2
on (−1, 1)

25. p(x) = 1

3
e−x/3 on [0, ∞)

solution This is an exponential density function with mean μ = 3. The standard deviation is

σ 2 = 1

3

∫ ∞
0

(x − 3)2e−x/3 dx = 1

3

∫ ∞
0

(
x2e−x/3 − 6xe−x/3 + 9e−x/3

)
dx

= 1

3

∫ ∞
0

x2e−x/3 dx − 2
∫ ∞

0
xe−x/3 dx + 3

∫ ∞
0

e−x/3 dx

We tackle the third integral first:

∫ ∞
0

e−x/3 dx = −3e−x/3
∣∣∣∣∞
0

= 3

For the second integral, use integration by parts with u = x, v′ = e−x/3 so that u′ = 1 and v = −3e−x/3. Then

∫ ∞
0

xe−x/3 dx = −3xe−x/3
∣∣∣∣∞
0

+ 3
∫ ∞

0
e−x/3 dx = 0 + 3 · 3 = 9

Finally, the first integral is solved using integration by parts with u = x2, v′ = e−x/3 so that u′ = 2x and v = −3e−x/3;
then ∫ ∞

0
x2e−x/3 dx = −3x2e−x/3

∣∣∣∣∞
0

+ 6
∫ ∞

0
xe−x/3 dx = 0 + 6 · 9 = 54

and, finally,

σ 2 = 1

3

∫ ∞
0

x2e−x/3 dx − 2
∫ ∞

0
xe−x/3 dx + 3

∫ ∞
0

e−x/3 dx

= 1

3
· 54 − 2 · 9 + 3 · 3 = 9

p(x) = 1

r
e−x/r on [0, ∞), where r > 0
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Further Insights and Challenges
27. The time to decay of an atom in a radioactive substance is a random variable X. The law of radioactive

decay states that if N atoms are present at time t = 0, then Nf (t) atoms will be present at time t , where f (t) = e−kt

(k > 0 is the decay constant). Explain the following statements:

(a) The fraction of atoms that decay in a small time interval [t, t + �t] is approximately −f ′(t)�t .
(b) The probability density function of X is −f ′(t).
(c) The average time to decay is 1/k.

solution
(a) The number of atoms that decay in the interval [t, t + �t] is just f (t) − f (t + �t); the statement simply says that
f (t) − f (t + �t) ≈ −f ′(t)�t , which is the same as saying that

f ′(t) ≈ f (t) − f (t + �t)

�t
= f (t + �t) − f (t)

�t

which is true by the definition of the derivative. Intuitively, since f ′(t) is the instantaneous rate of decay, we would expect
that over a short interval, the number of atoms decaying is proportional to both f ′(t) and the size of the interval.
(b) The probability density function is defined by the property in (a): the probability that X lies in a small interval
[t, t + �t] is approximately p(t)�t , so that p(t) = −f ′(t).
(c) The average time to decay is the mean of the distribution, which is

μ =
∫ ∞

0
t · (−f ′(t)) dt = −

∫ ∞
0

tf ′(t) dt

We compute this integral using integration by parts, with u = t , v′ = f ′(t). Then u′ = 1, v = f (t), and

μ = −
∫ ∞

0
tf ′(t) dt = −tf (t)

∣∣∣∣∞
0

+
∫ ∞

0
f (t) dt.

Since f (t) = e−kt , we have

−tf (t)
∣∣∞
0 = lim

R→∞ −te−kt

∣∣∣∣R
0

= lim
R→∞ −Re−Rt + 0 = lim

R→∞
−R

eRt
= lim

R→∞
−1

ReRt
= 0.

Here we used L’Hôpital’s Rule to compute the limit. Thus

μ =
∫ ∞

0
f (t) dt =

∫ ∞
0

e−kt dt.

Now, ∫ R

0
e−kt dt = −1

k
e−kt

∣∣∣∣R
0

= −1

k

(
e−kR − 1

)
= 1

k

(
1 − e−kR

)
,

so

μ = lim
R→∞

1

k

(
1 − e−kR

)
= 1

k
(1 − 0) = 1

k
.

Because k has units of (time)−1, μ does in fact have the appropriate units of time.

The half-life of radon-222, is 3.825 days. Use Exercise 27 to compute:

(a) The average time to decay of a radon-222 atom.

(b) The probability that a given atom will decay in the next 24 hours.
8.8 Numerical Integration

Preliminary Questions
1. What are T1 and T2 for a function on [0, 2] such that f (0) = 3, f (1) = 4, and f (2) = 3?

solution Using the given function values

T1 = 1

2
(2)(3 + 3) = 6 and T2 = 1

2
(1)(3 + 8 + 3) = 7.

2. For which graph in Figure 16 will TN overestimate the integral? What about MN ?

x

y
y = f (x)

x

y
y = g(x)

FIGURE 16
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solution TN overestimates the value of the integral when the integrand is concave up; thus, TN will overestimate the
integral of y = g(x). On the other hand, MN overestimates the value of the integral when the integrand is concave down;
thus, MN will overestimate the integral of y = f (x).

3. How large is the error when the Trapezoidal Rule is applied to a linear function? Explain graphically.

solution The Trapezoidal Rule integrates linear functions exactly, so the error will be zero.

4. What is the maximum possible error if T4 is used to approximate∫ 3

0
f (x) dx

where |f ′′(x)| ≤ 2 for all x.

solution The maximum possible error in T4 is

max |f ′′(x)| (b − a)3

12n2
≤ 2(3 − 0)3

12(4)2
= 9

32
.

5. What are the two graphical interpretations of the Midpoint Rule?

solution The two graphical interpretations of the Midpoint Rule are the sum of the areas of the midpoint rectangles
and the sum of the areas of the tangential trapezoids.

Exercises
In Exercises 1–12, calculate TN and MN for the value of N indicated.

1.
∫ 2

0
x2 dx, N = 4

solution Let f (x) = x2. We divide [0, 2] into 4 subintervals of width

�x = 2 − 0

4
= 1

2

with endpoints 0, 0.5, 1, 1.5, 2, and midpoints 0.25, 0.75, 1.25, 1.75. With this data, we get

T4 = 1

2
· 1

2

(
02 + 2(0.5)2 + 2(1)2 + 2(1.5)2 + 22

)
= 2.75; and

M4 = 1

2

(
0.252 + 0.752 + 1.252 + 1.752

)
= 2.625.

∫ 4

0

√
x dx, N = 4

3.
∫ 4

1
x3 dx, N = 6

solution Let f (x) = x3. We divide [1, 4] into 6 subintervals of width

�x = 4 − 1

6
= 1

2

with endpoints 1, 1.5, 2, 2.5, 3, 3.5, 4, and midpoints 1.25, 1.75, 2.25, 2.75, 3.25, 3.75. With this data, we get

T6 = 1

2

(
1

2

)(
13 + 2(1.5)3 + 2(2)3 + 2(2.5)3 + 2(3)3 + 2(3.5)3 + 43

)
= 64.6875; and

M6 = 1

2

(
1.253 + 1.753 + 2.253 + 2.753 + 3.253 + 3.753

)
= 63.28125.

∫ 2

1

√
x4 + 1 dx, N = 5

5.
∫ 4

1

dx

x
, N = 6

solution Let f (x) = 1/x. We divide [1, 4] into 6 subintervals of width

�x = 4 − 1

6
= 1

2

with endpoints 1, 1.5, 2, 2.5, 3, 3.5, 4, and midpoints 1.25, 1.75, 2.25, 2.75, 3.25, 3.75. With this data, we get

T6 = 1

2

(
1

2

)(
1

1
+ 2

1.5
+ 2

2
+ 2

2.5
+ 2

3
+ 2

3.5
+ 1

4

)
≈ 1.40536; and

M6 = 1

2

(
1

1.25
+ 1

1.75
+ 1

2.25
+ 1

2.75
+ 1

3.25
+ 1

3.75

)
≈ 1.37693.
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∫ −1

−2

dx

x
, N = 5

7.
∫ π/2

0

√
sin x dx, N = 6

solution Let f (x) = √
sin x. We divide [0, π/2] into 6 subintervals of width

�x =
π
2 − 0

6
= π

12

with endpoints

0,
π

12
,

2π

12
, . . . ,

6π

12
= π

2
,

and midpoints

π

24
,

3π

24
, . . . ,

11π

24
.

With this data, we get

T6 = 1

2

( π

12

) (√
sin(0) + 2

√
sin(π/12) + · · · +√sin(6π/12)

)
≈ 1.17029; and

M6 = π

12

(√
sin(π/24) +√sin(3π/24) + · · · +√sin(11π/24)

)
≈ 1.20630.

∫ π/4

0
sec x dx, N = 6

9.
∫ 2

1
ln x dx, N = 5

solution Let f (x) = ln x. We divide [1, 2] into 5 subintervals of width

�x = 2 − 1

5
= 1

5
= 0.2

with endpoints 1, 1.2, 1.4, 1.6, 1.8, 2, and midpoints 1.1, 1.3, 1.5, 1.7, 1.9. With this data, we get

T5 = 1

2

(
1

5

) (
ln 1 + 2 ln 1.2 + 2 ln 1.4 + 2 ln 1.6 + 2 ln 1.8 + ln 2

) ≈ 0.384632; and

M5 = 1

5

(
ln 1.1 + ln 1.3 + ln 1.5 + ln 1.7 + ln 1.9

) ≈ 0.387124.

∫ 3

2

dx

ln x
, N = 5

11.
∫ 1

0
e−x2

dx, N = 5

solution Let f (x) = e−x2
. We divide [0, 1] into 5 subintervals of width

�x = 1 − 0

5
= 1

5
= 0.2

with endpoints

0,
1

5
,

2

5
,

3

5
,

4

5
, 1

and midpoints

1

10
,

3

10
,

5

10
,

7

10
,

9

10
.

With this data, we get

T5 = 1

2

(
1

5

)(
e−02 + 2e−(1/5)2 + 2e−(2/5)2 + 2e−(3/5)2 + 2e−(4/5)2 + e−12

)
≈ 0.74437; and

M5 = 1

5

(
e−(1/10)2 + e−(3/10)2 + e−(5/10)2 + e−(7/10)2 + e−(9/10)2

)
≈ 0.74805.
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∫ 1

−2
ex2

dx, N = 6

In Exercises 13–22, calculate SN given by Simpson’s Rule for the value of N indicated.

13.
∫ 4

0

√
x dx, N = 4

solution Let f (x) = √
x. We divide [0, 4] into 4 subintervals of width

�x = 4 − 0

4
= 1

with endpoints 0, 1, 2, 3, 4. With this data, we get

S4 = 1

3
(1)
(√

0 + 4
√

1 + 2
√

2 + 4
√

3 + √
4
) ≈ 5.25221.

∫ 5

3
(9 − x2) dx, N = 4

15.
∫ 3

0

dx

x4 + 1
, N = 6

solution Let f (x) = 1/(x4 + 1). We divide [0, 3] into 6 subintervals of length

�x = 3 − 0

6
= 1

2
= 0.5

with endpoints 0, 0.5, 1, 1.5, 2, 2.5, 3. With this data, we get

S6 = 1

3

(
1

2

)[
1

04 + 1
+ 4

0.54 + 1
+ 2

14 + 1
+ 4

1.54 + 1
+ 2

24 + 1
+ 4

2.54 + 1
+ 1

34 + 1

]
≈ 1.10903.

∫ 1

0
cos(x2) dx, N = 6

17.
∫ 1

0
e−x2

dx, N = 4

solution Let f (x) = e−x2
. We divide [0, 1] into 4 subintervals of length

�x = 1 − 0

4
= 1

4

with endpoints 0, 1
4 , 2

4 , 3
4 , 4

4 = 1. With this data, we get

S4 = 1

3

(
1

4

)[
e−02 + 4e−(1/4)2 + 2e−(2/4)2 + 4e−(3/4)2 + e−(1)2

]
≈ 0.746855.

∫ 2

1
e−x dx, N = 6

19.
∫ 4

1
ln x dx, N = 8

solution Let f (x) = ln x. We divide [1, 4] into 8 subintervals of length

�x = 4 − 1

8
= 3

8
= 0.375

with endpoints 1, 1.375, 1.75, 2.125, 2.5, 2.875, 3.25, 3.625, 4. With this data, we get

S8 = 1

3

(
3

8

) [
ln 1 + 4 ln (1.375) + 2 ln (1.75) + · · · + 4 ln (3.625) + ln 4

] ≈ 2.54499.

∫ 4

2

√
x4 + 1 dx, N = 8

21.
∫ π/4

0
tan θ dθ , N = 10

solution Let f (θ) = tan θ . We divide [0, π
4 ] into 10 subintervals of width

�θ =
π
4 − 0

10
= π

40

with endpoints 0, π
40 , 2π

40 , 3π
40 , . . . , 10π

40 = π
4 . With this data, we get

S10 = 1

3

( π

40

) [
tan (0) + 4 tan

( π

40

)
+ 2 tan

(
2π

40

)
+ · · · + 4 tan

(
9π

40

)
+ tan

(
10π

40

)]
≈ 0.346576.
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∫ 2

0
(x2 + 1)−1/3 dx, N = 10

In Exercises 23–26, calculate the approximation to the volume of the solid obtained by rotating the graph around the
given axis.

23. y = cos x;
[
0, π

2

]
; x-axis; M8

solution Using the disk method, the volume is given by

V =
∫ π/2

0
πr2 dx = π

∫ π/2

0
(cos x)2 dx

which can be estimated as

π

∫ π/2

0
(cos x)2 dx ≈ π [M8].

Let f (x) = cos2 x. We divide [0, π/2] into 8 subintervals of length

�x =
π
2 − 0

8
= π

16

with midpoints

π

32
,

3π

32
,

5π

32
, . . . ,

15π

32
.

With this data, we get

V ≈ π [M8] = π
[
�x(y1 + y2 + · · · + y8)

] = π2

16

[
cos2

( π

32

)
+ cos2

(
3π

32

)
+ · · · + cos2

(
15π

32

)]
≈ 2.46740.

y = cos x;
[
0, π

2

]
; y-axis; S8

25. y = e−x2
; [0, 1]; x-axis; T8

solution Using the disk method, the volume is given by

V =
∫ 1

0
πr2 dx = π

∫ 1

0

(
e−x2)2

dx = π

∫ 1

0
e−2x2

dx.

We can use the approximation

V = π

∫ 1

0
e−2x2

dx ≈ π [T8],

where f (x) = e−2x2
. Divide [0, 1] into 8 subintervals of length

�x = 1 − 0

8
= 1

8
,

with endpoints

0,
1

8
,

2

8
, . . . , 1.

With this data, we get

V ≈ π [T8] = π

[
1

2
· 1

8

(
e−2(02) + 2e−2(1/8)2 + · · · + 2e−2(7/8)2 + e−2(1)2

)]
≈ 1.87691.

y = e−x2
; [0, 1]; y-axis; S8

27. An airplane’s velocity is recorded at 5-min intervals during a 1-hour period with the following results, in miles per
hour:

550, 575, 600, 580, 610, 640, 625,

595, 590, 620, 640, 640, 630

Use Simpson’s Rule to estimate the distance traveled during the hour.

solution The distance traveled is equal to the integral
∫ 1

0 v(t) dt , where t is in hours. Since 5 minutes is 1/12 of an
hour, we have �t = 1/12. Simpson’s Rule gives us

S12 = 1

3
· 1

12

[
550 + 4 · 575 + 2 · 600 + 4 · 580 + 2 · 610 + · · · + 4 · 640 + 630

]
≈ 608.611.

The distance traveled during the hour is approximately 608.6 miles.
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Use Simpson’s Rule to determine the average temperature in a museum over a 3-hour period, if the temperatures
(in degrees Celsius), recorded at 15-min intervals, are

21, 21.3, 21.5, 21.8, 21.6, 21.2, 20.8,

20.6, 20.9, 21.2, 21.1, 21.3, 21.2

29. Tsunami Arrival Times Scientists estimate the arrival times of tsunamis (seismic ocean waves) based on

the point of origin P and ocean depths. The speed s of a tsunami in miles per hour is approximately s = √
15d, where d

is the ocean depth in feet.

(a) Let f (x) be the ocean depth x miles from P (in the direction of the coast). Argue using Riemann sums that the time
T required for the tsunami to travel M miles toward the coast is

T =
∫ M

0

dx√
15f (x)

(b) Use Simpson’s Rule to estimate T if M = 1000 and the ocean depths (in feet), measured at 100-mile intervals starting
from P , are

13,000, 11,500, 10,500, 9000, 8500,

7000, 6000, 4400, 3800, 3200, 2000

solution

(a) At a given distance from shore, say, xi , the speed of the tsunami in mph is s = √15f (xi). If we assume the speed s

is constant over a small interval �x, then the time to cover that interval at that speed is

ti = distance

speed
= �x√

15f (xi)
.

Now divide the interval [0, M] into N subintervals of length �x. The total time T is given by

T =
N∑

i=1

ti =
N∑

i=1

�x√
15f (xi)

.

Taking the limit as N → ∞, we get

T =
∫ M

0

dx√
15f (x)

.

(b) We have �x = 100. Simpson’s Rule gives us

S10 = 1

3
· 100

[
1√

15(13,000)
+ 4√

15(11,500)
+ · · · + 1√

15(2000)

]
≈ 3.347.

It will take the tsunami about 3 hours and 21 minutes to reach shore.

Use S8 to estimate
∫ π/2

0

sin x

x
dx, taking the value of

sin x

x
at x = 0 to be 1.

31. Calculate T6 for the integral I =
∫ 2

0
x3 dx.

(a) Is T6 too large or too small? Explain graphically.
(b) Show that K2 = |f ′′(2)| may be used in the error bound and find a bound for the error.
(c) Evaluate I and check that the actual error is less than the bound computed in (b).

solution Let f (x) = x3. Divide [0, 2] into 6 subintervals of length �x = 2−0
6 = 1

3 with endpoints 0, 1
3 , 2

3 , . . . , 2.

With this data, we get

T6 = 1

2
· 1

3

[
03 + 2

(
1

3

)3
+ 2

(
2

3

)3
+ 2

(
3

3

)3
+ 2

(
4

3

)3
+ 2

(
5

3

)3
+ (1)23

]
≈ 4.11111.

(a) Since x3 is concave up on [0, 2], T6 is too large.
(b) We have f ′(x) = 3x2 and f ′′(x) = 6x. Since |f ′′(x)| = |6x| is increasing on [0, 2], its maximum value occurs at
x = 2 and we may take K2 = |f ′′(2)| = 12. Then

Error(T6) ≤ K2(b − a)3

12N2
= 12(2 − 0)3

12(6)2
= 2

9
≈ 0.22222.

(c) The exact value is

∫ 2

0
x3 dx = 1

4
x4
∣∣∣∣2
0

= 1

4
(16 − 0) = 4.

We can use this to compute the actual error:

Error(T6) = |T6 − 4| ≈ |4.11111 − 4| ≈ 0.11111.

Since 0.11111 < 0.22222, the actual error is indeed less than the maximum possible error.
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Calculate M4 for the integral I =
∫ 1

0
x sin(x2) dx.

(a) Use a plot of f ′′(x) to show that K2 = 3.2 may be used in the error bound and find a bound for the error.

(b) Evaluate I numerically and check that the actual error is less than the bound computed in (a).

In Exercises 33–36, state whether TN or MN underestimates or overestimates the integral and find a bound for the error
(but do not calculate TN or MN ).

33.
∫ 4

1

1

x
dx, T10

solution Let f (x) = 1
x . Then f ′(x) = −1

x2 and f ′′(x) = 2
x3 > 0 on [1, 4], so f (x) is concave up, and T10

overestimates the integral. Since |f ′′(x)| = | 2
x3 | has its maximum value on [1, 4] at x = 1, we can take K2 = 2

13 = 2,
and

Error(T10) ≤ K2(4 − 1)3

12N2
= 2(3)3

12(10)2
= 0.045.

∫ 2

0
e−x/4 dx, T20

35.
∫ 4

1
ln x dx, M10

solution Let f (x) = ln x. Then f ′(x) = 1/x and

f ′′(x) = − 1

x2
< 0

on [1, 4], so f (x) is concave down, and M10 overestimates the integral. Since |f ′′(x)| = | − 1/x2| has its maximum
value on [1, 4] at x = 1, we can take K2 = | − 1/12| = 1, and

Error(M10) ≤ K2(4 − 1)3

24N2
= (1)(3)3

24(10)2
= 0.01125.

∫ π/4

0
cos x, M20

In Exercises 37–40, use the error bound to find a value of N for which Error(TN ) ≤ 10−6. If you have a computer
algebra system, calculate the corresponding approximation and confirm that the error satisfies the required bound.

37.
∫ 1

0
x4 dx

solution Let f (x) = x4. Then f ′(x) = 4x3 and |f ′′(x)| = |12x2|, which has its maximum value on [0, 1] at x = 1,

so we can take K2 = |12(1)2| = 12. Then we have

Error(TN ) ≤ K2(1 − 0)3

12N2
= 12

12N2
= 1

N2
.

To ensure that the error is at most 10−6, we must choose N such that

1

N2
≤ 1

106
.

This gives N2 ≥ 106 or N ≥ 103. Thus let N = 1000. The exact value of the integral is

∫ 1

0
x4 dx = x5

5

∣∣∣∣1
0

= 1

5
= 0.2.

Using a CAS, we find that

T1000 ≈ 0.2000003333.

The actual error is approximately |0.2000003333 − 0.2| ≈ 3.333 × 10−7, and is indeed less than 10−6.

∫ 3

0
(5x4 − x5) dx

39.
∫ 5

2

1

x
dx

solution Let f (x) = 1/x. Then f ′(x) = −1/x2 and |f ′′(x)| = |2/x3|, which has its maximum value on [2, 5] at

x = 2, so we can take K2 = |2/23| = 1/4. Then we have

Error(TN ) ≤ K2(5 − 2)3

12N2
= (1/4)33

12N2
= 9

16N2
.

To ensure that the error is at most 10−6, we must choose N such that

9

16N2
≤ 1

106
.
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This gives us

N2 ≥ 9 · 106

16
⇒ N ≥

√
9 · 106

16
= 750.

Thus let N = 750. The exact value of the integral is∫ 5

2

1

x
dx = ln 5 − ln 2 ≈ 0.9162907314.

Using a CAS, we find that

T750 ≈ 0.9162910119.

The error is approximately

|0.9162907314 − 0.9162910119| ≈ 2.805 × 10−7

and is indeed less than 10−6.

∫ 3

0
e−x dx

41. Compute the error bound for the approximations T10 and M10 to
∫ 3

0 (x3 + 1)−1/2 dx, using Figure 17 to determine
a value of K2. Then find a value of N such that the error in MN is at most 10−6.

1 2 3

−1

1

x

y

FIGURE 17 Graph of f ′′(x), where f (x) = (x3 + 1)−1/2.

solution Clearly, in the range 0 ≤ x ≤ 3, we have |f ′′(x)| ≤ 1, so we may choose K2 = 1. Then

Error(T10) ≤ K2(3 − 0)3

12N2
= 27

12 · 102
= 27

1200
= 0.0225

Error(M10) ≤ K2(3 − 0)3

24N2
= 27

24 · 102
= 27

2400
= 0.01125

In order for the error in MN to be at most 10−6, we must have

Error(MN) ≤ K2(3 − 0)3

24N2
= 9

8N2
≤ 10−6

so that 8N2 ≥ 9 × 106 and N2 ≥ 1,125,000. Thus we must choose N ≥ √
1,125,000 ≈ 1060.7, so that N = 1061.

(a) Compute S6 for the integral I =
∫ 1

0
e−2x dx.

(b) Show that K4 = 16 may be used in the error bound and compute the error bound.

(c) Evaluate I and check that the actual error is less than the bound for the error computed in (b).

43. Calculate S8 for
∫ 5

1 ln x dx and calculate the error bound. Then find a value of N such that SN has an error of at most
10−6.

solution Let f (x) = ln x. We divide [1, 5] into eight subintervals of length �x = (5 − 1)/8 = 0.5, with endpoints
1, 1.5, 2, . . . , 5. With this data, we get

S8 = 1

3
· 1

2

[
ln 1 + 4 ln 1.5 + 2 ln 2 + · · · + 4 ln 4.5 + ln 5

]
≈ 4.046655.

To find the maximum possible error, we first take derivatives:

f ′(x) = 1

x
, f ′′(x) = − 1

x2
, f (3)(x) = 2

x3
, f (4)(x) = − 6

x4
.

Since |f (4)(x)| = | − 6x−4| = 6x−4, assumes its maximum value on [1, 5] at x = 1, we can set K4 = 6(1)−4 = 6.
Then we have

Error(S8) ≤ K4(5 − 1)5

180N4
= 6 · 45

180 · 84
≈ 0.0083333.

To ensure that SN has error at most 10−6, we must find N such that

6 · 45

180N4
≤ 1

106
.
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This gives us

N4 ≥ 6 · 45 · 106

180
⇒ N ≥

(
6 · 45 · 106

180

)1/4

≈ 76.435.

Thus let N = 78 (remember that N must be even when using Simpson’s Rule).

Find a bound for the error in the approximation S10 to
∫ 3

0 e−x2
dx (use Figure 18 to determine a value of K4).

Then find a value of N such that SN has an error of at most 10−6.

45. Use a computer algebra system to compute and graph f (4)(x) for f (x) =
√

1 + x4 and find a bound for the

error in the approximation S40 to
∫ 5

0
f (x) dx.

solution From the graph of f (4)(x) shown below, we see that |f (4)(x)| ≤ 15 on [0, 5]. Therefore we set K4 = 15.

Now we have

Error(S40) ≤ 15(5 − 0)5

180(40)4
= 5

49152
≈ 1.017 × 10−4.

54321

−15

−10

−5

15

10

5

x

y

Use a computer algebra system to compute and graph f (4)(x) for f (x) = tan x − sec x and find a bound for

the error in the approximation S40 to
∫ π/4

0
f (x) dx.

In Exercises 47–50, use the error bound to find a value of N for which Error(SN ) ≤ 10−9.

47.
∫ 6

1
x4/3 dx

solution Let f (x) = x4/3. We start by taking derivatives:

f ′(x) = 4

3
x1/3

f ′′(x) = 4

9
x−2/3

f ′′′(x) = − 8

27
x−5/3

f (4)(x) = 40

81
x−8/3

For x ≥ 1, f (4)(x) is a decreasing function of x, so it takes its maximum value on [1, 6] at x = 1. That maximum value
is 40

81 , which is quite close to (but smaller than) 1
2 . For simplicity, we take K4 = 1

2 . Then

Error(SN ) ≤ K4(b − a)5

180N4
= (6 − 1)5

2 · 180 · N4
= 55

360N4
= 625

72N4
≤ 10−9

Thus 72N4 ≥ 625 × 109, so that

N ≥
(

625 × 109

72

)1/4

≈ 305.24

so we can take N = 306.

∫ 4

0
xex dx

49.
∫ 1

0
ex2

dx

solution Let f (x) = ex2
. To find K4, we first take derivatives:

f ′(x) = 2xex2

f ′′(x) = 4x2ex2 + 2ex2

f (3)(x) = 8x3ex2 + 12xex2

f (4)(x) = 16x4ex2 + 48x2ex2 + 12ex2
.

On the interval [0, 1], |f (4)(x)| assumes its maximum value at x = 1. Therefore we set

K4 = |f (4)(1)| = 16e + 48e + 12e = 76e.



June 13, 2011 LTSV SSM Second Pass

534 C H A P T E R 8 TECHNIQUES OF INTEGRATION

Now we have

Error(SN ) ≤ K4(1 − 0)5

180N4
= 76e

180N4
.

To ensure that SN has error at most 10−9, we must find N such that

76e

180N4
≤ 1

109
.

This gives us

N4 ≥ 76e · 109

180
⇒ N ≥

(
76e · 109

180

)1/4

≈ 184.06.

Thus we let N = 186 (remember that N must be even when using Simpson’s Rule).

∫ 4

1
sin(ln x) dx

51. Show that
∫ 1

0

dx

1 + x2
= π

4
[use Eq. (3) in Section 5.7].

(a) Use a computer algebra system to graph f (4)(x) for f (x) = (1 + x2)−1 and find its maximum on [0, 1].
(b) Find a value of N such that SN approximates the integral with an error of at most 10−6. Calculate the corresponding
approximation and confirm that you have computed π

4 to at least four places.

solution Recall from Section 3.9 that

d

dx
tan−1(x) = 1

1 + x2
.

So then ∫ 1

0

dx

1 + x2
= tan−1 x

∣∣∣∣1
0

= tan−1(1) − tan−1(0) = π

4
.

(a) From the graph of f (4)(x) shown below, we can see that the maximum value of |f (4)(x)| on the interval [0, 1] is 24.

10.80.60.40.2
−10

30

10

20

x

y

(b) From part (a), we set K4 = 24. Then we have

Error(SN ) ≤ 24(1 − 0)5

180N4
= 2

15N4
.

To ensure that SN has error at most 10−6, we must find N such that

2

15N4
≤ 1

106
.

This gives us

N4 ≥ 2 · 106

15
⇒ N ≥

(
2 · 106

15

)1/4

≈ 19.1.

Thus let N = 20. To compute S20, let �x = (1 − 0)/20 = 0.05. The endpoints of [0, 1] are 0, 0.05, . . . , 1. With this
data, we get

S20 = 1

3

(
1

20

)[
1

1 + 02
+ 4

1 + (0.05)2
+ 2

1 + (0.1)2
+ · · · + 1

1 + 12

]
≈ 0.785398163242.

The actual error is

|0.785398163242 − π/4| = |0.785398163242 − 0.785398163397| = 1.55 × 10−10.

Let J =
∫ ∞

0
e−x2

dx and JN =
∫ N

0
e−x2

dx. Although e−x2
has no elementary antiderivative, it is known that

J = √
π/2. Let TN be the N th trapezoidal approximation to JN . Calculate T4 and show that T4 approximates J to

three decimal places.

53. Let f (x) = sin(x2) and I =
∫ 1

0
f (x) dx.

(a) Check thatf ′′(x) = 2 cos(x2) − 4x2 sin(x2).Then show that |f ′′(x)| ≤ 6 forx ∈ [0, 1]. Hint: Note that |2 cos(x2)| ≤
2 and |4x2 sin(x2)| ≤ 4 for x ∈ [0, 1].
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(b) Show that Error(MN) is at most
1

4N2
.

(c) Find an N such that |I − MN | ≤ 10−3.

solution
(a) Taking derivatives, we get

f ′(x) = 2x cos(x2)

f ′′(x) = 2x(− sin(x2) · 2x) + 2 cos(x2) = 2 cos(x2) − 4x2 sin(x2).

On the interval [0, 1],
|f ′′(x)| = |2 cos(x2) − 4x2 sin(x2)| ≤ |2 cos(x2)| + |4x2 sin(x2)| ≤ 2 + 4 = 6.

(b) Using K2 = 6, we get

Error(MN) ≤ K2(1 − 0)3

24N2
= 6

24N2
= 1

4N2
.

(c) To ensure that MN has error at most 10−3, we must find N such that

1

4N2
≤ 1

103
.

This gives us

N2 ≥ 103

4
= 250 ⇒ N ≥ √

250 ≈ 15.81.

Thus let N = 16.

The error bound for MN is proportional to 1/N2, so the error bound decreases by 1
4 if N is increased to 2N .

Compute the actual error in MN for
∫ π

0 sin x dx for N = 4, 8, 16, 32, and 64. Does the actual error seem to decrease

by 1
4 as N is doubled?

55. Observe that the error bound for TN (which has 12 in the denominator) is twice as large as the error
bound for MN (which has 24 in the denominator). Compute the actual error in TN for

∫ π
0 sin x dx for N = 4, 8, 16, 32,

and 64 and compare with the calculations of Exercise 54. Does the actual error in TN seem to be roughly twice as large
as the error in MN in this case?

solution The exact value of the integral is∫ π

0
sin x dx = − cos x

∣∣∣∣π
0

= −(−1) − (1) = 2.

To compute T4, we have �x = (π − 0)/4 = π/4, and endpoints 0, π/4, 2π/4, 3π/4, π. With this data, we get

T4 = 1

2
· π

4

[
sin(0) + 2 sin

(π

4

)
+ 2 sin

(
2π

4

)
+ 2 sin

(
3π

4

)
+ sin(π)

]
≈ 1.896119.

The values for T8, T16, T32, and T64 are computed similarly:

T8 = 1

2
· π

8

[
sin(0) + 2 sin

(π

8

)
+ 2 sin

(
2π

8

)
+ · · · + 2 sin

(
7π

8

)
+ sin(π)

]
≈ 1.974232;

T16 = 1

2
· π

16

[
sin(0) + 2 sin

( π

16

)
+ 2 sin

(
2π

16

)
+ · · · + 2 sin

(
15π

16

)
+ sin(π)

]
≈ 1.993570;

T32 = 1

2
· π

32

[
sin(0) + 2 sin

( π

32

)
+ 2 sin

(
2π

32

)
+ · · · + 2 sin

(
31π

32

)
+ sin(π)

]
≈ 1.998393;

T64 = 1

2
· π

64

[
sin(0) + 2 sin

( π

64

)
+ 2 sin

(
2π

64

)
+ · · · + 2 sin

(
63π

64

)
+ sin(π)

]
≈ 1.999598.

Now we can compute the actual errors for each N :

Error(T4) = |2 − 1.896119| = 0.103881

Error(T8) = |2 − 1.974232| = 0.025768

Error(T16) = |2 − 1.993570| = 0.006430

Error(T32) = |2 − 1.998393| = 0.001607

Error(T64) = |2 − 1.999598| = 0.000402

Comparing these results with the calculations of Exercise 54, we see that the actual error in TN is in fact about twice as
large as the error in MN .
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Explain why the error bound for SN decreases by 1
16 if N is increased to 2N . Compute the actual error in

SN for
∫ π

0 sin x dx for N = 4, 8, 16, 32, and 64. Does the actual error seem to decrease by 1
16 as N is doubled?

57. Verify that S2 yields the exact value of
∫ 1

0
(x − x3) dx.

solution Let f (x) = x − x3. Clearly f (4)(x) = 0, so we may take K4 = 0 in the error bound estimate for S2. Then

Error(S2) ≤ K4(1 − 0)5

180 · 24
= 0 · 1

2880
= 0

so that S2 yields the exact value of the integral.

Verify that S2 yields the exact value of
∫ b

a
(x − x3) dx for all a < b.Further Insights and Challenges

59. Show that if f (x) = rx + s is a linear function (r, s constants), then TN =
∫ b

a
f (x) dx for all N and all endpoints

a, b.

solution First, note that

∫ b

a
(rx + s) dx = r(b2 − a2)

2
+ s(b − a).

Now,

TN(rx + s) = b − a

2N

⎡
⎣f (a) + 2

N−1∑
i=1

f (xi) + f (b)

⎤
⎦ = r(b − a)

2N

⎡
⎣a + 2

N−1∑
i=1

a + 2
b − a

N

N−1∑
i=1

i + b

⎤
⎦+ s

b − a

2N
(2N)

= r(b − a)

2N

[
(2N − 1)a + 2

b − a

N

(N − 1)N

2
+ b

]
+ s(b − a) = r(b2 − a2)

2
+ s(b − a).

Show that if f (x) = px2 + qx + r is a quadratic polynomial, then S2 =
∫ b

a
f (x) dx. In other words, show that

∫ b

a
f (x) dx = b − a

6

(
y0 + 4y1 + y2

)

where y0 = f (a), y1 = f

(
a + b

2

)
, and y2 = f (b). Hint: Show this first for f (x) = 1, x, x2 and use linearity.

61. For N even, divide [a, b] into N subintervals of width �x = b − a

N
. Set xj = a + j �x, yj = f (xj ), and

S
2j
2 = b − a

3N

(
y2j + 4y2j+1 + y2j+2

)

(a) Show that SN is the sum of the approximations on the intervals [x2j , x2j+2]—that is, SN = S0
2 + S2

2 + · · · + SN−2
2 .

(b) By Exercise 60, S2j
2 =

∫ x2j+2

x2j

f (x) dx if f (x) is a quadratic polynomial. Use (a) to show that SN is exact for all N

if f (x) is a quadratic polynomial.

solution

(a) This result follows because the even-numbered interior endpoints overlap:

(N−2)/2∑
i=0

S
2j
2 = b − a

6
[(y0 + 4y1 + y2) + (y2 + 4y3 + y4) + · · · ]

= b − a

6

[
y0 + 4y1 + 2y2 + 4y3 + 2y4 + · · · + 4yN−1 + yN

] = SN .

(b) If f (x) is a quadratic polynomial, then by part (a) we have

SN = S0
2 + S2

2 + · · · + SN−2
2 =

∫ x2

x0

f (x) dx +
∫ x4

x2

f (x) dx + · · · +
∫ xN

xN−2

f (x) dx =
∫ b

a
f (x) dx.

Show that S2 also gives the exact value for
∫ b

a
x3 dx and conclude, as in Exercise 61, that SN is exact for all

cubic polynomials. Show by counterexample that S2 is not exact for integrals of x4.

63. Use the error bound for SN to obtain another proof that Simpson’s Rule is exact for all cubic polynomials.

solution Let f (x) = ax3 + bx2 + cx + d, with a �= 0, be any cubic polynomial. Then, f (4)(x) = 0, so we can take
K4 = 0. This yields

Error(SN ) ≤ 0

180N4
= 0.

In other words, SN is exact for all cubic polynomials for all N .

Sometimes, Simpson’s Rule Performs Poorly Calculate M10 and S10 for the integral
∫ 1

0

√
1 − x2 dx, whose

value we know to be π
4 (one-quarter of the area of the unit circle).

(a) We usually expect SN to be more accurate than MN . Which of M10 and S10 is more accurate in this case?

(b) How do you explain the result of part (a)? Hint: The error bounds are not valid because |f ′′(x)| and |f (4)(x)|
d 1 b |f (4)( )| i fi i f
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CHAPTER REVIEW EXERCISES

1. Match the integrals (a)–(e) with their antiderivatives (i)–(v) on the basis of the general form (do not evaluate the
integrals).

(a)
∫

x dx

x2 − 4
(b)

∫
(2x + 9) dx

x2 + 4

(c)
∫

sin3 x cos2 x dx (d)
∫

dx

x
√

16x2 − 1

(e)
∫

16 dx

x(x − 4)2

(i) sec−1 4x + C

(ii) log |x| − log |x − 4| − 4

x − 4
+ C

(iii)
1

30
(3 cos5 x − 3 cos3 x sin2 x − 7 cos3 x) + C

(iv)
9

2
tan−1 x

2
+ ln(x2 + 4) + C (v)

√
x2 − 4 + C

solution

(a)
∫

x dx√
x2 − 4

Since x is a constant multiple of the derivative of x2 − 4, the substitution method implies that the integral is a constant

multiple of
∫

du√
u

where u = x2 − 4, that is a constant multiple of
√

u =
√

x2 − 4. It corresponds to the function in (v).

(b)
∫

(2x + 9) dx

x2 + 4

The part
∫

2x
x2+4

dx corresponds to ln(x2 + 4) in (iv) and the part
∫

9
x2+4

dx corresponds to 9
2 tan−1 x

2 . Hence the

integral corresponds to the function in (iv).

(c)
∫

sin3xcos2x dx

The reduction formula for
∫

sinm x cosn x dx shows that this integral is equal to a sum of constant multiples of products

in the form cosi x sinj x as in (iii).

(d)
∫

dx

x
√

16x2 − 1

Since
∫

dx

|x|
√

x2−1
= sec−1 x + C, we expect the integral

∫
dx

x
√

16x2−1
to be equal to the function in (i).

(e)
∫

16 dx

x(x − 4)2

The partial fraction decomposition of the integrand has the form:

A

x
+ B

x − 4
+ C

(x − 4)2

The term A
x contributes the function A ln |x| to the integral, the term B

x−4 contributes B ln |x − 4| and the term C

(x−4)2

contributes − C
x−4 . Therefore, we expect the integral to be equal to the function in (ii).

Evaluate
∫

x dx

x + 2
in two ways: using substitution and using the Method of Partial Fractions.

In Exercises 3–12, evaluate using the suggested method.

3.
∫

cos3 θ sin8 θ dθ [write cos3 θ as cos θ(1 − sin2 θ)]

solution We use the identity cos2θ = 1 − sin2θ to rewrite the integral:∫
cos3θsin8θ dθ =

∫
cos2θsin8θ cos θ dθ =

∫ (
1 − sin2θ

)
sin8θ cos θ dθ.

Now, we use the substitution u = sin θ , du = cos θ dθ :∫
cos3θsin8θ dθ =

∫ (
1 − u2

)
u8 du =

∫ (
u8 − u10

)
du = u9

9
− u11

11
+ C = sin9θ

9
− sin11θ

11
+ C.
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∫
xe−12x dx (Integration by Parts)

5.
∫

sec3 θ tan4 θ dθ (trigonometric identity, reduction formula)

solution We use the identity 1 + tan2θ = sec2θ to write tan4θ =
(

sec2θ − 1
)2

and to rewrite the integral as

∫
sec3θ tan4θ dθ

∫
sec3θ

(
1 − sec2θ

)2
dθ =

∫
sec3θ

(
1 − 2sec2θ + sec4θ

)
dθ

=
∫

sec7θ dθ − 2
∫

sec5θ dθ +
∫

sec3θ dθ.

Now we use the reduction formula∫
secmθ dθ = tan θsecm−2θ

m − 1
+ m − 2

m − 1

∫
secm−2θ dθ.

We have ∫
sec5θ dθ = tan θsec3θ

4
+ 3

4

∫
sec3θ dθ + C,

and ∫
sec7θ dθ = tan θsec5θ

6
+ 5

6

∫
sec5θ dθ = tan θsec5θ

6
+ 5

6

(
tan θsec3θ

4
+ 3

4

∫
sec3θ dθ

)
+ C

= tan θsec5θ

6
+ 5

24
tan θsec3θ + 5

8

∫
sec3θ dθ + C.

Therefore,

∫
sec3θ tan4θ dθ =

(
tan θsec5θ

6
+ 5

24
tan θsec3θ + 5

8

∫
sec3θ dθ

)

− 2

(
tan θsec3θ

4
+ 3

4

∫
sec3θ dθ

)
+
∫

sec3θ dθ

= tan θsec5θ

6
− 7 tan θsec3θ

24
+ 1

8

∫
sec3θ dθ.

We again use the reduction formula to compute∫
sec3θ dθ = tan θ sec θ

2
+ 1

2

∫
sec θ dθ = tan θ sec θ

2
+ 1

2
ln | sec θ + tan θ | + C.

Finally, ∫
sec3θ tan4θ dθ = tan θsec5θ

6
− 7 tan θsec3θ

24
+ tan θ sec θ

16
+ 1

16
ln | sec θ + tan θ | + C.

∫
4x + 4

(x − 5)(x + 3)
dx (partial fractions)

7.
∫

dx

x(x2 − 1)3/2
dx (trigonometric substitution)

solution Substitute x = sec θ , dx = sec θ tan θ dθ . Then,

(
x2 − 1

)3/2 =
(

sec2θ − 1
)3/2 =

(
tan2θ

)3/2 = tan3θ,

and ∫
dx

x
(
x2 − 1

)3/2
=
∫

sec θ tan θ dθ

sec θ tan3θ
=
∫

dθ

tan2θ
=
∫

cot2θ dθ.

Using a reduction formula we find that: ∫
cot2θ dθ = − cot θ − θ + C

so ∫
dx

x
(
x2 − 1

)3/2
= − cot θ − θ + C.
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We now must return to the original variable x. We use the relation x = sec θ and the figure to obtain:∫
dx

x
(
x2 − 1

)3/2
= − 1√

x2 − 1
− sec−1x + C.

q
1

x
x2 − 1

∫
(1 + x2)−3/2dx (trigonometric substitution)

9.
∫

dx

x3/2 + x1/2
(substitution)

solution Let t = x1/2. Then dt = 1
2x−1/2 dx or dx = 2x1/2 dt = 2t dt . Therefore,∫

dx

x3/2 + x1/2
=
∫

2t dt

t3 + t
=
∫

2 dt

t2 + 1
= 2tan−1t + C = 2tan−1√

x + C.

∫
dx

x + x−1
(rewrite integrand)

11.
∫

x−2 tan−1 x dx (Integration by Parts)

solution We use Integration by Parts with u = tan−1x and v′ = x−2. Then u′ = 1
1+x2 , v = −x−1 and

∫
x−2tan−1x dx = − tan−1x

x
+
∫

dx

x
(
1 + x2

) .
For the remaining integral, the partial fraction decomposition takes the form

1

x(1 + x2)
= A

x
+ Bx + C

1 + x2
.

Clearing denominators gives us

1 = A(1 + x2) + (Bx + C)x.

Setting x = 0 then yields A = 1. Next, equating the x2-coefficients gives

0 = A + B so B = −1,

while equating x-coefficients gives C = 0. Hence,

1

x
(
1 + x2

) = 1

x
− x

1 + x2
,

and ∫
dx

x(1 + x2)
=
∫

1

x
dx −

∫
x dx

1 + x2
= ln |x| − 1

2
ln
(

1 + x2
)

+ C.

Therefore, ∫
x−2tan−1x dx = − tan−1x

x
+ ln |x| − 1

2
ln
(

1 + x2
)

+ C.

∫
dx

x2 + 4x − 5
(complete the square, substitution, partial fractions)

In Exercises 13–64, evaluate using the appropriate method or combination of methods.

13.
∫ 1

0
x2e4x dx

solution We evaluate the indefinite integral using Integration by Parts with u = x2 and v′ = e4x . Then u′ = 2x,

v = 1
4 e4x and

∫
x2e4x dx = x2

4
e4x − 1

2

∫
xe4x dx.

We compute the resulting integral using Integration by Parts again, this time with u = x and v′ = e4x . Then u′ = 1,
v = 1

4 e4x and ∫
xe4x dx = x · 1

4
e4x −

∫
1

4
e4x dx = x

4
e4x − 1

16
e4x + C.
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Therefore,

∫
x2e4x dx = x2

4
e4x − 1

2

(
x

4
e4x − 1

16
e4x

)
+ C = e4x

32

(
8x2 − 4x + 1

)
+ C.

Finally,

∫ 1

0
x2e4x dx =

(
e4x

32

(
8x2 − 4x + 1

)) ∣∣∣∣1
0

= e4

32
(8 − 4 + 1) − 1

32
(1) = 5e4 − 1

32

∫
x2√

9 − x2
dx

15.
∫

cos9 6θ sin3 6θ dθ

solution We use the identity sin26θ = 1 − cos26θ to rewrite the integral:

∫
cos96θsin36θ dθ =

∫
cos96θsin26θ sin 6θ dθ =

∫
cos96θ

(
1 − cos26θ

)
sin 6θ dθ.

Now, we use the substitution u = cos 6θ , du = −6 sin 6θ dθ :∫
cos96θsin36θ dθ =

∫
u9
(

1 − u2
)(

−du

6

)
= −1

6

∫ (
u9 − u11

)
du

= −1

6

(
u10

10
− u12

12

)
+ C = cos126θ

72
− cos106θ

60
+ C.

∫
sec2 θ tan4 θ dθ

17.
∫

(6x + 4) dx

x2 − 1

solution The partial fraction decomposition takes the form

6x + 4

(x − 1)(x + 1)
= A

x − 1
+ B

x + 1
.

Clearing the denominators gives us

6x + 4 = A(x + 1) + B(x − 1).

Setting x = 1 then yields A = 5, while setting x = −1 yields B = 1. Hence,∫
(6x + 4)dx

x2 − 1
=
∫

5

x − 1
dx +

∫
1

x + 1
dx = 5 ln |x − 1| + ln |x + 1| + C.

∫ 9

4

dt

(t2 − 1)2

19.
∫

dθ

cos4 θ

solution We use the identity 1 + tan2θ = sec2 θ to rewrite the integral:

∫
dθ

cos4θ
=
∫

sec4 θ dθ =
∫ (

1 + tan2θ
)

sec2 θ dθ.

Now, we substitute u = tan θ . Then, du = sec2 θ dθ and

∫
dθ

cos4θ
=
∫ (

1 + u2
)

du = u + u3

3
+ C = tan3θ

3
+ tan θ + C.

∫
sin 2θ sin2 θ dθ

21.
∫ 1

0
ln(4 − 2x) dx

solution Note that ln(4 − 2x) = ln(2(2 − x)) = ln 2 + ln(2 − x). Use integration by parts to integrate ln(2 − x),

with u = ln(2 − x), v′ = 1, so that u′ = − 1
2−x

and v = x. Then

I =
∫ 1

0
ln(4 − 2x) dx =

∫ 1

0
ln 2 dx +

∫ 1

0
ln(2 − x) dx = ln 2 + (x ln(2 − x))

∣∣∣∣1
0

+
∫ 1

0

x

2 − x
dx
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Now use long division on the remaining integral, and the substitution u = 2 − x:

I = ln 2 + (x ln(2 − x))

∣∣∣∣1
0

+
∫ 1

0

(
−1 + 2

2 − x

)
dx

= ln 2 + 1 ln 1 −
∫ 1

0
1 dx + 2

∫ 1

0

1

2 − x
dx = ln 2 − 1 − 2

∫ 1

2

1

u
du

= ln 2 − 1 − 2 ln u

∣∣∣∣1
2

= ln 2 − 1 + 2 ln 2 = 3 ln 2 − 1

∫
(ln(x + 1))2 dx

23.
∫

sin5 θ dθ

solution We use the trigonometric identity sin2θ = 1 − cos2θ to rewrite the integral:∫
sin5θ dθ =

∫
sin4θ sin θ dθ =

∫ (
1 − cos2θ

)2
sin θ dθ.

Now, we substitute u = cos θ . Then du = − sin θ dθ and∫
sin5θ dθ =

∫ (
1 − u2

)2
(−du) = −

∫ (
1 − 2u2 + u4

)
du

= −
(

u − 2

3
u3 + u5

5

)
+ C = −cos5θ

5
+ 2cos3θ

3
− cos θ + C.

∫
cos4(9x − 2) dx

25.
∫ π/4

0
sin 3x cos 5x dx

solution First compute the indefinite integral, using the trigonometric identity:

sin α cos β = 1

2
(sin(α + β) + sin(α − β)) .

For α = 3x and β = 5x we get:

sin 3x cos 5x = 1

2
(sin 8x + sin(−2x)) = 1

2
(sin 8x − sin 2x).

Hence, ∫
sin 3x cos 5x dx = 1

2

∫
sin 8x dx − 1

2

∫
sin 2x dx = − 1

16
cos 8x + 1

4
cos 2x + C.

Then∫ π/4

0
sin 3x cos 5x dx =

(
1

4
cos 2x − 1

16
cos 8x

) ∣∣∣∣π/4

0
= 1

4
cos

π

2
− 1

16
cos 2π − 1

4
cos 0 + 1

16
cos 0 = −1

4

∫
sin 2x sec2 x dx

27.
∫ √

tan x sec2 x dx

solution We substitute u = tan x. Then du = sec2x dx and we obtain:∫ √
tan x sec2 x dx =

∫ √
u du = 2

3
u3/2 + C = 2

3
(tan x)3/2 + C.

∫
(sec x + tan x)2 dx

29.
∫

sin5 θ cos3 θ dθ

solution We use the identity cos2 θ = 1 − sin2 θ to rewrite the integral:∫
sin5θ cos3 θ dθ =

∫
sin5θ cos2 θ cos θ dθ =

∫
sin5θ

(
1 − sin2θ

)
cos θ dθ.

Now, we use the substitution u = sin θ , du = cos θ dθ :∫
sin5θ cos3 θ dθ =

∫
u5
(

1 − u2
)

du =
∫ (

u5 − u7
)

du = u6

6
− u8

8
+ C = sin6θ

6
− sin8θ

8
+ C.
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∫
cot3 x csc x dx

31.
∫

cot2 x csc2 x dx

solution Use the substitution u = cot x, du = − csc2 x dx:∫
cot2 x csc2 x dx = −

∫
cot2 x

(
− csc2 x dx

)
= −

∫
u2 du = −1

3
u3 + C = −1

3
cot3 x + C.

∫ π

π/2
cot2

θ

2
dθ

33.
∫ π/2

π/4
cot2 x csc3 x dx

solution To compute the indefinite integral, use the identity cot2 x = csc2 x − 1 to write∫
cot2 x csc3 x dx =

∫ (
csc2 x − 1

)
csc3 x dx =

∫
csc5 x dx −

∫
csc3 x dx.

Now use the reduction formula for cscm x:∫
cot2 x csc3 x dx =

(
−1

4
cot x csc3 x + 3

4

∫
csc3 x dx

)
−
∫

csc3 x dx

= −1

4
cot x csc3 x − 1

4

∫
csc3 x dx

= −1

4
cot x csc3 x − 1

4

(
−1

2
cot x csc x + 1

2

∫
csc x dx

)

= −1

4
cot x csc3 x + 1

8
cot x csc x − 1

8
ln | csc x − cot x| + C.

Then ∫ π/2

π/4
cos2 x csc3 x dx =

(
−1

4
cot x csc3 x + 1

8
cot x csc x − 1

8
ln | csc x − cot x|

) ∣∣∣∣π/2

π/4

= −1

4
cot

π

2
csc3 π

2
+ 1

8
cot

π

2
csc

π

2
− 1

8
ln
∣∣∣csc

π

2
− cot

π

2

∣∣∣
+ 1

4
cot

π

4
csc3 π

4
− 1

8
cot

π

4
csc

π

4
+ 1

8
ln
∣∣∣csc

π

4
− cot

π

4

∣∣∣
= 0 + 0 − 1

8
ln |1 − 0| + 1

4
· 1 · (

√
2)3 − 1

8
· 1 · √

2 + 1

8
ln
∣∣∣√2 − 1

∣∣∣
=

√
2

2
−

√
2

8
+ 1

8
ln(

√
2 − 1) = 3

8

√
2 + 1

8
ln(

√
2 − 1)

∫ 6

4

dt

(t − 3)(t + 4)

35.
∫

dt

(t − 3)2(t + 4)

solution The partial fraction decomposition has the form

1

(t − 3)2(t + 4)
= A

t + 4
+ B

t − 3
+ C

(t − 3)2
.

Clearing denominators gives us

1 = A(t − 3)2 + B(t − 3)(t + 4) + C(t + 4).

Setting t = 3 then yields C = 1
7 , while setting t = −4 yields A = 1

49 . Lastly, setting t = 0 yields

1 = 9A − 12B + 4C or B = − 1

49
.

Hence, ∫
dt

(t − 3)2(t + 4)
= 1

49

∫
dt

t + 4
− 1

49

∫
dt

t − 3
+ 1

7

∫
dt

(t − 3)2

= 1

49
ln |t + 4| − 1

49
ln |t − 3| + 1

7
· −1

t − 3
+ C = 1

49
ln

∣∣∣∣ t + 4

t − 3

∣∣∣∣− 1

7
· 1

t − 3
+ C.

∫ √
x2 + 9 dx

37.
∫

dx

x
√

x2 − 4

solution Substitute x = 2 sec θ , dx = 2 sec θ tan θ dθ . Then√
x2 − 4 =

√
4 sec2 θ − 4 =

√
4
(
sec2 θ − 1

) =
√

4 tan2 θ = 2 tan θ,
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and ∫
dx

x
√

x2 − 4
=
∫

2 sec θ tan θ dθ

2 sec θ · 2 tan θ
= 1

2

∫
dθ = 1

2
θ + C.

Now, return to the original variable x. Since x = 2 sec θ , we have sec θ = x
2 or θ = sec−1 x

2 . Thus,∫
dx

x
√

x2 − 4
= 1

2
sec−1 x

2
+ C.

∫ 27

8

dx

x + x2/3

39.
∫

dx

x3/2 + ax1/2

solution Let u = x1/2 or x = u2. Then dx = 2u du and∫
dx

x3/2 + ax1/2
=
∫

2u du

u3 + au
= 2

∫
du

u2 + a
.

If a > 0, then ∫
dx

x3/2 + ax1/2
= 2

∫
du

u2 + a
= 2√

a
tan−1

(
u√
a

)
+ C = 2√

a
tan−1

√
x

a
+ C.

If a = 0, then ∫
dx

x3/2
= − 2√

x
+ C.

Finally, if a < 0, then ∫
du

u2 + a
=
∫

du

u2 − (√−a
)2 ,

and the partial fraction decomposition takes the form

1

u2 − (√−a
)2 = A

u − √−a
+ B

u + √−a
.

Clearing denominators gives us

1 = A(u + √−a) + B(u − √−a).

Setting u = √−a then yields A = 1
2
√−a

, while setting u = −√−a yields B = − 1
2
√−a

. Hence,

∫
dx

x3/2 + ax1/2
= 2

∫
du

u2 + a
= 1√−a

∫
du

u − √−a
− 1√−a

∫
du

u + √−a

= 1√−a
ln |u − √−a| − 1√−a

ln
∣∣u + √−a

∣∣+ C

= 1√−a
ln

∣∣∣∣u − √−a

u + √−a

∣∣∣∣+ C = 1√−a
ln

∣∣∣∣
√

x − √−a√
x + √−a

∣∣∣∣+ C.

In summary,

∫
dx

x3/2 + ax1/2
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2√
a

tan−1
√

x
a + C a > 0

1√−a
ln
∣∣∣√x−√−a√

x+√−a

∣∣∣+ C a < 0

− 2√
x

+ C a = 0

∫
dx

(x − b)2 + 4
41.

∫
(x2 − x) dx

(x + 2)3

solution The partial fraction decomposition has the form

x2 − x

(x + 2)3
= A

x + 2
+ B

(x + 2)2
+ C

(x + 2)3
.
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Clearing denominators gives us

x2 − x = A(x + 2)2 + B(x + 2) + C.

Setting x = −2 then yields C = 6. Equating x2-coefficients gives us A = 1, and equating x-coefficients yields
4A + B = −1, or B = −5. Thus,∫

x2 − x

(x + 2)3
dx =

∫
dx

x + 2
+
∫ −5 dx

(x + 2)2
+
∫

6 dx

(x + 2)3
= ln |x + 2| + 5

x + 2
− 3

(x + 2)2
+ C.

∫
(7x2 + x) dx

(x − 2)(2x + 1)(x + 1)

43.
∫

16 dx

(x − 2)2(x2 + 4)

solution The partial fraction decomposition has the form

16

(x − 2)2 (x2 + 4
) = A

x − 2
+ B

(x − 2)2
+ Cx + D

x2 + 4
.

Clearing denominators gives us

16 = A(x − 2)
(
x2 + 4

)
+ B

(
x2 + 4

)
+ (Cx + D)(x − 2)2.

Setting x = 2 then yields B = 2. With B = 2,

16 = A
(
x3 − 2x2 + 4x − 8

)
+ 2

(
x2 + 4

)
+ Cx3 + (D − 4C)x2 + (4C − 4D)x + 4D

16 = (A + C)x3 + (−2A + 2 + D − 4C) x2 + (4A + 4C − 4D)x + (−8A + 8 + 4D)

Equating coefficients of like powers of x now gives us the system of equations

A + C = 0

−2A − 4C + D + 2 = 0

4A + 4C − 4D = 0

−8A + 4D + 8 = 1

whose solution is

A = −1, C = 1, D = 0.

Thus, ∫
dx

(x − 2)2 (x2 + 4
) = −

∫
dx

x − 2
+ 2

∫
dx

(x − 2)2
+
∫

x

x2 + 4
dx

= − ln |x − 2| − 2
1

x − 2
+ 1

2
ln
(
x2 + 4

)
+ C.

∫
dx

(x2 + 25)2

45.
∫

dx

x2 + 8x + 25

solution Complete the square to rewrite the denominator as

x2 + 8x + 25 = (x + 4)2 + 9.

Now, let u = x + 4, du = dx. Then,∫
dx

x2 + 8x + 25
=
∫

du

u2 + 9
= 1

3
tan−1 u

3
+ C = 1

3
tan−1

(
x + 4

3

)
+ C.

∫
dx

x2 + 8x + 4
47.

∫
(x2 − x) dx

(x + 2)3

solution The partial fraction decomposition has the form

x2 − x

(x + 2)3
= A

x + 2
+ B

(x + 2)2
+ C

(x + 2)3
.
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Clearing denominators gives us

x2 − x = A(x + 2)2 + B(x + 2) + C.

Setting x = −2 then yields C = 6. Equating x2-coefficients gives us A = 1, and equating x-coefficients yields
4A + B = −1, or B = −5. Thus,∫

x2 − x

(x + 2)3
dx =

∫
dx

x + 2
+
∫ −5 dx

(x + 2)2
+
∫

6 dx

(x + 2)3
= ln |x + 2| + 5

x + 2
− 3

(x + 2)2
+ C.

∫ 1

0
t2
√

1 − t2 dt
49.

∫
dx

x4
√

x2 + 4

solution Substitute x = 2 tan θ , dx = 2sec2θ dθ . Then

√
x2 + 4 =

√
4tan2θ + 4 =

√
4
(
tan2θ + 1

) = 2
√

sec2θ = 2 sec θ,

and ∫
dx

x4
√

x2 + 4
=
∫

2sec2θ dθ

16tan4θ · 2 sec θ
=
∫

sec θ dθ

16tan4θ
.

We have

sec θ

tan4θ
= cos3θ

sin4θ
.

Hence,

∫
dx

x4
√

x2 + 4
= 1

16

∫
cos3θ dθ

sin4θ
= 1

16

∫
cos2θ cos θ dθ

sin4θ
= 1

16

∫ (
1 − sin2θ

)
cos θ dθ

sin4θ
.

Now substitute u = sin θ and du = cos θ dθ to obtain∫
dx

x4
√

x2 + 4
= 1

16

∫
1 − u2

u4
du = 1

16

∫ (
u−4 − u−2

)
du = − 1

48u3
+ 1

16

1

u
+ C

= − 1

48
· 1

sin3θ
+ 1

16

1

sin θ
+ C = − 1

48
csc3θ + 1

16
csc θ + C.

Finally, return to the original to the original variable x using the relation x = 2 tan θ and the figure below.

∫
dx

x4
√

x2 + 4
= − 1

48

(√
x2 + 4

x

)3

+ 1

16

√
x2 + 4

x
+ C = −

(
x2 + 4

)3/2

48x3
+
√

x2 + 4

16x
+ C.

q

x2 + 4
x

2

∫
dx

(x2 + 5)3/2

51.
∫

(x + 1)e4−3x dx

solution We compute the integral using Integration by Parts with u = x + 1 and v′ = e4−3x . Then u′ = 1,

v = − 1
3 e4−3x and∫

(x + 1)e4−3x dx = −1

3
(x + 1)e4−3x + 1

3

∫
e4−3x dx = −1

3
(x + 1)e4−3x + 1

3
·
(

−1

3

)
e4−3x + C

= −1

9
e4−3x(3x + 4) + C.

∫
x−2 tan−1 x dx

53.
∫

x3 cos(x2) dx

solution Substitute t = x2, dt = 2x dx. Then∫
x3 cos

(
x2
)

dx = 1

2

∫
t cos t dt.
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We compute the resulting integral using Integration by Parts with u = t and v′ = cos t . Then u′ = 1, v = sin t and∫
t cos t dt = t sin t −

∫
sin t dt = t sin t + cos t + C.

Thus, ∫
x3 cos

(
x2
)

dx = 1

2
x2 sin x2 + 1

2
cos x2 + C.

∫
x2(ln x)2 dx

55.
∫

x tanh−1 x dx

solution We use Integration by Parts with u = tanh−1x and v′ = x. Then u′ = 1
1−x2 , v = x2

2 and

∫
x tanh−1 x dx = x2

2
tanh−1 x − 1

2

∫
x2

1 − x2
dx.

Now

x2

1 − x2
= x2 − 1 + 1

1 − x2
= −1 + 1

1 − x2
,

and the partial fraction decomposition for the remaining fraction takes the form

1

1 − x2
= A

1 − x
+ B

1 + x
.

Clearing denominators gives us

1 = A(1 + x) + B(1 − x).

Setting x = 1 then yields A = 1
2 , while setting x = −1 yields B = 1

2 . Thus,

∫
x2

1 − x2
= −

∫
dx + 1

2

∫
1

1 − x
dx + 1

2

∫
1

1 + x
dx

= −x − 1

2
ln |1 − x| + 1

2
ln |1 + x| + C = −x + 1

2
ln

∣∣∣∣1 + x

1 − x

∣∣∣∣+ C.

Therefore,

∫
x tanh−1 x dx = x2

2
tanh−1 x − 1

2

(
−x + 1

2
ln

∣∣∣∣1 + x

1 − x

∣∣∣∣
)

+ C = x2

2
tanh−1 x + x

2
− 1

4
ln

∣∣∣∣1 + x

1 − x

∣∣∣∣+ C.

∫
tan−1 t dt

1 + t2

57.
∫

ln(x2 + 9) dx

solution We compute the integral using Integration by Parts with u = ln
(
x2 + 9

)
and v′ = 1. Then u′ = 2x

x2+9
,

v = x, and

∫
ln
(
x2 + 9

)
dx = x ln

(
x2 + 9

)
−
∫

2x2

x2 + 9
dx.

To compute this integral we write:

x2

x2 + 9
=
(
x2 + 9

)
− 9

x2 + 9
= 1 − 9

x2 + 9
;

hence,

∫
x2

x2 + 9
dx =

∫
1 dx − 9

∫
dx

x2 + 9
= x − 3tan−1 x

3
+ C.

Therefore, ∫
ln
(
x2 + 9

)
dx = x ln

(
x2 + 9

)
− 2x + 6tan−1

(x

3

)
+ C.
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∫
(sin x)(cosh x) dx

59.
∫ 1

0
cosh 2t dt

solution
∫ 1

0
cosh 2t dt = 1

2
sinh 2t

∣∣∣∣1
0

= 1

2
sinh 2.

∫
sinh3 x cosh x dx

61.
∫

coth2(1 − 4t) dt

solution
∫

coth2(1 − 4t) dt =
∫ (

1 + csch2(1 − 4t)
)

dt = t + 1

4
coth(1 − 4t) + C.

∫ 0.3

−0.3

dx

1 − x2
63.

∫ 3
√

3/2

0

dx√
9 − x2

solution
∫ 3

√
3/2

0

dx√
9 − x2

= sin−1 x

3

∣∣∣∣3
√

3/2

0
= sin−1

√
3

2
= π

3
.

∫ √
x2 + 1 dx

x2

65. Use the substitution u = tanh t to evaluate
∫

dt

cosh2 t + sinh2 t
.

solution Let u = tanh t . Then du = sech2 t dt and

∫
dt

cosh2 t + sinh2 t
=
∫

sech2 t

1 + tanh2 t
dt =

∫
du

1 + u2
= tan−1 u + C = tan−1(tanh x) + C.

Find the volume obtained by rotating the region enclosed by y = ln x and y = (ln x)2 about the y-axis.67. Let In =
∫

xn dx

x2 + 1
.

(a) Prove that In = xn−1

n − 1
− In−2.

(b) Use (a) to calculate In for 0 ≤ n ≤ 5.
(c) Show that, in general,

I2n+1 = x2n

2n
− x2n−2

2n − 2
+ · · · + (−1)n−1 x2

2
+ (−1)n

1

2
ln(x2 + 1) + C

I2n = x2n−1

2n − 1
− x2n−3

2n − 3
+ · · · + (−1)n−1x + (−1)n tan−1 x + C

solution

(a) In =
∫

xn

x2 + 1
dx =

∫
xn−2(x2 + 1 − 1)

x2 + 1
dx =

∫
xn−2 dx −

∫
xn−2

x2 + 1
dx = xn−1

n − 1
− In−2.

(b) First compute I0 and I1 directly:

I0 =
∫

x0 dx

x2 + 1
=
∫

dx

x2 + 1
= tan−1x + C and I1 =

∫
x dx

x2 + 1
= 1

2
ln
(
x2 + 1

)
+ C.

We now use the equality obtained in part (a) to compute I2, I3, I4 and I5:

I2 = x2−1

2 − 1
− I2−2 = x − I0 = x − tan−1x + C;

I3 = x3−1

3 − 1
− I3−2 = x2

2
− I1 = x2

2
− 1

2
ln
(
x2 + 1

)
+ C;

I4 = x4−1

4 − 1
− I4−2 = x3

3
− I2 = x3

3
−
(
x − tan−1x

)
+ C = x3

3
− x + tan−1x + C;

I5 = x5−1

5 − 1
− I5−2 = x4

4
− I3 = x4

4
−
(

x2

2
− 1

2
ln
(
x2 + 1

))
+ C = x4

4
− x2

2
+ 1

2
ln
(
x2 + 1

)
+ C.

(c) We prove the two identities using mathematical induction. We first prove that for n ≥ 1:

I2n+1 = x2n

2n
− x2n−2

2n − 2
+ · · · + (−1)n · 1

2
ln
(
x2 + 1

)
+ C.

We verify the equality for n = 1. Setting n = 1, we find

I3 = x2

2
+ (−1)1 · 1

2
ln
(
x2 + 1

)
+ C = x2

2
− 1

2
ln
(
x2 + 1

)
+ C,
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which agrees with the value obtained in part (b). We now assume that for n = k:

I2k+1 = x2k

2k
− x2k−2

2k − 2
+ · · · + (−1)k · 1

2
ln
(
x2 + 1

)
+ C.

We use this assumption to prove the equality for n = k + 1. By part (a) and the induction hypothesis

I2k+3 = x2k+2

2k + 2
− I2k+1 = x2k+2

2k + 2
− x2k

2k
+ x2k−2

2k − 2
− · · · − (−1)k · 1

2
ln
(
x2 + 1

)
+ C

= x2k+2

2k + 2
− x2k

2k
+ · · · + (−1)k+1 · 1

2
ln
(
x2 + 1

)
+ C

as required. We now prove the second identity for n ≥ 1:

I2n = x2n−1

2n − 1
− x2n−3

2n − 3
+ · · · + (−1)ntan−1x + C.

We verify this equality for n = 1:

I2 = x − tan−1x + C,

which agrees with the value obtained in part (b). We now assume that for n = k

I2k = x2k−1

2k − 1
− x2k−3

2k − 3
+ · · · + (−1)k tan−1x + C.

We use this assumption to prove the equality for n = k + 1. By part (a) and the induction hypothesis

I2k+2 = x2k+1

2k + 1
− I2k = x2k+1

2k + 1
− x2k−1

2k − 1
+ x2k−3

2k − 3
− · · · − (−1)k · tan−1x + C

= x2k+1

2k + 1
− x2k−1

2k − 1
+ · · · + (−1)k+1 · tan−1x + C

as required.

Let Jn =
∫

xne−x2/2 dx.

(a) Show that J1 = −e−x2/2.

(b) Prove that Jn = −xn−1e−x2/2 + (n − 1)Jn−2.

(c) Use (a) and (b) to compute J3 and J5.

69. Compute p(X ≤ 1), where X is a continuous random variable with probability density p(x) = 1

π(x2 + 1)
.

solution

P(X ≤ 1) =
∫ 1

−∞
p(x) dx = 1

π

∫ 1

−∞
1

x2 + 1
dx = 1

π
tan−1 x

∣∣∣∣1−∞
= 1

π
·
(

π

4
− −π

2

)
= 3

4

Show that p(x) = 1
4 e−x/2 + 1

6 e−x/3 is a probability density on [0, ∞) and find its mean.
71. Find a constant C such that p(x) = Cx3e−x2

is a probability density and compute p(0 ≤ X ≤ 1).

solution We first find the indefinite integral of p(x) using integration by parts, with u = x2, v′ = xe−x2
, so that

u′ = 2x and v = − 1
2 e−x2

:∫
Cx3e−x2

dx = C

(
−1

2
x2e−x2 +

∫
xe−x2

dx

)
= C

(
−1

2
x2e−x2 − 1

2
e−x2

)
= −C

2
e−x2

(x2 + 1)

To determine the constant C, the value of the integral on the interval [0, ∞) must be 1:

1 =
∫ ∞

0
Cx3e−x2

dx = −C

2
e−x/2(x2 + 1)

∣∣∣∣∞
0

= −C

2

(
lim

R→∞
x2 + 1

ex/2
− 1

)
= C

2

so that C = 2. Then

P(0 ≤ X ≤ 1) =
∫ 1

0
2x3e−x2

dx = −e−x2
(x2 + 1)

∣∣∣∣1
0

= 1 − 2e−1 ≈ 0.13212

The interval between patient arrivals in an emergency room is a random variable with exponential density function
p(t) = 0.125e−0.125t (t in minutes). What is the average time between patient arrivals? What is the probability of
two patients arriving within 3 minutes of each other?

73. Calculate the following probabilities, assuming that X is normally distributed with mean μ = 40 and σ = 5.

(a) p(X ≥ 45) (b) p(0 ≤ X ≤ 40)

solution Let F be the standard normal cumulative distribution function. Then by Theorem 1 in Section 7.7,
(a)

p(X ≥ 45) = 1 − p(X ≤ 45) = 1 − F

(
45 − 40

5

)
= 1 − F(1) ≈ 1 − 0.8413 ≈ 0.1587
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(b)

p(0 ≤ X ≤ 40) = p(X ≤ 40) − p(X ≤ 0) = F

(
40 − 40

5

)
− F

(
0 − 40

5

)

= F(0) − F(−8) = 1

2
− F(−8) ≈ 1

2
− 0 = 1

2

Note that p(X ≤ 40) is exactly 1
2 since 40 is the mean. Also, since −8 is so far to the left in the standard normal

distribution, the probability of its occurrence is quite small (approximately 8 × 10−11).

According to kinetic theory, the molecules of ordinary matter are in constant random motion. The energy E of a
molecule is a random variable with density function p(E) = 1

kT
e−E/(kT ), where T is the temperature (in kelvins)

and k is Boltzmann’s constant. Compute the mean kinetic energy E in terms of k and T .

In Exercises 75–84, determine whether the improper integral converges and, if so, evaluate it.

75.
∫ ∞

0

dx

(x + 2)2

solution

∫ ∞
0

dx

(x + 2)2
= lim

R→∞

∫ R

0

dx

(x + 2)2
= lim

R→∞ − 1

x + 2

∣∣∣∣R
0

= lim
R→∞

(
− 1

R + 2
+ 1

0 + 2

)
= lim

R→∞

(
− 1

R + 2
+ 1

2

)
= 0 + 1

2
= 1

2
.

∫ ∞
4

dx

x2/3
77.

∫ 4

0

dx

x2/3

solution

∫ 4

0

dx

x2/3
= lim

R→0+

∫ 4

R

dx

x2/3
= lim

R→0+ 3x1/3
∣∣∣∣4
R

= lim
R→0+

(
3 · 41/3 − 3 · R1/3

)
= 3

3√
4.

∫ ∞
9

dx

x12/5
79.

∫ 0

−∞
dx

x2 + 1

solution

∫ 0

−∞
dx

x2 + 1
= lim

R→−∞

∫ 0

R

dx

x2 + 1
= lim

R→−∞ tan−1x

∣∣∣∣0
R

= lim
R→−∞

(
tan−10 − tan−1R

)

= lim
R→−∞

(
−tan−1R

)
= −

(
−π

2

)
= π

2
.

∫ 9

−∞
e4x dx

81.
∫ π/2

0
cot θ dθ

solution

∫ π/2

0
cot θ dθ = lim

R→0+

∫ π/2

R
cot θ dθ = lim

R→0+ ln | sin θ |
∣∣∣∣π/2

R

= lim
R→0+

(
ln
(

sin
π

2

)
− ln(sin R)

)

= lim
R→0+ (ln 1 − ln(sin R)) = lim

R→0+ ln

(
1

sin R

)
= ∞.

We conclude that the improper integral diverges.

∫ ∞
1

dx

(x + 2)(2x + 3)

83.
∫ ∞

0
(5 + x)−1/3 dx

solution

∫ ∞
0

(5 + x)−1/3 dx = lim
R→∞

∫ R

0
(5 + x)−1/3 dx = lim

R→∞
3

2
(5 + x)2/3

∣∣∣∣R
0

= lim
R→∞

(
3

2
(5 + R)2/3 − 3

2
52/3

)
= ∞.

We conclude that the improper integral diverges.

∫ 5

2
(5 − x)−1/3 dx
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In Exercises 85–90, use the Comparison Test to determine whether the improper integral converges or diverges.

85.
∫ ∞

8

dx

x2 − 4

solution For x ≥ 8, 1
2x2 ≥ 4, so that

−1

2
x2 ≤ −4

1

2
x2 ≤ x2 − 4

and

1

x2 − 4
≤ 2

x2
.

Now,
∫ ∞

1

dx
x2 converges, so

∫ ∞
8

2
x2 dx also converges. Therefore, by the comparison test,

∫ ∞
8

dx

x2 − 4
converges.

∫ ∞
8

(sin2 x)e−x dx
87.

∫ ∞
3

dx

x4 + cos2 x

solution For x ≥ 1, we have

1

x4 + cos2x
≤ 1

x4
.

Since
∫ ∞

1

dx

x4
converges, the Comparison Test guarantees that

∫ ∞
1

dx

x4 + cos2x
also converges. The integral∫ 3

1

dx

x4 + cos2x
has a finite value (notice that x4 + cos2x �= 0) hence we conclude that the integral

∫ ∞
3

dx

x4 + cos2x

also converges.

∫ ∞
1

dx

x1/3 + x2/3
89.

∫ 1

0

dx

x1/3 + x2/3

solution For 0 ≤ x ≤ 1,

x1/3 + x2/3 ≥ x1/3 so
1

x1/3 + x2/3
≤ 1

x1/3
.

Now,
∫ 1

0
x−1/3 dx converges. Therefore, by the Comparison Test, the improper integral

∫ 1

0

dx

x1/3 + x2/3
also converges.

∫ ∞
0

e−x3
dx

91. Calculate the volume of the infinite solid obtained by rotating the region under y = (x2 + 1)−2 for 0 ≤ x < ∞
about the y-axis.

solution Using the Shell Method, the volume of the infinite solid obtained by rotating the region under the graph of

y =
(
x2 + 1

)−2
over the interval [0, ∞) about the y-axis is

V = 2π

∫ ∞
0

x(
x2 + 1

)2 dx.

Now,

∫ ∞
0

x(
x2 + 1

)2 dx = lim
R→∞

∫ R

0

x dx(
x2 + 1

)2
We substitute t = x2 + 1, dt = 2x dx. The new limits of integration are t = 1 and t = R2 + 1. Thus,

∫ R

0

x dx(
x2 + 1

)2 =
∫ R2+1

1

1
2 dt

t2
= − 1

2t

∣∣∣∣R
2+1

1
= 1

2

(
1 − 1

R2 + 1

)
.
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Taking the limit as R → ∞ yields:∫ ∞
0

x dx(
x2 + 1

)2 = lim
R→∞

1

2

(
1 − 1

R2 + 1

)
= 1

2
(1 − 0) = 1

2
.

Therefore,

V = 2π · 1

2
= π.

Let R be the region under the graph of y = (x + 1)−1 for 0 ≤ x < ∞. Which of the following quantities is finite?

(a) The area of R

(b) The volume of the solid obtained by rotating R about the x-axis

(c) The volume of the solid obtained by rotating R about the y-axis

93. Show that
∫∞

0 xne−x2
dx converges for all n > 0. Hint: First observe that xne−x2

< xne−x for x > 1. Then show
that xne−x < x−2 for x sufficiently large.

solution For x > 1, x2 > x; hence ex2
> ex , and 0 < e−x2

< e−x . Therefore, for x > 1 the following inequality
holds:

xn+2e−x2
< xn+2e−x .

Now, using L’Hôpital’s Rule n + 2 times, we find

lim
x→∞ xn+2e−x = lim

x→∞
xn+2

ex
= lim

x→∞
(n + 2)xn+1

ex
= lim

x→∞
(n + 2)(n + 1)xn

ex

= · · · = lim
x→∞

(n + 2)!
ex

= 0.

Therefore,

lim
x→∞ xn+2e−x2 = 0

by the Squeeze Theorem, and there exists a number R > 1 such that, for all x > R:

xn+2e−x2
< 1 or xne−x2

< x−2.

Finally, write ∫ ∞
0

xne−x2
dx =

∫ R

0
xne−x2

dx +
∫ ∞
R

xne−x2
dx.

The first integral on the right-hand side has finite value since the integrand is a continuous function. The second integral

converges since on the interval of integration, xne−x2
< x−2 and we know that

∫ ∞
R

x−2 dx =
∫ ∞
R

dx

x2
converges. We

conclude that the integral
∫ ∞

0
xne−x2

dx converges.

Compute the Laplace transform Lf (s) of the function f (x) = x for s > 0. See Exercises 86–89 in Section 8.6
for the definition of Lf (s).

95. Compute the Laplace transform Lf (s) of the function f (x) = x2eαx for s > α.

solution The Laplace transform is the following integral:

L
(
x2eαx

)
(s) =

∫ ∞
0

x2eαxe−sx dx =
∫ ∞

0
x2e(α−s)x dx = lim

R→∞

∫ R

0
x2e(α−s)x dx.

We compute the definite integral using Integration by Parts with u = x2, v′ = e(α−s)x . Then u′ = 2x, v = 1
α−s e(α−s)x

and ∫ R

0
x2e(α−s)x dx = 1

α − s
x2e(α−s)x

∣∣∣∣R
x=0

−
∫ R

0
2x · 1

α − s
e(α−s)x dx

= 1

α − s
R2e(α−s)R − 2

α − s

∫ R

0
xe(α−s)x dx.

We compute the resulting integral using Integration by Parts again, this time with u = x and v′ = e(α−s)x . Then u′ = 1,
v = 1

α−s e(α−s)x and

∫ R

0
xe(α−s)x dx = x · 1

α − s
e(α−s)x

∣∣∣∣R
x=0

− 1

α − s

∫ R

0
e(α−s)x dx =

(
x

α − s
e(α−s)x − 1

(α − s)2
e(α−s)x

)∣∣∣∣R
x=0

= R

α − s
e(α−s)R − 1

(α − s)2

(
e(α−s)R − e0

)
= 1

(α − s)2
− 1

(α − s)2
e(α−s)R + R

α − s
e(α−s)R.
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Thus, ∫ R

0
x2e(α−s)x dx = 1

α − s
R2e(α−s)R − 2

α − s

(
1

(α − s)2
− 1

(α − s)2
e(α−s)R + R

α − s
e(α−s)R

)

= 1

α − s
R2e(α−s)R − 2

(α − s)3
+ 2

(α − s)3
e(α−s)R − 2R

(α − s)2
e(α−s)R,

and

L
(
x2eαx

)
(s) = 2

(s − α)3
− 1

s − α
lim

R→∞ R2e−(s−α)R − 2

(s − α)3
lim

R→∞ e−(s−α)R − 2

(s − α)2
lim

R→∞ Re−(s−α)R.

Now, since s > α, lim
R→∞ e−(s−α)R = 0. We use L’Hôpital’s Rule to compute the other two limits:

lim
R→∞ Re−(s−α)R = lim

R→∞
R

e(s−α)R
= lim

R→∞
1

(s − α)e(s−α)R
= 0;

lim
R→∞ R2e−(s−α)R = lim

R→∞
R2

e(s−α)R
= lim

R→∞
2R

(s − α)e(s−α)R
= lim

R→∞
2

(s − α)2e(s−α)R
= 0.

Finally,

L
(
x2eαx

)
(s) = 2

(s − α)3
− 0 − 0 − 0 = 2

(s − α)3
.

Estimate
∫ 5

2
f (x) dx by computing T2, M3, T6, and S6 for a function f (x) taking on the values in the following

table:

x 2 2.5 3 3.5 4 4.5 5

f (x) 1
2 2 1 0 − 3

2 −4 −2

97. State whether the approximation MN or TN is larger or smaller than the integral.

(a)
∫ π

0
sin x dx (b)

∫ 2π

π
sin x dx

(c)
∫ 8

1

dx

x2
(d)

∫ 5

2
ln x dx

solution
(a) Because f (x) = sin x is concave down on the interval [0, π ],

TN ≤
∫ π

0
sin x dx ≤ MN ;

that is, TN is smaller and MN is larger than the integral.
(b) On the interval [π, 2π ], the function f (x) = sin x is concave up, therefore

MN ≤
∫ 2π

π
sin x dx ≤ TN ;

that is, MN is smaller and TN is larger than the integral.
(c) The function f (x) = 1

x2 is concave up on the interval [1, 8]; therefore,

MN ≤
∫ 8

1

dx

x2
≤ TN ;

that is, MN is smaller and TN is larger than the integral.
(d) The integrand y = ln x is concave down on the interval [2, 5]; hence,

TN ≤
∫ 5

2
ln x dx ≤ MN ;

that is, TN is smaller and MN is larger than the integral.

The rainfall rate (in inches per hour) was measured hourly during a 10-hour thunderstorm with the following
results:

0, 0.41, 0.49, 0.32, 0.3, 0.23,

0.09, 0.08, 0.05, 0.11, 0.12

Use Simpson’s Rule to estimate the total rainfall during the 10-hour period.

In Exercises 99–104, compute the given approximation to the integral.

99.
∫ 1

0
e−x2

dx, M5

solution Divide the interval [0, 1] into 5 subintervals of length �x = 1−0
5 = 1

5 , with midpoints c1 = 1
10 , c2 = 3

10 ,

c3 = 1
2 , c4 = 7

10 , and c5 = 9
10 . Then

M5 = �x

[
f

(
1

10

)
+ f

(
3

10

)
+ f

(
1

2

)
+ f

(
7

10

)
+ f

(
9

10

)]

= 1

5

[
e−(1/10)2 + e−(3/10)2 + e−(1/2)2 + e−(7/10)2 + e−(9/10)2] = 0.748053.
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∫ 4

2

√
6t3 + 1 dt , T3

101.
∫ π/2

π/4

√
sin θ dθ , M4

solution Divide the interval
[
π
4 , π

2

]
into 4 subintervals of length �x =

π
2 − π

4
4 = π

16 with midpoints 9π
32 , 11π

32 , 13π
32 ,

and 15π
32 . Then

M4 = �x

(
f

(
9π

32

)
+ f

(
11π

32

)
+ f

(
13π

32

)
+ f

(
15π

32

))

= π

16

(√
sin

9π

32
+
√

sin
11π

32
+
√

sin
13π

32
+
√

sin
15π

32

)
= 0.744978.

∫ 4

1

dx

x3 + 1
, T6

103.
∫ 1

0
e−x2

dx, S4

solution Divide the interval [0, 1] into 4 subintervals of length �x = 1
4 with endpoints 0, 1

4 , 1
2 , 3

4 , 1. Then

S6 = 1

3
�x

(
f (0) + 4f

(
1

4

)
+ 2f

(
1

2

)
+ 4f

(
3

4

)
+ f (1)

)

= 1

3
· 1

4

(
e−02 + 4e−(1/4)2 + 2e−(1/2)2 + 4e−(3/4)2 + e−12

)
= 0.746855.

∫ 9

5
cos(x2) dx, S8

105. The following table gives the area A(h) of a horizontal cross section of a pond at depth h. Use the Trapezoidal Rule
to estimate the volume V of the pond (Figure 1).

h (ft) A(h) (acres) h (ft) A(h) (acres)

0 2.8 10 0.8
2 2.4 12 0.6
4 1.8 14 0.2
6 1.5 16 0.1
8 1.2 18 0

Area of horizontal
cross section is A(h)

h

FIGURE 1

solution The volume of the pond is the following integral:

V =
∫ 18

0
A(h)dh

We approximate the integral using the trapezoidal approximation T9. The interval of depth [0, 18] is divided to 9 subin-
tervals of length �x = 2 with endpoints 0, 2, 4, 6, 8, 10, 12, 14, 16, 18. Thus,

V ≈ T9 = 1

2
· 2(2.8 + 2 · 2.4 + 2 · 1.8 + 2 · 1.5 + 2 · 1.2 + 2 · 0.8 + 2 · 0.6 + 2 · 0.2 + 2 · 0.1 + 0)

= 20 acre · ft = 871,200 ft3,

where we have used the fact that 1 acre = 43,560 ft2.

Suppose that the second derivative of the function A(h) in Exercise 105 satisfies |A′′(h)| ≤ 1.5. Use the error
bound to find the maximum possible error in your estimate of the volume V of the pond.

107. Find a bound for the error

∣∣∣∣∣M16 −
∫ 3

1
x3 dx

∣∣∣∣∣.
solution The Error Bound for the Midpoint Rule states that∣∣∣∣∣MN −

∫ b

a
f (x) dx

∣∣∣∣∣ ≤ K2(b − a)3

24N2
,
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where K2 is a number such that
∣∣f ′′(x)

∣∣ ≤ K2 for all x ∈ [1, 3]. Here b − a = 3 − 1 = 2 and N = 16. Therefore,∣∣∣∣∣M16 −
∫ 3

1
x3 dx

∣∣∣∣∣ ≤ K2 · 23

24 · 162
= K2

768
.

To find K2, we differentiate f (x) = x3 twice:

f ′(x) = 3x2 and f ′′(x) = 6x.

On the interval [1, 3] we have
∣∣f ′′(x)

∣∣ = 6x ≤ 6 · 3 = 18; hence, we may take K2 = 18. Thus,∣∣∣∣∣M16 −
∫ 3

1
x3 dx

∣∣∣∣∣ ≤ 18

768
= 3

128
= 0.0234375.

Let f (x) = sin(x3). Find a bound for the error∣∣∣∣∣T24 −
∫ π/2

0
f (x) dx

∣∣∣∣∣
Hint: Find a bound K2 for |f ′′(x)| by plotting f ′′(x) with a graphing utility.

109. Find a value of N such that ∣∣∣∣∣MN −
∫ π/4

0
tan x dx

∣∣∣∣∣ ≤ 10−4

solution To use the Error Bound we must find the second derivative of f (x) = tan x. We differentiate f twice to
obtain:

f ′(x) = sec2x

f ′′(x) = 2 sec x tan x = 2 sin x

cos2x

For 0 ≤ x ≤ π
4 , we have sin x ≤ sin π

4 = 1√
2

and cos x ≥ 1√
2

or cos2x ≥ 1
2 . Therefore, for 0 ≤ x ≤ π

4 we have:

f ′′(x) = 2 sin x

cos2x
≤

2 · 1√
2

1
2

= 2
√

2.

Using the Error Bound with b = π
4 , a = 0 and K2 = 2

√
2 we have:

∣∣∣∣∣MN −
∫ π/4

0
tan x dx

∣∣∣∣∣ ≤ 2
√

2 · (π4 − 0
)3

24N2
= π3

√
2

768N2
.

We must choose a value of N such that:

π3
√

2

768N2
≤ 10−4

N2 ≥ 104 · √
2π3

768

N ≥ 23.9

The smallest integer that is needed to obtain the required precision is N = 24.

Find a value of N such that SN approximates
∫ 5

2
x−1/4 dx with an error of at most 10−2 (but do not calculate

SN ).
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9 FURTHER APPLICATIONS
OF THE INTEGRAL AND
TAYLOR POLYNOMIALS

9.1 Arc Length and Surface Area

Preliminary Questions
1. Which integral represents the length of the curve y = cos x between 0 and π?

∫ π

0

√
1 + cos2 x dx,

∫ π

0

√
1 + sin2 x dx

solution Let y = cos x. Then y′ = − sin x, and 1 + (y′)2 = 1 + sin2 x. Thus, the length of the curve y = cos x

between 0 and π is ∫ π

0

√
1 + sin2 x dx.

2. Use the formula for arc length to show that for any constant C, the graphs y = f (x) and y = f (x) + C have the
same length over every interval [a, b]. Explain geometrically.

solution The graph of y = f (x) + C is a vertical translation of the graph of y = f (x); hence, the two graphs should
have the same arc length. We can explicitly establish this as follows:

length of y = f (x) + C =
∫ b

a

√
1 +

[
d

dx
(f (x) + C)

]2
dx =

∫ b

a

√
1 + [f ′(x)]2 dx = length of y = f (x).

3. Use the formula for arc length to show that the length of a graph over [1, 4] cannot be less than 3.

solution Note that f ′(x)2 ≥ 0, so that
√

1 + [f ′(x)]2 ≥ √
1 = 1. Then the arc length of the graph of f (x) on

[1, 4] is

∫ 4

1

√
1 + [f ′(x)]2 dx ≥

∫ 4

1
1 dx = 3

Exercises
1. Express the arc length of the curve y = x4 between x = 2 and x = 6 as an integral (but do not evaluate).

solution Let y = x4. Then y′ = 4x3 and

s =
∫ 6

2

√
1 + (4x3)2 dx =

∫ 6

2

√
1 + 16x6 dx.

Express the arc length of the curve y = tan x for 0 ≤ x ≤ π
4 as an integral (but do not evaluate).3. Find the arc length of y = 1

12x3 + x−1 for 1 ≤ x ≤ 2. Hint: Show that 1 + (y′)2 =
(

1
4x2 + x−2

)2
.

solution Let y = 1

12
x3 + x−1. Then y′ = x2

4
x−2, and

(y′)2 + 1 =
(

x2

4
− x−2

)2

+ 1 = x4

16
− 1

2
+ x−4 + 1 = x4

16
+ 1

2
+ x−4 =

(
x2

4
+ x−2

)2

.

555
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Thus,

s =
∫ 2

1

√
1 + (y′)2 dx =

∫ 2

1

√√√√(x2

4
+ 1

x2

)2

dx =
∫ 2

1

∣∣∣∣∣x
2

4
+ 1

x2

∣∣∣∣∣ dx

=
∫ 2

1

(
x2

4
+ 1

x2

)
dx since

x2

4
+ 1

x2
> 0

=
(

x3

12
− 1

x

) ∣∣∣∣2
1

= 13

12
.

Find the arc length of y =
(x

2

)4 + 1

2x2
over [1, 4]. Hint: Show that 1 + (y′)2 is a perfect square.

In Exercises 5–10, calculate the arc length over the given interval.

5. y = 3x + 1, [0, 3]

solution Let y = 3x + 1. Then y′ = 3, and s =
∫ 3

0

√
1 + 9 dx = 3

√
10.

y = 9 − 3x, [1, 3]7. y = x3/2, [1, 2]
solution Let y = x3/2. Then y′ = 3

2x1/2, and

s =
∫ 2

1

√
1 + 9

4
x dx = 8

27

(
1 + 9

4
x

)3/2 ∣∣∣∣2
1

= 8

27

((
11

2

)3/2
−
(

13

4

)3/2
)

= 1

27

(
22

√
22 − 13

√
13
)

.

y = 1
3x3/2 − x1/2, [2, 8]9. y = 1

4x2 − 1
2 ln x, [1, 2e]

solution Let y = 1
4x2 − 1

2 ln x. Then

y′ = x

2
− 1

2x
,

and

1 + (y′)2 = 1 +
(

x

2
− 1

2x

)2
= x2

4
+ 1

2
+ 1

4x2
=
(

x

2
+ 1

2x

)2
.

Hence,

s =
∫ 2e

1

√
1 + (y′)2 dx =

∫ 2e

1

√(
x

2
+ 1

2x

)2
dx =

∫ 2e

1

∣∣∣∣x2 + 1

2x

∣∣∣∣ dx

=
∫ 2e

1

(
x

2
+ 1

2x

)
dx since

x

2
+ 1

2x
> 0 on [1, 2e]

=
(

x2

4
+ 1

2
ln x

) ∣∣∣∣2e

1
= e2 + ln 2

2
+ 1

4
.

y = ln(cos x),
[
0, π

4

]In Exercises 11–14, approximate the arc length of the curve over the interval using the Trapezoidal Rule TN , the Midpoint
Rule MN , or Simpson’s Rule SN as indicated.

11. y = 1
4x4, [1, 2], T5

solution Let y = 1
4x4. Then

1 + (y′)2 = 1 + (x3)2 = 1 + x6.

Therefore, the arc length over [1, 2] is ∫ 2

1

√
1 + x6 dx.

Now, let f (x) =
√

1 + x6. With n = 5,

�x = 2 − 1

5
= 1

5
and {xi}5

i=0 =
{

1,
6

5
,

7

5
,

8

5
,

9

5
, 2

}
.
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Using the Trapezoidal Rule,

∫ 2

1

√
1 + x6 dx ≈ �x

2

⎡
⎣f (x0) + 2

4∑
i=1

f (xi) + f (x5)

⎤
⎦ = 3.957736.

The arc length is approximately 3.957736 units.

y = sin x,
[
0, π

2

]
, M8

13. y = x−1, [1, 2], S8

solution Let y = x−1. Then y′ = −x−2 and

1 + (y′)2 = 1 + 1

x4
.

Therefore, the arc length over [1, 2] is ∫ 2

1

√
1 + 1

x4
dx.

Now, let f (x) =
√

1 + 1
x4 . With n = 8,

�x = 2 − 1

8
= 1

8
and {xi}8

i=0 =
{

1,
9

8
,

5

4
,

11

8
,

3

2
,

13

8
,

7

4
,

15

8
, 2

}
.

Using Simpson’s Rule,

∫ 2

1

√
1 + 1

x4
dx ≈ �x

3

⎡
⎣f (x0) + 4

4∑
i=1

f (x2i−1) + 2
3∑

i=1

f (x2i ) + f (x8)

⎤
⎦ = 1.132123.

The arc length is approximately 1.132123 units.

y = e−x2
, [0, 2], S8

15. Calculate the length of the astroid x2/3 + y2/3 = 1 (Figure 11).

y

1

1

−1

−1
x

FIGURE 11 Graph of x2/3 + y2/3 = 1.

solution We will calculate the arc length of the portion of the asteroid in the first quadrant and then multiply by 4. By
implicit differentiation

2

3
x−1/3 + 2

3
y−1/3y′ = 0,

so

y′ = −x−1/3

y−1/3
= −y1/3

x1/3
.

Thus

1 + (y′)2 = 1 + y2/3

x2/3
= x2/3 + y2/3

x2/3
= 1

x2/3
,

and

s =
∫ 1

0

1

x1/3
dx = 3

2
.

The total arc length is therefore 4 · 3
2 = 6.

Show that the arc length of the asteroid x2/3 + y2/3 = a2/3 (for a > 0) is proportional to a.
17. Let a, r > 0. Show that the arc length of the curve xr + yr = ar for 0 ≤ x ≤ a is proportional to a.

solution Using implicit differentiation, we find y′ = −(x/y)r−1 and

1 + (y′)2 = 1 + (x/y)2r−2 = x2r−1 + y2r−2

y2r−2
= x2r−2 + (ar − xr )2−2/r

(ar − xr )2−2/r
.
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The arc length is then

s =
∫ a

0

√
x2r−2 + (ar − xr )2−2/r

(ar − xr )2−2/r
dx.

Using the substitution x = au, we obtain

s = a

∫ 1

0

√
u2r−2 + (1 − ur )2−2/r

(1 − ur )2−2/r
du,

where the integral is independent of a.

Find the arc length of the curve shown in Figure 12.
19. Find the value of a such that the arc length of the catenary y = cosh x for −a ≤ x ≤ a equals 10.

solution Let y = cosh x. Then y′ = sinh x and

1 + (y′)2 = 1 + sinh2 x = cosh2 x.

Thus,

s =
∫ a

−a
cosh x dx = sinh(a) − sinh(−a) = 2 sinh a.

Setting this expression equal to 10 and solving for a yields a = sinh−1(5) = ln(5 + √
26).

Calculate the arc length of the graph of f (x) = mx + r over [a, b] in two ways: using the Pythagorean theorem
(Figure 13) and using the arc length integral.

21. Show that the circumference of the unit circle is equal to

2
∫ 1

−1

dx√
1 − x2

(an improper integral)

Evaluate, thus verifying that the circumference is 2π .

solution Note the circumference of the unit circle is twice the arc length of the upper half of the curve defined by

x2 + y2 = 1. Thus, let y =
√

1 − x2. Then

y′ = − x√
1 − x2

and 1 + (y′)2 = 1 + x2

1 − x2
= 1

1 − x2
.

Finally, the circumference of the unit circle is

2
∫ 1

−1

dx√
1 − x2

= 2 sin−1 x

∣∣∣∣1−1
= π − (−π) = 2π.

Generalize the result of Exercise 21 to show that the circumference of the circle of radius r is 2πr .23. Calculate the arc length of y = x2 over [0, a]. Hint: Use trigonometric substitution. Evaluate for a = 1.

solution Let y = x2. Then y′ = 2x and

s =
∫ a

0

√
1 + 4x2 dx.

Using the substitution 2x = tan θ , 2 dx = sec2 θ dθ , we find

s = 1

2

∫ x=a

x=0
sec3 θ dθ.

Next, using a reduction formula for the integral of sec3 θ , we see that

s =
(

1

4
sec θ tan θ + 1

4
ln | sec θ + tan θ |

)∣∣∣∣x=a

x=0
=
(

1

2
x
√

1 + 4x2 + 1

4
ln |
√

1 + 4x2 + 2x|
) ∣∣∣∣a

0

= a

2

√
1 + 4a2 + 1

4
ln |
√

1 + 4a2 + 2a|
Thus, when a = 1,

s = 1

2

√
5 + 1

4
ln(

√
5 + 2) ≈ 1.478943.

Express the arc length of g(x) = √
x over [0, 1] as a definite integral. Then use the substitution u = √

x to

show that this arc length is equal to the arc length of x2 over [0, 1] (but do not evaluate the integrals). Explain this
result graphically.

25. Find the arc length of y = ex over [0, a]. Hint: Try the substitution u =
√

1 + e2x followed by partial fractions.

solution Let y = ex . Then 1 + (y′)2 = 1 + e2x , and the arc length over [0, a] is∫ a

0

√
1 + e2x dx.
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Now, let u =
√

1 + e2x . Then

du = 1

2
· 2e2x√

1 + e2x
dx = u2 − 1

u
dx

and the arc length is

∫ a

0

√
1 + e2x dx =

∫ x=a

x=0
u · u

u2 − 1
du =

∫ x=a

x=0

u2

u2 − 1
du =

∫ x=a

x=0

(
1 + 1

u2 − 1

)
du

=
∫ x=a

x=0

(
1 + 1

2

1

u − 1
− 1

2

1

u + 1

)
du =

(
u + 1

2
ln(u − 1) − 1

2
ln(u + 1)

) ∣∣∣∣x=a

x=0

=
[√

1 + e2x + 1

2
ln

(√
1 + e2x − 1√
1 + e2x + 1

)] ∣∣∣∣a
0

=
√

1 + e2a + 1

2
ln

√
1 + e2a − 1√
1 + e2a + 1

− √
2 + 1

2
ln

1 + √
2√

2 − 1

=
√

1 + e2a + 1

2
ln

√
1 + e2a − 1√
1 + e2a + 1

− √
2 + ln(1 + √

2).

Show that the arc length of y = ln(f (x)) for a ≤ x ≤ b is

∫ b

a

√
f (x)2 + f ′(x)2

f (x)
dx

27. Use Eq. (4) to compute the arc length of y = ln(sin x) for π
4 ≤ x ≤ π

2 .

solution With f (x) = sin x, Eq. (4) yields

s =
∫ π/2

π/4

√
sin2 x + cos2 x

sin x
dx =

∫ π/2

π/4
csc x dx = ln (csc x − cot x)

∣∣∣∣π/2

π/4

= ln 1 − ln(
√

2 − 1) = ln
1√

2 − 1
= ln(

√
2 + 1).

Use Eq. (4) to compute the arc length of y = ln

(
ex + 1

ex − 1

)
over [1, 3].

29. Show that if 0 ≤ f ′(x) ≤ 1 for all x, then the arc length of y = f (x) over [a, b] is at most
√

2(b − a). Show that
for f (x) = x, the arc length equals

√
2(b − a).

solution If 0 ≤ f ′(x) ≤ 1 for all x, then

s =
∫ b

a

√
1 + f ′(x)2 dx ≤

∫ b

a

√
1 + 1 dx = √

2(b − a).

If f (x) = x, then f ′(x) = 1 and

s =
∫ b

a

√
1 + 1 dx = √

2(b − a).

Use the Comparison Theorem (Section 5.2) to prove that the arc length of y = x4/3 over [1, 2] is not less than 5
3 .

31. Approximate the arc length of one-quarter of the unit circle (which we know is π
2 ) by computing the length of the

polygonal approximation with N = 4 segments (Figure 14).

y

10.750.50.25
x

FIGURE 14 One-quarter of the unit circle

solution With y =
√

1 − x2, the five points along the curve are

P0(0, 1), P1(1/4,
√

15/4), P2(1/2,
√

3/2), P3(3/4,
√

7/4), P4(1, 0)
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Then

P0P1 =
√√√√ 1

16
+
(

4 − √
15

4

)2

≈ 0.252009

P1P2 =
√√√√ 1

16
+
(

2
√

3 − √
15

4

)2

≈ 0.270091

P2P3 =
√√√√ 1

16
+
(

2
√

3 − √
7

4

)2

≈ 0.323042

P3P4 =
√

1

16
+ 7

16
≈ 0.707108

and the total approximate distance is 1.552250 whereas π/2 ≈ 1.570796.

A merchant intends to produce specialty carpets in the shape of the region in Figure 15, bounded by the axes

and graph of y = 1 − xn (units in yards). Assume that material costs $50/yd2 and that it costs 50L dollars to cut the
carpet, where L is the length of the curved side of the carpet. The carpet can be sold for 150A dollars, where A is the
carpet’s area. Using numerical integration with a computer algebra system, find the whole number n for which the
merchant’s profits are maximal.

In Exercises 33–40, compute the surface area of revolution about the x-axis over the interval.

33. y = x, [0, 4]
solution 1 + (y′)2 = 2 so that

SA = 2π

∫ 4

0
x
√

2 dx = 2π
√

2
1

2
x2
∣∣∣∣4
0

= 16π
√

2

y = 4x + 3, [0, 1]35. y = x3, [0, 2]
solution 1 + (y′)2 = 1 + 9x4, so that

SA = 2π

∫ 2

0
x3
√

1 + 9x4 dx = 2π

36

∫ 2

0
36x3

√
1 + 9x4 dx = π

18
(1 + 9x4)3/2

∣∣∣∣2
0

= π

18

(
1453/2 − 1

)

y = x2, [0, 4]37. y = (4 − x2/3)3/2, [0, 8]
solution Let y = (4 − x2/3)3/2. Then

y′ = −x−1/3(4 − x2/3)1/2,

and

1 + (y′)2 = 1 + 4 − x2/3

x2/3
= 4

x2/3
.

Therefore,

SA = 2π

∫ 8

0
(4 − x2/3)3/2

(
2

x1/3

)
dx.

Using the substitution u = 4 − x2/3, du = − 2
3x−1/3 dx, we find

SA = 2π

∫ 0

4
u3/2(−3) du = 6π

∫ 4

0
u3/2 du = 12

5
πu5/2

∣∣∣∣4
0

= 384π

5
.

y = e−x , [0, 1]39. y = 1
4x2 − 1

2 ln x, [1, e]
solution We have y′ = x

2 − 1
2x

, and

1 + (y′)2 = 1 +
(

x

2
− 1

2x

)2
= 1 + x2

4
− 1

2
+ 1

4x2
= x2

4
+ 1

2
+ 1

4x2
=
(

x

2
+ 1

2x

)2
.

Thus,

SA = 2π

∫ e

1

(
x2

4
− ln x

2

)(
x

2
+ 1

2x

)
dx = 2π

∫ e

1

x3

8
+ x

8
− x ln x

4
− ln x

4x
dx

= 2π

(
x4

32
+ x2

16
− x2 ln x

8
+ x2

16
− (ln x)2

8

) ∣∣∣∣e
1
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= 2π

(
e4

32
+ e2

16
− e2

8
+ e2

16
− 1

8
−
(

1

32
+ 1

16
+ 0 + 1

16
− 0

))

= 2π

(
e4

32
− 1

8
− 1

32
− 1

16
− 1

16

)

= π

16
(e4 − 9)

y = sin x, [0, π ]In Exercises 41–44, use a computer algebra system to find the approximate surface area of the solid generated
by rotating the curve about the x-axis.

41. y = x−1, [1, 3]
solution

SA = 2π

∫ 3

1

1

x

√
1 +

(
− 1

x2

)2
dx = 2π

∫ 3

1

1

x

√
1 + 1

x4
dx ≈ 7.603062807

using Maple.

y = x4, [0, 1]43. y = e−x2/2, [0, 2]
solution

SA = 2π

∫ 2

0
e−x2/2

√
1 + (−xe−x2/2)2 dx = 2π

∫ 2

0
e−x2/2

√
1 + x2e−x2

dx ≈ 8.222695606

using Maple.

y = tan x,
[
0, π

4

]45. Find the area of the surface obtained by rotating y = cosh x over [− ln 2, ln 2] around the x-axis.

solution Let y = cosh x. Then y′ = sinh x, and

√
1 + (y′)2 =

√
1 + sinh2 x =

√
cosh2 x = cosh x.

Therefore,

SA = 2π

∫ ln 2

− ln 2
cosh2 x dx = π

∫ ln 2

− ln 2
(1 + cosh 2x) dx = π

(
x + 1

2
sinh 2x

) ∣∣∣∣ln 2

− ln 2

= π

(
ln 2 + 1

2
sinh(2 ln 2) + ln 2 − 1

2
sinh(−2 ln 2)

)
= 2π ln 2 + π sinh(2 ln 2).

We can simplify this answer by recognizing that

sinh(2 ln 2) = e2 ln 2 − e−2 ln 2

2
= 4 − 1

4
2

= 15

8
.

Thus,

SA = 2π ln 2 + 15π

8
.

Show that the surface area of a spherical cap of height h and radius R (Figure 16) has surface area 2πRh.47. Find the surface area of the torus obtained by rotating the circle x2 + (y − b)2 = a2 about the x-axis (Figure 17).

y

x

(0, b + a)

(0, b)

FIGURE 17 Torus obtained by rotating a circle about the x-axis.
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solution y = b +
√

a2 − x2 gives the top half of the circle and y = b −
√

a2 − x2 gives the bottom half. Note that
in each case,

1 + (y′)2 = 1 + x2

a2 − x2
= a2

a2 − x2
.

Rotating the two halves of the circle around the x-axis then yields

SA = 2π

∫ a

−a
(b +

√
a2 − x2)

a√
a2 − x2

dx + 2π

∫ a

−a
(b −

√
a2 − x2)

a√
a2 − x2

dx

= 2π

∫ a

−a
2b

a√
a2 − x2

dx = 4πba

∫ a

−a

1√
a2 − x2

dx

= 4πba · sin−1
(x

a

) ∣∣∣∣a−a

= 4πba
(π

2
−
(
−π

2

))
= 4π2ba.

Show that the surface area of a right circular cone of radius r and height h is πr
√

r2 + h2. Hint: Rotate a line
y = mx about the x-axis for 0 ≤ x ≤ h, where m is determined suitably by the radius r .

Further Insights and Challenges
49. Find the surface area of the ellipsoid obtained by rotating the ellipse

(x

a

)2 +
(y

b

)2 = 1 about the x-axis.

solution Taking advantage of symmetry, we can find the surface area of the ellipsoid by doubling the surface area
obtained by rotating the portion of the ellipse in the first quadrant about the x-axis. The equation for the portion of the
ellipse in the first quadrant is

y = b

a

√
a2 − x2.

Thus,

1 + (y′)2 = 1 + b2x2

a2(a2 − x2)
= a4 + (b2 − a2)x2

a2(a2 − x2)
,

and

SA = 4π

∫ a

0

b

a

√
a2 − x2

√
a4 + (b2 − a2)x2

a
√

a2 − x2
dx = 4πb

∫ a

0

√
1 +

(
b2 − a2

a4

)
x2 dx.

We now consider two cases. If b2 > a2, then we make the substitution√
b2 − a2

a2
x = tan θ, dx = a2√

b2 − a2
sec2 θ dθ,

and find that

SA = 4πb
a2√

b2 − a2

∫ x=a

x=0
sec3 θ dθ = 2πb

a2√
b2 − a2

(sec θ tan θ + ln | sec θ + tan θ |)
∣∣∣∣x=a

x=0

=
⎛
⎝2πbx

√
1 +

(
b2 − a2

a4

)
x2 + 2πb

a2√
b2 − a2

ln

∣∣∣∣∣∣
√

1 +
(

b2 − a2

a4

)
x2 +

√
b2 − a2

a2
x

∣∣∣∣∣∣
⎞
⎠ ∣∣∣∣a

0

= 2πb2 + 2πb
a2√

b2 − a2
ln

(
b

a
+
√

b2 − a2

a

)
.

On the other hand, if a2 > b2, then we make the substitution√
a2 − b2

a2
x = sin θ, dx = a2√

a2 − b2
cos θ dθ,

and find that

SA = 4πb
a2√

a2 − b2

∫ x=a

x=0
cos2 θ dθ = 2πb

a2√
a2 − b2

(θ + sin θ cos θ)

∣∣∣∣x=a

x=0

=
⎡
⎣2πbx

√
1 −

(
a2 − b2

a4

)
x2 + 2πb

a2√
a2 − b2

sin−1

(√
a2 − b2

a2
x

)⎤⎦ ∣∣∣∣a
0

= 2πb2 + 2πb
a2√

a2 − b2
sin−1

(√
a2 − b2

a

)
.
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Observe that in both cases, as a approaches b, the value of the surface area of the ellipsoid approaches 4πb2, the surface
area of a sphere of radius b.

Show that if the arc length of f (x) over [0, a] is proportional to a, then f (x) must be a linear function.51. Let L be the arc length of the upper half of the ellipse with equation

y = b

a

√
a2 − x2

(Figure 18) and let η =
√

1 − (b2/a2). Use substitution to show that

L = a

∫ π/2

−π/2

√
1 − η2 sin2 θ dθ

Use a computer algebra system to approximate L for a = 2, b = 1.

x

y

2−2

1

FIGURE 18 Graph of the ellipse y = 1
2

√
4 − x2.

solution Let y = b

a

√
a2 − x2. Then

1 + (y′)2 = b2x2 + a2(a2 − x2)

a2(a2 − x2)

and

s =
∫ a

−a

√
b2x2 + a2(a2 − x2)

a2(a2 − x2)
dx.

With the substitution x = a sin t , dx = a cos t dt , a2 − x2 = a2 cos2 t and

s = a

∫ π/2

−π/2
cos t

√
a2b2 sin2 t + a2a2 cos2 t

a2(a2 cos2 t)
dt = a

∫ π/2

π/2

√
b2 sin2 t

a2
+ cos2 t dt

Because

η =
√

1 − b2

a2
, η2 = 1 − b2

a2

we then have

1 − η2 sin2 t = 1 −
(

1 − b2

a2

)
sin2 t = 1 − sin2 t + b2

a2
sin2 t = cos2 t + b2

a2
sin2 t

which is the same as the expression under the square root above. Substituting, we get

s = a

∫ π/2

−π/2

√
1 − η2 sin2 t dt

When a = 2 and b = 1, η2 = 3
4 . Using a computer algebra system to approximate the value of the definite integral, we

find s ≈ 4.84422.

Prove that the portion of a sphere of radius R seen by an observer located at a distance d above the North
Pole has area A = 2πdR2/(d + R). Hint: According to Exercise 46, the cap has surface area is 2πRh. Show that
h = dR/(d + R) by applying the Pythagorean Theorem to the three right triangles in Figure 19.

53. Suppose that the observer in Exercise 52 moves off to infinity—that is, d → ∞. What do you expect the
limiting value of the observed area to be? Check your guess by calculating the limit using the formula for the area in the
previous exercise.

solution We would assume the observed surface area would approach 2πR2 which is the surface area of a hemisphere
of radius R. To verify this, observe:

lim
d→∞ SA = lim

d→∞
2πR2d

R + d
= lim

d→∞
2πR2

1
= 2πR2.
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Let M be the total mass of a metal rod in the shape of the curve y = f (x) over [a, b] whose mass density ρ(x)

varies as a function of x. Use Riemann sums to justify the formula

M =
∫ b

a
ρ(x)

√
1 + f ′(x)2 dx

55. Let f (x) be an increasing function on [a, b] and let g(x) be its inverse. Argue on the basis of arc length that
the following equality holds: ∫ b

a

√
1 + f ′(x)2 dx =

∫ f (b)

f (a)

√
1 + g′(y)2 dy 5

Then use the substitution u = f (x) to prove Eq. (5).

solution Since the graphs of f (x) and g(x) are symmetric with respect to the line y = x, the arc length of the curves
will be equal on the respective domains. Since the domain of g is the range of f , on f (a) to f (b), g(x) will have the
same arc length as f (x) on a to b. If g(x) = f −1(x) and u = f (x), then x = g(u) and du = f ′(x) dx. But

g′(u) = 1

f ′(g(u))
= 1

f ′(x)
⇒ f ′(x) = 1

g′(u)

Now substituting u = f (x),

s =
∫ b

a

√
1 + f ′(x)2 dx =

∫ f (b)

f (a)

√
1 +

(
1

g′(u)

)2
g′(u) du =

∫ f (b)

f (a)

√
g′(u)2 + 1 du

9.2 Fluid Pressure and Force

Preliminary Questions
1. How is pressure defined?

solution Pressure is defined as force per unit area.

2. Fluid pressure is proportional to depth. What is the factor of proportionality?

solution The factor of proportionality is the weight density of the fluid, w = ρg, where ρ is the mass density of the
fluid.

3. When fluid force acts on the side of a submerged object, in which direction does it act?

solution Fluid force acts in the direction perpendicular to the side of the submerged object.

4. Why is fluid pressure on a surface calculated using thin horizontal strips rather than thin vertical strips?

solution Pressure depends only on depth and does not change horizontally at a given depth.

5. If a thin plate is submerged horizontally, then the fluid force on one side of the plate is equal to pressure times area.
Is this true if the plate is submerged vertically?

solution When a plate is submerged vertically, the pressure is not constant along the plate, so the fluid force is not
equal to the pressure times the area.

Exercises
1. A box of height 6 m and square base of side 3 m is submerged in a pool of water. The top of the box is 2 m below the

surface of the water.

(a) Calculate the fluid force on the top and bottom of the box.

(b) Write a Riemann sum that approximates the fluid force on a side of the box by dividing the side into N horizontal
strips of thickness �y = 6/N .

(c) To which integral does the Riemann sum converge?

(d) Compute the fluid force on a side of the box.

solution

(a) At a depth of 2 m, the pressure on the top of the box is ρgh = 103 · 9.8 · 2 = 19,600 Pa. The top has area 9 m2, and
the pressure is constant, so the force on the top of the box is 19,600 · 9 = 176,400N . At a depth of 8 m, the pressure on the
bottom of the box is ρgh = 103 · 9.8 · 8 = 78,400 Pa, so the force on the bottom of the box is 78,400 · 9 = 705,600N .

(b) Let yj denote the depth of the j th strip, for j = 1, 2, 3, . . . , N ; the pressure at this depth is 103 · 9.8 · yj = 9800yj Pa.

The strip has thickness �y m and length 3 m, so has area 3�y m2. Thus the force on the strip is 29,400yj�y N. Sum
over all the strips to conclude that the force on one side of the box is approximately

F ≈
N∑

j=1

29,400yj�y.



June 13, 2011 LTSV SSM Second Pass

S E C T I O N 9.2 Fluid Pressure and Force 565

(c) As N → ∞, the Riemann sum in part (b) converges to the definite integral 29,400
∫ 8

2 y dy.

(d) Using the result from part (c), the fluid force on one side of the box is

29,400
∫ 8

2
y dy = 14,700y2

∣∣∣∣8
2

= 882,000 N

A plate in the shape of an isosceles triangle with base 1 m and height 2 m is submerged vertically in a tank of
water so that its vertex touches the surface of the water (Figure 7).

(a) Show that the width of the triangle at depth y is f (y) = 1
2y.

(b) Consider a thin strip of thickness �y at depth y. Explain why the fluid force on a side of this strip is approximately
equal to ρg 1

2y2�y.

(c) Write an approximation for the total fluid force F on a side of the plate as a Riemann sum and indicate the integral
to which it converges.

(d) Calculate F .

3. Repeat Exercise 2, but assume that the top of the triangle is located 3 m below the surface of the water.

solution

(a) Examine the figure below. By similar triangles,
y − 3

2
= f (y)

1
so f (y) = y − 3

2
.

f (y)

y

3

(b) The pressure at a depth of y feet is ρgy lb/ Pa, and the area of the strip is approximately f (y) �y = 1
2 (y − 3)�y m2.

Therefore, the fluid force on this strip is approximately

ρgy

(
1

2
(y − 3)�y

)
= 1

2
ρgy(y − 3)�y N.

(c) F ≈
N∑

j=1

ρg
y2
j

− 3yj

2
�y. As N → ∞, the Riemann sum converges to the definite integral

ρg

2

∫ 5

3
(y2 − 3y) dy.

(d) Using the result of part (c),

F = ρg

2

∫ 5

3
(y2 − 3y) dy = ρg

2

(
y3

3
− 3y2

2

)∣∣∣∣∣
5

3

= 9800

2

[(
125

3
− 75

2

)
−
(

9 − 27

2

)]
= 127,400

3
N.

The plate R in Figure 8, bounded by the parabola y = x2 and y = 1, is submerged vertically in water (distance
in meters).

(a) Show that the width of R at height y is f (y) = 2
√

y and the fluid force on a side of a horizontal strip of thickness
�y at height y is approximately (ρg)2y1/2(1 − y)�y.

(b) Write a Riemann sum that approximates the fluid force F on a side of R and use it to explain why

F = ρg

∫ 1

0
2y1/2(1 − y) dy

(c) Calculate F .

5. Let F be the fluid force on a side of a semicircular plate of radius r meters, submerged vertically in water so that its
diameter is level with the water’s surface (Figure 9).

(a) Show that the width of the plate at depth y is 2
√

r2 − y2.

(b) Calculate F as a function of r using Eq. (2).

y

r

r

2 r2 − y2

x

FIGURE 9

solution

(a) Place the origin at the center of the semicircle and point the positive y-axis downward. The equation for the edge of
the semicircular plate is then x2 + y2 = r2. At a depth of y, the plate extends from the point (−

√
r2 − y2, y) on the left

to the point (
√

r2 − y2, y) on the right. The width of the plate at depth y is then√
r2 − y2 −

(
−
√

r2 − y2
)

= 2
√

r2 − y2.
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(b) With w = 9800 N/m3,

F = 2w

∫ r

0
y

√
r2 − y2 dy = −19,600

3
(r2 − y2)3/2

∣∣∣∣r
0

= 19,600r3

3
N.

Calculate the force on one side of a circular plate with radius 2 m, submerged vertically in a tank of water so that
the top of the circle is tangent to the water surface.

7. A semicircular plate of radius r meters, oriented as in Figure 9, is submerged in water so that its diameter is located
at a depth of m meters. Calculate the fluid force on one side of the plate in terms of m and r .

solution Place the origin at the center of the semicircular plate with the positive y-axis pointing downward. The water

surface is then at y = −m. Moreover, at location y, the width of the plate is 2
√

r2 − y2 and the depth is y + m. Thus,

F = 2ρg

∫ r

0
(y + m)

√
r2 − y2 dy.

Now, ∫ r

0
y

√
r2 − y2 dy = −1

3
(r2 − y2)3/2

∣∣∣∣r
0

= 1

3
r3.

Geometrically, ∫ r

0

√
r2 − y2 dy

represents the area of one quarter of a circle of radius r , and thus has the value πr2

4 . Bringing these results together, we
find that

F = 2ρg

(
1

3
r3 + π

4
r2
)

= 19,600

3
r3 + 4900mr2 N.

A plate extending from depth y = 2 m to y = 5 m is submerged in a fluid of density ρ = 850 kg/m3. The

horizontal width of the plate at depth y is f (y) = 2(1 + y2)−1. Calculate the fluid force on one side of the plate.

9. Figure 10 shows the wall of a dam on a water reservoir. Use the Trapezoidal Rule and the width and depth measurements
in the figure to estimate the fluid force on the wall.

Depth (ft)

20 

0

600

900

1,100

1,400

1,650

1,800 (ft)

40

60

80

100

FIGURE 10

solution Let f (y) denote the width of the dam wall at depth y feet. Then the force on the dam wall is

F = w

∫ 100

0
yf (y) dy.

Using the Trapezoidal Rule and the width and depth measurements in the figure,

F ≈ w
20

2
[0 · f (0) + 2 · 20 · f (20) + 2 · 40 · f (40) + 2 · 60 · f (60) + 2 · 80 · f (80) + 100 · f (100)]

= 10w(0 + 66,000 + 112,000 + 132,000 + 144,000 + 60,000) = 321,250,000 lb.

Calculate the fluid force on a side of the plate in Figure 11(A), submerged in water.11. Calculate the fluid force on a side of the plate in Figure 11(B), submerged in a fluid of mass density ρ = 800 kg/m3.

solution Because the fluid has a mass density of ρ = 800 kg/m3,

w = (800)(9.8) = 7840 N/m3.

For depths up to 2 meters, the width of the plate at depth y is y; for depths from 2 meters to 6 meters, the width of the
plate is a constant 2 meters. Thus,

F = w

∫ 2

0
y(y) dy + w

∫ 6

2
2y dy = w

y3

3

∣∣∣∣∣
2

0

+ wy2
∣∣∣6
2

= 8w

3
+ 32w = 104w

3
= 815,360

3
N.
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Find the fluid force on the side of the plate in Figure 12, submerged in a fluid of density ρ = 1200 kg/m3. The
top of the place is level with the fluid surface. The edges of the plate are the curves y = x1/3 and y = −x1/3.

13. Let R be the plate in the shape of the region under y = sin x for 0 ≤ x ≤ π
2 in Figure 13(A). Find the fluid force on

a side of R if it is rotated counterclockwise by 90◦ and submerged in a fluid of density 1100 kg/m3 with its top edge level
with the surface of the fluid as in (B).

1

(A) (B)

Fluid level
y

y = sin x

x

R

Fluid level

R

p
2

FIGURE 13

solution Place the origin at the bottom corner of the plate with the positive y-axis pointing upward. The fluid surface
is then at height y = π

2 , and the horizontal strip of the plate at height y is at a depth of π
2 − y and has a width of sin y.

Now, using integration by parts we find

F = ρg

∫ π/2

0

(π

2
− y
)

sin y dy = ρg
[
−
(π

2
− y
)

cos y − sin y
]∣∣∣π/2

0
= ρg

(π

2
− 1
)

= 1100 · 9.8
(π

2
− 1
)

≈ 6153.184 N.

In the notation of Exercise 13, calculate the fluid force on a side of the plate R if it is oriented as in Figure 13(A).
You may need to use Integration by Parts and trigonometric substitution.

15. Calculate the fluid force on one side of a plate in the shape of region A shown Figure 14. The water surface is at
y = 1, and the fluid has density ρ = 900 kg/m3.

y = ln x
1

y

1 e
x

A

B

FIGURE 14

solution Because the fluid surface is at height y = 1, the horizontal strip at height y is at a depth of 1 − y. Moreover,
this strip has a width of e − ey . Thus,

F = ρg

∫ 1

0
(1 − y)(e − ey) dy = eρg

∫ 1

0
(1 − y) dy − ρg

∫ 1

0
(1 − y)ey dy.

Now, ∫ 1

0
(1 − y) dy =

(
y − 1

2
y2
)∣∣∣∣1

0
= 1

2
,

and using integration by parts

∫ 1

0
(1 − y)ey dy = ((1 − y)ey + ey

) ∣∣∣∣1
0

= e − 2.

Combining these results, we find that

F = ρg

(
1

2
e − (e − 2)

)
= ρg

(
2 − 1

2
e

)
= 900 · 9.8

(
2 − 1

2
e

)
≈ 5652.37 N.

Calculate the fluid force on one side of the “infinite” plate B in Figure 14, assuming the fluid has density ρ = 900
kg/m3.

17. Figure 15(A) shows a ramp inclined at 30◦ leading into a swimming pool. Calculate the fluid force on the ramp.

4

6

Water surface

(A)

30˚

3

10

y
f (y)

Vertical
change Δy

(B)

Water surface

60˚

FIGURE 15
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solution A horizontal strip at depth y has length 6 and width

�y

sin 30◦ = 2�y.

Thus,

F = 2ρg

∫ 4

0
6y dy = 96ρg.

If distances are in feet, then ρg = w = 62.5 lb/ft3 and F = 6000 lb; if distances are in meters, then ρg = 9800 N/m3

and F = 940,800 N.

Calculate the fluid force on one side of the plate (an isosceles triangle) shown in Figure 15(B).
19. The massive Three Gorges Dam on China’s Yangtze River has height 185 m (Figure 16). Calculate the force on the
dam, assuming that the dam is a trapezoid of base 2000 m and upper edge 3000 m, inclined at an angle of 55◦ to the
horizontal (Figure 17).

FIGURE 16 Three Gorges Dam on
the Yangtze River

2000 m

3000 m

185 m55°

FIGURE 17

solution Let y = 0 be at the bottom of the dam, so that the top of the dam is at y = 185. Then the width of the dam

at height y is 2000 + 1000y
185 . The dam is inclined at an angle of 55◦ to the horizontal, so the height of a horizontal strip is

�y

sin 55◦ ≈ 1.221�y

so that the area of such a strip is

1.221

(
2000 + 1000y

185

)
�y

Then

F = ρg

∫ 185

0
1.221y

(
2000 + 1000y

185

)
dy = ρg

∫ 185

0
2442y + 6.6y2 dy = ρg(1221y2 + 2.2y3)

∣∣∣∣185

0

= 55,718,300ρg = 55,718,300 · 9800 = 5.460393400 × 1011 N.

A square plate of side 3 m is submerged in water at an incline of 30◦ with the horizontal. Calculate the fluid force
on one side of the plate if the top edge of the plate lies at a depth of 6 m.

21. The trough in Figure 18 is filled with corn syrup, whose weight density is 90 lb/ft3. Calculate the force on the front
side of the trough.

a

dh

b

FIGURE 18

solution Place the origin along the top edge of the trough with the positive y-axis pointing downward. The width of
the front side of the trough varies linearly from b when y = 0 to a when y = h; thus, the width of the front side of the
trough at depth y feet is given by

b + a − b

h
y.
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Now,

F = w

∫ h

0
y

(
b + a − b

h
y

)
dy = w

(
1

2
by2 + a − b

3h
y3
) ∣∣∣∣h

0
= w

(
b

6
+ a

3

)
h2 = (15b + 30a)h2 lb.

Calculate the fluid pressure on one of the slanted sides of the trough in Figure 18 when it is filled with corn syrup
as in Exercise 21.

Further Insights and Challenges
23. The end of the trough in Figure 19 is an equilateral triangle of side 3. Assume that the trough is filled with water to
height H . Calculate the fluid force on each side of the trough as a function of H and the length l of the trough.

H

l

3

FIGURE 19

solution Place the origin at the lower vertex of the trough and orient the positive y-axis pointing upward. First,

consider the faces at the front and back ends of the trough. A horizontal strip at height y has a length of
2y√

3
and is at a

depth of H − y. Thus,

F = w

∫ H

0
(H − y)

2y√
3

dy = w

(
H√

3
y2 − 2

3
√

3
y3
)∣∣∣∣H

0
=

√
3

9
wH 3.

For the slanted sides, we note that each side makes an angle of 60◦ with the horizontal. If we let � denote the length of
the trough, then

F = 2w�√
3

∫ H

0
(H − y) dy =

√
3

3
�wH 2.

A rectangular plate of side � is submerged vertically in a fluid of density w, with its top edge at depth h. Show
that if the depth is increased by an amount �h, then the force on a side of the plate increases by wA�h, where A is
the area of the plate.

25. Prove that the force on the side of a rectangular plate of area A submerged vertically in a fluid is equal to p0A, where
p0 is the fluid pressure at the center point of the rectangle.

solution Let � denote the length of the vertical side of the rectangle, x denote the length of the horizontal side of the
rectangle, and suppose the top edge of the rectangle is at depth y = m. The pressure at the center of the rectangle is then

p0 = w

(
m + �

2

)
,

and the force on the side of the rectangular plate is

F =
∫ �+m

m
wxy dy = wx

2

[
(� + m)2 − m2

]
= wx�

2
(� + 2m) = Aw

(
�

2
+ m

)
= Ap0.

If the density of a fluid varies with depth, then the pressure at depth y is a function p(y) (which need not equal
wy as in the case of constant density). Use Riemann sums to argue that the total force F on the flat side of a submerged
object submerged vertically is F = ∫ b

a f (y)p(y) dy, where f (y) is the width of the side at depth y.

9.3 Center of Mass

Preliminary Questions
1. What are the x- and y-moments of a lamina whose center of mass is located at the origin?

solution Because the center of mass is located at the origin, it follows that Mx = My = 0.

2. A thin plate has mass 3. What is the x-moment of the plate if its center of mass has coordinates (2, 7)?

solution The x-moment of the plate is the product of the mass of the plate and the y-coordinate of the center of mass.
Thus, Mx = 3(7) = 21.

3. The center of mass of a lamina of total mass 5 has coordinates (2, 1). What are the lamina’s x- and y-moments?

solution The x-moment of the plate is the product of the mass of the plate and the y-coordinate of the center of
mass, whereas the y-moment is the product of the mass of the plate and the x-coordinate of the center of mass. Thus,
Mx = 5(1) = 5, and My = 5(2) = 10.

4. Explain how the Symmetry Principle is used to conclude that the centroid of a rectangle is the center of the rectangle.

solution Because a rectangle is symmetric with respect to both the vertical line and the horizontal line through the
center of the rectangle, the Symmetry Principle guarantees that the centroid of the rectangle must lie along both of these
lines. The only point in common to both lines of symmetry is the center of the rectangle, so the centroid of the rectangle
must be the center of the rectangle.
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Exercises
1. Four particles are located at points (1, 1), (1, 2), (4, 0), (3, 1).

(a) Find the moments Mx and My and the center of mass of the system, assuming that the particles have equal mass m.

(b) Find the center of mass of the system, assuming the particles have masses 3, 2, 5, and 7, respectively.

solution

(a) Because each particle has mass m,

Mx = m(1) + m(2) + m(0) + m(1) = 4m;
My = m(1) + m(1) + m(4) + m(3) = 9m;

and the total mass of the system is 4m. Thus, the coordinates of the center of mass are(
My

M
,
Mx

M

)
=
(

9m

4m
,

4m

4m

)
=
(

9

4
, 1

)
.

(b) With the indicated masses of the particles,

Mx = 3(1) + 2(2) + 5(0) + 7(1) = 14;
My = 3(1) + 2(1) + 5(4) + 7(3) = 46;

and the total mass of the system is 17. Thus, the coordinates of the center of mass are(
My

M
,
Mx

M

)
=
(

46

17
,

14

17

)
.

Find the center of mass for the system of particles of masses 4, 2, 5, 1 located at (1, 2), (−3, 2), (2, −1), (4, 0).
3. Point masses of equal size are placed at the vertices of the triangle with coordinates (a, 0), (b, 0), and (0, c). Show

that the center of mass of the system of masses has coordinates
( 1

3 (a + b), 1
3 c
)
.

solution Let each particle have mass m. The total mass of the system is then 3m. and the moments are

Mx = 0(m) + 0(m) + c(m) = cm; and

My = a(m) + b(m) + 0(m) = (a + b)m.

Thus, the coordinates of the center of mass are(
My

M
,
Mx

M

)
=
(

(a + b)m

3m
,
cm

3m

)
=
(

a + b

3
,
c

3

)
.

Point masses of mass m1, m2, and m3 are placed at the points (−1, 0), (3, 0), and (0, 4).

(a) Suppose that m1 = 6. Find m2 such that the center of mass lies on the y-axis.

(b) Suppose that m1 = 6 and m2 = 4. Find the value of m3 such that yCM = 2.

5. Sketch the lamina S of constant density ρ = 3 g/cm2 occupying the region beneath the graph of y = x2 for 0 ≤ x ≤ 3.

(a) Use Eqs. (1) and (2) to compute Mx and My .

(b) Find the area and the center of mass of S.

solution A sketch of the lamina is shown below

y

x

8

4

6

2

0 2 31 1.5 2.50.5

(a) Using Eq. (2),

Mx = 3
∫ 9

0
y(3 − √

y) dy =
(

9y2

2
− 6

5
y5/2

) ∣∣∣∣9
0

= 729

10
.

Using Eq. (1),

My = 3
∫ 3

0
x(x2) dx = 3x4

4

∣∣∣∣3
0

= 243

4
.
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(b) The area of the lamina is

A =
∫ 3

0
x2 dx = x3

3

∣∣∣∣3
0

= 9 cm2.

With a constant density of ρ = 3 g/cm2, the mass of the lamina is M = 27 grams, and the coordinates of the center of
mass are (

My

M
,
Mx

M

)
=
(

243/4

27
,

729/10

27

)
=
(

9

4
,

27

10

)
.

Use Eqs. (1) and (3) to find the moments and center of mass of the lamina S of constant density ρ = 2 g/cm2

occupying the region between y = x2 and y = 9x over [0, 3]. Sketch S, indicating the location of the center of mass.

7. Find the moments and center of mass of the lamina of uniform density ρ occupying the region underneath y = x3

for 0 ≤ x ≤ 2.

solution With uniform density ρ,

Mx = 1

2
ρ

∫ 2

0
(x3)2 dx = 64ρ

7
and My = ρ

∫ 2

0
x(x3) dx = 32ρ

5
.

The mass of the lamina is

M = ρ

∫ 2

0
x3 dx = 4ρ,

so the coordinates of the center of mass are (
My

M
,
Mx

M

)
=
(

8

5
,

16

7

)
.

Calculate Mx (assuming ρ = 1) for the region underneath the graph of y = 1 − x2 for 0 ≤ x ≤ 1 in two ways,
first using Eq. (2) and then using Eq. (3).

9. Let T be the triangular lamina in Figure 17.
(a) Show that the horizontal cut at height y has length 4 − 2

3y and use Eq. (2) to compute Mx (with ρ = 1).
(b) Use the Symmetry Principle to show that My = 0 and find the center of mass.

y

−2 2

6

x

FIGURE 17 Isosceles triangle.

solution
(a) The equation of the line from (2, 0) to (0, 6) is y = −3x + 6, so

x = 2 − 1

3
y.

The length of the horizontal cut at height y is then

2

(
2 − 1

3
y

)
= 4 − 2

3
y,

and

Mx =
∫ 6

0
y

(
4 − 2

3
y

)
dy = 24.

(b) Because the triangular lamina is symmetric with respect to the y-axis, xcm = 0, which implies that My = 0. The
total mass of the lamina is

M = 2
∫ 2

0
(−3x + 6) dx = 12,

so ycm = 24/12. Finally, the coordinates of the center of mass are (0, 2).

In Exercises 10–17, find the centroid of the region lying underneath the graph of the function over the given interval.

f (x) = 6 − 2x, [0, 3]11. f (x) = √
x, [1, 4]

solution The moments of the region are

Mx = 1

2

∫ 4

1
x dx = 15

4
and My =

∫ 4

1
x
√

x dx = 62

5
.
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The area of the region is

A =
∫ 4

1

√
x dx = 14

3
,

so the coordinates of the centroid are (
My

A
,
Mx

A

)
=
(

93

35
,

45

56

)
.

f (x) = x3, [0, 1]13. f (x) = 9 − x2, [0, 3]
solution The moments of the region are

Mx = 1

2

∫ 3

0
(9 − x2)2 dx = 324

5
and My =

∫ 3

0
x(9 − x2) dx = 81

4
.

The area of the region is

A =
∫ 3

0
(9 − x2) dx = 18,

so the coordinates of the centroid are (
My

A
,
Mx

A

)
=
(

9

8
,

18

5

)
.

f (x) = (1 + x2)−1/2, [0, 3]
15. f (x) = e−x , [0, 4]
solution The moments of the region are

Mx = 1

2

∫ 4

0
e−2x dx = 1

4

(
1 − e−8

)
and My =

∫ 4

0
xe−x dx = −e−x(x + 1)

∣∣∣∣4
0

= 1 − 5e−4.

The area of the region is

A =
∫ 4

0
e−x dx = 1 − e−4,

so the coordinates of the centroid are (
My

A
,
Mx

A

)
=
(

1 − 5e−4

1 − e−4
,

1 − e−8

4(1 − e−4)

)
.

f (x) = ln x, [1, 2]17. f (x) = sin x, [0, π ]
solution The moments of the region are

Mx = 1

2

∫ π

0
sin2 x dx = 1

4
(x − sin x cos x)

∣∣∣∣π
0

= π

4
; and

My =
∫ π

0
x sin x dx = (−x cos x + sin x)

∣∣∣∣π
0

= π.

The area of the region is

A =
∫ π

0
sin x dx = 2,

so the coordinates of the centroid are (
My

A
,
Mx

A

)
=
(π

2
,
π

8

)
.

Calculate the moments and center of mass of the lamina occupying the region between the curves y = x and
y = x2 for 0 ≤ x ≤ 1.

19. Sketch the region between y = x + 4 and y = 2 − x for 0 ≤ x ≤ 2. Using symmetry, explain why the centroid of
the region lies on the line y = 3. Verify this by computing the moments and the centroid.

solution A sketch of the region is shown below.
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0.5

1

2

3

4

5

y

x
1.0 1.5 2.0

The region is clearly symmetric about the line y = 3, so we expect the centroid of the region to lie along this line. We find

Mx = 1

2

∫ 2

0

(
(x + 4)2 − (2 − x)2

)
dx = 24;

My =
∫ 2

0
x ((x + 4) − (2 − x)) dx = 28

3
; and

A =
∫ 2

0
((x + 4) − (2 − x)) dx = 8.

Thus, the coordinates of the centroid are
( 7

6 , 3
)
.

In Exercises 20–25, find the centroid of the region lying between the graphs of the functions over the given interval.

y = x, y = √
x, [0, 1]21. y = x2, y = √

x, [0, 1]
solution The moments of the region are

Mx = 1

2

∫ 1

0
(x − x4) dx = 3

20
and My =

∫ 1

0
x(

√
x − x2) dx = 3

20
.

The area of the region is

A =
∫ 1

0
(
√

x − x2) dx = 1

3
,

so the coordinates of the centroid are (
9

20
,

9

20

)
.

Note: This makes sense, since the functions are inverses of each other. This makes the region symmetric with respect to
the line y = x. Thus, by the symmetry principle, the center of mass must lie on that line.

y = x−1, y = 2 − x, [1, 2]
23. y = ex , y = 1, [0, 1]
solution The moments of the region are

Mx = 1

2

∫ 1

0
(e2x − 1) dx = e2 − 3

4
and My =

∫ 1

0
x(ex − 1) dx =

(
xex − ex − 1

2
x2
)∣∣∣∣1

0
= 1

2
.

The area of the region is

A =
∫ 1

0
(ex − 1) dx = e − 2,

so the coordinates of the centroid are (
1

2(e − 2)
,

e2 − 3

4(e − 2)

)
.

y = ln x, y = x − 1, [1, 3]25. y = sin x, y = cos x, [0, π/4]
solution The moments of the region are

Mx = 1

2

∫ π/4

0
(cos2 x − sin2 x) dx = 1

2

∫ π/4

0
cos 2x dx = 1

4
; and

My =
∫ π/4

0
x(cos x − sin x) dx = [(x − 1) sin x + (x + 1) cos x]

∣∣∣∣π/4

0
= π

√
2

4
− 1.
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The area of the region is

A =
∫ π/4

0
(cos x − sin x) dx = √

2 − 1,

so the coordinates of the centroid are (
π

√
2 − 4

4(
√

2 − 1)
,

1

4(
√

2 − 1)

)
.

Sketch the region enclosed by y = x + 1, and y = (x − 1)2, and find its centroid.
27. Sketch the region enclosed by y = 0, y = (x + 1)3, and y = (1 − x)3, and find its centroid.

solution A sketch of the region is shown below.

1

1

−1

y

x

The moments of the region are

Mx = 1

2

(∫ 0

−1
(x + 1)6 dx +

∫ 1

0
(1 − x)6 dx

)
= 1

7
; and

My = 0 by the Symmetry Principle.

The area of the region is

A =
∫ 0

−1
(x + 1)3 dx +

∫ 1

0
(1 − x)3 dx = 1

2
,

so the coordinates of the centroid are
(
0, 2

7

)
.

In Exercises 28–32, find the centroid of the region.

Top half of the ellipse
(x

2

)2 +
(y

4

)2 = 1
29. Top half of the ellipse

(x

a

)2 +
(y

b

)2 = 1 for arbitrary a, b > 0

solution The equation of the top half of the ellipse is

y =
√

b2 − b2x2

a2

Thus,

Mx = 1

2

∫ a

−a

⎛
⎝
√

b2 − b2x2

a2

⎞
⎠

2

dx = 2ab2

3
.

By the Symmetry Principle, My = 0. The area of the region is one-half the area of an ellipse with axes of length a and

b; i.e., 1
2πab. Finally, the coordinates of the centroid are(

0,
4b

3π

)
.

Semicircle of radius r with center at the origin
31. Quarter of the unit circle lying in the first quadrant

solution By the Symmetry Principle, the center of mass must lie on the line y = x in the first quadrant. Therefore,

we need only calculate one of the moments of the region. With y =
√

1 − x2, we find

My =
∫ 1

0
x
√

1 − x2 dx = 1

3
.

The area of the region is one-quarter of the area of a unit circle; i.e., 1
4π . Thus, the coordinates of the centroid are(

4

3π
,

4

3π

)
.
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Region between y = x(a − x) and the x-axis for a > 0.
33. Find the centroid of the shaded region of the semicircle of radius r in Figure 18. What is the centroid when r = 1
and h = 1

2 ? Hint: Use geometry rather than integration to show that the area of the region is r2 sin−1(
√

1 − h2/r2) −
h
√

r2 − h2).

y

x
hr

FIGURE 18

solution From the symmetry of the region, it is obvious that the centroid lies along the y-axis. To determine the
y-coordinate of the centroid, we must calculate the moment about the x-axis and the area of the region. Now, the length
of the horizontal cut of the semicircle at height y is√

r2 − y2 −
(

−
√

r2 − y2
)

= 2
√

r2 − y2.

Therefore, taking ρ = 1, we find

Mx = 2
∫ r

h
y

√
r2 − y2 dy = 2

3
(r2 − h2)3/2.

Observe that the region is comprised of a sector of the circle with the triangle between the two radii removed. The angle
of the sector is 2θ , where θ = sin−1

√
1 − h2/r2, so the area of the sector is 1

2 r2(2θ) = r2 sin−1
√

1 − h2/r2. The

triangle has base 2
√

r2 − h2 and height h, so the area is h
√

r2 − h2. Therefore,

YCM = Mx

A
=

2
3 (r2 − h2)3/2

r2 sin−1
√

1 − h2/r2 − h
√

r2 − h2
.

When r = 1 and h = 1/2, we find

YCM =
2
3 (3/4)3/2

sin−1
√

3
2 −

√
3

4

= 3
√

3

4π − 3
√

3
.

Sketch the region between y = xn and y = xm for 0 ≤ x ≤ 1, where m > n ≥ 0 and find the COM of the region.
Find a pair (n, m) such that the COM lies outside the region.

In Exercises 35–37, use the additivity of moments to find the COM of the region.

35. Isosceles triangle of height 2 on top of a rectangle of base 4 and height 3 (Figure 19)

y

−2 2

2

3

x

FIGURE 19

solution The region is symmetric with respect to the y-axis, so My = 0 by the Symmetry Principle. The moment
about the x-axis for the rectangle is

Mrect
x = 1

2

∫ 2

−2
32 dx = 18,

whereas the moment about the x-axis for the triangle is

M
triangle
x =

∫ 5

3
y(10 − 2y) dy = 44

3
.

The total moment about the x-axis is then

Mx = Mrect
x + M

triangle
x = 18 + 44

3
= 98

3
.

Because the area of the region is 12 + 4 = 16, the coordinates of the center of mass are(
0,

49

24

)
.
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An ice cream cone consisting of a semicircle on top of an equilateral triangle of side 6 (Figure 20)
37. Three-quarters of the unit circle (remove the part in the fourth quadrant)

solution By the Symmetry Principle, the center of mass must lie on the line y = −x. Let region 1 be the semicircle
above the x-axis and region 2 be the quarter circle in the third quadrant. Because region 1 is symmetric with respect to
the y-axis, M1

y = 0 by the Symmetry Principle. Furthermore

M2
y =

∫ 0

−1
x
√

1 − x2 dx = −1

3
.

Thus, My = M1
y + M2

y = 0 + (− 1
3 ) = − 1

3 . The area of the region is 3π/4, so the coordinates of the centroid are(
− 4

9π
,

4

9π

)
.

Let S be the lamina of mass density ρ = 1 obtained by removing a circle of radius r from the circle of radius 2r

shown in Figure 21. Let MS
x and MS

y denote the moments of S. Similarly, let M
big
y and Msmall

y be the y-moments of
the larger and smaller circles.

(a) Use the Symmetry Principle to show that MS
x = 0.

(b) Show that MS
y = M

big
y − Msmall

y using the additivity of moments.

(c) Find M
big
y and Msmall

y using the fact that the COM of a circle is its center. Then compute MS
y using (b).

(d) Determine the COM of S.

39. Find the COM of the laminas in Figure 22 obtained by removing squares of side 2 from a square of side 8.

8

22

8

FIGURE 22

solution Start with the square on the left. Place the square so that the bottom left corner is at (0, 0). By the Symmetry
Principle, the center of mass must lie on the lines y = x and y = 8 − x. The only point in common to these two lines is
(4, 4), so the center of mass is (4, 4).

Now consider the square on the right. Place the square as above. By the symmetry principle, xcm = 4. Now, let s1
denote the square in the upper left, s2 denote the square in the upper right, and B denote the entire square. Then

Ms1
x = 1

2

∫ 2

0
(82 − 62) dx = 28;

Ms2
x = 1

2

∫ 8

6
(82 − 62) dx = 28; and

MB
x = 1

2

∫ 8

0
82 dx = 256.

By the additivity of moments, Mx = 256 − 28 − 28 = 200. Finally, the area of the region is A = 64 − 4 − 4 = 56, so
the coordinates of the center of mass are (

4,
200

56

)
=
(

4,
25

7

)
.

Further Insights and Challenges

A median of a triangle is a segment joining a vertex to the midpoint of the opposite side. Show that the centroid
of a triangle lies on each of its medians, at a distance two-thirds down from the vertex. Then use this fact to prove
that the three medians intersect at a single point. Hint: Simplify the calculation by assuming that one vertex lies at
the origin and another on the x-axis.

41. Let P be the COM of a system of two weights with masses m1 and m2 separated by a distance d. Prove Archimedes’
Law of the (weightless) Lever: P is the point on a line between the two weights such that m1L1 = m2L2, where Lj is
the distance from mass j to P .

solution Place the lever along the x-axis with mass m1 at the origin. Then My = m2d and the x-coordinate of the
center of mass, P , is

m2d

m1 + m2
.

Thus,

L1 = m2d

m1 + m2
, L2 = d − m2d

m1 + m2
= m1d

m1 + m2
,

and

L1m1 = m1
m2d

m1 + m2
= m2

m1d

m1 + m2
= L2m2.

Find the COM of a system of two weights of masses m1 and m2 connected by a lever of length d whose mass
density ρ is uniform. Hint: The moment of the system is the sum of the moments of the weights and the lever.

43. Symmetry Principle Let R be the region under the graph of f (x) over the interval [−a, a], where f (x) ≥
0. Assume that R is symmetric with respect to the y-axis.
(a) Explain why f (x) is even—that is, why f (x) = f (−x).
(b) Show that xf (x) is an odd function.
(c) Use (b) to prove that My = 0.
(d) Prove that the COM of R lies on the y-axis (a similar argument applies to symmetry with respect to the x-axis).
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solution

(a) By the definition of symmetry with respect to the y-axis, f (x) = f (−x), so f is even.

(b) Let g(x) = xf (x) where f is even. Then

g(−x) = −xf (−x) = −xf (x) = −g(x),

and thus g is odd.

(c) My = ρ

∫ a

−a
xf (x) dx = 0 since xf (x) is an odd function.

(d) By part (c), xcm = My

M
= 0

M
= 0 so the center of mass lies along the y-axis.

Prove directly that Eqs. (2) and (3) are equivalent in the following situation. Let f (x) be a positive decreasing
function on [0, b] such that f (b) = 0. Set d = f (0) and g(y) = f −1(y). Show that

1

2

∫ b

0
f (x)2 dx =

∫ d

0
yg(y) dy

Hint: First apply the substitution y = f (x) to the integral on the left and observe that dx = g′(y) dy. Then apply
Integration by Parts.

45. Let R be a lamina of uniform density submerged in a fluid of density w (Figure 23). Prove the following law: The fluid
force on one side of R is equal to the area of R times the fluid pressure on the centroid. Hint: Let g(y) be the horizontal
width of R at depth y. Express both the fluid pressure [Eq. (2) in Section 8.2] and y-coordinate of the centroid in terms
of g(y).

y

yCM

y (depth)

Fluid level

Centroid

g(y)

FIGURE 23

solution Let ρ denote the uniform density of the submerged lamina. Then

Mx = ρ

∫ b

a
yg(y) dy,

and the mass of the lamina is

M = ρ

∫ b

a
g(y) dy = ρA,

where A is the area of the lamina. Thus, the y-coordinate of the centroid is

ycm = ρ
∫ b
a yg(y) dy

ρA
=
∫ b
a yg(y) dy

A
.

Now, the fluid force on the lamina is

F = w

∫ b

a
yg(y) dy = w

∫ b
a yg(y) dy

A
A = wycmA.

In other words, the fluid force on the lamina is equal to the fluid pressure at the centroid of the lamina times the area of
the lamina.

9.4 Taylor Polynomials

Preliminary Questions
1. What is T3(x) centered at a = 3 for a function f (x) such that f (3) = 9, f ′(3) = 8, f ′′(3) = 4, and f ′′′(3) = 12?

solution In general, with a = 3,

T3(x) = f (3) + f ′(3)(x − 3) + f ′′(3)

2
(x − 3)2 + f ′′′(3)

6
(x − 3)3.

Using the information provided, we find

T3(x) = 9 + 8(x − 3) + 2(x − 3)2 + 2(x − 3)3.
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2. The dashed graphs in Figure 9 areTaylor polynomials for a functionf (x). Which of the two is a Maclaurin polynomial?

x x
2 31

2

31

-1 -1

y = f (x)y = f (x)

y y

(A) (B)

FIGURE 9

solution A Maclaurin polynomial always gives the value of f (0) exactly. This is true for the Taylor polynomial
sketched in (B); thus, this is the Maclaurin polynomial.

3. For which value of x does the Maclaurin polynomial Tn(x) satisfy Tn(x) = f (x), no matter what f (x) is?

solution A Maclaurin polynomial always gives the value of f (0) exactly.

4. Let Tn(x) be the Maclaurin polynomial of a function f (x) satisfying |f (4)(x)| ≤ 1 for all x. Which of the following
statements follow from the error bound?

(a) |T4(2) − f (2)| ≤ 2
3

(b) |T3(2) − f (2)| ≤ 2
3

(c) |T3(2) − f (2)| ≤ 1
3

solution For a function f (x) satisfying |f (4)(x)| ≤ 1 for all x,

|T3(2) − f (2)| ≤ 1

24
|f (4)(x)|24 ≤ 16

24
<

2

3
.

Thus, (b) is the correct answer.

Exercises
In Exercises 1–14, calculate the Taylor polynomials T2(x) and T3(x) centered at x = a for the given function and value
of a.

1. f (x) = sin x, a = 0

solution First, we calculate and evaluate the needed derivatives:

f (x) = sin x f (a) = 0

f ′(x) = cos x f ′(a) = 1

f ′′(x) = − sin x f ′′(a) = 0

f ′′′(x) = − cos x f ′′′(a) = −1

Now,

T2(x) = f (a) + f ′(a)(x − a) + f ′′(a)

2
(x − a)2 = 0 + 1(x − 0) + 0

2
(x − 0)2 = x; and

T3(x) = f (a) + f ′(a)(x − a) + f ′′(a)

2
(x − a)2 + f ′′′(a)

6
(x − a)3

= 0 + 1(x − 0) + 0

2
(x − 0)2 + −1

6
(x − 0)3 = x − 1

6
x3.

f (x) = sin x, a = π

2
3. f (x) = 1

1 + x
, a = 2

solution First, we calculate and evaluate the needed derivatives:

f (x) = 1

1 + x
f (a) = 1

3

f ′(x) = −1

(1 + x)2
f ′(a) = −1

9

f ′′(x) = 2

(1 + x)3
f ′′(a) = 2

27

f ′′′(x) = −6

(1 + x)4
f ′′′(a) = − 2

27
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Now,

T2(x) = f (a) + f ′(a)(x − a) + f ′′(a)

2! (x − a)2 = 1

3
− 1

9
(x − 2) + 2/27

2! (x − 2)2

= 1

3
− 1

9
(x − 2) + 1

27
(x − 2)2

T3(x) = f (a) + f ′(a)(x − a) + f ′′(a)

2! (x − a)2 + f ′′′(a)

3! (x − a)3

= 1

3
− 1

9
(x − 2) + 2/27

2! (x − 2)2 − 2/27

3! (x − 2)3 = 1

3
− 1

9
(x − 2) + 1

27
(x − 2)2 − 1

81
(x − 2)3

f (x) = 1

1 + x2
, a = −1

5. f (x) = x4 − 2x, a = 3

solution First calculate and evaluate the needed derivatives:

f (x) = x4 − 2x f (a) = 75

f ′(x) = 4x3 − 2 f ′(a) = 106

f ′′(x) = 12x2 f ′′(a) = 108

f ′′′(x) = 24x f ′′′(a) = 72

Now,

T2(x) = f (a) + f ′(a)(x − a) + f ′′(a)

2
(x − a)2 = 75 + 106(x − 3) + 108

2
(x − 3)2

= 75 + 106(x − 3) + 54(x − 3)2

T3(x) = f (a) + f ′(a)(x − a) + f ′′(a)

2
(x − a)2 + f ′′′(a)

3! (x − a)3

= 75 + 106(x − 3) + 108

2
(x − 3)2 + 72

3! (x − 3)3

= 75 + 106(x − 3) + 54(x − 3)2 + 12(x − 3)3

f (x) = x2 + 1

x + 1
, a = −2

7. f (x) = tan x, a = 0

solution First, we calculate and evaluate the needed derivatives:

f (x) = tan x f (a) = 0

f ′(x) = sec2 x f ′(a) = 1

f ′′(x) = 2 sec2 x tan x f ′′(a) = 0

f ′′′(x) = 2 sec4 x + 4 sec2 x tan2 x f ′′′(a) = 2

Now,

T2(x) = f (a) + f ′(a)(x − a) + f ′′(a)

2
(x − a)2 = 0 + 1(x − 0) + 0

2
(x − 0)2 = x; and

T3(x) = f (a) + f ′(a)(x − a) + f ′′(a)

2
(x − a)2 + f ′′′(a)

6
(x − a)3

= 0 + 1(x − 0) + 0

2
(x − 0)2 + 2

6
(x − 0)3 = x + 1

3
x3.

f (x) = tan x, a = π

4

9. f (x) = e−x + e−2x , a = 0

solution First, we calculate and evaluate the needed derivatives:

f (x) = e−x + e−2x f (a) = 2

f ′(x) = −e−x − 2e−2x f ′(a) = −3

f ′′(x) = e−x + 4e−2x f ′′(a) = 5

f ′′′(x) = −e−x − 8e−2x f ′′′(a) = −9
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Now,

T2(x) = f (a) + f ′(a)(x − a) + f ′′(a)

2
(x − a)2

= 2 + (−3)(x − 0) + 5

2
(x − 0)2 = 2 − 3x + 5

2
x2; and

T3(x) = f (a) + f ′(a)(x − a) + f ′′(a)

2
(x − a)2 + f ′′′(a)

6
(x − a)3

= 2 + (−3)(x − 0) + 5

2
(x − 0)2 + −9

6
(x − 0)3 = 2 − 3x + 5

2
x2 − 3

2
x3.

f (x) = e2x , a = ln 2
11. f (x) = x2e−x , a = 1

solution First, we calculate and evaluate the needed derivatives:

f (x) = x2e−x f (a) = 1/e

f ′(x) = (2x − x2)e−x f ′(a) = 1/e

f ′′(x) = (x2 − 4x + 2)e−x f ′′(a) = −1/e

f ′′′(x) = (−x2 + 6x − 6)e−x f ′′′(a) = −1/e

Now,

T2(x) = f (a) + f ′(a)(x − a) + f ′′(a)

2
(x − a)2

= 1

e
+ 1

e
(x − 1) + −1/e

2
(x − 1)2 = 1

e
+ 1

e
(x − 1) − 1

2e
(x − 1)2; and

T3(x) = f (a) + f ′(a)(x − a) + f ′′(a)

2
(x − a)2 + f ′′′(a)

6
(x − a)3

= 1

e
+ 1

e
(x − 1) + −1/e

2
(x − 1)2 +

(−1/e

6

)
(x − 1)3

= 1

e
+ 1

e
(x − 1) − 1

2e
(x − 1)2 − 1

6e
(x − 1)3.

f (x) = cosh 2x, a = 013. f (x) = ln x

x
, a = 1

solution First calculate and evaluate the needed derivatives:

f (x) = ln x

x
f (a) = 0

f ′(x) = 1 − ln x

x2
f (a) = 1

f ′′(x) = −3 + 2 ln x

x3
f (a) = −3

f ′′′(x) = 11 − 6 ln x

x4
f (a) = 11

so that

T2(x) = f (a) + f ′(a)(x − a) + f ′′(a)

2! (x − a)2 = 0 + 1(x − 1) + −3

2! (x − 1)2

= (x − 1) − 3

2
(x − 1)2

T3(x) = f (a) + f ′(a)(x − a) + f ′′(a)

2! (x − a)2 + f ′′′(a)

3! (x − a)3

= 0 + 1(x − 1) + −3

2! (x − 1)2 + 11

3! (x − 1)3

= (x − 1) − 3

2
(x − 1)2 + 11

6
(x − 1)3

f (x) = ln(x + 1), a = 0
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15. Show that the nth Maclaurin polynomial for ex is

Tn(x) = 1 + x

1! + x2

2! + · · · + xn

n!
solution With f (x) = ex , it follows that f (n)(x) = ex and f (n)(0) = 1 for all n. Thus,

Tn(x) = 1 + 1(x − 0) + 1

2
(x − 0)2 + · · · + 1

n! (x − 0)n = 1 + x + x2

2
+ · · · + xn

n! .

Show that the nth Taylor polynomial for
1

x + 1
at a = 1 is

Tn(x) = 1

2
− (x − 1)

4
+ (x − 1)2

8
+ · · · + (−1)n

(x − 1)n

2n+1

17. Show that the Maclaurin polynomials for sin x are

T2n+1(x) = T2n+2(x) = x − x3

3! + x5

5! − · · · + (−1)n
x2n+1

(2n + 1)!
solution Let f (x) = sin x. Then

f (x) = sin x f (0) = 0

f ′(x) = cos x f ′(0) = 1

f ′′(x) = − sin x f ′′(0) = 0

f ′′′(x) = − cos x f ′′′(0) = −1

f (4)(x) = sin x f (4)(0) = 0

f (5)(x) = cos x f (5)(0) = 1

...
...

Consequently,

T2n+1(x) = x − x3

3! + x5

5! + · · · + (−1)n
x2n+1

(2n + 1)!
and

T2n+2(x) = x − x3

3! + x5

5! + · · · + (−1)n
x2n+1

(2n + 1)! + 0 = T2n+1(x).

Show that the Maclaurin polynomials for ln(1 + x) are

Tn(x) = x − x2

2
+ x3

3
+ · · · + (−1)n−1 xn

n

In Exercises 19–24, find Tn(x) at x = a for all n.

19. f (x) = 1

1 + x
, a = 0

solution We have

1

1 + x
= (ln(1 + x))′

so that from Exercise 18, letting g(x) = ln(1 + x),

f (n)(x) = g(n+1)(x) = (−1)nn!(x + 1)−1−n and f (n)(0) = (−1)nn!
Then

Tn(x) = f (0) + f ′(0)x + f ′′(0)

2! x2 + · · · + f (n)(0)

n! xn

= 1 − x + 2!
2!x

2 − 3!
3!x

3 + · · · + (−1)n
n!
n!x

n

= 1 − x + x2 − x3 + · · · + (−1)nxn

f (x) = 1

x − 1
, a = 4

21. f (x) = ex , a = 1

solution Let f (x) = ex . Then f (n)(x) = ex and f (n)(1) = e for all n. Therefore,

Tn(x) = e + e(x − 1) + e

2! (x − 1)2 + · · · + e

n! (x − 1)n.

f (x) = x−2, a = 2



June 13, 2011 LTSV SSM Second Pass

582 C H A P T E R 9 FURTHER APPLICATIONS OF THE INTEGRAL AND TAYLOR POLYNOMIALS

23. f (x) = cos x, a = π

4

solution Let f (x) = cos x. Then

f (x) = cos x f (π/4) = 1√
2

f ′(x) = − sin x f ′(π/4) = − 1√
2

f ′′(x) = − cos x f ′′(π/4) = − 1√
2

f ′′′(x) = sin x f ′′′(π/4) = 1√
2

This pattern of four values repeats indefinitely. Thus,

f (n)(π/4) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(−1)(n+1)/2 1√
2
, n odd

(−1)n/2 1√
2
, n even

and

Tn(x) = 1√
2

− 1√
2

(
x − π

4

)
− 1

2
√

2

(
x − π

4

)2 + 1

6
√

2

(
x − π

4

)3 · · ·.

In general, the coefficient of (x − π/4)n is

± 1

(
√

2)n!
with the pattern of signs +, −, −, +, +, −, −, . . . .

f (θ) = sin 3θ , a = 0In Exercises 25–28, find T2(x) and use a calculator to compute the error |f (x) − T2(x)| for the given values of a and x.

25. y = ex , a = 0, x = −0.5

solution Let f (x) = ex . Then f ′(x) = ex , f ′′(x) = ex , f (a) = 1, f ′(a) = 1 and f ′′(a) = 1. Therefore

T2(x) = 1 + 1(x − 0) + 1

2
(x − 0)2 = 1 + x + 1

2
x2,

and

T2(−0.5) = 1 + (−0.5) + 1

2
(−0.5)2 = 0.625.

Using a calculator, we find

f (−0.5) = 1√
e

= 0.606531,

so

|T2(−0.5) − f (−0.5)| = 0.0185.

y = cos x, a = 0, x = π

12

27. y = x−2/3, a = 1, x = 1.2

solution Let f (x) = x−2/3. Then f ′(x) = − 2
3x−5/3, f ′′(x) = 10

9 x−8/3, f (1) = 1, f ′(1) = − 2
3 , and f ′′(1) = 10

9 .
Thus

T2(x) = 1 − 2

3
(x − 1) + 10

2 · 9
(x − 1)2 = 1 − 2

3
(x − 1) + 5

9
(x − 1)2

and

T2(1.2) = 1 − 2

3
(0.2) + 5

9
(0.2)2 = 8

9
≈ 0.88889

Using a calculator, f (1.2) = (1.2)−2/3 ≈ 0.88555 so that

|T2(1.2) − f (1.2)| ≈ 0.00334

y = esin x , a = π

2
, x = 1.5
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29. Compute T3(x) for f (x) = √
x centered at a = 1. Then use a plot of the error |f (x) − T3(x)| to find a value

c > 1 such that the error on the interval [1, c] is at most 0.25.

solution We have

f (x) = x1/2 f (1) = 1

f ′(x) = 1

2
x−1/2 f ′(1) = 1

2

f ′′(x) = −1

4
x−3/2 f ′′(1) = −1

4

f ′′′(x) = 3

8
x−5/2 f ′′′(1) = 3

8

Therefore

T3(x) = 1 + 1

2
(x − 1) − 1

4 · 2! (x − 1)2 + 3

8 · 3! (x − 1)3 = 1 + 1

2
(x − 1) − 1

8
(x − 1)2 + 1

16
(x − 1)3

A plot of |f (x) − T3(x)| is below.

1.0 1.5 2.0 2.5 3.0

0.05

0.10

0.15

0.20

0.25

y

x

It appears that for x ∈ [1, 2.9] that the error does not exceed 0.25. The error at x = 3 appears to just exceed 0.25.

Plot f (x) = 1/(1 + x) together with the Taylor polynomials Tn(x) at a = 1 for 1 ≤ n ≤ 4 on the interval
[−2, 8] (be sure to limit the upper plot range).

(a) Over which interval does T4(x) appear to approximate f (x) closely?

(b) What happens for x < −1?

(c) Use your computer algebra system to produce and plot T30 together with f (x) on [−2, 8]. Over which interval
does T30 appear to give a close approximation?

31. Let T3(x) be the Maclaurin polynomial of f (x) = ex . Use the error bound to find the maximum possible value of
|f (1.1) − T3(1.1)|. Show that we can take K = e1.1.

solution Since f (x) = ex , we have f (n)(x) = ex for all n; since ex is increasing, the maximum value of ex on the

interval [0, 1.1] is K = e1.1. Then by the error bound,

∣∣∣e1.1 − T3(1.1)

∣∣∣ ≤ K
(1.1 − 0)4

4! = e1.11.14

24
≈ 0.183

Let T2(x) be the Taylor polynomial of f (x) = √
x at a = 4. Apply the error bound to find the maximum possible

value of the error |f (3.9) − T2(3.9)|.
In Exercises 33–36, compute the Taylor polynomial indicated and use the error bound to find the maximum possible size
of the error. Verify your result with a calculator.

33. f (x) = cos x, a = 0; |cos 0.25 − T5(0.25)|
solution The Maclaurin series for cos x is

1 − x2

2! + x4

4! − x6

6! + . . .

so that

T5(x) = 1 − x2

2
+ x4

24

T5(0.25) ≈ 0.9689127604

In addition, f (6)(x) = − cos x so that |f (6)(x)| ≤ 1 and we may take K = 1 in the error bound formula. Then

|cos 0.25 − T5(0.25)| ≤ K
0.256

6! = 1

212 · 6! ≈ 3.390842014 · 10−7

(The true value is cos 0.25 ≈ 0.9689124217 and the difference is in fact ≈ 3.387 · 10−7.)

f (x) = x11/2, a = 1; |f (1.2) − T4(1.2)|
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35. f (x) = x−1/2, a = 4; |f (4.3) − T3(4.3)|
solution We have

f (x) = x−1/2 f (4) = 1

2

f ′(x) = −1

2
x−3/2 f ′(4) = − 1

16

f ′′(x) = 3

4
x−5/2 f ′′(4) = 3

128

f ′′′(x) = −15

8
x−7/2 f ′′′(4) = − 15

1024

f (4)(x) = 105

16
x−9/2

so that

T3(x) = 1

2
− 1

16
(x − 4) + 3

256
(x − 4)2 − 5

2048
(x − 4)3

Using the error bound formula,

|f (4.3) − T3(4.3)| ≤ K
|4.3 − 4|4

4! = 27K

80,000

where K is a number such that |f (4)(x)| ≤ K for x between 4 and 4.3. Now, f (4)(x) is a decreasing function for x > 1,
so it takes its maximum value on [4, 4.3] at x = 4; there, its value is

K = 105

16
4−9/2 = 105

8192

so that

|f (4.3) − T3(4.3)| ≤ 27 105
8192

80,000
= 27 · 105

8192 · 80,000
≈ 4.3258667 · 10−6

f (x) = √
1 + x, a = 8; |√9.02 − T3(8.02)|37. Calculate the Maclaurin polynomial T3(x) for f (x) = tan−1 x. Compute T3

( 1
2

)
and use the error bound to find a

bound for the error
∣∣ tan−1 1

2 − T3
( 1

2

)∣∣. Refer to the graph in Figure 10 to find an acceptable value of K . Verify your

result by computing
∣∣ tan−1 1

2 − T3
( 1

2

)∣∣ using a calculator.

y

x
21 3

−1

1

2

3

4

5

FIGURE 10 Graph of f (4)(x) = −24x(x2 − 1)

(x2 + 1)4
, where f (x) = tan−1 x.

solution Let f (x) = tan−1 x. Then

f (x) = tan−1 x f (0) = 0

f ′(x) = 1

1 + x2
f ′(0) = 1

f ′′(x) = −2x

(1 + x2)2
f ′′(0) = 0

f ′′′(x) = (1 + x2)2(−2) − (−2x)(2)(1 + x2)(2x)

(1 + x2)4
f ′′′(0) = −2

and

T3(x) = 0 + 1(x − 0) + 0

2
(x − 0)2 + −2

6
(x − 0)3 = x − x3

3
.
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Since f (4)(x) ≤ 5 for x ≥ 0, we may take K = 5 in the error bound; then,∣∣∣∣tan−1
(

1

2

)
− T3

(
1

2

)∣∣∣∣ ≤ 5(1/2)4

4! = 5

384
.

Let f (x) = ln(x3 − x + 1). The third Taylor polynomial at a = 1 is

T3(x) = 2(x − 1) + (x − 1)2 − 7

3
(x − 1)3

Find the maximum possible value of |f (1.1) − T3(1.1)|, using the graph in Figure 11 to find an acceptable value
of K . Verify your result by computing |f (1.1) − T3(1.1)| using a calculator.

39. Let T2(x) be the Taylor polynomial at a = 0.5 for f (x) = cos(x2). Use the error bound to find the maximum

possible value of |f (0.6) − T2(0.6)|. Plot f (3)(x) to find an acceptable value of K .

solution We have

f (x) = cos(x2) f (0.5) = cos(0.25) ≈ 0.9689

f ′(x) = −2x sin(x2) f ′(0.5) = − sin(0.25) ≈ −0.2474039593

f ′′(x) = −4x2 cos(x2) − 2 sin(x2) f ′′(0.5) = − cos(0.25) − 2 sin(0.25) ≈ −1.463720340

f (3)(x) = 8x3 sin(x2) − 12x cos(x2)

so that

T2(x) = 0.9689 − 0.2472039593(x − 0.5) − 0.73186017(x − 0.5)2

and T2(0.6) ≈ 0.9368534237. A graph of f (3)(x) for x near 0.5 is below.

−3
0.4 0.5 0.6 0.7

−4

−5

−6

−7
y

x

Clearly the maximum value of |f (3)(x)| on [0.5, 0.6] is bounded by 7 (near x = 0.5), so we may take K = 7; then

|f (0.6) − T2(0.6)| ≤ K
|0.6 − 0.5|3

3! = 7

6000
≈ 0.0011666667

Calculate the Maclaurin polynomial T2(x) for f (x) = sech x and use the error bound to find the maximum

possible value of
∣∣f ( 1

2

)− T2
( 1

2

)∣∣. Plot f ′′′(x) to find an acceptable value of K .

In Exercises 41–44, use the error bound to find a value of n for which the given inequality is satisfied. Then verify your
result using a calculator.

41. | cos 0.1 − Tn(0.1)| ≤ 10−7, a = 0

solution Using the error bound with K = 1 (every derivative of f (x) = cos x is ± sin x or ± cos x, so |f (n)(x)| ≤ 1
for all n), we have

|Tn(0.1) − cos 0.1| ≤ (0.1)n+1

(n + 1)! .

With n = 3,

(0.1)4

4! ≈ 4.17 × 10−6 > 10−7,

but with n = 4,

(0.1)5

5! ≈ 8.33 × 10−8 < 10−7,

so we choose n = 4. Now,

T4(x) = 1 − 1

2
x2 + 1

24
x4,

so

T4(0.1) = 1 − 1

2
(0.1)2 + 1

24
(0.1)4 = 0.995004166.

Using a calculator, cos 0.1 = 0.995004165, so

|T4(0.1) − cos 0.1| = 1.387 × 10−8 < 10−7.

| ln 1.3 − Tn(1.3)| ≤ 10−4, a = 1
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43. |√1.3 − Tn(1.3)| ≤ 10−6, a = 1

solution Using the Error Bound, we have

|√1.3 − Tn(1.3)| ≤ K
|1.3 − 1|n+1

(n + 1)! = K
|0.3|n+1

(n + 1)! ,

where K is a number such that |f (n+1)(x)| ≤ K for x between 1 and 1.3. For f (x) = √
x, |f (n)(x)| is decreasing for

x > 1, hence the maximum value of |f (n+1)(x)| occurs at x = 1. We may therefore take

K = |f (n+1)(1)| = 1 · 3 · 5 · · · (2n + 1)

2n+1

= 1 · 3 · 5 · · · (2n + 1)

2n+1
· 2 · 4 · 6 · · · (2n + 2)

2 · 4 · 6 · · · (2n + 2)
= (2n + 2)!

(n + 1)!22n+2
.

Then

|√1.3 − Tn(1.3)| ≤ (2n + 2)!
(n + 1)!22n+2

· |0.3|n+1

(n + 1)! = (2n + 2)!
[(n + 1)!]2 (0.075)n+1.

With n = 9

(20)!
[(10)!]2 (0.075)10 = 1.040 × 10−6 > 10−6,

but with n = 10

(22)!
[(11)!]2 (0.075)11 = 2.979 × 10−7 < 10−6.

Hence, n = 10 will guarantee the desired accuracy. Using technology to compute and evaluate T10(1.3) gives

T10(1.3) ≈ 1.140175414,
√

1.3 ≈ 1.140175425

and

|√1.3 − T10(1.3)| ≈ 1.1 × 10−8 < 10−6

|e−0.1 − Tn(−0.1)| ≤ 10−6, a = 045. Let f (x) = e−x and T3(x) = 1 − x + x2

2
− x3

6
. Use the error bound to show that for all x ≥ 0,

|f (x) − T3(x)| ≤ x4

24

If you have a GU, illustrate this inequality by plotting f (x) − T3(x) and x4/24 together over [0, 1].
solution Note that f (n)(x) = ±e−x , so that |f (n)(x)| = f (x). Now, f (x) is a decreasing function for x ≥ 0, so that

for any c > 0, |f (n)(x)| takes its maximum value at x = 0; this value is e0 = 1. Thus we may take K = 1 in the error
bound equation. Thus for any x,

|f (x) − T3(x)| ≤ K
|x − 0|4

4! = x4

24

A plot of f (x) − T3(x) and x4

24 is shown below.

2

1 2 3 4 5 6 7

4

6

8

10

1
24

y

x4

x

e−x − T3(x)

Use the error bound with n = 4 to show that∣∣∣∣∣sin x −
(

x − x3

6

)∣∣∣∣∣ ≤ |x|5
120

(for all x)
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47. Let Tn(x) be the Taylor polynomial for f (x) = ln x at a = 1, and let c > 1. Show that

| ln c − Tn(c)| ≤ |c − 1|n+1

n + 1

Then find a value of n such that | ln 1.5 − Tn(1.5)| ≤ 10−2.

solution With f (x) = ln x, we have

f ′(x) = x−1, f ′′(x) = −x−2, f ′′′(x) = 2x−3, f (4)(x) = −6x−4,

and, in general,

f (k+1)(x) = (−1)kk! x−k−1.

Notice that |f (k+1)(x)| = k!|x|−k−1 is a decreasing function for x > 0. Therefore, the maximum value of |f (k+1)(x)|
on [1, c] is |f (k+1)(1)|. Using the Error Bound, we have

|ln c − Tn(c)| ≤ K
|c − 1|n+1

(n + 1)! ,

where K is a number such that |f (n+1)(x)| ≤ K for x between 1 and c. From part (a), we know that we may take
K = |f (n+1)(1)| = n!. Then

|ln c − Tn(c)| ≤ n! |c − 1|n+1

(n + 1)! = |c − 1|n+1

n + 1
.

Evaluating at c = 1.5 gives

|ln 1.5 − Tn(1.5)| ≤ |1.5 − 1|n+1

n + 1
= (0.5)n+1

n + 1
.

With n = 3,

(0.5)4

4
= 0.015625 > 10−2.

but with n = 4,

(0.5)5

5
= 0.00625 < 10−2.

Hence, n = 4 will guarantee the desired accuracy.

Let n ≥ 1. Show that if |x| is small, then

(x + 1)1/n ≈ 1 + x

n
+ 1 − n

2n2
x2

Use this approximation with n = 6 to estimate 1.51/6.

49. Verify that the third Maclaurin polynomial for f (x) = ex sin x is equal to the product of the third Maclaurin
polynomials of ex and sin x (after discarding terms of degree greater than 3 in the product).

solution Let f (x) = ex sin x. Then

f (x) = ex sin x f (0) = 0

f ′(x) = ex(cos x + sin x) f ′(0) = 1

f ′′(x) = 2ex cos x f ′′(0) = 2

f ′′′(x) = 2ex(cos x − sin x) f ′′′(0) = 2

and

T3(x) = 0 + (1)x + 2

2!x
2 + 2

3!x
3 = x + x2 + x3

3
.

Now, the third Maclaurin polynomial for ex is 1 + x + x2

2 + x3

6 , and the third Maclaurin polynomial for sin x is x − x3

6 .
Multiplying these two polynomials, and then discarding terms of degree greater than 3, yields

ex sin x ≈ x + x2 + x3

3
,

which agrees with the Maclaurin polynomial obtained from the definition.

Find the fourth Maclaurin polynomial for f (x) = sin x cos x by multiplying the fourth Maclaurin polynomials
for f (x) = sin x and f (x) = cos x.
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51. Find the Maclaurin polynomials Tn(x) for f (x) = cos(x2). You may use the fact that Tn(x) is equal to the sum of
the terms up to degree n obtained by substituting x2 for x in the nth Maclaurin polynomial of cos x.

solution The Maclaurin polynomials for cos x are of the form

T2n(x) = 1 − x2

2
+ x4

4! + · · · + (−1)n
x2n

(2n)! .

Accordingly, the Maclaurin polynomials for cos(x2) are of the form

T4n(x) = 1 − x4

2
+ x8

4! + · · · + (−1)n
x4n

(2n)! .

Find the Maclaurin polynomials of 1/(1 + x2) by substituting −x2 for x in the Maclaurin polynomials of
1/(1 − x).

53. Let f (x) = 3x3 + 2x2 − x − 4. Calculate Tj (x) for j = 1, 2, 3, 4, 5 at both a = 0 and a = 1. Show that
T3(x) = f (x) in both cases.

solution Let f (x) = 3x3 + 2x2 − x − 4. Then

f (x) = 3x3 + 2x2 − x − 4 f (0) = −4 f (1) = 0

f ′(x) = 9x2 + 4x − 1 f ′(0) = −1 f ′(1) = 12

f ′′(x) = 18x + 4 f ′′(0) = 4 f ′′(1) = 22

f ′′′(x) = 18 f ′′′(0) = 18 f ′′′(1) = 18

f (4)(x) = 0 f (4)(0) = 0 f (4)(1) = 0

f (5)(x) = 0 f (5)(0) = 0 f (5)(1) = 0

At a = 0,

T1(x) = −4 − x;
T2(x) = −4 − x + 2x2;
T3(x) = −4 − x + 2x2 + 3x3 = f (x);
T4(x) = T3(x); and

T5(x) = T3(x).

At a = 1,

T1(x) = 12(x − 1);
T2(x) = 12(x − 1) + 11(x − 1)2;
T3(x) = 12(x − 1) + 11(x − 1)2 + 3(x − 1)3 = −4 − x + 2x2 + 3x3 = f (x);
T4(x) = T3(x); and

T5(x) = T3(x).

Let Tn(x) be the nth Taylor polynomial at x = a for a polynomial f (x) of degree n. Based on the result of
Exercise 53, guess the value of |f (x) − Tn(x)|. Prove that your guess is correct using the error bound.

55. Let s(t) be the distance of a truck to an intersection. At time t = 0, the truck is 60 meters from the intersection,
travels away from it with a velocity of 24 m/s, and begins to slow down with an acceleration of a = −3 m/s2. Determine
the second Maclaurin polynomial of s(t), and use it to estimate the truck’s distance from the intersection after 4 s.

solution Place the origin at the intersection, so that s(0) = 60 (the truck is traveling away from the intersection). The
second Maclaurin polynomial of s(t) is

T2(t) = s(0) + s′(0)t + s′′(0)

2
t2

The conditions of the problem tell us that s(0) = 60, s′(0) = 24, and s′′(0) = −3. Thus

T2(t) = 60 + 24t − 3

2
t2

so that after 4 seconds,

T2(4) = 60 + 24 · 4 − 3

2
· 42 = 132 m

The truck is 132 m past the intersection.

A bank owns a portfolio of bonds whose value P(r) depends on the interest rate r (measured in percent; for
example, r = 5 means a 5% interest rate). The bank’s quantitative analyst determines that

P(5) = 100,000,
dP

dr

∣∣∣∣
r=5

= −40,000,
d2P

dr2

∣∣∣∣
r=5

= 50,000
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57. A narrow, negatively charged ring of radius R exerts a force on a positively charged particle P located at distance x

above the center of the ring of magnitude

F(x) = − kx

(x2 + R2)3/2

where k > 0 is a constant (Figure 12).

(a) Compute the third-degree Maclaurin polynomial for F(x).

(b) Show that F ≈ −(k/R3)x to second order. This shows that when x is small, F(x) behaves like a restoring force
similar to the force exerted by a spring.

(c) Show that F(x) ≈ −k/x2 when x is large by showing that

lim
x→∞

F(x)

−k/x2
= 1

Thus, F(x) behaves like an inverse square law, and the charged ring looks like a point charge from far away.

x

x

R

F(x)

Nearly linear
here

Nearly inverse square
here

P

FIGURE 12

solution
(a) Start by computing and evaluating the necessary derivatives:

F(x) = − kx

(x2 + R2)3/2
F(0) = 0

F ′(x) = k(2x2 − R2)

(x2 + R2)5/2
F ′(0) = − k

R3

F ′′(x) = 3kx(3R2 − 2x2)

(x2 + R2)7/2
F ′′(0) = 0

F ′′′(x) = 3k(8x4 − 24x2R2 + 3R4)

(x2 + R2)9/2
F ′′′(0) = 9k

R5

so that

T3(x) = F(0) + F ′(0)x + F ′′(0)

2! x2 + F ′′′(0)

3! x3 = − k

R3
x + 3k

2R5 x3

(b) To degree 2, F(x) ≈ T3(x) ≈ − k
R3 x as we may ignore the x3 term of T3(x).

(c) We have

lim
x→∞

F(x)

−k/x2
= lim

x→∞

(
−x2

k
· −kx

(x2 + R2)3/2

)
= lim

x→∞
x3

(x2 + R2)3/2

= lim
x→∞

1

x−3(x2 + R2)3/2
= lim

x→∞
1

(1 + R2/x2)3/2

= 1

Thus as x grows large, F(x) looks like an inverse square function.

A light wave of wavelength λ travels from A to B by passing through an aperture (circular region) located in a
plane that is perpendicular to AB (see Figure 13 for the notation). Let f (r) = d ′ + h′; that is, f (r) is the distance
AC + CB as a function of r .

(a) Show that f (r) =
√

d2 + r2 +
√

h2 + r2, and use the Maclaurin polynomial of order 2 to show that

f (r) ≈ d + h + 1

2

(
1

d
+ 1

h

)
r2

(b) The Fresnel zones, used to determine the optical disturbance at B, are the concentric bands bounded by the
circles of radius Rn such that f (Rn) = d + h + nλ/2. Show that Rn ≈ √

nλL, where L = (d−1 + h−1)−1.

(c) Estimate the radii R1 and R100 for blue light (λ = 475 × 10−7 cm) if d = h = 100 cm.

59. Referring to Figure 14, let a be the length of the chord AC of angle θ of the unit circle. Derive the following
approximation for the excess of the arc over the chord.

θ − a ≈ θ3

24

Hint: Show that θ − a = θ − 2 sin(θ/2) and use the third Maclaurin polynomial as an approximation.
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C

1

B

A

b

a
θ

θ
2

FIGURE 14 Unit circle.

solution Draw a line from the center O of the circle to B, and label the point of intersection of this line with AC as

D. Then CD = a
2 , and the angle COB is θ

2 . Since CO = 1, we have

sin
θ

2
= a

2

so that a = 2 sin(θ/2). Thus θ − a = θ − 2 sin(θ/2). Now, the third Maclaurin polynomial for f (θ) = sin(θ/2) can be
computed as follows: f (0) = 0, f ′(x) = 1

2 cos(θ/2) so that f ′(0) = 1
2 . f ′′(x) = − 1

4 sin(θ/2) and f ′′(0) = 0. Finally,

f ′′′(x) = − 1
8 cos(θ/2) and f ′′′(0) = − 1

8 . Thus

T3(θ) = f (0) + f ′(0)θ + f ′′(0)

2! θ2 + f ′′′(0)

3! θ3 = 1

2
θ − 1

48
θ3

Finally,

θ − a = θ − 2 sin
θ

2
≈ θ − 2T3(θ) = θ −

(
θ − 1

24
θ3
)

= θ3

24

To estimate the length θ of a circular arc of the unit circle, the seventeenth-century Dutch scientist Christian
Huygens used the approximation θ ≈ (8b − a)/3, where a is the length of the chord AC of angle θ and b is length
of the chord AB of angle θ/2 (Figure 14).

(a) Prove that a = 2 sin(θ/2) and b = 2 sin(θ/4), and show that the Huygens approximation amounts to the
approximation

θ ≈ 16

3
sin

θ

4
− 2

3
sin

θ

2

(b) Compute the fifth Maclaurin polynomial of the function on the right.

(c) Use the error bound to show that the error in the Huygens approximation is less than 0.00022|θ |5.

Further Insights and Challenges
61. Show that the nth Maclaurin polynomial of f (x) = arcsin x for n odd is

Tn(x) = x + 1

2

x3

3
+ 1 · 3

2 · 4

x5

5
+ · · · + 1 · 3 · 5 · · · (n − 2)

2 · 4 · 6 · · · (n − 1)

xn

n

solution Let f (x) = sin−1 x. Then

f (x) = sin−1 x f (0) = 0

f ′(x) = 1√
1 − x2

f ′(0) = 1

f ′′(x) = −1

2
(1 − x2)−3/2(−2x) f ′′(0) = 0

f ′′′(x) = 2x2 + 1

(1 − x2)5/2
f ′′′(0) = 1

f (4)(x) = −3x(2x2 + 3)

(1 − x2)7/2
f (4)(0) = 0

f (5)(x) = 24x4 + 72x2 + 9

(1 − x2)9/2
f (5)(0) = 9

...
...

f (7)(0) = 225

and

T7(x) = x + x3

3! + 9x5

5! + 225x7

7! = x + 1

2

x3

3
+ 1

2

3

4

x5

5
+ 1

2

3

4

5

6

x7

7
.

Thus, we can infer that

Tn(x) = x + 1

2
· x3

3
+ 1

2

3

4

x5

5
+ 1

2

3

4

5

6

x7

7
+ · · · + 1

2

3

4
· · · n − 2

n − 1

xn

n
.

Let x ≥ 0 and assume that f (n+1)(t) ≥ 0 for 0 ≤ t ≤ x. Use Taylor’s Theorem to show that the nth Maclaurin
polynomial Tn(x) satisfies

Tn(x) ≤ f (x) for all x ≥ 0
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63. Use Exercise 62 to show that for x ≥ 0 and all n,

ex ≥ 1 + x + x2

2! + · · · + xn

n!
Sketch the graphs of ex , T1(x), and T2(x) on the same coordinate axes. Does this inequality remain true for x < 0?

solution Let f (x) = ex . Then f (n)(x) = ex for all n. Because ex > 0 for all x, it follows from Exercise 62 that
f (x) ≥ Tn(x) for all x ≥ 0 and for all n. For f (x) = ex ,

Tn(x) = 1 + x + x2

2! + · · · + xn

n! ,

thus,

ex ≥ 1 + x + x2

2! + · · · + xn

n! .

From the figure below, we see that the inequality does not remain true for x < 0, as T2(x) ≥ ex for x < 0.

x

y

21−1−2

2

4

6

ex

T1

T2

This exercise is intended to reinforce the proof of Taylor’s Theorem.

(a) Show that f (x) = T0(x) +
∫ x

a
f ′(u) du.

(b) Use Integration by Parts to prove the formula∫ x

a
(x − u)f (2)(u) du = −f ′(a)(x − a) +

∫ x

a
f ′(u) du

(c) Prove the case n = 2 of Taylor’s Theorem:

f (x) = T1(x) +
∫ x

a
(x − u)f (2)(u) du.

In Exercises 65–69, we estimate integrals using Taylor polynomials. Exercise 66 is used to estimate the error.

65. Find the fourth Maclaurin polynomial T4(x) for f (x) = e−x2
, and calculate I = ∫ 1/2

0 T4(x) dx as an estimate∫ 1/2
0 e−x2

dx. A CAS yields the value I ≈ 0.461281. How large is the error in your approximation? Hint: T4(x) is

obtained by substituting −x2 in the second Maclaurin polynomial for ex .

solution Following the hint, since the second Maclaurin polynomial for ex is

1 + x + x2

2

we substitute −x2 for x to get the fourth Maclaurin polynomial for ex2
:

T4(x) = 1 − x2 + x4

2

Then ∫ 1/2

0
e−x2

dx ≈
∫ 1/2

0
T4(x) dx =

(
x − 1

3
x3 + 1

10
x5
) ∣∣∣∣1/2

0
= 443

960
≈ 0.4614583333

Using a CAS, we have
∫ 1/2

0 e−x2
dx ≈ 0.4612810064, so the error is about 1.77 × 10−4.

Approximating Integrals Let L > 0. Show that if two functions f (x) and g(x) satisfy |f (x) − g(x)| < L for
all x ∈ [a, b], then ∣∣∣∣

∫ b

a
f (x) dx −

∫ b

a
g(x) dx

∣∣∣∣ < L(b − a)

67. Let T4(x) be the fourth Maclaurin polynomial for cos x.

(a) Show that | cos x − T4(x)| ≤ ( 1
2

)6
/6! for all x ∈ [0, 1

2

]
. Hint: T4(x) = T5(x).

(b) Evaluate
∫ 1/2

0 T4(x) dx as an approximation to
∫ 1/2

0 cos x dx. Use Exercise 66 to find a bound for the size of the
error.

solution

(a) Let f (x) = cos x. Then

T4(x) = 1 − x2

2
+ x4

24
.

Moreover, with a = 0, T4(x) = T5(x) and

|cos x − T4(x)| ≤ K
|x|6
6! ,
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where K is a number such that |f (6)(u)| ≤ K for u between 0 and x. Now |f (6)(u)| = | cos u| ≤ 1, so we may take
K = 1. Finally, with the restriction x ∈ [0, 1

2 ],

|cos x − T4(x)| ≤ (1/2)6

6! ≈ 0.000022.

(b)

∫ 1/2

0

(
1 − x2

2
+ x4

24

)
dx = 1841

3840
≈ 0.479427.

By (a) and Exercise 66, the error associated with this approximation is less than or equal to

(1/2)6

6!
(

1

2
− 0

)
= 1

92,160
≈ 1.1 × 10−5.

Note that
∫ 1/2

0
cos x dx ≈ 0.4794255, so the actual error is roughly 1.5 × 10−6.

Let Q(x) = 1 − x2/6. Use the error bound for sin x to show that∣∣∣∣ sin x

x
− Q(x)

∣∣∣∣ ≤ |x|4
5!

Then calculate
∫ 1

0 Q(x) dx as an approximation to
∫ 1

0 (sin x/x) dx and find a bound for the error.

69. (a) Compute the sixth Maclaurin polynomial T6(x) for sin(x2) by substituting x2 in P(x) = x − x3/6, the third
Maclaurin polynomial for sin x.

(b) Show that | sin(x2) − T6(x)| ≤ |x|10

5! .

Hint: Substitute x2 for x in the error bound for | sin x − P(x)|, noting that P(x) is also the fourth Maclaurin polynomial
for sin x.

(c) Use T6(x) to approximate
∫ 1/2

0
sin(x2) dx and find a bound for the error.

solution Let s(x) = sin x and f (x) = sin(x2). Then

(a) The third Maclaurin polynomial for sin x is

S3(x) = x − x3

6

so, substituting x2 for x, we see that the sixth Maclaurin polynomial for sin(x2) is

T6(x) = x2 − x6

6

(b) Since all derivatives of s(x) are either ± cos x or ± sin x, they are bounded in magnitude by 1, so we may take K = 1
in the Error Bound for sin x. Since the third Maclaurin polynomial S3(x) for sin x is also the fourth Maclaurin polynomial
S4(x), we have

|sin x − S3(x)| = |sin x − S4(x)| ≤ K
|x|5
5! = |x|5

5!
Now substitute x2 for x in the above inequality and note from part (a) that S3(x2) = T6(x) to get

|sin(x2) − S3(x2)| = |sin(x2) − T6(x)| ≤ |x2|5
5! = |x|10

5!
(c)

∫ 1/2

0
sin(x2) dx ≈

∫ 1/2

0
T6(x) dx =

(
1

3
x3 − 1

42
x7
) ∣∣∣∣1/2

0
≈ 0.04148065476

From part (b), the error is bounded by

x10

5! = (1/2)10

120
= 1

1024 · 120
≈ 8.138020833 × 10−6

The true value of the integral is approximately 0.04148102420, which is consistent with the computed error bound.

Prove by induction that for all k,

dj

dxj

(
(x − a)k

k!

)
= k(k − 1) · · · (k − j + 1)(x − a)k−j

k!

dj

dxj

(
(x − a)k

k!

)∣∣∣∣∣
x=a

=
{

1 for k = j

0 for k �= j

Use this to prove that Tn(x) agrees with f (x) at x = a to order n.

71. Let a be any number and let

P(x) = anxn + an−1xn−1 + · · · + a1x + a0

be a polynomial of degree n or less.

(a) Show that if P (j)(a) = 0 for j = 0, 1, . . . , n, then P(x) = 0, that is, aj = 0 for all j . Hint: Use induction, noting
that if the statement is true for degree n − 1, then P ′(x) = 0.
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(b) Prove that Tn(x) is the only polynomial of degree n or less that agrees with f (x) at x = a to order n. Hint: If Q(x)

is another such polynomial, apply (a) to P(x) = Tn(x) − Q(x).

solution

(a) Note first that if n = 0, i.e. if P(x) = a0 is a constant, then the statement holds: if P (0)(a) = P(a) = 0, then
a0 = 0 so that P(x) = 0. Next, assume the statement holds for all polynomials of degree n − 1 or less, and let P(x) be
a polynomial of degree at most n with P (j)(a) = 0 for j = 0, 1, . . . , n. If P(x) has degree less than n, then we know
P(x) = 0 by induction, so assume the degree of P(x) is exactly n. Then

P(x) = anxn + an−1xn−1 + · · · + a1x + a0

where an �= 0; also,

P ′(x) = nanxn−1 + (n − 1)an−1xn−2 + · · · + a1

Note that P (j+1)(a) = (P ′)(j)(a) for j = 0, 1, . . . , n − 1. But then

0 = P (j+1)(a) = (P ′)(j)(a) for all j = 0, 1, . . . , n − 1

Since P ′(x) has degree at most n − 1, it follows by induction that P ′(x) = 0. Thus an = an−1 = · · · = a1 = 0 so that
P(x) = a0. But P(a) = 0 so that a0 = 0 as well and thus P(x) = 0.

(b) Suppose Q(x) is a polynomial of degree at most n that agrees with f (x) at x = a up to order n. Let P(x) =
Tn(x) − Q(x). Note that P(x) is a polynomial of degree at most n since both Tn(x) and Q(x) are. Since both Tn(x) and
Q(x) agree with f (x) at x = a to order n, we have

T
(j)
n (a) = f (j)(a) = Q(j)(a), j = 0, 1, 2, . . . , n

Thus

P (j)(a) = T
(j)
n (a) − Q(j)(a) = 0 for j = 0, 1, 2, . . . , n

But then by part (a), P(x) = 0 so that Tn(x) = Q(x).

CHAPTER REVIEW EXERCISES

In Exercises 1–4, calculate the arc length over the given interval.

1. y = x5

10
+ x−3

6
, [1, 2]

solution Let y = x5

10
+ x−3

6
. Then

1 + (y′)2 = 1 +
(

x4

2
− x−4

2

)2

= 1 + x8

4
− 1

2
+ x−8

4

= x8

4
+ 1

2
+ x−8

4
=
(

x4

2
+ x−4

2

)2

.

Because 1
2 (x4 + x−4) > 0 on [1, 2], the arc length is

s =
∫ 2

1

√
1 + (y′)2 dx =

∫ 2

1

(
x4

2
+ x−4

2

)
dx =

(
x5

10
− x−3

6

)∣∣∣∣∣
2

1

= 779

240
.

y = ex/2 + e−x/2, [0, 2]
3. y = 4x − 2, [−2, 2]

solution Let y = 4x − 2. Then

√
1 + (y′)2 =

√
1 + 42 = √

17.

Hence,

s =
∫ 2

−2

√
17 dx = 4

√
17.

y = x2/3, [1, 8]
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5. Show that the arc length of y = 2
√

x over [0, a] is equal to
√

a(a + 1) + ln(
√

a + √
a + 1). Hint: Apply the

substitution x = tan2 θ to the arc length integral.

solution Let y = 2
√

x. Then y′ = 1√
x

, and

√
1 + (y′)2 =

√
1 + 1

x
=
√

x + 1

x
= 1√

x

√
x + 1.

Thus,

s =
∫ a

0

1√
x

√
1 + x dx.

We make the substitution x = tan2θ , dx = 2 tan θ sec2θ dθ . Then

s =
∫ x=a

x=0

1

tan θ
sec θ · 2 tan θ sec2θ dθ = 2

∫ x=a

x=0
sec3θ dθ.

We use a reduction formula to obtain

s = 2

(
tan θ sec θ

2
+ 1

2
ln | sec θ + tan θ |

) ∣∣∣∣x=a

x=0
= (

√
x
√

1 + x + ln |√1 + x + √
x|)
∣∣∣∣a
0

= √
a
√

1 + a + ln |√1 + a + √
a| = √a(a + 1) + ln

(√
a + √

a + 1
)

.

Compute the trapezoidal approximation T5 to the arc length s of y = tan x over
[
0, π

4

]
.In Exercises 7–10, calculate the surface area of the solid obtained by rotating the curve over the given interval about the

x-axis.

7. y = x + 1, [0, 4]
solution Let y = x + 1. Then y′ = 1, and

y

√
1 + y′2 = (x + 1)

√
1 + 1 = √

2(x + 1).

Thus,

SA = 2π

∫ 4

0

√
2(x + 1) dx = 2

√
2π

(
x2

2
+ x

)∣∣∣∣∣
4

0

= 24
√

2π.

y = 2

3
x3/4 − 2

5
x5/4, [0, 1]9. y = 2

3
x3/2 − 1

2
x1/2, [1, 2]

solution Let y = 2

3
x3/2 − 1

2
x1/2. Then

y′ = √
x − 1

4
√

x
,

and

1 + (y′)2 = 1 +
(√

x − 1

4
√

x

)2
= 1 +

(
x − 1

2
+ 1

16x

)
= x + 1

2
+ 1

16x
=
(√

x + 1

4
√

x

)2
.

Because
√

x + 1√
x

≥ 0, the surface area is

2π

∫ b

a
y

√
1 + (y′)2 dx = 2π

∫ 2

1

(
2

3
x3/2 −

√
x

2

)(√
x + 1

4
√

x

)
dx

= 2π

∫ 2

1

(
2

3
x2 + 1

6
x − 1

2
x − 1

8

)
dx = 2π

(
2x3

9
− x2

6
− 1

8
x

) ∣∣∣∣2
1

= 67

36
π.

y = 1

2
x2, [0, 2]

11. Compute the total surface area of the coin obtained by rotating the region in Figure 1 about the x-axis. The top and
bottom parts of the region are semicircles with a radius of 1 mm.

1 mm

4 mm
x

y

FIGURE 1
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solution The generating half circle of the edge is y = 2 +
√

1 − x2. Then,

y′ = −2x

2
√

1 − x2
= −x√

1 − x2
,

and

1 + (y′)2 = 1 + x2

1 − x2
= 1

1 − x2
.

The surface area of the edge of the coin is

2π

∫ 1

−1
y

√
1 + (y′)2dx = 2π

∫ 1

−1

(
2 +

√
1 − x2

) 1√
1 − x2

dx

= 2π

(
2
∫ 1

−1

dx√
1 − x2

+
∫ 1

−1

√
1 − x2√
1 − x2

dx

)

= 2π

(
2 arcsin x|1−1 +

∫ 1

−1
dx

)

= 2π(2π + 2) = 4π2 + 4π.

We now add the surface area of the two sides of the disk, which are circles of radius 2. Hence the surface area of the coin
is: (

4π2 + 4π
)

+ 2π · 22 = 4π2 + 12π.

Calculate the fluid force on the side of a right triangle of height 3 m and base 2 m submerged in water vertically,
with its upper vertex at the surface of the water.

13. Calculate the fluid force on the side of a right triangle of height 3 m and base 2 m submerged in water vertically, with
its upper vertex located at a depth of 4 m.

solution We need to find an expression for the horizontal width f (y) at depth y.

3

2

y

f (y)

y – 4

4

By similar triangles we have:

f (y)

y − 4
= 2

3
so f (y) = 2(y − 4)

3
.

Hence, the force on the side of the triangle is

F = ρg

∫ 7

4
yf (y) dy = 2ρg

3

∫ 7

4

(
y2 − 4y

)
dy = 2ρg

3

(
y3

3
− 2y2

)∣∣∣∣∣
7

4

= 18ρg.

For water, ρ = 103; g = 9.8, so F = 18 · 9800 = 176,400 N.

A plate in the shape of the shaded region in Figure 2 is submerged in water. Calculate the fluid force on a side of
the plate if the water surface is y = 1.

15. Figure 3 shows an object whose face is an equilateral triangle with 5-m sides. The object is 2 m thick and is submerged
in water with its vertex 3 m below the water surface. Calculate the fluid force on both a triangular face and a slanted
rectangular edge of the object.

5 2

3
Water level

FIGURE 3
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solution Start with each triangular face of the object. Place the origin at the upper vertex of the triangle, with the
positive y-axis pointing downward. Note that because the equilateral triangle has sides of length 5 feet, the height of the

triangle is
5
√

3

2
feet. Moreover, the width of the triangle at location y is

2y√
3

. Thus,

F = 2ρg√
3

∫ 5
√

3/2

0
(y + 3)y dy = 2ρg√

3

(
1

3
y3 + 3

2
y2
)∣∣∣∣5

√
3/2

0
= ρg

4
(125 + 75

√
3) ≈ 624,514 N.

Now, consider the slanted rectangular edges of the object. Each edge is a constant 2 feet wide and makes an angle of 60◦
with the horizontal. Therefore,

F = ρg

sin 60◦
∫ 5

√
3/2

0
2(y + 3) dy = 2ρg√

3

(
y2 + 6y

)∣∣∣∣5
√

3/2

0
= ρg

(
25

√
3

2
+ 30

)
≈ 506,176 N.

The force on the bottom face can be computed without calculus:

F =
(

3 + 5
√

3

2

)
(2)(5)ρg ≈ 718,352 N.

The end of a horizontal oil tank is an ellipse (Figure 4) with equation (x/4)2 + (y/3)2 = 1 (length in meters).
Assume that the tank is filled with oil of density 900 kg/m3.

(a) Calculate the total force F on the end of the tank when the tank is full.

(b) Would you expect the total force on the lower half of the tank to be greater than, less than, or equal to 1
2F ?

Explain. Then compute the force on the lower half exactly and confirm (or refute) your expectation.

17. Calculate the moments and COM of the lamina occupying the region under y = x(4 − x) for 0 ≤ x ≤ 4, assuming
a density of ρ = 1200 kg/m3.

solution Because the lamina is symmetric with respect to the vertical line x = 2, by the symmetry principle, we know
that xcm = 2. Now,

Mx = ρ

2

∫ 4

0
f (x)2 dx = 1200

2

∫ 4

0
x2(4 − x)2 dx = 1200

2

(
16

3
x3 − 2x4 + 1

5
x5
)∣∣∣∣4

0
= 20,480.

Moreover, the mass of the lamina is

M = ρ

∫ 4

0
f (x) dx = 1200

∫ 4

0
x(4 − x) dx = 1200

(
2x2 − 1

3
x3
)∣∣∣∣4

0
= 12,800.

Thus, the coordinates of the center of mass are (
2,

20,480

12,800

)
=
(

2,
8

5

)
.

Sketch the region between y = 4(x + 1)−1 and y = 1 for 0 ≤ x ≤ 3, and find its centroid.
19. Find the centroid of the region between the semicircle y =

√
1 − x2 and the top half of the ellipse y = 1

2

√
1 − x2

(Figure 2).

solution Since the region is symmetric with respect to the y-axis, the centroid lies on the y-axis. To find ycm we
calculate

Mx = 1

2

∫ 1

−1

⎡
⎣(√1 − x2

)2 −
(√

1 − x2

2

)2
⎤
⎦ dx

= 1

2

∫ 1

−1

3

4

(
1 − x2

)
dx = 3

8

(
x − 1

3
x3
)∣∣∣∣1−1

= 1

2
.

The area of the lamina is π
2 − π

4 = π
4 , so the coordinates of the centroid are

(
0,

1/2

π/4

)
=
(

0,
2

π

)
.

Find the centroid of the shaded region in Figure 5 bounded on the left by x = 2y2 − 2 and on the right by a
semicircle of radius 1. Hint: Use symmetry and additivity of moments.

In Exercises 21–26, find the Taylor polynomial at x = a for the given function.

21. f (x) = x3, T3(x), a = 1

solution We start by computing the first three derivatives of f (x) = x3:

f ′(x) = 3x2

f ′′(x) = 6x

f ′′′(x) = 6
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Evaluating the function and its derivatives at x = 1, we find

f (1) = 1, f ′(1) = 3, f ′′(1) = 6, f ′′′(1) = 6.

Therefore,

T3(x) = f (1) + f ′(1)(x − 1) + f ′′(1)

2! (x − 2)2 + f ′′′(1)

3! (x − 1)3

= 1 + 3(x − 1) + 6

2! (x − 2)2 + 6

3! (x − 1)3

= 1 + 3(x − 1) + 3(x − 2)2 + (x − 1)3.

f (x) = 3(x + 2)3 − 5(x + 2), T3(x), a = −2
23. f (x) = x ln(x), T4(x), a = 1

solution We start by computing the first four derivatives of f (x) = x ln x:

f ′(x) = ln x + x · 1

x
= ln x + 1

f ′′(x) = 1

x

f ′′′(x) = − 1

x2

f (4)(x) = 2

x3

Evaluating the function and its derivatives at x = 1, we find

f (1) = 0, f ′(1) = 1, f ′′(1) = 1, f ′′′(1) = −1, f (4)(1) = 2.

Therefore,

T4(x) = f (1) + f ′(1)(x − 1) + f ′′(1)

2! (x − 1)2 + f ′′′(1)

3! (x − 1)3 + f (4)(1)

4! (x − 1)4

= 0 + 1(x − 1) + 1

2! (x − 1)2 − 1

3! (x − 1)3 + 2

4! (x − 1)4

= (x − 1) + 1

2
(x − 1)2 − 1

6
(x − 1)3 + 1

12
(x − 1)4.

f (x) = (3x + 2)1/3, T3(x), a = 2
25. f (x) = xe−x2

, T4(x), a = 0

solution We start by computing the first four derivatives of f (x) = xe−x2
:

f ′(x) = e−x2 + x · (−2x)e−x2 = (1 − 2x2)e−x2

f ′′(x) = −4xe−x2 + (1 − 2x2) · (−2x)e−x2 = (4x3 − 6x)e−x2

f ′′′(x) = (12x2 − 6)e−x2 + (4x3 − 6x) · (−2x)e−x2 = (−8x4 + 24x2 − 6)e−x2

f (4)(x) = (−32x3 + 48x)e−x2 + (−8x4 + 24x2 − 6) · (−2x)e−x2 = (16x5 − 80x3 + 60x)e−x2

Evaluating the function and its derivatives at x = 0, we find

f (0) = 0, f ′(0) = 1, f ′′(0) = 0, f ′′′(0) = −6, f (4)(0) = 0.

Therefore,

T4(x) = f (0) + f ′(0)x + f ′′(0)

2! x2 + f ′′′(0)

3! x3 + f (4)(0)

4! x4

= 0 + x + 0 · x2 − 6

3!x
3 + 0 · x4 = x − x3.

f (x) = ln(cos x), T3(x), a = 0
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27. Find the nth Maclaurin polynomial for f (x) = e3x .

solution We differentiate the function f (x) = e3x repeatedly, looking for a pattern:

f ′(x) = 3e3x = 31e3x

f ′′(x) = 3 · 3e3x = 32e3x

f ′′′(x) = 3 · 32e3x = 33e3x

Thus, for general n, f (n)(x) = 3ne3x and f (n)(0) = 3n. Substituting into the formula for the nth Taylor polynomial, we
obtain:

Tn(x) = 1 + 3x

1! + 32x2

2! + 33x3

3! + 34x4

4! + · · · + 3nxn

n!
= 1 + 3x + 1

2! (3x)2 + 1

3! (3x)3 + · · · + 1

n! (3x)n.

Use the fifth Maclaurin polynomial of f (x) = ex to approximate
√

e. Use a calculator to determine the error.
29. Use the third Taylor polynomial of f (x) = tan−1 x at a = 1 to approximate f (1.1). Use a calculator to determine
the error.

solution We start by computing the first three derivatives of f (x) = tan−1x:

f ′(x) = 1

1 + x2

f ′′(x) = − 2x(
1 + x2

)2

f ′′′(x) =
−2
(

1 + x2
)2 + 2x · 2

(
1 + x2

)
· 2x(

1 + x2
)4 =

2
(

3x2 − 1
)

(
1 + x2

)3
Evaluating the function and its derivatives at x = 1, we find

f (1) = π

4
, f ′(1) = 1

2
, f ′′(1) = −1

2
, f ′′′(1) = 1

2
.

Therefore,

T3(x) = f (1) + f ′(1)(x − 1) + f ′′(1)

2! (x − 1)2 + f ′′′(1)

3! (x − 1)3

= π

4
+ 1

2
(x − 1) − 1

4
(x − 1)2 + 1

12
(x − 1)3.

Setting x = 1.1 yields:

T3(1.1) = π

4
+ 1

2
(0.1) − 1

4
(0.1)2 + 1

12
(0.1)3 = 0.832981496.

Using a calculator, we find tan−11.1 = 0.832981266. The error in the Taylor polynomial approximation is∣∣∣T3(1.1) − tan−11.1
∣∣∣ = |0.832981496 − 0.832981266| = 2.301 × 10−7.

Let T4(x) be the Taylor polynomial for f (x) = √
x at a = 16. Use the error bound to find the maximum possible

size of |f (17) − T4(17)|.
31. Find n such that |e − Tn(1)| < 10−8, where Tn(x) is the nth Maclaurin polynomial for f (x) = ex .

solution Using the Error Bound, we have

|e − Tn(1)| ≤ K
|1 − 0|n+1

(n + 1)! = K

(n + 1)!

where K is a number such that
∣∣∣f (n+1)(x)

∣∣∣ = ex ≤ K for all 0 ≤ x ≤ 1. Since ex is increasing, the maximum value

on the interval 0 ≤ x ≤ 1 is attained at the endpoint x = 1. Thus, for 0 ≤ u ≤ 1, eu ≤ e1 < 2.8. Hence we may take
K = 2.8 to obtain:

|e − Tn(1)| ≤ 2.8

(n + 1)!
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We now choose n such that

2.8

(n + 1)! < 10−8

(n + 1)!
2.8

> 108

(n + 1)! > 2.8 × 108

For n = 10, (n + 1)! = 3.99 × 107 < 2.8 × 108 and for n = 11, (n + 1)! = 4.79 × 108 > 2.8 × 108. Hence, to make
the error less than 10−8, n = 11 is sufficient; that is,

|e − T11(1)| < 10−8.

Let T4(x) be the Taylor polynomial for f (x) = x ln x at a = 1 computed in Exercise 23. Use the error bound to
find a bound for |f (1.2) − T4(1.2)|.

33. Verify that Tn(x) = 1 + x + x2 + · · · + xn is the nth Maclaurin polynomial of f (x) = 1/(1 − x). Show using
substitution that the nth Maclaurin polynomial for f (x) = 1/(1 − x/4) is

Tn(x) = 1 + 1

4
x + 1

42
x2 + · · · + 1

4n
xn

What is the nth Maclaurin polynomial for g(x) = 1

1 + x
?

solution Let f (x) = (1 − x)−1. Then, f ′(x) = (1 − x)−2, f ′′(x) = 2(1 − x)−3, f ′′′(x) = 3!(1 − x)−4, and, in

general, f (n)(x) = n!(1 − x)−(n+1). Therefore, f (n)(0) = n! and

Tn(x) = 1 + 1!
1!x + 2!

2!x
2 + · · · + n!

n!x
n = 1 + x + x2 + · · · + xn.

Upon substituting x/4 for x, we find that the nth Maclaurin polynomial for f (x) = 1

1 − x/4
is

Tn(x) = 1 + 1

4
x + 1

42
x2 + · · · + 1

4n
xn.

Substituting −x for x, the nth Maclaurin polynomial for g(x) = 1

1 + x
is

Tn(x) = 1 − x + x2 − x3 + − · · · + (−x)n.

Let f (x) = 5

4 + 3x − x2
and let ak be the coefficient of xk in the Maclaurin polynomial Tn(x) of for k ≤ n.

(a) Show that f (x) =
(

1/4

1 − x/4
+ 1

1 + x

)
.

(b) Use Exercise 33 to show that ak = 1

4k+1
+ (−1)k .

(c) Compute T3(x).

35. Let Tn(x) be the nth Maclaurin polynomial for the function f (x) = sin x + sinh x.

(a) Show that T5(x) = T6(x) = T7(x) = T8(x).

(b) Show that |f n(x)| ≤ 1 + cosh x for all n. Hint: Note that | sinh x| ≤ | cosh x| for all x.

(c) Show that |T8(x) − f (x)| ≤ 2.6

9! |x|9 for −1 ≤ x ≤ 1.

solution

(a) Let f (x) = sin x + sinh x. Then

f ′(x) = cos x + cosh x

f ′′(x) = − sin x + sinh x

f ′′′(x) = − cos x + cosh x

f (4)(x) = sin x + sinh x.

From this point onward, the pattern of derivatives repeats indefinitely. Thus

f (0) = f (4)(0) = f (8)(0) = sin 0 + sinh 0 = 0

f ′(0) = f (5)(0) = cos 0 + cosh 0 = 2

f ′′(0) = f (6)(0) = − sin 0 + sinh 0 = 0

f ′′′(0) = f (7)(0) = − cos 0 + cosh 0 = 0.
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Consequently,

T5(x) = f ′(0)x + f (5)(0)

5! x5 = 2x + 1

60
x5,

and, because f (6)(0) = f (7)(0) = f (8)(0) = 0, it follows that

T6(x) = T7(x) = T8(x) = T5(x) = 2x + 1

60
x5.

(b) First note that | sin x| ≤ 1 and | cos x| ≤ 1 for all x. Moreover,

| sinh x| =
∣∣∣∣ex − e−x

2

∣∣∣∣ ≤ ex + e−x

2
= cosh x.

Now, recall from part (a), that all derivatives of f (x) contain two terms: the first is ± sin x or ± cos x, while the second
is either sinh x or cosh x. In absolute value, the trigonometric term is always less than or equal to 1, while the hyperbolic
term is always less than or equal to cosh x. Thus, for all n,

f (n)(x) ≤ 1 + cosh x.

(c) Using the Error Bound, we have

|T8(x) − f (x)| ≤ K|x − 0|9
9! = K|x|9

9! ,

where K is a number such that
∣∣∣f (9)(u)

∣∣∣ ≤ K for all u between 0 and x. By part (b), we know that

f (9)(u) ≤ 1 + cosh u.

Now, cosh u is an even function that is increasing on (0, ∞). The maximum value for u between 0 and x is therefore
cosh x. Moreover, for −1 ≤ x ≤ 1, cosh x ≤ cosh 1 ≈ 1.543 < 1.6. Hence, we may take K = 1 + 1.6 = 2.6, and

|T8(x) − f (x)| ≤ 2.6

9! |x|9.
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10 INTRODUCTION TO
DIFFERENTIAL EQUATIONS

10.1 Solving Differential Equations

Preliminary Questions
1. Determine the order of the following differential equations:

(a) x5y′ = 1 (b) (y′)3 + x = 1

(c) y′′′ + x4y′ = 2 (d) sin(y′′) + x = y

solution
(a) The highest order derivative that appears in this equation is a first derivative, so this is a first order equation.

(b) The highest order derivative that appears in this equation is a first derivative, so this is a first order equation.

(c) The highest order derivative that appears in this equation is a third derivative, so this is a third order equation.

(d) The highest order derivative that appears in this equation is a second derivative, so this is a second order equation.

2. Is y′′ = sin x a linear differential equation?

solution Yes.

3. Give an example of a nonlinear differential equation of the form y′ = f (y).

solution One possibility is y′ = y2.

4. Can a nonlinear differential equation be separable? If so, give an example.

solution Yes. An example is y′ = y2.

5. Give an example of a linear, nonseparable differential equation.

solution One example is y′ + y = x.

Exercises
1. Which of the following differential equations are first-order?

(a) y′ = x2 (b) y′′ = y2

(c) (y′)3 + yy′ = sin x (d) x2y′ − exy = sin y

(e) y′′ + 3y′ = y

x
(f) yy′ + x + y = 0

solution
(a) The highest order derivative that appears in this equation is a first derivative, so this is a first order equation.

(b) The highest order derivative that appears in this equation is a second derivative, so this is not a first order equation.

(c) The highest order derivative that appears in this equation is a first derivative, so this is a first order equation.

(d) The highest order derivative that appears in this equation is a first derivative, so this is a first order equation.

(e) The highest order derivative that appears in this equation is a second derivative, so this is not a first order equation.

(f) The highest order derivative that appears in this equation is a first derivative, so this is a first order equation.

Which of the equations in Exercise 1 are linear?In Exercises 3–8, verify that the given function is a solution of the differential equation.

3. y′ − 8x = 0, y = 4x2

solution Let y = 4x2. Then y′ = 8x and

y′ − 8x = 8x − 8x = 0.

yy′ + 4x = 0, y =
√

12 − 4x25. y′ + 4xy = 0, y = 25e−2x2

solution Let y = 25e−2x2
. Then y′ = −100xe−2x2

, and

y′ + 4xy = −100xe−2x2 + 4x(25e−2x2
) = 0.

601



June 14, 2011 LTSV SSM Second Pass

602 C H A P T E R 10 INTRODUCTION TO DIFFERENTIAL EQUATIONS

(x2 − 1)y′ + xy = 0, y = 4(x2 − 1)−1/27. y′′ − 2xy′ + 8y = 0, y = 4x4 − 12x2 + 3

solution Let y = 4x4 − 12x2 + 3. Then y′ = 16x3 − 24x, y′′ = 48x2 − 24, and

y′′ − 2xy′ + 8y = (48x2 − 24) − 2x(16x3 − 24x) + 8(4x4 − 12x2 + 3)

= 48x2 − 24 − 32x4 + 48x2 + 32x4 − 96x2 + 24 = 0.

y′′ − 2y′ + 5y = 0, y = ex sin 2x
9. Which of the following equations are separable? Write those that are separable in the form y′ = f (x)g(y) (but do

not solve).

(a) xy′ − 9y2 = 0 (b)
√

4 − x2y′ = e3y sin x

(c) y′ = x2 + y2 (d) y′ = 9 − y2

solution

(a) xy′ − 9y2 = 0 is separable:

xy′ − 9y2 = 0

xy′ = 9y2

y′ = 9

x
y2

(b)
√

4 − x2y′ = e3y sin x is separable: √
4 − x2y′ = e3y sin x

y′ = e3y sin x√
4 − x2

.

(c) y′ = x2 + y2 is not separable; y′ is already isolated, but is not equal to a product f (x)g(y).

(d) y′ = 9 − y2 is separable: y′ = (1)(9 − y2).

The following differential equations appear similar but have very different solutions.

dy

dx
= x,

dy

dx
= y

Solve both subject to the initial condition y(1) = 2.

11. Consider the differential equation y3y′ − 9x2 = 0.

(a) Write it as y3 dy = 9x2 dx.

(b) Integrate both sides to obtain 1
4y4 = 3x3 + C.

(c) Verify that y = (12x3 + C)1/4 is the general solution.

(d) Find the particular solution satisfying y(1) = 2.

solution Solving y3y′ − 9x2 = 0 for y′ gives y′ = 9x2y−3.

(a) Separating variables in the equation above yields

y3 dy = 9x2 dx

(b) Integrating both sides gives

y4

4
= 3x3 + C

(c) Simplify the equation above to get y4 = 12x3 + C, or y = (12x3 + C)1/4.

(d) Solve 2 = (12 · 13 + C)1/4 to get 16 = 12 + C, or C = 4. Thus the particular solution is y = (12x3 + 4)1/4.

Verify that x2y′ + e−y = 0 is separable.

(a) Write it as ey dy = −x−2 dx.

(b) Integrate both sides to obtain ey = x−1 + C.

(c) Verify that y = ln(x−1 + C) is the general solution.

(d) Find the particular solution satisfying y(2) = 4.

In Exercises 13–28, use separation of variables to find the general solution.

13. y′ + 4xy2 = 0

solution Rewrite

y′ + 4xy2 = 0 as
dy

dx
= −4xy2 and then as y−2 dy = −4x dx

Integrating both sides of this equation gives ∫
y−2 dy = −4

∫
x dx

−y−1 = −2x2 + C

y−1 = 2x2 + C
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Solving for y gives

y = 1

2x2 + C

where C is an arbitrary constant.

y′ + x2y = 015.
dy

dt
− 20t4e−y = 0

solution Rewrite

dy

dt
− 20t4e−y = 0 as

dy

dt
= 20t4e−y and then as ey dy = 20t4 dt

Integrating both sides of this equation gives ∫
ey dy =

∫
20t4 dt

ey = 4t5 + C

Solve for y to get y = ln(4t5 + C), where C is an arbitrary constant.

t3y′ + 4y2 = 0
17. 2y′ + 5y = 4

solution Rewrite

2y′ + 5y = 4 as y′ = 2 − 5

2
y and then as (4 − 5y)−1 dy = 1

2
dx

Integrating both sides and solving for y gives ∫
dy

4 − 5y
= 1

2

∫
1 dx

−1

5
ln |4 − 5y| = 1

2
x + C1

ln |4 − 5y| = C2 − 5

2
x

4 − 5y = C3e−5x/2

5y = 4 − C3e−5x/2

y = Ce−5x/2 + 4

5

where C is an arbitrary constant.

dy

dt
= 8

√
y

19.
√

1 − x2 y′ = xy

solution Rewrite

√
1 − x2 dy

dx
= xy as

dy

y
= x√

1 − x2
dx.

Integrating both sides of this equation yields ∫
dy

y
=

∫
x√

1 − x2
dx

ln |y| = −
√

1 − x2 + C.

Solving for y, we find

|y| = e−
√

1−x2+C = eCe−
√

1−x2

y = ±eCe−
√

1−x2 = Ae−
√

1−x2
,

where A is an arbitrary constant.

y′ = y2(1 − x2)
21. yy′ = x

solution Rewrite

y
dy

dx
= x as y dy = x dx.
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Integrating both sides of this equation yields ∫
y dy =

∫
x dx

1

2
y2 = 1

2
x2 + C.

Solving for y, we find

y2 = x2 + 2C

y = ±
√

x2 + A,

where A = 2C is an arbitrary constant.

(ln y)y′ − ty = 023.
dx

dt
= (t + 1)(x2 + 1)

solution Rewrite

dx

dt
= (t + 1)(x2 + 1) as

1

x2 + 1
dx = (t + 1) dt.

Integrating both sides of this equation yields∫
1

x2 + 1
dx =

∫
(t + 1) dt

tan−1 x = 1

2
t2 + t + C.

Solving for x, we find

x = tan

(
1

2
t2 + t + C

)
.

where A = tan C is an arbitrary constant.

(1 + x2)y′ = x3y
25. y′ = x sec y

solution Rewrite

dy

dx
= x sec y as cos y dy = x dx.

Integrating both sides of this equation yields ∫
cos y dy =

∫
x dx

sin y = 1

2
x2 + C.

Solving for y, we find

y = sin−1
(

1

2
x2 + C

)
,

where C is an arbitrary constant.

dy

dθ
= tan y

27.
dy

dt
= y tan t

solution Rewrite

dy

dt
= y tan t as

1

y
dy = tan t dt.

Integrating both sides of this equation yields ∫
1

y
dy =

∫
tan t dt

ln |y| = ln |sec t | + C.
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Solving for y, we find

|y| = eln |sec t |+C = eC |sec t |
y = ±eC sec t = A sec t,

where A = ±eC is an arbitrary constant.

dx

dt
= t tan x

In Exercises 29–42, solve the initial value problem.

29. y′ + 2y = 0, y(ln 5) = 3

solution First, we find the general solution of the differential equation. Rewrite

dy

dx
+ 2y = 0 as

1

y
dy = −2 dx,

and then integrate to obtain

ln |y| = −2x + C.

Thus,

y = Ae−2x,

where A = ±eC is an arbitrary constant. The initial condition y(ln 5) = 3 allows us to determine the value of A.

3 = Ae−2(ln 5); 3 = A
1

25
; so 75 = A.

Finally,

y = 75e−2x .

y′ − 3y + 12 = 0, y(2) = 131. yy′ = xe−y2
, y(0) = −2

solution First, we find the general solution of the differential equation. Rewrite

y
dy

dx
= xe−y2

as yey2
dy = x dx,

and then integrate to obtain

1

2
ey2 = 1

2
x2 + C.

Thus,

y = ±
√

ln(x2 + A),

where A = 2C is an arbitrary constant. The initial condition y(0) = −2 allows us to determine the value of A. Since
y(0) < 0, we have y = −

√
ln(x2 + A), and

−2 = −√
ln(A); 4 = ln(A); so e4 = A.

Finally,

y = −
√

ln(x2 + e4).

y2 dy

dx
= x−3, y(1) = 0

33. y′ = (x − 1)(y − 2), y(2) = 4

solution First, we find the general solution of the differential equation. Rewrite

dy

dx
= (x − 1)(y − 2) as

1

y − 2
dy = (x − 1) dx,

and then integrate to obtain

ln |y − 2| = 1

2
x2 − x + C.

Thus,

y = Ae(1/2)x2−x + 2,
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where A = ±eC is an arbitrary constant. The initial condition y(2) = 4 allows us to determine the value of A.

4 = Ae0 + 2 so A = 2.

Finally,

y = 2e(1/2)x2−x + 2.

y′ = (x − 1)(y − 2), y(2) = 2
35. y′ = x(y2 + 1), y(0) = 0

solution First, find the general solution of the differential equation. Rewrite

dy

dx
= x(y2 + 1) as

1

y2 + 1
dy = x dx

and integrate to obtain

tan−1 y = 1

2
x2 + C

so that

y = tan

(
1

2
x2 + C

)

where C is an arbitrary constant. The initial condition y(0) = 0 allows us to determine the value of C: 0 = tan(C), so
C = 0. Finally,

y = tan

(
1

2
x2

)

(1 − t)
dy

dt
− y = 0, y(2) = −4

37.
dy

dt
= ye−t , y(0) = 1

solution First, we find the general solution of the differential equation. Rewrite

dy

dt
= ye−t as

1

y
dy = e−t dt,

and then integrate to obtain

ln |y| = −e−t + C.

Thus,

y = Ae−e−t
,

where A = ±eC is an arbitrary constant. The initial condition y(0) = 1 allows us to determine the value of A.

1 = Ae−1 so A = e.

Finally,

y = (e)e−e−t = e1−e−t
.

dy

dt
= te−y , y(1) = 0

39. t2 dy

dt
− t = 1 + y + ty, y(1) = 0

solution First, we find the general solution of the differential equation. Rewrite

t2 dy

dt
= 1 + t + y + ty = (1 + t)(1 + y)

as

1

1 + y
dy = 1 + t

t2
dt,

and then integrate to obtain

ln |1 + y| = −t−1 + ln |t | + C.
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Thus,

y = A
t

e1/t
− 1,

where A = ±eC is an arbitrary constant. The initial condition y(1) = 0 allows us to determine the value of A.

0 = A

(
1

e

)
− 1 so A = e.

Finally,

y = et

e1/t
− 1.

√
1 − x2 y′ = y2 + 1, y(0) = 0

41. y′ = tan y, y(ln 2) = π

2
solution First, we find the general solution of the differential equation. Rewrite

dy

dx
= tan y as

dy

tan y
= dx,

and then integrate to obtain

ln |sin y| = x + C.

Thus,

y = sin−1(Aex),

where A = ±eC is an arbitrary constant. The initial condition y(ln 2) = π
2 allows us to determine the value of A.

π

2
= sin−1(2A); 1 = 2A so A = 1

2
.

Finally,

y = sin−1
(

1

2
ex

)
.

y′ = y2 sin x, y(π) = 2
43. Find all values of a such that y = xa is a solution of

y′′ − 12x−2y = 0

solution Let y = xa . Then

y′ = axa−1 and y′′ = a(a − 1)xa−2.

Substituting into the differential equation, we find

y′′ − 12x−2y = a(a − 1)xa−2 − 12xa−2 = xa−2(a2 − a − 12).

Thus, y′′ − 12x−2y = 0 if and only if

a2 − a − 12 = (a − 4)(a + 3) = 0.

Hence, y = xa is a solution of the differential equation y′′ − 12x−2y = 0 provided a = 4 or a = −3.

Find all values of a such that y = eax is a solution of

y′′ + 4y′ − 12y = 0

In Exercises 45 and 46, let y(t) be a solution of (cos y + 1)
dy

dt
= 2t such that y(2) = 0.

45. Show that sin y + y = t2 + C. We cannot solve for y as a function of t , but, assuming that y(2) = 0, find the values
of t at which y(t) = π .

solution Rewrite

(cos y + 1)
dy

dt
= 2t as (cos y + 1) dy = 2t dt

and integrate to obtain

sin y + y = t2 + C

where C is an arbitrary constant. Since y(2) = 0, we have sin 0 + 0 = 4 + C so that C = −4 and the particular solution
we seek is sin y + y = t2 − 4. To find values of t at which y(t) = π , we must solve sin π + π = t2 − 4, or t2 − 4 = π ;
thus t = ±√

π + 4.
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Assuming that y(6) = π/3, find an equation of the tangent line to the graph of y(t) at (6, π/3).In Exercises 47–52, use Eq. (4) and Torricelli’s Law [Eq. (5)].

47. Water leaks through a hole of area 0.002 m2 at the bottom of a cylindrical tank that is filled with water and has height
3 m and a base of area 10 m2. How long does it take (a) for half of the water to leak out and (b) for the tank to empty?

solution Because the tank has a constant cross-sectional area of 10 m2 and the hole has an area of 0.002 m2, the
differential equation for the height of the water in the tank is

dy

dt
= 0.002v

10
= 0.0002v.

By Torricelli’s Law,

v = −√
2gy = −√

19.6y,

using g = 9.8 m/s2. Thus,

dy

dt
= −0.0002

√
19.6y = −0.0002

√
19.6 · √

y.

Separating variables and then integrating yields

y−1/2 dy = −0.0002
√

19.6 dt

2y1/2 = −0.0002
√

19.6t + C

Solving for y, we find

y(t) =
(
C − 0.0001

√
19.6t

)2
.

Since the tank is originally full, we have the initial condition y(0) = 10, whence
√

10 = C. Therefore,

y(t) =
(√

10 − 0.0001
√

19.6t
)2

.

When half of the water is out of the tank, y = 1.5, so we solve:

1.5 =
(√

10 − 0.0001
√

19.6t
)2

for t , finding

t = 1

0.0002
√

19.6
(2

√
10 − √

6) ≈ 4376.44 sec.

When all of the water is out of the tank, y = 0, so

√
10 − 0.0001

√
19.6t = 0 and t =

√
10

0.0001
√

19.6
≈ 7142.86 sec.

At t = 0, a conical tank of height 300 cm and top radius 100 cm [Figure 7(A)] is filled with water. Water leaks
through a hole in the bottom of area 3 cm2. Let y(t) be the water level at time t .

(a) Show that the tank’s cross-sectional area at height y is A(y) = π
9 y2.

(b) Find and solve the differential equation satisfied by y(t)

(c) How long does it take for the tank to empty?

49. The tank in Figure 7(B) is a cylinder of radius 4 m and height 15 m. Assume that the tank is half-filled with water
and that water leaks through a hole in the bottom of area B = 0.001 m2. Determine the water level y(t) and the time te
when the tank is empty.

solution When the water is at height y over the bottom, the top cross section is a rectangle with length 15 m, and with
width x satisfying the equation:

(x/2)2 + (y − 4)2 = 16.

Thus, x = 2
√

8y − y2, and

A(y) = 15x = 30
√

8y − y2.

With B = 0.001 m2 and v = −√
2gy = −√

19.6
√

y, it follows that

dy

dt
= −0.001

√
19.6

√
y

30
√

8y − y2
= −0.001

√
19.6

30
√

8 − y
.

Separating variables and integrating then yields:

√
8 − y dy = −0.001

√
19.6

30
dt = −0.0001

√
19.6

3
dt

−2

3
(8 − y)3/2 = −0.0001

√
19.6

3
t + C
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When t = 0, y = 4, so C = − 2
3 43/2 = − 16

3 , and

−2

3
(8 − y)3/2 = −0.0001

√
19.6

3
t − 16

3

y(t) = 8 −
(

0.0001
√

19.6

2
t + 8

)2/3

.

The tank is empty when y = 0. Thus, te satisfies the equation

8 −
(

0.0001
√

19.6

2
t + 8

)2/3

= 0.

It follows that

te = 2(83/2 − 8)

0.0001
√

19.6
≈ 66,079.9 seconds.

A tank has the shape of the parabola y = x2, revolved around the y-axis. Water leaks from a hole of area
B = 0.0005 m2 at the bottom of the tank. Let y(t) be the water level at time t . How long does it take for the tank to
empty if it is initially filled to height y0 = 1 m.

51. A tank has the shape of the parabola y = ax2 (where a is a constant) revolved around the y-axis. Water drains from
a hole of area B m2 at the bottom of the tank.

(a) Show that the water level at time t is

y(t) =
(

y
3/2
0 − 3aB

√
2g

2π
t

)2/3

where y0 is the water level at time t = 0.
(b) Show that if the total volume of water in the tank has volume V at time t = 0, then y0 = √

2aV/π . Hint: Compute
the volume of the tank as a volume of rotation.
(c) Show that the tank is empty at time

te =
(

2

3B
√

g

) (
2πV 3

a

)1/4

We see that for fixed initial water volume V , the time te is proportional to a−1/4. A large value of a corresponds to a tall
thin tank. Such a tank drains more quickly than a short wide tank of the same initial volume.

solution
(a) When the water is at height y, the surface of the water is a circle of radius

√
y/a, so that the cross-sectional area is

A(y) = πy/a. With v = −√
2gy = −√

2g
√

y, we have

dy

dt
= −B

√
2g

√
y

A
= −aB

√
2g

√
y

πy
= −aB

√
2g

π
y−1/2

Separating variables and integrating gives

√
y dy = −aB

√
2g

π
dt

2

3
y3/2 = −aB

√
2g

π
t + C1

y3/2 = −3aB
√

2g

2π
t + C

Since y(0) = y0, we have C = y
3/2
0 ; solving for y gives

y =
(

y
3/2
0 − 3aB

√
2g

2π
t

)2/3

(b) The volume of the tank can be computed as a volume of rotation. Using the disk method and applying it to the function
x = √

y/a, we have

V =
∫ y0

0
π

√
y

a

2

dy = π

a

∫ y0

0
y dy = π

2a
y2

∣∣∣∣y0

0
= π

2a
y2

0

Solving for y0 gives

y0 = √
2aV/π
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(c) The tank is empty when y = 0; this occurs when

y
3/2
0 − 3aB

√
2g

2π
t = 0

From part (b), we have

y
3/2
0 = √

2aV/π
3/2 = ((2aV/π)1/2)3/2 = (2aV/π)3/4

so that

te = 2πy
3/2
0

3aB
√

2g
= 2π

4√
8a3V 3

3π3/4B
4√
a4 4√4

√
g

= 2π1/4 4√
2V 3a−1

3B
√

g
=

(
2

3B
√

g

) (
2πV 3

a

)1/4

A cylindrical tank filled with water has height h and a base of area A. Water leaks through a hole in the bottom
of area B.

(a) Show that the time required for the tank to empty is proportional to A
√

h/B.

(b) Show that the emptying time is proportional to V h−1/2, where V is the volume of the tank.

(c) Two tanks have the same volume and a hole of the same size, but they have different heights and bases. Which
tank empties first: the taller or the shorter tank?

53. Figure 8 shows a circuit consisting of a resistor of R ohms, a capacitor of C farads, and a battery of voltage V . When
the circuit is completed, the amount of charge q(t) (in coulombs) on the plates of the capacitor varies according to the
differential equation (t in seconds)

R
dq

dt
+ 1

C
q = V

where R, C, and V are constants.

(a) Solve for q(t), assuming that q(0) = 0.
(b) Show that lim

t→∞ q(t) = CV .

(c) Show that the capacitor charges to approximately 63% of its final value CV after a time period of length τ = RC (τ
is called the time constant of the capacitor).

V C

R

FIGURE 8 An RC circuit.

solution
(a) Upon rearranging the terms of the differential equation, we have

dq

dt
= −q − CV

RC
.

Separating the variables and integrating both sides, we obtain

dq

q − CV
= − dt

RC

∫
dq

q − CV
= −

∫
dt

RC

and

ln |q − CV | = − t

RC
+ k,

where k is an arbitrary constant. Solving for q(t) yields

q(t) = CV + Ke− 1
RC

t ,

where K = ±ek . We use the initial condition q(0) = 0 to solve for K:

0 = CV + K ⇒ K = −CV

so that the particular solution is

q(t) = CV (1 − e− 1
RC

t )

(b) Using the result from part (a), we calculate

lim
t→∞ q(t) = lim

t→∞ CV (1 − e− 1
RC

t ) = CV (1 − lim
t→∞ 1 − e− 1

RC
t ) = CV.
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(c) We have

q(τ) = q(RC) = CV (1 − e− 1
RC

RC) = CV (1 − e−1) ≈ 0.632CV.

Assume in the circuit of Figure 8 that R = 200 �, C = 0.02 F, and V = 12 V. How many seconds does it take
for the charge on the capacitor plates to reach half of its limiting value?

55. According to one hypothesis, the growth rate dV/dt of a cell’s volume V is proportional to its surface area

A. Since V has cubic units such as cm3 and A has square units such as cm2, we may assume roughly that A ∝ V 2/3, and
hence dV/dt = kV 2/3 for some constant k. If this hypothesis is correct, which dependence of volume on time would we
expect to see (again, roughly speaking) in the laboratory?

(a) Linear (b) Quadratic (c) Cubic

solution Rewrite

dV

dt
= kV 2/3 as V −2/3 dv = k dt,

and then integrate both sides to obtain

3V 1/3 = kt + C

V = (kt/3 + C)3.

Thus, we expect to see V increasing roughly like the cube of time.

We might also guess that the volume V of a melting snowball decreases at a rate proportional to its surface area.
Argue as in Exercise 55 to find a differential equation satisfied by V . Suppose the snowball has volume 1000 cm3

and that it loses half of its volume after 5 min. According to this model, when will the snowball disappear?

57. In general, (fg)′ is not equal to f ′g′, but let f (x) = e3x and find a function g(x) such that (fg)′ = f ′g′. Do the
same for f (x) = x.

solution If (fg)′ = f ′g′, we have

f ′(x)g(x) + g′(x)f (x) = f ′(x)g′(x)

g′(x)(f (x) − f ′(x)) = −g(x)f ′(x)

g′(x)

g(x)
= f ′(x)

f ′(x) − f (x)

Now, let f (x) = e3x . Then f ′(x) = 3e3x and

g′(x)

g(x)
= 3e3x

3e3x − e3x
= 3

2
.

Integrating and solving for g(x), we find

dg

g
= 3

2
dx

ln |g| = 3

2
x + C

g(x) = Ae(3/2)x ,

where A = ±eC is an arbitrary constant.
If f (x) = x, then f ′(x) = 1, and

g′(x)

g(x)
= 1

1 − x
.

Thus,

dg

g
= 1

1 − x
dx

ln |g| = − ln |1 − x| + C

g(x) = A

1 − x
,

where A = ±eC is an arbitrary constant.

A boy standing at point B on a dock holds a rope of length � attached to a boat at point A [Figure 9(A)]. As the boy
walks along the dock, holding the rope taut, the boat moves along a curve called a tractrix (from the Latin tractus,
meaning “to pull”). The segment from a point P on the curve to the x-axis along the tangent line has constant length
�. Let y = f (x) be the equation of the tractrix.

(a) Show that y2 + (y/y′)2 �2 and conclude y′ y
Why must we choose the negative square root?
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59. Show that the differential equations y′ = 3y/x and y′ = −x/3y define orthogonal families of curves; that is, the
graphs of solutions to the first equation intersect the graphs of the solutions to the second equation in right angles (Figure
10). Find these curves explicitly.

x

y

FIGURE 10 Two orthogonal families of curves.

solution Let y1 be a solution to y′ = 3y
x and let y2 be a solution to y′ = − x

3y
. Suppose these two curves intersect at

a point (x0, y0). The line tangent to the curve y1(x) at (x0, y0) has a slope of 3y0
x0

and the line tangent to the curve y2(x)

has a slope of − x0
3y0

. The slopes are negative reciprocals of one another; hence the tangent lines are perpendicular.

Separation of variables and integration applied to y′ = 3y
x gives

dy

y
= 3

dx

x

ln |y| = 3 ln |x| + C

y = Ax3

On the other hand, separation of variables and integration applied to y′ = − x
3y

gives

3y dy = −x dx

3y2/2 = −x2/2 + C

y = ±
√

C − x2/3

Find the family of curves satisfying y′ = x/y and sketch several members of the family. Then find the differential
equation for the orthogonal family (see Exercise 59), find its general solution, and add some members of this orthogonal
family to your plot.

61. A 50-kg model rocket lifts off by expelling fuel downward at a rate of k = 4.75 kg/s for 10 s. The fuel leaves the
end of the rocket with an exhaust velocity of b = −100 m/s. Let m(t) be the mass of the rocket at time t . From the law
of conservation of momentum, we find the following differential equation for the rocket’s velocity v(t) (in meters per
second):

m(t)v′(t) = −9.8m(t) + b
dm

dt

(a) Show that m(t) = 50 − 4.75t kg.

(b) Solve for v(t) and compute the rocket’s velocity at rocket burnout (after 10 s).

solution

(a) For 0 ≤ t ≤ 10, the rocket is expelling fuel at a constant rate of 4.75 kg/s, giving m′(t) = −4.75. Hence,
m(t) = −4.75t + C. Initially, the rocket has a mass of 50 kg, so C = 50. Therefore, m(t) = 50 − 4.75t .

(b) With m(t) = 50 − 4.75t and
dm

dt
= −4.75, the equation for v becomes

dv

dt
= −9.8 + b dm

dt

50 − 4.75t
= −9.8 + (−100)(−4.75)

50 − 4.75t

and therefore

v(t) = −9.8t + 100
∫

4.75 dt

50 − 4.75t
= −9.8t − 100 ln(50 − 4.75t) + C

Because v(0) = 0, we find C = 100 ln 50 and

v(t) = −9.8t − 100 ln(50 − 4.75t) + 100 ln(50).

After 10 seconds the velocity is:

v(10) = −98 − 100 ln(2.5) + 100 ln(50) ≈ 201.573 m/s.

Let v(t) be the velocity of an object of mass m in free fall near the earth’s surface. If we assume that air resistance
is proportional to v2, then v satisfies the differential equation mdv

dt
= −g + kv2 for some constant k > 0.

(a) Set α = (g/k)1/2 and rewrite the differential equation as

d k
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63. If a bucket of water spins about a vertical axis with constant angular velocity ω (in radians per second), the water
climbs up the side of the bucket until it reaches an equilibrium position (Figure 11). Two forces act on a particle located
at a distance x from the vertical axis: the gravitational force −mg acting downward and the force of the bucket on the
particle (transmitted indirectly through the liquid) in the direction perpendicular to the surface of the water. These two
forces must combine to supply a centripetal force mω2x, and this occurs if the diagonal of the rectangle in Figure 11 is
normal to the water’s surface (that is, perpendicular to the tangent line). Prove that if y = f (x) is the equation of the
curve obtained by taking a vertical cross section through the axis, then −1/y′ = −g/(ω2x). Show that y = f (x) is a
parabola.

mg

m  2x

x
x

y

y = f (x)

FIGURE 11

solution At any point along the surface of the water, the slope of the tangent line is given by the value of y′ at that
point; hence, the slope of the line perpendicular to the surface of the water is given by −1/y′. The slope of the resultant
force generated by the gravitational force and the centrifugal force is

−mg

mω2x
= − g

ω2x
.

Therefore, the curve obtained by taking a vertical cross-section of the water surface is determined by the equation

− 1

y′ = − g

ω2x
or y′ = ω2

g
x.

Performing one integration yields

y = f (x) = ω2

2g
x2 + C,

where C is a constant of integration. Thus, y = f (x) is a parabola.

Further Insights and Challenges

In Section 6.2, we computed the volume V of a solid as the integral of cross-sectional area. Explain this formula
in terms of differential equations. Let V (y) be the volume of the solid up to height y, and let A(y) be the cross-sectional
area at height y as in Figure 12.

(a) Explain the following approximation for small 	y:

V (y + 	y) − V (y) ≈ A(y) 	y

(b) Use Eq. (8) to justify the differential equation dV /dy = A(y). Then derive the formula

V =
∫ b

a
A(y) dy

65. A basic theorem states that a linear differential equation of order n has a general solution that depends on n arbitrary
constants. There are, however, nonlinear exceptions.

(a) Show that (y′)2 + y2 = 0 is a first-order equation with only one solution y = 0.

(b) Show that (y′)2 + y2 + 1 = 0 is a first-order equation with no solutions.

solution

(a) (y′)2 + y2 ≥ 0 and equals zero if and only if y′ = 0 and y = 0

(b) (y′)2 + y2 + 1 ≥ 1 > 0 for all y′ and y, so (y′)2 + y2 + 1 = 0 has no solution

Show that y = Cerx is a solution of y′′ + ay′ + by = 0 if and only if r is a root of P(r) = r2 + ar + b. Then
verify directly that y = C1e3x + C2e−x is a solution of y′′ − 2y′ − 3y = 0 for any constants C1, C2.

67. A spherical tank of radius R is half-filled with water. Suppose that water leaks through a hole in the bottom of area
B. Let y(t) be the water level at time t (seconds).

(a) Show that
dy

dt
= −√

2gB
√

y

π(2Ry − y2)
.

(b) Show that for some constant C,

2π

15B
√

2g

(
10Ry3/2 − 3y5/2

)
= C − t

(c) Use the initial condition y(0) = R to compute C, and show that C = te, the time at which the tank is empty.

(d) Show that te is proportional to R5/2 and inversely proportional to B.

solution

(a) At height y above the bottom of the tank, the cross section is a circle of radius

r =
√

R2 − (R − y)2 =
√

2Ry − y2.
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The cross-sectional area function is then A(y) = π(2Ry − y2). The differential equation for the height of the water in
the tank is then

dy

dt
= −

√
2gB

√
y

π(2Ry − y2)

by Torricelli’s law.

(b) Rewrite the differential equation as

π√
2gB

(
2Ry1/2 − y3/2

)
dy = − dt,

and then integrate both sides to obtain

2π√
2gB

(
2

3
Ry3/2 − 1

5
y5/2

)
= C − t,

where C is an arbitrary constant. Simplifying gives

2π

15B
√

2g
(10Ry3/2 − 3y5/2) = C − t (*)

(c) From Equation (*) we see that y = 0 when t = C. It follows that C = te, the time at which the tank is empty.
Moreover, the initial condition y(0) = R allows us to determine the value of C:

2π

15B
√

2g
(10R5/2 − 3R5/2) = 14π

15B
√

2g
R5/2 = C

(d) From part (c),

te = 14π

15
√

2g
· R5/2

B
,

from which it is clear that te is proportional to R5/2 and inversely proportional to B.

10.2 Graphical and Numerical Methods

Preliminary Questions
1. What is the slope of the segment in the slope field for ·

y = ty + 1 at the point (2, 3)?

solution The slope of the segment in the slope field for ·
y = ty + 1 at the point (2, 3) is (2)(3) + 1 = 7.

2. What is the equation of the isocline of slope c = 1 for ·
y = y2 − t?

solution The isocline of slope c = 1 has equation y2 − t = 1, or y = ±√
1 + t .

3. For which of the following differential equations are the slopes at points on a vertical line t = C all equal?

(a) ·
y = ln y (b) ·

y = ln t

solution Only for the equation in part (b). The slope at a point is simply the value of ẏ at that point, so for part (a),
the slope depends on y, while for part (b), the slope depends only on t .

4. Let y(t) be the solution to ·
y = F(t, y) with y(1) = 3. How many iterations of Euler’s Method are required to

approximate y(3) if the time step is h = 0.1?

solution The initial condition is specified at t = 1 and we want to obtain an approximation to the value of the solution
at t = 3. With a time step of h = 0.1,

3 − 1

0.1
= 20

iterations of Euler’s method are required.
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Exercises
1. Figure 8 shows the slope field for ·

y = sin y sin t . Sketch the graphs of the solutions with initial conditions y(0) = 1
and y(0) = −1. Show that y(t) = 0 is a solution and add its graph to the plot.

0 3
−3

−3 1−2 2−1

t0

−2

1

−1

2

3
y

FIGURE 8 Slope field for ·
y = sin y sin t .

solution The sketches of the solutions appear below.

0 3
−3

−3 1−2 2−1

t0

−2

1

−1

2

3
y

If y(t) = 0, then y′ = 0; moreover, sin 0 sin t = 0. Thus, y(t) = 0 is a solution of ·
y = sin y sin t .

Figure 9 shows the slope field for ·
y = y2 − t2 . Sketch the integral curve passing through the point (0, −1), the

curve through (0, 0), and the curve through (0, 2). Is y(t) = 0 a solution?

3. Show that f (t) = 1
2

(
t − 1

2

)
is a solution to ·

y = t − 2y. Sketch the four solutions with y(0) = ±0.5, ±1 on the slope
field in Figure 10. The slope field suggests that every solution approaches f (t) as t → ∞. Confirm this by showing that
y = f (t) + Ce−2t is the general solution.

t

−1 −0.5 210.5 1.50
−1

−0.5

0

0.5

1
y

y = (t − )1
2

1
2

FIGURE 10 Slope field for ·
y = t − 2y.

solution Let y = f (t) = 1
2 (t − 1

2 ). Then ·
y = 1

2 and

·
y + 2y = 1

2
+ t − 1

2
= t,

so f (t) = 1
2 (t − 1

2 ) is a solution to ·
y = t − 2y. The slope field with the four required solutions is shown below.

0 1−1 2

0

1

−1

y

t

Now, let y = f (t) + Ce−2t = 1
2 (t − 1

2 ) + Ce−2t . Then

·
y = 1

2
− 2Ce−2t ,
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and

·
y + 2y = 1

2
− 2Ce−2t +

(
t − 1

2

)
+ 2Ce−2t = t.

Thus, y = f (t) + Ce−2t is the general solution to the equation ·
y = t − 2y.

One of the slope fields in Figures 11(A) and (B) is the slope field for ·
y = t2. The other is for ·

y = y2. Identify
which is which. In each case, sketch the solutions with initial conditions y(0) = 1, y(0) = 0, and y(0) = −1.

5. Consider the differential equation ·
y = t − y.

(a) Sketch the slope field of the differential equation ·
y = t − y in the range −1 ≤ t ≤ 3, −1 ≤ y ≤ 3. As an aid, observe

that the isocline of slope c is the line t − y = c, so the segments have slope c at points on the line y = t − c.
(b) Show that y = t − 1 + Ce−t is a solution for all C. Since lim

t→∞ e−t = 0, these solutions approach the particular

solution y = t − 1 as t → ∞. Explain how this behavior is reflected in your slope field.

solution
(a) Here is a sketch of the slope field:

0 3
−1

−1 1 2

t0

1

2

3
y

(b) Let y = t − 1 + Ce−t . Then ·
y = 1 − C−t , and

t − y = t − (t − 1 + Ce−t ) = 1 − Ce−t .

Thus, y = t − 1 + Ce−t is a solution of ·
y = t − y. On the slope field, we can see that the isoclines of 1 all lie along

the line y = t − 1. Whenever y > t − 1, ·
y = t − y < 1, so the solution curve will converge downward towards the

line y = t − 1. On the other hand, if y < t − 1, ·
y = t − y > 1, so the solution curve will converge upward towards

y = t − 1. In either case, the solution is approaching t − 1.

Show that the isoclines of ·
y = 1/y are horizontal lines. Sketch the slope field for −2 ≤ t ≤ 2, −2 ≤ y ≤ 2 and

plot the solutions with initial conditions y(0) = 0 and y(0) = 1.

7. Show that the isoclines of ·
y = t are vertical lines. Sketch the slope field for −2 ≤ t ≤ 2, −2 ≤ y ≤ 2 and plot the

integral curves passing through (0,−1) and (0, 1).

solution The isocline of slope c for the differential equation ·
y = t has equation t = c, which is the equation of a

vertical line. The slope field and the required solution curves are shown below.

2
−2

−1

−2 −1 0 1

t

2

1

0

y

Sketch the slope field of ·
y = ty for −2 ≤ t ≤ 2, −2 ≤ y ≤ 2. Based on the sketch, determine lim

t→∞ y(t), where

y(t) is a solution with y(0) > 0. What is lim
t→∞ y(t) if y(0) < 0?

9. Match each differential equation with its slope field in Figures 12(A)–(F).

(i) ·
y = −1

(ii) ·
y = y

t

(iii) ·
y = t2y

(iv) ·
y = ty2

(v) ·
y = t2 + y2

(vi) ·
y = t

0 3
−3

−3 1−2 2−1

t0

−2

1

−1

2

3
y

FIGURE 12(A)

0 3
−3

−3 1−2 2−1

t0

−2

1

−1

2

3

y

FIGURE 12(B)
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0 3
−3

−3 1−2 2−1

t0

−2

1

−1

2

3
y

FIGURE 12(C)

0 3
−3

−3 1−2 2−1

t0

−2

1

−1

2

3
y

FIGURE 12(D)

0 3
−3

−3 1−2 2−1

t0

−2

1

−1

2

3
y

FIGURE 12(E)

0 3
−3

−3 1−2 2−1

t0

−2

1

−1

2

3
y

FIGURE 12(F)

solution

(i) Every segment in the slope field for ·
y = −1 will have slope −1; this matches Figure 12(C).

(ii) The segments in the slope field for ·
y = y

t
will have positive slope in the first and third quadrants and negative slopes

in the second and fourth quadrant; this matches Figure 12(B).

(iii) The segments in the slope field for ·
y = t2y will have positive slope in the upper half of the plane and negative slopes

in the lower half of the plane; this matches Figure 12(F).

(iv) The segments in the slope field for ·
y = ty2 will have positive slope on the right side of the plane and negative slopes

on the left side of the plane; this matches Figure 12(D).

(v) Every segment in the slope field for ·
y = t2 + y2, except at the origin, will have positive slope; this matches

Figure 12(A).

(vi) The isoclines for ·
y = t are vertical lines; this matches Figure 12(E).

Sketch the solution of ·
y = ty2 satisfying y(0) = 1 in the appropriate slope field of Figure 12(A)–(F). Then show,

using separation of variables, that if y(t) is a solution such that y(0) > 0, then y(t) tends to infinity as t → √
2/y(0).

11. (a) Sketch the slope field of ·
y = t/y in the region −2 ≤ t ≤ 2, −2 ≤ y ≤ 2.

(b) Check that y = ±
√

t2 + C is the general solution.

(c) Sketch the solutions on the slope field with initial conditions y(0) = 1 and y(0) = −1.

solution

(a) The slope field is shown below:

2
−2

−1

−2 −1 0 1

t

2

1

0

y

(b) Rewrite

dy

dt
= t

y
as y dy = t dt,

and then integrate both sides to obtain

1

2
y2 = 1

2
t2 + C.

Solving for y, we find that the general solution is

y = ±
√

t2 + C.
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(c) The sketches of the two solutions are shown below:

2
−2

−1

−2 −1 0 1

t

2

1

0

y

Sketch the slope field of ·
y = t2 − y in the region −3 ≤ t ≤ 3, −3 ≤ y ≤ 3 and sketch the solutions satisfying

y(1) = 0, y(1) = 1, and y(1) = −1.

13. Let F(t, y) = t2 − y and let y(t) be the solution of ·
y = F(t, y) satisfying y(2) = 3. Let h = 0.1 be the time step in

Euler’s Method, and set y0 = y(2) = 3.

(a) Calculate y1 = y0 + hF(2, 3).

(b) Calculate y2 = y1 + hF(2.1, y1).

(c) Calculate y3 = y2 + hF(2.2, y2) and continue computing y4, y5, and y6.

(d) Find approximations to y(2.2) and y(2.5).

solution

(a) With y0 = 3, t0 = 2, h = 0.1, and F(t, y) = t2 − y, we find

y1 = y0 + hF(t0, y0) = 3 + 0.1(1) = 3.1.

(b) With y1 = 3.1, t1 = 2.1, h = 0.1, and F(t, y) = t2 − y, we find

y2 = y1 + hF(t1, y1) = 3.1 + 0.1(4.41 − 3.1) = 3.231.

(c) Continuing as in the previous two parts, we find

y3 = y2 + hF(t2, y2) = 3.3919;
y4 = y3 + hF(t3, y3) = 3.58171;
y5 = y4 + hF(t4, y4) = 3.799539;
y6 = y5 + hF(t5, y5) = 4.0445851.

(d) y(2.2) ≈ y2 = 3.231, and y(2.5) ≈ y5 = 3.799539.

Let y(t) be the solution to ·
y = te−y satisfying y(0) = 0.

(a) Use Euler’s Method with time step h = 0.1 to approximate y(0.1), y(0.2), . . . , y(0.5).

(b) Use separation of variables to find y(t) exactly.

(c) Compute the errors in the approximations to y(0.1) and y(0.5).

In Exercises 15–20, use Euler’s Method to approximate the given value of y(t) with the time step h indicated.

15. y(0.5); ·
y = y + t , y(0) = 1, h = 0.1

solution With y0 = 1, t0 = 0, h = 0.1, and F(t, y) = y + t , we compute

n tn yn

0 0 1

1 0.1 y0 + hF(t0, y0) = 1.1

2 0.2 y1 + hF(t1, y1) = 1.22

3 0.3 y2 + hF(t2, y2) = 1.362

4 0.4 y3 + hF(t3, y3) = 1.5282

5 0.5 y4 + hF(t4, y4) = 1.72102

y(0.7); ·
y = 2y, y(0) = 3, h = 0.1
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17. y(3.3); ·
y = t2 − y, y(3) = 1, h = 0.05

solution With y0 = 1, t0 = 3, h = 0.05, and F(t, y) = t2 − y, we compute

n tn yn

0 3 1

1 3.05 y0 + hF(t0, y0) = 1.4

2 3.1 y1 + hF(t1, y1) = 1.795125

3 3.15 y2 + hF(t2, y2) = 2.185869

4 3.2 y3 + hF(t3, y3) = 2.572700

5 3.25 y4 + hF(t4, y4) = 2.956065

6 3.3 y5 + hF(t5, y5) = 3.336387

y(3); ·
y = √

t + y, y(2.7) = 5, h = 0.05
19. y(2); ·

y = t sin y, y(1) = 2, h = 0.2

solution Let F(t, y) = t sin y. With t0 = 1, y0 = 2 and h = 0.2, we compute

n tn yn

0 1 2

1 1.2 y0 + hF(t0, y0) = 2.181859

2 1.4 y1 + hF(t1, y1) = 2.378429

3 1.6 y2 + hF(t2, y2) = 2.571968

4 1.8 y3 + hF(t3, y3) = 2.744549

5 2.0 y4 + hF(t4, y4) = 2.883759

y(5.2); ·
y = t − sec y, y(4) = −2, h = 0.2Further Insights and Challenges

21. If f (t) is continuous on [a, b], then the solution to ·
y = f (t) with initial condition y(a) = 0 is y(t) = ∫ t

a f (u) du.
Show that Euler’s Method with time step h = (b − a)/N for N steps yields the N th left-endpoint approximation to
y(b) = ∫ b

a f (u) du.

solution For a differential equation of the form ·
y = f (t), the equation for Euler’s method reduces to

yk = yk−1 + hf (tk−1).

With a step size of h = (b − a)/N , y(b) =≈ yN . Starting from y0 = 0, we compute

y1 = y0 + hf (t0) = hf (t0)

y2 = y1 + hf (t1) = h [f (t0) + f (t1)]

y3 = y2 + hf (t2) = h [f (t0) + f (t1) + f (t2)]

...

yN = yN1 + hf (tN−1) = h
[
f (t0) + f (t1) + f (t2) + . . . + f (tN−1)

] = h

N−1∑
k=0

f (tk)

Observe this last expression is exactly the N th left-endpoint approximation to y(b) =
∫ b

a
f (u) du.

Exercises 22–27: Euler’s Midpoint Method is a variation on Euler’s Method that is significantly more accurate in general.
For time step h and initial value y0 = y(t0), the values yk are defined successively by

yk = yk−1 + hmk−1

where mk−1 = F

(
tk−1 + h

2
, yk−1 + h

2
F(tk−1, yk−1)

)
.

Apply both Euler’s Method and the Euler Midpoint Method with h = 0.1 to estimate y(1.5), where y(t) satisfies·
y = y with y(0) = 1. Find y(t) exactly and compute the errors in these two approximations.

In Exercises 23–26, use Euler’s Midpoint Method with the time step indicated to approximate the given value of y(t).
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23. y(0.5); ·
y = y + t , y(0) = 1, h = 0.1

solution With t0 = 0, y0 = 1, F(t, y) = y + t , and h = 0.1 we compute

n tn yn

0 0 1

1 0.1 y0 + hF(t0 + h/2, y0 + (h/2)F (t0, y0)) = 1.11

2 0.2 y1 + hF(t1 + h/2, y1 + (h/2)F (t1, y1)) = 1.242050

3 0.3 y2 + hF(t2 + h/2, y2 + (h/2)F (t2, y2)) = 1.398465

4 0.4 y3 + hF(t3 + h/2, y3 + (h/2)F (t3, y3)) = 1.581804

5 0.5 y4 + hF(t4 + h/2, y4 + (h/2)F (t4, y4)) = 1.794894

y(2); ·
y = t2 − y, y(1) = 3, h = 0.2

25. y(0.25); ·
y = cos(y + t), y(0) = 1, h = 0.05

solution With t0 = 0, y0 = 1, F(t, y) = cos(y + t), and h = 0.05 we compute

n tn yn

0 0 1

1 0.05 y0 + hF(t0 + h/2, y0 + (h/2)F (t0, y0)) = 1.025375

2 0.10 y1 + hF(t1 + h/2, y1 + (h/2)F (t1, y1)) = 1.047507

3 0.15 y2 + hF(t2 + h/2, y2 + (h/2)F (t2, y2)) = 1.066425

4 0.20 y3 + hF(t3 + h/2, y3 + (h/2)F (t3, y3)) = 1.082186

5 0.25 y4 + hF(t4 + h/2, y4 + (h/2)F (t4, y4)) = 1.094871

y(2.3); ·
y = y + t2, y(2) = 1, h = 0.05

27. Assume that f (t) is continuous on [a, b]. Show that Euler’s Midpoint Method applied to ·
y = f (t) with initial

condition y(a) = 0 and time step h = (b − a)/N for N steps yields the N th midpoint approximation to

y(b) =
∫ b

a
f (u) du

solution For a differential equation of the form ·
y = f (t), the equations for Euler’s midpoint method reduce to

mk−1 = f

(
tk−1 + h

2

)
and yk = yk−1 + hf

(
tk−1 + h

2

)
.

With a step size of h = (b − a)/N , y(b) =≈ yN . Starting from y0 = 0, we compute

y1 = y0 + hf

(
t0 + h

2

)
= hf

(
t0 + h

2

)

y2 = y1 + hf

(
t1 + h

2

)
= h

[
f

(
t0 + h

2

)
+ f

(
t1 + h

2

)]

y3 = y2 + hf

(
t2 + h

2

)
= h

[
f

(
t0 + h

2

)
+ f

(
t1 + h

2

)
+ f

(
t2 + h

2

)]

...

yN = yN1 + hf

(
tN−1 + h

2

)
= h

[
f

(
t0 + h

2

)
+ f

(
t1 + h

2

)
+ f

(
t2 + h

2

)
+ . . . + f

(
tN−1 + h

2

)]

= h

N−1∑
k=0

f

(
tk + h

2

)

Observe this last expression is exactly the N th midpoint approximation to y(b) =
∫ b

a
f (u) du.
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10.3 The Logistic Equation

Preliminary Questions
1. Which of the following differential equations is a logistic differential equation?

(a) ·
y = 2y(1 − y2) (b) ·

y = 2y
(

1 − y

3

)
(c) ·

y = 2y

(
1 − t

4

)
(d) ·

y = 2y(1 − 3y)

solution The differential equations in (b) and (d) are logistic equations. The equation in (a) is not a logistic equation

because of the y2 term inside the parentheses on the right-hand side; the equation in (c) is not a logistic equation because
of the presence of the independent variable on the right-hand side.

2. Is the logistic equation a linear differential equation?

solution No, the logistic equation is not linear.

·
y = ky

(
1 − y

A

)
can be rewritten ·

y = ky − k

A
y2

and we see that a term involving y2 occurs.

3. Is the logistic equation separable?

solution Yes, the logistic equation is a separable differential equation.

Exercises
1. Find the general solution of the logistic equation

·
y = 3y

(
1 − y

5

)
Then find the particular solution satisfying y(0) = 2.

solution ·
y = 3y(1 − y/5) is a logistic equation with k = 3 and A = 5; therefore, the general solution is

y = 5

1 − e−3t /C
.

The initial condition y(0) = 2 allows us to determine the value of C:

2 = 5

1 − 1/C
; 1 − 1

C
= 5

2
; so C = −2

3
.

The particular solution is then

y = 5

1 + 3
2 e−3t

= 10

2 + 3e−3t
.

Find the solution of ·
y = 2y(3 − y), y(0) = 10.

3. Let y(t) be a solution of ·
y = 0.5y(1 − 0.5y) such that y(0) = 4. Determine lim

t→∞ y(t) without finding y(t) explicitly.

solution This is a logistic equation with k = 1

2
and A = 2, so the carrying capacity is 2. Thus the required limit is 2.

Let y(t) be a solution of ·
y = 5y(1 − y/5). State whether y(t) is increasing, decreasing, or constant in the following

cases:

(a) y(0) = 2 (b) y(0) = 5 (c) y(0) = 8

5. A population of squirrels lives in a forest with a carrying capacity of 2000. Assume logistic growth with growth
constant k = 0.6 yr−1.

(a) Find a formula for the squirrel population P(t), assuming an initial population of 500 squirrels.

(b) How long will it take for the squirrel population to double?

solution

(a) Since k = 0.6 and the carrying capacity is A = 2000, the population P(t) of the squirrels satisfies the differential
equation

P ′(t) = 0.6P(t)(1 − P(t)/2000),

with general solution

P(t) = 2000

1 − e−0.6t /C
.
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The initial condition P(0) = 500 allows us to determine the value of C:

500 = 2000

1 − 1/C
; 1 − 1

C
= 4; so C = −1

3
.

The formula for the population is then

P(t) = 2000

1 + 3e−0.6t
.

(b) The squirrel population will have doubled at the time t where P(t) = 1000. This gives

1000 = 2000

1 + 3e−0.6t
; 1 + 3e−0.6t = 2; so t = 5

3
ln 3 ≈ 1.83.

It therefore takes approximately 1.83 years for the squirrel population to double.

The population P(t) of mosquito larvae growing in a tree hole increases according to the logistic equation with
growth constant k = 0.3 day−1 and carrying capacity A = 500.

(a) Find a formula for the larvae population P(t), assuming an initial population of P0 = 50 larvae.

(b) After how many days will the larvae population reach 200?

7. Sunset Lake is stocked with 2000 rainbow trout, and after 1 year the population has grown to 4500. Assuming logistic
growth with a carrying capacity of 20,000, find the growth constant k (specify the units) and determine when the population
will increase to 10,000.

solution Since A = 20,000, the trout population P(t) satisfies the logistic equation

P ′(t) = kP (t)(1 − P(t)/20,000),

with general solution

P(t) = 20,000

1 − e−kt /C
.

The initial condition P(0) = 2000 allows us to determine the value of C:

2000 = 20,000

1 − 1/C
; 1 − 1

C
= 10; so C = −1

9
.

After one year, we know the population has grown to 4500. Let’s measure time in years. Then

4500 = 20,000

1 + 9e−k

1 + 9e−k = 40

9

e−k = 31

81

k = ln
81

31
≈ 0.9605 years−1.

The population will increase to 10,000 at time t where P(t) = 10,000. This gives

10,000 = 20,000

1 + 9e−0.9605t

1 + 9e−0.9605t = 2

e−0.9605t = 1

9

t = 1

0.9605
ln 9 ≈ 2.29 years.

Spread of a Rumor A rumor spreads through a small town. Let y(t) be the fraction of the population that has
heard the rumor at time t and assume that the rate at which the rumor spreads is proportional to the product of the
fraction y of the population that has heard the rumor and the fraction 1 − y that has not yet heard the rumor.

(a) Write down the differential equation satisfied by y in terms of a proportionality factor k.

(b) Find k (in units of day−1), assuming that 10% of the population knows the rumor at t = 0 and 40% knows it at
t = 2 days.

(c) Using the assumptions of part (b), determine when 75% of the population will know the rumor.

9. A rumor spreads through a school with 1000 students. At 8 am, 80 students have heard the rumor, and by noon, half
the school has heard it. Using the logistic model of Exercise 8, determine when 90% of the students will have heard the
rumor.

solution Let y(t) be the proportion of students that have heard the rumor at a time t hours after 8 am. In the logistic
model of Exercise 8, we have a capacity of A = 1 (100% of students) and an unknown growth factor of k. Hence,

y(t) = 1

1 − e−kt /C
.

The initial condition y(0) = 0.08 allows us to determine the value of C:

2

25
= 1

1 − 1/C
; 1 − 1

C
= 25

2
; so C = − 2

23
.
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so that

y(t) = 2

2 + 23e−kt
.

The condition y(4) = 0.5 now allows us to determine the value of k:

1

2
= 2

2 + 23e−4k
; 2 + 23e−4k = 4; so k = 1

4
ln

23

2
≈ 0.6106 hours−1.

90% of the students have heard the rumor when y(t) = 0.9. Thus

9

10
= 2

2 + 23e−0.6106t

2 + 23e−0.6106t = 20

9

t = 1

0.6106
ln

207

2
≈ 7.6 hours.

Thus, 90% of the students have heard the rumor after 7.6 hours, or at 3:36 pm.

A simpler model for the spread of a rumor assumes that the rate at which the rumor spreads is proportional
(with factor k) to the fraction of the population that has not yet heard the rumor.

(a) Compute the solutions to this model and the model of Exercise 8 with the values k = 0.9 and y0 = 0.1.

(b) Graph the two solutions on the same axis.

(c) Which model seems more realistic? Why?

11. Let k = 1 and A = 1 in the logistic equation.

(a) Find the solutions satisfying y1(0) = 10 and y2(0) = −1.

(b) Find the time t when y1(t) = 5.

(c) When does y2(t) become infinite?

solution The general solution of the logistic equation with k = 1 and A = 1 is

y(t) = 1

1 − e−t /C
.

(a) Given y1(0) = 10, we find C = 10
9 , and

y1(t) = 1

1 − 10
9 e−t

= 10

10 − 9e−t
.

On the other hand, given y2(0) = −1, we find C = 1
2 , and

y2(t) = 1

1 − 2e−t
.

(b) From part (a), we have

y1(t) = 10

10 − 9e−t
.

Thus, y1(t) = 5 when

5 = 10

10 − 9e−t
; 10 − 9e−t = 2; so t = ln

9

8
.

(c) From part (a), we have

y2(t) = 1

1 − 2e−t
.

Thus, y2(t) becomes infinite when

1 − 2e−t = 0 or t = ln 2.

A tissue culture grows until it has a maximum area of M cm2. The area A(t) of the culture at time t may be
modeled by the differential equation

·
A = k

√
A

(
1 − A

M

)

where k is a growth constant.

(a) Show that if we set A = u2, then

·
u = 1

2
k

(
1 − u2

M

)

Then find the general solution using separation of variables.

13. In the model of Exercise 12, let A(t) be the area at time t (hours) of a growing tissue culture with initial size

A(0) = 1 cm2, assuming that the maximum area is M = 16 cm2 and the growth constant is k = 0.1.

(a) Find a formula for A(t). Note: The initial condition is satisfied for two values of the constant C. Choose the value of
C for which A(t) is increasing.

(b) Determine the area of the culture at t = 10 hours.

(c) Graph the solution using a graphing utility.
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solution

(a) From the values for M and k we have

A(t) = 16

(
Cet/40 − 1

Cet/40 + 1

)2

and the initial condition then gives us

A(0) = 1 = 16

(
Ce0/40 − 1

Ce0/40 + 1

)2

so, simplifying,

1 = 16

(
C − 1

C + 1

)2
⇒ C2 + 2C + 1 = 16C2 − 32C + 16 ⇒ 15C2 − 34C + 15 = 0

and thus C = 5

3
or C = 3

5
. The derivative of A(t) is

A′(t) = 16Cet/40

(Cet/40 + 1)3
· (Cet/40 − 1)

For C = 3/5, A′(t) can be negative, while for C = 5/3, it is always positive. So let C = 5/3.

(b) From part (a), we have

A(t) = 16

(
5
3 et/40 − 1
5
3 et/40 + 1

)2

and A(10) ≈ 2.11.

(c)

500

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

y

t
100 150 200

Show that if a tissue culture grows according to Eq. (7), then the growth rate reaches a maximum when A = M/3.
15. In 1751, Benjamin Franklin predicted that the U.S. population P(t) would increase with growth constant k =
0.028 year−1. According to the census, the U.S. population was 5 million in 1800 and 76 million in 1900. Assuming
logistic growth with k = 0.028, find the predicted carrying capacity for the U.S. population. Hint: Use Eqs. (3) and (4)
to show that

P(t)

P (t) − A
= P0

P0 − A
ekt

solution Assuming the population grows according to the logistic equation,

P(t)

P (t) − A
= Cekt .

But

C = P0

P0 − A
,

so

P(t)

P (t) − A
= P0

P0 − A
ekt .

Now, let t = 0 correspond to the year 1800. Then the year 1900 corresponds to t = 100, and with k = 0.028, we have

76

76 − A
= 5

5 − A
e(0.028)(100).
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Solving for A, we find

A = 5(e2.8 − 1)

5
76 e2.8 − 1

≈ 943.07.

Thus, the predicted carrying capacity for the U.S. population is approximately 943 million.

Reverse Logistic Equation Consider the following logistic equation (with k, B > 0):

dP

dt
= −kP

(
1 − P

B

)

(a) Sketch the slope field of this equation.

(b) The general solution is P(t) = B/(1 − ekt /C), where C is a nonzero constant. Show that P(0) > B if C > 1
and 0 < P(0) < B if C < 0.

(c) Show that Eq. (8) models an “extinction–explosion” population. That is, P(t) tends to zero if the initial population
satisfies 0 < P(0) < B, and it tends to ∞ after a finite amount of time if P(0) > B.

(d) Show that P = 0 is a stable equilibrium and P = B an unstable equilibrium.

Further Insights and Challenges
In Exercises 17 and 18, let y(t) be a solution of the logistic equation

dy

dt
= ky

(
1 − y

A

)
9

where A > 0 and k > 0.

17. (a) Differentiate Eq. (9) with respect to t and use the Chain Rule to show that

d2y

dt2
= k2y

(
1 − y

A

) (
1 − 2y

A

)

(b) Show that y(t) is concave up if 0 < y < A/2 and concave down if A/2 < y < A.

(c) Show that if 0 < y(0) < A/2, then y(t) has a point of inflection at y = A/2 (Figure 6).

(d) Assume that 0 < y(0) < A/2. Find the time t when y(t) reaches the inflection point.

A

A
2

y

y(0)
t

Inflection point

FIGURE 6 An inflection point occurs at y = A/2 in the logistic curve.

solution

(a) The derivative of Eq. (9) with respect to t is

y′′ = ky′ − 2kyy′
A

= ky′
(

1 − 2y

A

)
= k

(
1 − y

A

)
ky

(
1 − 2y

A

)
= k2y

(
1 − y

A

) (
1 − 2y

A

)
.

(b) If 0 < y < A/2, 1 − y
A

and 1 − 2y
A

are both positive, so y′′ > 0. Therefore, y is concave up. If A/2 < y < A,

1 − y
A

> 0, but 1 − 2y
A

< 0, so y′′ < 0, so y is concave down.

(c) If y0 < A, y grows and lim
t→∞ y(t) = A. If 0 < y < A/2, y is concave up at first. Once y passes A/2, y becomes

concave down, so y has an inflection point at y = A/2.

(d) The general solution to Eq. (9) is

y = A

1 − e−kt /C
;

thus, y = A/2 when

A

2
= A

1 − e−kt /C

1 − e−kt /C = 2

t = −1

k
ln(−C)

Now, C = y0/(y0 − A), so

t = −1

k
ln

y0

A − y0
= 1

k
ln

A − y0

y0
.

Let y = A

1 − e−kt /C
be the general nonequilibrium Eq. (9). If y(t) has a vertical asymptote at t = tb, that is, if

lim
t→tb−

y(t) = ±∞, we say that the solution “blows up” at t = tb.

(a) Show that if 0 < y(0) < A then y does not blow up at any time tb
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10.4 First-Order Linear Equations

Preliminary Questions
1. Which of the following are first-order linear equations?

(a) y′ + x2y = 1 (b) y′ + xy2 = 1

(c) x5y′ + y = ex (d) x5y′ + y = ey

solution The equations in (a) and (c) are first-order linear differential equations. The equation in (b) is not linear

because of the y2 factor in the second term on the left-hand side of the equation; the equation in (d) is not linear because
of the ey term on the right-hand side of the equation.

2. If α(x) is an integrating factor for y′ + A(x)y = B(x), then α′(x) is equal to (choose the correct answer):

(a) B(x) (b) α(x)A(x)

(c) α(x)A′(x) (d) α(x)B(x)

solution The correct answer is (b): α(x)A(x).

Exercises
1. Consider y′ + x−1y = x3.

(a) Verify that α(x) = x is an integrating factor.

(b) Show that when multiplied by α(x), the differential equation can be written (xy)′ = x4.

(c) Conclude that xy is an antiderivative of x4 and use this information to find the general solution.

(d) Find the particular solution satisfying y(1) = 0.

solution
(a) The equation is of the form

y′ + A(x)y = B(x)

for A(x) = x−1 and B(x) = x3. By Theorem 1, α(x) is defined by

α(x) = e
∫

A(x) dx = eln x = x.

(b) When multiplied by α(x), the equation becomes:

xy′ + y = x4.

Now, xy′ + y = xy′ + (x)′y = (xy)′, so

(xy)′ = x4.

(c) Since (xy)′ = x4, (xy) = x5

5 + C and

y = x4

5
+ C

x

(d) If y(1) = 0, we find

0 = 1

5
+ C so − 1

5
= C.

The solution, therefore, is

y = x4

5
− 1

5x
.

Consider
dy

dt
+ 2y = e−3t .

(a) Verify that α(t) = e2t is an integrating factor.

(b) Use Eq. (4) to find the general solution.

(c) Find the particular solution with initial condition y(0) = 1.

3. Let α(x) = ex2
. Verify the identity

(α(x)y)′ = α(x)(y′ + 2xy)

and explain how it is used to find the general solution of

y′ + 2xy = x

solution Let α(x) = ex2
. Then

(α(x)y)′ = (ex2
y)′ = 2xex2

y + ex2
y′ = ex2 (

2xy + y′) = α(x)
(
y′ + 2xy

)
.
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If we now multiply both sides of the differential equation y′ + 2xy = x by α(x), we obtain

α(x)(y′ + 2xy) = xα(x) = xex2
.

But α(x)(y′ + 2xy) = (α(x)y)′, so by integration we find

α(x)y =
∫

xex2
dx = 1

2
ex2 + C.

Finally,

y(x) = 1

2
+ Ce−x2

.

Find the solution of y′ − y = e2x , y(0) = 1.
In Exercises 5–18, find the general solution of the first-order linear differential equation.

5. xy′ + y = x

solution Rewrite the equation as

y′ + 1

x
y = 1,

which is in standard linear form with A(x) = 1
x and B(x) = 1. By Theorem 1, the integrating factor is

α(x) = e
∫

A(x) dx = eln x = x.

When multiplied by the integrating factor, the rewritten differential equation becomes

xy′ + y = x or (xy)′ = x.

Integration of both sides now yields

xy = 1

2
x2 + C.

Finally,

y(x) = 1

2
x + C

x
.

xy′ − y = x2 − x
7. 3xy′ − y = x−1

solution Rewrite the equation as

y′ − 1

3x
y = 1

3x2
,

which is in standard form with A(x) = − 1
3x−1 and B(x) = 1

3x−2. By Theorem 1, the integrating factor is

α(x) = e
∫

A(x) dx = e−(1/3) ln x = x−1/3.

When multiplied by the integrating factor, the rewritten differential equation becomes

x−1/3y′ − 1

3
x−4/3 = 1

3
x−7/3 or (x−1/3y)′ = 1

3
x−7/3.

Integration of both sides now yields

x−1/3y = −1

4
x−4/3 + C.

Finally,

y(x) = −1

4
x−1 + Cx1/3.

y′ + xy = x
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9. y′ + 3x−1y = x + x−1

solution This equation is in standard form with A(x) = 3x−1 and B(x) = x + x−1. By Theorem 1, the integrating
factor is

α(x) = e
∫

3x−1 = e3 ln x = x3.

When multiplied by the integrating factor, the original differential equation becomes

x3y′ + 3x2y = x4 + x2 or (x3y)′ = x4 + x3.

Integration of both sides now yields

x3y = 1

5
x5 + 1

3
x3 + C.

Finally,

y(x) = 1

5
x2 + 1

3
+ Cx−3.

y′ + x−1y = cos(x2)
11. xy′ = y − x

solution Rewrite the equation as

y′ − 1

x
y = −1,

which is in standard form with A(x) = − 1
x and B(x) = −1. By Theorem 1, the integrating factor is

α(x) = e
∫ −(1/x) dx = e− ln x = x−1.

When multiplied by the integrating factor, the rewritten differential equation becomes

1

x
y′ − 1

x2
y = − 1

x
or

(
1

x
y

)′
= − 1

x
.

Integration on both sides now yields

1

x
y = − ln x + C.

Finally,

y(x) = −x ln x + Cx.

xy′ = x−2 − 3y

x

13. y′ + y = ex

solution This equation is in standard form with A(x) = 1 and B(x) = ex . By Theorem 1, the integrating factor is

α(x) = e
∫

1 dx = ex .

When multiplied by the integrating factor, the original differential equation becomes

exy′ + exy = e2x or (exy)′ = e2x .

Integration on both sides now yields

exy = 1

2
e2x + C.

Finally,

y(x) = 1

2
ex + Ce−x .

y′ + (sec x)y = cos x
15. y′ + (tan x)y = cos x

solution This equation is in standard form with A(x) = tan x and B(x) = cos x. By Theorem 1, the integrating factor
is

α(x) = e
∫

tan x dx = eln sec x = sec x.
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When multiplied by the integrating factor, the original differential equation becomes

sec xy′ + sec x tan xy = 1 or (y sec x)′ = 1.

Integration on both sides now yields

y sec x = x + C.

Finally,

y(x) = x cos x + C cos x.

e2xy′ = 1 − exy
17. y′ − (ln x)y = xx

solution This equation is in standard form with A(x) = − ln x and B(x) = xx . By Theorem 1, the integrating factor
is

α(x) = e
∫ − ln x dx = ex−x ln x = ex

xx
.

When multiplied by the integrating factor, the original differential equation becomes

x−xexy′ − (ln x)x−xexy = ex or (x−xexy)′ = ex .

Integration on both sides now yields

x−xexy = ex + C.

Finally,

y(x) = xx + Cxxe−x .

y′ + y = cos x
In Exercises 19–26, solve the initial value problem.

19. y′ + 3y = e2x , y(0) = −1

solution First, we find the general solution of the differential equation. This linear equation is in standard form with

A(x) = 3 and B(x) = e2x . By Theorem 1, the integrating factor is

α(x) = e3x .

When multiplied by the integrating factor, the original differential equation becomes

(e3xy)′ = e5x .

Integration on both sides now yields

(e3xy) = 1

5
e5x + C;

hence,

y(x) = 1

5
e2x + Ce−3x .

The initial condition y(0) = −1 allows us to determine the value of C:

−1 = 1

5
+ C so C = −6

5
.

The solution to the initial value problem is therefore

y(x) = 1

5
e2x − 6

5
e−3x .

xy′ + y = ex , y(1) = 321. y′ + 1

x + 1
y = x−2, y(1) = 2

solution First, we find the general solution of the differential equation. This linear equation is in standard form with

A(x) = 1
x+1 and B(x) = x−2. By Theorem 1, the integrating factor is

α(x) = e
∫

1/(x+1) dx = eln(x+1) = x + 1.
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When multiplied by the integrating factor, the original differential equation becomes

((x + 1)y)′ = x−1 + x−2.

Integration on both sides now yields

(x + 1)y = ln x − x−1 + C;
hence,

y(x) = 1

x + 1

(
C + ln x − 1

x

)
.

The initial condition y(1) = 2 allows us to determine the value of C:

2 = 1

2
(C − 1) so C = 5.

The solution to the initial value problem is therefore

y(x) = 1

x + 1

(
5 + ln x − 1

x

)
.

y′ + y = sin x, y(0) = 123. (sin x)y′ = (cos x)y + 1, y
(π

4

)
= 0

solution First, we find the general solution of the differential equation. Rewrite the equation as

y′ − (cot x)y = csc x,

which is in standard form with A(x) = − cot x and B(x) = csc x. By Theorem 1, the integrating factor is

α(x) = e
∫ − cot x dx = e− ln sin x = csc x.

When multiplied by the integrating factor, the rewritten differential equation becomes

(csc xy)′ = csc2 x.

Integration on both sides now yields

(csc x)y = − cot x + C;
hence,

y(x) = − cos x + C sin x.

The initial condition y(π/4) = 0 allows us to determine the value of C:

0 = −
√

2

2
+ C

√
2

2
so C = 1.

The solution to the initial value problem is therefore

y(x) = − cos x + sin x.

y′ + (sec t)y = sec t , y
(π

4

)
= 1

25. y′ + (tanh x)y = 1, y(0) = 3

solution First, we find the general solution of the differential equation. This equation is in standard form with A(x) =
tanh x and B(x) = 1. By Theorem 1, the integrating factor is

α(x) = e
∫

tanh x dx = eln cosh x = cosh x.

When multiplied by the integrating factor, the original differential equation becomes

(cosh xy)′ = cosh x.

Integration on both sides now yields

(cosh xy) = sinh x + C;
hence,

y(x) = tanh x + C sech x.
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The initial condition y(0) = 3 allows us to determine the value of C:

3 = C.

The solution to the initial value problem is therefore

y(x) = tanh x + 3 sech x.

y′ + x

1 + x2
y = 1

(1 + x2)3/2
, y(1) = 0

27. Find the general solution of y′ + ny = emx for all m, n. Note: The case m = −n must be treated separately.

solution For any m, n, Theorem 1 gives us the formula for α(x):

α(x) = e
∫

n dx = enx.

When multiplied by the integrating factor, the original differential equation becomes

(enxy)′ = e(m+n)x .

If m �= −n, integration on both sides yields

enxy = 1

m + n
e(m+n)x + C,

so

y(x) = 1

m + n
emx + Ce−nx.

However, if m = −n, then m + n = 0 and the equation reduces to

(enxy)′ = 1,

so integration yields

enxy = x + C or y(x) = (x + C)e−nx.

Find the general solution of y′ + ny = cos x for all n.In Exercises 29–32, a 1000 L tank contains 500 L of water with a salt concentration of 10 g/L. Water with a salt
concentration of 50 g/L flows into the tank at a rate of 80 L/min. The fluid mixes instantaneously and is pumped out at a
specified rate Rout . Let y(t) denote the quantity of salt in the tank at time t .

29. Assume that Rout = 40 L/min.

(a) Set up and solve the differential equation for y(t).
(b) What is the salt concentration when the tank overflows?

solution Because water flows into the tank at the rate of 80 L/min but flows out at the rate of Rout = 40 L/min, there
is a net inflow of 40 L/min. Therefore, at any time t , there are 500 + 40t liters of water in the tank.

(a) The net flow of salt into the tank at time t is

dy

dt
= salt rate in − salt rate out =

(
80

L

min

) (
50

g

L

)
−

(
40

L

min

) (
y g

500 + 40t L

)
= 4000 − 40 · y

500 + 40t

Rewriting this linear equation in standard form, we have

dy

dt
+ 4

50 + 4t
y = 4000,

so A(t) = 4
50+4t

and B(t) = 4000. By Theorem 1, the integrating factor is

α(t) = e
∫

4(50+4t)−1 dt = eln(50+4t) = 50 + 4t.

When multiplied by the integrating factor, the rewritten differential equation becomes

((50 + 4t)y)′ = 4000(50 + 4t).

Integration on both sides now yields

(50 + 4t)y = 200,000t + 16,000t2 + C;
hence,

y(t) = 200,000t + 8000t2 + C

50 + 4t
.
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The initial condition y(0) = 10 allows us to determine the value of C:

10 = C

50
so C = 500.

The solution to the initial value problem is therefore

y(t) = 200,000t + 8000t2 + 500

50 + 4t
= 250 + 4000t2 + 100,000t

25 + 2t
.

(b) The tank overflows when t = 25/2 = 12.5. The amount of salt in the tank at that time is

y(12.5) = 37,505 g,

so the concentration of salt is

37,505 g

1000 L
= 37.505 g/L.

Find the salt concentration when the tank overflows, assuming that Rout = 60 L/min.
31. Find the limiting salt concentration as t → ∞ assuming that Rout = 80 L/min.

solution The total volume of water is now constant at 500 liters, so the net flow of salt at time t is

dy

dt
= salt rate in − salt rate out =

(
80

L

min

) (
50

g

L

)
−

(
80

L

min

) ( y g

500 L

)
= 4000 − 8

50
y

Rewriting this equation in standard form gives

dy

dt
+ 8

50
y = 4000

so that the integrating factor is

e
∫
(8/50) dt = e0.16t

Multiplying both sides by the integrating factor gives

(e0.16t y)′ = 4000e0.16t

Integrate both sides to get

e0.16t y = 25,000e0.16t + C so that y = 25,000 + Ce−0.16t

As t → ∞, the exponential term tends to zero, so that the amount of salt tends to 25,000g, or 50 g/L. (Note that this is
precisely what would be expected naïvely, since the salt concentration flowing in is also 50 g/L).

Assuming that Rout = 120 L/min. Find y(t). Then calculate the tank volume and the salt concentration at t = 10
minutes.

33. Water flows into a tank at the variable rate of Rin = 20/(1 + t) gal/min and out at the constant rate Rout = 5 gal/min.
Let V (t) be the volume of water in the tank at time t .

(a) Set up a differential equation for V (t) and solve it with the initial condition V (0) = 100.

(b) Find the maximum value of V .

(c) Plot V (t) and estimate the time t when the tank is empty.

solution

(a) The rate of change of the volume of water in the tank is given by

dV

dt
= Rin − Rout = 20

1 + t
− 5.

Because the right-hand side depends only on the independent variable t , we integrate to obtain

V (t) = 20 ln(1 + t) − 5t + C.

The initial condition V (0) = 100 allows us to determine the value of C:

100 = 20 ln 1 − 0 + C so C = 100.

Therefore

V (t) = 20 ln(1 + t) − 5t + 100.
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(b) Using the result from part (a),

dV

dt
= 20

1 + t
− 5 = 0

when t = 3. Because dV
dt

> 0 for t < 3 and dV
dt

< 0 for t > 3, it follows that

V (3) = 20 ln 4 − 15 + 100 ≈ 112.726 gal

is the maximum volume.

(c) V (t) is plotted in the figure below at the left. On the right, we zoom in near the location where the curve crosses the
t-axis. From this graph, we estimate that the tank is empty after roughly 34.25 minutes.

10 20 30 40

20

40

60

80

100

120

32 34 36 38

A stream feeds into a lake at a rate of 1000 m3/day. The stream is polluted with a toxin whose concentration is
5 g/m3. Assume that the lake has volume 106 m3 and that water flows out of the lake at the same rate of 1000 m3/day.

(a) Set up a differential equation for the concentration c(t) of toxin in the lake and solve for c(t), assuming that
c(0) = 0. Hint: Find the differential equation for the quantity of toxin y(t), and observe that c(t) = y(t)/106.

(b) What is the limiting concentration for large t?

In Exercises 35–38, consider a series circuit (Figure 4) consisting of a resistor of R ohms, an inductor of L henries, and
a variable voltage source of V (t) volts (time t in seconds). The current through the circuit I (t) (in amperes) satisfies the
differential equation

dI

dt
+ R

L
I = 1

L
V (t) 10

LV(t)

R

FIGURE 4 RL circuit.

35. Solve Eq. (10) with initial condition I (0) = 0, assuming that R = 100 �, L = 5 H, and V (t) is constant with
V (t) = 10 volts.

solution If R = 100, V (t) = 10, and L = 5, the differential equation becomes

dI

dt
+ 20I = 2,

which is a linear equation in standard form with A(t) = 20 and B(t) = 2. The integrating factor is α(t) = e20t , and when
multiplied by the integrating factor, the differential equation becomes

(e20t I )′ = 2e20t .

Integration of both sides now yields

e20t I = 1

10
e20t + C;

hence,

I (t) = 1

10
+ Ce−20t .

The initial condition I (0) = 0 allows us to determine the value of C:

0 = 1

10
+ C so C = − 1

10
.

Finally,

I (t) = 1

10

(
1 − e−20t

)
.

Assume that R = 110 �, L = 10 H, and V (t) = e−t volts.

(a) Solve Eq. (10) with initial condition I (0) = 0.

(b) Calculate tm and I (tm), where tm is the time at which I (t) has a maximum value.

(c) Use a computer algebra system to sketch the graph of the solution for 0 ≤ t ≤ 3.
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37. Assume that V (t) = V is constant and I (0) = 0.

(a) Solve for I (t).

(b) Show that lim
t→∞ I (t) = V/R and that I (t) reaches approximately 63% of its limiting value after L/R seconds.

(c) How long does it take for I (t) to reach 90% of its limiting value if R = 500 �, L = 4 H, and V = 20 volts?

solution

(a) The equation

dI

dt
+ R

L
I = 1

L
V

is a linear equation in standard form with A(t) = R
L

and B(t) = 1
L

V (t). By Theorem 1, the integrating factor is

α(t) = e
∫
(R/L) dt = e(R/L) t .

When multiplied by the integrating factor, the original differential equation becomes

(e(R/L) t I )′ = e(R/L) t V

L
.

Integration on both sides now yields

(e(R/L) t I ) = V

R
e(R/L) t + C;

hence,

I (t) = V

R
+ Ce−(R/L) t .

The initial condition I (0) = 0 allows us to determine the value of C:

0 = V

R
+ C so C = −V

R
.

Therefore the current is given by

I (t) = V

R

(
1 − e−(R/L) t

)
.

(b) As t → ∞, e−(R/L) t → 0, so I (t) → V
R

. Moreover, when t = (L/R) seconds, we have

I

(
L

R

)
= V

R

(
1 − e−(R/L) (L/R)

)
= V

R

(
1 − e−1

)
≈ 0.632

V

R
.

(c) Using the results from part (a) and part (b), I (t) reaches 90% of its limiting value when

9

10
= 1 − e−(R/L) t ,

or when

t = L

R
ln 10.

With L = 4 and R = 500, this takes approximately 0.0184 seconds.

Solve for I (t), assuming that R = 500 �, L = 4 H, and V = 20 cos(80t) volts.39. Tank 1 in Figure 5 is filled with V1 liters of water containing blue dye at an initial concentration of c0 g/L.
Water flows into the tank at a rate of R L/min, is mixed instantaneously with the dye solution, and flows out through the
bottom at the same rate R. Let c1(t) be the dye concentration in the tank at time t .

(a) Explain why c1 satisfies the differential equation
dc1

dt
= − R

V1
c1.

(b) Solve for c1(t) with V1 = 300 L, R = 50, and c0 = 10 g/L.
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R  (L/min)

Tank 2

R  (L/min)

R (L/min)

Tank 1

FIGURE 5

solution
(a) Let g1(t) be the number of grams of dye in the tank at time t . Then g1(t) = V1c1(t) and g′

1(t) = V1c′
1(t). Now,

g′
1(t) = grams of dye in − grams of dye out = 0 − g(t)

V1
g/L · R L/min = − R

V1
g(t)

Substituting gives

V1c′
1(t) = − R

V1
c1(t)V1 and simplifying yields c′

1(t) = − R

V1
c1(t)

(b) In standard form, the equation is

c′
1(t) + R

V1
c1(t) = 0

so that A(t) = R

V1
and B(t) = 0. The integrating factor is e(R/V1)t ; multiplying through gives

(e(R/V1)t c1(t))′ = 0 so, integrating, e(R/V1)t c1(t) = C

and thus c1(t) = Ce−(R/V1)t . With R = 50 and V1 = 300 we have c1(t) = Ce−t/6; the initial condition c1(0) = c0 = 10
gives C = 10. Finally,

c1(t) = 10e−t/6

Continuing with the previous exercise, let Tank 2 be another tank filled with V2 gal of water. Assume that the
dye solution from Tank 1 empties into Tank 2 as in Figure 5, mixes instantaneously, and leaves Tank 2 at the same
rate R. Let c2(t) be the dye concentration in Tank 2 at time t .

(a) Explain why c2 satisfies the differential equation

dc2

dt
= R

V2
(c1 − c2)

(b) Use the solution to Exercise 39 to solve for c2(t) if V1 = 300, V2 = 200, R = 50, and c0 = 10.

(c) Find the maximum concentration in Tank 2.

(d) Plot the solution.

41. Let a, b, r be constants. Show that

y = Ce−kt + a + bk

(
k sin rt − r cos rt

k2 + r2

)

is a general solution of

dy

dt
= −k

(
y − a − b sin rt

)
solution This is a linear differential equation; in standard form, it is

dy

dt
+ ky = k(a + b sin rt)

The integrating factor is then ekt ; multiplying through gives

(ekt y)′ = kaekt + kbekt sin rt (*)

The first term on the right-hand side has integral aekt . To integrate the second term, use integration by parts twice; this
result in an equation of the form ∫

kbekt sin rt = F(t) + A

∫
kbekt sin rt

for some function F(t) and constant A. Solving for the integral gives∫
kbekt sin rt = kbekt k sin rt − r cos rt

k2 + r2
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so that integrating equation (*) gives

ekt y = aekt + kbekt k sin rt − r cos rt

k2 + r2
+ C

Divide through by ekt to get

y = a + bk

(
k sin rt − r cos rt

k2 + r2

)
+ Ce−kt

Assume that the outside temperature varies as

T (t) = 15 + 5 sin(πt/12)

where t = 0 is 12 noon. A house is heated to 25◦C at t = 0 and after that, its temperature y(t) varies according to
Newton’s Law of Cooling (Figure 6):

dy

dt
= −0.1

(
y(t) − T (t)

)
Use Exercise 41 to solve for y(t).

Further Insights and Challenges
43. Let α(x) be an integrating factor for y′ + A(x)y = B(x). The differential equation y′ + A(x)y = 0 is called the
associated homogeneous equation.

(a) Show that 1/α(x) is a solution of the associated homogeneous equation.

(b) Show that if y = f (x) is a particular solution of y′ + A(x)y = B(x), then f (x) + C/α(x) is also a solution for any
constant C.

solution

(a) Remember that α′(x) = A(x)α(x). Now, let y(x) = (α(x))−1. Then

y′ + A(x)y = − 1

(α(x))2
α′(x) + A(x)

α(x)
= − 1

(α(x))2
A(x)α(x) + A(x)

α(x)
= 0.

(b) Suppose f (x) satisfies f ′(x) + A(x)f (x) = B(x). Now, let y(x) = f (x) + C/α(x), where C is an arbitrary
constant. Then

y′ + A(x)y = f ′(x) − C

(α(x))2
α′(x) + A(x)f (x) + CA(x)

α(x)

= (
f ′(x) + A(x)f (x)

) + C

α(x)

(
A(x) − α′(x)

α(x)

)
= B(x) + 0 = B(x).

Use the Fundamental Theorem of Calculus and the Product Rule to verify directly that for any x0, the function

f (x) = α(x)−1
∫ x

x0

α(t)B(t) dt

is a solution of the initial value problem

y′ + A(x)y = B(x), y(x0) = 0

where α(x) is an integrating factor [a solution to Eq. (3)].

45. Transient Currents Suppose the circuit described by Eq. (10) is driven by a sinusoidal voltage source V (t) =
V sin ωt (where V and ω are constant).

(a) Show that

I (t) = V

R2 + L2ω2
(R sin ωt − Lω cos ωt) + Ce−(R/L) t

(b) Let Z =
√

R2 + L2ω2. Choose θ so that Z cos θ = R and Z sin θ = Lω. Use the addition formula for the sine
function to show that

I (t) = V

Z
sin(ωt − θ) + Ce−(R/L) t

This shows that the current in the circuit varies sinusoidally apart from a DC term (called the transient current in
electronics) that decreases exponentially.

solution

(a) With V (t) = V sin ωt , the equation

dI

dt
+ R

L
I = 1

L
V (t)

becomes

dI

dt
+ R

L
I = V

L
sin ωt.

This is a linear equation in standard form with A(t) = R
L

and B(t) = V
L

sin ωt . By Theorem 1, the integrating factor is

α(t) =
∫

e
∫

A(t) dt = e(R/L) t .

When multiplied by the integrating factor, the equation becomes

(e(R/L) t I )′ = V

L
e(R/L) t sin ωt.
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Integration on both sides (integration by parts is needed for the integral on the right-hand side) now yields

(e(R/L) t I ) = V

R2 + L2ω2
e(R/L) t (R sin ωt − Lω cos ωt) + C;

hence,

I (t) = V

R2 + L2ω2
(R sin ωt − Lω cos ωt) + Ce−(R/L) t .

(b) Let Z =
√

R2 + L2ω2, and choose θ so that Z cos θ = R and Z sin θ = Lω. Then

V

R2 + L2ω2
(R sin ωt − Lω cos ωt) = V

Z2
(Z cos θ sin ωt − Z sin θ cos ωt)

= V

Z
(cos θ sin ωt − sin θ cos ωt) = V

Z
sin(ωt − θ).

Thus,

I (t) = V

Z
sin(ωt − θ) + Ce−(R/L) t .

CHAPTER REVIEW EXERCISES

1. Which of the following differential equations are linear? Determine the order of each equation.

(a) y′ = y5 − 3x4y (b) y′ = x5 − 3x4y

(c) y = y′′′ − 3x
√

y (d) sin x · y′′ = y − 1

solution

(a) y5 is a nonlinear term involving the dependent variable, so this is not a linear equation; the highest order derivative
that appears in the equation is a first derivative, so this is a first-order equation.
(b) This is linear equation; the highest order derivative that appears in the equation is a first derivative, so this is a
first-order equation.
(c)

√
y is a nonlinear term involving the dependent variable, so this is not a linear equation; the highest order derivative

that appears in the equation is a third derivative, so this is a third-order equation.
(d) This is linear equation; the highest order derivative that appears in the equation is a second derivative, so this is a
second-order equation.

Find a value of c such that y = x − 2 + ecx is a solution of 2y′ + y = x.In Exercises 3–6, solve using separation of variables.

3.
dy

dt
= t2y−3

solution Rewrite the equation as

y3 dy = t2 dt.

Upon integrating both sides of this equation, we obtain:∫
y3 dy =

∫
t2 dt

y4

4
= t3

3
+ C.

Thus,

y = ±
(

4

3
t3 + C

)1/4
,

where C is an arbitrary constant.

xyy′ = 1 − x25. x
dy

dx
− y = 1

solution Rewrite the equation as

dy

1 + y
= dx

x
.
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upon integrating both sides of this equation, we obtain∫
dy

1 + y
=

∫
dx

x

ln |1 + y| = ln |x| + C.

Thus,

y = −1 + Ax,

where A = ±eC is an arbitrary constant.

y′ = xy2

x2 + 1

In Exercises 7–10, solve the initial value problem using separation of variables.

7. y′ = cos2x, y(0) = π

4
solution First, we find the general solution of the differential equation. Because the variables are already separated,
we integrate both sides to obtain

y =
∫

cos2x dx =
∫ (

1

2
+ 1

2
cos 2x

)
dx = x

2
+ sin 2x

4
+ C.

The initial condition y(0) = π
4 allows us to determine C = π

4 . Thus, the solution is:

y(x) = x

2
+ sin 2x

4
+ π

4
.

y′ = cos2y, y(0) = π

4

9. y′ = xy2, y(1) = 2

solution First, we find the general solution of the differential equation. Rewrite

dy

dx
= xy2 as

dy

y2
= x dx.

Upon integrating both sides of this equation, we find∫
dy

y2
=

∫
x dx

− 1

y
= 1

2
x2 + C.

Thus,

y = − 1
1
2x2 + C

.

The initial condition y(1) = 2 allows us to determine the value of C:

2 = − 1
1
2 · 12 + C

= − 2

1 + 2C

1 + 2C = −1

C = −1

Hence, the solution to the initial value problem is

y = − 1
1
2x2 − 1

= − 2

x2 − 2
.

xyy′ = 1, y(3) = 2
11. Figure 1 shows the slope field for ·

y = sin y + ty. Sketch the graphs of the solutions with the initial conditions
y(0) = 1 , y(0) = 0, and y(0) = −1.

0 1−2 2−1

−2

−1

0

1

2

t

y

FIGURE 1
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solution

−3
−3

−2

−1

0

1

2

3

−2 −1 0 1 2 3

y

t

Which of the equations (i)–(iii) corresponds to the slope field in Figure 2?

(i) ·
y = 1 − y2

(ii) ·
y = 1 + y2

(iii) ·
y = y2

13. Let y(t) be the solution to the differential equation with slope field as shown in Figure 2, satisfying y(0) = 0. Sketch
the graph of y(t). Then use your answer to Exercise 12 to solve for y(t).

solution As explained in the previous exercise, the slope field in Figure 2 corresponds to the equation ·
y = 1 + y2.

The graph of the solution satisfying y(0) = 0 is:

−3

−3

−2

−1

0

1

2

3

−2 −1 10 2 3

y

t

To solve the initial value problem ·
y = 1 + y2, y(0) = 0, we first find the general solution of the differential equation.

Separating variables yields:

dy

1 + y2
= dt.

Upon integrating both sides of this equation, we find

tan−1 y = t + C or y = tan(t + C).

The initial condition gives C = 0, so the solution is y = tan x.

Let y(t) be the solution of 4 ·
y = y2 + t satisfying y(2) = 1. Carry out Euler’s Method with time step h = 0.05

for n = 6 steps.

15. Let y(t) be the solution of (x3 + 1)
·
y = y satisfying y(0) = 1. Compute approximations to y(0.1), y(0.2), and y(0.3)

using Euler’s Method with time step h = 0.1.

solution Rewriting the equation as ·
y = y

x3+1
we have F(x, y) = y

x3+1
. Using Euler’s Method with x0 = 0, y0 = 1

and h = 0.1, we calculate

y(0.1) ≈ y1 = y0 + hF(x0, y0) = 1 + 0.1 · 1

03 + 1
= 1.1

y(0.2) ≈ y2 = y1 + hF(x1, y1) = 1.209890

y(0.3) ≈ y3 = y2 + hF(x2, y2) = 1.329919

In Exercises 16–19, solve using the method of integrating factors.

dy

dt
= y + t2, y(0) = 4

17.
dy

dx
= y

x
+ x, y(1) = 3

solution First, we find the general solution of the differential equation. Rewrite the equation as

y′ − 1

x
y = x,

which is in standard form with A(x) = − 1
x and B(x) = x. The integrating factor is

α(x) = e
∫ − 1

x
dx = e− ln x = 1

x
.

When multiplied by the integrating factor, the rewritten differential equation becomes(
1

x
y

)′
= 1.
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Integration on both sides now yields

1

x
y = x + C;

hence,

y(x) = x2 + Cx.

The initial condition y(1) = 3 allows us to determine the value of C:

3 = 1 + C so C = 2.

The solution to the initial value problem is then

y = x2 + 2x.

dy

dt
= y − 3t , y(−1) = 2

19. y′ + 2y = 1 + e−x , y(0) = −4

solution The equation is already in standard form with A(x) = 2 and B(x) = 1 + e−x . The integrating factor is

α(x) = e
∫

2 dx = e2x .

When multiplied by the integrating factor, the original differential equation becomes

(e2xy)′ = e2x + ex .

Integration on both sides now yields

e2xy = 1

2
e2x + ex + C;

hence,

y(x) = 1

2
+ e−x + Ce−2x .

The initial condition y(0) = −4 allows us to determine the value of C:

−4 = 1

2
+ 1 + C so C = −11

2
.

The solution to the initial value problem is then

y(x) = 1

2
+ e−x − 11

2
e−2x .

In Exercises 20–27, solve using the appropriate method.

x2y′ = x2 + 1, y(1) = 10
21. y′ + (tan x)y = cos2 x, y(π) = 2

solution First, we find the general solution of the differential equation. As this is a first order linear equation with

A(x) = tan x and B(x) = cos2x, we compute the integrating factor

α(x) = e
∫

A(x) dx = e
∫

tan x dx = e− ln cos x = 1

cos x
.

When multiplied by the integrating factor, the original differential equation becomes(
1

cos x
y

)′
= cos x.

Integration on both sides now yields

1

cos x
y = sin x + C;

hence,

y(x) = sin x cos x + C cos x = 1

2
sin 2x + C cos x.

The initial condition y(π) = 2 allows us to determine the value of C:

2 = 0 + C(−1) so C = −2.
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The solution to the initial value problem is then

y = 1

2
sin 2x − 2 cos x.

xy′ = 2y + x − 1, y
( 3

2

) = 9
23. (y − 1)y′ = t , y(1) = −3

solution First, we find the general solution of the differential equation. This is a separable equation that we rewrite as

(y − 1) dy = t dt.

Upon integrating both sides of this equation, we find∫
(y − 1) dy =

∫
t dt

y2

2
− y = 1

2
t2 + C

y2 − 2y + 1 = t2 + C

(y − 1)2 = t2 + C

y(t) = ±
√

t2 + C + 1

To satisfy the initial condition y(1) = −3 we must choose the negative square root; moreover,

−3 = −√
1 + C + 1 so C = 15.

The solution to the initial value problem is then

y(t) = −
√

t2 + 15 + 1

(√
y + 1

)
y′ = ytet2

, y(0) = 125.
dw

dx
= k

1 + w2

x
, w(1) = 1

solution First, we find the general solution of the differential equation. This is a separable equation that we rewrite as

dw

1 + w2
= k

x
dx.

Upon integrating both sides of this equation, we find∫
dw

1 + w2
=

∫
k

x
dx

tan−1 w = k ln x + C

w(x) = tan(k ln x + C).

Because the initial condition is specified at x = 1, we are interested in the solution for x > 0; we can therefore omit
the absolute value within the natural logarithm function. The initial condition w(1) = 1 allows us to determine the value
of C:

1 = tan(k ln 1 + C) so C = tan−11 = π

4
.

The solution to the initial value problem is then

w = tan
(
k ln x + π

4

)
.

y′ + 3y − 1

t
= t + 2

27. y′ + y

x
= sin x

solution This is a first order linear equation with A(x) = 1
x and B(x) = sin x. The integrating factor is

α(x) = e
∫

A(x) dx = eln x = x.

When multiplied by the integrating factor, the original differential equation becomes

(xy)′ = x sin x.
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Integration on both sides (integration by parts is needed for the integral on the right-hand side) now yields

xy = −x cos x + sin x + C;
hence,

y(x) = − cos x + sin x

x
+ C

x
.

Find the solutions to y′ = 4(y − 12) satisfying y(0) = 20 and y(0) = 0, and sketch their graphs.
29. Find the solutions to y′ = −2y + 8 satisfying y(0) = 3 and y(0) = 4, and sketch their graphs.

solution First, rewrite the differential equation as y′ = −2(y − 4); from here we see that the general solution is

y(t) = 4 + Ce−2t ,

for some constant C. If y(0) = 3, then

3 = 4 + Ce0 and C = −1.

Thus, y(t) = 4 − e−2t . If y(0) = 4, then

4 = 4 + Ce0 and C = 0;
hence, y(t) = 4. The graphs of the two solutions are shown below.

−0.5

−2

2

4

y

y = 4

y = 4 − e−2t

x
0.5 1.0 1.5

Show that y = sin−1 x satisfies the differential equation y′ = sec y with initial condition y(0) = 0.
31. Find the solution y = f (x) of y′ =

√
y2 − 1 satisfying y(0) = 2.

solution Using separation of variables, we have

dy√
y2 − 1

= 1 dx

Integrating gives

ln

∣∣∣∣y +
√

y2 − 1

∣∣∣∣ = x + C1

so that

y +
√

y2 − 1 = Cex

The initial condition y(0) = 2 gives 2 +
√

22 − 1 = C, so that C = 2 + √
3, and the answer is

y +
√

y2 − 1 = (2 + √
3)ex or, solving for y, y = (2 + √

3)e2x + 2 − √
3

2ex

State whether the differential equation can be solved using separation of variables, the method of integrating
factors, both, or neither.

(a) y′ = y + x2 (b) xy′ = y + 1

(c) y′ = y2 + x2 (d) xy′ = y2

33. Let A and B be constants. Prove that if A > 0, then all solutions of dy
dt

+ Ay = B approach the same limit as t → ∞.

solution This is a linear first-order equation in standard form with integrating factor

α(t) = e
∫

A dt = eAt .

When multiplied by the integrating factor, the original differential equation becomes

(eAt y)′ = BeAt .

Integration on both sides now yields

eAty = B

A
eAt + C;
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hence,

y(t) = B

A
+ Ce−At .

Because A > 0,

lim
t→∞ y(t) = lim

t→∞

(
B

A
+ Ce−At

)
= B

A
.

We conclude that if A > 0, all solutions approach the limit B
A

as t → ∞.

At time t = 0, a tank of height 5 m in the shape of an inverted pyramid whose cross section at the top is a square
of side 2 m is filled with water. Water flows through a hole at the bottom of area 0.002 m2. Use Torricelli’s Law to
determine the time required for the tank to empty.

35. The trough in Figure 3 (dimensions in centimeters) is filled with water. At time t = 0 (in seconds), water begins
leaking through a hole at the bottom of area 4 cm2. Let y(t) be the water height at time t . Find a differential equation for
y(t) and solve it to determine when the water level decreases to 60 cm.

180

120

360

260

FIGURE 3

solution y(t) obeys the differential equation:

dy

dt
= Bv(y)

A(y)
,

where v(y) denotes the velocity of the water flowing through the hole when the trough is filled to height y, B denotes the
area of the hole and A(y) denotes the area of the horizontal cross section of the trough at height y. Since measurements
are all in centimeters, we will work in centimeters. We have

g = 9.8 m/s2 = 980 cm/s2

By Torricelli’s Law, v(y) = −√
2 · 980

√
y = −14

√
10

√
y m/s. The area of the hole is B = 4 cm2. The horizontal cross

section of the trough at height y is a rectangle of length 360 and width w(y). As w(y) varies linearly from 180 when
y = 0 to 260 when y = 120, it follows that

w(y) = 180 + 80y

120
= 180 + 2

3
y

so that the area of the horizontal cross-section at height y is

A(y) = 360w(y) = 64800 + 240y = 240(y + 270)

The differential equation for y(t) then becomes

dy

dt
= Bv(y)

A(y)
= −4 · 14

√
10

√
y

240(y + 270)
= −7

√
10

30
·

√
y

y + 270

This equation is separable, so

y + 270√
y

dy = −7
√

10

30
dt

(y1/2 + 270y−1/2) dy = −7
√

10

30
dt

∫
(y1/2 + 270y−1/2) dy = −7

√
10

30

∫
1 dt

2

3
y3/2 + 540y1/2 = −7

√
10

30
t + C

y3/2 + 810y1/2 = −7
√

10

20
t + C
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The initial condition y(0) = 120 allows us to determine the value of C:

1203/2 + 810 · 1201/2 = 0 + C so C = 930
√

120 = 1860
√

30

Thus the height of the water is given implicitly by the equation

y3/2 + 810y1/2 = −7
√

10

20
t + 1860

√
30

We want to find t such that y(t) = 60:

603/2 + 810 · 601/2 = −7
√

10

20
t + 1860

√
30

1740
√

15 = −7
√

10

20
t + 1860

√
30

t = 120

7

√
10(31

√
30 − 29

√
15) ≈ 3115.88 s

The height of the water in the tank is 60 cm after approximately 3116 seconds, or 51 minutes 56 seconds.

Find the solution of the logistic equation ·
y = 0.4y(4 − y) satisfying y(0) = 8.

37. Let y(t) be the solution of ·
y = 0.3y(2 − y) with y(0) = 1. Determine lim

t→∞ y(t) without solving for y explicitly.

solution We write the given equation in the form

·
y = 0.6y

(
1 − y

2

)
.

This is a logistic equation with A = 2 and k = 0.6. Because the initial condition y(0) = y0 = 1 satisfies 0 < y0 < A,
the solution is increasing and approaches A as t → ∞. That is, lim

t→∞y(t) = 2.

Suppose that y′ = ky(1 − y/8) has a solution satisfying y(0) = 12 and y(10) = 24. Find k.
39. A lake has a carrying capacity of 1000 fish. Assume that the fish population grows logistically with growth constant
k = 0.2 day−1. How many days will it take for the population to reach 900 fish if the initial population is 20 fish?

solution Let y(t) represent the fish population. Because the population grows logistically with k = 0.2 and A = 1000,

y(t) = 1000

1 − e−0.2t /C
.

The initial condition y(0) = 20 allows us to determine the value of C:

20 = 1000

1 − 1
C

; 1 − 1

C
= 50; so C = − 1

49
.

Hence,

y(t) = 1000

1 + 49e−0.2t
.

The population will reach 900 fish when

1000

1 + 49e−0.2t
= 900.

Solving for t , we find

t = 5 ln 441 ≈ 30.44 days.

A rabbit population on an island increases exponentially with growth rate k = 0.12 months−1. When the
population reaches 300 rabbits (say, at time t = 0), wolves begin eating the rabbits at a rate of r rabbits per month.

(a) Find a differential equation satisfied by the rabbit population P(t).

(b) How large can r be without the rabbit population becoming extinct?

41. Show that y = sin(tan−1 x + C) is the general solution of y′ =
√

1 − y2/
(
1 + x2)

. Then use the addition formula
for the sine function to show that the general solution may be written

y = (cos C)x + sin C√
1 + x2

solution Rewrite

dy

dx
=

√
1 − y2

1 + x2
as

dy√
1 − y2

= dx

1 + x2
.

Upon integrating both sides of this equation, we find∫
dy√

1 − y2
=

∫
dx

1 + x2

sin−1y = tan−1x + C
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Thus,

y(x) = sin
(
tan−1x + C

)
.

To express the solution in the required form, we use the addition formula

sin(α + β) = sin α cos β + sin β cos α

This yields

y(x) = sin
(
tan−1x

)
cos C + sin C cos

(
tan−1x

)
.

Using the figure below, we see that

sin
(
tan−1x

) = x√
1 + x2

; and

cos
(
tan−1x

) = 1√
1 + x2

.

Finally,

y = x cos C√
1 + x2

+ sin C√
1 + x2

= (cos C)x + sin C√
1 + x2

.

x

1

1 + x2

tan−1 x

A tank is filled with 300 liters of contaminated water containing 3 kg of toxin. Pure water is pumped in at a rate of
40 L/min, mixes instantaneously, and is then pumped out at the same rate. Let y(t) be the quantity of toxin present
in the tank at time t .

(a) Find a differential equation satisfied by y(t).

(b) Solve for y(t).

(c) Find the time at which there is 0.01 kg of toxin present.

43. At t = 0, a tank of volume 300 L is filled with 100 L of water containing salt at a concentration of 8 g/L. Fresh water
flows in at a rate of 40 L/min, mixes instantaneously, and exits at the same rate. Let c1(t) be the salt concentration at
time t .

(a) Find a differential equation satisfied by c1(t) Hint: Find the differential equation for the quantity of salt y(t), and
observe that c1(t) = y(t)/100.
(b) Find the salt concentration c1(t) in the tank as a function of time.

solution
(a) Let y(t) be the amount of salt in the tank at time t ; then c1(t) = y(t)/100. The rate of change of the amount of salt
in the tank is

dy

dt
= salt rate in − salt rate out =

(
40

L

min

) (
0

g

L

)
−

(
40

L

min

) ( y

100
· g

L

)

= −2

5
y

Now, c′
1(t) = y′(t)/100 and c(t) = y(t)/100, so that c1 satisfies the same differential equation:

dc1

dt
= −2

5
c1

(b) This is a linear differential equation. Putting it in standard form gives

dc1

dt
+ 2

5
c1 = 0

The integrating factor is e2t/5; multiplying both sides by the integrating factor gives

(e2t/5c1)′ = 0

Integrate and multiply through by e−2t/5 to get

c1(t) = Ce−2t/5

The initial condition tells us that y(0) = Ce−2·0/5 = C = 8, so that finally,

c1(t) = 8e−2t/5

The outflow of the tank in Exercise 43 is directed into a second tank containing V liters of fresh water where it
mixes instantaneously and exits at the same rate of 40 L/min. Determine the salt concentration c2(t) in the second
tank as a function of time in the following two cases:

(a) V = 200 (b) V = 300

I h d t i th i t ti
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11 INFINITE SERIES

11.1 Sequences

Preliminary Questions
1. What is a4 for the sequence an = n2 − n?

solution Substituting n = 4 in the expression for an gives

a4 = 42 − 4 = 12.

2. Which of the following sequences converge to zero?

(a)
n2

n2 + 1
(b) 2n (c)

(−1

2

)n

solution

(a) This sequence does not converge to zero:

lim
n→∞

n2

n2 + 1
= lim

x→∞
x2

x2 + 1
= lim

x→∞
1

1 + 1
x2

= 1

1 + 0
= 1.

(b) This sequence does not converge to zero: this is a geometric sequence with r = 2 > 1; hence, the sequence diverges
to ∞.

(c) Recall that if |an| converges to 0, then an must also converge to zero. Here,∣∣∣∣
(

−1

2

)n∣∣∣∣ =
(

1

2

)n

,

which is a geometric sequence with 0 < r < 1; hence, ( 1
2 )n converges to zero. It therefore follows that (− 1

2 )n converges
to zero.

3. Let an be the nth decimal approximation to
√

2. That is, a1 = 1, a2 = 1.4, a3 = 1.41, etc. What is lim
n→∞ an?

solution lim
n→∞ an = √

2.

4. Which of the following sequences is defined recursively?

(a) an = √
4 + n (b) bn = √

4 + bn−1

solution

(a) an can be computed directly, since it depends on n only and not on preceding terms. Therefore an is defined explicitly
and not recursively.

(b) bn is computed in terms of the preceding term bn−1, hence the sequence {bn} is defined recursively.

5. Theorem 5 says that every convergent sequence is bounded. Determine if the following statements are true or false
and if false, give a counterexample.

(a) If {an} is bounded, then it converges.

(b) If {an} is not bounded, then it diverges.

(c) If {an} diverges, then it is not bounded.

solution

(a) This statement is false. The sequence an = cos πn is bounded since −1 ≤ cos πn ≤ 1 for all n, but it does not
converge: since an = cos nπ = (−1)n, the terms assume the two values 1 and −1 alternately, hence they do not approach
one value.

(b) By Theorem 5, a converging sequence must be bounded. Therefore, if a sequence is not bounded, it certainly does
not converge.

(c) The statement is false. The sequence an = (−1)n is bounded, but it does not approach one limit.

646
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Exercises
1. Match each sequence with its general term:

a1, a2, a3, a4, . . . General term

(a) 1
2 , 2

3 , 3
4 , 4

5 , . . . (i) cos πn

(b) −1, 1, −1, 1, . . . (ii)
n!
2n

(c) 1, −1, 1, −1, . . . (iii) (−1)n+1

(d) 1
2 , 2

4 , 6
8 , 24

16 . . . (iv)
n

n + 1

solution
(a) The numerator of each term is the same as the index of the term, and the denominator is one more than the numerator;
hence an = n

n+1 , n = 1, 2, 3, . . . .

(b) The terms of this sequence are alternating between −1 and 1 so that the positive terms are in the even places. Since
cos πn = 1 for even n and cos πn = −1 for odd n, we have an = cos πn, n = 1, 2, . . . .

(c) The terms an are 1 for odd n and −1 for even n. Hence, an = (−1)n+1, n = 1, 2, . . .

(d) The numerator of each term is n!, and the denominator is 2n; hence, an = n!
2n , n = 1, 2, 3, . . . .

Let an = 1

2n − 1
for n = 1, 2, 3, . . . . Write out the first three terms of the following sequences.

(a) bn = an+1 (b) cn = an+3

(c) dn = a2
n (d) en = 2an − an+1

In Exercises 3–12, calculate the first four terms of the sequence, starting with n = 1.

3. cn = 3n

n!
solution Setting n = 1, 2, 3, 4 in the formula for cn gives

c1 = 31

1! = 3

1
= 3, c2 = 32

2! = 9

2
,

c3 = 33

3! = 27

6
= 9

2
, c4 = 34

4! = 81

24
= 27

8
.

bn = (2n − 1)!
n!

5. a1 = 2, an+1 = 2a2
n − 3

solution For n = 1, 2, 3 we have:

a2 = a1+1 = 2a2
1 − 3 = 2 · 4 − 3 = 5;

a3 = a2+1 = 2a2
2 − 3 = 2 · 25 − 3 = 47;

a4 = a3+1 = 2a2
3 − 3 = 2 · 2209 − 3 = 4415.

The first four terms of {an} are 2, 5, 47, 4415.

b1 = 1, bn = bn−1 + 1

bn−1

7. bn = 5 + cos πn

solution For n = 1, 2, 3, 4 we have

b1 = 5 + cos π = 4;
b2 = 5 + cos 2π = 6;
b3 = 5 + cos 3π = 4;
b4 = 5 + cos 4π = 6.

The first four terms of {bn} are 4, 6, 4, 6.

cn = (−1)2n+19. cn = 1 + 1

2
+ 1

3
+ · · · + 1

n

solution

c1 = 1;

c2 = 1 + 1

2
= 3

2
;

c3 = 1 + 1

2
+ 1

3
= 3

2
+ 1

3
= 11

6
;

c4 = 1 + 1

2
+ 1

3
+ 1

4
= 11

6
+ 1

4
= 25

12
.

an = n + (n + 1) + (n + 2) + · · · + (2n)
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11. b1 = 2, b2 = 3, bn = 2bn−1 + bn−2

solution We need to find b3 and b4. Setting n = 3 and n = 4 and using the given values for b1 and b2 we obtain:

b3 = 2b3−1 + b3−2 = 2b2 + b1 = 2 · 3 + 2 = 8;
b4 = 2b4−1 + b4−2 = 2b3 + b2 = 2 · 8 + 3 = 19.

The first four terms of the sequence {bn} are 2, 3, 8, 19.

cn = n-place decimal approximation to e
13. Find a formula for the nth term of each sequence.

(a)
1

1
,
−1

8
,

1

27
, . . . (b)

2

6
,

3

7
,

4

8
, . . .

solution
(a) The denominators are the third powers of the positive integers starting with n = 1. Also, the sign of the terms is
alternating with the sign of the first term being positive. Thus,

a1 = 1

13
= (−1)1+1

13
; a2 = − 1

23
= (−1)2+1

23
; a3 = 1

33
= (−1)3+1

33
.

This rule leads to the following formula for the nth term:

an = (−1)n+1

n3
.

(b) Assuming a starting index of n = 1, we see that each numerator is one more than the index and the denominator is
four more than the numerator. Thus, the general term an is

an = n + 1

n + 5
.

Suppose that lim
n→∞ an = 4 and lim

n→∞ bn = 7. Determine:

(a) lim
n→∞(an + bn) (b) lim

n→∞ a3
n

(c) lim
n→∞ cos(πbn) (d) lim

n→∞(a2
n − 2anbn)

In Exercises 15–26, use Theorem 1 to determine the limit of the sequence or state that the sequence diverges.

15. an = 12

solution We have an = f (n) where f (x) = 12; thus,

lim
n→∞ an = lim

x→∞ f (x) = lim
x→∞ 12 = 12.

an = 20 − 4

n2

17. bn = 5n − 1

12n + 9

solution We have bn = f (n) where f (x) = 5x − 1

12x + 9
; thus,

lim
n→∞

5n − 1

12n + 9
= lim

x→∞
5x − 1

12x + 9
= 5

12
.

an = 4 + n − 3n2

4n2 + 1

19. cn = −2−n

solution We have cn = f (n) where f (x) = −2−x ; thus,

lim
n→∞

(−2−n
) = lim

x→∞ −2−x = lim
x→∞ − 1

2x
= 0.

zn =
(

1

3

)n
21. cn = 9n

solution We have cn = f (n) where f (x) = 9x ; thus,

lim
n→∞ 9n = lim

x→∞ 9x = ∞

Thus, the sequence 9n diverges.

zn = 10−1/n23. an = n√
n2 + 1

solution We have an = f (n) where f (x) = x√
x2 + 1

; thus,

lim
n→∞

n√
n2 + 1

= lim
x→∞

x√
x2 + 1

= lim
x→∞

x
x√

x2+1
x

= lim
x→∞

1√
x2+1
x2

= lim
x→∞

1√
1 + 1

x2

= 1√
1 + 0

= 1.

an = n√
n3 + 1
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25. an = ln

(
12n + 2

−9 + 4n

)

solution We have an = f (n) where f (x) = ln

(
12x + 2

−9 + 4x

)
; thus,

lim
n→∞ ln

(
12n + 2

−9 + 4n

)
= lim

x→∞ ln

(
12x + 2

−9 + 4x

)
= ln lim

x→∞

(
12x + 2

−9 + 4x

)
= ln 3

rn = ln n − ln(n2 + 1)
In Exercises 27–30, use Theorem 4 to determine the limit of the sequence.

27. an =
√

4 + 1

n

solution We have

lim
n→∞ 4 + 1

n
= lim

x→∞ 4 + 1

x
= 4

Since
√

x is a continuous function for x > 0, Theorem 4 tells us that

lim
n→∞

√
4 + 1

n
=

√
lim

n→∞ 4 + 1

n
= √

4 = 2

an = e4n/(3n+9)29. an = cos−1

(
n3

2n3 + 1

)

solution We have

lim
n→∞

n3

2n3 + 1
= 1

2

Since cos−1(x) is continuous for all x, Theorem 4 tells us that

lim
n→∞ cos−1

(
n3

2n3 + 1

)
= cos−1

(
lim

n→∞
n3

2n3 + 1

)
= cos−1(1/2) = π

3

an = tan−1(e−n)
31. Let an = n

n + 1
. Find a number M such that:

(a) |an − 1| ≤ 0.001 for n ≥ M .
(b) |an − 1| ≤ 0.00001 for n ≥ M .

Then use the limit definition to prove that lim
n→∞ an = 1.

solution
(a) We have

|an − 1| =
∣∣∣∣ n

n + 1
− 1

∣∣∣∣ =
∣∣∣∣n − (n + 1)

n + 1

∣∣∣∣ =
∣∣∣∣ −1

n + 1

∣∣∣∣ = 1

n + 1
.

Therefore |an − 1| ≤ 0.001 provided 1
n+1 ≤ 0.001, that is, n ≥ 999. It follows that we can take M = 999.

(b) By part (a), |an − 1| ≤ 0.00001 provided 1
n+1 ≤ 0.00001, that is, n ≥ 99999. It follows that we can take M = 99999.

We now prove formally that lim
n→∞ an = 1. Using part (a), we know that

|an − 1| = 1

n + 1
< ε,

provided n > 1
ε − 1. Thus, Let ε > 0 and take M = 1

ε − 1. Then, for n > M , we have

|an − 1| = 1

n + 1
<

1

M + 1
= ε.

Let bn = ( 1
3

)n.

(a) Find a value of M such that |bn| ≤ 10−5 for n ≥ M .

(b) Use the limit definition to prove that lim
n→∞ bn = 0.

33. Use the limit definition to prove that lim
n→∞ n−2 = 0.

solution We see that

|n−2 − 0| =
∣∣∣∣ 1

n2

∣∣∣∣ = 1

n2
< ε
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provided

n >
1√
ε
.

Thus, let ε > 0 and take M = 1√
ε

. Then, for n > M , we have

|n−2 − 0| =
∣∣∣∣ 1

n2

∣∣∣∣ = 1

n2
<

1

M2
= ε.

Use the limit definition to prove that lim
n→∞

n

n + n−1
= 1.

In Exercises 35–62, use the appropriate limit laws and theorems to determine the limit of the sequence or show that it
diverges.

35. an = 10 +
(

−1

9

)n

solution By the Limit Laws for Sequences we have:

lim
n→∞

(
10 +

(
−1

9

)n)
= lim

n→∞ 10 + lim
n→∞

(
−1

9

)n

= 10 + lim
n→∞

(
−1

9

)n

.

Now,

−
(

1

9

)n

≤
(

−1

9

)n

≤
(

1

9

)n

.

Because

lim
n→∞

(
1

9

)n

= 0,

by the Limit Laws for Sequences,

lim
n→∞ −

(
1

9

)n

= − lim
n→∞

(
1

9

)n

= 0.

Thus, we have

lim
n→∞

(
−1

9

)n

= 0,

and

lim
n→∞

(
10 +

(
−1

9

)n)
= 10 + 0 = 10.

dn = √
n + 3 − √

n
37. cn = 1.01n

solution Since cn = f (n) where f (x) = 1.01x , we have

lim
n→∞ 1.01n = lim

x→∞ 1.01x = ∞

so that the sequence diverges.

bn = e1−n239. an = 21/n

solution Because 2x is a continuous function,

lim
n→∞ 21/n = lim

x→∞ 21/x = 2limx→∞(1/x) = 20 = 1.

bn = n1/n41. cn = 9n

n!
solution For n ≥ 9, write

cn = 9n

n! = 9

1
· 9

2
· · · 9

9︸ ︷︷ ︸
call this C

· 9

10
· 9

11
· · · 9

n − 1
· 9

n︸ ︷︷ ︸
Each factor is less than 1
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Then clearly

0 ≤ 9n

n! ≤ C
9

n

since each factor after the first nine is < 1. The squeeze theorem tells us that

lim
n→∞ 0 ≤ lim

n→∞
9n

n! ≤ lim
n→∞ C

9

n
= C lim

n→∞
9

n
= C · 0 = 0

so that limn→∞ cn = 0 as well.

an = 82n

n!
43. an = 3n2 + n + 2

2n2 − 3

solution

lim
n→∞

3n2 + n + 2

2n2 − 3
= lim

x→∞
3x2 + x + 2

2x2 − 3
= 3

2
.

an =
√

n√
n + 4

45. an = cos n

n

solution Since −1 ≤ cos n ≤ 1 the following holds:

− 1

n
≤ cos n

n
≤ 1

n
.

We now apply the Squeeze Theorem for Sequences and the limits

lim
n→∞ − 1

n
= lim

n→∞
1

n
= 0

to conclude that lim
n→∞

cos n
n = 0.

cn = (−1)n√
n

47. dn = ln 5n − ln n!
solution Note that

dn = ln
5n

n!
so that

edn = 5n

n! so lim
n→∞ edn = lim

n→∞
5n

n! = 0

by the method of Exercise 41. If dn converged, we could, since f (x) = ex is continuous, then write

lim
n→∞ edn = elimn→∞ dn = 0

which is impossible. Thus {dn} diverges.

dn = ln(n2 + 4) − ln(n2 − 1)49. an =
(

2 + 4

n2

)1/3

solution Let an =
(

2 + 4
n2

)1/3
. Taking the natural logarithm of both sides of this expression yields

ln an = ln

(
2 + 4

n2

)1/3
= 1

3
ln

(
2 + 4

n2

)
.

Thus,

lim
n→∞ ln an = lim

n→∞
1

3
ln

(
2 + 4

n2

)1/3
= 1

3
lim

x→∞ ln

(
2 + 4

x2

)
= 1

3
ln

(
lim

x→∞

(
2 + 4

x2

))

= 1

3
ln (2 + 0) = 1

3
ln 2 = ln 21/3.

Because f (x) = ex is a continuous function, it follows that

lim
n→∞ an = lim

n→∞ eln an = elimn→∞(ln an) = eln 21/3 = 21/3.

bn = tan−1
(

1 − 2

n

)
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51. cn = ln

(
2n + 1

3n + 4

)

solution Because f (x) = ln x is a continuous function, it follows that

lim
n→∞ cn = lim

x→∞ ln

(
2x + 1

3x + 4

)
= ln

(
lim

x→∞
2x + 1

3x + 4

)
= ln

2

3
.

cn = n

n + n1/n
53. yn = en

2n

solution en

2n = (
e
2

)n and e
2 > 1. By the Limit of Geometric Sequences,we conclude that limn→∞

(
e
2

)n = ∞. Thus,
the given sequence diverges.

an = n

2n
55. yn = en + (−3)n

5n

solution

lim
n→∞

en + (−3)n

5n
= lim

n→∞
( e

5

)n + lim
n→∞

(−3

5

)n

assuming both limits on the right-hand side exist. But by the Limit of Geometric Sequences, since

−1 <
−3

5
< 0 <

e

5
< 1

both limits on the right-hand side are 0, so that yn converges to 0.

bn = (−1)nn3 + 2−n

3n3 + 4−n

57. an = n sin
π

n

solution By the Theorem on Sequences Defined by a Function, we have

lim
n→∞ n sin

π

n
= lim

x→∞ x sin
π

x
.

Now,

lim
x→∞ x sin

π

x
= lim

x→∞
sin π

x
1
x

= lim
x→∞

(
cos π

x

) (− π
x2

)
− 1

x2

= lim
x→∞

(
π cos

π

x

)

= π lim
x→∞ cos

π

x
= π cos 0 = π · 1 = π.

Thus,

lim
n→∞ n sin

π

n
= π.

bn = n!
πn

59. bn = 3 − 4n

2 + 7 · 4n

solution Divide the numerator and denominator by 4n to obtain

an = 3 − 4n

2 + 7 · 4n
=

3
4n − 4n

4n

2
4n + 7·4n

4n

=
3
4n − 1
2
4n + 7

.

Thus,

lim
n→∞ an = lim

x→∞
3

4x − 1
2

4x + 7
=

limx→∞
(

3
4x − 1

)
limx→∞

(
2

4x + 7
) = 3 limx→∞ 1

4x − limx→∞ 1

2 limx→∞ 1
4x − limx→∞ 7

= 3 · 0 − 1

2 · 0 + 7
= −1

7
.

an = 3 − 4n

2 + 7 · 3n

61. an =
(

1 + 1

n

)n

solution Taking the natural logarithm of both sides of this expression yields

ln an = ln

(
1 + 1

n

)n

= n ln

(
1 + 1

n

)
=

ln
(

1 + 1
n

)
1
n

.
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Thus,

lim
n→∞ (ln an) = lim

x→∞
ln

(
1 + 1

x

)
1
x

= lim
x→∞

d
dx

(
ln

(
1 + 1

x

))
d
dx

(
1
x

) = lim
x→∞

1
1+ 1

x

·
(
− 1

x2

)
− 1

x2

= lim
x→∞

1

1 + 1
x

= 1

1 + 0
= 1.

Because f (x) = ex is a continuous function, it follows that

lim
n→∞ an = lim

n→∞ eln an = elimn→∞(ln an) = e1 = e.

an =
(

1 + 1

n2

)nIn Exercises 63–66, find the limit of the sequence using L’Hôpital’s Rule.

63. an = (ln n)2

n

solution

lim
n→∞

(ln n)2

n
= lim

x→∞
(ln x)2

x
= lim

x→∞
d
dx

(ln x)2

d
dx

x
= lim

x→∞
2 ln x

x

1
= lim

x→∞
2 ln x

x

= lim
x→∞

d
dx

2 ln x

d
dx

x
= lim

x→∞
2
x

1
= lim

x→∞
2

x
= 0

bn = √
n ln

(
1 + 1

n

)65. cn = n
(√

n2 + 1 − n
)

solution

lim
n→∞ n

(√
n2 + 1 − n

)
= lim

x→∞ x
(√

x2 + 1 − x
)

= lim
x→∞

x
(√

x2 + 1 − x
) (√

x2 + 1 + x
)

√
x2 + 1 + x

= lim
x→∞

x√
x2 + 1 + x

= lim
x→∞

d
dx

x

d
dx

√
x2 + 1 + x

= lim
x→∞

1

1 + x√
x2+1

= lim
x→∞

1

1 +
√

x2

x2+1

= lim
x→∞

1

1 +
√

1
1+(1/x2)

= 1

2

dn = n2( 3
√

n3 + 1 − n
)In Exercises 67–70, use the Squeeze Theorem to evaluate lim

n→∞ an by verifying the given inequality.

67. an = 1√
n4 + n8

,
1√
2n4

≤ an ≤ 1√
2n2

solution For all n > 1 we have n4 < n8, so the quotient 1√
n4+n8

is smaller than 1√
n4+n4

and larger than 1√
n8+n8

.

That is,

an <
1√

n4 + n4
= 1√

n4 · 2
= 1√

2n2
; and

an >
1√

n8 + n8
= 1√

2n8
= 1√

2n4
.

Now, since lim
n→∞

1√
2n4

= lim
n→∞

1√
2n2

= 0, the Squeeze Theorem for Sequences implies that lim
n→∞ an = 0.

cn = 1√
n2 + 1

+ 1√
n2 + 2

+ · · · + 1√
n2 + n

,

n√
n2 + n

≤ cn ≤ n√
n2 + 1

69. an = (2n + 3n)1/n, 3 ≤ an ≤ (2 · 3n)1/n = 21/n · 3

solution Clearly 2n + 3n ≥ 3n for all n ≥ 1. Therefore:

(2n + 3n)
1/n ≥ (3n)

1/n = 3.

Also 2n + 3n ≤ 3n + 3n = 2 · 3n, so

(2n + 3n)
1/n ≤ (2 · 3n)

1/n = 21/n · 3.

Thus,

3 ≤ (2n + 3n)
1/n ≤ 21/n · 3.
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Because

lim
n→∞ 21/n · 3 = 3 lim

n→∞ 21/n = 3 · 1 = 3

and limn→∞ 3 = 3, the Squeeze Theorem for Sequences guarantees

lim
n→∞ (2n + 3n)

1/n = 3.

an = (n + 10n)1/n, 10 ≤ an ≤ (2 · 10n)1/n71. Which of the following statements is equivalent to the assertion lim
n→∞ an = L? Explain.

(a) For every ε > 0, the interval (L − ε, L + ε) contains at least one element of the sequence {an}.
(b) For every ε > 0, the interval (L − ε, L + ε) contains all but at most finitely many elements of the sequence {an}.
solution Statement (b) is equivalent to Definition 1 of the limit, since the assertion “|an − L| < ε for all n > M”
means that L − ε < an < L + ε for all n > M; that is, the interval (L − ε, L + ε) contains all the elements an except
(maybe) the finite number of elements a1, a2, . . . , aM .

Statement (a) is not equivalent to the assertion lim
n→∞ an = L. We show this, by considering the following sequence:

an =

⎧⎪⎪⎨
⎪⎪⎩

1

n
for odd n

1 + 1

n
for even n

Clearly for every ε > 0, the interval (−ε, ε) = (L − ε, L + ε) for L = 0 contains at least one element of {an}, but the
sequence diverges (rather than converges to L = 0). Since the terms in the odd places converge to 0 and the terms in the
even places converge to 1. Hence, an does not approach one limit.

Show that an = 1

2n + 1
is decreasing.73. Show that an = 3n2

n2 + 2
is increasing. Find an upper bound.

solution Let f (x) = 3x2

x2+2
. Then

f ′(x) = 6x(x2 + 2) − 3x2 · 2x

(x2 + 2)
2

= 12x

(x2 + 2)
2
.

f ′(x) > 0 for x > 0, hence f is increasing on this interval. It follows that an = f (n) is also increasing. We now show
that M = 3 is an upper bound for an, by writing:

an = 3n2

n2 + 2
≤ 3n2 + 6

n2 + 2
= 3(n2 + 2)

n2 + 2
= 3.

That is, an ≤ 3 for all n.

Show that an = 3√
n + 1 − n is decreasing.

75. Give an example of a divergent sequence {an} such that lim
n→∞ |an| converges.

solution Let an = (−1)n. The sequence {an} diverges because the terms alternate between +1 and −1; however, the
sequence {|an|} converges because it is a constant sequence, all of whose terms are equal to 1.

Give an example of divergent sequences {an} and {bn} such that {an + bn} converges.
77. Using the limit definition, prove that if {an} converges and {bn} diverges, then {an + bn} diverges.

solution We will prove this result by contradiction. Suppose limn→∞ an = L1 and that {an + bn} converges to a
limit L2. Now, let ε > 0. Because {an} converges to L1 and {an + bn} converges to L2, it follows that there exist numbers
M1 and M2 such that:

|an − L1| <
ε

2
for all n > M1,

| (an + bn) − L2| <
ε

2
for all n > M2.

Thus, for n > M = max{M1, M2},

|an − L1| <
ε

2
and | (an + bn) − L2| <

ε

2
.

By the triangle inequality,

|bn − (L2 − L1)| = |an + bn − an − (L2 − L1)| = |(−an + L1) + (an + bn − L2)|
≤ |L1 − an| + |an + bn − L2|.
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Thus, for n > M ,

|bn − (L2 − L1) | <
ε

2
+ ε

2
= ε;

that is, {bn} converges to L2 − L1, in contradiction to the given data. Thus, {an + bn} must diverge.

Use the limit definition to prove that if {an} is a convergent sequence of integers with limit L, then there exists a
number M such that an = L for all n ≥ M .

79. Theorem 1 states that if lim
x→∞ f (x) = L, then the sequence an = f (n) converges and lim

n→∞ an = L. Show that the

converse is false. In other words, find a function f (x) such that an = f (n) converges but lim
x→∞ f (x) does not exist.

solution Let f (x) = sin πx and an = sin πn. Then an = f (n). Since sin πx is oscillating between −1 and 1 the
limit lim

x→∞ f (x) does not exist. However, the sequence {an} is the constant sequence in which an = sin πn = 0 for all n,

hence it converges to zero.

Use the limit definition to prove that the limit does not change if a finite number of terms are added or removed
from a convergent sequence.

81. Let bn = an+1. Use the limit definition to prove that if {an} converges, then {bn} also converges and lim
n→∞ an =

lim
n→∞ bn.

solution Suppose {an} converges to L. Let bn = an+1, and let ε > 0. Because {an} converges to L, there exists an
M ′ such that |an − L| < ε for n > M ′. Now, let M = M ′ − 1. Then, whenever n > M , n + 1 > M + 1 = M ′. Thus,
for n > M ,

|bn − L| = |an+1 − L| < ε.

Hence, {bn} converges to L.

Let {an} be a sequence such that lim
n→∞ |an| exists and is nonzero. Show that lim

n→∞ an exists if and only if there

exists an integer M such that the sign of an does not change for n > M .
83. Proceed as in Example 12 to show that the sequence

√
3,

√
3
√

3,

√
3

√
3
√

3, . . . is increasing and bounded above by
M = 3. Then prove that the limit exists and find its value.

solution This sequence is defined recursively by the formula:

an+1 = √
3an, a1 = √

3.

Consider the following inequalities:

a2 = √
3a1 =

√
3
√

3 >
√

3 = a1 ⇒ a2 > a1;
a3 = √

3a2 >
√

3a1 = a2 ⇒ a3 > a2;
a4 = √

3a3 >
√

3a2 = a3 ⇒ a4 > a3.

In general, if we assume that ak > ak−1, then

ak+1 = √
3ak >

√
3ak−1 = ak.

Hence, by mathematical induction, an+1 > an for all n; that is, the sequence {an} is increasing.
Because an+1 = √

3an, it follows that an ≥ 0 for all n. Now, a1 = √
3 < 3. If ak ≤ 3, then

ak+1 = √
3ak ≤ √

3 · 3 = 3.

Thus, by mathematical induction, an ≤ 3 for all n.
Since {an} is increasing and bounded, it follows by the Theorem on Bounded Monotonic Sequences that this sequence

is converging. Denote the limit by L = limn→∞ an. Using Exercise 81, it follows that

L = lim
n→∞ an+1 = lim

n→∞
√

3an =
√

3 lim
n→∞ an = √

3L.

Thus, L2 = 3L, so L = 0 or L = 3. Because the sequence is increasing, we have an ≥ a1 = √
3 for all n. Hence, the

limit also satisfies L ≥ √
3. We conclude that the appropriate solution is L = 3; that is, lim

n→∞ an = 3.

Let {an} be the sequence defined recursively by

a0 = 0, an+1 = √
2 + an

Thus, a1 = √
2, a2 =

√
2 + √

2, a3 =
√

2 +
√

2 + √
2, . . . .

(a) Show that if an < 2, then an+1 < 2. Conclude by induction that an < 2 for all n.

(b) Show that if an < 2, then an ≤ an+1. Conclude by induction that {an} is increasing.

(c) Use (a) and (b) to conclude that L = lim
n→∞ an exists. Then compute L by showing that L = √

2 + L.

Further Insights and Challenges
85. Show that lim

n→∞
n
√

n! = ∞. Hint: Verify that n! ≥ (n/2)n/2 by observing that half of the factors of n! are greater

than or equal to n/2.

solution We show that n! ≥ (
n
2

)n/2. For n ≥ 4 even, we have:

n! = 1 · · · · · n

2︸ ︷︷ ︸
n
2 factors

·
(n

2
+ 1

)
· · · · · n︸ ︷︷ ︸

n
2 factors

≥
(n

2
+ 1

)
· · · · · n︸ ︷︷ ︸

n
2 factors

.
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Since each one of the n
2 factors is greater than n

2 , we have:

n! ≥
(n

2
+ 1

)
· · · · · n︸ ︷︷ ︸

n
2 factors

≥ n

2
· · · · · n

2︸ ︷︷ ︸
n
2 factors

=
(n

2

)n/2
.

For n ≥ 3 odd, we have:

n! = 1 · · · · · n − 1

2︸ ︷︷ ︸
n−1

2 factors

· n + 1

2
· · · · · n︸ ︷︷ ︸

n+1
2 factors

≥ n + 1

2
· · · · · n︸ ︷︷ ︸

n+1
2 factors

.

Since each one of the n+1
2 factors is greater than n

2 , we have:

n! ≥ n + 1

2
· · · · · n︸ ︷︷ ︸

n+1
2 factors

≥ n

2
· · · · · n

2︸ ︷︷ ︸
n+1

2 factors

=
(n

2

)(n+1)/2 =
(n

2

)n/2
√

n

2
≥

(n

2

)n/2
.

In either case we have n! ≥ (
n
2

)n/2. Thus,

n
√

n! ≥
√

n

2
.

Since lim
n→∞

√
n
2 = ∞, it follows that lim

n→∞
n
√

n! = ∞. Thus, the sequence an = n
√

n! diverges.

Let bn =
n
√

n!
n

.

(a) Show that ln bn = 1

n

n∑
k=1

ln
k

n
.

(b) Show that ln bn converges to
∫ 1

0
ln x dx, and conclude that bn → e−1.

87. Given positive numbers a1 < b1, define two sequences recursively by

an+1 = √
anbn, bn+1 = an + bn

2

(a) Show that an ≤ bn for all n (Figure 13).

(b) Show that {an} is increasing and {bn} is decreasing.

(c) Show that bn+1 − an+1 ≤ bn − an

2
.

(d) Prove that both {an} and {bn} converge and have the same limit. This limit, denoted AGM(a1, b1), is called the
arithmetic-geometric mean of a1 and b1.

(e) Estimate AGM(1,
√

2) to three decimal places.

x
an an+1 bn+1 bn

Geometric
mean

AGM(a1, b1)

Arithmetic
mean

FIGURE 13

solution

(a) Examine the following:

bn+1 − an+1 = an + bn

2
− √

anbn = an + bn − 2
√

anbn

2
=

(√
an

)2 − 2
√

an
√

bn + (√
bn

)2

2

=
(√

an − √
bn

)2

2
≥ 0.

We conclude that bn+1 ≥ an+1 for all n > 1. By the given information b1 > a1; hence, bn ≥ an for all n.

(b) By part (a), bn ≥ an for all n, so

an+1 = √
anbn ≥ √

an · an =
√

a2
n = an

for all n. Hence, the sequence {an} is increasing. Moreover, since an ≤ bn for all n,

bn+1 = an + bn

2
≤ bn + bn

2
= 2bn

2
= bn

for all n; that is, the sequence {bn} is decreasing.
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(c) Since {an} is increasing, an+1 ≥ an. Thus,

bn+1 − an+1 ≤ bn+1 − an = an + bn

2
− an = an + bn − 2an

2
= bn − an

2
.

Now, by part (a), an ≤ bn for all n. By part (b), {bn} is decreasing. Hence bn ≤ b1 for all n. Combining the two inequalities
we conclude that an ≤ b1 for all n. That is, the sequence {an} is increasing and bounded (0 ≤ an ≤ b1). By the Theorem
on Bounded Monotonic Sequences we conclude that {an} converges. Similarly, since {an} is increasing, an ≥ a1 for all
n. We combine this inequality with bn ≥ an to conclude that bn ≥ a1 for all n. Thus, {bn} is decreasing and bounded
(a1 ≤ bn ≤ b1); hence this sequence converges.

To show that {an} and {bn} converge to the same limit, note that

bn − an ≤ bn−1 − an−1

2
≤ bn−2 − an−2

22
≤ · · · ≤ b1 − a1

2n−1
.

Thus,

lim
n→∞(bn − an) = (b1 − a1) lim

n→∞
1

2n−1
= 0.

(d) We have

an+1 = √
anbn, a1 = 1; bn+1 = an + bn

2
, b1 = √

2

Computing the values of an and bn until the first three decimal digits are equal in successive terms, we obtain:

a2 = √
a1b1 =

√
1 · √

2 = 1.1892

b2 = a1 + b1

2
= 1 + √

2

2
= 1.2071

a3 = √
a2b2 = √

1.1892 · 1.2071 = 1.1981

b3 = a2 + b2

2
= 1.1892 · 1.2071

2
= 1.1981

a4 = √
a3b3 = 1.1981

b4 = a3 + b3

2
= 1.1981

Thus,

AGM
(

1,
√

2
)

≈ 1.198.

Let cn = 1

n
+ 1

n + 1
+ 1

n + 2
+ · · · + 1

2n
.

(a) Calculate c1, c2, c3, c4.

(b) Use a comparison of rectangles with the area under y = x−1 over the interval [n, 2n] to prove that

∫ 2n

n

dx

x
+ 1

2n
≤ cn ≤

∫ 2n

n

dx

x
+ 1

n

(c) Use the Squeeze Theorem to determine lim
n→∞ cn.

89. Let an = Hn − ln n, where Hn is the nth harmonic number

Hn = 1 + 1

2
+ 1

3
+ · · · + 1

n

(a) Show that an ≥ 0 for n ≥ 1. Hint: Show that Hn ≥
∫ n+1

1

dx

x
.

(b) Show that {an} is decreasing by interpreting an − an+1 as an area.

(c) Prove that lim
n→∞ an exists.

This limit, denoted γ , is known as Euler’s Constant. It appears in many areas of mathematics, including analysis and
number theory, and has been calculated to more than 100 million decimal places, but it is still not known whether γ is an
irrational number. The first 10 digits are γ ≈ 0.5772156649.

solution

(a) Since the function y = 1
x is decreasing, the left endpoint approximation to the integral

∫ n+1
1

dx
x is greater than this

integral; that is,

1 · 1 + 1

2
· 1 + 1

3
· 1 + · · · + 1

n
· 1 ≥

∫ n+1

1

dx

x

or

Hn ≥
∫ n+1

1

dx

x
.
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1

1

y

x
2 3 n n + 1

1/n

1
2 1

3

Moreover, since the function y = 1
x is positive for x > 0, we have:

∫ n+1

1

dx

x
≥

∫ n

1

dx

x
.

Thus,

Hn ≥
∫ n

1

dx

x
= ln x

∣∣∣n
1

= ln n − ln 1 = ln n,

and

an = Hn − ln n ≥ 0 for all n ≥ 1.

(b) To show that {an} is decreasing, we consider the difference an − an+1:

an − an+1 = Hn − ln n − (
Hn+1 − ln(n + 1)

) = Hn − Hn+1 + ln(n + 1) − ln n

= 1 + 1

2
+ · · · + 1

n
−

(
1 + 1

2
+ · · · + 1

n
+ 1

n + 1

)
+ ln(n + 1) − ln n

= − 1

n + 1
+ ln(n + 1) − ln n.

Now, ln(n + 1) − ln n = ∫ n+1
n

dx
x , whereas 1

n+1 is the right endpoint approximation to the integral
∫ n+1
n

dx
x . Recalling

y = 1
x is decreasing, it follows that

∫ n+1

n

dx

x
≥ 1

n + 1

y

x
n n + 1

y = 1
x

1
n + 1

so

an − an+1 ≥ 0.

(c) By parts (a) and (b), {an} is decreasing and 0 is a lower bound for this sequence. Hence 0 ≤ an ≤ a1 for all n. A
monotonic and bounded sequence is convergent, so limn→∞ an exists.

11.2 Summing an Infinite Series

Preliminary Questions
1. What role do partial sums play in defining the sum of an infinite series?

solution The sum of an infinite series is defined as the limit of the sequence of partial sums. If the limit of this sequence
does not exist, the series is said to diverge.



June 14, 2011 LTSV SSM Second Pass

S E C T I O N 11.2 Summing an Infinite Series 659

2. What is the sum of the following infinite series?

1

4
+ 1

8
+ 1

16
+ 1

32
+ 1

64
+ · · ·

solution This is a geometric series with c = 1
4 and r = 1

2 . The sum of the series is therefore

1
4

1 − 1
2

=
1
4
1
2

= 1

2
.

3. What happens if you apply the formula for the sum of a geometric series to the following series? Is the formula valid?

1 + 3 + 32 + 33 + 34 + · · ·

solution This is a geometric series with c = 1 and r = 3. Applying the formula for the sum of a geometric series
then gives

∞∑
n=0

3n = 1

1 − 3
= −1

2
.

Clearly, this is not valid: a series with all positive terms cannot have a negative sum. The formula is not valid in this case
because a geometric series with r = 3 diverges.

4. Arvind asserts that
∞∑

n=1

1

n2
= 0 because

1

n2
tends to zero. Is this valid reasoning?

solution Arvind’s reasoning is not valid. Though the terms in the series do tend to zero, the general term in the
sequence of partial sums,

Sn = 1 + 1

22
+ 1

32
+ · · · + 1

n2
,

is clearly larger than 1. The sum of the series therefore cannot be zero.

5. Colleen claims that
∞∑

n=1

1√
n

converges because

lim
n→∞

1√
n

= 0

Is this valid reasoning?

solution Colleen’s reasoning is not valid. Although the general term of a convergent series must tend to zero, a series

whose general term tends to zero need not converge. In the case of
∞∑

n=1

1√
n

, the series diverges even though its general

term tends to zero.

6. Find an N such that SN > 25 for the series
∞∑

n=1

2.

solution The N th partial sum of the series is:

SN =
N∑

n=1

2 = 2 + · · · + 2︸ ︷︷ ︸
N

= 2N.

7. Does there exist an N such that SN > 25 for the series
∞∑

n=1

2−n? Explain.

solution The series
∞∑

n=1

2−n is a convergent geometric series with the common ratio r = 1

2
. The sum of the series is:

S =
1
2

1 − 1
2

= 1.

Notice that the sequence of partial sums {SN } is increasing and converges to 1; therefore SN ≤ 1 for all N . Thus, there
does not exist an N such that SN > 25.
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8. Give an example of a divergent infinite series whose general term tends to zero.

solution Consider the series
∞∑

n=1

1

n
9
10

. The general term tends to zero, since lim
n→∞

1

n
9
10

= 0. However, the N th partial

sum satisfies the following inequality:

SN = 1

1
9

10

+ 1

2
9

10

+ · · · + 1

N
9
10

≥ N

N
9

10

= N1− 9
10 = N

1
10 .

That is, SN ≥ N
1
10 for all N . Since lim

N→∞N
1

10 = ∞, the sequence of partial sums Sn diverges; hence, the series
∞∑

n=1

1

n
9
10

diverges.

Exercises
1. Find a formula for the general term an (not the partial sum) of the infinite series.

(a)
1

3
+ 1

9
+ 1

27
+ 1

81
+ · · · (b)

1

1
+ 5

2
+ 25

4
+ 125

8
+ · · ·

(c)
1

1
− 22

2 · 1
+ 33

3 · 2 · 1
− 44

4 · 3 · 2 · 1
+ · · ·

(d)
2

12 + 1
+ 1

22 + 1
+ 2

32 + 1
+ 1

42 + 1
+ · · ·

solution

(a) The denominators of the terms are powers of 3, starting with the first power. Hence, the general term is:

an = 1

3n
.

(b) The numerators are powers of 5, and the denominators are the same powers of 2. The first term is a1 = 1 so,

an =
(

5

2

)n−1
.

(c) The general term of this series is,

an = (−1)n+1 nn

n! .

(d) Notice that the numerators of an equal 2 for odd values of n and 1 for even values of n. Thus,

an =

⎧⎪⎪⎨
⎪⎪⎩

2

n2 + 1
odd n

1

n2 + 1
even n

The formula can also be rewritten as follows:

an = 1 + (−1)n+1+1
2

n2 + 1
.

Write in summation notation:

(a) 1 + 1

4
+ 1

9
+ 1

16
+ · · · (b)

1

9
+ 1

16
+ 1

25
+ 1

36
+ · · ·

(c) 1 − 1

3
+ 1

5
− 1

7
+ · · ·

(d)
125

9
+ 625

16
+ 3125

25
+ 15,625

36
+ · · ·

In Exercises 3–6, compute the partial sums S2, S4, and S6.

3. 1 + 1

22
+ 1

32
+ 1

42
+ · · ·

solution

S2 = 1 + 1

22
= 5

4
;

S4 = 1 + 1

22
+ 1

32
+ 1

42
= 205

144
;

S6 = 1 + 1

22
+ 1

32
+ 1

42
+ 1

52
+ 1

62
= 5369

3600
.

∞∑
k=1

(−1)kk−1
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5.
1

1 · 2
+ 1

2 · 3
+ 1

3 · 4
+ · · ·

solution

S2 = 1

1 · 2
+ 1

2 · 3
= 1

2
+ 1

6
= 4

6
= 2

3
;

S4 = S2 + a3 + a4 = 2

3
+ 1

3 · 4
+ 1

4 · 5
= 2

3
+ 1

12
+ 1

20
= 4

5
;

S6 = S4 + a5 + a6 = 4

5
+ 1

5 · 6
+ 1

6 · 7
= 4

5
+ 1

30
+ 1

42
= 6

7
.

∞∑
j=1

1

j !
7. The series S = 1 + ( 1

5

) + ( 1
5

)2 + ( 1
5

)3 + · · · converges to 5
4 . Calculate SN for N = 1, 2, . . . until you find an SN

that approximates 5
4 with an error less than 0.0001.

solution

S1 = 1

S2 = 1 + 1

5
= 6

5
= 1.2

S3 = 1 + 1

5
+ 1

25
= 31

25
= 1.24

S3 = 1 + 1

5
+ 1

25
+ 1

125
= 156

125
= 1.248

S4 = 1 + 1

5
+ 1

25
+ 1

125
+ 1

625
= 781

625
= 1.2496

S5 = 1 + 1

5
+ 1

25
+ 1

125
+ 1

625
+ 1

3125
= 3906

3125
= 1.24992

Note that

1.25 − S5 = 1.25 − 1.24992 = 0.00008 < 0.0001

The series S = 1

0! − 1

1! + 1

2! − 1

3! + · · · is known to converge to e−1 (recall that 0! = 1). Calculate SN for

N = 1, 2, . . . until you find an SN that approximates e−1 with an error less than 0.001.

In Exercises 9 and 10, use a computer algebra system to compute S10, S100, S500, and S1000 for the series. Do these
values suggest convergence to the given value?

9.

π − 3

4
= 1

2 · 3 · 4
− 1

4 · 5 · 6
+ 1

6 · 7 · 8
− 1

8 · 9 · 10
+ · · ·

solution Write

an = (−1)n+1

2n · (2n + 1) · (2n + 2)

Then

SN =
N∑

i=1

an

Computing, we find

π − 3

4
≈ 0.0353981635

S10 ≈ 0.03535167962

S100 ≈ 0.03539810274

S500 ≈ 0.03539816290

S1000 ≈ 0.03539816334

It appears that SN → π−3
4 .

π4

90
= 1 + 1

24
+ 1

34
+ 1

44
+ · · ·
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11. Calculate S3, S4, and S5 and then find the sum of the telescoping series

S =
∞∑

n=1

(
1

n + 1
− 1

n + 2

)

solution

S3 =
(

1

2
− 1

3

)
+

(
1

3
− 1

4

)
+

(
1

4
− 1

5

)
= 1

2
− 1

5
= 3

10
;

S4 = S3 +
(

1

5
− 1

6

)
= 1

2
− 1

6
= 1

3
;

S5 = S4 +
(

1

6
− 1

7

)
= 1

2
− 1

7
= 5

14
.

The general term in the sequence of partial sums is

SN =
(

1

2
− 1

3

)
+

(
1

3
− 1

4

)
+

(
1

4
− 1

5

)
+ · · · +

(
1

N + 1
− 1

N + 2

)
= 1

2
− 1

N + 2
;

thus,

S = lim
N→∞ SN = lim

N→∞

(
1

2
− 1

N + 2

)
= 1

2
.

The sum of the telescoping series is therefore 1
2 .

Write
∞∑

n=3

1

n(n − 1)
as a telescoping series and find its sum.

13. Calculate S3, S4, and S5 and then find the sum S =
∞∑

n=1

1

4n2 − 1
using the identity

1

4n2 − 1
= 1

2

(
1

2n − 1
− 1

2n + 1

)

solution

S3 = 1

2

(
1

1
− 1

3

)
+ 1

2

(
1

3
− 1

5

)
+ 1

2

(
1

5
− 1

7

)
= 1

2

(
1 − 1

7

)
= 3

7
;

S4 = S3 + 1

2

(
1

7
− 1

9

)
= 1

2

(
1 − 1

9

)
= 4

9
;

S5 = S4 + 1

2

(
1

9
− 1

11

)
= 1

2

(
1 − 1

11

)
= 5

11
.

The general term in the sequence of partial sums is

SN = 1

2

(
1

1
− 1

3

)
+ 1

2

(
1

3
− 1

5

)
+ 1

2

(
1

5
− 1

7

)
+ · · · + 1

2

(
1

2N − 1
− 1

2N + 1

)
= 1

2

(
1 − 1

2N + 1

)
;

thus,

S = lim
N→∞ SN = lim

N→∞
1

2

(
1 − 1

2N + 1

)
= 1

2
.

Use partial fractions to rewrite
∞∑

n=1

1

n(n + 3)
as a telescoping series and find its sum.

15. Find the sum of
1

1 · 3
+ 1

3 · 5
+ 1

5 · 7
+ · · · .

solution We may write this sum as

∞∑
n=1

1

(2n − 1)(2n + 1)
=

∞∑
n=1

1

2

(
1

2n − 1
− 1

2n + 1

)
.

The general term in the sequence of partial sums is

SN = 1

2

(
1

1
− 1

3

)
+ 1

2

(
1

3
− 1

5

)
+ 1

2

(
1

5
− 1

7

)
+ · · · + 1

2

(
1

2N − 1
− 1

2N + 1

)
= 1

2

(
1 − 1

2N + 1

)
;

thus,

lim
N→∞ SN = lim

N→∞
1

2

(
1 − 1

2N + 1

)
= 1

2
,
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and
∞∑

n=1

1

(2n − 1)(2n + 1)
= 1

2
.

Find a formula for the partial sum SN of
∞∑

n=1

(−1)n−1 and show that the series diverges.
In Exercises 17–22, use Theorem 3 to prove that the following series diverge.

17.
∞∑

n=1

n

10n + 12

solution The general term,
n

10n + 12
, has limit

lim
n→∞

n

10n + 12
= lim

n→∞
1

10 + (12/n)
= 1

10

Since the general term does not tend to zero, the series diverges.

∞∑
n=1

n√
n2 + 1

19.
0

1
− 1

2
+ 2

3
− 3

4
+ · · ·

solution The general term an = (−1)n−1 n−1
n does not tend to zero. In fact, because limn→∞ n−1

n = 1, limn→∞ an

does not exist. By Theorem 3, we conclude that the given series diverges.

∞∑
n=1

(−1)nn2
21. cos

1

2
+ cos

1

3
+ cos

1

4
+ · · ·

solution The general term an = cos 1
n+1 tends to 1, not zero. By Theorem 3, we conclude that the given series

diverges.

∞∑
n=0

(√
4n2 + 1 − n

)In Exercises 23–36, use the formula for the sum of a geometric series to find the sum or state that the series diverges.

23.
1

1
+ 1

8
+ 1

82
+ · · ·

solution This is a geometric series with c = 1 and r = 1
8 , so its sum is

1

1 − 1
8

= 1

7/8
= 8

7

43

53
+ 44

54
+ 45

55 + · · ·25.
∞∑

n=3

(
3

11

)−n

solution Rewrite this series as

∞∑
n=3

(
11

3

)n

This is a geometric series with r = 11

3
> 1, so it is divergent.

∞∑
n=2

7 · (−3)n

5n

27.
∞∑

n=−4

(
−4

9

)n

solution This is a geometric series with c = 1 and r = −4

9
, starting at n = −4. Its sum is thus

cr−4

1 − r
= c

r4 − r5
= 1

44

94 + 45

95

= 95

9 · 44 + 45
= 59,049

3328

∞∑
n=0

(π

e

)n29.
∞∑

n=1

e−n

solution Rewrite the series as

∞∑
n=1

(
1

e

)n

to recognize it as a geometric series with c = 1
e and r = 1

e . Thus,

∞∑
n=1

e−n =
1
e

1 − 1
e

= 1

e − 1
.
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∞∑
n=2

e3−2n31.
∞∑

n=0

8 + 2n

5n

solution Rewrite the series as

∞∑
n=0

8

5n
+

∞∑
n=0

2n

5n
=

∞∑
n=0

8 ·
(

1

5

)n

+
∞∑

n=0

(
2

5

)n

,

which is a sum of two geometric series. The first series has c = 8
(

1
5

)0 = 8 and r = 1
5 ; the second has c =

(
2
5

)0 = 1

and r = 2
5 . Thus,

∞∑
n=0

8 ·
(

1

5

)n

= 8

1 − 1
5

= 8
4
5

= 10,

∞∑
n=0

(
2

5

)n

= 1

1 − 2
5

= 1
3
5

= 5

3
,

and

∞∑
n=0

8 + 2n

5n
= 10 + 5

3
= 35

3
.

∞∑
n=0

3(−2)n − 5n

8n

33. 5 − 5

4
+ 5

42
− 5

43
+ · · ·

solution This is a geometric series with c = 5 and r = − 1
4 . Thus,

∞∑
n=0

5 ·
(

−1

4

)n

= 5

1 −
(
− 1

4

) = 5

1 + 1
4

= 5
5
4

= 4.

23

7
+ 24

72
+ 25

73
+ 26

74
+ · · ·

35.
7

8
− 49

64
+ 343

512
− 2401

4096
+ · · ·

solution This is a geometric series with c = 7
8 and r = − 7

8 . Thus,

∞∑
n=0

7

8
·
(

−7

8

)n

=
7
8

1 −
(
− 7

8

) =
7
8
15
8

= 7

15
.

25

9
+ 5

3
+ 1 + 3

5
+ 9

25
+ 27

125
+ · · ·

37. Which of the following are not geometric series?

(a)
∞∑

n=0

7n

29n
(b)

∞∑
n=3

1

n4

(c)
∞∑

n=0

n2

2n
(d)

∞∑
n=5

π−n

solution

(a)
∞∑

n=0

7n

29n =
∞∑

n=0

(
7

29

)n

: this is a geometric series with common ratio r = 7

29
.

(b) The ratio between two successive terms is

an+1

an
=

1
(n+1)4

1
n4

= n4

(n + 1)4
=

(
n

n + 1

)4
.

This ratio is not constant since it depends on n. Hence, the series
∞∑

n=3

1

n4
is not a geometric series.
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(c) The ratio between two successive terms is

an+1

an
=

(n+1)2

2n+1

n2

2n

= (n + 1)2

n2
· 2n

2n+1
=

(
1 + 1

n

)2
· 1

2
.

This ratio is not constant since it depends on n. Hence, the series
∞∑

n=0

n2

2n
is not a geometric series.

(d)
∞∑

n=5

π−n =
∞∑

n=5

(
1

π

)n

: this is a geometric series with common ratio r = 1

π
.

Use the method of Example 8 to show that
∞∑

k=1

1

k1/3
diverges.

39. Prove that if
∞∑

n=1

an converges and
∞∑

n=1

bn diverges, then
∞∑

n=1

(an + bn) diverges. Hint: If not, derive a contradiction

by writing

∞∑
n=1

bn =
∞∑

n=1

(an + bn) −
∞∑

n=1

an

solution Suppose to the contrary that
∑∞

n=1 an converges,
∑∞

n=1 bn diverges, but
∑∞

n=1(an + bn) converges. Then
by the Linearity of Infinite Series, we have

∞∑
n=1

bn =
∞∑

n=1

(an + bn) −
∞∑

n=1

an

so that
∑∞

n=1 bn converges, a contradiction.

Prove the divergence of
∞∑

n=0

9n + 2n

5n
.

41. Give a counterexample to show that each of the following statements is false.

(a) If the general term an tends to zero, then
∞∑

n=1

an = 0.

(b) The N th partial sum of the infinite series defined by {an} is aN .

(c) If an tends to zero, then
∞∑

n=1

an converges.

(d) If an tends to L, then
∞∑

n=1

an = L.

solution

(a) Let an = 2−n. Then limn→∞ an = 0, but an is a geometric series with c = 20 = 1 and r = 1/2, so its sum is
1

1 − (1/2)
= 2.

(b) Let an = 1. Then the nth partial sum is a1 + a2 + · · · + an = n while an = 1.

(c) Let an = 1√
n

. An example in the text shows that while an tends to zero, the sum
∑∞

n=1
an does not converge.

(d) Let an = 1. Then clearly an tends to L = 1, while the series
∑∞

n=1 an obviously diverges.

Suppose that S =
∞∑

n=1

an is an infinite series with partial sum SN = 5 − 2

N2
.

(a) What are the values of
10∑

n=1

an and
16∑

n=5

an?

(b) What is the value of a3?

(c) Find a general formula for an.

(d) Find the sum
∞∑

n=1

an.

43. Compute the total area of the (infinitely many) triangles in Figure 4.

1
8

1
4

1
2

1
16

1
2

y

x
1

FIGURE 4

solution The area of a triangle with base B and height H is A = 1
2BH . Because all of the triangles in Figure 4 have

height 1
2 , the area of each triangle equals one-quarter of the base. Now, for n ≥ 0, the nth triangle has a base which

extends from x = 1
2n+1 to x = 1

2n . Thus,

B = 1

2n
− 1

2n+1
= 1

2n+1
and A = 1

4
B = 1

2n+3
.
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The total area of the triangles is then given by the geometric series

∞∑
n=0

1

2n+3
=

∞∑
n=0

1

8

(
1

2

)n

=
1
8

1 − 1
2

= 1

4
.

The winner of a lottery receives m dollars at the end of each year for N years. The present value (PV) of this prize

in today’s dollars is PV =
N∑

i=1

m(1 + r)−i , where r is the interest rate. Calculate PV if m = $50,000, r = 0.06, and

N = 20. What is PV if N = ∞?

45. Find the total length of the infinite zigzag path in Figure 5 (each zag occurs at an angle of π
4 ).

1

π /4 π /4

FIGURE 5

solution Because the angle at the lower left in Figure 5 has measure π
4 and each zag in the path occurs at an angle of

π
4 , every triangle in the figure is an isosceles right triangle. Accordingly, the length of each new segment in the path is
1√
2

times the length of the previous segment. Since the first segment has length 1, the total length of the path is

∞∑
n=0

(
1√
2

)n

= 1

1 − 1√
2

=
√

2√
2 − 1

= 2 + √
2.

Evaluate
∞∑

n=1

1

n(n + 1)(n + 2)
. Hint: Find constants A, B, and C such that

1

n(n + 1)(n + 2)
= A

n
+ B

n + 1
+ C

n + 2

47. Show that if a is a positive integer, then

∞∑
n=1

1

n(n + a)
= 1

a

(
1 + 1

2
+ · · · + 1

a

)

solution By partial fraction decomposition

1

n (n + a)
= A

n
+ B

n + a
;

clearing the denominators gives

1 = A(n + a) + Bn.

Setting n = 0 then yields A = 1
a , while setting n = −a yields B = − 1

a . Thus,

1

n (n + a)
=

1
a

n
−

1
a

n + a
= 1

a

(
1

n
− 1

n + a

)
,

and

∞∑
n=1

1

n(n + a)
=

∞∑
n=1

1

a

(
1

n
− 1

n + a

)
.

For N > a, the N th partial sum is

SN = 1

a

(
1 + 1

2
+ 1

3
+ · · · + 1

a

)
− 1

a

(
1

N + 1
+ 1

N + 2
+ 1

N + 3
+ · · · + 1

N + a

)
.

Thus,

∞∑
n=1

1

n(n + a)
= lim

N→∞ SN = 1

a

(
1 + 1

2
+ 1

3
+ · · · + 1

a

)
.

A ball dropped from a height of 10 ft begins to bounce. Each time it strikes the ground, it returns to two-thirds of
its previous height. What is the total distance traveled by the ball if it bounces infinitely many times?

49. Let {bn} be a sequence and let an = bn − bn−1. Show that
∞∑

n=1

an converges if and only if lim
n→∞ bn exists.

solution Let an = bn − bn−1. The general term in the sequence of partial sums for the series
∞∑

n=1

an is then

SN = (b1 − b0) + (b2 − b1) + (b3 − b2) + · · · + (bN − bN−1) = bN − b0.
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Now, if lim
N→∞ bN exists, then so does lim

N→∞ SN and
∞∑

n=1

an converges. On the other hand, if
∞∑

n=1

an converges, then

lim
N→∞ SN exists, which implies that lim

N→∞ bN also exists. Thus,
∞∑

n=1

an converges if and only if lim
n→∞ bn exists.

Assumptions Matter Show, by giving counterexamples, that the assertions of Theorem 1 are not valid if the

series
∞∑

n=0

an and
∞∑

n=0

bn are not convergent.

Further Insights and Challenges
Exercises 51–53 use the formula

1 + r + r2 + · · · + rN−1 = 1 − rN

1 − r
7

51. Professor GeorgeAndrews of Pennsylvania State University observed that we can use Eq. (7) to calculate the derivative
of f (x) = xN (for N ≥ 0). Assume that a 
= 0 and let x = ra. Show that

f ′(a) = lim
x→a

xN − aN

x − a
= aN−1 lim

r→1

rN − 1

r − 1

and evaluate the limit.

solution According to the definition of derivative of f (x) at x = a

f ′ (a) = lim
x→a

xN − aN

x − a
.

Now, let x = ra. Then x → a if and only if r → 1, and

f ′ (a) = lim
x→a

xN − aN

x − a
= lim

r→1

(ra)N − aN

ra − a
= lim

r→1

aN
(
rN − 1

)
a (r − 1)

= aN−1 lim
r→1

rN − 1

r − 1
.

By Eq. (7) for a geometric sum,

1 − rN

1 − r
= rN − 1

r − 1
= 1 + r + r2 + · · · + rN−1,

so

lim
r→1

rN − 1

r − 1
= lim

r→1

(
1 + r + r2 + · · · + rN−1

)
= 1 + 1 + 12 + · · · + 1N−1 = N.

Therefore, f ′ (a) = aN−1 · N = NaN−1

Pierre de Fermat used geometric series to compute the area under the graph of f (x) = xN over [0, A]. For
0 < r < 1, let F(r) be the sum of the areas of the infinitely many right-endpoint rectangles with endpoints Arn, as
in Figure 6. As r tends to 1, the rectangles become narrower and F(r) tends to the area under the graph.

(a) Show that F(r) = AN+1 1 − r

1 − rN+1
.

(b) Use Eq. (7) to evaluate
∫ A

0
xN dx = lim

r→1
F(r).

53. Verify the Gregory–Leibniz formula as follows.

(a) Set r = −x2 in Eq. (7) and rearrange to show that

1

1 + x2
= 1 − x2 + x4 − · · · + (−1)N−1x2N−2 + (−1)Nx2N

1 + x2

(b) Show, by integrating over [0, 1], that

π

4
= 1 − 1

3
+ 1

5
− 1

7
+ · · · + (−1)N−1

2N − 1
+ (−1)N

∫ 1

0

x2N dx

1 + x2

(c) Use the Comparison Theorem for integrals to prove that

0 ≤
∫ 1

0

x2N dx

1 + x2
≤ 1

2N + 1

Hint: Observe that the integrand is ≤ x2N .

(d) Prove that

π

4
= 1 − 1

3
+ 1

5
− 1

7
+ 1

9
− · · ·

Hint: Use (b) and (c) to show that the partial sums SN of satisfy
∣∣SN − π

4

∣∣ ≤ 1
2N+1 , and thereby conclude that

lim
N→∞ SN = π

4 .



June 14, 2011 LTSV SSM Second Pass

668 C H A P T E R 11 INFINITE SERIES

solution

(a) Start with Eq. (7), and substitute −x2 for r:

1 + r + r2 + · · · + rN−1 = 1 − rN

1 − r

1 − x2 + x4 + · · · + (−1)N−1x2N−2 = 1 − (−1)Nx2N

1 − (−x2)

1 − x2 + x4 + · · · + (−1)N−1x2N−2 = 1

1 + x2
− (−1)Nx2N

1 + x2

1

1 + x2
= 1 − x2 + x4 + · · · + (−1)N−1x2N−2 + (−1)Nx2N

1 + x2

(b) The integrals of both sides must be equal. Now,∫ 1

0

1

1 + x2
dx = tan−1 x

∣∣∣∣1
0

= tan−1 1 − tan−1 0 = π

4

while ∫ 1

0

(
1 − x2 + x4 + · · · + (−1)N−1x2N−2 + (−1)Nx2N

1 + x2

)
dx

=
(

x − 1

3
x3 + 1

5
x5 + · · · + (−1)N−1 1

2N − 1
x2N−1

)
+ (−1)N

∫ 1

0

x2N dx

1 + x2

= 1 − 1

3
+ 1

5
+ · · · + (−1)N−1 1

2N − 1
+ (−1)N

∫ 1

0

x2N dx

1 + x2

(c) Note that for x ∈ [0, 1], we have 1 + x2 ≥ 1, so that

0 ≤ x2N

1 + x2
≤ x2N

By the Comparison Theorem for integrals, we then see that

0 ≤
∫ 1

0

x2N dx

1 + x2
≤

∫ 1

0
x2N dx = 1

2N + 1
x2N+1

∣∣∣∣1
0

= 1

2N + 1

(d) Write

an = (−1)n
1

2n − 1
, n ≥ 1

and let SN be the partial sums. Then

∣∣∣SN − π

4

∣∣∣ =
∣∣∣∣∣(−1)N

∫ 1

0

x2N dx

1 + x2

∣∣∣∣∣ =
∫ 1

0

x2N dx

1 + x2
≤ 1

2N + 1

Thus limN→∞ SN = π

4
so that

π

4
= 1 − 1

3
+ 1

5
− 1

7
+ 1

9
− . . .

Cantor’s Disappearing Table (following Larry Knop of Hamilton College) Take a table of length L (Figure
7). At stage 1, remove the section of length L/4 centered at the midpoint. Two sections remain, each with length less
than L/2. At stage 2, remove sections of length L/42 from each of these two sections (this stage removes L/8 of the
table). Now four sections remain, each of length less than L/4. At stage 3, remove the four central sections of length
L/43, etc.

(a) Show that at the N th stage, each remaining section has length less than L/2N and that the total amount of table
removed is

L

(
1

4
+ 1

8
+ 1

16
+ · · · + 1

2N+1

)

(b) Show that in the limit as N → ∞, precisely one-half of the table remains.

This result is curious, because there are no nonzero intervals of table left (at each stage, the remaining sections have
a length less than L/2N ). So the table has “disappeared.” However, we can place any object longer than L/4 on the
table. It will not fall through because it will not fit through any of the removed sections.

55. The Koch snowflake (described in 1904 by Swedish mathematician Helge von Koch) is an infinitely jagged “fractal”
curve obtained as a limit of polygonal curves (it is continuous but has no tangent line at any point). Begin with an
equilateral triangle (stage 0) and produce stage 1 by replacing each edge with four edges of one-third the length, arranged
as in Figure 8. Continue the process: At the nth stage, replace each edge with four edges of one-third the length.
(a) Show that the perimeter Pn of the polygon at the nth stage satisfies Pn = 4

3Pn−1. Prove that lim
n→∞ Pn = ∞. The

snowflake has infinite length.
(b) Let A0 be the area of the original equilateral triangle. Show that (3)4n−1 new triangles are added at the nth stage,
each with area A0/9n (for n ≥ 1). Show that the total area of the Koch snowflake is 8

5A0.

Stage 1 Stage 3Stage 2

FIGURE 8
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solution
(a) Each edge of the polygon at the (n − 1)st stage is replaced by four edges of one-third the length; hence the perimeter
of the polygon at the nth stage is 4

3 times the perimeter of the polygon at the (n − 1)th stage. That is, Pn = 4
3Pn−1. Thus,

P1 = 4

3
P0; P2 = 4

3
P1 =

(
4

3

)2
P0, P3 = 4

3
P2 =

(
4

3

)3
P0,

and, in general, Pn = ( 4
3

)n
P0. As n → ∞, it follows that

lim
n→∞ Pn = P0 lim

n→∞

(
4

3

)n

= ∞.

(b) When each edge is replaced by four edges of one-third the length, one new triangle is created. At the (n − 1)st stage,
there are 3 · 4n−1 edges in the snowflake, so 3 · 4n−1 new triangles are generated at the nth stage. Because the area of an
equilateral triangle is proportional to the square of its side length and the side length for each new triangle is one-third
the side length of triangles from the previous stage, it follows that the area of the triangles added at each stage is reduced
by a factor of 1

9 from the area of the triangles added at the previous stage. Thus, each triangle added at the nth stage has
an area of A0/9n. This means that the nth stage contributes

3 · 4n−1 · A0

9n
= 3

4
A0

(
4

9

)n

to the area of the snowflake. The total area is therefore

A = A0 + 3

4
A0

∞∑
n=1

(
4

9

)n

= A0 + 3

4
A0

4
9

1 − 4
9

= A0 + 3

4
A0 · 4

5
= 8

5
A0.

11.3 Convergence of Series with Positive Terms

Preliminary Questions

1. Let S =
∞∑

n=1

an. If the partial sums SN are increasing, then (choose the correct conclusion):

(a) {an} is an increasing sequence.

(b) {an} is a positive sequence.

solution The correct response is (b). Recall that SN = a1 + a2 + a3 + · · · + aN ; thus, SN − SN−1 = aN . If SN is
increasing, then SN − SN−1 ≥ 0. It then follows that aN ≥ 0; that is, {an} is a positive sequence.

2. What are the hypotheses of the Integral Test?

solution The hypotheses for the Integral Test are: A function f (x) such that an = f (n) must be positive, decreasing,
and continuous for x ≥ 1.

3. Which test would you use to determine whether
∞∑

n=1

n−3.2 converges?

solution Because n−3.2 = 1
n3.2 , we see that the indicated series is a p-series with p = 3.2 > 1. Therefore, the series

converges.

4. Which test would you use to determine whether
∞∑

n=1

1

2n + √
n

converges?

solution Because

1

2n + √
n

<
1

2n
=

(
1

2

)n

,

and

∞∑
n=1

(
1

2

)n

is a convergent geometric series, the comparison test would be an appropriate choice to establish that the given series
converges.
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5. Ralph hopes to investigate the convergence of
∞∑

n=1

e−n

n
by comparing it with

∞∑
n=1

1

n
. Is Ralph on the right track?

solution No, Ralph is not on the right track. For n ≥ 1,

e−n

n
<

1

n
;

however,
∞∑

n=1

1

n
is a divergent series. The Comparison Test therefore does not allow us to draw a conclusion about the

convergence or divergence of the series
∞∑

n=1

e−n

n
.

Exercises
In Exercises 1–14, use the Integral Test to determine whether the infinite series is convergent.

1.
∞∑

n=1

1

n4

solution Let f (x) = 1

x4
. This function is continuous, positive and decreasing on the interval x ≥ 1, so the Integral

Test applies. Moreover,

∫ ∞
1

dx

x4
= lim

R→∞

∫ R

1
x−4 dx = −1

3
lim

R→∞

(
1

R3
− 1

)
= 1

3
.

The integral converges; hence, the series
∞∑

n=1

1

n4
also converges.

∞∑
n=1

1

n + 3

3.
∞∑

n=1

n−1/3

solution Let f (x) = x− 1
3 = 1

3√x
. This function is continuous, positive and decreasing on the interval x ≥ 1, so the

Integral Test applies. Moreover,

∫ ∞
1

x−1/3 dx = lim
R→∞

∫ R

1
x−1/3 dx = 3

2
lim

R→∞
(
R2/3 − 1

)
= ∞.

The integral diverges; hence, the series
∞∑

n=1

n−1/3 also diverges.

∞∑
n=5

1√
n − 4

5.
∞∑

n=25

n2

(n3 + 9)5/2

solution Let f (x) = x2(
x3 + 9

)5/2
. This function is positive and continuous for x ≥ 25. Moreover, because

f ′(x) = 2x(x3 + 9)
5/2 − x2 · 5

2 (x3 + 9)
3/2 · 3x2

(x3 + 9)
5 = x(36 − 11x3)

2(x3 + 9)
7/2

,

we see that f ′(x) < 0 for x ≥ 25, so f is decreasing on the interval x ≥ 25. The Integral Test therefore applies. To
evaluate the improper integral, we use the substitution u = x3 + 9, du = 3x2dx. We then find

∫ ∞
25

x2

(x3 + 9)5/2
dx = lim

R→∞

∫ R

25

x2

(x3 + 9)5/2
dx = 1

3
lim

R→∞

∫ R3+9

15634

du

u5/2

= −2

9
lim

R→∞

(
1

(R3 + 9)3/2
− 1

156343/2

)
= 2

9 · 156343/2
.

The integral converges; hence, the series
∞∑

n=25

n2(
n3 + 9

)5/2
also converges.
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∞∑
n=1

n

(n2 + 1)3/5

7.
∞∑

n=1

1

n2 + 1

solution Let f (x) = 1

x2 + 1
. This function is positive, decreasing and continuous on the interval x ≥ 1, hence the

Integral Test applies. Moreover,∫ ∞
1

dx

x2 + 1
= lim

R→∞

∫ R

1

dx

x2 + 1
= lim

R→∞
(

tan−1 R − π

4

)
= π

2
− π

4
= π

4
.

The integral converges; hence, the series
∞∑

n=1

1

n2 + 1
also converges.

∞∑
n=4

1

n2 − 1

9.
∞∑

n=1

1

n(n + 1)

solution Let f (x) = 1

x(x + 1)
. This function is positive, continuous and decreasing on the interval x ≥ 1, so the

Integral Test applies. We compute the improper integral using partial fractions:∫ ∞
1

dx

x(x + 1)
= lim

R→∞

∫ R

1

(
1

x
− 1

x + 1

)
dx = lim

R→∞ ln
x

x + 1

∣∣∣∣R
1

= lim
R→∞

(
ln

R

R + 1
− ln

1

2

)
= ln 1 − ln

1

2
= ln 2.

The integral converges; hence, the series
∞∑

n=1

1

n(n + 1)
converges.

∞∑
n=1

ne−n211.
∞∑

n=2

1

n(ln n)2

solution Let f (x) = 1

x(ln x)2
. This function is positive and continuous for x ≥ 2. Moreover,

f ′(x) = − 1

x2(ln x)4

(
1 · (ln x)2 + x · 2 (ln x) · 1

x

)
= − 1

x2(ln x)4

(
(ln x)2 + 2 ln x

)
.

Since ln x > 0 for x > 1, f ′(x) is negative for x > 1; hence, f is decreasing for x ≥ 2. To compute the improper integral,

we make the substitution u = ln x, du = 1

x
dx. We obtain:

∫ ∞
2

1

x(ln x)2
dx = lim

R→∞

∫ R

2

1

x(ln x)2
dx = lim

R→∞

∫ ln R

ln 2

du

u2

= − lim
R→∞

(
1

ln R
− 1

ln 2

)
= 1

ln 2
.

The integral converges; hence, the series
∞∑

n=2

1

n(ln n)2
also converges.

∞∑
n=1

ln n

n2

13.
∞∑

n=1

1

2ln n

solution Note that

2ln n = (eln 2)ln n = (eln n)ln 2 = nln 2.

Thus,

∞∑
n=1

1

2ln n
=

∞∑
n=1

1

nln 2
.

Now, let f (x) = 1

xln 2
. This function is positive, continuous and decreasing on the interval x ≥ 1; therefore, the Integral

Test applies. Moreover, ∫ ∞
1

dx

xln 2
= lim

R→∞

∫ R

1

dx

xln 2
= 1

1 − ln 2
lim

R→∞(R1−ln 2 − 1) = ∞,

because 1 − ln 2 > 0. The integral diverges; hence, the series
∞∑

n=1

1

2ln n
also diverges.
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∞∑
n=1

1

3ln n

15. Show that
∞∑

n=1

1

n3 + 8n
converges by using the Comparison Test with

∞∑
n=1

n−3.

solution We compare the series with the p-series
∞∑

n=1

n−3. For n ≥ 1,

1

n3 + 8n
≤ 1

n3
.

Since
∞∑

n=1

1

n3
converges (it is a p-series with p = 3 > 1), the series

∞∑
n=1

1

n3 + 8n
also converges by the Comparison Test.

Show that
∞∑

n=2

1√
n2 − 3

diverges by comparing with
∞∑

n=2

n−1.
17. Let S =

∞∑
n=1

1

n + √
n

. Verify that for n ≥ 1,

1

n + √
n

≤ 1

n
,

1

n + √
n

≤ 1√
n

Can either inequality be used to show that S diverges? Show that
1

n + √
n

≥ 1

2n
and conclude that S diverges.

solution For n ≥ 1, n + √
n ≥ n and n + √

n ≥ √
n. Taking the reciprocal of each of these inequalities yields

1

n + √
n

≤ 1

n
and

1

n + √
n

≤ 1√
n

.

These inequalities indicate that the series
∞∑

n=1

1

n + √
n

is smaller than both
∞∑

n=1

1

n
and

∞∑
n=1

1√
n

; however,
∞∑

n=1

1

n
and

∞∑
n=1

1√
n

both diverge so neither inequality allows us to show that S diverges.

On the other hand, for n ≥ 1, n ≥ √
n, so 2n ≥ n + √

n and

1

n + √
n

≥ 1

2n
.

The series
∞∑

n=1

1

2n
= 2

∞∑
n=1

1

n
diverges, since the harmonic series diverges. The Comparison Test then lets us conclude

that the larger series
∞∑

n=1

1

n + √
n

also diverges.

Which of the following inequalities can be used to study the convergence of
∞∑

n=2

1

n2 + √
n

? Explain.

1

n2 + √
n

≤ 1√
n

,
1

n2 + √
n

≤ 1

n2

In Exercises 19–30, use the Comparison Test to determine whether the infinite series is convergent.

19.
∞∑

n=1

1

n2n

solution We compare with the geometric series
∞∑

n=1

(
1

2

)n

. For n ≥ 1,

1

n2n
≤ 1

2n
=

(
1

2

)n

.

Since
∞∑

n=1

(
1

2

)n

converges (it is a geometric series with r = 1
2 ), we conclude by the Comparison Test that

∞∑
n=1

1

n2n
also

converges.

∞∑
n=1

n3

n5 + 4n + 1

21.
∞∑

n=1

1

n1/3 + 2n

solution For n ≥ 1,

1

n1/3 + 2n
≤ 1

2n

The series
∑∞

n=1
1

2n
is a geometric series with r = 1

2
, so it converges. By the Comparison test, so does

∞∑
n=1

1

n1/3 + 2n
.
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∞∑
n=1

1√
n3 + 2n − 1

23.
∞∑

m=1

4

m! + 4m

solution For m ≥ 1,

4

m! + 4m
≤ 4

4m
=

(
1

4

)m−1
.

The series
∞∑

m=1

(
1

4

)m−1
is a geometric series with r = 1

4
, so it converges. By the Comparison Test we can therefore

conclude that the series
∞∑

m=1

4

m! + 4m
also converges.

∞∑
n=4

√
n

n − 3

25.
∞∑

k=1

sin2 k

k2

solution For k ≥ 1, 0 ≤ sin2 k ≤ 1, so

0 ≤ sin2 k

k2
≤ 1

k2
.

The series
∞∑

k=1

1

k2
is a p-series with p = 2 > 1, so it converges. By the Comparison Test we can therefore conclude that

the series
∞∑

k=1

sin2k

k2
also converges.

∞∑
k=2

k1/3

k5/4 − k

27.
∞∑

n=1

2

3n + 3−n

solution Since 3−n > 0 for all n,

2

3n + 3−n
≤ 2

3n
= 2

(
1

3

)n

.

The series
∞∑

n=1

2

(
1

3

)n

is a geometric series with r = 1

3
, so it converges. By the Comparison Theorem we can therefore

conclude that the series
∞∑

n=1

2

3n + 3−n
also converges.

∞∑
k=1

2−k229.
∞∑

n=1

1

(n + 1)!

solution Note that for n ≥ 2,

(n + 1)! = 1 · 2 · 3 · · · n · (n + 1)︸ ︷︷ ︸
n factors

≤ 2n

so that

∞∑
n=1

1

(n + 1)! = 1 +
∞∑

n=2

1

(n + 1)! ≤ 1 +
∞∑

n=2

1

2n

But
∑∞

n=2
1

2n
is a geometric series with ratio r = 1

2
, so it converges. By the comparison test,

∞∑
n=1

1

(n + 1)! converges as

well.

∞∑
n=1

n!
n3
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Exercise 31–36: For all a > 0 and b > 1, the inequalities

ln n ≤ na, na < bn

are true for n sufficiently large (this can be proved using L’Hopital’s Rule). Use this, together with the Comparison
Theorem, to determine whether the series converges or diverges.

31.
∞∑

n=1

ln n

n3

solution For n sufficiently large (say n = k, although in this case n = 1 suffices), we have ln n ≤ n, so that

∞∑
n=k

ln n

n3
≤

∞∑
n=k

n

n3
=

∞∑
n=k

1

n2

This is a p-series with p = 2 > 1, so it converges. Thus
∑∞

n=k
ln n
n3 also converges; adding back in the finite number of

terms for 1 ≤ n ≤ k does not affect this result.

∞∑
m=2

1

ln m

33.
∞∑

n=1

(ln n)100

n1.1

solution Choose N so that ln n ≤ n0.0005 for n ≥ N . Then also for n > N , (ln n)100 ≤ (n0.0005)100 = n0.05. Then

∞∑
n=N

(ln n)100

n1.1
≤

∞∑
n=N

n0.05

n1.1
=

∞∑
n=N

1

n1.05

But
∞∑

n=N

1

n1.05
is a p-series with p = 1.05 > 1, so is convergent. It follows that

∑∞
n=N

(ln n)100
n1.1 is also convergent;

adding back in the finite number of terms for n = 1, 2, . . . , N − 1 shows that
∞∑

n=1

(ln n)100

n1.1
converges as well.

∞∑
n=1

1

(ln n)10

35.
∞∑

n=1

n

3n

solution Choose N such that n ≤ 2n for n ≥ N . Then

∞∑
n=N

n

3n
≤

∞∑
n=N

(
2

3

)n

The latter sum is a geometric series with r = 2

3
< 1, so it converges. Thus the series on the left converges as well. Adding

back in the finite number of terms for n < N shows that
∞∑

n=1

n

3n
converges.

∞∑
n=1

n5

2n

37. Show that
∞∑

n=1

sin
1

n2
converges. Hint: Use the inequality sin x ≤ x for x ≥ 0.

solution For n ≥ 1,

0 ≤ 1

n2
≤ 1 < π;

therefore, sin 1
n2 > 0 for n ≥ 1. Moreover, for n ≥ 1,

sin
1

n2
≤ 1

n2
.

The series
∞∑

n=1

1

n2
is a p-series with p = 2 > 1, so it converges. By the Comparison Test we can therefore conclude that

the series
∞∑

n=1

sin
1

n2
also converges.

Does
∞∑

n=2

sin(1/n)

ln n
converge? Hint: By Theorem 1 in Section 2.6, sin(1/n) > (cos(1/n))/n. Thus sin(1/n) >

1/(2n) for n > 2
(
because cos(1/n) > 1

2

)
.
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In Exercises 39–48, use the Limit Comparison Test to prove convergence or divergence of the infinite series.

39.
∞∑

n=2

n2

n4 − 1

solution Let an = n2

n4 − 1
. For large n,

n2

n4 − 1
≈ n2

n4
= 1

n2
, so we apply the Limit Comparison Test with bn = 1

n2
.

We find

L = lim
n→∞

an

bn
= lim

n→∞

n2

n4−1
1
n2

= lim
n→∞

n4

n4 − 1
= 1.

The series
∞∑

n=1

1

n2
is a p-series with p = 2 > 1, so it converges; hence,

∞∑
n=2

1

n2
also converges. Because L exists, by the

Limit Comparison Test we can conclude that the series
∞∑

n=2

n2

n4 − 1
converges.

∞∑
n=2

1

n2 − √
n

41.
∞∑

n=2

n√
n3 + 1

solution Let an = n√
n3 + 1

. For large n,
n√

n3 + 1
≈ n√

n3
= 1√

n
, so we apply the Limit Comparison test with

bn = 1√
n

. We find

L = lim
n→∞

an

bn
= lim

n→∞

n√
n3+1
1√
n

= lim
n→∞

√
n3√

n3 + 1
= 1.

The series
∞∑

n=1

1√
n

is a p-series with p = 1
2 < 1, so it diverges; hence,

∞∑
n=2

1√
n

also diverges. Because L > 0, by the

Limit Comparison Test we can conclude that the series
∞∑

n=2

n√
n3 + 1

diverges.

∞∑
n=2

n3√
n7 + 2n2 + 1

43.
∞∑

n=3

3n + 5

n(n − 1)(n − 2)

solution Let an = 3n + 5

n(n − 1)(n − 2)
. For large n,

3n + 5

n(n − 1)(n − 2)
≈ 3n

n3
= 3

n2
, so we apply the Limit Comparison

Test with bn = 1

n2
. We find

L = lim
n→∞

an

bn
= lim

n→∞

3n+5
n(n+1)(n+2)

1
n2

= lim
n→∞

3n3 + 5n2

n(n + 1)(n + 2)
= 3.

The series
∞∑

n=1

1

n2
is a p-series with p = 2 > 1, so it converges; hence, the series

∞∑
n=3

1

n2
also converges. Because L

exists, by the Limit Comparison Test we can conclude that the series
∞∑

n=3

3n + 5

n(n − 1)(n − 2)
converges.

∞∑
n=1

en + n

e2n − n2

45.
∞∑

n=1

1√
n + ln n

solution Let

an = 1√
n + ln n

For large n,
√

n + ln n ≈ √
n, so apply the Comparison Test with bn = 1√

n
. We find

L = lim
n→∞

an

bn
= lim

n→∞
1√

n + ln n
·
√

n

1
= lim

n→∞
1

1 + ln n√
n

= 1

The series
∞∑

n=1

1√
n

is a p-series with p = 1

2
< 1, so it diverges. Because L exists, the Limit Comparison Test tells us the

the original series also diverges.
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∞∑
n=1

ln(n + 4)

n5/2

47.
∞∑

n=1

(
1 − cos

1

n

)
Hint: Compare with

∞∑
n=1

n−2.

solution Let an = 1 − cos
1

n
, and apply the Limit Comparison Test with bn = 1

n2
. We find

L = lim
n→∞

an

bn
= lim

n→∞
1 − cos 1

n
1
n2

= lim
x→∞

1 − cos 1
x

1
x2

= lim
x→∞

− 1
x2 sin 1

x

− 2
x3

= 1

2
lim

x→∞
sin 1

x
1
x

.

As x → ∞, u = 1
x → 0, so

L = 1

2
lim

x→∞
sin 1

x
1
x

= 1

2
lim
u→0

sin u

u
= 1

2
.

The series
∞∑

n=1

1

n2
is a p-series with p = 2 > 1, so it converges. Because L exists, by the Limit Comparison Test we can

conclude that the series
∞∑

n=1

(
1 − cos

1

n

)
also converges.

∞∑
n=1

(1 − 2−1/n) Hint: Compare with the harmonic series.
In Exercises 49–78, determine convergence or divergence using any method covered so far.

49.
∞∑

n=4

1

n2 − 9

solution Apply the Limit Comparison Test with an = 1

n2 − 9
and bn = 1

n2
:

L = lim
n→∞

an

bn
= lim

n→∞

1
n2−9

1
n2

= lim
n→∞

n2

n2 − 9
= 1.

Since the p-series
∞∑

n=1

1

n2
converges, the series

∞∑
n=4

1

n2
also converges. Because L exists, by the Limit Comparison Test

we can conclude that the series
∞∑

n=4

1

n2 − 9
converges.

∞∑
n=1

cos2 n

n2

51.
∞∑

n=1

√
n

4n + 9

solution Apply the Limit Comparison Test with an =
√

n

4n + 9
and bn = 1√

n
:

L = lim
n→∞

an

bn
= lim

n→∞

√
n

4n+9
1√
n

= lim
n→∞

n

4n + 9
= 1

4
.

The series
∞∑

n=1

1√
n

is a divergent p-series. Because L > 0, by the Limit Comparison Test we can conclude that the series

∞∑
n=1

√
n

4n + 9
also diverges.

∞∑
n=1

n − cos n

n3

53.
∞∑

n=1

n2 − n

n5 + n

solution First rewrite an = n2 − n

n5 + n
= n (n − 1)

n
(
n4 + 1

) = n − 1

n4 + 1
and observe

n − 1

n4 + 1
<

n

n4
= 1

n3

for n ≥ 1. The series
∞∑

n=1

1

n3
is a convergent p-series, so by the Comparison Test we can conclude that the series

∞∑
n=1

n2 − n

n5 + n
also converges.
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∞∑
n=1

1

n2 + sin n

55.
∞∑

n=5

(4/5)−n

solution

∞∑
n=5

(
4

5

)−n

=
∞∑

n=5

(
5

4

)n

which is a geometric series starting at n = 5 with ratio r = 5

4
> 1. Thus the series diverges.

∞∑
n=1

1

3n2

57.
∞∑

n=2

1

n3/2 ln n

solution For n ≥ 3, ln n > 1, so n3/2 ln n > n3/2 and

1

n3/2 ln n
<

1

n3/2
.

The series
∞∑

n=1

1

n3/2
is a convergent p-series, so the series

∞∑
n=3

1

n3/2
also converges. By the Comparison Test we can

therefore conclude that the series
∞∑

n=3

1

n3/2 ln n
converges. Hence, the series

∞∑
n=2

1

n3/2 ln n
also converges.

∞∑
n=2

(ln n)12

n9/8

59.
∞∑

k=1

41/k

solution

lim
k→∞ ak = lim

k→∞ 41/k = 40 = 1 
= 0;

therefore, the series
∞∑

k=1

41/k diverges by the Divergence Test.

∞∑
n=1

4n

5n − 2n

61.
∞∑

n=2

1

(ln n)4

solution By the comment preceding Exercise 31, we can choose N so that for n ≥ N , we have ln n < n1/8, so that

(ln n)4 < n1/2. Then

∞∑
n=N

1

(ln n)4
>

∞∑
n=N

1

n1/2

which is a divergent p-series. Thus the series on the left diverges as well, and adding back in the finite number of terms

for n < N does not affect the result. Thus
∞∑

n=2

1

(ln n)4
diverges.

∞∑
n=1

2n

3n − n

63.
∞∑

n=1

1

n ln n − n

solution For n ≥ 2, n ln n − n ≤ n ln n; therefore,

1

n ln n − n
≥ 1

n ln n
.

Now, let f (x) = 1

x ln x
. For x ≥ 2, this function is continuous, positive and decreasing, so the Integral Test applies. Using

the substitution u = ln x, du = 1
x dx, we find∫ ∞

2

dx

x ln x
= lim

R→∞

∫ R

2

dx

x ln x
= lim

R→∞

∫ ln R

ln 2

du

u
= lim

R→∞ (ln(ln R) − ln(ln 2)) = ∞.

The integral diverges; hence, the series
∞∑

n=2

1

n ln n
also diverges. By the Comparison Test we can therefore conclude that

the series
∞∑

n=2

1

n ln n − n
diverges.
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∞∑
n=1

1

n(ln n)2 − n

65.
∞∑

n=1

1

nn

solution For n ≥ 2, nn ≥ 2n; therefore,

1

nn
≤ 1

2n
=

(
1

2

)n

.

The series
∞∑

n=1

(
1

2

)n

is a convergent geometric series, so
∞∑

n=2

(
1

2

)n

also converges. By the Comparison Test we can

therefore conclude that the series
∞∑

n=2

1

nn
converges. Hence, the series

∞∑
n=1

1

nn
converges.

∞∑
n=1

n2 − 4n3/2

n3

67.
∞∑

n=1

1 + (−1)n

n

solution Let

an = 1 + (−1)n

n

Then

an =
{

0 n odd
2

2k
= 1

k
n = 2k even

Therefore, {an} consists of 0s in the odd places and the harmonic series in the even places, so
∑∞

i=1 an is just the sum of
the harmonic series, which diverges. Thus

∑∞
i=1 an diverges as well.

∞∑
n=1

2 + (−1)n

n3/2

69.
∞∑

n=1

sin
1

n

solution Apply the Limit Comparison Test with an = sin
1

n
and bn = 1

n
:

L = lim
n→∞

sin 1
n

1
n

= lim
u→0

sin u

u
= 1,

where u = 1
n . The harmonic series diverges. Because L > 0, by the Limit Comparison Test we can conclude that the

series
∞∑

n=1

sin
1

n
also diverges.

∞∑
n=1

sin(1/n)√
n

71.
∞∑

n=1

2n + 1

4n

solution For n ≥ 3, 2n + 1 < 2n, so

2n + 1

4n
<

2n

4n
=

(
1

2

)n

.

The series
∞∑

n=1

(
1

2

)n

is a convergent geometric series, so
∞∑

n=3

(
1

2

)n

also converges. By the Comparison Test we can

therefore conclude that the series
∞∑

n=3

2n + 1

4n
converges. Finally, the series

∞∑
n=1

2n + 1

4n
converges.

∞∑
n=3

1

e
√

n

73.
∞∑

n=4

ln n

n2 − 3n

solution By the comment preceding Exercise 31, we can choose N ≥ 4 so that for n ≥ N , ln n < n1/2. Then

∞∑
n=N

ln n

n2 − 3n
≤

∞∑
n=N

n1/2

n2 − 3n
=

∞∑
n=N

1

n3/2 − 3n1/2
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To evaluate convergence of the latter series, let an = 1

n3/2 − 3n1/2
and bn = 1

n3/2
, and apply the Limit Comparison

Test:

L = lim
n→∞

an

bn
= lim

n→∞
1

n3/2 − 3n1/2
· n3/2 = lim

n→∞
1

1 − 3n−1
= 0

Thus
∑

an converges if
∑

bn does. But
∑

bn is a convergent p-series. Thus
∑

an converges and, by the comparison
test, so does the original series. Adding back in the finite number of terms for n < N does not affect convergence.

∞∑
n=1

1

3ln n

75.
∞∑

n=2

1

n1/2 ln n

solution By the comment preceding Exercise 31, we can choose N ≥ 2 so that for n ≥ N , ln n < n1/4. Then

∞∑
n=N

1

n1/2 ln n
>

∞∑
n=N

1

n3/4

which is a divergent p-series. Thus the original series diverges as well - as usual, adding back in the finite number of
terms for n < N does not affect convergence.

∞∑
n=1

1

n3/2 − ln4 n

77.
∞∑

n=1

4n2 + 15n

3n4 − 5n2 − 17

solution Apply the Limit Comparison Test with

an = 4n2 + 15n

3n4 − 5n2 − 17
, bn = 4n2

3n4
= 4

3n2

We have

L = lim
n→∞

an

bn
= lim

n→∞
4n2 + 15n

3n4 − 5n2 − 17
· 3n2

4
= lim

n→∞
12n4 + 45n3

12n4 − 20n2 − 68
= lim

n→∞
12 + 45/n

12 − 20/n2 − 68/n4
= 1

Now,
∑∞

n=1 bn is a p-series with p = 2 > 1, so converges. Since L = 1, we see that
∞∑

n=1

4n2 + 15n

3n4 − 5n2 − 17
converges as

well.

∞∑
n=1

n

4−n + 5−n

79. For which a does
∞∑

n=2

1

n(ln n)a
converge?

solution First consider the case a > 0 but a 
= 1. Let f (x) = 1

x(ln x)a
. This function is continuous, positive and

decreasing for x ≥ 2, so the Integral Test applies. Now,

∫ ∞
2

dx

x(ln x)a
= lim

R→∞

∫ R

2

dx

x(ln x)a
= lim

R→∞

∫ ln R

ln 2

du

ua
= 1

1 − a
lim

R→∞

(
1

(ln R)a−1
− 1

(ln 2)a−1

)
.

Because

lim
R→∞

1

(ln R)a−1
=

{
∞, 0 < a < 1

0, a > 1

we conclude the integral diverges when 0 < a < 1 and converges when a > 1. Therefore

∞∑
n=2

1

n(ln n)a
converges for a > 1 and diverges for 0 < a < 1.

Next, consider the case a = 1. The series becomes
∞∑

n=2

1

n ln n
. Let f (x) = 1

x ln x
. For x ≥ 2, this function is continuous,

positive and decreasing, so the Integral Test applies. Using the substitution u = ln x, du = 1
x dx, we find

∫ ∞
2

dx

x ln x
= lim

R→∞

∫ R

2

dx

x ln x
= lim

R→∞

∫ ln R

ln 2

du

u
= lim

R→∞ (ln(ln R) − ln(ln 2)) = ∞.

The integral diverges; hence, the series also diverges.
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Finally, consider the case a < 0. Let b = −a > 0 so the series becomes
∞∑

n=2

(ln n)b

n
. Since ln n > 1 for all n ≥ 3, it

follows that

(ln n)b > 1 so
(ln n)b

n
>

1

n
.

The series
∞∑

n=3

1

n
diverges, so by the Comparison Test we can conclude that

∞∑
n=3

(ln n)b

n
also diverges. Consequently,

∞∑
n=2

(ln n)b

n
diverges. Thus,

∞∑
n=2

1

n(ln n)a
diverges for a < 0.

To summarize:

∞∑
n=2

1

n(ln n)a
converges if a > 1 and diverges if a ≤ 1.

For which a does
∞∑

n=2

1

na ln n
converge?

Approximating Infinite Sums In Exercises 81–83, let an = f (n), where f (x) is a continuous, decreasing function such
that f (x) ≥ 0 and

∫ ∞
1 f (x) dx converges.

81. Show that

∫ ∞
1

f (x) dx ≤
∞∑

n=1

an ≤ a1 +
∫ ∞

1
f (x) dx 3

solution From the proof of the Integral Test, we know that

a2 + a3 + a4 + · · · + aN ≤
∫ N

1
f (x) dx ≤

∫ ∞
1

f (x) dx;

that is,

SN − a1 ≤
∫ ∞

1
f (x) dx or SN ≤ a1 +

∫ ∞
1

f (x) dx.

Also from the proof of the Integral test, we know that

∫ N

1
f (x) dx ≤ a1 + a2 + a3 + · · · + aN−1 = SN − aN ≤ SN .

Thus,

∫ N

1
f (x) dx ≤ SN ≤ a1 +

∫ ∞
1

f (x) dx.

Taking the limit as N → ∞ yields Eq. (3), as desired.

Using Eq. (3), show that

5 ≤
∞∑

n=1

1

n1.2
≤ 6

This series converges slowly. Use a computer algebra system to verify that SN < 5 for N ≤ 43,128 and S43,129 ≈
5.00000021.

83. Let S =
∞∑

n=1

an. Arguing as in Exercise 81, show that

M∑
n=1

an +
∫ ∞
M+1

f (x) dx ≤ S ≤
M+1∑
n=1

an +
∫ ∞
M+1

f (x) dx 4

Conclude that

0 ≤ S −
⎛
⎝ M∑

n=1

an +
∫ ∞
M+1

f (x) dx

⎞
⎠ ≤ aM+1 5

This provides a method for approximating S with an error of at most aM+1.
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solution Following the proof of the Integral Test and the argument in Exercise 81, but starting with n = M + 1 rather
than n = 1, we obtain

∫ ∞
M+1

f (x) dx ≤
∞∑

n=M+1

an ≤ aM+1 +
∫ ∞
M+1

f (x) dx.

Adding
M∑

n=1

an to each part of this inequality yields

M∑
n=1

an +
∫ ∞
M+1

f (x) dx ≤
∞∑

n=1

an = S ≤
M+1∑
n=1

an +
∫ ∞
M+1

f (x) dx.

Subtracting
M∑

n=1

an +
∫ ∞
M+1

f (x) dx from each part of this last inequality then gives us

0 ≤ S −
⎛
⎝ M∑

n=1

an +
∫ ∞
M+1

f (x) dx

⎞
⎠ ≤ aM+1.

Use Eq. (4) with M = 43,129 to prove that

5.5915810 ≤
∞∑

n=1

1

n1.2
≤ 5.5915839

85. Apply Eq. (4) with M = 40,000 to show that

1.644934066 ≤
∞∑

n=1

1

n2
≤ 1.644934068

Is this consistent with Euler’s result, according to which this infinite series has sum π2/6?

solution Using Eq. (4) with f (x) = 1

x2
, an = 1

n2
and M = 40,000, we find

S40,000 +
∫ ∞

40,001

dx

x2
≤

∞∑
n=1

1

n2
≤ S40,001 +

∫ ∞
40,001

dx

x2
.

Now,

S40,000 = 1.6449090672;

S40,001 = S40,000 + 1

40,001
= 1.6449090678;

and ∫ ∞
40,001

dx

x2
= lim

R→∞

∫ R

40,001

dx

x2
= − lim

R→∞

(
1

R
− 1

40,001

)
= 1

40,001
= 0.0000249994.

Thus,

1.6449090672 + 0.0000249994 ≤
∞∑

n=1

1

n2
≤ 1.6449090678 + 0.0000249994,

or

1.6449340665 ≤
∞∑

n=1

1

n2
≤ 1.6449340672.

Since
π2

6
≈ 1.6449340668, our approximation is consistent with Euler’s result.

Using a CAS and Eq. (5), determine the value of
∞∑

n=1

n−6 to within an error less than 10−4. Check that your

result is consistent with that of Euler, who proved that the sum is equal to π6/945.

87. Using a CAS and Eq. (5), determine the value of
∞∑

n=1

n−5 to within an error less than 10−4.

solution Using Eq. (5) with f (x) = x−5 and an = n−5, we have

0 ≤
∞∑

n=1

n−5 −
⎛
⎝M+1∑

n=1

n−5 +
∫ ∞
M+1

x−5 dx

⎞
⎠ ≤ (M + 1)−5.
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To guarantee an error less than 10−4, we need (M + 1)−5 ≤ 10−4. This yields M ≥ 104/5 − 1 ≈ 5.3, so we choose
M = 6. Now,

7∑
n=1

n−5 = 1.0368498887,

and ∫ ∞
7

x−5 dx = lim
R→∞

∫ R

7
x−5 dx = −1

4
lim

R→∞
(
R−4 − 7−4

)
= 1

4 · 74
= 0.0001041233.

Thus,

∞∑
n=1

n−5 ≈
7∑

n=1

n−5 +
∫ ∞

7
x−5 dx = 1.0368498887 + 0.0001041233 = 1.0369540120.

How far can a stack of identical books (of mass m and unit length) extend without tipping over? The stack will
not tip over if the (n + 1)st book is placed at the bottom of the stack with its right edge located at the center of mass
of the first n books (Figure 5). Let cn be the center of mass of the first n books, measured along the x-axis, where we
take the positive x-axis to the left of the origin as in Figure 6. Recall that if an object of mass m1 has center of mass
at x1 and a second object of m2 has center of mass x2, then the center of mass of the system has x-coordinate

m1x1 + m2x2

m1 + m2

(a) Show that if the (n + 1)st book is placed with its right edge at cn, then its center of mass is located at cn + 1
2 .

(b) Consider the first n books as a single object of mass nm with center of mass at cn and the (n + 1)st book as a second

object of mass m. Show that if the (n + 1)st book is placed with its right edge at cn, then cn+1 = cn + 1

2(n + 1)
.

(c) Prove that lim
n→∞ cn = ∞. Thus, by using enough books, the stack can be extended as far as desired without

tipping over.

89. The following argument proves the divergence of the harmonic series S =
∞∑

n=1

1/n without using the Integral Test.

Let

S1 = 1 + 1

3
+ 1

5
+ · · · , S2 = 1

2
+ 1

4
+ 1

6
+ · · ·

Show that if S converges, then

(a) S1 and S2 also converge and S = S1 + S2.
(b) S1 > S2 and S2 = 1

2S.

Observe that (b) contradicts (a), and conclude that S diverges.

solution Assume throughout that S converges; we will derive a contradiction. Write

an = 1

n
, bn = 1

2n − 1
, cn = 1

2n

for the nth terms in the series S, S1, and S2. Since 2n − 1 ≥ n for n ≥ 1, we have bn < an. Since S = ∑
an converges,

so does S1 = ∑
bn by the Comparison Test. Also, cn = 1

2
an, so again by the Comparison Test, the convergence of S

implies the convergence of S2 = ∑
cn. Now, define two sequences

b′
n =

{
b(n+1)/2 n odd

0 n even

c′
n =

{
0 n odd

cn/2 n even

That is, b′
n and c′

n look like bn and cn, but have zeros inserted in the “missing” places compared to an. Then an = b′
n + c′

n;
also S1 = ∑

bn = ∑
b′
n and S2 = ∑

cn = ∑
c′
n. Finally, since S, S1, and S2 all converge, we have

S =
∞∑

n=1

an =
∞∑

n=1

(b′
n + c′

n) =
∞∑

n=1

b′
n +

∞∑
n=1

c′
n =

∞∑
n=1

bn +
∞∑

n=1

cn = S1 + S2

Now, bn > cn for every n, so that S1 > S2. Also, we showed above that cn = 1

2
an, so that 2S2 = S. Putting all this

together gives

S = S1 + S2 > S2 + S2 = 2S2 = S

so that S > S, a contradiction. Thus S must diverge.

Further Insights and Challenges

Let S =
∞∑

n=2

an, where an = (ln(ln n))− ln n.

(a) Show, by taking logarithms, that an = n− ln(ln(ln n)).

(b) Show that ln(ln(ln n)) ≥ 2 if n > C, where C = eee2
.

(c) Show that S converges.

91. Kummer’s Acceleration Method Suppose we wish to approximate S =
∞∑

n=1

1/n2. There is a similar telescoping

series whose value can be computed exactly (Example 1 in Section 11.2):

∞∑
n=1

1

n(n + 1)
= 1
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(a) Verify that

S =
∞∑

n=1

1

n(n + 1)
+

∞∑
n=1

(
1

n2
− 1

n(n + 1)

)

Thus for M large,

S ≈ 1 +
M∑

n=1

1

n2(n + 1)
6

(b) Explain what has been gained. Why is Eq. (6) a better approximation to S than is
M∑

n=1

1/n2?

(c) Compute

1000∑
n=1

1

n2
, 1 +

100∑
n=1

1

n2(n + 1)

Which is a better approximation to S, whose exact value is π2/6?

solution

(a) Because the series
∞∑

n=1

1

n2
and

∞∑
n=1

1

n(n + 1)
both converge,

∞∑
n=1

1

n(n + 1)
+

∞∑
n=1

(
1

n2
− 1

n(n + 1)

)
=

∞∑
n=1

1

n(n + 1)
+

∞∑
n=1

1

n2
−

∞∑
n=1

1

n(n + 1)
=

∞∑
n=1

1

n2
= S.

Now,

1

n2
− 1

n(n + 1)
= n + 1

n2(n + 1)
− n

n2(n + 1)
= 1

n2(n + 1)
,

so, for M large,

S ≈ 1 +
M∑

n=1

1

n2(n + 1)
.

(b) The series
∑∞

n=1
1

n2(n+1)
converges more rapidly than

∞∑
n=1

1

n2
since the degree of n in the denominator is larger.

(c) Using a computer algebra system, we find

1000∑
n=1

1

n2
= 1.6439345667 and 1 +

100∑
n=1

1

n2(n + 1)
= 1.6448848903.

The second sum is more accurate because it is closer to the exact solution
π2

6
≈ 1.6449340668.

The series S =
∞∑

k=1

k−3 has been computed to more than 100 million digits. The first 30 digits are

S = 1.202056903159594285399738161511

Approximate S using the Acceleration Method of Exercise 91 with M = 100 and auxiliary series

R =
∞∑

n=1

(n(n + 1)(n + 2))−1.

According to Exercise 46 in Section 11.2, R is a telescoping series with the sum R = 1
4 .

11.4 Absolute and Conditional Convergence

Preliminary Questions
1. Give an example of a series such that

∑
an converges but

∑
|an| diverges.

solution The series
∑

(−1)n

3√n
converges by the Leibniz Test, but the positive series

∑ 1
3√n

is a divergent p-series.

2. Which of the following statements is equivalent to Theorem 1?

(a) If
∞∑

n=0

|an| diverges, then
∞∑

n=0

an also diverges.

(b) If
∞∑

n=0

an diverges, then
∞∑

n=0

|an| also diverges.

(c) If
∞∑

n=0

an converges, then
∞∑

n=0

|an| also converges.
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solution The correct answer is (b): If
∞∑

n=0

an diverges, then
∞∑

n=0

|an| also diverges. Take an = (−1)n 1
n to see that

statements (a) and (c) are not true in general.

3. Lathika argues that
∞∑

n=1

(−1)n
√

n is an alternating series and therefore converges. Is Lathika right?

solution No. Although
∞∑

n=1

(−1)n
√

n is an alternating series, the terms an = √
n do not form a decreasing sequence

that tends to zero. In fact, an = √
n is an increasing sequence that tends to ∞, so

∞∑
n=1

(−1)n
√

n diverges by the Divergence

Test.

4. Suppose that an is positive, decreasing, and tends to 0, and let S =
∞∑

n=1

(−1)n−1an. What can we say about |S − S100|

if a101 = 10−3? Is S larger or smaller than S100?

solution From the text, we know that |S − S100| < a101 = 10−3.Also, the Leibniz test tells us that S2N < S < S2N+1
for any N ≥ 1, so that S100 < S.

Exercises
1. Show that

∞∑
n=0

(−1)n

2n

converges absolutely.

solution The positive series
∞∑

n=0

1

2n
is a geometric series with r = 1

2
. Thus, the positive series converges, and the

given series converges absolutely.

Show that the following series converges conditionally:

∞∑
n=1

(−1)n−1 1

n2/3
= 1

12/3
− 1

22/3
+ 1

32/3
− 1

42/3
+ · · ·

In Exercises 3–10, determine whether the series converges absolutely, conditionally, or not at all.

3.
∞∑

n=1

(−1)n−1

n1/3

solution The sequence an = 1
n1/3 is positive, decreasing, and tends to zero; hence, the series

∞∑
n=1

(−1)n−1

n1/3
converges

by the Leibniz Test. However, the positive series
∞∑

n=1

1

n1/3
is a divergent p-series, so the original series converges

conditionally.

∞∑
n=1

(−1)n n4

n3 + 1

5.
∞∑

n=0

(−1)n−1

(1.1)n

solution The positive series
∞∑

n=0

(
1

1.1

)n

is a convergent geometric series; thus, the original series converges abso-

lutely.

∞∑
n=1

sin( πn
4 )

n2

7.
∞∑

n=2

(−1)n

n ln n

solution Let an = 1
n ln n

. Then an forms a decreasing sequence (note that n and ln n are both increasing functions of

n) that tends to zero; hence, the series
∞∑

n=2

(−1)n

n ln n
converges by the Leibniz Test. However, the positive series

∞∑
n=2

1

n ln n

diverges, so the original series converges conditionally.

∞∑
n=1

(−1)n

1 + 1
n



June 14, 2011 LTSV SSM Second Pass

S E C T I O N 11.4 Absolute and Conditional Convergence 685

9.
∞∑

n=2

cos nπ

(ln n)2

solution Since cos nπ alternates between +1 and −1,

∞∑
n=2

cos nπ

(lnn)2
=

∞∑
n=2

(−1)n

(lnn)2

This is an alternating series whose general term decreases to zero, so it converges. The associated positive series,

∞∑
n=2

1

(ln n)2

is a divergent series, so the original series converges conditionally.

∞∑
n=1

cos n

2n

11. Let S =
∞∑

n=1

(−1)n+1 1

n3
.

(a) Calculate Sn for 1 ≤ n ≤ 10.

(b) Use Eq. (2) to show that 0.9 ≤ S ≤ 0.902.

solution
(a)

S1 = 1 S6 = S5 − 1

63
= 0.899782407

S2 = 1 − 1

23
= 7

8
= 0.875 S7 = S6 + 1

73
= 0.902697859

S3 = S2 + 1

33
= 0.912037037 S8 = S7 − 1

83
= 0.900744734

S4 = S3 − 1

43
= 0.896412037 S9 = S8 + 1

93
= 0.902116476

S5 = S4 + 1

53
= 0.904412037 S10 = S9 − 1

103
= 0.901116476

(b) By Eq. (2),

|S10 − S| ≤ a11 = 1

113
,

so

S10 − 1

113
≤ S ≤ S10 + 1

113
,

or

0.900365161 ≤ S ≤ 0.901867791.

Use Eq. (2) to approximate

∞∑
n=1

(−1)n+1

n!

to four decimal places.

13. Approximate
∞∑

n=1

(−1)n+1

n4
to three decimal places.

solution Let S =
∞∑

n=1

(−1)n+1

n4
, so that an = 1

n4
. By Eq. (2),

|SN − S| ≤ aN+1 = 1

(N + 1)4
.

To guarantee accuracy to three decimal places, we must choose N so that

1

(N + 1)4
< 5 × 10−4 or N >

4√
2000 − 1 ≈ 5.7.

The smallest value that satisfies the required inequality is then N = 6. Thus,

S ≈ S6 = 1 − 1

24
+ 1

34
− 1

44
+ 1

54
− 1

64
= 0.946767824.

Let

S =
∞∑

n=1

(−1)n−1 n

n2 + 1
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In Exercises 15 and 16, find a value of N such that SN approximates the series with an error of at most 10−5. If you have
a CAS, compute this value of SN .

15.
∞∑

n=1

(−1)n+1

n(n + 2)(n + 3)

solution Let S =
∞∑

n=1

(−1)n+1

n (n + 2) (n + 3)
, so that an = 1

n (n + 2) (n + 3)
. By Eq. (2),

|SN − S| ≤ aN+1 = 1

(N + 1)(N + 3)(N + 4)
.

We must choose N so that

1

(N + 1)(N + 3)(N + 4)
≤ 10−5 or (N + 1)(N + 3)(N + 4) ≥ 105.

For N = 43, the product on the left hand side is 95,128, while for N = 44 the product is 101,520; hence, the smallest
value of N which satisfies the required inequality is N = 44. Thus,

S ≈ S44 =
44∑

n=1

(−1)n+1

n(n + 2)(n + 3)
= 0.0656746.

∞∑
n=1

(−1)n+1 ln n

n!
In Exercises 17–32, determine convergence or divergence by any method.

17.
∞∑

n=0

7−n

solution This is a (positive) geometric series with r = 1

7
< 1, so it converges.

∞∑
n=1

1

n7.5

19.
∞∑

n=1

1

5n − 3n

solution Use the Limit Comparison Test with
1

5n
:

L = lim
n→∞

1/(5n − 3n)

1/5n
= lim

n→∞
5n

5n − 3n
= lim

n→∞
1

1 − (3/5)n
= 1

But
∑∞

n=1
1

5n
is a convergent geometric series. Since L = 1, the Limit Comparison Test tells us that the original series

converges as well.

∞∑
n=2

n

n2 − n

21.
∞∑

n=1

1

3n4 + 12n

solution Use the Limit Comparison Test with
1

3n4
:

L = lim
n→∞

(1/(3n4 + 12n)

1/3n4
= lim

n→∞
3n4

3n4 + 12n
= lim

n→∞
1

1 + 4n−3
= 1

But
∑∞

n=1
1

3n4
= 1

3
∑∞

n=1
1
n4 is a convergent p-series. Since L = 1, the Limit Comparison Test tells us that the original

series converges as well.

∞∑
n=1

(−1)n√
n2 + 1

23.
∞∑

n=1

1√
n2 + 1

solution Apply the Limit Comparison Test and compare the series with the divergent harmonic series:

L = lim
n→∞

1√
n2+1
1
n

= lim
n→∞

n√
n2 + 1

= 1.

Because L > 0, we conclude that the series
∞∑

n=1

1√
n2 + 1

diverges.
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∞∑
n=0

(−1)nn√
n2 + 1

25.
∞∑

n=1

3n + (−2)n

5n

solution The series

∞∑
n=1

3n

5n
=

∞∑
n=1

(
3

5

)n

is a convergent geometric series, as is the series

∞∑
n=1

(−1)n 2n

5n
=

∞∑
n=1

(
−2

5

)n

.

Hence,

∞∑
n=1

3n + (−1)n2n

5n
=

∞∑
n=1

(
3

5

)n

+
∞∑

n=1

(
−2

5

)n

also converges.

∞∑
n=1

(−1)n+1

(2n + 1)!
27.

∞∑
n=1

(−1)nn2e−n3/3

solution Consider the associated positive series
∞∑

n=1

n2e−n3/3. This series can be seen to converge by the Integral

Test: ∫ ∞
1

x2e−x3/3 dx = lim
R→∞

∫ R

1
x2e−x3/3 dx = − lim

R→∞ e−x3/3∣∣R
1 = e−1/3 + lim

R→∞ e−R3/3 = e−1/3.

The integral converges, so the original series converges absolutely.

∞∑
n=1

ne−n3/329.
∞∑

n=2

(−1)n

n1/2(ln n)2

solution This is an alternating series with an = 1

n1/2(ln n)2
. Because an is a decreasing sequence which converges

to zero, the series
∞∑

n=2

(−1)n

n1/2(ln n)2
converges by the Leibniz Test. (Note that the series converges only conditionally, not

absolutely; the associated positive series is eventually greater than
1

n3/4
, which is a divergent p-series).

∞∑
n=2

1

n(ln n)1/4

31.
∞∑

n=1

ln n

n1.05

solution Choose N so that for n ≥ N we have ln n ≤ n0.01. Then

∞∑
n=N

ln n

n1.05
≤

∞∑
n=N

n0.01

n1.05
=

∞∑
n=N

1

n1.04

This is a convergent p-series, so by the Comparison Test, the original series converges as well.

∞∑
n=2

1

(ln n)2

33. Show that

S = 1

2
− 1

2
+ 1

3
− 1

3
+ 1

4
− 1

4
+ · · ·

converges by computing the partial sums. Does it converge absolutely?

solution The sequence of partial sums is

S1 = 1

2

S2 = S1 − 1

2
= 0

S3 = S2 + 1

3
= 1

3

S4 = S3 − 1

3
= 0
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and, in general,

SN =
⎧⎨
⎩

1

N
, for odd N

0, for even N

Thus, lim
N→∞ SN = 0, and the series converges to 0. The positive series is

1

2
+ 1

2
+ 1

3
+ 1

3
+ 1

4
+ 1

4
+ · · · = 2

∞∑
n=2

1

n
;

which diverges. Therefore, the original series converges conditionally, not absolutely.

The Leibniz Test cannot be applied to

1

2
− 1

3
+ 1

22
− 1

32
+ 1

23
− 1

33
+ · · ·

Why not? Show that it converges by another method.

35. Assumptions Matter Show by counterexample that the Leibniz Test does not remain true if the sequence
an tends to zero but is not assumed nonincreasing. Hint: Consider

R = 1

2
− 1

4
+ 1

3
− 1

8
+ 1

4
− 1

16
+ · · · +

(
1

n
− 1

2n

)
+ · · ·

solution Let

R = 1

2
− 1

4
+ 1

3
− 1

8
+ 1

4
− 1

16
+ · · · +

(
1

n + 1
− 1

2n+1

)
+ · · ·

This is an alternating series with

an =

⎧⎪⎪⎨
⎪⎪⎩

1

k + 1
, n = 2k − 1

1

2k+1
, n = 2k

Note that an → 0 as n → ∞, but the sequence {an} is not decreasing. We will now establish that R diverges.
For sake of contradiction, suppose that R converges. The geometric series

∞∑
n=1

1

2n+1

converges, so the sum of R and this geometric series must also converge; however,

R +
∞∑

n=1

1

2n+1
=

∞∑
n=2

1

n
,

which diverges because the harmonic series diverges. Thus, the series R must diverge.

Determine whether the following series converges conditionally:

1 − 1

3
+ 1

2
− 1

5
+ 1

3
− 1

7
+ 1

4
− 1

9
+ 1

5
− 1

11
+ · · ·

37. Prove that if
∑

an converges absolutely, then
∑

a2
n also converges. Then give an example where

∑
an is only

conditionally convergent and
∑

a2
n diverges.

solution Suppose the series
∑

an converges absolutely. Because
∑

|an| converges, we know that

lim
n→∞ |an| = 0.

Therefore, there exists a positive integer N such that |an| < 1 for all n ≥ N . It then follows that for n ≥ N ,

0 ≤ a2
n = |an|2 = |an| · |an| < |an| · 1 = |an|.

By the Comparison Test we can then conclude that
∑

a2
n also converges.

Consider the series
∞∑

n=1

(−1)n√
n

. This series converges by the Leibniz Test, but the corresponding positive series is a

divergent p-series; that is,
∞∑

n=1

(−1)n√
n

is conditionally convergent. Now,
∞∑

n=1

a2
n is the divergent harmonic series

∞∑
n=1

1

n
.

Thus,
∑

a2
n need not converge if

∑
an is only conditionally convergent.
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Further Insights and Challenges

Prove the following variant of the Leibniz Test: If {an} is a positive, decreasing sequence with lim
n→∞ an = 0, then

the series

a1 + a2 − 2a3 + a4 + a5 − 2a6 + · · ·
converges. Hint: Show that S3N is increasing and bounded by a1 + a2, and continue as in the proof of the Leibniz
Test.

39. Use Exercise 38 to show that the following series converges:

S = 1

ln 2
+ 1

ln 3
− 2

ln 4
+ 1

ln 5
+ 1

ln 6
− 2

ln 7
+ · · ·

solution The given series has the structure of the generic series from Exercise 38 with an = 1
ln(n+1)

. Because an is
a positive, decreasing sequence with lim

n→∞ an = 0, we can conclude from Exercise 38 that the given series converges.

Prove the conditional convergence of

R = 1 + 1

2
+ 1

3
− 3

4
+ 1

5
+ 1

6
+ 1

7
− 3

8
+ · · ·

41. Show that the following series diverges:

S = 1 + 1

2
+ 1

3
− 2

4
+ 1

5
+ 1

6
+ 1

7
− 2

8
+ · · ·

Hint: Use the result of Exercise 40 to write S as the sum of a convergent series and a divergent series.

solution Let

R = 1 + 1

2
+ 1

3
− 3

4
+ 1

5
+ 1

6
+ 1

7
− 3

8
+ · · ·

and

S = 1 + 1

2
+ 1

3
− 2

4
+ 1

5
+ 1

6
+ 1

7
− 2

8
+ · · ·

For sake of contradiction, suppose the series S converges. From Exercise 40, we know that the series R converges. Thus,
the series S − R must converge; however,

S − R = 1

4
+ 1

8
+ 1

12
+ · · · = 1

4

∞∑
k=1

1

k
,

which diverges because the harmonic series diverges. Thus, the series S must diverge.

Prove that

∞∑
n=1

(−1)n+1 (ln n)a

n

converges for all exponents a. Hint: Show that f (x) = (ln x)a/x is decreasing for x sufficiently large.

43. We say that {bn} is a rearrangement of {an} if {bn} has the same terms as {an} but occurring in a different order. Show

that if {bn} is a rearrangement of {an} and S =
∞∑

n=1

an converges absolutely, then T =
∞∑

n=1

bn also converges absolutely.

(This result does not hold if S is only conditionally convergent.) Hint: Prove that the partial sums
N∑

n=1

|bn| are bounded.

It can be shown further that S = T .

solution Suppose the series S =
∞∑

n=1

an converges absolutely and denote the corresponding positive series by

S+ =
∞∑

n=1

|an|.

Further, let TN =
N∑

n=1

|bn| denote the N th partial sum of the series
∞∑

n=1

|bn|. Because {bn} is a rearrangement of {an}, we

know that

0 ≤ TN ≤
∞∑

n=1

|an| = S+;

that is, the sequence {TN } is bounded. Moreover,

TN+1 =
N+1∑
n=1

|bn| = TN + |bN+1| ≥ TN ;

that is, {TN } is increasing. It follows that {TN } converges, so the series
∞∑

n=1

|bn| converges, which means the series
∞∑

n=1

bn

converges absolutely.

Assumptions Matter In 1829, Lejeune Dirichlet pointed out that the great French mathematician Augustin
Louis Cauchy made a mistake in a published paper by improperly assuming the Limit Comparison Test to be valid
for nonpositive series. Here are Dirichlet’s two series:

∞∑ (−1)n
∞∑ (−1)n

(
1 + (−1)n

)
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11.5 The Ratio and Root Tests

Preliminary Questions

1. In the Ratio Test, is ρ equal to lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ or lim
n→∞

∣∣∣∣ an

an+1

∣∣∣∣?
solution In the Ratio Test ρ is the limit lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣.
2. Is the Ratio Test conclusive for

∞∑
n=1

1

2n
? Is it conclusive for

∞∑
n=1

1

n
?

solution The general term of
∞∑

n=1

1

2n
is an = 1

2n
; thus,

∣∣∣∣an+1

an

∣∣∣∣ = 1

2n+1
· 2n

1
= 1

2
,

and

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1

2
< 1.

Consequently, the Ratio Test guarantees that the series
∞∑

n=1

1

2n
converges.

The general term of
∞∑

n=1

1

n
is an = 1

n
; thus,

∣∣∣∣an+1

an

∣∣∣∣ = 1

n + 1
· n

1
= n

n + 1
,

and

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

n

n + 1
= 1.

The Ratio Test is therefore inconclusive for the series
∞∑

n=1

1

n
.

3. Can the Ratio Test be used to show convergence if the series is only conditionally convergent?

solution No. The Ratio Test can only establish absolute convergence and divergence, not conditional convergence.

Exercises
In Exercises 1–20, apply the Ratio Test to determine convergence or divergence, or state that the Ratio Test is inconclusive.

1.
∞∑

n=1

1

5n

solution With an = 1
5n ,∣∣∣∣an+1

an

∣∣∣∣ = 1

5n+1
· 5n

1
= 1

5
and ρ = lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1

5
< 1.

Therefore, the series
∞∑

n=1

1

5n
converges by the Ratio Test.

∞∑
n=1

(−1)n−1n

5n

3.
∞∑

n=1

1

nn

solution With an = 1
nn ,

∣∣∣∣an+1

an

∣∣∣∣ = 1

(n + 1)n+1
· nn

1
= 1

n + 1

(
n

n + 1

)n

= 1

n + 1

(
1 + 1

n

)−n

,
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and

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 0 · 1

e
= 0 < 1.

Therefore, the series
∞∑

n=1

1

nn
converges by the Ratio Test.

∞∑
n=0

3n + 2

5n3 + 1

5.
∞∑

n=1

n

n2 + 1

solution With an = n
n2+1

,

∣∣∣∣an+1

an

∣∣∣∣ = n + 1

(n + 1)2 + 1
· n2 + 1

n
= n + 1

n
· n2 + 1

n2 + 2n + 2
,

and

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1 · 1 = 1.

Therefore, for the series
∞∑

n=1

n

n2 + 1
, the Ratio Test is inconclusive.

We can show that this series diverges by using the Limit Comparison Test and comparing with the divergent harmonic
series.

∞∑
n=1

2n

n

7.
∞∑

n=1

2n

n100

solution With an = 2n

n100 ,

∣∣∣∣an+1

an

∣∣∣∣ = 2n+1

(n + 1)100
· n100

2n
= 2

(
n

n + 1

)100
and ρ = lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 2 · 1100 = 2 > 1.

Therefore, the series
∞∑

n=1

2n

n100
diverges by the Ratio Test.

∞∑
n=1

n3

3n2

9.
∞∑

n=1

10n

2n2

solution With an = 10n

2n2 ,

∣∣∣∣an+1

an

∣∣∣∣ = 10n+1

2(n+1)2 · 2n2

10n
= 10 · 1

22n+1
and ρ = lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 10 · 0 = 0 < 1.

Therefore, the series
∞∑

n=1

10n

2n2 converges by the Ratio Test.

∞∑
n=1

en

n!
11.

∞∑
n=1

en

nn

solution With an = en

nn ,

∣∣∣∣an+1

an

∣∣∣∣ = en+1

(n + 1)n+1
· nn

en
= e

n + 1

(
n

n + 1

)n

= e

n + 1

(
1 + 1

n

)−n

,

and

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 0 · 1

e
= 0 < 1.

Therefore, the series
∞∑

n=1

en

nn
converges by the Ratio Test.

∞∑
n=1

n40

n!
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13.
∞∑

n=0

n!
6n

solution With an = n!
6n ,∣∣∣∣an+1

an

∣∣∣∣ = (n + 1)!
6n+1

· 6n

n! = n + 1

6
and ρ = lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣ = ∞ > 1.

Therefore, the series
∞∑

n=0

n!
6n

diverges by the Ratio Test.

∞∑
n=1

n!
n9

15.
∞∑

n=2

1

n ln n

solution With an = 1
n ln n

, ∣∣∣∣an+1

an

∣∣∣∣ = 1

(n + 1) ln(n + 1)
· n ln n

1
= n

n + 1

ln n

ln(n + 1)
,

and

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1 · lim
n→∞

ln n

ln(n + 1)
.

Now,

lim
n→∞

ln n

ln(n + 1)
= lim

x→∞
ln x

ln(x + 1)
= lim

x→∞
1/(x + 1)

1/x
= lim

x→∞
x

x + 1
= 1.

Thus, ρ = 1, and the Ratio Test is inconclusive for the series
∞∑

n=2

1

n ln n
.

Using the Integral Test, we can show that the series
∞∑

n=2

1

n ln n
diverges.

∞∑
n=1

1

(2n)!
17.

∞∑
n=1

n2

(2n + 1)!

solution With an = n2

(2n+1)! ,∣∣∣∣an+1

an

∣∣∣∣ = (n + 1)2

(2n + 3)! · (2n + 1)!
n2

=
(

n + 1

n

)2 1

(2n + 3)(2n + 2)
,

and

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 12 · 0 = 0 < 1.

Therefore, the series
∞∑

n=1

n2

(2n + 1)! converges by the Ratio Test.

∞∑
n=1

(n!)3

(3n)!
19.

∞∑
n=2

1

2n + 1

solution With an = 1

2n + 1
,

∣∣∣∣an+1

an

∣∣∣∣ = 1

2n+1 + 1
· 2n + 1

1
= 1 + 2−n

2 + 2−n

and

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1

2
< 1

Therefore, the series
∞∑

n=2

1

2n + 1
converges by the Ratio Test.

∞∑
n=2

1

ln n
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21. Show that
∞∑

n=1

nk 3−n converges for all exponents k.

solution With an = nk3−n,

∣∣∣∣an+1

an

∣∣∣∣ = (n + 1)k3−(n+1)

nk3−n
= 1

3

(
1 + 1

n

)k

,

and, for all k,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1

3
· 1 = 1

3
< 1.

Therefore, the series
∞∑

n=1

nk 3−n converges for all exponents k by the Ratio Test.

Show that
∞∑

n=1

n2xn converges if |x| < 1.
23. Show that

∞∑
n=1

2nxn converges if |x| < 1
2 .

solution With an = 2nxn,∣∣∣∣an+1

an

∣∣∣∣ = 2n+1|x|n+1

2n|x|n = 2|x| and ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 2|x|.

Therefore, ρ < 1 and the series
∞∑

n=1

2nxn converges by the Ratio Test provided |x| < 1
2 .

Show that
∞∑

n=1

rn

n! converges for all r .
25. Show that

∞∑
n=1

rn

n
converges if |r| < 1.

solution With an = rn

n ,∣∣∣∣an+1

an

∣∣∣∣ = |r|n+1

n + 1
· n

|r|n = |r| n

n + 1
and ρ = lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1 · |r| = |r|.

Therefore, by the Ratio Test, the series
∞∑

n=1

rn

n
converges provided |r| < 1.

Is there any value of k such that
∞∑

n=1

2n

nk
converges?

27. Show that
∞∑

n=1

n!
nn

converges. Hint: Use lim
n→∞

(
1 + 1

n

)n

= e.

solution With an = n!
nn , ∣∣∣∣an+1

an

∣∣∣∣ = (n + 1)!
(n + 1)n+1

· nn

n! =
(

n

n + 1

)n

=
(

1 + 1

n

)−n

,

and

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1

e
< 1.

Therefore, the series
∞∑

n=1

n!
nn

converges by the Ratio Test.

In Exercises 28–33, assume that |an+1/an| converges to ρ = 1
3 . What can you say about the convergence of the given

series?

∞∑
n=1

nan
29.

∞∑
n=1

n3an

solution Let bn = n3an. Then

ρ = lim
n→∞

∣∣∣∣bn+1

bn

∣∣∣∣ = lim
n→∞

(
n + 1

n

)3 ∣∣∣∣an+1

an

∣∣∣∣ = 13 · 1

3
= 1

3
< 1.

Therefore, the series
∞∑

n=1

n3an converges by the Ratio Test.
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∞∑
n=1

2nan
31.

∞∑
n=1

3nan

solution Let bn = 3nan. Then

ρ = lim
n→∞

∣∣∣∣bn+1

bn

∣∣∣∣ = lim
n→∞

3n+1

3n

∣∣∣∣an+1

an

∣∣∣∣ = 3 · 1

3
= 1.

Therefore, the Ratio Test is inconclusive for the series
∞∑

n=1

3nan.

∞∑
n=1

4nan
33.

∞∑
n=1

a2
n

solution Let bn = a2
n. Then

ρ = lim
n→∞

∣∣∣∣bn+1

bn

∣∣∣∣ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣2 =
(

1

3

)2
= 1

9
< 1.

Therefore, the series
∞∑

n=1

a2
n converges by the Ratio Test.

Assume that
∣∣an+1/an

∣∣ converges to ρ = 4. Does
∑∞

n=1 a−1
n converge (assume that an 
= 0 for all n)?35. Is the Ratio Test conclusive for the p-series

∞∑
n=1

1

np
?

solution With an = 1
np ,∣∣∣∣an+1

an

∣∣∣∣ = 1

(n + 1)p
· np

1
=

(
n

n + 1

)p

and ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1p = 1.

Therefore, the Ratio Test is inconclusive for the p-series
∞∑

n=1

1

np
.

In Exercises 36–41, use the Root Test to determine convergence or divergence (or state that the test is inconclusive).

∞∑
n=0

1

10n

37.
∞∑

n=1

1

nn

solution With an = 1
nn ,

n
√

an = n

√
1

nn
= 1

n
and lim

n→∞
n
√

an = 0 < 1.

Therefore, the series
∞∑

n=1

1

nn
converges by the Root Test.

∞∑
k=0

(
k

k + 10

)k39.
∞∑

k=0

(
k

3k + 1

)k

solution With ak =
(

k
3k+1

)k
,

k
√

ak = k

√(
k

3k + 1

)k

= k

3k + 1
and lim

k→∞
k
√

ak = 1

3
< 1.

Therefore, the series
∞∑

k=0

(
k

3k + 1

)k

converges by the Root Test.

∞∑
n=1

(
1 + 1

n

)−n41.
∞∑

n=4

(
1 + 1

n

)−n2

solution With ak = (
1 + 1

n

)−n2
,

n
√

an = n

√(
1 + 1

n

)−n2

=
(

1 + 1

n

)−n

and lim
n→∞

n
√

an = e−1 < 1.

Therefore, the series
∞∑

n=4

(
1 + 1

n

)−n2

converges by the Root Test.
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Prove that
∞∑

n=1

2n2

n! diverges. Hint: Use 2n2 = (2n)n and n! ≤ nn.

In Exercises 43–56, determine convergence or divergence using any method covered in the text so far.

43.
∞∑

n=1

2n + 4n

7n

solution Because the series

∞∑
n=1

2n

7n
=

∞∑
n=1

(
2

7

)n

and
∞∑

n=1

4n

7n
=

∞∑
n=1

(
4

7

)n

are both convergent geometric series, it follows that

∞∑
n=1

2n + 4n

7n
=

∞∑
n=1

(
2

7

)n

+
∞∑

n=1

(
4

7

)n

also converges.

∞∑
n=1

n3

n!
45.

∞∑
n=1

n3

5n

solution The presence of the exponential term suggests applying the Ratio Test. With an = n3

5n ,

∣∣∣∣an+1

an

∣∣∣∣ = (n + 1)3

5n+1
· 5n

n3
= 1

5

(
1 + 1

n

)3
and ρ = lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1

5
· 13 = 1

5
< 1.

Therefore, the series
∞∑

n=1

n3

5n
converges by the Ratio Test.

∞∑
n=2

1

n(ln n)3

47.
∞∑

n=2

1√
n3 − n2

solution This series is similar to a p-series; because

1√
n3 − n2

≈ 1√
n3

= 1

n3/2

for large n, we will apply the Limit Comparison Test comparing with the p-series with p = 3
2 . Now,

L = lim
n→∞

1√
n3−n2

1
n3/2

= lim
n→∞

√
n3

n3 − n2
= 1.

The p-series with p = 3
2 converges and L exists; therefore, the series

∞∑
n=2

1√
n3 − n2

also converges.

∞∑
n=1

n2 + 4n

3n4 + 9

49.
∞∑

n=1

n−0.8

solution

∞∑
n=1

n−0.8 =
∞∑

n=1

1

n0.8

so that this is a divergent p-series.

∞∑
n=1

(0.8)−nn−0.851.
∞∑

n=1

4−2n+1

solution Observe

∞∑
n=1

4−2n+1 =
∞∑

n=1

4 · (4−2)n =
∞∑

n=1

4

(
1

16

)n

is a geometric series with r = 1
16 ; therefore, this series converges.

∞∑
n=1

(−1)n−1
√

n
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53.
∞∑

n=1

sin
1

n2

solution Here, we will apply the Limit Comparison Test, comparing with the p-series with p = 2. Now,

L = lim
n→∞

sin 1
n2

1
n2

= lim
u→0

sin u

u
= 1,

where u = 1
n2 . The p-series with p = 2 converges and L exists; therefore, the series

∞∑
n=1

sin
1

n2
also converges.

∞∑
n=1

(−1)n cos
1

n

55.
∞∑

n=1

(−2)n√
n

solution Because

lim
n→∞

2n

√
n

= lim
x→∞

2x

√
x

= lim
x→∞

2x ln 2
1

2
√

x

= lim
x→∞ 2x+1√

x ln 2 = ∞ 
= 0,

the general term in the series
∞∑

n=1

(−2)n√
n

does not tend toward zero; therefore, the series diverges by the Divergence Test.

∞∑
n=1

(
n

n + 12

)nFurther Insights and Challenges

57. Proof of the Root Test Let S =
∞∑

n=0

an be a positive series, and assume that L = lim
n→∞

n
√

an exists.

(a) Show that S converges if L < 1. Hint: Choose R with L < R < 1 and show that an ≤ Rn for n sufficiently large.
Then compare with the geometric series

∑
Rn.

(b) Show that S diverges if L > 1.

solution Suppose lim
n→∞

n
√

an = L exists.

(a) If L < 1, let ε = 1 − L

2
. By the definition of a limit, there is a positive integer N such that

−ε ≤ n
√

an − L ≤ ε

for n ≥ N . From this, we conclude that

0 ≤ n
√

an ≤ L + ε

for n ≥ N . Now, let R = L + ε. Then

R = L + 1 − L

2
= L + 1

2
<

1 + 1

2
= 1,

and

0 ≤ n
√

an ≤ R or 0 ≤ an ≤ Rn

for n ≥ N . Because 0 ≤ R < 1, the series
∞∑

n=N

Rn is a convergent geometric series, so the series
∞∑

n=N

an converges by

the Comparison Test. Therefore, the series
∞∑

n=0

an also converges.

(b) If L > 1, let ε = L − 1

2
. By the definition of a limit, there is a positive integer N such that

−ε ≤ n
√

an − L ≤ ε

for n ≥ N . From this, we conclude that

L − ε ≤ n
√

an

for n ≥ N . Now, let R = L − ε. Then

R = L − L − 1

2
= L + 1

2
>

1 + 1

2
= 1,
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and

R ≤ n
√

an or Rn ≤ an

for n ≥ N . Because R > 1, the series
∞∑

n=N

Rn is a divergent geometric series, so the series
∞∑

n=N

an diverges by the

Comparison Test. Therefore, the series
∞∑

n=0

an also diverges.

Show that the Ratio Test does not apply, but verify convergence using the Comparison Test for the series

1

2
+ 1

32
+ 1

23
+ 1

34
+ 1

25 + · · ·

59. Let S =
∞∑

n=1

cnn!
nn

, where c is a constant.

(a) Prove that S converges absolutely if |c| < e and diverges if |c| > e.

(b) It is known that lim
n→∞

enn!
nn+1/2

= √
2π . Verify this numerically.

(c) Use the Limit Comparison Test to prove that S diverges for c = e.

solution

(a) With an = cnn!
nn ,

∣∣∣∣an+1

an

∣∣∣∣ = |c|n+1(n + 1)!
(n + 1)n+1

· nn

|c|nn! = |c|
(

n

n + 1

)n

= |c|
(

1 + 1

n

)−n

,

and

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = |c|e−1.

Thus, by the Ratio Test, the series
∞∑

n=1

cnn!
nn

converges when |c|e−1 < 1, or when |c| < e. The series diverges when

|c| > e.
(b) The table below lists the value of enn!

nn+1/2 for several increasing values of n. Since
√

2π = 2.506628275, the numerical
evidence verifies that

lim
n→∞

enn!
nn+1/2

= √
2π.

n 100 1000 10000 100000

enn!
nn+1/2 2.508717995 2.506837169 2.506649163 2.506630363

(c) With c = e, the series S becomes
∞∑

n=1

enn!
nn

. Using the result from part (b),

L = lim
n→∞

enn!
nn√
n

= lim
n→∞

enn!
nn+1/2

= √
2π.

Because the series
∞∑

n=1

√
n diverges by the Divergence Test and L > 0, we conclude that

∞∑
n=1

enn!
nn

diverges by the Limit

Comparison Test.

11.6 Power Series

Preliminary Questions
1. Suppose that

∑
anxn converges for x = 5. Must it also converge for x = 4? What about x = −3?

solution The power series
∑

anxn is centered at x = 0. Because the series converges for x = 5, the radius of
convergence must be at least 5 and the series converges absolutely at least for the interval |x| < 5. Both x = 4 and
x = −3 are inside this interval, so the series converges for x = 4 and for x = −3.

2. Suppose that
∑

an(x − 6)n converges for x = 10. At which of the points (a)–(d) must it also converge?

(a) x = 8 (b) x = 11 (c) x = 3 (d) x = 0



June 14, 2011 LTSV SSM Second Pass

698 C H A P T E R 11 INFINITE SERIES

solution The given power series is centered at x = 6. Because the series converges for x = 10, the radius of
convergence must be at least |10 − 6| = 4 and the series converges absolutely at least for the interval |x − 6| < 4, or
2 < x < 10.

(a) x = 8 is inside the interval 2 < x < 10, so the series converges for x = 8.

(b) x = 11 is not inside the interval 2 < x < 10, so the series may or may not converge for x = 11.

(c) x = 3 is inside the interval 2 < x < 10, so the series converges for x = 2.

(d) x = 0 is not inside the interval 2 < x < 10, so the series may or may not converge for x = 0.

3. What is the radius of convergence of F(3x) if F(x) is a power series with radius of convergence R = 12?

solution If the power series F(x) has radius of convergence R = 12, then the power series F(3x) has radius of

convergence R = 12
3 = 4.

4. The power series F(x) =
∞∑

n=1

nxn has radius of convergence R = 1. What is the power series expansion of F ′(x)

and what is its radius of convergence?

solution We obtain the power series expansion for F ′(x) by differentiating the power series expansion for F(x)

term-by-term. Thus,

F ′(x) =
∞∑

n=1

n2xn−1.

The radius of convergence for this series is R = 1, the same as the radius of convergence for the series expansion for
F(x).

Exercises

1. Use the Ratio Test to determine the radius of convergence R of
∞∑

n=0

xn

2n
. Does it converge at the endpoints x = ±R?

solution With an = xn

2n ,

∣∣∣∣an+1

an

∣∣∣∣ = |x|n+1

2n+1
· 2n

|x|n = |x|
2

and ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = |x|
2

.

By the Ratio Test, the series converges when ρ = |x|
2 < 1, or |x| < 2, and diverges when ρ = |x|

2 > 1, or |x| > 2.

The radius of convergence is therefore R = 2. For x = −2, the left endpoint, the series becomes
∑∞

n=0(−1)n, which is

divergent. For x = 2, the right endpoint, the series becomes
∑∞

n=0 1, which is also divergent. Thus the series diverges at
both endpoints.

Use the Ratio Test to show that
∞∑

n=1

xn

√
n2n

has radius of convergence R = 2. Then determine whether it converges

at the endpoints R = ±2.

3. Show that the power series (a)–(c) have the same radius of convergence. Then show that (a) diverges at both endpoints,
(b) converges at one endpoint but diverges at the other, and (c) converges at both endpoints.

(a)
∞∑

n=1

xn

3n
(b)

∞∑
n=1

xn

n3n
(c)

∞∑
n=1

xn

n23n

solution

(a) With an = xn

3n ,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣x
n+1

3n+1
· 3n

xn

∣∣∣∣∣ = lim
n→∞

∣∣∣x
3

∣∣∣ =
∣∣∣x
3

∣∣∣
Then ρ < 1 if |x| < 3, so that the radius of convergence is R = 3. For the endpoint x = 3, the series becomes

∞∑
n=1

3n

3n
=

∞∑
n=1

1,

which diverges by the Divergence Test. For the endpoint x = −3, the series becomes

∞∑
n=1

(−3)n

3n
=

∞∑
n=1

(−1)n,

which also diverges by the Divergence Test.
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(b) With an = xn

n3n ,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ xn+1

(n + 1)3n+1
· n3n

xn

∣∣∣∣∣ = lim
n→∞

∣∣∣∣x3
(

n

n + 1

)∣∣∣∣ =
∣∣∣x
3

∣∣∣ .
Then ρ < 1 when |x| < 3, so that the radius of convergence is R = 3. For the endpoint x = 3, the series becomes

∞∑
n=1

3n

n3n
=

∞∑
n=1

1

n
,

which is the divergent harmonic series. For the endpoint x = −3, the series becomes

∞∑
n=1

(−3)n

n3n
=

∞∑
n=1

(−1)n

n
,

which converges by the Leibniz Test.

(c) With an = xn

n23n ,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ xn+1

(n + 1)23n+1
· n23n

xn

∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣x3
(

n

n + 1

)2
∣∣∣∣∣ =

∣∣∣x
3

∣∣∣
Then ρ < 1 when |x| < 3, so that the radius of convergence is R = 3. For the endpoint x = 3, the series becomes

∞∑
n=1

3n

n23n
=

∞∑
n=1

1

n2
,

which is a convergent p-series. For the endpoint x = −3, the series becomes

∞∑
n=1

(−3)n

n23n
=

∞∑
n=1

(−1)n

n2
,

which converges by the Leibniz Test.

Repeat Exercise 3 for the following series:

(a)
∞∑

n=1

(x − 5)n

9n
(b)

∞∑
n=1

(x − 5)n

n9n
(c)

∞∑
n=1

(x − 5)n

n29n

5. Show that
∞∑

n=0

nnxn diverges for all x 
= 0.

solution With an = nnxn, and assuming x 
= 0,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ (n + 1)n+1xn+1

nnxn

∣∣∣∣∣ = lim
n→∞

∣∣∣∣x
(

1 + 1

n

)n

(n + 1)

∣∣∣∣ = ∞

ρ < 1 only if x = 0, so that the radius of convergence is therefore R = 0. In other words, the power series converges
only for x = 0.

For which values of x does
∞∑

n=0

n!xn converge?
7. Use the Ratio Test to show that

∞∑
n=0

x2n

3n
has radius of convergence R = √

3.

solution With an = x2n

3n
,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣x
2(n+1)

3n+1
· 3n

x2n

∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣x
2

3

∣∣∣∣∣ =
∣∣∣∣∣x

2

3

∣∣∣∣∣
Then ρ < 1 when |x2| < 3, or x = √

3, so the radius of convergence is R = √
3.

Show that
∞∑

n=0

x3n+1

64n
has radius of convergence R = 4.

In Exercises 9–34, find the interval of convergence.

9.
∞∑

n=0

nxn

solution With an = nxn,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ (n + 1)xn+1

nxn

∣∣∣∣∣ = lim
n→∞

∣∣∣∣x n + 1

n

∣∣∣∣ = |x|
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Then ρ < 1 when |x| < 1, so that the radius of convergence is R = 1, and the series converges absolutely on the interval

|x| < 1, or −1 < x < 1. For the endpoint x = 1, the series becomes
∞∑

n=0

n, which diverges by the Divergence Test.

For the endpoint x = −1, the series becomes
∞∑

n=1

(−1)nn, which also diverges by the Divergence Test. Thus, the series

∞∑
n=0

nxn converges for −1 < x < 1 and diverges elsewhere.

∞∑
n=1

2n

n
xn11.

∞∑
n=1

(−1)n
x2n+1

2nn

solution With an = (−1)n
x2n+1

2nn
,

ρ = lim
n→∞

∣∣∣∣∣ x2(n+1)+1

2n+1(n + 1)
· 2nn

x2n+1

∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣x
2

2
· n

n + 1

∣∣∣∣∣ =
∣∣∣∣∣x

2

2

∣∣∣∣∣
Then ρ < 1 when |x| <

√
2, so the radius of convergence is R = √

2, and the series converges absolutely on the interval

−√
2 < x <

√
2. For the endpoint x = −√

2, the series becomes
∞∑

n=1

(−1)n
−√

2

n
=

∞∑
n=1

(−1)n+1
√

2

n
, which converges

by the Leibniz test. For the endpoint x = √
2, the series becomes

∞∑
n=1

(−1)n

√
2

n
which also converges by the Leibniz test.

Thus the series
∞∑

n=1

(−1)n
x2n+1

2nn
converges for −√

2 ≤ x ≤ √
2 and diverges elsewhere.

∞∑
n=0

(−1)n
n

4n
x2n13.

∞∑
n=4

xn

n5

solution With an = xn

n5 ,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ xn+1

(n + 1)5 · n5

xn

∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣x
(

n

n + 1

)5
∣∣∣∣∣ = |x|

Then ρ < 1 when |x| < 1, so the radius of convergence is R = 1, and the series converges absolutely on the interval

|x| < 1, or −1 < x < 1. For the endpoint x = 1, the series becomes
∞∑

n=1

1

n5 , which is a convergent p-series. For the

endpoint x = −1, the series becomes
∞∑

n=1

(−1)n

n5 , which converges by the Leibniz Test. Thus, the series
∞∑

n=4

xn

n5 converges

for −1 ≤ x ≤ 1 and diverges elsewhere.

∞∑
n=8

n7xn15.
∞∑

n=0

xn

(n!)2

solution With an = xn

(n!)2 ,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ xn+1

((n + 1)!)2
· (n!)2

xn

∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣x
(

1

n + 1

)2
∣∣∣∣∣ = 0

ρ < 1 for all x, so the radius of convergence is R = ∞, and the series converges absolutely for all x.

∞∑
n=0

8n

n! xn17.
∞∑

n=0

(2n)!
(n!)3

xn

solution With an = (2n)!xn

(n!)3 , and assuming x 
= 0,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ (2(n + 1))!xn+1

((n + 1)!)3
· (n!)3

(2n)!xn

∣∣∣∣∣ = lim
n→∞

∣∣∣∣x (2n + 2)(2n + 1)

(n + 1)3

∣∣∣∣
= lim

n→∞

∣∣∣∣∣x 4n2 + 6n + 2

n3 + 3n2 + 3n + 1

∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣x 4n−1 + 6n−1 + 2n−3

1 + 3n−1 + 3n−2 + n−3

∣∣∣∣∣ = 0

Then ρ < 1 for all x, so the radius of convergence is R = ∞, and the series converges absolutely for all x.

∞∑
n=0

4n

(2n + 1)!x
2n−1
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19.
∞∑

n=0

(−1)nxn√
n2 + 1

solution With an = (−1)nxn√
n2+1

,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ (−1)n+1xn+1√
n2 + 2n + 2

·
√

n2 + 1

(−1)nxn

∣∣∣∣∣
= lim

n→∞

∣∣∣∣∣x
√

n2 + 1√
n2 + 2n + 2

∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣∣x
√

n2 + 1

n2 + 2n + 2

∣∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣∣x
√

1 + 1/n2

1 + 2/n + 2/n2

∣∣∣∣∣∣
= |x|

Then ρ < 1 when |x| < 1, so the radius of convergence is R = 1, and the series converges absolutely on the interval

−1 < x < 1. For the endpoint x = 1, the series becomes
∞∑

n=1

(−1)n√
n2 + 1

, which converges by the Leibniz Test. For the

endpoint x = −1, the series becomes
∞∑

n=1

1√
n2 + 1

, which diverges by the Limit Comparison Test comparing with the

divergent harmonic series. Thus, the series
∞∑

n=0

(−1)nxn√
n2 + 1

converges for −1 < x ≤ 1 and diverges elsewhere.

∞∑
n=0

xn

n4 + 2

21.
∞∑

n=15

x2n+1

3n + 1

solution With an = x2n+1

3n + 1
,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ x2n+3

3n + 4
· 3n + 1

x2n+1

∣∣∣∣∣ = lim
n→∞

∣∣∣∣x2 3n + 1

3n + 4

∣∣∣∣ = |x2|

Then ρ < 1 when |x2| < 1, so the radius of convergence is R = 1, and the series converges absolutely for −1 < x < 1.

For the endpoint x = 1, the series becomes
∞∑

n=15

1

3n + 1
, which diverges by the Limit Comparison Test comparing

with the divergent harmonic series. For the endpoint x = −1, the series becomes
∞∑

n=15

−1

3n + 1
, which also diverges by

the Limit Comparison Test comparing with the divergent harmonic series. Thus, the series
∞∑

n=15

x2n+1

3n + 1
converges for

−1 < x < 1 and diverges elsewhere.

∞∑
n=1

xn

n − 4 ln n

23.
∞∑

n=2

xn

ln n

solution With an = xn

ln n
,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ xn+1

ln(n + 1)
· ln n

xn

∣∣∣∣∣ = lim
n→∞

∣∣∣∣x ln(n + 1)

ln n

∣∣∣∣ = lim
n→∞

∣∣∣∣x 1/(n + 1)

1/n

∣∣∣∣ = lim
n→∞

∣∣∣∣x n

n + 1

∣∣∣∣ = |x|

using L’Hôpital’s rule. Then ρ < 1 when |x| < 1, so the radius of convergence is 1, and the series converges absolutely

on the interval |x| < 1, or −1 < x < 1. For the endpoint x = 1, the series becomes
∞∑

n=2

1

ln n
. Because 1

ln n
> 1

n and

∞∑
n=2

1

n
is the divergent harmonic series, the endpoint series diverges by the Comparison Test. For the endpoint x = −1,

the series becomes
∞∑

n=2

(−1)n

ln n
, which converges by the Leibniz Test. Thus, the series

∞∑
n=2

xn

ln n
converges for −1 ≤ x < 1

and diverges elsewhere.

∞∑
n=2

x3n+2

ln n
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25.
∞∑

n=1

n(x − 3)n

solution With an = n(x − 3)n,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ (n + 1)(x − 3)n+1

n(x − 3)n

∣∣∣∣∣ = lim
n→∞

∣∣∣∣(x − 3) · n + 1

n

∣∣∣∣ = |x − 3|

Then ρ < 1 when |x − 3| < 1, so the radius of convergence is 1, and the series converges absolutely on the interval

|x − 3| < 1, or 2 < x < 4. For the endpoint x = 4, the series becomes
∞∑

n=1

n, which diverges by the Divergence Test.

For the endpoint x = 2, the series becomes
∞∑

n=1

(−1)nn, which also diverges by the Divergence Test. Thus, the series

∞∑
n=1

n(x − 3)n converges for 2 < x < 4 and diverges elsewhere.

∞∑
n=1

(−5)n(x − 3)n

n2

27.
∞∑

n=1

(−1)nn5(x − 7)n

solution With an = (−1)nn5(x − 7)n,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ (−1)n+1(n + 1)5(x − 7)n+1

(−1)nn5(x − 7)n

∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣(x − 7) · (n + 1)5

n5

∣∣∣∣∣
= lim

n→∞

∣∣∣∣∣(x − 7) · n5 + . . .

n5

∣∣∣∣∣ = |x − 7|

Then ρ < 1 when |x − 7| < 1, so the radius of convergence is 1, and the series converges absolutely on the interval

|x − 7| < 1, or 6 < x < 8. For the endpoint x = 6, the series becomes
∞∑

n=1

(−1)2nn5 =
∞∑

n=1

n5, which diverges by the

Divergence Test. For the endpoint x = 8, the series becomes
∞∑

n=1

(−1)nn5, which also diverges by the Divergence Test.

Thus, the series
∞∑

n=1

(−1)nn5(x − 7)n converges for 6 < x < 8 and diverges elsewhere.

∞∑
n=0

27n(x − 1)3n+229.
∞∑

n=1

2n

3n
(x + 3)n

solution With an = 2n(x+3)n

3n
,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣2n+1(x + 3)n+1

3(n + 1)
· 3n

2n(x + 3)n

∣∣∣∣∣ = lim
n→∞

∣∣∣∣2(x + 3) · 3n

3n + 3

∣∣∣∣
= lim

n→∞

∣∣∣∣2(x + 3) · 1

1 + 1/n

∣∣∣∣ = |2(x + 3)|

Then ρ < 1 when |2(x + 3)| < 1, so when |x + 3| < 1
2 . Thus the radius of convergence is 1

2 , and the series converges

absolutely on the interval |x + 3| < 1
2 , or − 7

2 < x < − 5
2 . For the endpoint x = − 5

2 , the series becomes
∞∑

n=1

1

3n
,

which diverges because it is a multiple of the divergent harmonic series. For the endpoint x = − 7
2 , the series becomes

∞∑
n=1

(−1)n

3n
, which converges by the Leibniz Test. Thus, the series

∞∑
n=1

2n

3n
(x + 3)n converges for − 7

2 ≤ x < − 5
2 and

diverges elsewhere.

∞∑
n=0

(x − 4)n

n!
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31.
∞∑

n=0

(−5)n

n! (x + 10)n

solution With an = (−5)n

n! (x + 10)n,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ (−5)n+1(x + 10)n+1

(n + 1)! · n!
(−5)n(x + 10)n

∣∣∣∣∣ = lim
n→∞

∣∣∣∣5(x + 10)
1

n

∣∣∣∣ = 0

Thus ρ < 1 for all x, so the radius of convergence is infinite, and
∞∑

n=0

(−5)n

n! (x + 10)n converges for all x.

∞∑
n=10

n! (x + 5)n
33.

∞∑
n=12

en(x − 2)n

solution With an = en(x − 2)n,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣e
n+1(x − 2)n+1

en(x − 2)n

∣∣∣∣∣ = lim
n→∞ |e(x − 2)| = |e(x − 2)|

Thus ρ < 1 when |e(x − 2)| < 1, so when |x − 2| < e−1. Thus the radius of convergence is e−1, and the series converges
absolutely on the interval |x − 2| < e−1, or 2 − e−1 < x < 2 + e−1. For the endpoint x = 2 + e−1, the series becomes
∞∑

n=1

1, which diverges by the Divergence Test. For the endpoint x = 2 − e−1, the series becomes
∞∑

n=1

(−1)n, which also

diverges by the Divergence Test. Thus, the series
∞∑

n=12

en(x − 2)n converges for 2 − e−1 < x < 2 + e−1 and diverges

elsewhere.

∞∑
n=2

(x + 4)n

(n ln n)2

In Exercises 35–40, use Eq. (2) to expand the function in a power series with center c = 0 and determine the interval of
convergence.

35. f (x) = 1

1 − 3x

solution Substituting 3x for x in Eq. (2), we obtain

1

1 − 3x
=

∞∑
n=0

(3x)n =
∞∑

n=0

3nxn.

This series is valid for |3x| < 1, or |x| < 1
3 .

f (x) = 1

1 + 3x

37. f (x) = 1

3 − x

solution First write

1

3 − x
= 1

3
· 1

1 − x
3

.

Substituting x
3 for x in Eq. (2), we obtain

1

1 − x
3

=
∞∑

n=0

(x

3

)n =
∞∑

n=0

xn

3n
;

Thus,

1

3 − x
= 1

3

∞∑
n=0

xn

3n
=

∞∑
n=0

xn

3n+1
.

This series is valid for |x/3| < 1, or |x| < 3.

f (x) = 1

4 + 3x

39. f (x) = 1

1 + x2

solution Substituting −x2 for x in Eq. (2), we obtain

1

1 + x2
=

∞∑
n=0

(−x2)n =
∞∑

n=0

(−1)nx2n

This series is valid for |x| < 1.
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f (x) = 1

16 + 2x3

41. Use the equalities

1

1 − x
= 1

−3 − (x − 4)
= − 1

3

1 + (
x−4

3

)
to show that for |x − 4| < 3,

1

1 − x
=

∞∑
n=0

(−1)n+1 (x − 4)n

3n+1

solution Substituting − x−4
3 for x in Eq. (2), we obtain

1

1 +
(

x−4
3

) =
∞∑

n=0

(
−x − 4

3

)n

=
∞∑

n=0

(−1)n
(x − 4)n

3n
.

Thus,

1

1 − x
= −1

3

∞∑
n=0

(−1)n
(x − 4)n

3n
=

∞∑
n=0

(−1)n+1 (x − 4)n

3n+1
.

This series is valid for | − x−4
3 | < 1, or |x − 4| < 3.

Use the method of Exercise 41 to expand 1/(1 − x) in power series with centers c = 2 and c = −2. Determine
the interval of convergence.

43. Use the method of Exercise 41 to expand 1/(4 − x) in a power series with center c = 5. Determine the interval of
convergence.

solution First write

1

4 − x
= 1

−1 − (x − 5)
= − 1

1 + (x − 5)
.

Substituting −(x − 5) for x in Eq. (2), we obtain

1

1 + (x − 5)
=

∞∑
n=0

(−(x − 5))n =
∞∑

n=0

(−1)n(x − 5)n.

Thus,

1

4 − x
= −

∞∑
n=0

(−1)n(x − 5)n =
∞∑

n=0

(−1)n+1(x − 5)n.

This series is valid for | − (x − 5)| < 1, or |x − 5| < 1.

Find a power series that converges only for x in [2, 6).
45. Apply integration to the expansion

1

1 + x
=

∞∑
n=0

(−1)nxn = 1 − x + x2 − x3 + · · ·

to prove that for −1 < x < 1,

ln(1 + x) =
∞∑

n=1

(−1)n−1xn

n
= x − x2

2
+ x3

3
− x4

4
+ · · ·

solution To obtain the first expansion, substitute −x for x in Eq. (2):

1

1 + x
=

∞∑
n=0

(−x)n =
∞∑

n=0

(−1)nxn.

This expansion is valid for | − x| < 1, or −1 < x < 1.
Upon integrating both sides of the above equation, we find

ln(1 + x) =
∫

dx

1 + x
=

∫ ⎛
⎝ ∞∑

n=0

(−1)nxn

⎞
⎠ dx.
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Integrating the series term-by-term then yields

ln(1 + x) = C +
∞∑

n=0

(−1)n
xn+1

n + 1
.

To determine the constant C, set x = 0. Then 0 = ln(1 + 0) = C. Finally,

ln(1 + x) =
∞∑

n=0

(−1)n
xn+1

n + 1
=

∞∑
n=1

(−1)n−1 xn

n
.

Use the result of Exercise 45 to prove that

ln
3

2
= 1

2
− 1

2 · 22
+ 1

3 · 23
− 1

4 · 24
+ · · ·

Use your knowledge of alternating series to find an N such that the partial sum SN approximates ln 3
2 to within an

error of at most 10−3. Confirm using a calculator to compute both SN and ln 3
2 .

47. Let F(x) = (x + 1) ln(1 + x) − x.

(a) Apply integration to the result of Exercise 45 to prove that for −1 < x < 1,

F(x) =
∞∑

n=1

(−1)n+1 xn+1

n(n + 1)

(b) Evaluate at x = 1
2 to prove

3

2
ln

3

2
− 1

2
= 1

1 · 2 · 22
− 1

2 · 3 · 23
+ 1

3 · 4 · 24
− 1

4 · 5 · 25 + · · ·

(c) Use a calculator to verify that the partial sum S4 approximates the left-hand side with an error no greater than the
term a5 of the series.

solution
(a) Note that ∫

ln(x + 1) dx = (x + 1) ln(x + 1) − x + C

Then integrating both sides of the result of Exercise 45 gives

(x + 1) ln(x + 1) − x =
∫

ln(x + 1) dx =
∫ ∞∑

n=1

(−1)n−1xn

n
dx

For −1 < x < 1, which is the interval of convergence of the series in Exercise 45, therefore, we can integrate term by
term to get

(x + 1) ln(x + 1) − x =
∞∑

n=1

(−1)n−1

n

∫
xn dx =

∞∑
n=1

(−1)n−1

n
· xn+1

n + 1
+ C =

∞∑
n=1

(−1)n+1 xn+1

n(n + 1)
+ C

(noting that (−1)n−1 = (−1)n+1). To determine C, evaluate both sides at x = 0 to get

0 = ln 1 − 0 = 0 + C

so that C = 0 and we get finally

(x + 1) ln(x + 1) − x =
∞∑

n=1

(−1)n+1 xn+1

n(n + 1)

(b) Evaluating the result of part(a) at x = 1
2 gives

3

2
ln

3

2
− 1

2
=

∞∑
n=1

(−1)n+1 1

n(n + 1)2n+1

= 1

1 · 2 · 22
− 1

2 · 3 · 23
+ 1

3 · 4 · 24
− 1

4 · 5 · 25 + . . .

(c)

S4 = 1

1 · 2 · 22
− 1

2 · 3 · 23
+ 1

3 · 4 · 24
− 1

4 · 5 · 25 = 0.1078125

a5 = 1

5 · 6 · 26
≈ 0.0005208

3

2
ln

3

2
− 1

2
≈ 0.10819766
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and ∣∣∣∣S4 − 3

2
ln

3

2
− 1

2

∣∣∣∣ ≈ 0.0003852 < a5

Prove that for |x| < 1,

∫
dx

x4 + 1
= x − x5

5
+ x9

9
− · · ·

Use the first two terms to approximate
∫ 1/2

0 dx/(x4 + 1) numerically. Use the fact that you have an alternating series
to show that the error in this approximation is at most 0.00022.

49. Use the result of Example 7 to show that

F(x) = x2

1 · 2
− x4

3 · 4
+ x6

5 · 6
− x8

7 · 8
+ · · ·

is an antiderivative of f (x) = tan−1 x satisfying F(0) = 0. What is the radius of convergence of this power series?

solution For −1 < x < 1, which is the interval of convergence for the power series for arctangent, we can integrate
term-by-term, so integrate that power series to get

F(x) =
∫

tan−1 x dx =
∞∑

n=0

∫
(−1)nx2n+1

2n + 1
dx =

∞∑
n=0

(−1)n
x2n+2

(2n + 1)(2n + 2)

= x2

1 · 2
− x4

3 · 4
+ x6

5 · 6
− x8

7 · 8
+ · · · + C

If we assume F(0) = 0, then we have C = 0. The radius of convergence of this power series is the same as that of the
original power series, which is 1.

Verify that function F(x) = x tan−1 x − 1
2 log(x2 + 1) is an antiderivative of f (x) = tan−1 x satisfying

F(0) = 0. Then use the result of Exercise 49 with x = 1√
3

to show that

π

6
√

3
− 1

2
ln

4

3
= 1

1 · 2(3)
− 1

3 · 4(32)
+ 1

5 · 6(33)
− 1

7 · 8(34)
+ · · ·

Use a calculator to compare the value of the left-hand side with the partial sum S4 of the series on the right.

51. Evaluate
∞∑

n=1

n

2n
. Hint: Use differentiation to show that

(1 − x)−2 =
∞∑

n=1

nxn−1 (for |x| < 1)

solution Differentiate both sides of Eq. (2) to obtain

1

(1 − x)2
=

∞∑
n=1

nxn−1.

Setting x = 1
2 then yields

∞∑
n=1

n

2n−1
= 1(

1 − 1
2

)2
= 4.

Divide this equation by 2 to obtain

∞∑
n=1

n

2n
= 2.

Use the power series for (1 + x2)−1 and differentiation to prove that for |x| < 1,

2x

(x2 + 1)2
=

∞∑
n=1

(−1)n−1(2n)x2n−1

53. Show that the following series converges absolutely for |x| < 1 and compute its sum:

F(x) = 1 − x − x2 + x3 − x4 − x5 + x6 − x7 − x8 + · · ·
Hint: Write F(x) as a sum of three geometric series with common ratio x3.

solution Because the coefficients in the power series are all ±1, we find

r = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1.

The radius of convergence is therefore R = r−1 = 1, and the series converges absolutely for |x| < 1.
By Exercise 43 of Section 11.4, any rearrangement of the terms of an absolutely convergent series yields another

absolutely convergent series with the same sum as the original series. Following the hint, we now rearrange the terms of
F(x) as the sum of three geometric series:

F(x) =
(

1 + x3 + x6 + · · ·
)

−
(
x + x4 + x7 + · · ·

)
−

(
x2 + x5 + x8 + · · ·

)

=
∞∑

n=0

(x3)n −
∞∑

n=0

x(x3)n −
∞∑

n=0

x2(x3)n = 1

1 − x3
− x

1 − x3
− x2

1 − x3
= 1 − x − x2

1 − x3
.

Show that for |x| < 1,

1 + 2x

1 + x + x2
= 1 + x − 2x2 + x3 + x4 − 2x5 + x6 + x7 − 2x8 + · · ·
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55. Find all values of x such that
∞∑

n=1

xn2

n! converges.

solution With an = xn2

n! ,

∣∣∣∣an+1

an

∣∣∣∣ = |x|(n+1)2

(n + 1)! · n!
|x|n2 = |x|2n+1

n + 1
.

if |x| ≤ 1, then

lim
n→∞

|x|2n+1

n + 1
= 0,

and the series converges absolutely. On the other hand, if |x| > 1, then

lim
n→∞

|x|2n+1

n + 1
= ∞,

and the series diverges. Thus,
∞∑

n=1

xn2

n! converges for −1 ≤ x ≤ 1 and diverges elsewhere.

Find all values of x such that the following series converges:

F(x) = 1 + 3x + x2 + 27x3 + x4 + 243x5 + · · ·
57. Find a power series P(x) =

∞∑
n=0

anxn satisfying the differential equation y′ = −y with initial condition y(0) = 1.

Then use Theorem 1 of Section 5.8 to conclude that P(x) = e−x .

solution Let P(x) =
∞∑

n=0

anxn and note that P(0) = a0; thus, to satisfy the initial condition P(0) = 1, we must take

a0 = 1. Now,

P ′(x) =
∞∑

n=1

nanxn−1,

so

P ′(x) + P(x) =
∞∑

n=1

nanxn−1 +
∞∑

n=0

anxn =
∞∑

n=0

[
(n + 1)an+1 + an

]
xn.

In order for this series to be equal to zero, the coefficient of xn must be equal to zero for each n; thus

(n + 1)an+1 + an = 0 or an+1 = − an

n + 1
.

Starting from a0 = 1, we then calculate

a1 = −a0

1
= −1;

a2 = −a1

2
= 1

2
;

a3 = −a2

3
= −1

6
= − 1

3! ;

and, in general,

an = (−1)n
1

n! .

Hence,

P(x) =
∞∑

n=0

(−1)n
xn

n! .

The solution to the initial value problem y′ = −y, y(0) = 1 is y = e−x . Because this solution is unique, it follows that

P(x) =
∞∑

n=0

(−1)n
xn

n! = e−x .

Let C(x) = 1 − x2

2! + x4

4! − x6

6! + · · · .

(a) Show that C(x) has an infinite radius of convergence.

(b) Prove that C(x) and f (x) = cos x are both solutions of y′′ = −y with initial conditions y(0) = 1, y′(0) = 0.
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59. Use the power series for y = ex to show that

1

e
= 1

2! − 1

3! + 1

4! − · · ·

Use your knowledge of alternating series to find an N such that the partial sum SN approximates e−1 to within an error
of at most 10−3. Confirm this using a calculator to compute both SN and e−1.

solution Recall that the series for ex is

∞∑
n=0

xn

n! = 1 + x + x2

2! + x3

3! + x4

4! + · · · .

Setting x = −1 yields

e−1 = 1 − 1 + 1

2! − 1

3! + 1

4! − + · · · = 1

2! − 1

3! + 1

4! − + · · · .

This is an alternating series with an = 1
(n+1)! . The error in approximating e−1 with the partial sum SN is therefore

bounded by

|SN − e−1| ≤ aN+1 = 1

(N + 2)! .

To make the error at most 10−3, we must choose N such that

1

(N + 2)! ≤ 10−3 or (N + 2)! ≥ 1000.

For N = 4, (N + 2)! = 6! = 720 < 1000, but for N = 5, (N + 2)! = 7! = 5040; hence, N = 5 is the smallest value
that satisfies the error bound. The corresponding approximation is

S5 = 1

2! − 1

3! + 1

4! − 1

5! + 1

6! = 0.368055555

Now, e−1 = 0.367879441, so

|S5 − e−1| = 1.761 × 10−4 < 10−3.

Let P(x) =
∑
n=0

anxn be a power series solution to y′ = 2xy with initial condition y(0) = 1.

(a) Show that the odd coefficients a2k+1 are all zero.

(b) Prove that a2k = a2k−2/k and use this result to determine the coefficients a2k .

61. Find a power series P(x) satisfying the differential equation

y′′ − xy′ + y = 0 9

with initial condition y(0) = 1, y′(0) = 0. What is the radius of convergence of the power series?

solution Let P(x) =
∞∑

n=0

anxn. Then

P ′(x) =
∞∑

n=1

nanxn−1 and P ′′(x) =
∞∑

n=2

n(n − 1)anxn−2.

Note that P(0) = a0 and P ′(0) = a1; in order to satisfy the initial conditions P(0) = 1, P ′(0) = 0, we must have a0 = 1
and a1 = 0. Now,

P ′′(x) − xP ′(x) + P(x) =
∞∑

n=2

n(n − 1)anxn−2 −
∞∑

n=1

nanxn +
∞∑

n=0

anxn

=
∞∑

n=0

(n + 2)(n + 1)an+2xn −
∞∑

n=1

nanxn +
∞∑

n=0

anxn

= 2a2 + a0 +
∞∑

n=1

[
(n + 2)(n + 1)an+2 − nan + an

]
xn.

In order for this series to be equal to zero, the coefficient of xn must be equal to zero for each n; thus, 2a2 + a0 = 0 and
(n + 2)(n + 1)an+2 − (n − 1)an = 0, or

a2 = −1

2
a0 and an+2 = n − 1

(n + 2)(n + 1)
an.
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Starting from a1 = 0, we calculate

a3 = 1 − 1

(3)(2)
a1 = 0;

a5 = 2

(5)(4)
a3 = 0;

a7 = 4

(7)(6)
a5 = 0;

and, in general, all of the odd coefficients are zero. As for the even coefficients, we have a0 = 1, a2 = − 1
2 ,

a4 = 1

(4)(3)
a2 = − 1

4! ;

a6 = 3

(6)(5)
a4 = − 3

6! ;

a8 = 5

(8)(7)
a6 = −15

8!
and so on. Thus,

P(x) = 1 − 1

2
x2 − 1

4!x
4 − 3

6!x
6 − 15

8! x8 − · · ·

To determine the radius of convergence, treat this as a series in the variable x2, and observe that

r = lim
k→∞

∣∣∣∣a2k+2

a2k

∣∣∣∣ = lim
k→∞

2k − 1

(2k + 2)(2k + 1)
= 0.

Thus, the radius of convergence is R = r−1 = ∞.

Find a power series satisfying Eq. (9) with initial condition y(0) = 0, y′(0) = 1.
63. Prove that

J2(x) =
∞∑

k=0

(−1)k

22k+2 k! (k + 3)!x
2k+2

is a solution of the Bessel differential equation of order 2:

x2y′′ + xy′ + (x2 − 4)y = 0

solution Let J2(x) =
∞∑

k=0

(−1)k

22k+2 k! (k + 2)!x
2k+2. Then

J ′
2(x) =

∞∑
k=0

(−1)k(k + 1)

22k+1 k! (k + 2)!x
2k+1

J ′′
2 (x) =

∞∑
k=0

(−1)k(k + 1)(2k + 1)

22k+1 k! (k + 2)! x2k

and

x2J ′′
2 (x) + xJ ′

2(x) + (x2 − 4)J2(x) =
∞∑

k=0

(−1)k(k + 1)(2k + 1)

22k+1 k! (k + 2)! x2k+2 +
∞∑

k=0

(−1)k(k + 1)

22k+1 k! (k + 2)!x
2k+2

−
∞∑

k=0

(−1)k

22k+2 k! (k + 2)!x
2k+4 −

∞∑
k=0

(−1)k

22k k! (k + 2)!x
2k+2

=
∞∑

k=0

(−1)kk(k + 2)

22kk!(k + 2)! x2k+2 +
∞∑

k=1

(−1)k−1

22k (k − 1)! (k + 1)!x
2k+2

=
∞∑

k=1

(−1)k

22k(k − 1)!(k + 1)!x
2k+2 −

∞∑
k=1

(−1)k

22k(k − 1)!(k + 1)!x
2k+2 = 0.

Why is it impossible to expand f (x) = |x| as a power series that converges in an interval around x = 0?
Explain using Theorem 2.
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Further Insights and Challenges

65. Suppose that the coefficients of F(x) =
∞∑

n=0

anxn are periodic; that is, for some whole number M > 0, we have

aM+n = an. Prove that F(x) converges absolutely for |x| < 1 and that

F(x) = a0 + a1x + · · · + aM−1xM−1

1 − xM

Hint: Use the hint for Exercise 53.

solution Suppose the coefficients of F(x) are periodic, with aM+n = an for some whole number M and all n. The
F(x) can be written as the sum of M geometric series:

F(x) = a0

(
1 + xM + x2M + · · ·

)
+ a1

(
x + xM+1 + x2M+1 + · · ·

)
+

= a2

(
x2 + xM+2 + x2M+2 + · · ·

)
+ · · · + aM−1

(
xM−1 + x2M−1 + x3M−1 + · · ·

)

= a0

1 − xM
+ a1x

1 − xM
+ a2x2

1 − xM
+ · · · + aM−1xM−1

1 − xM
= a0 + a1x + a2x2 + · · · + aM−1xM−1

1 − xM
.

As each geometric series converges absolutely for |x| < 1, it follows that F(x) also converges absolutely for |x| < 1.

Continuity of Power Series Let F(x) =
∞∑

n=0

anxn be a power series with radius of convergence R > 0.

(a) Prove the inequality

|xn − yn| ≤ n|x − y|(|x|n−1 + |y|n−1)

Hint: xn − yn = (x − y)(xn−1 + xn−2y + · · · + yn−1).

(b) Choose R1 with 0 < R1 < R. Show that the infinite series M =
∞∑

n=0

2n|an|Rn
1 converges. Hint: Show that

n|an|Rn
1 < |an|xn for all n sufficiently large if R1 < x < R.

(c) Use Eq. (10) to show that if |x| < R1 and |y| < R1, then |F(x) − F(y)| ≤ M|x − y|.
(d) Prove that if |x| < R, then F(x) is continuous at x. Hint: Choose R1 such that |x| < R1 < R. Show that if
ε > 0 is given, then |F(x) − F(y)| ≤ ε for all y such that |x − y| < δ, where δ is any positive number that is less
than ε/M and R1 − |x| (see Figure 6).

11.7 Taylor Series

Preliminary Questions
1. Determine f (0) and f ′′′(0) for a function f (x) with Maclaurin series

T (x) = 3 + 2x + 12x2 + 5x3 + · · ·
solution The Maclaurin series for a function f has the form

f (0) + f ′ (0)

1! x + f ′′ (0)

2! x2 + f ′′′ (0)

3! x3 + · · ·

Matching this general expression with the given series, we find f (0) = 3 and
f ′′′(0)

3! = 5. From this latter equation, it

follows that f ′′′(0) = 30.

2. Determine f (−2) and f (4)(−2) for a function with Taylor series

T (x) = 3(x + 2) + (x + 2)2 − 4(x + 2)3 + 2(x + 2)4 + · · ·
solution The Taylor series for a function f centered at x = −2 has the form

f (−2) + f ′ (−2)

1! (x + 2) + f ′′ (−2)

2! (x + 2)2 + f ′′′ (−2)

3! (x + 2)3 + f (4)(−2)

4! (x + 2)4 + · · ·

Matching this general expression with the given series, we find f (−2) = 0 and
f (4)(−2)

4! = 2. From this latter equation,

it follows that f (4)(−2) = 48.

3. What is the easiest way to find the Maclaurin series for the function f (x) = sin(x2)?

solution The easiest way to find the Maclaurin series for sin
(
x2

)
is to substitute x2 for x in the Maclaurin series for

sin x.

4. Find the Taylor series for f (x) centered at c = 3 if f (3) = 4 and f ′(x) has a Taylor expansion

f ′(x) =
∞∑

n=1

(x − 3)n

n

solution Integrating the series for f ′(x) term-by-term gives

f (x) = C +
∞∑

n=1

(x − 3)n+1

n(n + 1)
.
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Substituting x = 3 then yields

f (3) = C = 4;
so

f (x) = 4 +
∞∑

n=1

(x − 3)n+1

n(n + 1)
.

5. Let T (x) be the Maclaurin series of f (x). Which of the following guarantees that f (2) = T (2)?

(a) T (x) converges for x = 2.
(b) The remainder Rk(2) approaches a limit as k → ∞.
(c) The remainder Rk(2) approaches zero as k → ∞.

solution The correct response is (c): f (2) = T (2) if and only if the remainder Rk(2) approaches zero as k → ∞.

Exercises
1. Write out the first four terms of the Maclaurin series of f (x) if

f (0) = 2, f ′(0) = 3, f ′′(0) = 4, f ′′′(0) = 12

solution The first four terms of the Maclaurin series of f (x) are

f (0) + f ′(0)x + f ′′(0)

2! x2 + f ′′′(0)

3! x3 = 2 + 3x + 4

2
x2 + 12

6
x3 = 2 + 3x + 2x2 + 2x3.

Write out the first four terms of the Taylor series of f (x) centered at c = 3 if

f (3) = 1, f ′(3) = 2, f ′′(3) = 12, f ′′′(3) = 3

In Exercises 3–18, find the Maclaurin series and find the interval on which the expansion is valid.

3. f (x) = 1

1 − 2x

solution Substituting 2x for x in the Maclaurin series for 1
1−x

gives

1

1 − 2x
=

∞∑
n=0

(2x)n =
∞∑

n=0

2nxn.

This series is valid for |2x| < 1, or |x| < 1
2 .

f (x) = x

1 − x4

5. f (x) = cos 3x

solution Substituting 3x for x in the Maclaurin series for cos x gives

cos 3x =
∞∑

n=0

(−1)n
(3x)2n

(2n)! =
∞∑

n=0

(−1)n
9nx2n

(2n)! .

This series is valid for all x.

f (x) = sin(2x)
7. f (x) = sin(x2)

solution Substituting x2 for x in the Maclaurin series for sin x gives

sin x2 =
∞∑

n=0

(−1)n
(x2)2n+1

(2n + 1)! =
∞∑

n=0

(−1)n
x4n+2

(2n + 1)! .

This series is valid for all x.

f (x) = e4x
9. f (x) = ln(1 − x2)

solution Substituting −x2 for x in the Maclaurin series for ln(1 + x) gives

ln(1 − x2) =
∞∑

n=1

(−1)n−1(−x2)n

n
=

∞∑
n=1

(−1)2n−1x2n

n
= −

∞∑
n=1

x2n

n
.

This series is valid for |x| < 1.

f (x) = (1 − x)−1/211. f (x) = tan−1(x2)

solution Substituting x2 for x in the Maclaurin series for tan−1 x gives

tan−1(x2) =
∞∑

n=0

(−1)n
(x2)2n+1

2n + 1
=

∞∑
n=0

(−1)n
x4n+2

2n + 1
.

This series is valid for |x| ≤ 1.
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f (x) = x2ex213. f (x) = ex−2

solution ex−2 = e−2ex ; thus,

ex−2 = e−2
∞∑

n=0

xn

n! =
∞∑

n=0

xn

e2n! .

This series is valid for all x.

f (x) = 1 − cos x

x

15. f (x) = ln(1 − 5x)

solution Substituting −5x for x in the Maclaurin series for ln(1 + x) gives

ln(1 − 5x) =
∞∑

n=1

(−1)n−1(−5x)n

n
=

∞∑
n=1

(−1)2n−15nxn

n
= −

∞∑
n=1

5nxn

n
.

This series is valid for |5x| < 1, or |x| < 1
5 , and for x = − 1

5 .

f (x) = (x2 + 2x)ex
17. f (x) = sinh x

solution Recall that

sinh x = 1

2
(ex − e−x).

Therefore,

sinh x = 1

2

⎛
⎝ ∞∑

n=0

xn

n! −
∞∑

n=0

(−x)n

n!

⎞
⎠ =

∞∑
n=0

xn

2(n!)
(
1 − (−1)n

)
.

Now,

1 − (−1)n =
{

0, n even

2, n odd

so

sinh x =
∞∑

k=0

2
x2k+1

2(2k + 1)! =
∞∑

k=0

x2k+1

(2k + 1)! .

This series is valid for all x.

f (x) = cosh xIn Exercises 19–28, find the terms through degree four of the Maclaurin series of f (x). Use multiplication and substitution
as necessary.

19. f (x) = ex sin x

solution Multiply the fourth-order Taylor Polynomials for ex and sin x:(
1 + x + x2

2
+ x3

6
+ x4

24

)(
x − x3

6

)

= x + x2 − x3

6
+ x3

2
− x4

6
+ x4

6
+ higher-order terms

= x + x2 + x3

3
+ higher-order terms.

The terms through degree four in the Maclaurin series for f (x) = ex sin x are therefore

x + x2 + x3

3
.

f (x) = ex ln(1 − x)21. f (x) = sin x

1 − x

solution Multiply the fourth order Taylor Polynomials for sin x and
1

1 − x
:

(
x − x3

6

)(
1 + x + x2 + x3 + x4

)

= x + x2 − x3

6
+ x3 + x4 − x4

6
+ higher-order terms

= x + x2 + 5x3

6
+ 5x4

6
+ higher-order terms.
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The terms through order four of the Maclaurin series for f (x) = sin x

1 − x
are therefore

x + x2 + 5x3

6
+ 5x4

6
.

f (x) = 1

1 + sin x

23. f (x) = (1 + x)1/4

solution The first five generalized binomial coefficients for a = 1
4 are

1,
1

4
,

1
4

(−3
4

)
2! = − 3

32
,

1
4

(−3
4

) (−7
4

)
3! = 7

128
,

1
4

(−3
4

) (−7
4

) (−11
4

)
4! = −77

2048

Therefore, the first four terms in the binomial series for (1 + x)1/4 are

1 + 1

4
x − 3

32
x2 + 7

128
x3 − 77

2048
x4

f (x) = (1 + x)−3/225. f (x) = ex tan−1 x

solution Using the Maclaurin series for ex and tan−1 x, we find

ex tan−1 x =
(

1 + x + x2

2
+ x3

6
+ · · ·

)(
x − x3

3
+ · · ·

)
= x + x2 − x3

3
+ x3

2
+ x4

6
− x4

3
+ · · ·

= x + x2 + 1

6
x3 − 1

6
x4 + · · · .

f (x) = sin (x3 − x)
27. f (x) = esin x

solution Substituting sin x for x in the Maclaurin series for ex and then using the Maclaurin series for sin x, we find

esin x = 1 + sin x + sin2 x

2
+ sin3 x

6
+ sin4 x

24
+ · · ·

= 1 +
(

x − x3

6
+ · · ·

)
+ 1

2

(
x − x3

6
+ · · ·

)2

+ 1

6
(x − · · · )3 + 1

24
(x − · · · )4

= 1 + x + 1

2
x2 − 1

6
x3 + 1

6
x3 − 1

6
x4 + 1

24
x4 + · · ·

= 1 + x + 1

2
x2 − 1

8
x4 + · · · .

f (x) = e(ex)In Exercises 29–38, find the Taylor series centered at c and find the interval on which the expansion is valid.

29. f (x) = 1

x
, c = 1

solution Write

1

x
= 1

1 + (x − 1)
,

and then substitute −(x − 1) for x in the Maclaurin series for 1
1−x

to obtain

1

x
=

∞∑
n=0

[−(x − 1)]n =
∞∑

n=0

(−1)n(x − 1)n.

This series is valid for |x − 1| < 1.

f (x) = e3x , c = −131. f (x) = 1

1 − x
, c = 5

solution Write

1

1 − x
= 1

−4 − (x − 5)
= −1

4
· 1

1 + x−5
4

.
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Substituting − x−5
4 for x in the Maclaurin series for 1

1−x
yields

1

1 + x−5
4

=
∞∑

n=0

(
−x − 5

4

)n

=
∞∑

n=0

(−1)n
(x − 5)n

4n
.

Thus,

1

1 − x
= −1

4

∞∑
n=0

(−1)n
(x − 5)n

4n
=

∞∑
n=0

(−1)n+1 (x − 5)n

4n+1
.

This series is valid for
∣∣∣ x−5

4

∣∣∣ < 1, or |x − 5| < 4.

f (x) = sin x, c = π

2

33. f (x) = x4 + 3x − 1, c = 2

solution To determine the Taylor series with center c = 2, we compute

f ′(x) = 4x3 + 3, f ′′(x) = 12x2, f ′′′(x) = 24x,

and f (4)(x) = 24. All derivatives of order five and higher are zero. Now,

f (2) = 21, f ′(2) = 35, f ′′(2) = 48, f ′′′(2) = 48,

and f (4)(2) = 24. Therefore, the Taylor series is

21 + 35(x − 2) + 48

2
(x − 2)2 + 48

6
(x − 2)3 + 24

24
(x − 2)4,

or

21 + 35(x − 2) + 24(x − 2)2 + 8(x − 2)3 + (x − 2)4.

f (x) = x4 + 3x − 1, c = 035. f (x) = 1

x2
, c = 4

solution We will first find the Taylor series for 1
x and then differentiate to obtain the series for 1

x2 . Write

1

x
= 1

4 + (x − 4)
= 1

4
· 1

1 + x−4
4

.

Now substitute − x−4
4 for x in the Maclaurin series for 1

1−x
to obtain

1

x
= 1

4

∞∑
n=

(
−x − 4

4

)n

=
∞∑

n=0

(−1)n
(x − 4)n

4n+1
.

Differentiating term-by-term yields

− 1

x2
=

∞∑
n=1

(−1)nn
(x − 4)n−1

4n+1
,

so that

1

x2
=

∞∑
n=1

(−1)n−1n
(x − 4)n−1

4n+1
=

∞∑
n=0

(−1)n(n + 1)
(x − 4)n

4n+2
.

This series is valid for
∣∣∣ x−4

4

∣∣∣ < 1, or |x − 4| < 4.

f (x) = √
x, c = 437. f (x) = 1

1 − x2
, c = 3

solution By partial fraction decomposition

1

1 − x2
=

1
2

1 − x
+

1
2

1 + x
,

so

1

1 − x2
=

1
2

−2 − (x − 3)
+

1
2

4 + (x − 3)
= −1

4
· 1

1 + x−3
2

+ 1

8
· 1

1 + x−3
4

.
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Substituting − x−3
2 for x in the Maclaurin series for 1

1−x
gives

1

1 + x−3
2

=
∞∑

n=0

(
−x − 3

2

)n

=
∞∑

n=0

(−1)n

2n
(x − 3)n,

while substituting − x−3
4 for x in the same series gives

1

1 + x−3
4

=
∞∑

n=0

(
−x − 3

4

)n

=
∞∑

n=0

(−1)n

4n
(x − 3)n.

Thus,

1

1 − x2
= −1

4

∞∑
n=0

(−1)n

2n
(x − 3)n + 1

8

∞∑
n=0

(−1)n

4n
(x − 3)n =

∞∑
n=0

(−1)n+1

2n+2
(x − 3)n +

∞∑
n=0

(−1)n

22n+3
(x − 3)n

=
∞∑

n=0

(
(−1)n+1

2n+2
+ (−1)n

22n+3

)
(x − 3)n =

∞∑
n=0

(−1)n+1(2n+1 − 1)

22n+3
(x − 3)n.

This series is valid for |x − 3| < 2.

f (x) = 1

3x − 2
, c = −1

39. Use the identity cos2 x = 1
2 (1 + cos 2x) to find the Maclaurin series for cos2 x.

solution The Maclaurin series for cos 2x is

∞∑
n=0

(−1)n
(2x)2n

(2n)! =
∞∑

n=0

(−1)n
22nx2n

(2n)!

so the Maclaurin series for cos2 x = 1
2 (1 + cos 2x) is

1 +
(

1 + ∑∞
n=1(−1)n 22nx2n

(2n)!
)

2
= 1 +

∞∑
n=1

(−1)n
22n−1x2n

(2n)!

Show that for |x| < 1,

tanh−1 x = x + x3

3
+ x5

5
+ · · ·

Hint: Recall that
d

dx
tanh−1 x = 1

1 − x2
.

41. Use the Maclaurin series for ln(1 + x) and ln(1 − x) to show that

1

2
ln

(
1 + x

1 − x

)
= x + x3

3
+ x5

5
+ · · ·

for |x| < 1. What can you conclude by comparing this result with that of Exercise 40?

solution Using the Maclaurin series for ln (1 + x) and ln (1 − x), we have for |x| < 1

ln(1 + x) − ln(1 − x) =
∞∑

n=1

(−1)n−1

n
xn −

∞∑
n=1

(−1)n−1

n
(−x)n

=
∞∑

n=1

(−1)n−1

n
xn +

∞∑
n=1

xn

n
=

∞∑
n=1

1 + (−1)n−1

n
xn.

Since 1 + (−1)n−1 = 0 for even n and 1 + (−1)n−1 = 2 for odd n,

ln (1 + x) − ln (1 − x) =
∞∑

k=0

2

2k + 1
x2k+1.

Thus,

1

2
ln

(
1 + x

1 − x

)
= 1

2
(ln(1 + x) − ln(1 − x)) = 1

2

∞∑
k=0

2

2k + 1
x2k+1 =

∞∑
k=0

x2k+1

2k + 1
.

Observe that this is the same series we found in Exercise 40; therefore,

1

2
ln

(
1 + x

1 − x

)
= tanh−1 x.

Differentiate the Maclaurin series for
1

1 − x
twice to find the Maclaurin series of

1

(1 − x)3
.
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43. Show, by integrating the Maclaurin series for f (x) = 1√
1 − x2

, that for |x| < 1,

sin−1 x = x +
∞∑

n=1

1 · 3 · 5 · · · (2n − 1)

2 · 4 · 6 · · · (2n)

x2n+1

2n + 1

solution From Example 10, we know that for |x| < 1

1√
1 − x2

=
∞∑

n=0

1 · 3 · 5 · · · (2n − 1)

2 · 4 · 6 · · · (2n)
x2n = 1 +

∞∑
n=1

1 · 3 · 5 · · · (2n − 1)

2 · 4 · 6 · · · (2n)
x2n,

so, for |x| < 1,

sin−1 x =
∫

dx√
1 − x2

= C + x +
∞∑

n=1

1 · 3 · 5 · · · (2n − 1)

2 · 4 · 6 · · · (2n)

x2n+1

2n + 1
.

Since sin−1 0 = 0, we find that C = 0. Thus,

sin−1 x = x +
∞∑

n=1

1 · 3 · 5 · · · (2n − 1)

2 · 4 · 6 · · · (2n)

x2n+1

2n + 1
.

Use the first five terms of the Maclaurin series in Exercise 43 to approximate sin−1 1
2 . Compare the result with

the calculator value.

45. How many terms of the Maclaurin series of f (x) = ln(1 + x) are needed to compute ln 1.2 to within an error of at
most 0.0001? Make the computation and compare the result with the calculator value.

solution Substitute x = 0.2 into the Maclaurin series for ln (1 + x) to obtain:

ln 1.2 =
∞∑

n=1

(−1)n−1 (0.2)n

n
=

∞∑
n=1

(−1)n−1 1

5nn
.

This is an alternating series with an = 1

n · 5n
. Using the error bound for alternating series

|ln 1.2 − SN | ≤ aN+1 = 1

(N + 1)5N+1
,

so we must choose N so that

1

(N + 1)5N+1
< 0.0001 or (N + 1)5N+1 > 10,000.

For N = 3, (N + 1)5N+1 = 4 · 54 = 2500 < 10, 000, and for N = 4, (N + 1)5N+1 = 5 · 55 = 15, 625 > 10, 000;
thus, the smallest acceptable value for N is N = 4. The corresponding approximation is:

S4 =
4∑

n=1

(−1)n−1

5n · n
= 1

5
− 1

52 · 2
+ 1

53 · 3
− 1

54 · 4
= 0.182266666.

Now, ln 1.2 = 0.182321556, so

|ln 1.2 − S4| = 5.489 × 10−5 < 0.0001.

Show that

π − π3

3! + π5

5! − π7

7! + · · ·

converges to zero. How many terms must be computed to get within 0.01 of zero?

47. Use the Maclaurin expansion for e−t2
to express the function F(x) = ∫ x

0 e−t2
dt as an alternating power series in x

(Figure 4).

(a) How many terms of the Maclaurin series are needed to approximate the integral for x = 1 to within an error of at
most 0.001?
(b) Carry out the computation and check your answer using a computer algebra system.

F(x)

T15(x)

1 2

y

x

FIGURE 4 The Maclaurin polynomial T15(x) for F(t) =
∫ x

0
e−t2

dt.
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solution Substituting −t2 for t in the Maclaurin series for et yields

e−t2 =
∞∑

n=0

(−t2)n

n! =
∞∑

n=0

(−1)n
t2n

n! ;

thus,

∫ x

0
e−t2

dt =
∞∑

n=0

(−1)n
x2n+1

n!(2n + 1)
.

(a) For x = 1,

∫ 1

0
e−t2

dt =
∞∑

n=0

(−1)n
1

n!(2n + 1)
.

This is an alternating series with an = 1
n!(2n+1)

; therefore, the error incurred by using SN to approximate the value of
the definite integral is bounded by∣∣∣∣∣

∫ 1

0
e−t2

dt − SN

∣∣∣∣∣ ≤ aN+1 = 1

(N + 1)!(2N + 3)
.

To guarantee the error is at most 0.001, we must choose N so that

1

(N + 1)!(2N + 3)
< 0.001 or (N + 1)!(2N + 3) > 1000.

For N = 3, (N + 1)!(2N + 3) = 4! · 9 = 216 < 1000 and for N = 4, (N + 1)!(2N + 3) = 5! · 11 = 1320 > 1000;
thus, the smallest acceptable value for N is N = 4. The corresponding approximation is

S4 =
4∑

n=0

(−1)n

n!(2n + 1)
= 1 − 1

3
+ 1

2! · 5
− 1

3! · 7
+ 1

4! · 9
= 0.747486772.

(b) Using a computer algebra system, we find

∫ 1

0
e−t2

dt = 0.746824133;

therefore ∣∣∣∣∣
∫ 1

0
e−t2

dt − S4

∣∣∣∣∣ = 6.626 × 10−4 < 10−3.

Let F(x) =
∫ x

0

sin t dt

t
. Show that

F(x) = x − x3

3 · 3! + x5

5 · 5! − x7

7 · 7! + · · ·

Evaluate F(1) to three decimal places.

In Exercises 49–52, express the definite integral as an infinite series and find its value to within an error of at most 10−4.

49.
∫ 1

0
cos(x2) dx

solution Substituting x2 for x in the Maclaurin series for cos x yields

cos(x2) =
∞∑

n=0

(−1)n
(x2)2n

(2n)! =
∞∑

n=0

(−1)n
x4n

(2n)! ;

therefore,

∫ 1

0
cos(x2) dx =

∞∑
n=0

(−1)n
x4n+1

(2n)!(4n + 1)

∣∣∣∣∣
1

0

=
∞∑

n=0

(−1)n

(2n)!(4n + 1)
.

This is an alternating series with an = 1
(2n)!(4n+1)

; therefore, the error incurred by using SN to approximate the value of
the definite integral is bounded by∣∣∣∣∣

∫ 1

0
cos(x2) dx − SN

∣∣∣∣∣ ≤ aN+1 = 1

(2N + 2)!(4N + 5)
.
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To guarantee the error is at most 0.0001, we must choose N so that

1

(2N + 2)!(4N + 5)
< 0.0001 or (2N + 2)!(4N + 5) > 10,000.

For N = 2, (2N + 2)!(4N + 5) = 6! · 13 = 9360 < 10,000 and for N = 3, (2N + 2)!(4N + 5) = 8! · 17 = 685,440 >

10,000; thus, the smallest acceptable value for N is N = 3. The corresponding approximation is

S3 =
3∑

n=0

(−1)n

(2n)!(4n + 1)
= 1 − 1

5 · 2! + 1

9 · 4! − 1

13 · 6! = 0.904522792.

∫ 1

0
tan−1(x2) dx

51.
∫ 1

0
e−x3

dx

solution Substituting −x3 for x in the Maclaurin series for ex yields

e−x3 =
∞∑

n=0

(−x3)n

n! =
∞∑

n=0

(−1)n
x3n

n! ;

therefore,

∫ 1

0
e−x3

dx =
∞∑

n=0

(−1)n
x3n+1

n!(3n + 1)

∣∣∣∣∣
1

0

=
∞∑

n=0

(−1)n

n!(3n + 1)
.

This is an alternating series with an = 1
n!(3n+1)

; therefore, the error incurred by using SN to approximate the value of
the definite integral is bounded by∣∣∣∣∣

∫ 1

0
e−x3

dx − SN

∣∣∣∣∣ ≤ aN+1 = 1

(N + 1)!(3N + 4)
.

To guarantee the error is at most 0.0001, we must choose N so that

1

(N + 1)!(3N + 4)
< 0.0001 or (N + 1)!(3N + 4) > 10,000.

For N = 4, (N + 1)!(3N + 4) = 5! · 16 = 1920 < 10,000 and for N = 5, (N + 1)!(3N + 4) = 6! · 19 = 13,680 >

10,000; thus, the smallest acceptable value for N is N = 5. The corresponding approximation is

S5 =
5∑

n=0

(−1)n

n!(3n + 1)
= 0.807446200.

∫ 1

0

dx√
x4 + 1

In Exercises 53–56, express the integral as an infinite series.

53.
∫ x

0

1 − cos(t)

t
dt , for all x

solution The Maclaurin series for cos t is

cos t =
∞∑

n=0

(−1)n
t2n

(2n)! = 1 +
∞∑

n=1

(−1)n
t2n

(2n)! ,

so

1 − cos t = −
∞∑

n=1

(−1)n
t2n

(2n)! =
∞∑

n=1

(−1)n+1 t2n

(2n)! ,

and

1 − cos t

t
= 1

t

∞∑
n=1

(−1)n+1 t2n

(2n)! =
∞∑

n=1

(−1)n+1 t2n−1

(2n)! .

Thus,

∫ x

0

1 − cos(t)

t
dt =

∞∑
n=1

(−1)n+1 t2n

(2n)!2n

∣∣∣∣∣
x

0

=
∞∑

n=1

(−1)n+1 x2n

(2n)!2n
.

∫ x

0

t − sin t

t
dt , for all x
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55.
∫ x

0
ln(1 + t2) dt , for |x| < 1

solution Substituting t2 for t in the Maclaurin series for ln(1 + t) yields

ln(1 + t2) =
∞∑

n=1

(−1)n−1 (t2)n

n
=

∞∑
n=1

(−1)n
t2n

n
.

Thus,

∫ x

0
ln(1 + t2) dt =

∞∑
n=1

(−1)n
t2n+1

n(2n + 1)

∣∣∣∣∣
x

0

=
∞∑

n=1

(−1)n
x2n+1

n(2n + 1)
.

∫ x

0

dt√
1 − t4

, for |x| < 157. Which function has Maclaurin series
∞∑

n=0

(−1)n2nxn?

solution We recognize that

∞∑
n=0

(−1)n2nxn =
∞∑

n=0

(−2x)n

is the Maclaurin series for 1
1−x

with x replaced by −2x. Therefore,

∞∑
n=0

(−1)n2nxn = 1

1 − (−2x)
= 1

1 + 2x
.

Which function has Maclaurin series

∞∑
k=0

(−1)k

3k+1
(x − 3)k?

For which values of x is the expansion valid?

In Exercises 59–62, use Theorem 2 to prove that the f (x) is represented by its Maclaurin series for all x.

59. f (x) = sin
(
x
2

) + cos
(
x
3

)
,

solution All derivatives of f (x) consist of sin or cos applied to each of x/2 and x/3 and added together, so each

summand is bounded by 1. Thus
∣∣∣f (n)(x)

∣∣∣ ≤ 2 for all n and x. By Theorem 2, f (x) is represented by its Taylor series for
every x.

f (x) = e−x ,
61. f (x) = sinh x,

solution By definition, sinh x = 1
2 (ex − e−x), so if both ex and e−x are represented by their Taylor series centered

at c, then so is sinh x. But the previous exercise shows that e−x is so represented, and the text shows that ex is.

f (x) = (1 + x)100In Exercises 63–66, find the functions with the following Maclaurin series (refer to Table 1 on page 599).

63. 1 + x3 + x6

2! + x9

3! + x12

4! + · · ·
solution We recognize

1 + x3 + x6

2! + x9

3! + x12

4! + · · · =
∞∑

n=0

x3n

n! =
∞∑

n=0

(x3)n

n!

as the Maclaurin series for ex with x replaced by x3. Therefore,

1 + x3 + x6

2! + x9

3! + x12

4! + · · · = ex3
.

1 − 4x + 42x2 − 43x3 + 44x4 − 45x5 + · · ·65. 1 − 53x3

3! + 55x5

5! − 57x7

7! + · · ·
solution Note

1 − 53x3

3! + 55x5

5! − 57x7

7! + · · · = 1 − 5x +
(

5x − 53x3

3! + 55x5

5! − 57x7

7! + · · ·
)

= 1 − 5x +
∞∑

n=0

(−1)n
(5x)2n+1

(2n + 1)! .
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The series is the Maclaurin series for sin x with x replaced by 5x, so

1 − 53x3

3! + 55x5

5! − 57x7

7! + · · · = 1 − 5x + sin(5x).

x4 − x12

3
+ x20

5
− x28

7
+ · · ·

In Exercises 67 and 68, let

f (x) = 1

(1 − x)(1 − 2x)

67. Find the Maclaurin series of f (x) using the identity

f (x) = 2

1 − 2x
− 1

1 − x

solution Substituting 2x for x in the Maclaurin series for
1

1 − x
gives

1

1 − 2x
=

∞∑
n=0

(2x)n =
∞∑

n=0

2nxn

which is valid for |2x| < 1, or |x| < 1
2 . Because the Maclaurin series for

1

1 − x
is valid for |x| < 1, the two series

together are valid for |x| < 1
2 . Thus, for |x| < 1

2 ,

1

(1 − 2x)(1 − x)
= 2

1 − 2x
− 1

1 − x
= 2

∞∑
n=0

2nxn −
∞∑

n=0

xn

=
∞∑

n=0

2n+1xn −
∞∑

n=0

xn =
∞∑

n=0

(
2n+1 − 1

)
xn.

Find the Taylor series for f (x) at c = 2. Hint: Rewrite the identity of Exercise 67 as

f (x) = 2

−3 − 2(x − 2)
− 1

−1 − (x − 2)

69. When a voltage V is applied to a series circuit consisting of a resistor R and an inductor L, the current at time t is

I (t) =
(

V

R

) (
1 − e−Rt/L

)

Expand I (t) in a Maclaurin series. Show that I (t) ≈ V t

L
for small t .

solution Substituting −Rt
L

for t in the Maclaurin series for et gives

e−Rt/L =
∞∑

n=0

(
−Rt

L

)n

n! =
∞∑

n=0

(−1)n

n!
(

R

L

)n

tn = 1 +
∞∑

n=1

(−1)n

n!
(

R

L

)n

tn

Thus,

1 − e−Rt/L = 1 −
⎛
⎝1 +

∞∑
n=1

(−1)n

n!
(

R

L

)n

tn

⎞
⎠ =

∞∑
n=1

(−1)n+1

n!
(

Rt

L

)n

,

and

I (t) = V

R

∞∑
n=1

(−1)n+1

n!
(

Rt

L

)n

= V t

L
+ V

R

∞∑
n=2

(−1)n+1

n!
(

Rt

L

)n

.

If t is small, then we can approximate I (t) by the first (linear) term, and ignore terms with higher powers of t ; then we
find

V (t) ≈ V t

L
.

Use the result of Exercise 69 and your knowledge of alternating series to show that

V t

L

(
1 − R

2L
t

)
≤ I (t) ≤ V t

L
(for all t)

71. Find the Maclaurin series for f (x) = cos(x3) and use it to determine f (6)(0).

solution The Maclaurin series for cos x is

cos x =
∞∑

n=0

(−1)n
x2n

(2n)!
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Substituting x3 for x gives

cos(x3) =
∞∑

n=0

(−1)n
x6n

(2n)!

Now, the coefficient of x6 in this series is

− 1

2! = −1

2
= f (6)(0)

6!
so

f (6)(0) = −6!
2

= −360

Find f (7)(0) and f (8)(0) for f (x) = tan−1 x using the Maclaurin series.73. Use substitution to find the first three terms of the Maclaurin series for f (x) = ex20
. How does the result

show that f (k)(0) = 0 for 1 ≤ k ≤ 19?

solution Substituting x20 for x in the Maclaurin series for ex yields

ex20 =
∞∑

n=0

(x20)n

n! =
∞∑

n=0

x20n

n! ;

the first three terms in the series are then

1 + x20 + 1

2
x40.

Recall that the coefficient of xk in the Maclaurin series for f is f (k)(0)
k! . For 1 ≤ k ≤ 19, the coefficient of xk in the

Maclaurin series for f (x) = ex20
is zero; it therefore follows that

f (k)(0)

k! = 0 or f (k)(0) = 0

for 1 ≤ k ≤ 19.

Use the binomial series to find f (8)(0) for f (x) =
√

1 − x2.
75. Does the Maclaurin series for f (x) = (1 + x)3/4 converge to f (x) at x = 2? Give numerical evidence to support
your answer.

solution The Taylor series for f (x) = (1 + x)3/4 converges to f (x) for |x| < 1; because x = 2 is not contained on
this interval, the series does not converge to f (x) at x = 2. The graph below displays

SN =
N∑

n=0

( 3
4
n

)
2n

for 0 ≤ N ≤ 14. The divergent nature of the sequence of partial sums is clear.

0
2 14106 8 124

5

10

15

−20

−15

−10

−5

SN

N

Explain the steps required to verify that the Maclaurin series for f (x) = ex converges to f (x) for all x.
77. Let f (x) = √

1 + x.

(a) Use a graphing calculator to compare the graph of f with the graphs of the first five Taylor polynomials for f . What
do they suggest about the interval of convergence of the Taylor series?

(b) Investigate numerically whether or not the Taylor expansion for f is valid for x = 1 and x = −1.
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solution

(a) The five first terms of the Binomial series with a = 1
2 are

√
1 + x = 1 + 1

2
x +

1
2

(
1
2 − 1

)
2! x2 +

1
2

(
1
2 − 1

) (
1
2 − 2

)
3! x3 +

1
2

(
1
2 − 1

) (
1
2 − 2

) (
1
2 − 3

)
4! x4 + · · ·

= 1 + 1

2
x − 1

8
x2 + 9

4
x3 − 45

2
x4 + · · ·

Therefore, the first five Taylor polynomials are

T0(x) = 1;

T1(x) = 1 + 1

2
x;

T2(x) = 1 + 1

2
x − 1

8
x2;

T3(x) = 1 + 1

2
x − 1

8
x2 + 1

8
x3;

T4(x) = 1 + 1

2
x − 1

8
x2 + 1

8
x3 − 5

128
x4.

The figure displays the graphs of these Taylor polynomials, along with the graph of the function f (x) = √
1 + x, which

is shown in red.

–1 0.5 0.5 1

1.5

1

1.5

The graphs suggest that the interval of convergence for the Taylor series is −1 < x < 1.

(b) Using a computer algebra system to calculate SN =
N∑

n=0

( 1
2
n

)
xn for x = 1 we find

S10 = 1.409931183, S100 = 1.414073048, S1000 = 1.414209104,

which appears to be converging to
√

2 as expected. At x = −1 we calculate SN =
N∑

n=0

( 1
2
n

)
· (−1)n, and find

S10 = 0.176197052, S100 = 0.056348479, S1000 = 0.017839011,

which appears to be converging to zero, though slowly.

Use the first five terms of the Maclaurin series for the elliptic function E(k) to estimate the period T of a 1-meter
pendulum released at an angle θ = π

4 (see Example 11).

79. Use Example 11 and the approximation sin x ≈ x to show that the period T of a pendulum released at an angle θ has
the following second-order approximation:

T ≈ 2π

√
L

g

(
1 + θ2

16

)

solution The period T of a pendulum of length L released from an angle θ is

T = 4

√
L

g
E(k),

where g ≈ 9.8 m/s2 is the acceleration due to gravity, E(k) is the elliptic function of the first kind and k = sin θ
2 . From

Example 11, we know that

E(k) = π

2

∞∑
n=0

(
1 · 3 · 5 · · · (2n − 1)

2 · 4 · 6 · · · (2n)

)2
k2n.
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Using the approximation sin x ≈ x, we have

k = sin
θ

2
≈ θ

2
;

moreover, using the first two terms of the series for E(k), we find

E(k) ≈ π

2

[
1 +

(
1

2

)2 (
θ

2

)2
]

= π

2

(
1 + θ2

16

)
.

Therefore,

T = 4

√
L

g
E(k) ≈ 2π

√
L

g

(
1 + θ2

16

)
.

In Exercises 80–83, find the Maclaurin series of the function and use it to calculate the limit.

lim
x→0

cos x − 1 + x2

2

x4

81. lim
x→0

sin x − x + x3

6
x5

solution Using the Maclaurin series for sin x, we find

sin x =
∞∑

n=0

(−1)n
x2n+1

(2n + 1)! = x − x3

6
+ x5

120
+

∞∑
n=3

(−1)n
x2n+1

(2n + 1)! .

Thus,

sin x − x + x3

6
= x5

120
+

∞∑
n=3

(−1)n
x2n+1

(2n + 1)!

and

sin x − x + x3

6
x5 = 1

120
+

∞∑
n=3

(−1)n
x2n−4

(2n + 1)!

Note that the radius of convergence for this series is infinite, and recall from the previous section that a convergent power
series is continuous within its radius of convergence. Thus to calculate the limit of this power series as x → 0 it suffices
to evaluate it at x = 0:

lim
x→0

sin x − x + x3

6
x5 = lim

x→0

⎛
⎝ 1

120
+

∞∑
n=3

(−1)n
x2n−4

(2n + 1)!

⎞
⎠ = 1

120
+ 0 = 1

120

lim
x→0

tan−1 x − x cos x − 1
6x3

x5

83. lim
x→0

(
sin(x2)

x4
− cos x

x2

)

solution We start with

sin x =
∞∑

n=0

(−1)n
x2n+1

(2n + 1)! cos x =
∞∑

n=0

(−1)n
x2n

(2n)!

so that

sin(x2)

x4
=

∞∑
n=0

(−1)n
x4n+2

(2n + 1)!x4
=

∞∑
n=0

(−1)n
x4n−2

(2n + 1)!

cos x

x2
=

∞∑
n=0

(−1)n
x2n−2

(2n)!

Expanding the first few terms gives

sin(x2)

x4
= 1

x2
−

∞∑
n=1

(−1)n
x4n−2

(2n + 1)!

cos x

x2
= 1

x2
− 1

2
+

∞∑
n=2

(−1)n
x2n−2

(2n)!
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so that

sin(x2)

x4
− cos x

x2
= 1

2
−

∞∑
n=1

(−1)n
x4n−2

(2n + 1)! −
∞∑

n=2

(−1)n
x2n−2

(2n)!

Note that all terms under the summation signs have positive powers of x. Now, the radius of convergence of the series
for both sin and cos is infinite, so the radius of convergence of this series is infinite. Recall from the previous section that
a convergent power series is continuous within its radius of convergence. Thus to calculate the limit of this power series
as x → 0 it suffices to evaluate it at x = 0:

lim
x→0

(
sin(x2)

x4
− cos x

x2

)
= lim

x→0

⎛
⎝1

2
−

∞∑
n=1

(−1)n
x4n−2

(2n + 1)! −
∞∑

n=2

(−1)n
x2n−2

(2n)!

⎞
⎠ = 1

2
+ 0 = 1

2

Further Insights and Challenges

In this exercise we show that the Maclaurin expansion of f (x) = ln(1 + x) is valid for x = 1.

(a) Show that for all x 
= −1,

1

1 + x
=

N∑
n=0

(−1)nxn + (−1)N+1xN+1

1 + x

(b) Integrate from 0 to 1 to obtain

ln 2 =
N∑

n=1

(−1)n−1

n
+ (−1)N+1

∫ 1

0

xN+1 dx

1 + x

(c) Verify that the integral on the right tends to zero as N → ∞ by showing that it is smaller than
∫ 1

0 xN+1dx.

(d) Prove the formula

ln 2 = 1 − 1

2
+ 1

3
− 1

4
+ · · ·

85. Let g(t) = 1

1 + t2
− t

1 + t2
.

(a) Show that
∫ 1

0
g(t) dt = π

4
− 1

2
ln 2.

(b) Show that g(t) = 1 − t − t2 + t3 − t4 − t5 − t6 + · · ·
(c) Evaluate S = 1 − 1

2 − 1
3 + 1

4 − 1
5 − 1

6 − 1
7 + · · ·

solution
(a)

∫ 1

0
g(t) dt =

(
tan−1 t − 1

2
ln(t2 + 1)

) ∣∣∣∣1
0

= tan−1 1 − 1

2
ln 2 = π

4
− 1

2
ln 2

(b) Start with the Taylor series for 1
1+t

:

1

1 + t
=

∞∑
n=0

(−1)ntn

and substitute t2 for t to get

1

1 + t2
=

∞∑
n=0

(−1)nt2n = 1 − t2 + t4 − t6 + . . .

so that

t

1 + t2
=

∞∑
n=0

(−1)nt2n+1 = t − t3 + t5 − t7 + . . .

Finally,

g(t) = 1

1 + t2
− t

1 + t2
= 1 − t − t2 + t3 + t4 − t5 − t6 + t7 + . . .

(c) We have∫
g(t) dt =

∫
(1 − t − t2 + t3 + t4 − t5 − . . . ) dt = t − 1

2
t2 − 1

3
t3 + 1

4
t4 + 1

5
t5 − 1

6
t6 − · · · + C

The radius of convergence of the series for g(t) is 1, so the radius of convergence of this series is also 1. However, this
series converges at the right endpoint, t = 1, since(

1 − 1

2

)
−

(
1

3
− 1

4

)
+

(
1

5
− 1

6

)
− . . .

is an alternating series with general term decreasing to zero. Thus by part (a),

1 − 1

2
− 1

3
+ 1

4
+ 1

5
− 1

6
− · · · = π

4
− 1

2
ln 2
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In Exercises 86 and 87, we investigate the convergence of the binomial series

Ta(x) =
∞∑

n=0

(
a

n

)
xn

Prove that Ta(x) has radius of convergence R = 1 if a is not a whole number. What is the radius of convergence
if a is a whole number?

87. By Exercise 86, Ta(x) converges for |x| < 1, but we do not yet know whether Ta(x) = (1 + x)a .

(a) Verify the identity

a

(
a

n

)
= n

(
a

n

)
+ (n + 1)

(
a

n + 1

)

(b) Use (a) to show that y = Ta(x) satisfies the differential equation (1 + x)y′ = ay with initial condition y(0) = 1.

(c) Prove that Ta(x) = (1 + x)a for |x| < 1 by showing that the derivative of the ratio
Ta(x)

(1 + x)a
is zero.

solution

(a)

n

(
a

n

)
+ (n + 1)

(
a

n + 1

)
= n · a (a − 1) · · · (a − n + 1)

n! + (n + 1) · a (a − 1) · · · (a − n + 1) (a − n)

(n + 1)!

= a (a − 1) · · · (a − n + 1)

(n − 1)! + a (a − 1) · · · (a − n + 1) (a − n)

n!

= a (a − 1) · · · (a − n + 1) (n + (a − n))

n! = a ·
(

a

n

)

(b) Differentiating Ta(x) term-by-term yields

T ′
a(x) =

∞∑
n=1

n

(
a

n

)
xn−1.

Thus,

(1 + x)T ′
a(x) =

∞∑
n=1

n

(
a

n

)
xn−1 +

∞∑
n=1

n

(
a

n

)
xn =

∞∑
n=0

(n + 1)

(
a

n + 1

)
xn +

∞∑
n=0

n

(
a

n

)
xn

=
∞∑

n=0

[
(n + 1)

(
a

n + 1

)
+ n

(
a

n

)]
xn = a

∞∑
n=0

(
a

n

)
xn = aTa(x).

Moreover,

Ta(0) =
(

a

0

)
= 1.

(c)

d

dx

(
Ta(x)

(1 + x)a

)
= (1 + x)aT ′

a(x) − a(1 + x)a−1Ta(x)

(1 + x)2a
= (1 + x)T ′

a(x) − aTa(x)

(1 + x)a+1
= 0.

Thus,

Ta(x)

(1 + x)a
= C,

for some constant C. For x = 0,

Ta(0)

(1 + 0)a
= 1

1
= 1, so C = 1.

Finally, Ta(x) = (1 + x)a .

The function G(k) = ∫ π/2
0

√
1 − k2 sin2 t dt is called an elliptic function of the second kind. Prove that for

|k| < 1,

G(k) = π − π
∞∑ (

1 · 3 · · · (2n − 1)
)2 k2n
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89. Assume that a < b and let L be the arc length (circumference) of the ellipse
(
x
a

)2 + ( y
b

)2 = 1 shown in Figure 5.

There is no explicit formula for L, but it is known that L = 4bG(k), with G(k) as in Exercise 88 and k =
√

1 − a2/b2.
Use the first three terms of the expansion of Exercise 88 to estimate L when a = 4 and b = 5.

a

b

y

x

FIGURE 5 The ellipse
(x

a

)2 +
(y

b

)2 = 1.

solution With a = 4 and b = 5,

k =
√

1 − 42

52
= 3

5
,

and the arc length of the ellipse
(x

4

)2 +
(y

5

)2 = 1 is

L = 20G

(
3

5

)
= 20

⎛
⎜⎝π

2
− π

2

∞∑
n=1

(
1 · 3 · · · (2n − 1)

2 · 4 · · · (2n)

)2
(

3
5

)2n

2n − 1

⎞
⎟⎠ .

Using the first three terms in the series for G(k) gives

L ≈ 10π − 10π

((
1

2

)2
· (3/5)2

1
+

(
1 · 3

2 · 4

)2
· (3/5)4

3

)
= 10π

(
1 − 9

100
− 243

40,000

)
= 36,157π

4000
≈ 28.398.

Use Exercise 88 to prove that if a < b and a/b is near 1 (a nearly circular ellipse), then

L ≈ π

2

(
3b + a2

b

)
Hint: Use the first two terms of the series for G(k).

91. Irrationality of e Prove that e is an irrational number using the following argument by contradiction. Suppose that
e = M/N , where M, N are nonzero integers.

(a) Show that M! e−1 is a whole number.

(b) Use the power series for ex at x = −1 to show that there is an integer B such that M! e−1 equals

B + (−1)M+1
(

1

M + 1
− 1

(M + 1)(M + 2)
+ · · ·

)

(c) Use your knowledge of alternating series with decreasing terms to conclude that 0 < |M! e−1 − B| < 1 and observe
that this contradicts (a). Hence, e is not equal to M/N .

solution Suppose that e = M/N , where M, N are nonzero integers.

(a) With e = M/N ,

M!e−1 = M! N
M

= (M − 1)!N,

which is a whole number.

(b) Substituting x = −1 into the Maclaurin series for ex and multiplying the resulting series by M! yields

M!e−1 = M!
(

1 − 1 + 1

2! − 1

3! + · · · + (−1)k

k! + · · ·
)

.

For all k ≤ M ,
M!
k! is a whole number, so

M!
(

1 − 1 + 1

2! − 1

3! + · · · + (−1)k

M!

)

is an integer. Denote this integer by B. Thus,

M! e−1 = B + M!
(

(−1)M+1

(M + 1)! + (−1)M+2

(M + 2)! + · · ·
)

= B + (−1)M+1
(

1

M + 1
− 1

(M + 1)(M + 2)
+ · · ·

)
.
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(c) The series for M! e−1 obtained in part (b) is an alternating series with an = M!
n! . Using the error bound for an

alternating series and noting that B = SM , we have∣∣∣M! e−1 − B

∣∣∣ ≤ aM+1 = 1

M + 1
< 1.

This inequality implies that M! e−1 − B is not a whole number; however, B is a whole number so M! e−1 cannot be a
whole number. We get a contradiction to the result in part (a), which proves that the original assumption that e is a rational
number is false.

Use the result of Exercise 69 in Section 7.7 to show that the Maclaurin series of the function

f (x) =
{

e−1/x2
for x 
= 0

0 for x = 0

is T (x) = 0. This provides an example of a function f (x) whose Maclaurin series converges but does not converge
to f (x) (except at x = 0).

CHAPTER REVIEW EXERCISES

1. Let an = n − 3

n! and bn = an+3. Calculate the first three terms in each sequence.

(a) a2
n (b) bn

(c) anbn (d) 2an+1 − 3an

solution
(a)

a2
1 =

(
1 − 3

1!
)2

= (−2)2 = 4;

a2
2 =

(
2 − 3

2!
)2

=
(

−1

2

)2
= 1

4
;

a2
3 =

(
3 − 3

3!
)2

= 0.

(b)

b1 = a4 = 4 − 3

4! = 1

24
;

b2 = a5 = 5 − 3

5! = 1

60
;

b3 = a6 = 6 − 3

6! = 1

240
.

(c) Using the formula for an and the values in (b) we obtain:

a1b1 = 1 − 3

1! · 1

24
= − 1

12
;

a2b2 = 2 − 3

2! · 1

60
= − 1

120
;

a3b3 = 3 − 3

3! · 1

240
= 0.

(d)

2a2 − 3a1 = 2

(
−1

2

)
− 3(−2) = 5;

2a3 − 3a2 = 2 · 0 − 3

(
−1

2

)
= 3

2
;

2a4 − 3a3 = 2 · 1

24
− 3 · 0 = 1

12
.

Prove that lim
n→∞

2n − 1

3n + 2
= 2

3
using the limit definition.

In Exercises 3–8, compute the limit (or state that it does not exist) assuming that lim
n→∞ an = 2.

3. lim
n→∞(5an − 2a2

n)

solution

lim
n→∞

(
5an − 2a2

n

)
= 5 lim

n→∞ an − 2 lim
n→∞ a2

n = 5 lim
n→∞ an − 2

(
lim

n→∞ an

)2 = 5 · 2 − 2 · 22 = 2.

lim
n→∞

1

an
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5. lim
n→∞ ean

solution The function f (x) = ex is continuous, hence:

lim
n→∞ ean = elimn→∞ an = e2.

lim
n→∞ cos(πan)

7. lim
n→∞(−1)nan

solution Because lim
n→∞ an 
= 0, it follows that lim

n→∞(−1)nan does not exist.

lim
n→∞

an + n

an + n2

In Exercises 9–22, determine the limit of the sequence or show that the sequence diverges.

9. an = √
n + 5 − √

n + 2

solution First rewrite an as follows:

an =
(√

n + 5 − √
n + 2

) (√
n + 5 + √

n + 2
)

√
n + 5 + √

n + 2
= (n + 5) − (n + 2)√

n + 5 + √
n + 2

= 3√
n + 5 + √

n + 2
.

Thus,

lim
n→∞ an = lim

n→∞
3√

n + 5 + √
n + 2

= 0.

an = 3n3 − n

1 − 2n3

11. an = 21/n2

solution The function f (x) = 2x is continuous, so

lim
n→∞ an = lim

n→∞ 21/n2 = 2limn→∞(1/n2) = 20 = 1.

an = 10n

n!
13. bm = 1 + (−1)m

solution Because 1 + (−1)m is equal to 0 for m odd and is equal to 2 for m even, the sequence {bm} does not approach
one limit; hence this sequence diverges.

bm = 1 + (−1)m

m

15. bn = tan−1
(

n + 2

n + 5

)

solution The function tan−1x is continuous, so

lim
n→∞ bn = lim

n→∞ tan−1
(

n + 2

n + 5

)
= tan−1

(
lim

n→∞
n + 2

n + 5

)
= tan−1 1 = π

4
.

an = 100n

n! − 3 + πn

5n

17. bn =
√

n2 + n −
√

n2 + 1

solution Rewrite bn as

bn =
(√

n2 + n −
√

n2 + 1
) (√

n2 + n +
√

n2 + 1
)

√
n2 + n +

√
n2 + 1

=
(
n2 + n

)
−

(
n2 + 1

)
√

n2 + n +
√

n2 + 1
= n − 1√

n2 + n +
√

n2 + 1
.

Then

lim
n→∞ bn = lim

n→∞
n
n − 1

n√
n2

n2 + n
n2 +

√
n2

n2 + 1
n2

= lim
n→∞

1 − 1
n√

1 + 1
n +

√
1 + 1

n2

= 1 − 0√
1 + 0 + √

1 + 0
= 1

2
.

cn =
√

n2 + n −
√

n2 − n19. bm =
(

1 + 1

m

)3m

solution lim
m→∞ bm = lim

m→∞

(
1 + 1

m

)m

= e3.

cn =
(

1 + 3

n

)n
21. bn = n

(
ln(n + 1) − ln n

)
solution Write

bn = n ln

(
n + 1

n

)
=

ln
(

1 + 1
n

)
1
n

.
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Using L’Hôpital’s Rule, we find

lim
n→∞ bn = lim

n→∞
ln

(
1 + 1

n

)
1
n

= lim
x→∞

ln
(

1 + 1
x

)
1
x

= lim
x→∞

(
1 + 1

x

)−1 ·
(
− 1

x2

)
− 1

x2

= lim
x→∞

(
1 + 1

x

)−1
= 1.

cn = ln(n2 + 1)

ln(n3 + 1)

23. Use the Squeeze Theorem to show that lim
n→∞

arctan(n2)√
n

= 0.

solution For all x,

−π

2
< arctan x <

π

2
,

so

−π/2√
n

<
arctan(n2)√

n
<

π/2√
n

,

for all n. Because

lim
n→∞

(
−π/2√

n

)
= lim

n→∞
π/2√

n
= 0,

it follows by the Squeeze Theorem that

lim
n→∞

arctan(n2)√
n

= 0.

Give an example of a divergent sequence {an} such that {sin an} is convergent.25. Calculate lim
n→∞

an+1

an
, where an = 1

2
3n − 1

3
2n.

solution Because

1

2
3n − 1

3
2n ≥ 1

2
3n − 1

3
3n = 3n

6

and

lim
n→∞

3n

6
= ∞,

we conclude that limn→∞ an = ∞, so L’Hôpital’s rule may be used:

lim
n→∞

an+1

an
= lim

n→∞
1
2 3n+1 − 1

3 2n+1

1
2 3n − 1

3 2n
= lim

n→∞
3n+2 − 2n+2

3n+1 − 2n+1
= lim

n→∞
3 − 2

(
2
3

)n+1

1 −
(

2
3

)n+1
= 3 − 0

1 − 0
= 3.

Define an+1 = √
an + 6 with a1 = 2.

(a) Compute an for n = 2, 3, 4, 5.

(b) Show that {an} is increasing and is bounded by 3.

(c) Prove that lim
n→∞ an exists and find its value.

27. Calculate the partial sums S4 and S7 of the series
∞∑

n=1

n − 2

n2 + 2n
.

solution

S4 = −1

3
+ 0 + 1

15
+ 2

24
= − 11

60
= −0.183333;

S7 = −1

3
+ 0 + 1

15
+ 2

24
+ 3

35
+ 4

48
+ 5

63
= 287

4410
= 0.065079.

Find the sum 1 − 1

4
+ 1

42
− 1

43
+ · · · .

29. Find the sum
4

9
+ 8

27
+ 16

81
+ 32

243
+ · · · .

solution This is a geometric series with common ratio r = 2
3 . Therefore,

4

9
+ 8

27
+ 16

81
+ 32

243
+ · · · =

4
9

1 − 2
3

= 4

3
.

Find the sum
∞∑

n=2

(
2

e

)n

.
31. Find the sum

∞∑
n=−1

2n+3

3n
.

solution Note
∞∑

n=−1

2n+3

3n
= 23

∞∑
n=−1

2n

3n
= 8

∞∑
n=−1

(
2

3

)n

;
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therefore,

∞∑
n=−1

2n+3

3n
= 8 · 3

2
· 1

1 − 2
3

= 36.

Show that
∞∑

n=1

(
b − tan−1 n2) diverges if b 
= π

2
.

33. Give an example of divergent series
∞∑

n=1

an and
∞∑

n=1

bn such that
∞∑

n=1

(an + bn) = 1.

solution Let an =
(

1
2

)n + 1, bn = −1. The corresponding series diverge by the Divergence Test; however,

∞∑
n=1

(an + bn) =
∞∑

n=1

(
1

2

)n

=
1
2

1 − 1
2

= 1.

Let S =
∞∑

n=1

(
1

n
− 1

n + 2

)
. Compute SN for N = 1, 2, 3, 4. Find S by showing that

SN = 3

2
− 1

N + 1
− 1

N + 2

35. Evaluate S =
∞∑

n=3

1

n(n + 3)
.

solution Note that

1

n(n + 3)
= 1

3

(
1

n
− 1

n + 3

)

so that

N∑
n=3

1

n(n + 3)
= 1

3

N∑
n=3

(
1

n
− 1

n + 3

)

= 1

3

((
1

3
− 1

6

)
+

(
1

4
− 1

7

)
+

(
1

5
− 1

8

)
(

1

6
− 1

9

)
+ · · · +

(
1

N − 1
− 1

N + 2

)
+

(
1

N
− 1

N + 3

))

= 1

3

(
1

3
+ 1

4
+ 1

5
− 1

N + 1
− 1

N + 2
− 1

N + 3

)

Thus

∞∑
n=3

1

n(n + 3)
= 1

3
lim

N→∞

N∑
n=3

(
1

n
− 1

n + 3

)

= 1

3

(
1

3
+ 1

4
+ 1

5
− 1

N + 1
− 1

N + 2
− 1

N + 3

)
= 1

3

(
1

3
+ 1

4
+ 1

5

)
= 47

180

Find the total area of the infinitely many circles on the interval [0, 1] in Figure 1.In Exercises 37–40, use the Integral Test to determine whether the infinite series converges.

37.
∞∑

n=1

n2

n3 + 1

solution Let f (x) = x2

x3+1
. This function is continuous and positive for x ≥ 1. Because

f ′(x) = (x3 + 1)(2x) − x2(3x2)

(x3 + 1)2
= x(2 − x3)

(x3 + 1)2
,

we see that f ′(x) < 0 and f is decreasing on the interval x ≥ 2. Therefore, the Integral Test applies on the interval x ≥ 2.
Now,

∫ ∞
2

x2

x3 + 1
dx = lim

R→∞

∫ R

2

x2

x3 + 1
dx = 1

3
lim

R→∞
(

ln(R3 + 1) − ln 9
)

= ∞.

The integral diverges; hence, the series
∞∑

n=2

n2

n3 + 1
diverges, as does the series

∞∑
n=1

n2

n3 + 1
.

∞∑
n=1

n2

(n3 + 1)1.01
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39.
∞∑

n=1

1

(n + 2)(ln(n + 2))3

solution Let f (x) = 1
(x+2) ln3(x+2)

. Using the substitution u = ln(x + 2), so that du = 1
x+2 dx, we have

∫ ∞
0

f (x) dx =
∫ ∞

ln 2

1

u3
du = lim

R→∞

∫ ∞
ln 2

1

u3
du = lim

R→∞

(
− 1

2u2

∣∣∣∣R
ln 2

)

= lim
R→∞

(
1

2(ln 2)2
− 1

2(ln R)2

)
= 1

2(ln 2)2

Since the integral of f (x) converges, so does the series.

∞∑
n=1

n3

en4

In Exercises 41–48, use the Comparison or Limit Comparison Test to determine whether the infinite series converges.

41.
∞∑

n=1

1

(n + 1)2

solution For all n ≥ 1,

0 <
1

n + 1
<

1

n
so

1

(n + 1)2
<

1

n2
.

The series
∞∑

n=1

1

n2
is a convergent p-series, so the series

∞∑
n=1

1

(n + 1)2
converges by the Comparison Test.

∞∑
n=1

1√
n + n

43.
∞∑

n=2

n2 + 1

n3.5 − 2

solution Apply the Limit Comparison Test with an = n2+1
n3.5−2

and bn = 1
n1.5 . Now,

L = lim
n→∞

n2+1
n3.5−2

1
n1.5

= lim
n→∞

n3.5 + n1.5

n3.5 − 2
= 1.

Because L exists and
∞∑

n=1

1

n1.5
is a convergent p-series, we conclude by the Limit Comparison Test that the series

∞∑
n=2

n2 + 1

n3.5 − 2
also converges.

∞∑
n=1

1

n − ln n

45.
∞∑

n=2

n√
n5 + 5

solution For all n ≥ 2,

n√
n5 + 5

<
n

n5/2
= 1

n3/2
.

The series
∞∑

n=2

1

n3/2
is a convergent p-series, so the series

∞∑
n=2

n√
n5 + 5

converges by the Comparison Test.

∞∑
n=1

1

3n − 2n

47.
∞∑

n=1

n10 + 10n

n11 + 11n

solution Apply the Limit Comparison Test with an = n10+10n

n11+11n and bn =
(

10
11

)n
. Then,

L = lim
n→∞

an

bn
= lim

n→∞

n10+10n

n11+11n(
10
11

)n = lim
n→∞

n10+10n

10n

n11+11n

11n

= lim
n→∞

n10

10n + 1

n11

11n + 1
= 1.

The series
∞∑

n=1

(
10

11

)n

is a convergent geometric series; because L exists, we may therefore conclude by the Limit

Comparison Test that the series
∞∑

n=1

n10 + 10n

n11 + 11n
also converges.
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∞∑
n=1

n20 + 21n

n21 + 20n

49. Determine the convergence of
∞∑

n=1

2n + n

3n − 2
using the Limit Comparison Test with bn = ( 2

3

)n.

solution With an = 2n+n
3n−2 , we have

L = lim
n→∞

an

bn
= lim

n→∞
2n + n

3n − 2
· 3n

2n
= lim

n→∞
6n + n3n

6n − 2n+1
= lim

n→∞
1 + n

(
1
2

)n

1 − 2
(

1
3

)n = 1

Since L = 1, the two series either both converge or both diverge. Since
∞∑

n=1

(
2

3

)n

is a convergent geometric series, the

Limit Comparison Test tells us that
∞∑

n=1

2n + n

3n − 2
also converges.

Determine the convergence of
∞∑

n=1

ln n

1.5n
using the Limit Comparison Test with bn = 1

1.4n
.

51. Let an = 1 −
√

1 − 1
n . Show that lim

n→∞ an = 0 and that
∞∑

n=1

an diverges. Hint: Show that an ≥ 1
2n

.

solution

1 −
√

1 − 1

n
= 1 −

√
n − 1

n
=

√
n − √

n − 1√
n

= n − (n − 1)√
n(

√
n + √

n − 1)
= 1

n +
√

n2 − n

≥ 1

n +
√

n2
= 1

2n
.

The series
∞∑

n=2

1

2n
diverges, so the series

∑∞
n=2

(
1 −

√
1 − 1

n

)
also diverges by the Comparison Test.

Determine whether
∞∑

n=2

(
1 −

√
1 − 1

n2

)
converges.

53. Let S =
∞∑

n=1

n

(n2 + 1)2
.

(a) Show that S converges.

(b) Use Eq. (4) in Exercise 83 of Section 11.3 with M = 99 to approximate S. What is the maximum size of the
error?

solution

(a) For n ≥ 1,

n

(n2 + 1)2
<

n

(n2)2
= 1

n3
.

The series
∞∑

n=1

1

n3
is a convergent p-series, so the series

∞∑
n=1

n

(n2 + 1)2
also converges by the Comparison Test.

(b) With an = n
(n2+1)2 , f (x) = x

(x2+1)2 and M = 99, Eq. (4) in Exercise 83 of Section 11.3 becomes

99∑
n=1

n

(n2 + 1)2
+

∫ ∞
100

x

(x2 + 1)2
dx ≤ S ≤

100∑
n=1

n

(n2 + 1)2
+

∫ ∞
100

x

(x2 + 1)2
dx,

or

0 ≤ S −
⎛
⎝ 99∑

n=1

n

(n2 + 1)2
+

∫ ∞
100

x

(x2 + 1)2
dx

⎞
⎠ ≤ 100

(1002 + 1)2
.

Now,

99∑
n=1

n

(n2 + 1)2
= 0.397066274; and

∫ ∞
100

x

(x2 + 1)2
dx = lim

R→∞

∫ R

100

x

(x2 + 1)2
dx = 1

2
lim

R→∞

(
− 1

R2 + 1
+ 1

1002 + 1

)

= 1

20002
= 0.000049995;
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thus,

S ≈ 0.397066274 + 0.000049995 = 0.397116269.

The bound on the error in this approximation is

100

(1002 + 1)2
= 9.998 × 10−7.

In Exercises 54–57, determine whether the series converges absolutely. If it does not, determine whether it converges
conditionally.

∞∑
n=1

(−1)n

3√n + 2n

55.
∞∑

n=1

(−1)n

n1.1 ln(n + 1)

solution Consider the corresponding positive series
∞∑

n=1

1

n1.1 ln(n + 1)
. Because

1

n1.1 ln(n + 1)
<

1

n1.1

and
∞∑

n=1

1

n1.1
is a convergent p-series, we can conclude by the Comparison Test that

∞∑
n=1

(−1)n

n1.1 ln(n + 1)
also converges.

Thus,
∞∑

n=1

(−1)n

n1.1 ln(n + 1)
converges absolutely.

∞∑
n=1

cos
(
π
4 + πn

)
√

n

57.
∞∑

n=1

cos
(
π
4 + 2πn

)
√

n

solution cos
(
π
4 + 2πn

) = cos π
4 =

√
2

2 , so

∞∑
n=1

cos
(
π
4 + 2πn

)
√

n
=

√
2

2

∞∑
n=1

1√
n

.

This is a divergent p-series, so the series
∞∑

n=1

cos
(
π
4 + 2πn

)
√

n
diverges.

Use a computer algebra system to approximate
∞∑

n=1

(−1)n

n3 + √
n

to within an error of at most 10−5.
59. Catalan’s constant is defined by K =

∞∑
k=0

(−1)k

(2k + 1)2
.

(a) How many terms of the series are needed to calculate K with an error of less than 10−6?

(b) Carry out the calculation.

solution Using the error bound for an alternating series, we have

|SN − K| ≤ 1

(2(N + 1) + 1)2
= 1

(2N + 3)2
.

For accuracy to three decimal places, we must choose N so that

1

(2N + 3)2
< 5 × 10−3 or (2N + 3)2 > 2000.

Solving for N yields

N >
1

2

(√
2000 − 3

)
≈ 20.9.

Thus,

K ≈
21∑

k=0

(−1)k

(2k + 1)2
= 0.915707728.

Give an example of conditionally convergent series
∞∑

n=1

an and
∞∑

n=1

bn such that
∞∑

n=1

(an + bn) converges abso-

lutely.
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61. Let
∞∑

n=1

an be an absolutely convergent series. Determine whether the following series are convergent or divergent:

(a)
∞∑

n=1

(
an + 1

n2

)
(b)

∞∑
n=1

(−1)nan

(c)
∞∑

n=1

1

1 + a2
n

(d)
∞∑

n=1

|an|
n

solution Because
∞∑

n=1

an converges absolutely, we know that
∞∑

n=1

an converges and that
∞∑

n=1

|an| converges.

(a) Because we know that
∞∑

n=1

an converges and the series
∞∑

n=1

1

n2
is a convergent p-series, the sum of these two series,

∞∑
n=1

(
an + 1

n2

)
also converges.

(b) We have,

∞∑
n=1

∣∣(−1)nan

∣∣ =
∞∑

n=1

|an|

Because
∞∑

n=1

|an| converges, it follows that
∞∑

n=1

(−1)nan converges absolutely, which implies that
∞∑

n=1

(−1)nan converges.

(c) Because
∞∑

n=1

an converges, limn→∞ an = 0. Therefore,

lim
n→∞

1

1 + a2
n

= 1

1 + 02
= 1 
= 0,

and the series
∞∑

n=1

1

1 + a2
n

diverges by the Divergence Test.

(d) |an|
n ≤ |an| and the series

∞∑
n=1

|an| converges, so the series
∞∑

n=1

|an|
n

also converges by the Comparison Test.

Let {an} be a positive sequence such that lim
n→∞

n
√

an = 1
2 . Determine whether the following series converge or

diverge:

(a)
∞∑

n=1

2an (b)
∞∑

n=1

3nan (c)
∞∑

n=1

√
an

In Exercises 63–70, apply the Ratio Test to determine convergence or divergence, or state that the Ratio Test is inconclusive.

63.
∞∑

n=1

n5

5n

solution With an = n5

5n , ∣∣∣∣an+1

an

∣∣∣∣ = (n + 1)5

5n+1
· 5n

n5 = 1

5

(
1 + 1

n

)5
,

and

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1

5
lim

n→∞

(
1 + 1

n

)5
= 1

5
· 1 = 1

5
.

Because ρ < 1, the series converges by the Ratio Test.

∞∑
n=1

√
n + 1

n8

65.
∞∑

n=1

1

n2n + n3

solution With an = 1
n2n+n3 ,

∣∣∣∣an+1

an

∣∣∣∣ = n2n + n3

(n + 1)2n+1 + (n + 1)3
=

n2n
(

1 + n2

2n

)
(n + 1)2n+1

(
1 + (n+1)2

2n+1

) = 1

2
· n

n + 1
· 1 + n2

2n

1 + (n+1)2

2n+1

,

and

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1

2
· 1 · 1 = 1

2
.

Because ρ < 1, the series converges by the Ratio Test.



June 14, 2011 LTSV SSM Second Pass

Chapter Review Exercises 735

∞∑
n=1

n4

n!
67.

∞∑
n=1

2n2

n!

solution With an = 2n2

n! ,

∣∣∣∣an+1

an

∣∣∣∣ = 2(n+1)2

(n + 1)! · n!
2n2 = 22n+1

n + 1
and ρ = lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣ = ∞.

Because ρ > 1, the series diverges by the Ratio Test.

∞∑
n=4

ln n

n3/2

69.
∞∑

n=1

(n

2

)n 1

n!
solution With an = (

n
2

)n 1
n! ,∣∣∣∣an+1

an

∣∣∣∣ =
(

n + 1

2

)n+1 1

(n + 1)! ·
(

2

n

)n

n! = 1

2

(
n + 1

n

)n

= 1

2

(
1 + 1

n

)n

,

and

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1

2
e.

Because ρ = e
2 > 1, the series diverges by the Ratio Test.

∞∑
n=1

(n

4

)n 1

n!
In Exercises 71–74, apply the Root Test to determine convergence or divergence, or state that the Root Test is inconclusive.

71.
∞∑

n=1

1

4n

solution With an = 1
4n ,

L = lim
n→∞

n
√

an = lim
n→∞

n

√
1

4n
= 1

4
.

Because L < 1, the series converges by the Root Test.

∞∑
n=1

(
2

n

)n73.
∞∑

n=1

(
3

4n

)n

solution With an =
(

3
4n

)n
,

L = lim
n→∞

n
√

an = lim
n→∞

n

√(
3

4n

)n

= lim
n→∞

3

4n
= 0.

Because L < 1, the series converges by the Root Test.

∞∑
n=1

(
cos

1

n

)n3In Exercises 75–92, determine convergence or divergence using any method covered in the text.

75.
∞∑

n=1

(
2

3

)n

solution This is a geometric series with ratio r = 2
3 < 1; hence, the series converges.

∞∑
n=1

π7n

e8n

77.
∞∑

n=1

e−0.02n

solution This is a geometric series with common ratio r = 1
e0.02 ≈ 0.98 < 1; hence, the series converges.

∞∑
n=1

ne−0.02n79.
∞∑

n=1

(−1)n−1
√

n + √
n + 1

solution In this alternating series, an = 1√
n+√

n+1
. The sequence {an} is decreasing, and

lim
n→∞ an = 0;

therefore the series converges by the Leibniz Test.
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∞∑
n=10

1

n(ln n)3/2

81.
∞∑

n=2

(−1)n

ln n

solution The sequence an = 1
ln n

is decreasing for n ≥ 10 and

lim
n→∞ an = 0;

therefore, the series converges by the Leibniz Test.

∞∑
n=1

en

n!
83.

∞∑
n=1

1

n
√

n + ln n

solution For n ≥ 1,

1

n
√

n + ln n
≤ 1

n
√

n
= 1

n3/2
.

The series
∞∑

n=1

1

n3/2
is a convergent p-series, so the series

∞∑
n=1

1

n
√

n + ln n
converges by the Comparison Test.

∞∑
n=1

1
3√n(1 + √

n)

85.
∞∑

n=1

(
1√
n

− 1√
n + 1

)

solution This series telescopes:

∞∑
n=1

(
1√
n

− 1√
n + 1

)
=

(
1 − 1√

2

)
+

(
1√
2

− 1√
3

)
+

(
1√
3

− 1√
4

)
+ . . .

so that the nth partial sum Sn is

Sn =
(

1 − 1√
2

)
+

(
1√
2

− 1√
3

)
+

(
1√
3

− 1√
4

)
+ · · · +

(
1√
n

− 1√
n + 1

)
= 1 − 1√

n + 1

and then

∞∑
n=1

(
1√
n

− 1√
n + 1

)
= lim

n→∞ Sn = 1 − lim
n→∞

1√
n + 1

= 1

∞∑
n=1

(
ln n − ln(n + 1)

)87.
∞∑

n=1

1

n + √
n

solution For n ≥ 1,
√

n ≤ n, so that

∞∑
n=1

1

n + √
n

≥
∞∑

n=1

1

2n

which diverges since it is a constant multiple of the harmonic series. Thus
∞∑

n=1

1

n + √
n

diverges as well, by the Comparison

Test.

∞∑
n=2

cos(πn)

n2/3

89.
∞∑

n=2

1

nln n

solution For n ≥ N large enough, ln n ≥ 2 so that

∞∑
n=N

1

nln n
≤

∞∑
n=N

1

n2

which is a convergent p-series. Thus by the Comparison Test,
∞∑

n=N

1

nln n
also converges; adding back in the terms for

n < N does not affect convergence.

∞∑
n=2

1

ln3 n
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91.
∞∑

n=1

sin2 π

n

solution For all x > 0, sin x < x. Therefore, sin2 x < x2, and for x = π
n ,

sin2 π

n
<

π2

n2
= π2 · 1

n2
.

The series
∞∑

n=1

1

n2
is a convergent p-series, so the series

∞∑
n=1

sin2 π

n
also converges by the Comparison Test.

∞∑
n=0

22n

n!
In Exercises 93–98, find the interval of convergence of the power series.

93.
∞∑

n=0

2nxn

n!

solution With an = 2nxn

n! ,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣2n+1xn+1

(n + 1)! · n!
2nxn

∣∣∣∣∣ = lim
n→∞

∣∣∣∣x · 2

n

∣∣∣∣ = 0

Then ρ < 1 for all x, so that the radius of convergence is R = ∞, and the series converges for all x.

∞∑
n=0

xn

n + 1

95.
∞∑

n=0

n6

n8 + 1
(x − 3)n

solution With an = n6(x−3)n

n8+1
,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ (n + 1)6(x − 3)n+1

(n + 1)8 − 1
· n8 + 1

n6(x − 3)n

∣∣∣∣∣
= lim

n→∞

∣∣∣∣∣(x − 3) · (n + 1)6(n8 + 1)

n6((n + 1)8 + 1)

∣∣∣∣∣
= lim

n→∞

∣∣∣∣∣(x − 3) · n14 + terms of lower degree

n14 + terms of lower degree

∣∣∣∣∣ = |x − 3|

Then ρ < 1 when |x − 3| < 1, so the radius of convergence is 1, and the series converges absolutely for |x − 3| < 1, or

2 < x < 4. For the endpoint x = 4, the series becomes
∞∑

n=0

n6

n8 + 1
, which converges by the Comparison Test comparing

with the convergent p-series
∞∑

n=1

1

n2
. For the endpoint x = 2, the series becomes

∞∑
n=0

n6(−1)n

n8 + 1
, which converges by the

Leibniz Test. The series
∞∑

n=0

n6(x − 3)n

n8 + 1
therefore converges for 2 ≤ x ≤ 4.

∞∑
n=0

nxn97.
∞∑

n=0

(nx)n

solution With an = nnxn, and assuming x 
= 0,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ (n + 1)n+1xn+1

nnxn

∣∣∣∣∣ = lim
n→∞

∣∣∣∣x(n + 1) ·
(

n + 1

n

)n∣∣∣∣ = ∞

since
(

n+1
n

)n =
(

1 + 1
n

)n
converges to e and the (n + 1) term diverges to ∞. Thus ρ < 1 only when x = 0, so the

series converges only for x = 0.

∞∑
n=0

(2x − 3)n

n ln n

99. Expand f (x) = 2

4 − 3x
as a power series centered at c = 0. Determine the values of x for which the series converges.

solution Write

2

4 − 3x
= 1

2

1

1 − 3
4x

.
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Substituting 3
4x for x in the Maclaurin series for 1

1−x
, we obtain

1

1 − 3
4x

=
∞∑

n=0

(
3

4

)n

xn.

This series converges for
∣∣∣ 3

4x

∣∣∣ < 1, or |x| < 4
3 . Hence, for |x| < 4

3 ,

2

4 − 3x
= 1

2

∞∑
n=0

(
3

4

)n

xn.

Prove that

∞∑
n=0

ne−nx = e−x

(1 − e−x)2

Hint: Express the left-hand side as the derivative of a geometric series.

101. Let F(x) =
∞∑

k=0

x2k

2k · k! .

(a) Show that F(x) has infinite radius of convergence.

(b) Show that y = F(x) is a solution of

y′′ = xy′ + y, y(0) = 1, y′(0) = 0

(c) Plot the partial sums SN for N = 1, 3, 5, 7 on the same set of axes.

solution

(a) With ak = x2k

2k ·k! , ∣∣∣∣ak+1

ak

∣∣∣∣ = |x|2k+2

2k+1 · (k + 1)! · 2k · k!
|x|2k

= x2

2(k + 1)
,

and

ρ = lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ = x2 · 0 = 0.

Because ρ < 1 for all x, we conclude that the series converges for all x; that is, R = ∞.

(b) Let

y = F(x) =
∞∑

k=0

x2k

2k · k! .

Then

y′ =
∞∑

k=1

2kx2k−1

2kk! =
∞∑

k=1

x2k−1

2k−1(k − 1)! ,

y′′ =
∞∑

k=1

(2k − 1)x2k−2

2k−1(k − 1)! ,

and

xy′ + y = x

∞∑
k=1

x2k−1

2k−1(k − 1)! +
∞∑

k=0

x2k

2kk! =
∞∑

k=1

x2k

2k−1(k − 1)! + 1 +
∞∑

k=1

x2k

2kk!

= 1 +
∞∑

k=1

(2k + 1)x2k

2kk! =
∞∑

k=0

(2k + 1)x2k

2kk! =
∞∑

k=1

(2k − 1)x2k−2

2k−1(k − 1)! = y′′.

Moreover,

y(0) = 1 +
∞∑

k=1

02k

2kk! = 1 and y′(0) =
∞∑

k=1

02k−1

2k−1(k − 1)! = 0.

Thus,
∞∑

k=0

x2k

2kk! is the solution to the equation y′′ = xy′ + y satisfying y(0) = 1, y′(0) = 0.
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(c) The partial sums S1, S3, S5 and S7 are plotted in the figure below.

y

x
−1−2 1

1

2

3

4

5

6

7

2

Find a power series P(x) =
∞∑

n=0

anxn that satisfies the Laguerre differential equation

xy′′ + (1 − x)y′ − y = 0

with initial condition satisfying P(0) = 1.

In Exercises 103–112, find the Taylor series centered at c.

103. f (x) = e4x , c = 0

solution Substituting 4x for x in the Maclaurin series for ex yields

e4x =
∞∑

n=0

(4x)n

n! =
∞∑

n=0

4n

n! xn.

f (x) = e2x , c = −1
105. f (x) = x4, c = 2

solution We have

f ′(x) = 4x3 f ′′(x) = 12x2 f ′′′(x) = 24x f (4)(x) = 24

and all higher derivatives are zero, so that

f (2) = 24 = 16 f ′(2) = 4 · 23 = 32 f ′′(2) = 12 · 22 = 48 f ′′′(2) = 24 · 2 = 48 f (4)(2) = 24

Thus the Taylor series centered at c = 2 is

4∑
n=0

f (n)(2)

n! (x − 2)n = 16 + 32

1! (x − 2) + 48

2! (x − 2)2 + 48

3! (x − 2)3 + 24

4! (x − 2)4

= 16 + 32(x − 2) + 24(x − 2)2 + 8(x − 2)3 + (x − 2)4

f (x) = x3 − x, c = −2
107. f (x) = sin x, c = π

solution We have

f (4n)(x) = sin x f (4n+1)(x) = cos x f (4n+2)(x) = − sin x f (4n+3)(x) = − cos x

so that

f (4n)(π) = sin π = 0 f (4n+1)(π) = cos π = −1 f (4n+2)(π) = − sin π = 0 f (4n+3)(π) = − cos π = 1

Then the Taylor series centered at c = π is

∞∑
n=0

f (n)(π)

n! (x − π)n = −1

1! (x − π) + 1

3! (x − π)3 + −1

5! (x − π)5 + 1

7! (x − π)7 − . . .

= −(x − π) + 1

6
(x − π)3 − 1

120
(x − π)5 + 1

5040
(x − π)7 − . . .

f (x) = ex−1, c = −1109. f (x) = 1

1 − 2x
, c = −2

solution Write

1

1 − 2x
= 1

5 − 2(x + 2)
= 1

5

1

1 − 2
5 (x + 2)

.

Substituting 2
5 (x + 2) for x in the Maclaurin series for 1

1−x
yields

1

1 − 2
5 (x + 2)

=
∞∑

n=0

2n

5n
(x + 2)n;
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hence,

1

1 − 2x
= 1

5

∞∑
n=0

2n

5n
(x + 2)n =

∞∑
n=0

2n

5n+1
(x + 2)n.

f (x) = 1

(1 − 2x)2
, c = −2

111. f (x) = ln
x

2
, c = 2

solution Write

ln
x

2
= ln

(
(x − 2) + 2

2

)
= ln

(
1 + x − 2

2

)
.

Substituting x−2
2 for x in the Maclaurin series for ln(1 + x) yields

ln
x

2
=

∞∑
n=1

(−1)n+1
(

x−2
2

)n

n
=

∞∑
n=1

(−1)n+1(x − 2)n

n · 2n
.

This series is valid for |x − 2| < 2.

f (x) = x ln
(

1 + x

2

)
, c = 0

In Exercises 113–116, find the first three terms of the Maclaurin series of f (x) and use it to calculate f (3)(0).

113. f (x) = (x2 − x)ex2

solution Substitute x2 for x in the Maclaurin series for ex to get

ex2 = 1 + x2 + 1

2
x4 + 1

6
x6 + . . .

so that the Maclaurin series for f (x) is

(x2 − x)ex2 = x2 + x4 + 1

2
x6 + · · · − x − x3 − 1

2
x5 − · · · = −x + x2 − x3 + x4 + . . .

The coefficient of x3 is

f ′′′(0)

3! = −1

so that f ′′′(0) = −6.

f (x) = tan−1(x2 − x)115. f (x) = 1

1 + tan x

solution Substitute − tan x in the Maclaurin series for 1
1−x

to get

1

1 + tan x
= 1 − tan x + (tan x)2 − (tan x)3 + . . .

We have not yet encountered the Maclaurin series for tan x. We need only the terms up through x3, so compute

tan′(x) = sec2 x tan′′(x) = 2(tan x) sec2 x tan′′′(x) = 2(1 + tan2 x) sec2 x + 4(tan2 x) sec2 x

so that

tan′(0) = 1 tan′′(0) = 0 tan′′′(0) = 2

Then the Maclaurin series for tan x is

tan x = tan 0 + tan′(0)

1! x + tan′′(0)

2! x2 + tan′′′(0)

3! x3 + · · · = x + 1

3
x3 + . . .

Substitute these into the series above to get

1

1 + tan x
= 1 −

(
x + 1

3
x3

)
+

(
x + 1

3
x3

)2
−

(
x + 1

3
x3

)3
+ . . .

= 1 − x − 1

3
x3 + x2 − x3 + higher degree terms

= 1 − x + x2 − 4

3
x3 + higher degree terms
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The coefficient of x3 is

f ′′′(0)

3! = −4

3

so that

f ′′′(0) = −6 · 4

3
= −8

f (x) = (sin x)
√

1 + x117. Calculate
π

2
− π3

233! + π5

255! − π7

277! + · · · .

solution We recognize that

π

2
− π3

233! + π5

255! − π7

277! + · · · =
∞∑

n=0

(−1)n
(π/2)2n+1

(2n + 1)!

is the Maclaurin series for sin x with x replaced by π/2. Therefore,

π

2
− π3

233! + π5

255! − π7

277! + · · · = sin
π

2
= 1.

Find the Maclaurin series of the function F(x) =
∫ x

0

et − 1

t
dt .
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12 PARAMETRIC EQUATIONS,
POLAR COORDINATES,
AND CONIC SECTIONS

12.1 Parametric Equations

Preliminary Questions
1. Describe the shape of the curve x = 3 cos t, y = 3 sin t .

solution For all t ,

x2 + y2 = (3 cos t)2 + (3 sin t)2 = 9(cos2 t + sin2 t) = 9 · 1 = 9,

therefore the curve is on the circle x2 + y2 = 9. Also, each point on the circle x2 + y2 = 9 can be represented in the
form (3 cos t, 3 sin t) for some value of t . We conclude that the curve x = 3 cos t , y = 3 sin t is the circle of radius 3
centered at the origin.

2. How does x = 4 + 3 cos t, y = 5 + 3 sin t differ from the curve in the previous question?

solution In this case we have

(x − 4)2 + (y − 5)2 = (3 cos t)2 + (3 sin t)2 = 9(cos2 t + sin2 t) = 9 · 1 = 9

Therefore, the given equations parametrize the circle of radius 3 centered at the point (4, 5).

3. What is the maximum height of a particle whose path has parametric equations x = t9, y = 4 − t2?

solution The particle’s height is y = 4 − t2. To find the maximum height we set the derivative equal to zero and
solve:

dy

dt
= d

dt
(4 − t2) = −2t = 0 or t = 0

The maximum height is y(0) = 4 − 02 = 4.

4. Can the parametric curve (t, sin t) be represented as a graph y = f (x)? What about (sin t, t)?

solution In the parametric curve (t, sin t) we have x = t and y = sin t , therefore, y = sin x. That is, the curve can be
represented as a graph of a function. In the parametric curve (sin t, t) we have x = sin t , y = t , therefore x = sin y. This
equation does not define y as a function of x, therefore the parametric curve (sin t, t) cannot be represented as a graph of
a function y = f (x).

5. Match the derivatives with a verbal description:

(a)
dx

dt
(b)

dy

dt
(c)

dy

dx
(i) Slope of the tangent line to the curve

(ii) Vertical rate of change with respect to time

(iii) Horizontal rate of change with respect to time

solution

(a) The derivative
dx

dt
is the horizontal rate of change with respect to time.

(b) The derivative
dy

dt
is the vertical rate of change with respect to time.

(c) The derivative
dy

dx
is the slope of the tangent line to the curve.

Hence, (a) ↔ (iii), (b) ↔ (ii), (c) ↔ (i)

742
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Exercises
1. Find the coordinates at times t = 0, 2, 4 of a particle following the path x = 1 + t3, y = 9 − 3t2.

solution Substituting t = 0, t = 2, and t = 4 into x = 1 + t3, y = 9 − 3t2 gives the coordinates of the particle at
these times respectively. That is,

(t = 0) x = 1 + 03 = 1, y = 9 − 3 · 02 = 9 ⇒ (1, 9)

(t = 2) x = 1 + 23 = 9, y = 9 − 3 · 22 = −3 ⇒ (9, −3)

(t = 4) x = 1 + 43 = 65, y = 9 − 3 · 42 = −39 ⇒ (65, −39).

Find the coordinates at t = 0, π
4 , π of a particle moving along the path c(t) = (cos 2t, sin2 t).

3. Show that the path traced by the bullet in Example 3 is a parabola by eliminating the parameter.

solution The path traced by the bullet is given by the following parametric equations:

x = 200t, y = 400t − 16t2

We eliminate the parameter. Since x = 200t , we have t = x

200
. Substituting into the equation for y we obtain:

y = 400t − 16t2 = 400 · x

200
− 16

( x

200

)2 = 2x − x2

2500

The equation y = − x2

2500
+ 2x is the equation of a parabola.

Use the table of values to sketch the parametric curve (x(t), y(t)), indicating the direction of motion.

t −3 −2 −1 0 1 2 3

x −15 0 3 0 −3 0 15

y 5 0 −3 −4 −3 0 5

5. Graph the parametric curves. Include arrows indicating the direction of motion.

(a) (t, t), −∞ < t < ∞ (b) (sin t, sin t), 0 ≤ t ≤ 2π

(c) (et , et ), −∞ < t < ∞ (d) (t3, t3), −1 ≤ t ≤ 1

solution

(a) For the trajectory c(t) = (t, t), −∞ < t < ∞ we have y = x. Also the two coordinates tend to ∞ and −∞ as
t → ∞ and t → −∞ respectively. The graph is shown next:

x

y

(b) For the curve c(t) = (sin t, sin t), 0 ≤ t ≤ 2π , we have y = x. sin t is increasing for 0 ≤ t ≤ π
2 , decreasing for

π
2 ≤ t ≤ 3π

2 and increasing again for 3π
2 ≤ t ≤ 2π . Hence the particle moves from c(0) = (0, 0) to c(π

2 ) = (1, 1), then

moves back to c( 3π
2 ) = (−1, −1) and then returns to c(2π) = (0, 0). We obtain the following trajectory:

x

y

t =     (1,1)π
2

t = 0
x

y

t =     (1,1)π
2

t =      (−1,−1)3π
2

x

y

t =      (−1,−1)3π
2

0 < t ≤ π
2

π
2 ≤ t ≤ 3π

2
3π
2 ≤ t < 2π
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These three parts of the trajectory are shown together in the next figure:

x

y

t =      (−1,−1)3π
2

t =     (1,1)π
2

t = 0
t = 2π

(c) For the trajectory c(t) = (et , et ), −∞ < t < ∞, we have y = x. However since lim
t→−∞ et = 0 and lim

t→∞ et = ∞,

the trajectory is the part of the line y = x, 0 < x.

x

y

(d) For the trajectory c(t) = (t3, t3), −1 ≤ t ≤ 1, we have again y = x. Since the function t3 is increasing the particle
moves in one direction starting at ((−1)3, (−1)3) = (−1, −1) and ending at (13, 13) = (1, 1). The trajectory is shown
next:

x

y

t = 1(1,1)

t = −1 (−1,−1)

Give two different parametrizations of the line through (4, 1) with slope 2.In Exercises 7–14, express in the form y = f (x) by eliminating the parameter.

7. x = t + 3, y = 4t

solution We eliminate the parameter. Since x = t + 3, we have t = x − 3. Substituting into y = 4t we obtain

y = 4t = 4(x − 3) ⇒ y = 4x − 12

x = t−1, y = t−29. x = t , y = tan−1(t3 + et )

solution Replacing t by x in the equation for y we obtain y = tan−1(x3 + ex).

x = t2, y = t3 + 1
11. x = e−2t , y = 6e4t

solution We eliminate the parameter. Since x = e−2t , we have −2t = ln x or t = − 1
2 ln x. Substituting in y = 6e4t

we get

y = 6e4t = 6e4·(− 1
2 ln x) = 6e−2 ln x = 6eln x−2 = 6x−2 ⇒ y = 6

x2
, x > 0.

x = 1 + t−1, y = t2
13. x = ln t , y = 2 − t

solution Since x = ln t we have t = ex . Substituting in y = 2 − t we obtain y = 2 − ex .

x = cos t , y = tan tIn Exercises 15–18, graph the curve and draw an arrow specifying the direction corresponding to motion.

15. x = 1
2 t , y = 2t2

solution Let c(t) = (x(t), y(t)) = ( 1
2 t, 2t2). Then c(−t) = (−x(t), y(t)) so the curve is symmetric with respect to

the y-axis. Also, the function 1
2 t is increasing. Hence there is only one direction of motion on the curve. The corresponding

function is the parabola y = 2 · (2x)2 = 8x2. We obtain the following trajectory:
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x

y

t = 0

x = 2 + 4t , y = 3 + 2t
17. x = πt , y = sin t

solution We find the function by eliminating t . Since x = πt , we have t = x
π . Substituting t = x

π into y = sin t we
get y = sin x

π . We obtain the following curve:

x

y

(4π2,0)

(−2π2,0)

x = t2, y = t3
19. Match the parametrizations (a)–(d) below with their plots in Figure 14, and draw an arrow indicating the direction of
motion.

2π

xx

yy

1555

(II) (III)(I)

x x

1020

−1

5

yy

(IV)

FIGURE 14

(a) c(t) = (sin t, −t) (b) c(t) = (t2 − 9, 8t − t3)

(c) c(t) = (1 − t, t2 − 9) (d) c(t) = (4t + 2, 5 − 3t)

solution
(a) In the curve c(t) = (sin t, −t) the x-coordinate is varying between −1 and 1 so this curve corresponds to plot IV. As
t increases, the y-coordinate y = −t is decreasing so the direction of motion is downward.

x

y

−1

2π

−2π

1

(IV) c(t) = (sin t, −t)

(b) The curve c(t) = (t2 − 9, −t3 − 8) intersects the x-axis where y = −t3 − 8 = 0, or t = −2. The x-intercept is
(−5, 0). The y-intercepts are obtained where x = t2 − 9 = 0, or t = ±3. The y-intercepts are (0, −35) and (0, 19). As
t increases from −∞ to 0, x and y decrease, and as t increases from 0 to ∞, x increases and y decreases. We obtain the
following trajectory:

x

y

t = 0, (−9,−8) −5

19

(II)
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(c) The curve c(t) = (1 − t, t2 − 9) intersects the y-axis where x = 1 − t = 0, or t = 1. The y-intercept is (0, −8). The
x-intercepts are obtained where t2 − 9 = 0 or t = ±3. These are the points (−2, 0) and (4, 0). Setting t = 1 − x we get

y = t2 − 9 = (1 − x)2 − 9 = x2 − 2x − 8.

As t increases the x coordinate decreases and we obtain the following trajectory:

x

y

−2 4 5

10

(III)

(d) The curve c(t) = (4t + 2, 5 − 3t) is a straight line, since eliminating t in x = 4t + 2 and substituting in y = 5 − 3t

gives y = 5 − 3 · x−2
4 = − 3

4x + 13
2 which is the equation of a line. As t increases, the x coordinate x = 4t + 2 increases

and the y-coordinate y = 5 − 3t decreases. We obtain the following trajectory:

x

y

5

5

(I)

A particle follows the trajectory

x(t) = 1

4
t3 + 2t, y(t) = 20t − t2

with t in seconds and distance in centimeters.

(a) What is the particle’s maximum height?

(b) When does the particle hit the ground and how far from the origin does it land?

21. Find an interval of t-values such that c(t) = (cos t, sin t) traces the lower half of the unit circle.

solution For t = π , we have c(π) = (−1, 0). As t increases from π to 2π , the x-coordinate of c(t) increases from
−1 to 1, and the y-coordinate decreases from 0 to −1 (at t = 3π/2) and then returns to 0. Thus, for t in [π, 2π ], the
equation traces the lower part of the circle.

Find an interval of t-values such that c(t) = (2t + 1, 4t − 5) parametrizes the segment from (0, −7) to (7, 7).In Exercises 23–38, find parametric equations for the given curve.

23. y = 9 − 4x

solution This is a line through P = (0, 9) with slope m = −4. Using the parametric representation of a line, as given
in Example 3, we obtain c(t) = (t, 9 − 4t).

y = 8x2 − 3x
25. 4x − y2 = 5

solution We define the parameter t = y. Then, x = 5 + y2

4
= 5 + t2

4
, giving us the parametrization c(t) =(5 + t2

4
, t
)

.

x2 + y2 = 49
27. (x + 9)2 + (y − 4)2 = 49

solution This is a circle of radius 7 centered at (−9, 4). Using the parametric representation of a circle we get
c(t) = (−9 + 7 cos t, 4 + 7 sin t).

(x

5

)2 +
( y

12

)2 = 1

29. Line of slope 8 through (−4, 9)

solution Using the parametric representation of a line given in Example 3, we get the parametrization c(t) = (−4 +
t, 9 + 8t).

Line through (2, 5) perpendicular to y = 3x
31. Line through (3, 1) and (−5, 4)

solution We use the two-point parametrization of a line with P = (a, b) = (3, 1) and Q = (c, d) = (−5, 4). Then
c(t) = (3 − 8t, 1 + 3t) for −∞ < t < ∞.

Line through
( 1

3 , 1
6

)
and

(− 7
6 , 5

3

)33. Segment joining (1, 1) and (2, 3)

solution We use the two-point parametrization of a line with P = (a, b) = (1, 1) and Q = (c, d) = (2, 3). Then
c(t) = (1 + t, 1 + 2t); since we want only the segment joining the two points, we want 0 ≤ t ≤ 1.
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Segment joining (−3, 0) and (0, 4)
35. Circle of radius 4 with center (3, 9)

solution Substituting (a, b) = (3, 9) and R = 4 in the parametric equation of the circle we get c(t) = (3 + 4 cos t, 9 +
4 sin t).

Ellipse of Exercise 28, with its center translated to (7, 4)
37. y = x2, translated so that the minimum occurs at (−4, −8)

solution We may parametrize y = x2 by (t, t2) for −∞ < t < ∞. The minimum of y = x2 occurs at (0, 0),

so the desired curve is translated by (−4, −8) from y = x2. Thus a parametrization of the desired curve is c(t) =
(−4 + t, −8 + t2).

y = cos x translated so that a maximum occurs at (3, 5)In Exercises 39–42, find a parametrization c(t) of the curve satisfying the given condition.

39. y = 3x − 4, c(0) = (2, 2)

solution Let x(t) = t + a and y(t) = 3x − 4 = 3(t + a) − 4. We want x(0) = 2, thus we must use a = 2. Our line
is c(t) = (x(t), y(t)) = (t + 2, 3(t + 2) − 4) = (t + 2, 3t + 2).

y = 3x − 4, c(3) = (2, 2)
41. y = x2, c(0) = (3, 9)

solution Let x(t) = t + a and y(t) = x2 = (t + a)2. We want x(0) = 3, thus we must use a = 3. Our curve is

c(t) = (x(t), y(t)) = (t + 3, (t + 3)2) = (t + 3, t2 + 6t + 9).

x2 + y2 = 4, c(0) = (1,
√

3)
43. Describe c(t) = (sec t, tan t) for 0 ≤ t < π

2 in the form y = f (x). Specify the domain of x.

solution The function x = sec t has period 2π and y = tan t has period π . The graphs of these functions in the
interval −π ≤ t ≤ π , are shown below:

p−p

p
2

p
2

−

y

x
p−p p

2
p
2

−

y

x

x = sec t y = tan t

x = sec t ⇒ x2 = sec2 t

y = tan t ⇒ y2 = tan2 t = sin2 t

cos2 t
= 1 − cos2 t

cos2 t
= sec2 t − 1 = x2 − 1

Hence the graph of the curve is the hyperbola x2 − y2 = 1. The function x = sec t is an even function while y = tan t is
odd. Also x has period 2π and y has period π . It follows that the intervals −π ≤ t < −π

2 , −π
2 < t < π

2 and π
2 < t < π

trace the curve exactly once. The corresponding curve is shown next:

y

x

p
2

− −t = p
2

−t =

p
2

− +t =p
2

+t =

t = 0

(−1, 0) (1, 0)

t = −p

c(t) = (sec t, tan t)

Find a parametrization of the right branch (x > 0) of the hyperbola

(x

a

)2 −
(y

b

)2 = 1

using the functions cosh t and sinh t . How can you parametrize the branch x < 0?

45. The graphs of x(t) and y(t) as functions of t are shown in Figure 15(A). Which of (I)–(III) is the plot of c(t) =
(x(t), y(t))? Explain.

yyyy
x(t)

y(t)
xxxt

(A) (III)(II)(I)

FIGURE 15

solution As seen in Figure 15(A), the x-coordinate is an increasing function of t , while y(t) is first increasing and
then decreasing. In Figure I, x and y are both increasing or both decreasing (depending on the direction on the curve).
In Figure II, x does not maintain one tendency, rather, it is decreasing and increasing for certain values of t . The plot
c(t) = (x(t), y(t)) is plot III.
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Which graph, (I) or (II), is the graph of x(t) and which is the graph of y(t) for the parametric curve in Figure
16(A)?

47. Sketch c(t) = (t3 − 4t, t2) following the steps in Example 7.

solution We note that x(t) = t3 − 4t is odd and y(t) = t2 is even, hence c(−t) = (x(−t), y(−t)) = (−x(t), y(t)).
It follows that c(−t) is the reflection of c(t) across y-axis. That is, c(−t) and c(t) are symmetric with respect to the y-axis;
thus, it suffices to graph the curve for t ≥ 0. For t = 0, we have c(0) = (0, 0) and the y-coordinate y(t) = t2 tends to ∞
as t → ∞. To analyze the x-coordinate, we graph x(t) = t3 − 4t for t ≥ 0:

x
3 41 2

−4

−2

8

6

4

2

y

x = t3 − 4t

We see that x(t) < 0 and decreasing for 0 < t < 2/
√

3, x(t) < 0 and increasing for 2/
√

3 < t < 2 and x(t) > 0 and
increasing for t > 2. Also x(t) tends to ∞ as t → ∞. Therefore, starting at the origin, the curve first directs to the left of
the y-axis, then at t = 2/

√
3 it turns to the right, always keeping an upward direction. The part of the path for t ≤ 0 is

obtained by reflecting across the y-axis. We also use the points c(0) = (0, 0), c(1) = (−3, 1), c(2) = (0, 4) to obtain the
following graph for c(t):

x

y

t = 0

t = 1

t = 2

(−3, 1)

(0, 4)

y

x

t = 1

t = 0

t = 2

t = −1

t = −2

Graph of c(t) for t ≥ 0. Graph of c(t) for all t .

Sketch c(t) = (t2 − 4t, 9 − t2) for −4 ≤ t ≤ 10.In Exercises 49–52, use Eq. (7) to find dy/dx at the given point.

49. (t3, t2 − 1), t = −4

solution By Eq. (7) we have

dy

dx
= y′(t)

x′(t) = (t2 − 1)
′

(t3)
′ = 2t

3t2
= 2

3t

Substituting t = −4 we get

dy

dx
= 2

3t

∣∣∣∣
t=−4

= 2

3 · (−4)
= −1

6
.

(2t + 9, 7t − 9), t = 151. (s−1 − 3s, s3), s = −1

solution Using Eq. (7) we get

dy

dx
= y′(s)

x′(s) = (s3)
′

(s−1 − 3s)
′ = 3s2

−s−2 − 3
= 3s4

−1 − 3s2

Substituting s = −1 we obtain

dy

dx
= 3s4

−1 − 3s2

∣∣∣∣
s=−1

= 3 · (−1)4

−1 − 3 · (−1)2
= −3

4
.

(sin 2θ, cos 3θ), θ = π
6

In Exercises 53–56, find an equation y = f (x) for the parametric curve and compute dy/dx in two ways: using Eq. (7)
and by differentiating f (x).

53. c(t) = (2t + 1, 1 − 9t)

solution Since x = 2t + 1, we have t = x − 1

2
. Substituting in y = 1 − 9t we have

y = 1 − 9

(
x − 1

2

)
= −9

2
x + 11

2
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Differentiating y = −9

2
x + 11

2
gives

dy

dx
= −9

2
. We now find

dy

dx
using Eq. (7):

dy

dx
= y′(t)

x′(t) = (1 − 9t)′
(2t + 1)′ = −9

2

c(t) = ( 1
2 t, 1

4 t2 − t
)55. x = s3, y = s6 + s−3

solution We find y as a function of x:

y = s6 + s−3 =
(
s3
)2 +

(
s3
)−1 = x2 + x−1.

We now differentiate y = x2 + x−1. This gives

dy

dx
= 2x − x−2.

Alternatively, we can use Eq. (7) to obtain the following derivative:

dy

dx
= y′(s)

x′(s) =
(
s6 + s−3

)′
(
s3
)′ = 6s5 − 3s−4

3s2
= 2s3 − s−6.

Hence, since x = s3,

dy

dx
= 2x − x−2.

x = cos θ , y = cos θ + sin2 θ
57. Find the points on the curve c(t) = (3t2 − 2t, t3 − 6t) where the tangent line has slope 3.

solution We solve

dy

dx
= 3t2 − 6

6t − 2
= 3

or 3t2 − 6 = 18t − 6, or t2 − 6t = 0, so the slope is 3 at t = 0, 6 and the points are (0, 0) and (96, 180)

Find the equation of the tangent line to the cycloid generated by a circle of radius 4 at t = π
2 .In Exercises 59–62, let c(t) = (t2 − 9, t2 − 8t) (see Figure 17).

60

40

20

604020
x

y

FIGURE 17 Plot of c(t) = (t2 − 9, t2 − 8t).

59. Draw an arrow indicating the direction of motion, and determine the interval of t-values corresponding to the portion
of the curve in each of the four quadrants.

solution We plot the functions x(t) = t2 − 9 and y(t) = t2 − 8t :

t

x

3−3 t

y

1 2 3 4 5 6 7 8 9−3−2−1

x = t2 − 9 y = t2 − 8t

We note carefully where each of these graphs are positive or negative, increasing or decreasing. In particular, x(t) is
decreasing for t < 0, increasing for t > 0, positive for |t | > 3, and negative for |t | < 3. Likewise, y(t) is decreasing for
t < 4, increasing for t > 4, positive for t > 8 or t < 0, and negative for 0 < t < 8. We now draw arrows on the path
following the decreasing/increasing behavior of the coordinates as indicated above. We obtain:
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x

y

20

t = 0
(−9,0)

t = 8
(55,0)

t = 3
(0,−15)

t = −3 (0,33)

t = 4 (7,−16)

40 60−20

−20

20

40

60

This plot also shows that:

• The graph is in the first quadrant for t < −3 or t > 8.
• The graph is in the second quadrant for −3 < t < 0.
• The graph is in the third quadrant for 0 < t < 3.
• The graph is in the fourth quadrant for 3 < t < 8.

Find the equation of the tangent line at t = 4.61. Find the points where the tangent has slope 1
2 .

solution The slope of the tangent at t is

dy

dx
=
(
t2 − 8t

)′
(
t2 − 9

)′ = 2t − 8

2t
= 1 − 4

t

The point where the tangent has slope 1
2 corresponds to the value of t that satisfies

dy

dx
= 1 − 4

t
= 1

2
⇒ 4

t
= 1

2
⇒ t = 8.

We substitute t = 8 in x(t) = t2 − 9 and y(t) = t2 − 8t to obtain the following point:

x(8) = 82 − 9 = 55

y(8) = 82 − 8 · 8 = 0
⇒ (55, 0)

Find the points where the tangent is horizontal or vertical.
63. Let A and B be the points where the ray of angle θ intersects the two concentric circles of radii r < R centered at
the origin (Figure 18). Let P be the point of intersection of the horizontal line through A and the vertical line through B.
Express the coordinates of P as a function of θ and describe the curve traced by P for 0 ≤ θ ≤ 2π .

x

y

B

P

Rr

A

FIGURE 18

solution We use the parametric representation of a circle to determine the coordinates of the points A and B. That is,

A = (r cos θ, r sin θ), B = (R cos θ, R sin θ)

The coordinates of P are therefore

P = (R cos θ, r sin θ)

In order to identify the curve traced by P , we notice that the x and y coordinates of P satisfy x
R

= cos θ and y
r = sin θ .

Hence ( x

R

)2 +
(y

r

)2 = cos2θ + sin2θ = 1.

The equation ( x

R

)2 +
(y

r

)2 = 1

is the equation of ellipse. Hence, the coordinates of P , (R cos θ, r sin θ) describe an ellipse for 0 ≤ θ ≤ 2π .
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A 10-ft ladder slides down a wall as its bottom B is pulled away from the wall (Figure 19). Using the angle θ as
parameter, find the parametric equations for the path followed by (a) the top of the ladder A, (b) the bottom of the
ladder B, and (c) the point P located 4 ft from the top of the ladder. Show that P describes an ellipse.

In Exercises 65–68, refer to the Bézier curve defined by Eqs. (8) and (9).

65. Show that the Bézier curve with control points

P0 = (1, 4), P1 = (3, 12), P2 = (6, 15), P3 = (7, 4)

has parametrization

c(t) = (1 + 6t + 3t2 − 3t3, 4 + 24t − 15t2 − 9t3)

Verify that the slope at t = 0 is equal to the slope of the segment P0P1.

solution For the given Bézier curve we have a0 = 1, a1 = 3, a2 = 6, a3 = 7, and b0 = 4, b1 = 12, b2 = 15, b3 = 4.
Substituting these values in Eq. (8)–(9) and simplifying gives

x(t) = (1 − t)3 + 9t (1 − t)2 + 18t2(1 − t) + 7t3

= 1 − 3t + 3t2 − t3 + 9t (1 − 2t + t2) + 18t2 − 18t3 + 7t3

= 1 − 3t + 3t2 − t3 + 9t − 18t2 + 9t3 + 18t2 − 18t3 + 7t3

= −3t3 + 3t2 + 6t + 1

y(t) = 4(1 − t)3 + 36t (1 − t)2 + 45t2(1 − t) + 4t3

= 4(1 − 3t + 3t2 − t3) + 36t (1 − 2t + t2) + 45t2 − 45t3 + 4t3

= 4 − 12t + 12t2 − 4t3 + 36t − 72t2 + 36t3 + 45t2 − 45t3 + 4t3

= 4 + 24t − 15t2 − 9t3

Then

c(t) = (1 + 6t + 3t2 − 3t3, 4 + 24t − 15t2 − 9t3), 0 ≤ t ≤ 1.

We find the slope at t = 0. Using the formula for slope of the tangent line we get

dy

dx
= (4 + 24t − 15t2 − 9t3)′

(1 + 6t + 3t2 − 3t3)′ = 24 − 30t − 27t2

6 + 6t − 9t2
⇒ dy

dx

∣∣∣∣
t=0

= 24

6
= 4.

The slope of the segment P0P1 is the slope of the line determined by the points P0 = (1, 4) and P1 = (3, 12). That is,
12−4
3−1 = 8

2 = 4. We see that the slope of the tangent line at t = 0 is equal to the slope of the segment P0P1, as expected.

Find an equation of the tangent line to the Bézier curve in Exercise 65 at t = 1
3 .

67. Find and plot the Bézier curve c(t) passing through the control points

P0 = (3, 2), P1 = (0, 2), P2 = (5, 4), P3 = (2, 4)

solution Setting a0 = 3, a1 = 0, a2 = 5, a3 = 2, and b0 = 2, b1 = 2, b2 = 4, b3 = 4 into Eq. (8)–(9) and
simplifying gives

x(t) = 3(1 − t)3 + 0 + 15t2(1 − t) + 2t3

= 3(1 − 3t + 3t2 − t3) + 15t2 − 15t3 + 2t3 = 3 − 9t + 24t2 − 16t3

y(t) = 2(1 − t)3 + 6t (1 − t)2 + 12t2(1 − t) + 4t3

= 2(1 − 3t + 3t2 − t3) + 6t (1 − 2t + t2) + 12t2 − 12t3 + 4t3

= 2 − 6t + 6t2 − 2t3 + 6t − 12t2 + 6t3 + 12t2 − 12t3 + 4t3 = 2 + 6t2 − 4t3

We obtain the following equation

c(t) = (3 − 9t + 24t2 − 16t3, 2 + 6t2 − 4t3), 0 ≤ t ≤ 1.
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The graph of the Bézier curve is shown in the following figure:

x

y

1 2 3

1

2

3

4

Show that a cubic Bézier curve is tangent to the segment P2P3 at P3.
69. A bullet fired from a gun follows the trajectory

x = at, y = bt − 16t2 (a, b > 0)

Show that the bullet leaves the gun at an angle θ = tan−1 ( b
a

)
and lands at a distance ab/16 from the origin.

solution The height of the bullet equals the value of the y-coordinate. When the bullet leaves the gun, y(t) =
t (b − 16t) = 0. The solutions to this equation are t = 0 and t = b

16 , with t = 0 corresponding to the moment the bullet
leaves the gun. We find the slope m of the tangent line at t = 0:

dy

dx
= y′(t)

x′(t) = b − 32t

a
⇒ m = b − 32t

a

∣∣∣∣
t=0

= b

a

It follows that tan θ = b
a or θ = tan−1

(
b
a

)
. The bullet lands at t = b

16 . We find the distance of the bullet from the origin

at this time, by substituting t = b
16 in x(t) = at . This gives

x

(
b

16

)
= ab

16

Plot c(t) = (t3 − 4t, t4 − 12t2 + 48) for −3 ≤ t ≤ 3. Find the points where the tangent line is horizontal or
vertical.

71. Plot the astroid x = cos3 θ , y = sin3 θ and find the equation of the tangent line at θ = π
3 .

solution The graph of the astroid x = cos3 θ , y = sin3 θ is shown in the following figure:

x

y

=     (0, 1)π 
2

   =      (0, −1)3π 
2

   = 0
(1, 0)

   = π
(−1, 0)

The slope of the tangent line at θ = π
3 is

m = dy

dx

∣∣∣∣
θ=π/3

= (sin3 θ)′
(cos3 θ)′

∣∣∣∣
θ=π/3

= 3 sin2 θ cos θ

3 cos2 θ(− sin θ)

∣∣∣∣
θ=π/3

= − sin θ

cos θ

∣∣∣∣
θ=π/3

= − tan θ

∣∣∣∣
π/3

= −√
3

We find the point of tangency: (
x
(π

3

)
, y
(π

3

))
=
(

cos3 π

3
, sin3 π

3

)
=
(

1

8
,

3
√

3

8

)

The equation of the tangent line at θ = π
3 is, thus,

y − 3
√

3

8
= −√

3

(
x − 1

8

)
⇒ y = −√

3x +
√

3

2

Find the equation of the tangent line at t = π
4 to the cycloid generated by the unit circle with parametric equation

(5).

73. Find the points with horizontal tangent line on the cycloid with parametric equation (5).

solution The parametric equations of the cycloid are

x = t − sin t, y = 1 − cos t
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We find the slope of the tangent line at t :

dy

dx
= (1 − cos t)′

(t − sin t)′ = sin t

1 − cos t

The tangent line is horizontal where it has slope zero. That is,

dy

dx
= sin t

1 − cos t
= 0 ⇒ sin t = 0

cos t 
= 1
⇒ t = (2k − 1)π, k = 0, ±1, ±2, . . .

We find the coordinates of the points with horizontal tangent line, by substituting t = (2k − 1)π in x(t) and y(t). This
gives

x = (2k − 1)π − sin(2k − 1)π = (2k − 1)π

y = 1 − cos((2k − 1)π) = 1 − (−1) = 2

The required points are

((2k − 1)π, 2), k = 0, ±1, ±2, . . .

Property of the Cycloid Prove that the tangent line at a point P on the cycloid always passes through the top
point on the rolling circle as indicated in Figure 20. Assume the generating circle of the cycloid has radius 1.

75. A curtate cycloid (Figure 21) is the curve traced by a point at a distance h from the center of a circle of radius R

rolling along the x-axis where h < R. Show that this curve has parametric equations x = Rt − h sin t , y = R − h cos t .

y

h
R

x
4π2π

FIGURE 21 Curtate cycloid.

solution Let P be a point at a distance h from the center C of the circle. Assume that at t = 0, the line of CP is
passing through the origin. When the circle rolls a distance Rt along the x-axis, the length of the arc ŜQ (see figure) is
also Rt and the angle 
 SCQ has radian measure t . We compute the coordinates x and y of P .

0

CC

R

S

Rt

A
P

h

t

Q

x = Rt − PA = Rt − h sin(π − t) = Rt − h sin t

y = R + AC = R + h cos(π − t) = R − h cos t

We obtain the following parametrization:

x = Rt − h sin t, y = R − h cos t.

Use a computer algebra system to explore what happens when h > R in the parametric equations of Exercise
75. Describe the result.

77. Show that the line of slope t through (−1, 0) intersects the unit circle in the point with coordinates

x = 1 − t2

t2 + 1
, y = 2t

t2 + 1
10

Conclude that these equations parametrize the unit circle with the point (−1, 0) excluded (Figure 22). Show further that
t = y/(x + 1).

(x, y)

(−1, 0)

Slope t

y

x

FIGURE 22 Unit circle.
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solution The equation of the line of slope t through (−1, 0) is y = t (x + 1). The equation of the unit circle is

x2 + y2 = 1. Hence, the line intersects the unit circle at the points (x, y) that satisfy the equations:

y = t (x + 1) (1)

x2 + y2 = 1 (2)

Substituting y from equation (1) into equation (2) and solving for x we obtain

x2 + t2(x + 1)2 = 1

x2 + t2x2 + 2t2x + t2 = 1

(1 + t2)x2 + 2t2x + (t2 − 1) = 0

This gives

x1,2 = −2t2 ±
√

4t4 − 4(t2 + 1)(t2 − 1)

2(1 + t2)
= −2t2 ± 2

2(1 + t2)
= ±1 − t2

1 + t2

So x1 = −1 and x2 = 1 − t2

t2 + 1
. The solution x = −1 corresponds to the point (−1, 0). We are interested in the second

point of intersection that is varying as t varies. Hence the appropriate solution is

x = 1 − t2

t2 + 1

We find the y-coordinate by substituting x in equation (1). This gives

y = t (x + 1) = t

(
1 − t2

t2 + 1
+ 1

)
= t · 1 − t2 + t2 + 1

t2 + 1
= 2t

t2 + 1

We conclude that the line and the unit circle intersect, besides at (−1, 0), at the point with the following coordinates:

x = 1 − t2

t2 + 1
, y = 2t

t2 + 1
(3)

Since these points determine all the points on the unit circle except for (−1, 0) and no other points, the equations in (3)
parametrize the unit circle with the point (−1, 0) excluded.

We show that t = y

x + 1
. Using (3) we have

y

x + 1
=

2t
t2+1

1−t2

t2+1
+ 1

=
2t

t2+1
1−t2+t2+1

t2+1

=
2t

t2+1
2

t2+1

= 2t

2
= t.

The folium of Descartes is the curve with equation x3 + y3 = 3axy, where a 
= 0 is a constant (Figure 23).

(a) Show that the line y = tx intersects the folium at the origin and at one other point P for all t 
= −1, 0. Express the
coordinates of P in terms of t to obtain a parametrization of the folium. Indicate the direction of the parametrization
on the graph.

(b) Describe the interval of t-values parametrizing the parts of the curve in quadrants I, II, and IV. Note that t = −1
is a point of discontinuity of the parametrization.

(c) Calculate dy/dx as a function of t and find the points with horizontal or vertical tangent.

79. Use the results of Exercise 78 to show that the asymptote of the folium is the line x + y = −a. Hint: Show that
lim

t→−1
(x + y) = −a.

solution We must show that as x → ∞ or x → −∞ the graph of the folium is getting arbitrarily close to the line

x + y = −a, and the derivative dy
dx

is approaching the slope −1 of the line.
In Exercise 78 we showed that x → ∞ when t → (−1−) and x → −∞ when t → (−1+). We first show that the graph

is approaching the line x + y = −a as x → ∞ or x → −∞, by showing that lim
t→−1− x + y = lim

t→−1+ x + y = −a.

For x(t) = 3at

1 + t3
, y(t) = 3at2

1 + t3
, a > 0, calculated in Exercise 78, we obtain using L’Hôpital’s Rule:

lim
t→−1−(x + y) = lim

t→−1−
3at + 3at2

1 + t3
= lim

t→−1−
3a + 6at

3t2
= 3a − 6a

3
= −a

lim
t→−1+(x + y) = lim

t→−1+
3at + 3at2

1 + t3
= lim

t→−1+
3a + 6at

3t2
= 3a − 6a

3
= −a
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We now show that
dy

dx
is approaching −1 as t → −1− and as t → −1+. We use

dy

dx
= 6at − 3at4

3a − 6at3
computed in Exercise

78 to obtain

lim
t→−1−

dy

dx
= lim

t→−1−
6at − 3at4

3a − 6at3
= −9a

9a
= −1

lim
t→−1+

dy

dx
= lim

t→−1+
6at − 3at4

3a − 6at3
= −9a

9a
= −1

We conclude that the line x + y = −a is an asymptote of the folium as x → ∞ and as x → −∞.

Find a parametrization of x2n+1 + y2n+1 = axnyn, where a and n are constants.
81. Second Derivative for a Parametrized Curve Given a parametrized curve c(t) = (x(t), y(t)), show that

d

dt

( dy

dx

)
= x′(t)y′′(t) − y′(t)x′′(t)

x′(t)2

Use this to prove the formula

d2y

dx2
= x′(t)y′′(t) − y′(t)x′′(t)

x′(t)3
11

solution By the formula for the slope of the tangent line we have

dy

dx
= y′(t)

x′(t)
Differentiating with respect to t , using the Quotient Rule, gives

d

dt

(
dy

dx

)
= d

dt

(
y′(t)
x′(t)

)
= x′(t)y′′(t) − y′(t)x′′(t)

x′(t)2

By the Chain Rule we have

d2y

dx2
= d

dx

(
dy

dx

)
= d

dt

(
dy

dx

)
· dt

dx

Substituting into the above equation

(
and using

dt

dx
= 1

dx/dt
= 1

x′(t)

)
gives

d2y

dx2
= x′(t)y′′(t) − y′(t)x′′(t)

x′(t)2
· 1

x′(t) = x′(t)y′′(t) − y′(t)x′′(t)
x′(t)3

The second derivative of y = x2 is dy2/d2x = 2. Verify that Eq. (11) applied to c(t) = (t, t2) yields dy2/d2x = 2.
In fact, any parametrization may be used. Check that c(t) = (t3, t6) and c(t) = (tan t, tan2 t) also yield dy2/d2x = 2.

In Exercises 83–86, use Eq. (11) to find d2y/dx2.

83. x = t3 + t2, y = 7t2 − 4, t = 2

solution We find the first and second derivatives of x(t) and y(t):

x′(t) = 3t2 + 2t ⇒ x′(2) = 3 · 22 + 2 · 2 = 16

x′′(t) = 6t + 2 ⇒ x′′(2) = 6 · 2 + 2 = 14

y′(t) = 14t ⇒ y′(2) = 14 · 2 = 28

y′′(t) = 14 ⇒ y′′(2) = 14

Using Eq. (11) we get

d2y

dx2

∣∣∣∣
t=2

= x′(t)y′′(t) − y′(t)x′′(t)
x′(t)3

∣∣∣∣
t=2

= 16 · 14 − 28 · 14

163
= −21

512

x = s−1 + s, y = 4 − s−2, s = 1
85. x = 8t + 9, y = 1 − 4t , t = −3

solution We compute the first and second derivatives of x(t) and y(t):

x′(t) = 8 ⇒ x′(−3) = 8

x′′(t) = 0 ⇒ x′′(−3) = 0

y′(t) = −4 ⇒ y′(−3) = −4

y′′(t) = 0 ⇒ y′′(−3) = 0
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Using Eq. (11) we get

d2y

dx2

∣∣∣∣
t=−3

= x′(−3)y′′(−3) − y′(−3)x′′(−3)

x′(−3)3
= 8 · 0 − (−4) · 0

83
= 0

x = cos θ , y = sin θ , θ = π
4

87. Use Eq. (11) to find the t-intervals on which c(t) = (t2, t3 − 4t) is concave up.

solution The curve is concave up where
d2y

dx2
> 0. Thus,

x′(t)y′′(t) − y′(t)x′′(t)
x′(t)3

> 0 (1)

We compute the first and second derivatives:

x′(t) = 2t, x′′(t) = 2

y′(t) = 3t2 − 4, y′′(t) = 6t

Substituting in (1) and solving for t gives

12t2 − (6t2 − 8)

8t3
= 6t2 + 8

8t3

Since 6t2 + 8 > 0 for all t , the quotient is positive if 8t3 > 0. We conclude that the curve is concave up for t > 0.

Use Eq. (11) to find the t-intervals on which c(t) = (t2, t4 − 4t) is concave up.
89. Area Under a Parametrized Curve Let c(t) = (x(t), y(t)), where y(t) > 0 and x′(t) > 0 (Figure 24). Show that
the area A under c(t) for t0 ≤ t ≤ t1 is

A =
∫ t1

t0

y(t)x′(t) dt 12

Hint: Because it is increasing, the function x(t) has an inverse t = g(x) and c(t) is the graph of y = y(g(x)). Apply the

change-of-variables formula to A = ∫ x(t1)
x(t0)

y(g(x)) dx.

y
c(t)

x(t1)x(t0)
xx

FIGURE 24

solution Let x0 = x(t0) and x1 = x(t1). We are given that x′(t) > 0, hence x = x(t) is an increasing function of
t , so it has an inverse function t = g(x). The area A is given by

∫ x1
x0

y(g(x)) dx. Recall that y is a function of t and

t = g(x), so the height y at any point x is given by y = y(g(x)). We find the new limits of integration. Since x0 = x(t0)

and x1 = x(t1), the limits for t are t0 and t1, respectively. Also since x′(t) = dx
dt

, we have dx = x′(t)dt . Performing this
substitution gives

A =
∫ x1

x0

y(g(x)) dx =
∫ t1

t0

y(g(x))x′(t) dt.

Since g(x) = t , we have A =
∫ t1

t0

y(t)x′(t) dt .

Calculate the area under y = x2 over [0, 1] using Eq. (12) with the parametrizations (t3, t6) and (t2, t4).
91. What does Eq. (12) say if c(t) = (t, f (t))?

solution In the parametrization x(t) = t , y(t) = f (t) we have x′(t) = 1, t0 = x(t0), t1 = x(t1). Hence Eq. (12)
becomes

A =
∫ t1

t0

y(t)x′(t) dt =
∫ x(t1)

x(t0)
f (t) dt

We see that in this parametrization Eq. (12) is the familiar formula for the area under the graph of a positive function.

Sketch the graph of c(t) = (ln t, 2 − t) for 1 ≤ t ≤ 2 and compute the area under the graph using Eq. (12).
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93. Galileo tried unsuccessfully to find the area under a cycloid. Around 1630, Gilles de Roberval proved that the area
under one arch of the cycloid c(t) = (Rt − R sin t, R − R cos t) generated by a circle of radius R is equal to three times
the area of the circle (Figure 25). Verify Roberval’s result using Eq. (12).

x

R

πR 2πR

y

FIGURE 25 The area of one arch of the cycloid equals three times the area of the generating circle.

solution This reduces to

∫ 2π

0
(R − R cos t)(Rt − R sin t)′ dt =

∫ 2π

0
R2(1 − cos t)2 dt = 3πR2.

Further Insights and Challenges

Prove the following generalization of Exercise 93: For all t > 0, the area of the cycloidal sector OPC is equal to
three times the area of the circular segment cut by the chord PC in Figure 26.

95. Derive the formula for the slope of the tangent line to a parametric curve c(t) = (x(t), y(t)) using a method
different from that presented in the text. Assume that x′(t0) and y′(t0) exist and that x′(t0) 
= 0. Show that

lim
h→0

y(t0 + h) − y(t0)

x(t0 + h) − x(t0)
= y′(t0)

x′(t0)

Then explain why this limit is equal to the slope dy/dx. Draw a diagram showing that the ratio in the limit is the slope
of a secant line.

solution Since y′(t0) and x′(t0) exist, we have the following limits:

lim
h→0

y(t0 + h) − y(t0)

h
= y′(t0), lim

h→0

x(t0 + h) − x(t0)

h
= x′(t0) (1)

We use Basic Limit Laws, the limits in (1) and the given data x′(t0) 
= 0, to write

lim
h→0

y(t0 + h) − y(t0)

x(t0 + h) − x(t0)
= lim

h→0

y(t0+h)−y(t0)
h

x(t0+h)−x(t0)
h

= limh→0
y(t0+h)−y(t0)

h

limh→0
x(t0+h)−x(t0)

h

= y′(t0)

x′(t0)

Notice that the quotient
y(t0 + h) − y(t0)

x(t0 + h) − x(t0)
is the slope of the secant line determined by the points P = (x(t0), y(t0)) and

Q = (x(t0 + h), y(t0 + h)). Hence, the limit of the quotient as h → 0 is the slope of the tangent line at P , that is the
derivative dy

dx
.

x

y

x(t0 + h)x(t0)

y(t0)

y(t0, h)

P

Q

Verify that the tractrix curve (� > 0)

c(t) =
(

t − � tanh
t

�
, � sech

t

�

)

has the following property: For all t , the segment from c(t) to (t, 0) is tangent to the curve and has length � (Figure
27).

97. In Exercise 54 of Section 10.1 (ET Exercise 54 of Section 9.1), we described the tractrix by the differential equation

dy

dx
= − y√

�2 − y2

Show that the curve c(t) identified as the tractrix in Exercise 96 satisfies this differential equation. Note that the derivative
on the left is taken with respect to x, not t .
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solution Note that dx/dt = 1 − sech2(t/�) = tanh2(t/�) and dy/dt = − sech(t/�) tanh(t/�). Thus,

dy

dx
= dy/dt

dx/dt
= − sech(t/�)

tanh(t/�)
= −y/�√

1 − y2/�2

Multiplying top and bottom by �/� gives

dy

dx
= −y√

�2 − y2

In Exercises 98 and 99, refer to Figure 28.

q

y

(x, y)

x

FIGURE 28 The parameter θ on the ellipse
(x

a

)2 +
(y

b

)2 = 1.

In the parametrization c(t) = (a cos t, b sin t) of an ellipse, t is not an angular parameter unless a = b (in
which case the ellipse is a circle). However, t can be interpreted in terms of area: Show that if c(t) = (x, y), then
t = (2/ab)A, where A is the area of the shaded region in Figure 29. Hint: Use Eq. (12).

99. Show that the parametrization of the ellipse by the angle θ is

x = ab cos θ√
a2 sin2 θ + b2 cos2 θ

y = ab sin θ√
a2 sin2 θ + b2 cos2 θ

solution We consider the ellipse

x2

a2
+ y2

b2
= 1.

For the angle θ we have tan θ = y
x , hence,

y = x tan θ (1)

Substituting in the equation of the ellipse and solving for x we obtain

x2

a2
+ x2tan2θ

b2
= 1

b2x2 + a2x2tan2θ = a2b2

(a2tan2θ + b2)x2 = a2b2

x2 = a2b2

a2tan2θ + b2
= a2b2cos2θ

a2sin2θ + b2cos2θ

We now take the square root. Since the sign of the x-coordinate is the same as the sign of cos θ , we take the positive root,
obtaining

x = ab cos θ√
a2sin2θ + b2cos2θ

(2)

Hence by (1), the y-coordinate is

y = x tan θ = ab cos θ tan θ√
a2sin2θ + b2cos2θ

= ab sin θ√
a2sin2θ + b2cos2θ

(3)

Equalities (2) and (3) give the following parametrization for the ellipse:

c1(θ) =
(

ab cos θ√
a2sin2θ + b2cos2θ

,
ab sin θ√

a2sin2θ + b2cos2θ

)
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12.2 Arc Length and Speed

Preliminary Questions
1. What is the definition of arc length?

solution A curve can be approximated by a polygonal path obtained by connecting points

p0 = c(t0), p1 = c(t1), . . . , pN = c(tN )

on the path with segments. One gets an approximation by summing the lengths of the segments. The definition of arc
length is the limit of that approximation when increasing the number of points so that the lengths of the segments approach
zero. In doing so, we obtain the following theorem for the arc length:

S =
∫ b

a

√
x′(t)2 + y′(t)2 dt,

which is the length of the curve c(t) = (x(t), y(t)) for a ≤ t ≤ b.

2. What is the interpretation of
√

x′(t)2 + y′(t)2 for a particle following the trajectory (x(t), y(t))?

solution The expression
√

x′(t)2 + y′(t)2 denotes the speed at time t of a particle following the trajectory (x(t), y(t)).

3. A particle travels along a path from (0, 0) to (3, 4). What is the displacement? Can the distance traveled be determined
from the information given?

solution The net displacement is the distance between the initial point (0, 0) and the endpoint (3, 4). That is

√
(3 − 0)2 + (4 − 0)2 = √

25 = 5.

The distance traveled can be determined only if the trajectory c(t) = (x(t), y(t)) of the particle is known.

4. A particle traverses the parabola y = x2 with constant speed 3 cm/s. What is the distance traveled during the first
minute? Hint: No computation is necessary.

solution Since the speed is constant, the distance traveled is the following product: L = st = 3 · 60 = 180 cm.

Exercises
In Exercises 1–10, use Eq. (3) to find the length of the path over the given interval.

1. (3t + 1, 9 − 4t), 0 ≤ t ≤ 2

solution Since x = 3t + 1 and y = 9 − 4t we have x′ = 3 and y′ = −4. Hence, the length of the path is

S =
∫ 2

0

√
32 + (−4)2 dt = 5

∫ 2

0
dt = 10.

(1 + 2t, 2 + 4t), 1 ≤ t ≤ 43. (2t2, 3t2 − 1), 0 ≤ t ≤ 4

solution Since x = 2t2 and y = 3t2 − 1, we have x′ = 4t and y′ = 6t . By the formula for the arc length we get

S =
∫ 4

0

√
x′(t)2 + y′(t)2 dt =

∫ 4

0

√
16t2 + 36t2 dt = √

52
∫ 4

0
t dt = √

52 · t2

2

∣∣∣∣4
0

= 16
√

13

(3t, 4t3/2), 0 ≤ t ≤ 1
5. (3t2, 4t3), 1 ≤ t ≤ 4

solution We have x = 3t2 and y = 4t3. Hence x′ = 6t and y′ = 12t2. By the formula for the arc length we get

S =
∫ 4

1

√
x′(t)2 + y′(t)2 dt =

∫ 4

1

√
36t2 + 144t4 dt = 6

∫ 4

1

√
1 + 4t2t dt.

Using the substitution u = 1 + 4t2, du = 8t dt we obtain

S = 6

8

∫ 65

5

√
u du = 3

4
· 2

3
u3/2

∣∣∣∣65

5
= 1

2
(653/2 − 53/2) ≈ 256.43

(t3 + 1, t2 − 3), 0 ≤ t ≤ 1
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7. (sin 3t, cos 3t), 0 ≤ t ≤ π

solution We have x = sin 3t , y = cos 3t , hence x′ = 3 cos 3t and y′ = −3 sin 3t . By the formula for the arc length
we obtain:

S =
∫ π

0

√
x′(t)2 + y′(t)2 dt =

∫ π

0

√
9 cos2 3t + 9 sin2 3t dt =

∫ π

0

√
9 dt = 3π

(sin θ − θ cos θ, cos θ + θ sin θ), 0 ≤ θ ≤ 2In Exercises 9 and 10, use the identity

1 − cos t

2
= sin2 t

2

9. (2 cos t − cos 2t, 2 sin t − sin 2t), 0 ≤ t ≤ π
2

solution We have x = 2 cos t − cos 2t , y = 2 sin t − sin 2t . Thus, x′ = −2 sin t + 2 sin 2t and y′ = 2 cos t − 2 cos 2t .
We get

x′(t)2 + y′(t)2 = (−2 sin t + 2 sin 2t)2 + (2 cos t − 2 cos 2t)2

= 4 sin2 t − 8 sin t sin 2t + 4 sin2 2t + 4 cos2 t − 8 cos t cos 2t + 4 cos2 2t

= 4(sin2 t + cos2 t) + 4(sin2 2t + cos2 2t) − 8(sin t sin 2t + cos t cos 2t)

= 4 + 4 − 8 cos(2t − t) = 8 − 8 cos t = 8(1 − cos t)

We now use the formula for the arc length to obtain

S =
∫ π/2

0

√
x′(t)2 + y′(t)2 =

∫ π/2

0

√
8(1 − cos t) dt =

∫ π/2

0

√
16 sin2 t

2
dt = 4

∫ π/2

0
sin

t

2
dt

= −8 cos
t

2

∣∣∣∣π/2

0
= −8

(
cos

π

4
− cos 0

)
= −8

(√
2

2
− 1

)
≈ 2.34

(5(θ − sin θ), 5(1 − cos θ)), 0 ≤ θ ≤ 2π
11. Show that one arch of a cycloid generated by a circle of radius R has length 8R.

solution Recall from earlier that the cycloid generated by a circle of radius R has parametric equations x = Rt −
R sin t , y = R − R cos t . Hence, x′ = R − R cos t , y′ = R sin t . Using the identity sin2 t

2
= 1 − cos t

2
, we get

x′(t)2 + y′(t)2 = R2(1 − cos t)2 + R2 sin2 t = R2(1 − 2 cos t + cos2 t + sin2 t)

= R2(1 − 2 cos t + 1) = 2R2(1 − cos t) = 4R2 sin2 t

2

One arch of the cycloid is traced as t varies from 0 to 2π . Hence, using the formula for the arc length we obtain:

S =
∫ 2π

0

√
x′(t)2 + y′(t)2 dt =

∫ 2π

0

√
4R2 sin2 t

2
dt = 2R

∫ 2π

0
sin

t

2
dt = 4R

∫ π

0
sin u du

= −4R cos u

∣∣∣∣π
0

= −4R(cos π − cos 0) = 8R

Find the length of the spiral c(t) = (t cos t, t sin t) for 0 ≤ t ≤ 2π to three decimal places (Figure 7). Hint: Use
the formula ∫ √

1 + t2 dt = 1

2
t
√

1 + t2 + 1

2
ln
(
t +
√

1 + t2
)

13. Find the length of the tractrix (see Figure 6)

c(t) = (t − tanh(t), sech(t)), 0 ≤ t ≤ A

solution Since x = t − tanh(t) and y = sech(t) we have x′ = 1 − sech2(t) and y′ = −sech(t) tanh(t). Hence,

x′(t)2 + y′(t)2 = (1 − sech2(t))
2 + sech2(t)tanh2(t)

= 1 − 2 sech2(t) + sech4(t) + sech2(t)tanh2(t)

= 1 − 2 sech2(t) + sech2(t)(sech2(t) + tanh2(t))

= 1 − 2 sech2(t) + sech2(t) = 1 − sech2(t) = tanh2(t)

Hence, using the formula for the arc length we get:

S =
∫ A

0

√
x′(t)2 + y′(t)2 dt =

∫ A

0

√
tanh2(t) dt =

∫ A

0
tanh(t) dt = ln(cosh(t))

∣∣∣∣A
0

= ln(cosh(A)) − ln(cosh(0)) = ln(cosh(A)) − ln 1 = ln(cosh(A))

Find a numerical approximation to the length of c(t) = (cos 5t, sin 3t) for 0 ≤ t ≤ 2π (Figure 8).
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In Exercises 15–18, determine the speed s at time t (assume units of meters and seconds).

15. (t3, t2), t = 2

solution We have x(t) = t3, y(t) = t2 hence x′(t) = 3t2, y′(t) = 2t . The speed of the particle at time t is thus,

ds
dt

=
√

x′(t)2 + y′(t)2 =
√

9t4 + 4t2 = t
√

9t2 + 4. At time t = 2 the speed is

ds

dt

∣∣∣∣
t=2

= 2
√

9 · 22 + 4 = 2
√

40 = 4
√

10 ≈ 12.65 m/s.

(3 sin 5t, 8 cos 5t), t = π
4

17. (5t + 1, 4t − 3), t = 9

solution Since x = 5t + 1, y = 4t − 3, we have x′ = 5 and y′ = 4. The speed of the particle at time t is

ds

dt
= √x′(t) + y′(t) =

√
52 + 42 = √

41 ≈ 6.4 m/s.

We conclude that the particle has constant speed of 6.4 m/s.

(ln(t2 + 1), t3), t = 1
19. Find the minimum speed of a particle with trajectory c(t) = (t3 − 4t, t2 + 1) for t ≥ 0. Hint: It is easier to find the
minimum of the square of the speed.

solution We first find the speed of the particle. We have x(t) = t3 − 4t , y(t) = t2 + 1, hence x′(t) = 3t2 − 4 and
y′(t) = 2t . The speed is thus

ds

dt
=
√

(3t2 − 4)
2 + (2t)2 =

√
9t4 − 24t2 + 16 + 4t2 =

√
9t4 − 20t2 + 16.

The square root function is an increasing function, hence the minimum speed occurs at the value of t where the function
f (t) = 9t4 − 20t2 + 16 has minimum value. Since lim

t→∞ f (t) = ∞, f has a minimum value on the interval 0 ≤ t < ∞,

and it occurs at a critical point or at the endpoint t = 0. We find the critical point of f on t ≥ 0:

f ′(t) = 36t3 − 40t = 4t (9t2 − 10) = 0 ⇒ t = 0, t =
√

10

9
.

We compute the values of f at these points:

f (0) = 9 · 04 − 20 · 02 + 16 = 16

f

(√
10

9

)
= 9

(√
10

9

)4

− 20

(√
10

9

)2

+ 16 = 44

9
≈ 4.89

We conclude that the minimum value of f on t ≥ 0 is 4.89. The minimum speed is therefore(
ds

dt

)
min

≈ √
4.89 ≈ 2.21.

Find the minimum speed of a particle with trajectory c(t) = (t3, t−2) for t ≥ 0.5.
21. Find the speed of the cycloid c(t) = (4t − 4 sin t, 4 − 4 cos t) at points where the tangent line is horizontal.

solution We first find the points where the tangent line is horizontal. The slope of the tangent line is the following
quotient:

dy

dx
= dy/dt

dx/dt
= 4 sin t

4 − 4 cos t
= sin t

1 − cos t
.

To find the points where the tangent line is horizontal we solve the following equation for t ≥ 0:

dy

dx
= 0,

sin t

1 − cos t
= 0 ⇒ sin t = 0 and cos t 
= 1.

Now, sin t = 0 and t ≥ 0 at the points t = πk, k = 0, 1, 2, . . . . Since cos πk = (−1)k , the points where cos t 
= 1 are
t = πk for k odd. The points where the tangent line is horizontal are, therefore:

t = π(2k − 1), k = 1, 2, 3, . . .

The speed at time t is given by the following expression:

ds

dt
=
√

x′(t)2 + y′(t)2 =
√

(4 − 4 cos t)2 + (4 sin t)2

=
√

16 − 32 cos t + 16 cos2 t + 16 sin2 t = √
16 − 32 cos t + 16

= √32(1 − cos t) =
√

32 · 2 sin2 t

2
= 8

∣∣∣∣sin
t

2

∣∣∣∣
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That is, the speed of the cycloid at time t is

ds

dt
= 8

∣∣∣∣sin
t

2

∣∣∣∣ .
We now substitute

t = π(2k − 1), k = 1, 2, 3, . . .

to obtain

ds

dt
= 8

∣∣∣∣sin
π(2k − 1)

2

∣∣∣∣ = 8|(−1)k+1| = 8

Calculate the arc length integral s(t) for the logarithmic spiral c(t) = (et cos t, et sin t).In Exercises 23–26, plot the curve and use the Midpoint Rule with N = 10, 20, 30, and 50 to approximate its
length.

23. c(t) = (cos t, esin t ) for 0 ≤ t ≤ 2π

solution The curve of c(t) = (cos t, esin t ) for 0 ≤ t ≤ 2π is shown in the figure below:

y

t = 0, t = 2π, (1, 1)t = π, (−1, 1)

x

t =     (0, e)π 
2

t =      (0,    )3π 
2

1 
e

c(t) = (cos t, esin t ), 0 ≤ t ≤ 2π.

The length of the curve is given by the following integral:

S =
∫ 2π

0

√
x′(t)2 + y′(t)2 dt =

∫ 2π

0

√
(− sin t)2 + (cos t esin t )

2
dt.

That is, S = ∫ 2π
0

√
sin2 t + cos2 t e2 sin t dt . We approximate the integral using the Mid-Point Rule with N = 10, 20,

30, 50. For f (t) =
√

sin2 t + cos2 t e2 sin t we obtain

(N = 10): �x = 2π

10
= π

5
, ci =

(
i − 1

2

)
· π

5

M10 = π

5

10∑
i=1

f (ci) = 6.903734

(N = 20): �x = 2π

20
= π

10
, ci =

(
i − 1

2

)
· π

10

M20 = π

10

20∑
i=1

f (ci) = 6.915035

(N = 30): �x = 2π

30
= π

15
, ci =

(
i − 1

2

)
· π

15

M30 = π

15

30∑
i=1

f (ci) = 6.914949

(N = 50): �x = 2π

50
= π

25
, ci =

(
i − 1

2

)
· π

25

M50 = π

25

50∑
i=1

f (ci) = 6.914951

c(t) = (t − sin 2t, 1 − cos 2t) for 0 ≤ t ≤ 2π25. The ellipse
(x

5

)2 +
(y

3

)2 = 1

solution We use the parametrization given in Example 4, section 12.1, that is, c(t) = (5 cos t, 3 sin t), 0 ≤ t ≤ 2π .
The curve is shown in the figure below:
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y

t = 0
t = 2π x

c(t) = (5 cos t, 3 sin t), 0 ≤ t ≤ 2π.

The length of the curve is given by the following integral:

S =
∫ 2π

0

√
x′(t)2 + y′(t)2 dt =

∫ 2π

0

√
(−5 sin t)2 + (3 cos t)2 dt

=
∫ 2π

0

√
25 sin2 t + 9 cos2 t dt =

∫ 2π

0

√
9(sin2 t + cos2 t) + 16 sin2 t dt =

∫ 2π

0

√
9 + 16 sin2 t dt.

That is,

S =
∫ 2π

0

√
9 + 16 sin2 t dt.

We approximate the integral using the Mid-Point Rule with N = 10, 20, 30, 50, for f (t) =
√

9 + 16 sin2 t . We obtain

(N = 10): �x = 2π

10
= π

5
, ci =

(
i − 1

2

)
· π

5

M10 = π

5

10∑
i=1

f (ci) = 25.528309

(N = 20): �x = 2π

20
= π

10
, ci =

(
i − 1

2

)
· π

10

M20 = π

10

20∑
i=1

f (ci) = 25.526999

(N = 30): �x = 2π

30
= π

15
, ci =

(
i − 1

2

)
· π

15

M30 = π

15

30∑
i=1

f (ci) = 25.526999

(N = 50): �x = 2π

50
= π

25
, ci =

(
i − 1

2

)
· π

25

M50 = π

25

50∑
i=1

f (ci) = 25.526999

x = sin 2t , y = sin 3t for 0 ≤ t ≤ 2π
27. If you unwind thread from a stationary circular spool, keeping the thread taut at all times, then the endpoint traces a
curve C called the involute of the circle (Figure 9). Observe that PQ has length Rθ . Show that C is parametrized by

c(θ) = (R(cos θ + θ sin θ), R(sin θ − θ cos θ)
)

Then find the length of the involute for 0 ≤ θ ≤ 2π .

P = (x, y)

y

q x

R

Q

FIGURE 9 Involute of a circle.
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solution Suppose that the arc Q̂T corresponding to the angle θ is unwound. Then the length of the segment QP

equals the length of this arc. That is, QP = Rθ . With the help of the figure we can see that

x = OA + AB = OA + EP = R cos θ + QP sin θ = R cos θ + Rθ sin θ = R(cos θ + θ sin θ).

Furthermore,

y = QA − QE = R sin θ − QP cos θ = R sin θ − Rθ cos θ = R(sin θ − θ cos θ)

The coordinates of P with respect to the parameter θ form the following parametrization of the curve:

c(θ) = (R(cos θ + θ sin θ), R(sin θ − θ cos θ)), 0 ≤ θ ≤ 2π.

We find the length of the involute for 0 ≤ θ ≤ 2π , using the formula for the arc length:

S =
∫ 2π

0

√
x′(θ)2 + y′(θ)2 dθ.

We compute the integrand:

x′(θ) = d

dθ
(R(cos θ + θ sin θ)) = R(− sin θ + sin θ + θ cos θ) = Rθ cos θ

y′(θ) = d

dθ
(R(sin θ − θ cos θ)) = R(cos θ − (cos θ − θ sin θ)) = Rθ sin θ

√
x′(θ)2 + y′(θ)2 =

√
(Rθ cos θ)2 + (Rθ sin θ)2 =

√
R2θ2(cos2 θ + sin2 θ) =

√
R2θ2 = Rθ

We now compute the arc length:

S =
∫ 2π

0
Rθ dθ = Rθ2

2

∣∣∣∣2π

0
= R · (2π)2

2
= 2π2R.

Let a > b and set

k =
√

1 − b2

a2

Use a parametric representation to show that the ellipse
(
x
a

)2 + ( y
b

)2 = 1 has length L = 4aG
(
π
2 , k

)
, where

G(θ, k) =
∫ θ

0

√
1 − k2 sin2 t dt

is the elliptic integral of the second kind.

In Exercises 29–32, use Eq. (4) to compute the surface area of the given surface.

29. The cone generated by revolving c(t) = (t, mt) about the x-axis for 0 ≤ t ≤ A

solution Substituting y(t) = mt , y′(t) = m, x′(t) = 1, a = 0, and b = 0 in the formula for the surface area, we get

S = 2π

∫ A

0
mt
√

1 + m2 dt = 2π
√

1 + m2m

∫ A

0
t dt = 2πm

√
1 + m2 · t2

2

∣∣∣∣A
0

= m
√

1 + m2πA2

A sphere of radius R
31. The surface generated by revolving one arch of the cycloid c(t) = (t − sin t, 1 − cos t) about the x-axis

solution One arch of the cycloid is traced as t varies from 0 to 2π . Since x(t) = t − sin t and y(t) = 1 − cos t , we

have x′(t) = 1 − cos t and y′(t) = sin t . Hence, using the identity 1 − cos t = 2 sin2 t
2 , we get

x′(t)2 + y′(t)2 = (1 − cos t)2 + sin2 t = 1 − 2 cos t + cos2 t + sin2 t = 2 − 2 cos t = 4 sin2 t

2

By the formula for the surface area we obtain:

S = 2π

∫ 2π

0
y(t)

√
x′(t)2 + y′(t)2 dt = 2π

∫ 2π

0
(1 − cos t) · 2 sin

t

2
dt

= 2π

∫ 2π

0
2 sin2 t

2
· 2 sin

t

2
dt = 8π

∫ 2π

0
sin3 t

2
dt = 16π

∫ π

0
sin3 u du

We use a reduction formula to compute this integral, obtaining

S = 16π

[
1

3
cos3 u − cos u

] ∣∣∣∣π
0

= 16π

[
4

3

]
= 64π

3

The surface generated by revolving the astroid c(t) = (cos3 t, sin3 t) about the x-axis for 0 ≤ t ≤ π
2
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Further Insights and Challenges
33. Let b(t) be the “Butterfly Curve”:

x(t) = sin t

(
ecos t − 2 cos 4t − sin

(
t

12

)5
)

y(t) = cos t

(
ecos t − 2 cos 4t − sin

(
t

12

)5
)

(a) Use a computer algebra system to plot b(t) and the speed s′(t) for 0 ≤ t ≤ 12π .

(b) Approximate the length b(t) for 0 ≤ t ≤ 10π .

solution

(a) Let f (t) = ecos t − 2 cos 4t − sin
(

t
12

)5, then

x(t) = sin tf (t)

y(t) = cos tf (t)

and so

(x′(t))2 + (y′(t))2 = [sin tf ′(t) + cos tf (t)]2 + [cos tf ′(t) − sin tf (t)]2

Using the identity sin2 t + cos2 t = 1, we get

(x′(t))2 + (y′(t))2 = (f ′(t))2 + (f (t))2.

Thus, s′(t) is the following:√√√√[
ecos t − 2 cos 4t − sin

(
t

12

)5
]2

+
[
− sin tecos t + 8 sin 4t − 5

12

(
t

12

)4
cos

(
t

12

)5
]2

.

The following figures show the curves of b(t) and the speed s′(t) for 0 ≤ t ≤ 10π :

y

x
t = 10p

t = 0

302010

15

20

10

5

x

y

The “Butterfly Curve” b(t), 0 ≤ t ≤ 10π s′(t), 0 ≤ t ≤ 10π

Looking at the graph, we see it would be difficult to compute the length using numeric integration; due to the high
frequency oscillations, very small steps would be needed.

(b) The length of b(t) for 0 ≤ t ≤ 10π is given by the integral: L = ∫ 10π
0 s′(t) dt where s′(t) is given in part (a). We

approximate the length using the Midpoint Rule with N = 30. The numerical methods in Mathematica approximate
the answer by 211.952. Using the Midpoint Rule with N = 50, we get 204.48; with N = 500, we get 211.6; and with
N = 5000, we get 212.09.

Let a ≥ b > 0 and set k = 2
√

ab

a − b
. Show that the trochoid

x = at − b sin t, y = a − b cos t, 0 ≤ t ≤ T

has length 2(a − b)G
(
T
2 , k

)
with G(θ, k) as in Exercise 28.

35. A satellite orbiting at a distance R from the center of the earth follows the circular path x = R cos ωt , y = R sin ωt .

(a) Show that the period T (the time of one revolution) is T = 2π/ω.

(b) According to Newton’s laws of motion and gravity,

x′′(t) = −Gme
x

R3
, y′′(t) = −Gme

y

R3

where G is the universal gravitational constant and me is the mass of the earth. Prove that R3/T 2 = Gme/4π2. Thus,
R3/T 2 has the same value for all orbits (a special case of Kepler’s Third Law).
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solution

(a) As shown in Example 4, the circular path has constant speed of ds
dt

= ωR. Since the length of one revolution is 2πR,
the period T is

T = 2πR

ωR
= 2π

ω
.

(b) Differentiating x = R cos ωt twice with respect to t gives

x′(t) = −Rω sin ωt

x′′(t) = −Rω2 cos ωt

Substituting x(t) and x′′(t) in the equation x′′(t) = −Gme
x

R3
and simplifying, we obtain

−Rω2 cos ωt = −Gme · R cos ωt

R3

−Rω2 = −Gme

R2
⇒ R3 = Gme

ω2

By part (a), T = 2π

ω
. Hence, ω = 2π

T
. Substituting yields

R3 = Gme

4π2

T 2

= T 2Gme

4π2
⇒ R3

T 2
= Gme

4π2

The acceleration due to gravity on the surface of the earth is

g = Gme

R2
e

= 9.8 m/s2, where Re = 6378 km

Use Exercise 35(b) to show that a satellite orbiting at the earth’s surface would have period Te = 2π
√

Re/g ≈
84.5 min. Then estimate the distance Rm from the moon to the center of the earth. Assume that the period of the
moon (sidereal month) is Tm ≈ 27.43 days.

12.3 Polar Coordinates

Preliminary Questions
1. Points P and Q with the same radial coordinate (choose the correct answer):

(a) Lie on the same circle with the center at the origin.
(b) Lie on the same ray based at the origin.

solution Two points with the same radial coordinate are equidistant from the origin, therefore they lie on the same
circle centered at the origin. The angular coordinate defines a ray based at the origin. Therefore, if the two points have the
same angular coordinate, they lie on the same ray based at the origin.

2. Give two polar representations for the point (x, y) = (0, 1), one with negative r and one with positive r .

solution The point (0, 1) is on the y-axis, distant one unit from the origin, hence the polar representation with positive
r is (r, θ) = (1, π

2

)
. The point (r, θ) = (−1, π

2

)
is the reflection of (r, θ) = (1, π

2

)
through the origin, hence we must

add π to return to the original point.
We obtain the following polar representation of (0, 1) with negative r:

(r, θ) =
(
−1,

π

2
+ π

)
=
(

−1,
3π

2

)
.

3. Describe each of the following curves:

(a) r = 2 (b) r2 = 2 (c) r cos θ = 2

solution
(a) Converting to rectangular coordinates we get√

x2 + y2 = 2 or x2 + y2 = 22.

This is the equation of the circle of radius 2 centered at the origin.
(b) We convert to rectangular coordinates, obtaining x2 + y2 = 2. This is the equation of the circle of radius

√
2, centered

at the origin.
(c) We convert to rectangular coordinates. Since x = r cos θ we obtain the following equation: x = 2. This is the equation
of the vertical line through the point (2, 0).

4. If f (−θ) = f (θ), then the curve r = f (θ) is symmetric with respect to the (choose the correct answer):

(a) x-axis (b) y-axis (c) origin

solution The equality f (−θ) = f (θ) for all θ implies that whenever a point (r, θ) is on the curve, also the point
(r, −θ) is on the curve. Since the point (r, −θ) is the reflection of (r, θ) with respect to the x-axis, we conclude that the
curve is symmetric with respect to the x-axis.
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Exercises
1. Find polar coordinates for each of the seven points plotted in Figure 16.

x

(x, y) = (2�3, 2) 

y

4

4
A

B

C D

G

E F

FIGURE 16

solution We mark the points as shown in the figure.

x

A
y

F(2  3, 2)

G(2  3, −2)

B
C D

E

Using the data given in the figure for the x and y coordinates and the quadrants in which the point are located, we obtain:

(A), with rectangular coordinates (−3, 3): r =
√

(−3)2 + 32 = √
18

θ = π − π
4 = 3π

4

⇒ (r, θ) =
(

3
√

2, 3π
4

)

x

A
y

3  2
3π 
4

(B), with rectangular coordinates (−3, 0):
r = 3
θ = π

⇒ (r, θ) = (3, π)

x

y

3B

π

(C), with rectangular coordinates (−2, −1):

r =
√

22 + 12 = √
5 ≈ 2.2

θ = tan−1
(−1

−2

)
= tan−1

(
1
2

)
= π + 0.46 ≈ 3.6

⇒ (r, θ) ≈
(√

5, 3.6
)

x

y

C

3.6

2.2
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(D), with rectangular coordinates (−1, −1):
r =

√
12 + 12 = √

2 ≈ 1.4
θ = π + π

4 = 5π
4

⇒ (r, θ) ≈
(√

2, 5π
4

)

x

y

D

5π 
4

1.4

(E), with rectangular coordinates (1, 1):
r =

√
12 + 12 = √

2 ≈ 1.4

θ = tan−1
(

1
1

)
= π

4
⇒ (r, θ) ≈

(√
2, π

4

)

x

y

E π 
41.4

(F), with rectangular coordinates (2
√

3, 2):
r =

√(
2
√

3
)2 + 22 = √

16 = 4

θ = tan−1
(

2
2
√

3

)
= tan−1

(
1√
3

)
= π

6

⇒ (r, θ) = (4, π
6

)

x

y

F(2  3, 2)

π 
6

4

(G), with rectangular coordinates (2
√

3, −2): G is the reflection of F about the x axis, hence the two points have equal
radial coordinates, and the angular coordinate of G is obtained from the angular coordinate of F : θ = 2π − π

6 = 11π
6 .

Hence, the polar coordinates of G are
(

4, 11π
6

)
.

Plot the points with polar coordinates:

(a)
(
2, π

6

)
(b)

(
4, 3π

4

)
(c)

(
3, −π

2

)
(d)

(
0, π

6

)3. Convert from rectangular to polar coordinates.

(a) (1, 0) (b) (3,
√

3) (c) (−2, 2) (d) (−1,
√

3)

solution

(a) The point (1, 0) is on the positive x axis distanced one unit from the origin. Hence, r = 1 and θ = 0. Thus,
(r, θ) = (1, 0).

(b) The point
(

3,
√

3
)

is in the first quadrant so θ = tan−1
(√

3
3

)
= π

6 . Also, r =
√

32 +
(√

3
)2 = √

12. Hence,

(r, θ) =
(√

12, π
6

)
.

(c) The point (−2, 2) is in the second quadrant. Hence,

θ = tan−1
(

2

−2

)
= tan−1(−1) = π − π

4
= 3π

4
.

Also, r =
√

(−2)2 + 22 = √
8. Hence, (r, θ) =

(√
8, 3π

4

)
.

(d) The point
(
−1,

√
3
)

is in the second quadrant, hence,

θ = tan−1

(√
3

−1

)
= tan−1

(
−√

3
)

= π − π

3
= 2π

3
.

Also, r =
√

(−1)2 +
(√

3
)2 = √

4 = 2. Hence, (r, θ) =
(

2, 2π
3

)
.

Convert from rectangular to polar coordinates using a calculator (make sure your choice of θ gives the correct
quadrant).

(a) (2, 3) (b) (4, −7) (c) (−3, −8) (d) (−5, 2)
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5. Convert from polar to rectangular coordinates:

(a)
(
3, π

6

)
(b)

(
6, 3π

4

)
(c)

(
0, π

5

)
(d)

(
5, −π

2

)
solution

(a) Since r = 3 and θ = π
6 , we have:

x = r cos θ = 3 cos
π

6
= 3 ·

√
3

2
≈ 2.6

y = r sin θ = 3 sin
π

6
= 3 · 1

2
= 1.5

⇒ (x, y) ≈ (2.6, 1.5) .

(b) For
(

6, 3π
4

)
we have r = 6 and θ = 3π

4 . Hence,

x = r cos θ = 6 cos
3π

4
≈ −4.24

y = r sin θ = 6 sin
3π

4
≈ 4.24

⇒ (x, y) ≈ (−4.24, 4.24) .

(c) For
(
0, π

5

)
, we have r = 0, so that the rectangular coordinates are (x, y) = (0, 0).

(d) Since r = 5 and θ = −π
2 we have

x = r cos θ = 5 cos
(
−π

2

)
= 5 · 0 = 0

y = r sin θ = 5 sin
(
−π

2

)
= 5 · (−1) = −5

⇒ (x, y) = (0, −5)

Which of the following are possible polar coordinates for the point P with rectangular coordinates (0, −2)?

(a)
(

2,
π

2

)
(b)

(
2,

7π

2

)

(c)
(

−2, −3π

2

)
(d)

(
−2,

7π

2

)

(e)
(
−2, −π

2

)
(f)
(

2, −7π

2

)

7. Describe each shaded sector in Figure 17 by inequalities in r and θ .

(A) (B) (C)

x x x

y y y

3 5 3 5 3 5

45°

FIGURE 17

solution

(a) In the sector shown below r is varying between 0 and 3 and θ is varying between π and 2π . Hence the following
inequalities describe the sector:

0 ≤ r ≤ 3

π ≤ θ ≤ 2π

(b) In the sector shown below r is varying between 0 and 3 and θ is varying between π
4 and π

2 . Hence, the inequalities
for the sector are:

0 ≤ r ≤ 3
π

4
≤ θ ≤ π

2

(c) In the sector shown below r is varying between 3 and 5 and θ is varying between 3π
4 and π . Hence, the inequalities

are:

3 ≤ r ≤ 5

3π

4
≤ θ ≤ π

Find the equation in polar coordinates of the line through the origin with slope 1
2 .

9. What is the slope of the line θ = 3π
5 ?

solution This line makes an angle θ0 = 3π
5 with the positive x-axis, hence the slope of the line is m = tan 3π

5 ≈ −3.1.

Which of r = 2 sec θ and r = 2 csc θ defines a horizontal line?
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In Exercises 11–16, convert to an equation in rectangular coordinates.

11. r = 7

solution r = 7 describes the points having distance 7 from the origin, that is, the circle with radius 7 centered at the
origin. The equation of the circle in rectangular coordinates is

x2 + y2 = 72 = 49.

r = sin θ
13. r = 2 sin θ

solution We multiply the equation by r and substitute r2 = x2 + y2, r sin θ = y. This gives

r2 = 2r sin θ

x2 + y2 = 2y

Moving the 2y and completing the square yield: x2 + y2 − 2y = 0 and x2 + (y − 1)2 = 1. Thus, r = 2 sin θ is the
equation of a circle of radius 1 centered at (0, 1).

r = 2 csc θ15. r = 1

cos θ − sin θ

solution We multiply the equation by cos θ − sin θ and substitute y = r sin θ , x = r cos θ . This gives

r (cos θ − sin θ) = 1

r cos θ − r sin θ = 1

x − y = 1 ⇒ y = x − 1. Thus,

r = 1

cos θ − sin θ

is the equation of the line y = x − 1.

r = 1

2 − cos θ

In Exercises 17–20, convert to an equation in polar coordinates.

17. x2 + y2 = 5

solution We make the substitution x2 + y2 = r2 to obtain; r2 = 5 or r = √
5.

x = 519. y = x2

solution Substituting y = r sin θ and x = r cos θ yields

r sin θ = r2 cos2 θ.

Then, dividing by r cos2 θ we obtain,

sin θ

cos2 θ
= r so r = tan θ sec θ

xy = 1
21. Match each equation with its description.

(a) r = 2 (i) Vertical line
(b) θ = 2 (ii) Horizontal line
(c) r = 2 sec θ (iii) Circle
(d) r = 2 csc θ (iv) Line through origin

solution

(a) r = 2 describes the points 2 units from the origin. Hence, it is the equation of a circle.

(b) θ = 2 describes the points P so that OP makes an angle of θ0 = 2 with the positive x-axis. Hence, it is the equation
of a line through the origin.

(c) This is r cos θ = 2, which is x = 2, a vertical line.

(d) Converting to rectangular coordinates, we get r = 2 csc θ , so r sin θ = 2 and y = 2. This is the equation of a
horizontal line.

Find the values of θ in the plot of r = 4 cos θ corresponding to points A, B, C, D in Figure 18. Then indicate the
portion of the graph traced out as θ varies in the following intervals:

(a) 0 ≤ θ ≤ π
2 (b) π

2 ≤ θ ≤ π (c) π ≤ θ ≤ 3π
2
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23. Suppose that P = (x, y) has polar coordinates (r, θ). Find the polar coordinates for the points:

(a) (x, −y) (b) (−x, −y) (c) (−x, y) (d) (y, x)

solution

(a) (x, −y) is the symmetric point of (x, y) with respect to the x-axis, hence the two points have the same radial
coordinate, and the angular coordinate of (x, −y) is 2π − θ . Hence, (x, −y) = (r, 2π − θ).

y

x

2p −q
−q
q

(x, y)

(x, −y)

(b) (−x, −y) is the symmetric point of (x, y) with respect to the origin. Hence, (−x, −y) = (r, θ + π).

y

x

p +q
q

(x, y)

(−x, −y)

(c) (−x, y) is the symmetric point of (x, y) with respect to the y-axis. Hence the two points have the same radial
coordinates and the angular coordinate of (−x, y) is π − θ . Hence, (−x, y) = (r, π − θ).

q−q
p − q

y

x

(x, y)(−x, y)

(d) Let (r1, θ1) denote the polar coordinates of (y, x). Hence,

r1 =
√

y2 + x2 =
√

x2 + y2 = r

tan θ1 = x

y
= 1

y/x
= 1

tan θ
= cot θ = tan

(π

2
− θ
)

Since the points (x, y) and (y, x) are in the same quadrant, the solution for θ1 is θ1 = π
2 − θ . We obtain the following

polar coordinates: (y, x) = (r, π
2 − θ

)
.

q

−q p
2

− q

y

x

(x, y)

(y, x)

Match each equation in rectangular coordinates with its equation in polar coordinates.

(a) x2 + y2 = 4 (i) r2(1 − 2 sin2 θ) = 4
(b) x2 + (y − 1)2 = 1 (ii) r(cos θ + sin θ) = 4
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25. What are the polar equations of the lines parallel to the line r cos
(
θ − π

3

) = 1?

solution The line r cos
(
θ − π

3

) = 1, or r = sec
(
θ − π

3

)
, is perpendicular to the ray θ = π

3 and at distance d = 1
from the origin. Hence, the lines parallel to this line are also perpendicular to the ray θ = π

3 , so the polar equations of
these lines are r = d sec

(
θ − π

3

)
or r cos

(
θ − π

3

) = d.

Show that the circle with center at
( 1

2 , 1
2

)
in Figure 19 has polar equation r = sin θ + cos θ and find the values

of θ between 0 and π corresponding to points A, B, C, and D.

27. Sketch the curve r = 1
2 θ (the spiral of Archimedes) for θ between 0 and 2π by plotting the points for θ =

0, π
4 , π

2 , . . . , 2π .

solution We first plot the following points (r, θ) on the spiral:

O = (0, 0) , A =
(π

8
,
π

4

)
, B =

(π

4
,
π

2

)
, C =

(
3π

8
,

3π

4

)
, D =

(π

2
, π
)

,

E =
(

5π

8
,

5π

4

)
, F =

(
3π

4
,

3π

2

)
, G =

(
7π

8
,

7π

4

)
, H = (π, 2π) .

p
4

3p
4

3p
2

5p
4

7p
4

p
2

O

D

E

A

G

C
B

0
2pp

H

F

Since r(0) = 0
2 = 0, the graph begins at the origin and moves toward the points A, B, C, D, E, F, G and H as θ varies

from θ = 0 to the other values stated above. Connecting the points in this direction we obtain the following graph for
0 ≤ θ ≤ 2π :

p
4

3p
4

3p
2

5p
4

7p
4

p
2

O

D

E

A

G

C
B

0
2pp

H

F

Sketch r = 3 cos θ − 1 (see Example 8).
29. Sketch the cardioid curve r = 1 + cos θ .

solution Since cos θ is period with period 2π , the entire curve will be traced out as θ varies from 0 to 2π . Additionally,
since cos(2π − θ) = cos(θ), we can sketch the curve for θ between 0 and π and reflect the result through the x axis to
obtain the whole curve. Use the values θ = 0, π

6 , π
4 , π

3 , π
2 , 2π

3 , 3π
4 , 5π

6 , and π :

θ r point

0 1 + cos 0 = 2 (2, 0)

π
6 1 + cos π

6 = 2+√
3

2

(
2+√

3
2 , π

6

)
π
4 1 + cos π

4 = 2+√
2

2

(
2+√

2
2 , π

4

)
π
3 1 + cos π

3 = 3
2

(
3
2 , π

3

)
π
2 1 + cos π

2 = 1
(
1, π

2

)
2π
3 1 + cos 2π

3 = 1
2

(
1
2 , 2π

3

)
3π
4 1 + cos 3π

4 = 2−√
2

2

(
2−√

2
2 , 3π

4

)
5π
6 1 + cos 5π

6 = 2−√
3

2

(
2−√

3
2 , 5π

6

)
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θ = 0 corresponds to the point (2, 0), and the graph moves clockwise as θ increases from 0 to π . Thus the graph is

5π

6

3π

4

2π

3

π

2 π

π

3 π

4
π

6

0

Reflecting through the x axis gives the other half of the curve:

−1

−1

1

2

y

x

−2

1 2

Show that the cardioid of Exercise 29 has equation

(x2 + y2 − x)2 = x2 + y2

in rectangular coordinates.

31. Figure 20 displays the graphs of r = sin 2θ in rectangular coordinates and in polar coordinates, where it is a “rose
with four petals.” Identify:
(a) The points in (B) corresponding to points A–I in (A).
(b) The parts of the curve in (B) corresponding to the angle intervals

[
0, π

2

]
,
[
π
2 , π

]
,
[
π, 3π

2

]
, and

[ 3π
2 , 2π

]
.

A C E IG

B F

D H

x

r y

(A) Graph of r as a function
       of θ, where r = sin 2θ

(B) Graph of r = sin 2θ
      in polar coordinates

π π

2
3π 2π

2

θ

FIGURE 20

solution
(a) The graph (A) gives the following polar coordinates of the labeled points:

A: θ = 0, r = 0

B: θ = π

4
, r = sin

2π

4
= 1

C: θ = π

2
, r = 0

D: θ = 3π

4
, r = sin

2 · 3π

4
= −1

E: θ = π, r = 0

F : θ = 5π

4
, r = 1

G: θ = 3π

2
, r = 0

H : θ = 7π

4
, r = −1

I : θ = 2π, r = 0.

Since the maximal value of |r| is 1, the points with r = 1 or r = −1 are the furthest points from the origin. The corre-
sponding quadrant is determined by the value of θ and the sign of r . If r0 < 0, the point (r0, θ0) is on the ray θ = −θ0.
These considerations lead to the following identification of the points in the xy plane. Notice that A, C, G, E, and I are
the same point.
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x

y

π 2π

r = 1 r = −1

B
π 
4

π 
2

5π 
4

r = −1

7π 
4

3π 
4

r = 1

=

==

= π 
4

3π 
4

7π 
4

3π 
2

5π 
4

H

F D

A,C,E,G,I

(b) We use the graph (A) to find the sign of r = sin 2θ : 0 ≤ θ ≤ π
2 ⇒ r ≥ 0 ⇒ (r, θ) is in the first quadrant.

π
2 ≤ θ ≤ π ⇒ r ≤ 0 ⇒ (r, θ) is in the fourth quadrant. π ≤ θ ≤ 3π

2 ⇒ r ≥ 0 ⇒ (r, θ) is in the third quadrant.
3π
2 ≤ θ ≤ 2π ⇒ r ≤ 0 ⇒ (r, θ) is in the second quadrant. That is,

x

y

π ≤    ≤ 3π 
2

≤    ≤ 2π3π 
2

0 ≤    ≤ π 
2

≤    ≤ ππ 
2

Sketch the curve r = sin 3θ . First fill in the table of r-values below and plot the corresponding points of the curve.
Notice that the three petals of the curve correspond to the angle intervals

[
0, π

3

]
,
[
π
3 , 2π

3

]
, and

[
π
3 , π

]
. Then plot

r = sin 3θ in rectangular coordinates and label the points on this graph corresponding to (r, θ) in the table.

θ 0 π
12

π
6

π
4

π
3

5π
12 · · · 11π

12 π

r

33. Plot the cissoid r = 2 sin θ tan θ and show that its equation in rectangular coordinates is

y2 = x3

2 − x

solution Using a CAS we obtain the following curve of the cissoid:

x

y

0ππ

π 
2

31 2

3π 
2

We substitute sin θ = y
r and tan θ = y

x in r = 2 sin θ tan θ to obtain

r = 2
y

r
· y

x
.

Multiplying by rx, setting r2 = x2 + y2 and simplifying, yields

r2x = 2y2

(x2 + y2)x = 2y2

x3 + y2x = 2y2

y2 (2 − x) = x3

so

y2 = x3

2 − x

Prove that r = 2a cos θ is the equation of the circle in Figure 21 using only the fact that a triangle inscribed in a
circle with one side a diameter is a right triangle.
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35. Show that

r = a cos θ + b sin θ

is the equation of a circle passing through the origin. Express the radius and center (in rectangular coordinates) in terms
of a and b.

solution We multiply the equation by r and then make the substitution x = r cos θ , y = r sin θ , and r2 = x2 + y2.
This gives

r2 = ar cos θ + br sin θ

x2 + y2 = ax + by

Transferring sides and completing the square yields

x2 − ax + y2 − by = 0(
x2 − 2 · a

2
x +

(a

2

)2
)

+
(

y2 − 2 · b

2
y +

(
b

2

)2
)

=
(a

2

)2 +
(

b

2

)2

(
x − a

2

)2 +
(

y − b

2

)2
= a2 + b2

4

This is the equation of the circle with radius
√

a2+b2

2 centered at the point
(

a
2 , b

2

)
. By plugging in x = 0 and y = 0 it is

clear that the circle passes through the origin.

Use the previous exercise to write the equation of the circle of radius 5 and center (3, 4) in the form r =
a cos θ + b sin θ .

37. Use the identity cos 2θ = cos2 θ − sin2 θ to find a polar equation of the hyperbola x2 − y2 = 1.

solution We substitute x = r cos θ , y = r sin θ in x2 − y2 = 1 to obtain

r2 cos2 θ − r2 sin2 θ = 1

r2(cos2 θ − sin2 θ) = 1

Using the identity cos 2θ = cos2 θ − sin2 θ we obtain the following equation of the hyperbola:

r2 cos 2θ = 1 or r2 = sec 2θ.

Find an equation in rectangular coordinates for the curve r2 = cos 2θ .
39. Show that cos 3θ = cos3 θ − 3 cos θ sin2 θ and use this identity to find an equation in rectangular coordinates for the
curve r = cos 3θ .

solution We use the identities cos(α + β) = cos α cos β − sin α sin β, cos 2α = cos2 α − sin2 α, and sin 2α =
2 sin α cos α to write

cos 3θ = cos(2θ + θ) = cos 2θ cos θ − sin 2θ sin θ

= (cos2 θ − sin2 θ) cos θ − 2 sin θ cos θ sin θ

= cos3 θ − sin2 θ cos θ − 2 sin2 θ cos θ

= cos3 θ − 3 sin2 θ cos θ

Using this identity we may rewrite the equation r = cos 3θ as follows:

r = cos3 θ − 3 sin2 θ cos θ (1)

Since x = r cos θ and y = r sin θ , we have cos θ = x
r and sin θ = y

r . Substituting into (1) gives:

r =
(x

r

)3 − 3
(y

r

)2 (x

r

)

r = x3

r3
− 3y2x

r3

We now multiply by r3 and make the substitution r2 = x2 + y2 to obtain the following equation for the curve:

r4 = x3 − 3y2x

(x2 + y2)
2 = x3 − 3y2x

Use the addition formula for the cosine to show that the line L with polar equation r cos(θ − α) = d has the
equation in rectangular coordinates (cos α)x + (sin α)y = d. Show that L has slope m = − cot α and y-intercept
d/sin α.



June 15, 2011 LTSV SSM Second Pass

776 C H A P T E R 12 PARAMETRIC EQUATIONS, POLAR COORDINATES, AND CONIC SECTIONS

In Exercises 41–44, find an equation in polar coordinates of the line L with the given description.

41. The point on L closest to the origin has polar coordinates
(
2, π

9

)
.

solution In Example 5, it is shown that the polar equation of the line where (r, α) is the point on the line closest to
the origin is r = d sec (θ − α). Setting (d, α) = (2, π

9

)
we obtain the following equation of the line:

r = 2 sec
(
θ − π

9

)
.

The point on L closest to the origin has rectangular coordinates (−2, 2).43. L is tangent to the circle r = 2
√

10 at the point with rectangular coordinates (−2, −6).

solution

x

y

(−2, −6)

Since L is tangent to the circle at the point (−2, −6), this is the point on L closest to the center of the circle which is at
the origin. Therefore, we may use the polar coordinates (d, α) of this point in the equation of the line:

r = d sec (θ − α) (1)

We thus must convert the coordinates (−2, −6) to polar coordinates. This point is in the third quadrant so π < α < 3π
2 .

We get

d =
√

(−2)2 + (−6)2 = √
40 = 2

√
10

α = tan−1
(−6

−2

)
= tan−1 3 ≈ π + 1.25 ≈ 4.39

Substituting in (1) yields the following equation of the line:

r = 2
√

10 sec (θ − 4.39) .

L has slope 3 and is tangent to the unit circle in the fourth quadrant.
45. Show that every line that does not pass through the origin has a polar equation of the form

r = b

sin θ − a cos θ

where b 
= 0.

solution Write the equation of the line in rectangular coordinates as y = ax + b. Since the line does not pass through
the origin, we have b 
= 0. Substitute for y and x to convert to polar coordinates, and simplify:

y = ax + b

r sin θ = ar cos θ + b

r(sin θ − a cos θ) = b

r = b

sin θ − a cos θ

By the Law of Cosines, the distance d between two points (Figure 22) with polar coordinates (r, θ) and (r0, θ0) is

d2 = r2 + r2
0 − 2rr0 cos(θ − θ0)

Use this distance formula to show that

r2 − 10r cos
(
θ − π

4

)
= 56

is the equation of the circle of radius 9 whose center has polar coordinates
(
5, π

4

)
.

47. For a > 0, a lemniscate curve is the set of points P such that the product of the distances from P to (a, 0) and
(−a, 0) is a2. Show that the equation of the lemniscate is

(x2 + y2)2 = 2a2(x2 − y2)

Then find the equation in polar coordinates. To obtain the simplest form of the equation, use the identity cos 2θ =
cos2 θ − sin2 θ . Plot the lemniscate for a = 2 if you have a computer algebra system.
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solution We compute the distances d1 and d2 of P(x, y) from the points (a, 0) and (−a, 0) respectively. We obtain:

d1 =
√

(x − a)2 + (y − 0)2 =
√

(x − a)2 + y2

d2 =
√

(x + a)2 + (y − 0)2 =
√

(x + a)2 + y2

For the points P(x, y) on the lemniscate we have d1d2 = a2. That is,

a2 =
√

(x − a)2 + y2
√

(x + a)2 + y2 =
√[

(x − a)2 + y2
] [

(x + a)2 + y2
]

=
√

(x − a)2(x + a)2 + y2(x − a)2 + y2(x + a)2 + y4

=
√

(x2 − a2)2 + y2
[
(x − a)2 + (x + a)2

]+ y4

=
√

x4 − 2a2x2 + a4 + y2
(
x2 − 2xa + a2 + x2 + 2xa + a2

)+ y4

=
√

x4 − 2a2x2 + a4 + 2y2x2 + 2y2a2 + y4

=
√

x4 + 2x2y2 + y4 + 2a2(y2 − x2) + a4

=
√

(x2 + y2)
2 + 2a2(y2 − x2) + a4.

Squaring both sides and simplifying yields

a4 = (x2 + y2)2 + 2a2(y2 − x2) + a4

0 = (x2 + y2)2 + 2a2(y2 − x2)

so

(x2 + y2)2 = 2a2(x2 − y2)

We now find the equation in polar coordinates. We substitute x = r cos θ , y = r sin θ and x2 + y2 = r2 into the equation
of the lemniscate. This gives

(r2)2 = 2a2(r2 cos2 θ − r2 sin2 θ) = 2a2r2(cos2 θ − sin2 θ) = 2a2r2 cos 2θ

r4 = 2a2r2 cos 2θ

r = 0 is a solution, hence the origin is on the curve. For r 
= 0 we divide the equation by r2 to obtain r2 = 2a2 cos 2θ .
This curve also includes the origin (r = 0 is obtained for θ = π

4 for example), hence this is the polar equation of the

lemniscate. Setting a = 2 we get r2 = 8 cos 2θ .

r2 = 8 cos 2q

3p
2

p
2

p 0

Let c be a fixed constant. Explain the relationship between the graphs of:

(a) y = f (x + c) and y = f (x) (rectangular)

(b) r = f (θ + c) and r = f (θ) (polar)

(c) y = f (x) + c and y = f (x) (rectangular)

(d) r = f (θ) + c and r = f (θ) (polar)

49. The Derivative in Polar Coordinates Show that a polar curve r = f (θ) has parametric equations

x = f (θ) cos θ, y = f (θ) sin θ

Then apply Theorem 2 of Section 12.1 to prove

dy

dx
= f (θ) cos θ + f ′(θ) sin θ

−f (θ) sin θ + f ′(θ) cos θ
2

where f ′(θ) = df /dθ .
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solution Multiplying both sides of the given equation by cos θ yields r cos θ = f (θ) cos θ ; multiplying both sides
by sin θ yields r sin θ = f (θ) sin θ . The left-hand sides of these two equations are the x and y coordinates in rectangular
coordinates, so for any θ we have x = f (θ) cos θ and y = f (θ) sin θ , showing that the parametric equations are as
claimed. Now, by the formula for the derivative we have

dy

dx
= y′ (θ)

x′ (θ)
(1)

We differentiate the functions x = f (θ) cos θ and y = f (θ) sin θ using the Product Rule for differentiation. This gives

y′ (θ) = f ′ (θ) sin θ + f (θ) cos θ

x′ (θ) = f ′ (θ) cos θ − f (θ) sin θ

Substituting in (1) gives

dy

dx
= f ′ (θ) sin θ + f (θ) cos θ

f ′ (θ) cos θ − f (θ) sin θ
= f (θ) cos θ + f ′ (θ) sin θ

−f (θ) sin θ + f ′ (θ) cos θ
.

Use Eq. (2) to find the slope of the tangent line to r = sin θ at θ = π
3 .

51. Use Eq. (2) to find the slope of the tangent line to r = θ at θ = π
2 and θ = π .

solution In the given curve we have r = f (θ) = θ . Using Eq. (2) we obtain the following derivative, which is the
slope of the tangent line at (r, θ).

dy

dx
= f (θ) cos θ + f ′ (θ) sin θ

−f (θ) sin θ + f ′ (θ) cos θ
= θ cos θ + 1 · sin θ

−θ sin θ + 1 · cos θ
(1)

The slope, m, of the tangent line at θ = π
2 and θ = π is obtained by substituting these values in (1). We get (θ = π

2 ):

m =
π
2 cos π

2 + sin π
2

−π
2 sin π

2 + cos π
2

=
π
2 · 0 + 1

−π
2 · 1 + 0

= 1

−π
2

= − 2

π
.

(θ = π):

m = π cos π + sin π

−π sin π + cos π
= −π

−1
= π.

Find the equation in rectangular coordinates of the tangent line to r = 4 cos 3θ at θ = π
6 .

53. Find the polar coordinates of the points on the lemniscate r2 = cos 2t in Figure 23 where the tangent line is horizontal.

y

x
−1 1

r2 = cos (2t)

FIGURE 23

solution This curve is defined for −π
2 ≤ 2t ≤ π

2 (where cos 2t ≥ 0), so for −π
4 ≤ t ≤ π

4 . For each θ in that range,

there are two values of r satisfying the equation (±√
cos 2t). By symmetry, we need only calculate the coordinates of the

points corresponding to the positive square root (i.e. to the right of the y axis). Then the equation becomes r = √
cos 2t .

Now, by Eq. (2), with f (t) = √
cos(2t) and f ′(t) = − sin(2t)(cos(2t))−1/2, we have

dy

dx
= f (t) cos t + f ′(t) sin t

−f (t) sin t + f ′(t) cos t
= cos t

√
cos(2t) − sin(2t) sin t (cos(2t))−1/2

− sin t
√

cos(2t) − sin(2t) cos t (cos(2t))−1/2

The tangent line is horizontal when this derivative is zero, which occurs when the numerator of the fraction is zero and the
denominator is not. Multiply top and bottom of the fraction by

√
cos(2t), and use the identities cos 2t = cos2 t − sin2 t ,

sin 2t = 2 sin t cos t to get

−cos t cos 2t − sin t sin 2t

sin t cos 2t + cos t sin 2t
= − cos t (cos2 t − 3 sin2 t)

sin t cos 2t + cos t sin 2t

The numerator is zero when cos t = 0, so when t = π
2 or t = 3π

2 , or when tan t = ± 1√
3

, so when t = ±π
6 or t = ± 5π

6 .

Of these possibilities, only t = ±π
6 lie in the range −π

4 ≤ t ≤ π
4 . Note that the denominator is nonzero for t = ±π

6 , so
these are the two values of t for which the tangent line is horizontal. The corresponding values of r are solutions to

r2 = cos
(

2 · π

6

)
= cos

(π

3

)
= 1

2

r2 = cos

(
2 · −π

6

)
= cos

(
−π

3

)
= 1

2
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Finally, the four points are (r, t) =(
1√
2
,
π

6

)
,

(
− 1√

2
,
π

6

)
,

(
1√
2
, −pi

6

)
,

(
− 1√

2
, −π

6

)

If desired, we can change the second and fourth points by adding π to the angle and making r positive, to get(
1√
2
,
π

6

)
,

(
1√
2
,

7π

6

)
,

(
1√
2
, −pi

6

)
,

(
1√
2
,

5π

6

)

Find the polar coordinates of the points on the cardioid r = 1 + cos θ where the tangent line is horizontal (see
Figure 24).

55. Use Eq. (2) to show that for r = sin θ + cos θ ,

dy

dx
= cos 2θ + sin 2θ

cos 2θ − sin 2θ

Then calculate the slopes of the tangent lines at points A, B, C in Figure 19.

solution In Exercise 49 we proved that for a polar curve r = f (θ) the following formula holds:

dy

dx
= f (θ) cos θ + f ′ (θ) sin θ

−f (θ) sin θ + f ′ (θ) cos θ
(1)

For the given circle we have r = f (θ) = sin θ + cos θ , hence f ′ (θ) = cos θ − sin θ . Substituting in (1) we have

dy

dx
= (sin θ + cos θ) cos θ + (cos θ − sin θ) sin θ

− (sin θ + cos θ) sin θ + (cos θ − sin θ) cos θ
= sin θ cos θ + cos2 θ + cos θ sin θ − sin2 θ

− sin2 θ − cos θ sin θ + cos2 θ − sin θ cos θ

= cos2 θ − sin2 θ + 2 sin θ cos θ

cos2 θ − sin2 θ − 2 sin θ cos θ

We use the identities cos2 θ − sin2 θ = cos 2θ and 2 sin θ cos θ = sin 2θ to obtain

dy

dx
= cos 2θ + sin 2θ

cos 2θ − sin 2θ
(2)

The derivative dy
dx

is the slope of the tangent line at (r, θ). The slopes of the tangent lines at the points with polar coordinates

A = (1, π
2

)
B =

(
0, 3π

4

)
C = (1, 0) are computed by substituting the values of θ in (2). This gives

dy

dx

∣∣∣∣
A

= cos
(
2 · π

2

)+ sin
(
2 · π

2

)
cos
(
2 · π

2

)− sin
(
2 · π

2

) = cos π + sin π

cos π − sin π
= −1 + 0

−1 − 0
= 1

dy

dx

∣∣∣∣
B

=
cos
(

2 · 3π
4

)
+ sin

(
2 · 3π

4

)
cos
(

2 · 3π
4

)
− sin

(
2 · 3π

4

) = cos 3π
2 + sin 3π

2

cos 3π
2 − sin 3π

2

= 0 − 1

0 + 1
= −1

dy

dx

∣∣∣∣
C

= cos (2 · 0) + sin (2 · 0)

cos (2 · 0) − sin (2 · 0)
= cos 0 + sin 0

cos 0 − sin 0
= 1 + 0

1 − 0
= 1

Further Insights and Challenges

Let f (x) be a periodic function of period 2π—that is, f (x) = f (x + 2π). Explain how this periodicity is
reflected in the graph of:

(a) y = f (x) in rectangular coordinates

(b) r = f (θ) in polar coordinates

57. Use a graphing utility to convince yourself that the polar equations r = f1(θ) = 2 cos θ − 1 and r = f2(θ) =
2 cos θ + 1 have the same graph. Then explain why. Hint: Show that the points (f1(θ + π), θ + π) and (f2(θ), θ)

coincide.

solution The graphs of r = 2 cos θ − 1 and r = 2 cos θ + 1 in the xy -plane coincide as shown in the graph obtained
using a CAS.

x

y

2

−2

2−2

x

y

0ππ

π 
2

31 2

3π 
2
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Recall that (r, θ) and (−r, θ + π) represent the same point. Replacing θ by θ + π and r by (−r) in r = 2 cos θ − 1 we
obtain

−r = 2 cos (θ + π) − 1

−r = −2 cos θ − 1

r = 2 cos θ + 1

Thus, the two equations define the same graph. (One could also convert both equations to rectangular coordinates and
note that they come out identical.)

We investigate how the shape of the limaçon curve r = b + cos θ depends on the constant b (see Figure 24).

(a) Argue as in Exercise 57 to show that the constants b and −b yield the same curve.

(b) Plot the limaçon for b = 0, 0.2, 0.5, 0.8, 1 and describe how the curve changes.

(c) Plot the limaçon for b = 1.2, 1.5, 1.8, 2, 2.4 and describe how the curve changes.

(d) Use Eq. (2) to show that

dy

dx
= −

(
b cos θ + cos 2θ

b + 2 cos θ

)
csc θ

(e) Find the points where the tangent line is vertical. Note that there are three cases: 0 ≤ b < 2, b = 1, and b > 2.
Do the plots constructed in (b) and (c) reflect your results?

12.4 Area and Arc Length in Polar Coordinates

Preliminary Questions
1. Polar coordinates are suited to finding the area (choose one):

(a) Under a curve between x = a and x = b.
(b) Bounded by a curve and two rays through the origin.

solution Polar coordinates are best suited to finding the area bounded by a curve and two rays through the origin. The
formula for the area in polar coordinates gives the area of this region.

2. Is the formula for area in polar coordinates valid if f (θ) takes negative values?

solution The formula for the area

1

2

∫ β

α
f (θ)2 dθ

always gives the actual (positive) area, even if f (θ) takes on negative values.

3. The horizontal line y = 1 has polar equation r = csc θ . Which area is represented by the integral
1

2

∫ π/2

π/6
csc2 θ dθ

(Figure 12)?

(a) �ABCD (b) ABC (c) ACD

y

xA

D

B

C y = 1
1

�3

FIGURE 12

solution This integral represents an area taken from θ = π/6 to θ = π/2, which can only be the triangle ACD, as
seen in part (c).

Exercises
1. Sketch the area bounded by the circle r = 5 and the rays θ = π

2 and θ = π , and compute its area as an integral in
polar coordinates.

solution The region bounded by the circle r = 5 and the rays θ = π
2 and θ = π is the shaded region in the figure.

The area of the region is given by the following integral:

1

2

∫ π

π/2
r2 dθ = 1

2

∫ π

π/2
52 dθ = 25

2

(
π − π

2

)
= 25π

4

x

y
=

= π

π 
2
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Sketch the region bounded by the line r = sec θ and the rays θ = 0 and θ = π
3 . Compute its area in two ways:

as an integral in polar coordinates and using geometry.

3. Calculate the area of the circle r = 4 sin θ as an integral in polar coordinates (see Figure 4). Be careful to choose the
correct limits of integration.

solution The equation r = 4 sin θ defines a circle of radius 2 tangent to the x-axis at the origin as shown in the figure:

= π 
2

π 
3

2π 
3

π 
6

5π 
6

x

y

= π = π

The circle is traced as θ varies from 0 to π . We use the area in polar coordinates and the identity

sin2 θ = 1

2
(1 − cos 2θ)

to obtain the following area:

A = 1

2

∫ π

0
r2 dθ = 1

2

∫ π

0
(4 sin θ)2 dθ = 8

∫ π

0
sin2 θ dθ = 4

∫ π

0
(1 − cos 2θ) dθ = 4

[
θ − sin 2θ

2

]π
0

= 4

((
π − sin 2π

2

)
− 0

)
= 4π.

Find the area of the shaded triangle in Figure 13 as an integral in polar coordinates. Then find the rectangular
coordinates of P and Q and compute the area via geometry.

5. Find the area of the shaded region in Figure 14. Note that θ varies from 0 to π
2 .

x

y

r = θ2 + 4θ

8

1 2

FIGURE 14

solution Since θ varies from 0 to π
2 , the area is

1

2

∫ π/2

0
r2 dθ = 1

2

∫ π/2

0
(θ2 + 4θ)2 dθ = 1

2

∫ π/2

0
θ4 + 8θ3 + 16θ2 dθ

= 1

2

(
1

5
θ5 + 2θ4 + 16

3
θ3
) ∣∣∣∣π/2

0
= π5

320
+ π4

16
+ π2

3

Which interval of θ -values corresponds to the the shaded region in Figure 15? Find the area of the region.
7. Find the total area enclosed by the cardioid in Figure 16.

y

x
−1−2

FIGURE 16 The cardioid r = 1 − cos θ .

solution We graph r = 1 − cos θ in r and θ (cartesian, not polar, this time):

r

1

2

2πππ 
2

3π 
2
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We see that as θ varies from 0 to π , the radius r increases from 0 to 2, so we get the upper half of the cardioid (the lower
half is obtained as θ varies from π to 2π and consequently r decreases from 2 to 0). Since the cardioid is symmetric with
respect to the x-axis we may compute the upper area and double the result. Using

cos2 θ = cos 2θ + 1

2

we get

A = 2 · 1

2

∫ π

0
r2 dθ =

∫ π

0
(1 − cos θ)2 dθ =

∫ π

0

(
1 − 2 cos θ + cos2 θ

)
dθ

=
∫ π

0

(
1 − 2 cos θ + cos 2θ + 1

2

)
dθ =

∫ π

0

(
3

2
− 2 cos θ + 1

2
cos 2θ

)
dθ

= 3

2
θ − 2 sin θ + 1

4
sin 2θ

∣∣∣∣π
0

= 3π

2

The total area enclosed by the cardioid is A = 3π
2 .

Find the area of the shaded region in Figure 16.
9. Find the area of one leaf of the “four-petaled rose” r = sin 2θ (Figure 17). Then prove that the total area of the rose

is equal to one-half the area of the circumscribed circle.

y

x

r = sin 2θ

FIGURE 17 Four-petaled rose r = sin 2θ .

solution We consider the graph of r = sin 2θ in cartesian and in polar coordinates:

r

A

1

−1

ππ 
4

π 
2

3π 
4

y

A

x

r = 1, θ = π

4

We see that as θ varies from 0 to π
4 the radius r is increasing from 0 to 1, and when θ varies from π

4 to π
2 , r is decreasing

back to zero. Hence, the leaf in the first quadrant is traced as θ varies from 0 to π
2 . The area of the leaf (the four leaves

have equal areas) is thus

A = 1

2

∫ π/2

0
r2 dθ = 1

2

∫ π/2

0
sin2 2θ dθ.

Using the identity

sin2 2θ = 1 − cos 4θ

2

we get

A = 1

2

∫ π/2

0

(
1

2
− cos 4θ

2

)
dθ = 1

2

(
θ

2
− sin 4θ

8

) ∣∣∣∣π/2

0
= 1

2

((
π

4
− sin 2π

8

)
− 0

)
= π

8

The area of one leaf is A = π
8 ≈ 0.39. It follows that the area of the entire rose is π

2 . Since the “radius” of the rose (the
point where θ = π

4 ) is 1, and the circumscribed circle is tangent there, the circumscribed circle has radius 1 and thus area
π . Hence the area of the rose is half that of the circumscribed circle.

Find the area enclosed by one loop of the lemniscate with equation r2 = cos 2θ (Figure 18). Choose your limits
of integration carefully.
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11. Sketch the spiral r = θ for 0 ≤ θ ≤ 2π and find the area bounded by the curve and the first quadrant.

solution The spiral r = θ for 0 ≤ θ ≤ 2π is shown in the following figure in the xy-plane:

x

y

q = 2p,
r = 2p

q = p,
r = p

q = p /2,
r = p /2

q = 0,
r = 0

The spiral r = θ

We must compute the area of the shaded region. This region is traced as θ varies from 0 to π
2 . Using the formula for the

area in polar coordinates we get

A = 1

2

∫ π/2

0
r2 dθ = 1

2

∫ π/2

0
θ2 dθ = 1

2

θ3

3

∣∣∣∣π/2

0
= 1

6

(π

2

)3 = π3

48

Find the area of the intersection of the circles r = sin θ and r = cos θ .
13. Find the area of region A in Figure 19.

y

x
−1 41 2

A

r = 4 cos

r = 1

FIGURE 19

solution We first find the values of θ at the points of intersection of the two circles, by solving the following equation
for −π

2 ≤ x ≤ π
2 :

4 cos θ = 1 ⇒ cos θ = 1

4
⇒ θ1 = cos−1

(
1

4

)

y

x

r = 4 cos

= −1.32

= 1.32

r = 1

We now compute the area using the formula for the area between two curves:

A = 1

2

∫ θ1

−θ1

(
(4 cos θ)2 − 12

)
dθ = 1

2

∫ θ1

−θ1

(
16 cos2 θ − 1

)
dθ

Using the identity cos2 θ = cos 2θ+1
2 we get

A = 1

2

∫ θ1

−θ1

(
16 (cos 2θ + 1)

2
− 1

)
dθ = 1

2

∫ θ1

−θ1

(8 cos 2θ + 7) dθ = 1

2
(4 sin 2θ + 7θ)

∣∣∣∣θ1

−θ1

= 4 sin 2θ1 + 7θ1 = 8 sin θ1 cos θ1 + 7θ1 = 8
√

1 − cos2 θ1 cos θ1 + 7θ1

Using the fact that cos θ1 = 1
4 we get

A =
√

15

2
+ 7cos−1

(
1

4

)
≈ 11.163

Find the area of the shaded region in Figure 20, enclosed by the circle r = 1
2 and a petal of the curve r = cos 3θ .

Hint: Compute the area of both the petal and the region inside the petal and outside the circle.
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15. Find the area of the inner loop of the limaçon with polar equation r = 2 cos θ − 1 (Figure 21).

21

1

−1

y

x

FIGURE 21 The limaçon r = 2 cos θ − 1.

solution We consider the graph of r = 2 cos θ − 1 in cartesian and in polar, for −π
2 ≤ x ≤ π

2 :

r

1

−1

− π 
2

π 
3

π 
3

− π 
2

y

x

− π 
3

π 
3

r = 2 cos θ − 1

As θ varies from −π
3 to 0, r increases from 0 to 1. As θ varies from 0 to π

3 , r decreases from 1 back to 0. Hence, the
inner loop of the limaçon is traced as θ varies from −π

3 to π
3 . The area of the inner loop is thus

A = 1

2

∫ π/3

−π/3
r2 dθ = 1

2

∫ π/3

−π/3
(2 cos θ − 1)2 dθ = 1

2

∫ π/3

−π/3

(
4 cos2 θ − 4 cos θ + 1

)
dθ

= 1

2

∫ π/3

−π/3
(2 (cos 2θ + 1) − 4 cos θ + 1) dθ = 1

2

∫ π/3

−π/3
(2 cos 2θ − 4 cos θ + 3) dθ

= 1

2
(sin 2θ − 4 sin θ + 3θ)

∣∣∣∣π/3

−π/3
= 1

2

((
sin

2π

3
− 4 sin

π

3
+ π

)
−
(

sin

(
−2π

3

)
− 4 sin

(
−π

3

)
− π

))

=
√

3

2
− 4

√
3

2
+ π = π − 3

√
3

2
≈ 0.54

Find the area of the shaded region in Figure 21 between the inner and outer loop of the limaçon r = 2 cos θ − 1.
17. Find the area of the part of the circle r = sin θ + cos θ in the fourth quadrant (see Exercise 26 in Section 12.3).

solution The value of θ corresponding to the point B is the solution of r = sin θ + cos θ = 0 for −π ≤ θ ≤ π .

y

x
B A C

That is,

sin θ + cos θ = 0 ⇒ sin θ = − cos θ ⇒ tan θ = −1 ⇒ θ = −π

4

At the point C, we have θ = 0. The part of the circle in the fourth quadrant is traced if θ varies between −π
4 and 0. This

leads to the following area:

A = 1

2

∫ 0

−π/4
r2 dθ = 1

2

∫ 0

−π/4
(sin θ + cos θ)2 dθ = 1

2

∫ 0

−π/4

(
sin2 θ + 2 sin θ cos θ + cos2 θ

)
dθ
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Using the identities sin2 θ + cos2 θ = 1 and 2 sin θ cos θ = sin 2θ we get:

A = 1

2

∫ 0

−π/4
(1 + sin 2θ) dθ = 1

2

(
θ − cos 2θ

2

) ∣∣∣∣0−π/4

= 1

2

((
0 − 1

2

)
−
(

−π

4
− cos

(−π
2

)
2

))
= 1

2

(
π

4
− 1

2

)
= π

8
− 1

4
≈ 0.14.

Find the area of the region inside the circle r = 2 sin
(
θ + π

4

)
and above the line r = sec

(
θ − π

4

)
.

19. Find the area between the two curves in Figure 22(A).

y y

x x

r = 2 + cos 2q

r = 2 + sin 2q

r = sin 2q

r = sin 2q

(A) (B)

FIGURE 22

solution We compute the area A between the two curves as the difference between the area A1 of the region enclosed
in the outer curve r = 2 + cos 2θ and the area A2 of the region enclosed in the inner curve r = sin 2θ . That is,

A = A1 − A2.

y

x

A
A2

r = 2 + 2cos

r = sin 

In Exercise 9 we showed that A2 = π
2 , hence,

A = A1 − π

2
(1)

We compute the area A1.

y

x

A1

Using symmetry, the area is four times the area enclosed in the first quadrant. That is,

A1 = 4 · 1

2

∫ π/2

0
r2 dθ = 2

∫ π/2

0
(2 + cos 2θ)2 dθ = 2

∫ π/2

0

(
4 + 4 cos 2θ + cos2 2θ

)
dθ

Using the identity cos2 2θ = 1
2 cos 4θ + 1

2 we get

A1 = 2
∫ π/2

0

(
4 + 4 cos 2θ + 1

2
cos 4θ + 1

2

)
dθ = 2

∫ π/2

0

(
9

2
+ 1

2
cos 4θ + 4 cos 2θ

)
dθ

= 2

(
9θ

2
+ sin 4θ

8
+ 2 sin 2θ

) ∣∣∣∣π/2

0
= 2

((
9π

4
+ sin 2π

8
+ 2 sin π

)
− 0

)
= 9π

2
(2)

Combining (1) and (2) we obtain

A = 9π

2
− π

2
= 4π.
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Find the area between the two curves in Figure 22(B).
21. Find the area inside both curves in Figure 23.

y

x

2 + sin 2q

2 + cos 2q

FIGURE 23

solution The area we need to find is the area of the shaded region in the figure.

y

x

A
D

C
B

r = 2 + sin 2

r = 2 + cos 2

We first find the values of θ at the points of intersection A, B, C, and D of the two curves, by solving the following
equation for −π ≤ θ ≤ π :

2 + cos 2θ = 2 + sin 2θ

cos 2θ = sin 2θ

tan 2θ = 1 ⇒ 2θ = π

4
+ πk ⇒ θ = π

8
+ πk

2

The solutions for −π ≤ θ ≤ π are

A: θ = π

8
.

B: θ = −3π

8
.

C: θ = −7π

8
.

D: θ = 5π

8
.

Using symmetry, we compute the shaded area in the figure below and multiply it by 4:

r = 2 + cos 2

π 0π

π 
8

π 
2

π 
2

5π 
8

A1

−

A = 4 · A1 = 4 · 1

2
·
∫ 5π/8

π/8
(2 + cos 2θ)2 dθ = 2

∫ 5π/8

π/8

(
4 + 4 cos 2θ + cos2 2θ

)
dθ

= 2
∫ 5π/8

π/8

(
4 + 4 cos 2θ + 1 + cos 4θ

2

)
dθ =

∫ 5π/8

π/8
(9 + 8 cos 2θ + cos 4θ) dθ

= 9θ + 4 sin 2θ + sin 4θ

4

∣∣∣∣5π/8

π/8
= 9

(
5π

8
− π

8

)
+ 4

(
sin

5π

4
− sin

π

4

)
+ 1

4

(
sin

5π

2
− sin

π

2

)
= 9π

2
− 4

√
2

Find the area of the region that lies inside one but not both of the curves in Figure 23.
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23. Calculate the total length of the circle r = 4 sin θ as an integral in polar coordinates.

solution We use the formula for the arc length:

S =
∫ β

α

√
f (θ)2 + f ′(θ)2 dθ (1)

In this case, f (θ) = 4 sin θ and f ′(θ) = 4 cos θ , hence√
f (θ)2 + f ′(θ)2 =

√
(4 sin θ)2 + (4 cos θ)2 = √

16 = 4

The circle is traced as θ is varied from 0 to π . Substituting α = 0, β = π in (1) yields S = ∫ π
0 4 dθ = 4π .

2

y

x

The circle r = 4 sin θ

Sketch the segment r = sec θ for 0 ≤ θ ≤ A. Then compute its length in two ways: as an integral in polar
coordinates and using trigonometry.

In Exercises 25–30, compute the length of the polar curve.

25. The length of r = θ2 for 0 ≤ θ ≤ π

solution We use the formula for the arc length. In this case f (θ) = θ2, f ′(θ) = 2θ , so we obtain

S =
∫ π

0

√(
θ2
)2 + (2θ)2 dθ =

∫ π

0

√
θ4 + 4θ2 dθ =

∫ π

0
θ
√

θ2 + 4 dθ

We compute the integral using the substitution u = θ2 + 4, du = 2θ dθ . This gives

S = 1

2

∫ π2+4

4

√
u du = 1

2
· 2

3
u3/2

∣∣∣∣π
2+4

4
= 1

3

((
π2 + 4

)3/2 − 43/2
)

= 1

3

((
π2 + 4

)3/2 − 8

)
≈ 14.55

The spiral r = θ for 0 ≤ θ ≤ A
27. The equiangular spiral r = eθ for 0 ≤ θ ≤ 2π

solution Since f (θ) = eθ , by the formula for the arc length we have:

L =
∫ 2π

0

√
f ′(θ)2 + f (θ) dθ +

∫ 2π

0

√(
eθ
)2 + (eθ

)2
dθ =

∫ 2π

0

√
2e2θ dθ

= √
2
∫ 2π

0
eθ dθ = √

2eθ

∣∣∣∣2π

0
= √

2
(
e2π − e0

)
= √

2
(
e2π − 1

)
≈ 755.9

The inner loop of r = 2 cos θ − 1 in Figure 21
29. The cardioid r = 1 − cos θ in Figure 16

solution In the equation of the cardioid, f (θ) = 1 − cos θ . Using the formula for arc length in polar coordinates we
have:

L =
∫ β

α

√
f (θ)2 + f ′(θ)2 dθ (1)

We compute the integrand:√
f (θ)2 + f ′ (θ)2 =

√
(1 − cos θ)2 + (sin θ)2 =

√
1 − 2 cos θ + cos2 θ + sin2 θ = √2 (1 − cos θ)

We identify the interval of θ . Since −1 ≤ cos θ ≤ 1, every 0 ≤ θ ≤ 2π corresponds to a nonnegative value of r . Hence,
θ varies from 0 to 2π . By (1) we obtain

L =
∫ 2π

0

√
2(1 − cos θ) dθ

Now, 1 − cos θ = 2 sin2(θ/2), and on the interval 0 ≤ θ ≤ π , sin(θ/2) is nonnegative, so that
√

2(1 − cos θ) =√
4 sin2(θ/2) = 2 sin(θ/2) there. The graph is symmetric, so it suffices to compute the integral for 0 ≤ θ ≤ π , and we

have

L = 2
∫ π

0

√
2(1 − cos θ) dθ = 2

∫ π

0
2 sin(θ/2) dθ = 8 sin

θ

2

∣∣∣∣π
0

= 8

r = cos2 θ
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In Exercises 31 and 32, express the length of the curve as an integral but do not evaluate it.

31. r = (2 − cos θ)−1, 0 ≤ θ ≤ 2π

solution We have f (θ) = (2 − cos θ)−1, f ′(θ) = −(2 − cos θ)−2 sin θ , hence,

√
f 2(θ) + f ′(θ)2 =

√
(2 − cos θ)−2 + (2 − cos θ)−4 sin2 θ =

√
(2 − cos θ)−4

(
(2 − cos θ)2 + sin2 θ

)

= (2 − cos θ)−2
√

4 − 4 cos θ + cos2 θ + sin2 θ = (2 − cos θ)−2 √
5 − 4 cos θ

Using the integral for the arc length we get

L =
∫ 2π

0

√
5 − 4 cos θ(2 − cos θ)−2 dθ.

r = sin3 t , 0 ≤ θ ≤ 2π
In Exercises 33–36, use a computer algebra system to calculate the total length to two decimal places.

33. The three-petal rose r = cos 3θ in Figure 20

solution We have f (θ) = cos 3θ , f ′(θ) = −3 sin 3θ , so that

√
f (θ)2 + f ′(θ)2 =

√
cos2 3θ + 9 sin2 3θ =

√
cos2 3θ + sin2 3θ + 8 sin2 3θ =

√
1 + 8 sin2 3θ

Note that the curve is traversed completely for 0 ≤ θ ≤ π . Using the arc length formula and evaluating with Maple gives

L =
∫ π

0

√
f (θ)2 + f ′(θ)2 dθ =

∫ π

0

√
1 + 8 sin2 3θ dθ ≈ 6.682446608

The curve r = 2 + sin 2θ in Figure 23
35. The curve r = θ sin θ in Figure 24 for 0 ≤ θ ≤ 4π

y

x
5 5

5

10

FIGURE 24 r = θ sin θ for 0 ≤ θ ≤ 4π .

solution We have f (θ) = θ sin θ , f ′(θ) = sin θ + θ cos θ , so that

√
f (θ)2 + f ′(θ)2 =

√
θ2 sin2 θ + (sin θ + θ cos θ)2 =

√
θ2 sin2 θ + sin2 θ + 2θ sin θ cos θ + θ2 cos2 θ

=
√

θ2 + sin2 θ + θ sin 2θ

using the identities sin2 θ + cos2 θ = 1 and 2 sin θ cos θ = sin 2θ . Thus by the arc length formula and evaluating with
Maple, we have

L =
∫ 4π

0

√
f (θ)2 + f ′(θ)2 dθ =

∫ 4π

0

√
θ2 + sin2 θ + θ sin 2θ dθ ≈ 79.56423976

r = √
θ , 0 ≤ θ ≤ 4πFurther Insights and Challenges

37. Suppose that the polar coordinates of a moving particle at time t are (r(t), θ(t)). Prove that the particle’s speed is

equal to
√

(dr/dt)2 + r2(dθ/dt)2.

solution The speed of the particle in rectangular coordinates is:

ds

dt
=
√

x′(t)2 + y′(t)2 (1)

We need to express the speed in polar coordinates. The x and y coordinates of the moving particles as functions of t are

x(t) = r(t) cos θ(t), y(t) = r(t) sin θ(t)
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We differentiate x(t) and y(t), using the Product Rule for differentiation. We obtain (omitting the independent variable t)

x′ = r ′ cos θ − r (sin θ) θ ′

y′ = r ′ sin θ − r (cos θ) θ ′

Hence,

x′2 + y′2 = (r ′ cos θ − rθ ′ sin θ
)2 + (r ′ sin θ + rθ ′ cos θ

)2
= r ′2 cos2 θ − 2r ′rθ ′ cos θ sin θ + r2θ ′2 sin2 θ + r ′2 sin2 θ + 2r ′rθ ′ sin2 θ cos θ + r2θ ′2 cos2 θ

= r ′2 (cos2 θ + sin2 θ
)

+ r2θ ′2 (sin2 θ + cos2 θ
)

= r ′2 + r2θ ′2 (2)

Substituting (2) into (1) we get

ds

dt
=
√

r ′2 + r2θ ′2 =
√(

dr

dt

)2
+ r2

(
dθ

dt

)2

Compute the speed at time t = 1 of a particle whose polar coordinates at time t are r = t , θ = t (use Exercise
37). What would the speed be if the particle’s rectangular coordinates were x = t , y = t? Why is the speed increasing
in one case and constant in the other?12.5 Conic Sections

Preliminary Questions
1. Which of the following equations defines an ellipse? Which does not define a conic section?

(a) 4x2 − 9y2 = 12 (b) −4x + 9y2 = 0

(c) 4y2 + 9x2 = 12 (d) 4x3 + 9y3 = 12

solution

(a) This is the equation of the hyperbola
(

x√
3

)2 −
(

y
2√
3

)2

= 1, which is a conic section.

(b) The equation −4x + 9y2 = 0 can be rewritten as x = 9
4y2, which defines a parabola. This is a conic section.

(c) The equation 4y2 + 9x2 = 12 can be rewritten in the form
(

y√
3

)2 +
(

x
2√
3

)2

= 1, hence it is the equation of an

ellipse, which is a conic section.

(d) This is not the equation of a conic section, since it is not an equation of degree two in x and y.

2. For which conic sections do the vertices lie between the foci?

solution If the vertices lie between the foci, the conic section is a hyperbola.

y

x
Vertex

Vertex

Vertex

Vertex FocusFocus

F1 F2

Vertex VertexFocus Focus
x

y

F2 F1

ellipse: foci between vertices hyperbola: vertices between foci

3. What are the foci of

(x

a

)2 +
(y

b

)2 = 1 if a < b?

solution If a < b the foci of the ellipse
(
x
a

)2 + ( y
b

)2 = 1 are at the points (0, c) and (0, −c) on the y-axis, where

c =
√

b2 − a2.
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F1 = (0, c)

F2 = (0, −c)

y

x

b

a

(
x
a

)2 + ( y
b

)2 = 1; a < b

4. What is the geometric interpretation of b/a in the equation of a hyperbola in standard position?

solution The vertices, i.e., the points where the focal axis intersects the hyperbola, are at the points (a, 0) and (−a, 0).

The values ± b
a are the slopes of the two asymptotes of the hyperbola.

x

y
y = − x

(−a, 0) (a, 0)

b
a

y = x

b

−b

b
a

Hyperbola in standard position

Exercises
In Exercises 1–6, find the vertices and foci of the conic section.

1.
(x

9

)2 +
(y

4

)2 = 1

solution This is an ellipse in standard position with a = 9 and b = 4. Hence, c =
√

92 − 42 = √
65 ≈ 8.06. The foci

are at F1 = (−8.06, 0) and F2 = (8.06, 0), and the vertices are (9, 0) , (−9, 0), (0, 4) , (0, −4).

x2

9
+ y2

4
= 1

3.
(x

4

)2 −
(y

9

)2 = 1

solution This is a hyperbola in standard position with a = 4 and b = 9. Hence, c =
√

a2 + b2 = √
97 ≈ 9.85. The

foci are at (±√
97, 0) and the vertices are (±2, 0).

x2

4
− y2

9
= 36

5.
(

x − 3

7

)2
−
(

y + 1

4

)2
= 1

solution We first consider the hyperbola
(
x
7

)2 − ( y4 )2 = 1. For this hyperbola, a = 7, b = 4 and c =
√

72 + 42 ≈
8.06. Hence, the foci are at (8.06, 0) and (−8.06, 0) and the vertices are at (7, 0) and (−7, 0). Since the given hyperbola

is obtained by translating the center of the hyperbola
(
x
7

)2 − ( y
4

)2 = 1 to the point (3, −1), the foci are at F1 =
(8.06 + 3, 0 − 1) = (11.06, −1) and F2 = (−8.06 + 3, 0 − 1) = (−5.06, −1) and the vertices are A = (7 + 3, 0 − 1) =
(10, −1) and A′ = (−7 + 3, 0 − 1) = (−4, −1).

(
x − 3

4

)2
+
(

y + 1

7

)2
= 1

In Exercises 7–10, find the equation of the ellipse obtained by translating (as indicated) the ellipse(
x − 8

6

)2
+
(

y + 4

3

)2
= 1

7. Translated with center at the origin

solution Recall that the equation

(x − h)2

a2
+ (y − k)2

b2
= 1

describes an ellipse with center (h, k). Thus, for our ellipse to be located at the origin, it must have equation

x2

62
+ y2

32
= 1
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Translated with center at (−2, −12)
9. Translated to the right six units

solution Recall that the equation

(x − h)2

a2
+ (y − k)2

b2
= 1

describes an ellipse with center (h, k). The original ellipse has center at (8, −4), so we want an ellipse with center (14, −4).
Thus its equation is

(x − 14)2

62
+ (y + 4)2

32
= 1

Translated down four unitsIn Exercises 11–14, find the equation of the given ellipse.

11. Vertices (±5, 0) and (0, ±7)

solution Since both sets of vertices are symmetric around the origin, the center of the ellipse is at (0, 0). We have
a = 5 and b = 7, so the equation of the ellipse is (x

5

)2 +
(y

7

)2 = 1

Foci (±6, 0) and focal vertices (±10, 0)
13. Foci (0, ±10) and eccentricity e = 3

5

solution Since the foci are on the y axis, this ellipse has a vertical major axis with center (0, 0), so its equation is

(x

b

)2 +
(y

a

)2 = 1

We have a = c
e = 10

3/5 = 50
3 and

b =
√

a2 − c2 =
√

2500

9
− 100 = 1

3

√
2500 − 900 = 40

3

Thus the equation of the ellipse is (
x

40/3

)2
+
(

y

50/3

)2
= 1

Vertices (4, 0), (28, 0) and eccentricity e = 2
3

In Exercises 15–20, find the equation of the given hyperbola.

15. Vertices (±3, 0) and foci (±5, 0)

solution The equation is
(
x
a

)2 − ( y
b

)2 = 1. The vertices are (±a, 0) with a = 3 and the foci (±c, 0) with c = 5. We

use the relation c =
√

a2 + b2 to find b:

b =
√

c2 − a2 =
√

52 − 32 = √
16 = 4

Therefore, the equation of the hyperbola is (x

3

)2 −
(y

4

)2 = 1.

Vertices (±3, 0) and asymptotes y = ± 1
2x

17. Foci (±4, 0) and eccentricity e = 2

solution We have c = 4 and e = 2; from c = ae we get a = 2, and then

b =
√

c2 − a2 =
√

42 − 22 = 2
√

3

The hyperbola has center at (0, 0) and horizontal axis, so its equation is

(x

2

)2 −
(

y

2
√

3

)2
= 1

Vertices (0, ±6) and eccentricity e = 3
19. Vertices (−3, 0), (7, 0) and eccentricity e = 3

solution The center is at −3+7
2 = 2 with a horizontal focal axis, so the equation is

(
x − 2

a

)2
−
(y

b

)2 = 1.
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Then a = 7 − 2 = 5, and c = ae = 5 · 3 = 15. Finally,

b =
√

c2 − a2 =
√

152 − 52 = 10
√

2

so that the equation of the hyperbola is (
x − 2

5

)2
−
(

y

10
√

2

)2
= 1

Vertices (0, −6), (0, 4) and foci (0, −9), (0, 7)In Exercises 21–28, find the equation of the parabola with the given properties.

21. Vertex (0, 0), focus
( 1

12 , 0
)

solution Since the focus is on the x-axis rather than the y-axis, and the vertex is (0, 0), the equation is x = 1
4c

y2.

The focus is (0, c) with c = 1
12 , so the equation is

x = 1

4 · 1
12

y2 = 3y2

Vertex (0, 0), focus (0, 2)
23. Vertex (0, 0), directrix y = −5

solution The equation is y = 1
4c

x2. The directrix is y = −c with c = 5, hence y = 1
20x2.

Vertex (3, 4), directrix y = −2
25. Focus (0, 4), directrix y = −4

solution The focus is (0, c) with c = 4 and the directrix is y = −c with c = 4, hence the equation of the parabola is

y = 1

4c
x2 = x2

16
.

Focus (0, −4), directrix y = 4
27. Focus (2, 0), directrix x = −2

solution The focus is on the x-axis rather than on the y-axis and the directrix is a vertical line rather than horizontal
as in the parabola in standard position. Therefore, the equation of the parabola is obtained by interchanging x and y in

y = 1
4c

x2. Also, by the given information c = 2. Hence, x = 1
4c

y2 = 1
4·2y2 or x = y2

8 .

Focus (−2, 0), vertex (2, 0)In Exercises 29–38, find the vertices, foci, center (if an ellipse or a hyperbola), and asymptotes (if a hyperbola).

29. x2 + 4y2 = 16

solution We first divide the equation by 16 to convert it to the equation in standard form:

x2

16
+ 4y2

16
= 1 ⇒ x2

16
+ y2

4
= 1 ⇒

(x

4

)2 +
(y

2

)2 = 1

For this ellipse, a = 4 and b = 2 hence c =
√

42 − 22 = √
12 ≈ 3.5. Since a > b we have:

• The vertices are at (±4, 0), (0, ±2).
• The foci are F1 = (−3.5, 0) and F2 = (3.5, 0).
• The focal axis is the x-axis and the conjugate axis is the y-axis.
• The ellipse is centered at the origin.

4x2 + y2 = 1631.
(

x − 3

4

)2
−
(

y + 5

7

)2
= 1

solution For this hyperbola a = 4 and b = 7 so c =
√

42 + 72 = √
65 ≈ 8.06. For the standard hyperbola(

x
4

)2 − ( y7 )2 = 1, we have

• The vertices are A = (4, 0) and A′ = (−4, 0).
• The foci are F = (

√
65, 0) and F ′ = (−√

65, 0).
• The focal axis is the x-axis y = 0, and the conjugate axis is the y-axis x = 0.
• The center is at the midpoint of FF ′; that is, at the origin.
• The asymptotes y = ± b

a x are y = ± 7
4x.

The given hyperbola is a translation of the standard hyperbola, 3 units to the right and 5 units downward. Hence the
following holds:

• The vertices are at A = (7, −5) and A′ = (−1, −5).
• The foci are at F = (3 + √

65, −5) and F ′ = (3 − √
65, −5).
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• The focal axis is y = −5 and the conjugate axis is x = 3.
• The center is at (3, −5).
• The asymptotes are y + 5 = ± 7

4 (x − 3).

3x2 − 27y2 = 12
33. 4x2 − 3y2 + 8x + 30y = 215

solution Since there is no cross term, we complete the square of the terms involving x and y separately:

4x2 − 3y2 + 8x + 30y = 4
(
x2 + 2x

)
− 3

(
y2 − 10y

)
= 4(x + 1)2 − 4 − 3(y − 5)2 + 75 = 215

Hence,

4(x + 1)2 − 3(y − 5)2 = 144

4(x + 1)2

144
− 3(y − 5)2

144
= 1

(
x + 1

6

)2
−
(

y − 5√
48

)2
= 1

This is the equation of the hyperbola obtained by translating the hyperbola
(
x
6

)2 −
(

y√
48

)2 = 1 one unit to the left and

five units upwards. Since a = 6, b = √
48, we have c = √

36 + 48 = √
84 ∼ 9.2. We obtain the following table:

Standard position Translated hyperbola

vertices (6, 0), (−6, 0) (5, 5), (−7, 5)

foci (±9.2, 0) (8.2, 5), (−10.2, 5)

focal axis The x-axis y = 5

conjugate axis The y-axis x = −1

center The origin (−1, 5)

asymptotes y = ±1.15x y = −1.15x + 3.85
y = 1.15x + 6.15

y = 4x235. y = 4(x − 4)2

solution By Exercise 34, the parabola y = 4x2 has the vertex at the origin, the focus at
(

0, 1
16

)
and its axis is the

y-axis. Our parabola is a translation of the standard parabola four units to the right. Hence its vertex is at (4, 0), the focus

is at
(

4, 1
16

)
and its axis is the vertical line x = 4.

8y2 + 6x2 − 36x − 64y + 134 = 0
37. 4x2 + 25y2 − 8x − 10y = 20

solution Since there are no cross terms this conic section is obtained by translating a conic section in standard position.
To identify the conic section we complete the square of the terms involving x and y separately:

4x2 + 25y2 − 8x − 10y = 4
(
x2 − 2x

)
+ 25

(
y2 − 2

5
y

)

= 4(x − 1)2 − 4 + 25

(
y − 1

5

)2
− 1

= 4(x − 1)2 + 25

(
y − 1

5

)2
− 5 = 20

Hence,

4(x − 1)2 + 25

(
y − 1

5

)2
= 25

4

25
(x − 1)2 +

(
y − 1

5

)2
= 1

(
x − 1

5
2

)2

+
(

y − 1

5

)2
= 1
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This is the equation of the ellipse obtained by translating the ellipse in standard position

(
x
5
2

)2
+ y2 = 1 one unit to the

right and 1
5 unit upward. Since a = 5

2 , b = 1 we have c =
√(

5
2

)2 − 1 ≈ 2.3, so we obtain the following table:

Standard position Translated ellipse

Vertices
(
± 5

2 , 0
)

, (0, ±1)
(

1 ± 5
2 , 1

5

)
,
(

1, 1
5 ± 1

)
Foci (−2.3, 0) , (2.3, 0)

(
−1.3, 1

5

)
,
(

3.3, 1
5

)
Focal axis The x-axis y = 1

5

Conjugate axis The y-axis x = 1

Center The origin
(

1, 1
5

)

16x2 + 25y2 − 64x − 200y + 64 = 0
In Exercises 39–42, use the Discriminant Test to determine the type of the conic section (in each case, the equation is
nondegenerate). Plot the curve if you have a computer algebra system.

39. 4x2 + 5xy + 7y2 = 24

solution Here, D = 25 − 4 · 4 · 7 = −87, so the conic section is an ellipse.

x2 − 2xy + y2 + 24x − 8 = 0
41. 2x2 − 8xy + 3y2 − 4 = 0

solution Here, D = 64 − 4 · 2 · 3 = 40, giving us a hyperbola.

2x2 − 3xy + 5y2 − 4 = 0
43. Show that the “conic” x2 + 3y2 − 6x + 12y + 23 = 0 has no points.

solution Complete the square in each variable separately:

−23 = x2 − 6x + 3y2 + 12y = (x2 − 6x + 9) + (3y2 + 12y + 12) − 9 − 12 = (x − 3)2 + 3(y + 2)2 − 21

Collecting constants and reversing sides gives

(x − 3)2 + 3(y + 2)2 = −2

which has no solutions since the left-hand side is a sum of two squares so is always nonnegative.

For which values of a does the conic 3x2 + 2y2 − 16y + 12x = a have at least one point?45. Show that
b

a
=
√

1 − e2 for a standard ellipse of eccentricity e.

solution By the definition of eccentricity:

e = c

a
(1)

For the ellipse in standard position, c =
√

a2 − b2. Substituting into (1) and simplifying yields

e =
√

a2 − b2

a
=
√

a2 − b2

a2
=
√

1 −
(

b

a

)2

We square the two sides and solve for b
a :

e2 = 1 −
(

b

a

)2
⇒
(

b

a

)2
= 1 − e2 ⇒ b

a
=
√

1 − e2

Show that the eccentricity of a hyperbola in standard position is e =
√

1 + m2, where ±m are the slopes of the
asymptotes.

47. Explain why the dots in Figure 23 lie on a parabola. Where are the focus and directrix located?

y = −c

y = c
y = 2c
y = 3c

y

x

FIGURE 23
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solution All the circles are centered at (0, c) and the kth circle has radius kc. Hence the indicated point Pk on the kth
circle has a distance kc from the point F = (0, c). The point Pk also has distance kc from the line y = −c. That is, the
indicated point on each circle is equidistant from the point F = (0, c) and the line y = −c, hence it lies on the parabola
with focus at F = (0, c) and directrix y = −c.

y = −c

(0, c) 2c

2c

3c

3c P2

P3

P1

y

x

Find the equation of the ellipse consisting of points P such that PF1 + PF2 = 12, where F1 = (4, 0) and
F2 = (−2, 0).

49. A latus rectum of a conic section is a chord through a focus parallel to the directrix. Find the area bounded by the
parabola y = x2/(4c) and its latus rectum (refer to Figure 8).

solution The directrix is y = −c, and the focus is (0, c). The chord through the focus parallel to y = −c is clearly

y = c; this line intersects the parabola when c = x2/(4c) or 4c2 = x2, so when x = ±2c. The desired area is then

∫ 2c

−2c
c − 1

4c
x2 dx =

(
c x − 1

12c
x3
) ∣∣∣∣2c

−2c

= 2c2 − 8c3

12c
−
(

−2c2 − (−2c)3

12c

)
= 4c2 − 4

3
c2 = 8

3
c2

Show that the tangent line at a point P = (x0, y0) on the hyperbola
(x

a

)2 −
(y

b

)2 = 1 has equation

Ax − By = 1

where A = x0

a2
and B = y0

b2
.

In Exercises 51–54, find the polar equation of the conic with the given eccentricity and directrix, and focus at the origin.

51. e = 1
2 , x = 3

solution Substituting e = 1
2 and d = 3 in the polar equation of a conic section we obtain

r = ed

1 + e cos θ
=

1
2 · 3

1 + 1
2 cos θ

= 3

2 + cos θ
⇒ r = 3

2 + cos θ

e = 1
2 , x = −3

53. e = 1, x = 4

solution We substitute e = 1 and d = 4 in the polar equation of a conic section to obtain

r = ed

1 + e cos θ
= 1 · 4

1 + 1 · cos θ
= 4

1 + cos θ
⇒ r = 4

1 + cos θ

e = 3
2 , x = −4

In Exercises 55–58, identify the type of conic, the eccentricity, and the equation of the directrix.

55. r = 8

1 + 4 cos θ

solution Matching with the polar equation r = ed
1+e cos θ

we get ed = 8 and e = 4 yielding d = 2. Since e > 1, the
conic section is a hyperbola, having eccentricity e = 4 and directrix x = 2 (referring to the focus-directrix definition (11)).

r = 8

4 + cos θ

57. r = 8

4 + 3 cos θ

solution We first rewrite the equation in the form r = ed
1+e cos θ

, obtaining

r = 2

1 + 3
4 cos θ

Hence, ed = 2 and e = 3
4 yielding d = 8

3 . Since e < 1, the conic section is an ellipse, having eccentricity e = 3
4 and

directrix x = 8
3 .

r = 12

4 + 3 cos θ

59. Find a polar equation for the hyperbola with focus at the origin, directrix x = −2, and eccentricity e = 1.2.

solution We substitute d = −2 and e = 1.2 in the polar equation r = ed
1+e cos θ

and use Exercise 40 to obtain

r = 1.2 · (−2)

1 + 1.2 cos θ
= −2.4

1 + 1.2 cos θ
= −12

5 + 6 cos θ
= 12

5 − 6 cos θ

Let C be the ellipse r = de/(1 + e cos θ), where e < 1. Show that the x-coordinates of the points in Figure 24
are as follows:

Point A C F2 A′

de de2 2de2 de
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61. Find an equation in rectangular coordinates of the conic

r = 16

5 + 3 cos θ

Hint: Use the results of Exercise 60.

solution Put this equation in the form of the referenced exercise:

16

5 + 3 cos θ
=

16
5

1 + 3
5 cos θ

=
16
3 · 3

5

1 + 3
5 cos θ

so that e = 3
5 and d = 16

3 . Then the center of the ellipse has x-coordinate

− de2

1 − e2
= −

16
3 · 9

25

1 − 9
25

= −16

3
· 9

25
· 25

16
= −3

and y-coordinate 0, and A′ has x-coordinate

− de

1 − e
= −

16
3 · 3

5

1 − 3
5

= −16

3
· 3

5
· 5

2
= −8

and y-coordinate 0, so a = −3 − (−8) = 5, and the equation is

(
x + 3

5

)2
+
(y

b

)2 = 1

To find b, set θ = π
2 ; then r = 16

5 . But the point corresponding to θ = π
2 lies on the y-axis, so has coordinates

(
0, 16

5

)
.

This point is on the ellipse, so that

(
0 + 3

5

)2
+
(

16
5
b

)2

= 1 ⇒ 256

25 · b2
= 16

25
⇒ 256

b2
= 16 ⇒ b = 4

and the equation is

(
x + 3

5

)2
+
(y

4

)2 = 1

Let e > 1. Show that the vertices of the hyperbola r = de

1 + e cos θ
have x-coordinates

ed

e + 1
and

ed

e − 1
.

63. Kepler’s First Law states that planetary orbits are ellipses with the sun at one focus. The orbit of Pluto has eccentricity
e ≈ 0.25. Its perihelion (closest distance to the sun) is approximately 2.7 billion miles. Find the aphelion (farthest
distance from the sun).

solution We define an xy-coordinate system so that the orbit is an ellipse in standard position, as shown in the figure.

y

x
Sun

F1(c, 0)

A(a, 0)A' (−a, 0)

The aphelion is the length of A′F1, that is a + c. By the given data, we have

0.25 = e = c

a
⇒ c = 0.25a

a − c = 2.7 ⇒ c = a − 2.7

Equating the two expressions for c we get

0.25a = a − 2.7

0.75a = 2.7 ⇒ a = 2.7

0.75
= 3.6, c = 3.6 − 2.7 = 0.9

The aphelion is thus

A′F0 = a + c = 3.6 + 0.9 = 4.5 billion miles.

Kepler’s Third Law states that the ratio T/a3/2 is equal to a constant C for all planetary orbits around the sun,
where T is the period (time for a complete orbit) and a is the semimajor axis.

(a) Compute C in units of days and kilometers, given that the semimajor axis of the earth’s orbit is 150 × 106 km.

(b) Compute the period of Saturn’s orbit, given that its semimajor axis is approximately 1.43 × 109 km.
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Further Insights and Challenges
65. Verify Theorem 2.

solution Let F1 = (c, 0) and F2 = (−c, 0) and let P (x, y) be an arbitrary point on the hyperbola. Then for some
constant a,

PF1 − PF2 = ±2a

y

x
F2 = (−c, 0) F1 = (c, 0)

P = (x, y)

Using the distance formula we write this as

√
(x − c)2 + y2 −

√
(x + c)2 + y2 = ±2a.

Moving the second term to the right and squaring both sides gives

√
(x − c)2 + y2 =

√
(x + c)2 + y2 ± 2a

(x − c)2 + y2 = (x + c)2 + y2 ± 4a

√
(x + c)2 + y2 + 4a2

(x − c)2 − (x + c)2 − 4a2 = ±4a

√
(x + c)2 + y2

xc + a2 = ±a

√
(x + c)2 + y2

We square and simplify to obtain

x2c2 + 2xca2 + a4 = a2
(
(x + c)2 + y2

)
= a2x2 + 2a2xc + a2c2 + a2y2(

c2 − a2
)

x2 − a2y2 = a2
(
c2 − a2

)
x2

a2
− y2

c2 − a2
= 1

For b =
√

c2 − a2 (or c =
√

a2 + b2) we get

x2

a2
− y2

b2
= 1 ⇒

(x

a

)2 −
(y

b

)2 = 1.

Verify Theorem 5 in the case 0 < e < 1. Hint: Repeat the proof of Theorem 5, but set c = d/(e−2 − 1).
67. Verify that if e > 1, then Eq. (11) defines a hyperbola of eccentricity e, with its focus at the origin and directrix at
x = d.

solution The points P = (r, θ) on the hyperbola satisfy PF = ePD, e > 1. Referring to the figure we see that

PF = r, PD = d − r cos θ (1)

Hence

r = e(d − r cos θ)

r = ed − er cos θ

r(1 + e cos θ) = ed ⇒ r = ed

1 + e cos θ
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F

r P

q
D

y

x

x = d

D

d − rcos q
rcos q

Remark: Equality (1) holds also for θ > π
2 . For example, in the following figure, we have

PD = d + r cos (π − θ) = d − r cos θ

y

x

P

r

dr cos (p − q )

q

x = d

D

Reflective Property of the Ellipse In Exercises 68–70, we prove that the focal radii at a point on an ellipse make equal
angles with the tangent line L. Let P = (x0, y0) be a point on the ellipse in Figure 25 with foci F1 = (−c, 0) and
F2 = (c, 0), and eccentricity e = c/a.

R2 = (  2,    2)

R1 = (  1,    1)

1
2

y

x

P = (x0, y0)

F1 = (−c, 0) F2 = (c, 0)

L

FIGURE 25 The ellipse
(x

a

)2 +
(y

b

)2 = 1.

Show that the equation of the tangent line at P is Ax + By = 1, where A = x0

a2
and B = y0

b2
.

69. Points R1 and R2 in Figure 25 are defined so that F1R1 and F2R2 are perpendicular to the tangent line.

(a) Show, with A and B as in Exercise 68, that

α1 + c

β1
= α2 − c

β2
= A

B

(b) Use (a) and the distance formula to show that

F1R1

F2R2
= β1

β2

(c) Use (a) and the equation of the tangent line in Exercise 68 to show that

β1 = B(1 + Ac)

A2 + B2
, β2 = B(1 − Ac)

A2 + B2

solution
(a) Since R1 = (α1, β1) and R2 = (α2, β2) lie on the tangent line at P , that is on the line Ax + By = 1, we have

Aα1 + Bβ1 = 1 and Aα2 + Bβ2 = 1

The slope of the line R1F1 is β1
α1+c and it is perpendicular to the tangent line having slope −A

B
. Similarly, the slope of

the line R2F2 is β2
α2−c and it is also perpendicular to the tangent line. Hence,

α1 + c

β1
= A

B
and

α2 − c

β2
= A

B
.
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(b) Using the distance formula, we have

R1F1
2 = (α1 + c)2 + β2

1

Thus,

R1F1
2 = β2

1

((
α1 + c

β1

)2
+ 1

)
(1)

By part (a), α1+c
β1

= A
B

. Substituting in (1) gives

R1F1
2 = β2

1

(
A2

B2
+ 1

)
(2)

Likewise,

R2F2
2 = (α2 − c)2 + β2

2 = β2
2

((
α2 − c

β2

)2
+ 1

)
(3)

but since α2−c
β2

= A
B

, substituting in (3) gives

R2F2
2 = β2

2

(
A2

B2
+ 1

)
. (4)

Dividing, we find that

R1F1
2

R2F2
2

= β2
1

β2
2

so
R1F1

R2F2
= β1

β2
,

as desired.

(c) In part (a) we showed that ⎧⎪⎨
⎪⎩

Aα1 + Bβ1 = 1

β1

α1 + c
= B

A

Eliminating α1 and solving for β1 gives

β1 = B(1 + Ac)

A2 + B2
. (5)

Similarly, we have ⎧⎪⎨
⎪⎩

Aα2 + Bβ2 = 1

β2

α2 − c
= B

A

Eliminating α2 and solving for β2 yields

β2 = B (1 − Ac)

A2 + B2
(6)

(a) Prove that PF1 = a + x0e and PF2 = a − x0e. Hint: Show that PF1
2 − PF2

2 = 4x0c. Then use the defining
property PF1 + PF2 = 2a and the relation e = c/a.

(b) Verify that
F1R1

PF1
= F2R2

PF2
.

(c) Show that sin θ1 = sin θ2. Conclude that θ1 = θ2.

71. Here is another proof of the Reflective Property.

(a) Figure 25 suggests that L is the unique line that intersects the ellipse only in the point P . Assuming this, prove that
QF1 + QF2 > PF1 + PF2 for all points Q on the tangent line other than P .

(b) Use the Principle of Least Distance (Example 6 in Section 4.7) to prove that θ1 = θ2.

solution

(a) Consider a point Q 
= P on the line L (see figure). Since L intersects the ellipse in only one point, the remainder of
the line lies outside the ellipse, so that QR does not have zero length, and F2QR is a triangle. Thus

QF1 + QF2 = QR + RF1 + QF2 = RF1 + (QR + QF2) > RF1 + RF2

since the sum of lengths of two sides of a triangle exceeds the length of the third side. But since point R lies on the ellipse,
RF2 + RF2 = PF1 + PF2, and we are done.
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y

Q
R

P

x
F1 F2

(b) Consider a beam of light traveling from F1 to F2 by reflection off of the line L. By the principle of least distance,
the light takes the shortest path, which by part (a) is the path through P . By Example 6 in Section 4.6, this shortest path
has the property that the angle of incidence (θ1) is equal to the angle of reflection (θ2).

Show that the length QR in Figure 26 is independent of the point P .73. Show that y = x2/4c is the equation of a parabola with directrix y = −c, focus (0, c), and the vertex at the origin,
as stated in Theorem 3.

solution The points P = (x, y) on the parabola are equidistant from F = (0, c) and the line y = −c.

y

x

y = −c

P(x, y)

F(0, c)

That is, by the distance formula, we have

PF = PD√
x2 + (y − c)2 = |y + c|

Squaring and simplifying yields

x2 + (y − c)2 = (y + c)2

x2 + y2 − 2yc + c2 = y2 + 2yc + c2

x2 − 2yc = 2yc

x2 = 4yc ⇒ y = x2

4c

Thus, we showed that the points that are equidistant from the focus F = (0, c) and the directrix y = −c satisfy the

equation y = x2

4c
.

Consider two ellipses in standard position:

E1 :
(

x

a1

)2
+
(

y

b1

)2
= 1

E2 :
(

x

a2

)2
+
(

y

b2

)2
= 1

We say that E1 is similar to E2 under scaling if there exists a factor r > 0 such that for all (x, y) on E1, the point
(rx, ry) lies on E2. Show that E1 and E2 are similar under scaling if and only if they have the same eccentricity.
Show that any two circles are similar under scaling.

75. Derive Eqs. (13) and (14) in the text as follows. Write the coordinates of P with respect to the rotated axes
in Figure 21 in polar form x′ = r cos α, y′ = r sin α. Explain why P has polar coordinates (r, α + θ) with respect to the
standard x and y-axes and derive Eqs. (13) and (14) using the addition formulas for cosine and sine.

solution If the polar coordinates of P with respect to the rotated axes are (r, α), then the line from the origin to P

has length r and makes an angle of α with the rotated x-axis (the x′-axis). Since the x′-axis makes an angle of θ with the
x-axis, it follows that the line from the origin to P makes an angle of α + θ with the x-axis, so that the polar coordinates
of P with respect to the standard axes are (r, α + θ). Write (x′, y′) for the rectangular coordinates of P with respect to
the rotated axes and (x, y) for the rectangular coordinates of P with respect to the standard axes. Then

x = r cos(α + θ) = (r cos α) cos θ − (r sin α) sin θ = x′ cos θ − y′ sin θ

y = r sin(α + θ) = r sin α cos θ + r cos α sin θ = (r cos α) sin θ + (r sin α) cos θ = x′ sin θ + y′ cos θ

If we rewrite the general equation of degree 2 (Eq. 12) in terms of variables x′ and y′ that are related to x and y by
Eqs. (13) and (14), we obtain a new equation of degree 2 in x′ and y′ of the same form but with different coefficients:
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CHAPTER REVIEW EXERCISES

1. Which of the following curves pass through the point (1, 4)?

(a) c(t) = (t2, t + 3) (b) c(t) = (t2, t − 3)

(c) c(t) = (t2, 3 − t) (d) c(t) = (t − 3, t2)

solution To check whether it passes through the point (1, 4), we solve the equations c(t) = (1, 4) for the given curves.

(a) Comparing the second coordinate of the curve and the point yields:

t + 3 = 4

t = 1

We substitute t = 1 in the first coordinate, to obtain

t2 = 12 = 1

Hence the curve passes through (1, 4).
(b) Comparing the second coordinate of the curve and the point yields:

t − 3 = 4

t = 7

We substitute t = 7 in the first coordinate to obtain

t2 = 72 = 49 
= 1

Hence the curve does not pass through (1, 4).
(c) Comparing the second coordinate of the curve and the point yields

3 − t = 4

t = −1

We substitute t = −1 in the first coordinate, to obtain

t2 = (−1)2 = 1

Hence the curve passes through (1, 4).
(d) Comparing the first coordinate of the curve and the point yields

t − 3 = 1

t = 4

We substitute t = 4 in the second coordinate, to obtain:

t2 = 42 = 16 
= 4

Hence the curve does not pass through (1, 4).

Find parametric equations for the line through P = (2, 5) perpendicular to the line y = 4x − 3.
3. Find parametric equations for the circle of radius 2 with center (1, 1). Use the equations to find the points of intersection

of the circle with the x- and y-axes.

solution Using the standard technique for parametric equations of curves, we obtain

c(t) = (1 + 2 cos t, 1 + 2 sin t)

We compare the x coordinate of c(t) to 0:

1 + 2 cos t = 0

cos t = −1

2

t = ±2π

3

Substituting in the y coordinate yields

1 + 2 sin

(
±2π

3

)
= 1 ± 2

√
3

2
= 1 ± √

3
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Hence, the intersection points with the y-axis are (0, 1 ± √
3). We compare the y coordinate of c(t) to 0:

1 + 2 sin t = 0

sin t = −1

2

t = −π

6
or

7

6
π

Substituting in the x coordinates yields

1 + 2 cos
(
−π

6

)
= 1 + 2

√
3

2
= 1 + √

3

1 + 2 cos

(
7

6
π

)
= 1 − 2 cos

(π

6

)
= 1 − 2

√
3

2
= 1 − √

3

Hence, the intersection points with the x-axis are (1 ± √
3, 0).

Find a parametrization c(t) of the line y = 5 − 2x such that c(0) = (2, 1).
5. Find a parametrization c(θ) of the unit circle such that c(0) = (−1, 0).

solution The unit circle has the parametrization

c(t) = (cos t, sin t)

This parametrization does not satisfy c(0) = (−1, 0). We replace the parameter t by a parameter θ so that t = θ + α, to
obtain another parametrization for the circle:

c∗(θ) = (cos(θ + α), sin(θ + α)) (1)

We need that c∗(0) = (1, 0), that is,

c∗(0) = (cos α, sin α) = (−1, 0)

Hence

cos α = −1

sin α = 0
⇒ α = π

Substituting in (1) we obtain the following parametrization:

c∗(θ) = (cos(θ + π), sin(θ + π))

Find a path c(t) that traces the parabolic arc y = x2 from (0, 0) to (3, 9) for 0 ≤ t ≤ 1.
7. Find a path c(t) that traces the line y = 2x + 1 from (1, 3) to (3, 7) for 0 ≤ t ≤ 1.

solution Solution 1: By one of the examples in section 12.1, the line through P = (1, 3) with slope 2 has the
parametrization

c(t) = (1 + t, 3 + 2t)

But this parametrization does not satisfy c(1) = (3, 7). We replace the parameter t by a parameter s so that t = αs + β.
We get

c∗(s) = (1 + αs + β, 3 + 2(αs + β)) = (αs + β + 1, 2αs + 2β + 3)

We need that c∗(0) = (1, 3) and c∗(1) = (3, 7). Hence,

c∗(0) = (1 + β, 3 + 2β) = (1, 3)

c∗(1) = (α + β + 1, 2α + 2β + 3) = (3, 7)

We obtain the equations

1 + β = 1

3 + 2β = 3

α + β + 1 = 3

2α + 2β + 3 = 7

⇒ β = 0, α = 2

Substituting in (1) gives

c∗(s) = (2s + 1, 4s + 3)
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Solution 2: The segment from (1, 3) to (3, 7) has the following vector parametrization:

(1 − t) 〈1, 3〉 + t 〈3, 7〉 = 〈1 − t + 3t, 3(1 − t) + 7t〉 = 〈1 + 2t, 3 + 4t〉
The parametrization is thus

c(t) = (1 + 2t, 3 + 4t)

Sketch the graph c(t) = (1 + cos t, sin 2t) for 0 ≤ t ≤ 2π and draw arrows specifying the direction of motion.In Exercises 9–12, express the parametric curve in the form y = f (x).

9. c(t) = (4t − 3, 10 − t)

solution We use the given equation to express t in terms of x.

x = 4t − 3

4t = x + 3

t = x + 3

4

Substituting in the equation of y yields

y = 10 − t = 10 − x + 3

4
= −x

4
+ 37

4

That is,

y = −x

4
+ 37

4

c(t) = (t3 + 1, t2 − 4)11. c(t) =
(

3 − 2

t
, t3 + 1

t

)
solution We use the given equation to express t in terms of x:

x = 3 − 2

t

2

t
= 3 − x

t = 2

3 − x

Substituting in the equation of y yields

y =
(

2

3 − x

)3
+ 1

2/(3 − x)
= 8

(3 − x)3
+ 3 − x

2

x = tan t , y = sec tIn Exercises 13–16, calculate dy/dx at the point indicated.

13. c(t) = (t3 + t, t2 − 1), t = 3

solution The parametric equations are x = t3 + t and y = t2 − 1. We use the theorem on the slope of the tangent

line to find dy
dx

:

dy

dx
=

dy
dt
dx
dt

= 2t

3t2 + 1

We now substitute t = 3 to obtain

dy

dx

∣∣∣∣
t=3

= 2 · 3

3 · 32 + 1
= 3

14

c(θ) = (tan2 θ, cos θ), θ = π
4

15. c(t) = (et − 1, sin t), t = 20

solution We use the theorem for the slope of the tangent line to find dy
dx

:

dy

dx
=

dy
dt
dx
dt

= (sin t)′
(et − 1)′ = cos t

et

We now substitute t = 20:

dy

dx

∣∣∣∣
t=0

= cos 20

e20

c(t) = (ln t, 3t2 − t), P = (0, 2)



June 15, 2011 LTSV SSM Second Pass

804 C H A P T E R 12 PARAMETRIC EQUATIONS, POLAR COORDINATES, AND CONIC SECTIONS

17. Find the point on the cycloid c(t) = (t − sin t, 1 − cos t) where the tangent line has slope 1
2 .

solution Since x = t − sin t and y = 1 − cos t , the theorem on the slope of the tangent line gives

dy

dx
=

dy
dt
dx
dt

= sin t

1 − cos t

The points where the tangent line has slope 1
2 are those where dy

dx
= 1

2 . We solve for t :

dy

dx
= 1

2

sin t

1 − cos t
= 1

2
(1)

2 sin t = 1 − cos t

We let u = sin t . Then cos t = ±
√

1 − sin2t = ±
√

1 − u2. Hence

2u = 1 ±
√

1 − u2

We transfer sides and square to obtain

±
√

1 − u2 = 2u − 1

1 − u2 = 4u2 − 4u + 1

5u2 − 4u = u(5u − 4) = 0

u = 0, u = 4

5

We find t by the relation u = sin t :

u = 0: sin t = 0 ⇒ t = 0, t = π

u = 4

5
: sin t = 4

5
⇒ t ≈ 0.93, t ≈ 2.21

These correspond to the points (0, 1), (π, 2), (0.13, 0.40), and (1.41, 1.60), respectively, for 0 < t < 2π .

Find the points on (t + sin t, t − 2 sin t) where the tangent is vertical or horizontal.
19. Find the equation of the Bézier curve with control points

P0 = (−1, −1), P1 = (−1, 1), P2 = (1, 1), P3(1, −1)

solution We substitute the given points in the appropriate formulas in the text to find the parametric equations of the
Bézier curve. We obtain

x(t) = −(1 − t)3 − 3t (1 − t)2 + t2(1 − t) + t3

= −(1 − 3t + 3t2 − t3) − (3t − 6t2 + 3t3) + (t2 − t3) + t3

= (−2t3 + 4t2 − 1)

y(t) = −(1 − t)3 + 3t (1 − t)2 + t2(1 − t) − t3

= −(1 − 3t + 3t2 − t3) + (3t − 6t2 + 3t3) + (t2 − t3) − t3

= (2t3 − 8t2 + 6t − 1)

Find the speed at t = π
4 of a particle whose position at time t seconds is c(t) = (sin 4t, cos 3t).

21. Find the speed (as a function of t) of a particle whose position at time t seconds is c(t) = (sin t + t, cos t + t). What
is the particle’s maximal speed?

solution We use the parametric definition to find the speed. We obtain

ds

dt
=
√

((sin t + t)′)2 + ((cos t + t)′)2 =
√

(cos t + 1)2 + (1 − sin t)2

=
√

cos2 t + 2 cos t + 1 + 1 − 2 sin t + sin2 t = √3 + 2(cos t − sin t)

We now differentiate the speed function to find its maximum:

d2s

dt2
=
(√

3 + 2(cos t − sin t)
)′ = − sin t − cos t√

3 + 2(cos t − sin t)
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We equate the derivative to zero, to obtain the maximum point:

d2s

dt2
= 0

− sin t − cos t√
3 + 2(cos t − sin t)

= 0

− sin t − cos t = 0

− sin t = cos t

sin(−t) = cos(−t)

−t = π

4
+ πk

t = −π

4
+ πk

Substituting t in the function of speed we obtain the value of the maximal speed:

√
3 + 2

(
cos −π

4
− sin −π

4

)
=
√√√√3 + 2

(√
2

2
−
(

−
√

2

2

))
=
√

3 + 2
√

2

Find the length of (3et − 3, 4et + 7) for 0 ≤ t ≤ 1.In Exercises 23 and 24, let c(t) = (e−t cos t, e−t sin t).

23. Show that c(t) for 0 ≤ t < ∞ has finite length and calculate its value.

solution We use the formula for arc length, to obtain:

s =
∫ ∞

0

√
((e−t cos t)′)2 + ((e−t sin t)′)2dt

=
∫ ∞

0

√
(−e−t cos t − e−t sin t)2 + (−e−t sin t + e−t cos t)2dt

=
∫ ∞

0

√
e−2t (cos t + sin t)2 + e−2t (cos t − sin t)2dt

=
∫ ∞

0
e−t

√
cos2 t + 2 sin t cos t + sin2 t + cos2 t − 2 sin t cos t + sin2 tdt

=
∫ ∞

0
e−t

√
2dt = √

2(−e−t )

∣∣∣∣∞
0

= −√
2

(
lim

t→∞ e−t − e0
)

= −√
2(0 − 1) = √

2

Find the first positive value of t0 such that the tangent line to c(t0) is vertical, and calculate the speed at t = t0.25. Plot c(t) = (sin 2t, 2 cos t) for 0 ≤ t ≤ π . Express the length of the curve as a definite integral, and
approximate it using a computer algebra system.

solution We use a CAS to plot the curve. The resulting graph is shown here.

x

y

2

1

−2

−1

−2 −1 21

Plot of the curve (sin 2t, 2 cos t)

To calculate the arc length we use the formula for the arc length to obtain

s =
∫ π

0

√
(2 cos 2t)2 + (−2 sin t)2 dt = 2

∫ π

0

√
cos2 2t + sin2 t dt

We use a CAS to obtain s = 6.0972.

Convert the points (x, y) = (1, −3), (3, −1) from rectangular to polar coordinates.
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27. Convert the points (r, θ) = (1, π
6

)
,
(
3, 5π

4

)
from polar to rectangular coordinates.

solution We convert the points from polar coordinates to cartesian coordinates. For the first point we have

x = r cos θ = 1 · cos
π

6
=

√
3

2

y = r sin θ = 1 · sin
π

6
= 1

2

For the second point we have

x = r cos θ = 3 cos
5π

4
= −3

√
2

2

y = r sin θ = 3 sin
5π

4
= −3

√
2

2

Write (x + y)2 = xy + 6 as an equation in polar coordinates.29. Write r = 2 cos θ

cos θ − sin θ
as an equation in rectangular coordinates.

solution We use the formula for converting from polar coordinates to cartesian coordinates to substitute x and y for
r and θ :

r = 2 cos θ

cos θ − sin θ√
x2 + y2 = 2r cos θ

r cos θ − r sin θ√
x2 + y2 = 2x

x − y

Show that r = 4

7 cos θ − sin θ
is the polar equation of a line.

31. Convert the equation

9(x2 + y2) = (x2 + y2 − 2y)2

to polar coordinates, and plot it with a graphing utility.

solution We use the formula for converting from cartesian coordinates to polar coordinates to substitute r and θ for
x and y:

9(x2 + y2) = (x2 + y2 − 2y)2

9r2 = (r2 − 2r sin θ)2

3r = r2 − 2r sin θ

3 = r − 2 sin θ

r = 3 + 2 sin θ

The plot of r = 3 + 2 sin θ is shown here:

r = 3 + 2sin

5

40 31−4 2−1−2−3
−2

4

3

2

1

0

−1

Plot of r = 3 + 2 sin θ

Calculate the area of the circle r = 3 sin θ bounded by the rays θ = π
3 and θ = 2π

3 .
33. Calculate the area of one petal of r = sin 4θ (see Figure 1).

y

x

n = 2 (4 petals)

y

x

n = 4 (8 petals)

y

x

n = 6 (12 petals)

FIGURE 1 Plot of r = sin(nθ).
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solution We use a CAS to generate the plot, as shown here.

r = 4sin

−0.8 −0.4

1
0.8
0.6
0.4
0.2

0
−0.2
−0.4
−0.6
−0.8

−1
10 0.80.4−1

Plot of r = sin 4θ

We can see that one leaf lies between the rays θ = 0 and θ = θ

4
. We now use the formula for area in polar coordinates to

obtain

A = 1

2

∫ π/4

0
sin2 4θ dθ = 1

4

∫ π/4

0
(1 − cos 8θ) dθ = 1

4

(
θ − sin 8θ

8

∣∣∣∣π/4

0

)

= π

16
− 1

32
(sin 2π − sin 0) = π

16

The equation r = sin(nθ), where n ≥ 2 is even, is a “rose” of 2n petals (Figure 1). Compute the total area of the
flower, and show that it does not depend on n.

35. Calculate the total area enclosed by the curve r2 = cos θesin θ (Figure 2).

y

x

1

1−1

FIGURE 2 Graph of r2 = cos θesin θ .

solution Note that this is defined only for θ between −π/2 and π/2. We use the formula for area in polar coordinates
to obtain:

A = 1

2

∫ π/2

−π/2
r2 dθ = 1

2

∫ π/2

−π/2
cos θesin θ dθ

We evaluate the integral by making the substitution x = sin θ dx = cos θ dθ :

A = 1

2

∫ π/2

−π/2
cos θesin θ dθ = 1

2
ex

∣∣∣∣1−1
= 1

2

(
e − e−1

)

Find the shaded area in Figure 3.
37. Find the area enclosed by the cardioid r = a(1 + cos θ), where a > 0.

solution The graph of r = a (1 + cos θ) in the rθ -plane for 0 ≤ θ ≤ 2π and the cardioid in the xy-plane are shown
in the following figures:

r

a

2a

2πππ 
2

3π 
2

y

x
θ = 0
r = 2a

θ = , r = a
3π

2

θ = , r = a
π

2

θ = π, r = 0

r = a (1 + cos θ) The cardioid r = a (1 + cos θ), a > 0

As θ varies from 0 to π the radius r decreases from 2a to 0, and this gives the upper part of the cardioid.
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The lower part is traced as θ varies from π to 2π and consequently r increases from 0 back to 2a. We compute
the area enclosed by the upper part of the cardioid and the x-axis, using the following integral (we use the identity
cos2 θ = 1

2 + 1
2 cos 2θ ):

1

2

∫ π

0
r2 dθ = 1

2

∫ π

0
a2(1 + cos θ)2 dθ = a2

2

∫ π

0

(
1 + 2 cos θ + cos2 θ

)
dθ

= a2

2

∫ π

0

(
1 + 2 cos θ + 1

2
+ 1

2
cos 2θ

)
dθ = a2

2

∫ π

0

(
3

2
+ 2 cos θ + 1

2
cos 2θ

)
dθ

= a2

2

[
3θ

2
+ 2 sin θ + 1

4
sin 2θ

] ∣∣∣∣π
0

= a2

2

[
3π

2
+ 2 sin π + 1

4
sin 2π − 0

]
= 3πa2

4

Using symmetry, the total area A enclosed by the cardioid is

A = 2 · 3πa2

4
= 3πa2

2

Calculate the length of the curve with polar equation r = θ in Figure 4.39. Figure 5 shows the graph of r = e0.5θ sin θ for 0 ≤ θ ≤ 2π . Use a computer algebra system to approximate
the difference in length between the outer and inner loops.

y

x

5

10

3−6

FIGURE 5

solution We note that the inner loop is the curve for θ ∈ [0, π ], and the outer loop is the curve for θ ∈ [π, 2π ]. We
express the length of these loops using the formula for the arc length. The length of the inner loop is

s1 =
∫ π

0

√
(e0.5θ sin θ)2 + ((e0.5θ sin θ)′)2dθ =

∫ π

0

√
eθ sin2 θ +

(
e0.5θ sin θ

2
+ e0.5θ cos θ

)2

dθ

and the length of the outer loop is

s2 =
∫ 2π

π

√
eθ sin2 θ +

(
e0.5θ sin θ

2
+ e0.5θ cos θ

)2

dθ

We now use the CAS to calculate the arc length of each of the loops. We obtain that the length of the inner loop is 7.5087
and the length of the outer loop is 36.121, hence the outer one is 4.81 times longer than the inner one.

Show that r = f1(θ) and r = f2(θ) define the same curves in polar coordinates if f1(θ) = −f2(θ + π). Use
this to show that the following define the same conic section:

r = de

1 − e cos θ
, r = −de

1 + e cos θ

In Exercises 41–44, identify the conic section. Find the vertices and foci.

41.
(x

3

)2 +
(y

2

)2 = 1

solution This is an ellipse in standard position. Its foci are (±
√

32 − 22, 0) = (±√
5, 0) and its vertices are

(±3, 0), (0,±2).

x2 − 2y2 = 4
43.

(
2x + 1

2y
)2 = 4 − (x − y)2

solution We simplify the equation:

(
2x + 1

2
y

)2
= 4 − (x − y)2

4x2 + 2xy + 1

4
y2 = 4 − x2 + 2xy − y2

5x2 + 5

4
y2 = 4

5x2

4
+ 5y2

16
= 1

⎛
⎝ x

2√
5

⎞
⎠

2

+
⎛
⎝ y

4√
5

⎞
⎠

2

= 1
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This is an ellipse in standard position, with foci

(
0, ±

√(
4√
5

)2 −
(

2√
5

)2
)

=
(

0, ±
√

12
5

)
and vertices

(
± 2√

5
, 0
)

,(
0, ± 4√

5

)
.

(y − 3)2 = 2x2 − 1In Exercises 45–50, find the equation of the conic section indicated.

45. Ellipse with vertices (±8, 0) and foci (±√
3, 0)

solution Since the foci of the desired ellipse are on the x-axis, we conclude that a > b. We are given that the points

(±8, 0) are vertices of the ellipse, and since they are on the x-axis, a = 8. We are given that the foci are (±√
3, 0) and

we have shown that a > b, hence we have that
√

a2 − b2 = √
3. Solving for b yields

√
a2 − b2 = √

3

a2 − b2 = 3

82 − b2 = 3

b2 = 61

b = √
61

Next we use a and b to construct the equation of the ellipse:

(x

8

)2 +
(

y√
61

)2
= 1.

Ellipse with foci (±8, 0), eccentricity 1
8

47. Hyperbola with vertices (±8, 0), asymptotes y = ± 3
4x

solution Since the asymptotes of the hyperbola are y = ± 3
4x, and the equation of the asymptotes for a general

hyperbola in standard position is y = ± b
a x, we conclude that b

a = 3
4 . We are given that the vertices are (±8, 0), thus

a = 8. We substitute and solve for b:

b

a
= 3

4

b

8
= 3

4

b = 6

Next we use a and b to construct the equation of the hyperbola:(x

8

)2 −
(y

6

)2 = 1.

Hyperbola with foci (2, 0) and (10, 0), eccentricity e = 4
49. Parabola with focus (8, 0), directrix x = −8

solution This is similar to the usual equation of a parabola, but we must use y as x, and x as y, to obtain

x = 1

32
y2.

Parabola with vertex (4, −1), directrix x = 1551. Find the asymptotes of the hyperbola 3x2 + 6x − y2 − 10y = 1.

solution We complete the squares and simplify:

3x2 + 6x − y2 − 10y = 1

3(x2 + 2x) − (y2 + 10y) = 1

3(x2 + 2x + 1 − 1) − (y2 + 10y + 25 − 25) = 1

3(x + 1)2 − 3 − (y + 5)2 + 25 = 1

3(x + 1)2 − (y + 5)2 = −21(
y + 5√

21

)2
−
(

x + 1√
7

)2
= 1

We obtained a hyperbola with focal axis that is parallel to the y-axis, and is shifted −5 units on the y-axis, and −1 units
in the x-axis. Therefore, the asymptotes are

x + 1 = ±
√

7√
21

(y + 5) or y + 5 = ±√
3(x + 1).
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Show that the “conic section” with equation x2 − 4x + y2 + 5 = 0 has no points.
53. Show that the relation dy

dx
= (e2 − 1) x

y holds on a standard ellipse or hyperbola of eccentricity e.

solution We differentiate the equations of the standard ellipse and the hyperbola with respect to x:

Ellipse: Hyperbola:

x2

a2
+ y2

b2
= 1

2x

a2
+ 2y

b2

dy

dx
= 0

dy

dx
= −b2

a2

x

y

x2

a2
− y2

b2
= 1

2x

a2
− 2y

b2

dy

dx
= 0

dy

dx
= b2

a2

x

y

The eccentricity of the ellipse is e =
√

a2−b2

a , hence e2a2 = a2 − b2 or e2 = 1 − b2

a2 yielding b2

a2 = 1 − e2.

The eccentricity of the hyperbola is e =
√

a2+b2

a , hence e2a2 = a2 + b2 or e2 = 1 + b2

a2 , giving b2

a2 = e2 − 1.

Combining with the expressions for dy
dx

we get:

Ellipse: Hyperbola:

dy

dx
= −(1 − e2)

x

y
= (e2 − 1)

x

y

dy

dx
= (e2 − 1)

x

y

We, thus, proved that the relation dy
dx

= (e2 − 1) x
y holds on a standard ellipse or hyperbola of eccentricity e.

The orbit of Jupiter is an ellipse with the sun at a focus. Find the eccentricity of the orbit if the perihelion (closest
distance to the sun) equals 740 × 106 km and the aphelion (farthest distance from the sun) equals 816 × 106 km.

55. Refer to Figure 25 in Section 12.5. Prove that the product of the perpendicular distances F1R1 and F2R2 from the
foci to a tangent line of an ellipse is equal to the square b2 of the semiminor axes.

solution We first consider the ellipse in standard position:

x2

a2
+ y2

b2
= 1

The equation of the tangent line at P = (x0, y0) is

x0x

a2
+ y0y

b2
= 1

or

b2x0x + a2y0y − a2b2 = 0

The distances of the foci F1 = (c, 0) and F2 = (−c, 0) from the tangent line are

F1R1 = |b2x0c − a2b2|√
b4x2

0 + a4y2
0

; F2R2 = |b2x0c + a2b2|√
b4x2

0 + a4y2
0

We compute the product of the distances:

F1R1 · F2R2 =
∣∣∣∣∣∣
(
b2x0c − a2b2

) (
b2x0c + a2b2

)
b4x2

0 + a4y2
0

∣∣∣∣∣∣ =
∣∣∣∣∣b

4x2
0c2 − a4b4

b4x2
0 + a4y2

0

∣∣∣∣∣ (1)

The point P = (x0, y0) lies on the ellipse, hence:

x2
0

a2
+ y2

0

b2
= 1 ⇒ a4y2

0 = a4b2 − a2b2x2
0

We substitute in (1) to obtain (notice that b2 − a2 = −c2)

F1R1 · F2R2 = |b4x2
0c2 − a4b4|

|b4x2
0 + a4b2 − a2b2x2

0 | = |b4x2
0c2 − a4b4|

|b2(b2 − a2)x2
0 + a4b2|

= |b4x2
0c2 − a4b4|

| − b2x2
0c2 + a4b2| = |b2(x2

0c2 − a4)|
| − (x2

0c2 − a4)| = | − b2| = b2

The product F1R1 · F2R2 remains unchanged if we translate the standard ellipse.
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