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10 INFINITE SERIES

10.1 Sequences (LT Section 11.1)

Preliminary Questions

1. What is a4 for the sequence a,, = n?

—n?
SOLUTION Substituting n = 4 in the expression for a, gives
ag =42 —4=12.
2. Which of the following sequences converge to zero?

2 NN
or o (3)

SOLUTION
(a) This sequence does not converge to zero:
2 x? 1 1

. n . .
n|—|>moon2+]_ _xl—l)moox2+]_ _x|—|>mool+i2 T 140
x

1.

(b) This sequence does not converge to zero: this is a geometric sequence with r = 2 > 1; hence, the sequence diverges
to co.

(c) Recall that if |a,| converges to O, then a,, must also converge to zero. Here,

1 n 1 n
(-2)1-()
which is a geometric sequence with 0 < r < 1; hence, (%)” converges to zero. It therefore follows that (—%)" converges
to zero.

3. Let a, be the nth decimal approximation to +/2. That is, a; = 1, ap = 1.4, a3 = 1.41, etc. What is n[}moo an?

soLUTION  lim a, = v/2.
n—oo

4. Which of the following sequences is defined recursively?
(@ an=+4+n (0) bp =/4+by_1
SOLUTION

(a) a, canbe computed directly, since it depends on n only and not on preceding terms. Therefore a;, is defined explicitly
and not recursively.

(b) by is computed in terms of the preceding term b,,_1, hence the sequence {b,} is defined recursively.

5. Theorem 5 says that every convergent sequence is bounded. Determine if the following statements are true or false
and if false, give a counterexample.

(a) If {a,} is bounded, then it converges.
(b) If {a,} is not bounded, then it diverges.
(c) If {a,} diverges, then it is not bounded.

SOLUTION

(a) This statement is false. The sequence a, = coszn is bounded since —1 < coswn < 1 for all n, but it does not
converge: since a, = cosnm = (—1)", the terms assume the two values 1 and —1 alternately, hence they do not approach
one value.

(b) By Theorem 5, a converging sequence must be bounded. Therefore, if a sequence is not bounded, it certainly does
not converge.

(c) The statement is false. The sequence a;, = (—1)" is bounded, but it does not approach one limit.
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Exercises

1. Match each sequence with its general term:
ai,ap,as,as, ... General term
@3 2.3 ¢.... (i) cosn

.. n!
(b)-1,1,-1,1,... (i) on
©1,-1,1,-1,... (iii) (—1)"*1
126 24 ; n

(@3.2.8.%.. (V) ——

SOLUTION
(a) The numerator of each term is the same as the index of the term, and the denominator is one more than the numerator;
hence a;,, = n"ﬁ,nzl,z,&....

(b) The terms of this sequence are alternating between —1 and 1 so that the positive terms are in the even places. Since
coswn = 1forevenn and coswn = —1 for odd n, we have g, = coswn,n=1,2,....

(c) The terms a, are 1 for odd n and —1 for even n. Hence, a, = ="t p=12 ...

(d) The numerator of each term is n!, and the denominator is 2"; hence, a, = g—,; n=1273,....

In Exercises 3—-12, calculate the first four terms of the sequence, starting with n = 1.

3’1
3. = —
n!

SOLUTION Setting n = 1, 2, 3, 4 in the formula for ¢,, gives

__3_, 32 9
AT T 2Ty T2
327 9 3 8 27
BTy T T2 YT T w

5. a1 =2, ap41=2a2—3
SOLUTION Forn =1, 2, 3 we have:
a2=a1+1=2a%—3=2-4—3=5;
ag =apy1 =2a3 —3=2.25-3 =47,
ag = azyq = 2a3 — 3 =2.2209 — 3 = 4415,

The first four terms of {a,} are 2, 5, 47, 4415.
7. by =54 cosmn
SOLUTION Forn =1, 2,3, 4 we have

by =5+4cosm =4

by =5+ cos2r = 6;

b3 =5+ cos3r = 4;

by =5+ cosdmr = 6.
The first four terms of {b,,} are 4, 6, 4, 6.

11 1
S. =144+ -+

273

SOLUTION
a1 =1

1 3
S I S

BEITIT3T 23T
1,11 w1 %
ATy a T e TaT 12
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1. b1 =2, by=3, by=2b,_1+by_2

soLUTION We need to find b3 and by4. Setting n = 3 and n = 4 and using the given values for b1 and b, we obtain:
b3 =2b3_1+b3 9p=2bp+b1 =2-3+2=28;
by =2bg_1+by_p=2b3+byp=2-8+3=19.

The first four terms of the sequence {b,} are 2, 3, 8, 19.

13. Find a formula for the nth term of each sequence.

1 -1 1 2 3 4
€)] 1" g 7 (b) 678
SOLUTION

(a) The denominators are the third powers of the positive integers starting with n = 1. Also, the sign of the terms is
alternating with the sign of the first term being positive. Thus,

3 1 3 (_1)l+1 . B 1 B (_1)2+1 . B 1 B (_1)3+l

MEBET T @TTET T o ®TET g

This rule leads to the following formula for the nth term:

(_1)n+l
ap = ———.
n n3
(b) Assuming a starting index of n = 1, we see that each numerator is one more than the index and the denominator is
four more than the numerator. Thus, the general term a,, is
n+1
n+5

anp =

In Exercises 15-26, use Theorem 1 to determine the limit of the sequence or state that the sequence diverges.

15. a, =12
soLUTION We have a, = f(n) where f(x) = 12; thus,

lim a, = lim f(x)= lim 12 =12.
n—0o X—>00 X—>00
bn—-1

17. by = ———
" 12049

bx —1
We have b, = f h = ; th
SOLUTION e have b, = f(n) where f(x) x5 9 us,

. 5n — 1 . 5x —1 5
lim lim = —.
n—o012n +9 x—o012x+9 12

19. ¢, =—-27"

SsoLUTION We have ¢;; = f(n) where f(x) = —27%; thus,

. . i 1
lim (-=27") = lim —27% = lim —— =0.
n—o0 xX—00 x—o00 2%

21 ¢ =9

SOLUTION We have ¢, = f(n) where f(x) = 9*; thus,

lim 9" = lim 9 =0
n— oo X—> 00
Thus, the sequence 9" diverges.
23 ap = ———
Vn2+1
sOoLUTION We have a, = f(n) where f(x) = L; thus,

1 1 1
= lim —— = lim = =1
+1 x> /x242—1 X—00 /1+;2 V140
X X

n X
lim —— = lim ——— = lim
n—00 /n2+1 X—>00 /)C2+1 X—>00

NNI\)
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12n 42
25. =In{——
n <—9 + 4n)

12 2
SOLUTION We have a,, = f(n) where f(x) = In exte : thus,
—9+4x

. 12n +2 . 12x +2 . 12x 4+ 2
Iim n{ ——— )= Ilim In{ ——— ) =In lim —— ) =1In3
n—00 —9+4n xX—00 —9 4+ 4x x—o00 \ —9 + 4x

In Exercises 27-30, use Theorem 4 to determine the limit of the sequence.

| 1
27. ap = /4 + —
n
SOLUTION We have
. 1 . 1
lim 44— = lim 44+ — =4
n—oo n xX—00 X

Since /x is a continuous function for x > 0, Theorem 4 tells us that

1 1
lim \/4+f:\/lim 4+ = =4=2
n—oo n n—00 n

3
n
29. = COS_l —_—
n <2n3 + 1)

SOLUTION We have

lim 1
n—00 273 +1 2

Since cos~L(x) is continuous for all x, Theorem 4 tells us that

lim cos™ ! 7n3 =cos~ 1| Ilim n’ =cos (1,2 =T
n—l>oo s 3 +1 = ¢0s n—l>002n3+1 = cos (/)_5

31. Leta, = L. Find a number M such that:
n+1

(@) lap — 1] <0.001forn > M.
(b) |a, — 1] <0.00001 forn > M.
Then use the limit definition to prove that nimoo ap = 1.

SOLUTION
(a) We have

n
— 1| = — =
lan | ‘n—Q—I '

n—(n—i—l)‘_
n+1 -

-1] 1
n+1l] n+l
Therefore |a,;, — 1| < 0.001 provided ﬁ < 0.001, that is, n > 999. It follows that we can take M = 999.

(b) By part (a), |a, — 1| < 0.00001 provided ;1 < 0.00001, thatis, n > 99999. It follows that we can take M = 99999.

We now prove formally that nimoo an = 1. Using part (a), we know that

1
<
n+1

lan — 1| = €,

provided n > 1 — 1. Thus, Lete > Oand take M = 1 — 1. Then, for n > M, we have

1 1
lan — 1] = <——=
n+l M+1
33. Use the limit definition to prove that lim n2=0.
n—oo
SOLUTION \We see that
1 1
2
nc=0=|=5|=—5<¢€
| | 2=
provided
n >
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Thus, let e > 0 and take M = —L. Then, for n > M, we have

B

< = €.

1 1
T n2 M?

In Exercises 35-62, use the appropriate limit laws and theorems to determine the limit of the sequence or show that it
diverges.

1 n
350,10 (1)

SOLUTION By the Limit Laws for Sequences we have:

1 n 1 n 1 n
lim (lO—I—(—f) >= lim 10+ lim <—7> =10+ lim (—7) .
n—o00 9 n—o00 n—oo 9 n—o00 9

Now,
Because

by the Limit Laws for Sequences,
Thus, we have

and
1 n
lim <10+ <—7) ) =10+ 0 = 10.
n—o00 9
37. ¢, =1.01"

SOLUTION Since ¢, = f(n) where f(x) = 1.01%, we have
lim 1.01" = lim 1.01* = o0
n—oQ X—> 00
so that the sequence diverges.

39. a, =24/
SOLUTION Because 2* is a continuous function,

lim 21/’1 = lim 21/x = 2Iimx9m(1/x) = 20 =1.
n—oo X—> 00
1
41, ¢ = —
n!
SOLUTION Forn > 9, write
9" 9 9 9 9 9 9 9
p = —=-.Z...2. .2 ... L2
"Tal T 12 91011 a-1 n
call this C  Each factor is less than 1
Then clearly
I
0< s < Cg
n! n

since each factor after the first nine is < 1. The squeeze theorem tells us that

. .9 . 9 .9
lim 0< Iim — < lim C—=C Ilim —=C-0=0
n—oo n—oo p! n—-oo n n—oon

so that limy,— oo ¢, = 0 as well.
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3n2+n+2
43. gy = 21 "%
" 2n2 — 3
SOLUTION
324+ n+42  3x%4+x42 3
Iim ———— = |lim ————— = —.
n—oo 252 _3 x—oo 2y2_3 2
Ccos
45, ap = 2
n

soLUTION Since —1 < cosn < 1 the following holds:

to conclude that lim 5% =0,
n—oo

47. d, =In5" —Inn!
SOLUTION Note that

5"
dy =In—
n!

so that
511 n
edn =2 5o lim e = lim = =0
n! n—o00 n—oo n!
by the method of Exercise 41. If d,, converged, we could, since f(x) = ¢* is continuous, then write

lim e = liMsocodn —
n—oQ

which is impossible. Thus {d,} diverges.
4\1/3

49, a, = (2 + —2>
n

1/3
SOLUTION Leta, = (2 + n%) / . Taking the natural logarithm of both sides of this expression yields

4N\3 1 4
Inag, =In{2+ — =—-In(2+—=].
m=n(ze ) =30 (2t )

. 1 4NB 1 4 1 ) 4
nl_l)moo Ina, = nl_l)moo 3 In (2 + n—2> = §xl_|>mooln (2 + x—2> =3 In (Xl_l)mOO (2 + X—Z))

1 1
=ZIN@+0)=>1In2=1In21/3,
3 2+0) 3

Thus,

Because f(x) = ¢* is a continuous function, it follows that

m eMNan — Jimisoc(na,) _ 23 _ 51/3

lim a, = li
n— n— 00

2n+1
51. =1In
“n (3n+4>

SOLUTION Because f(x) = Inx is a continuous function, it follows that

. . 2x+1 .o 2x+1 2
lim ¢, = lim In =In{ lim =In-—.
n— 00 X—00 3x+4 x—>00 3x + 4 3

en
53. yp = on
SOLUTION S—Z =(%)" and § > 1. By the Limit of Geometric Sequences,we conclude that lim,, . o (§)"
the given sequence diverges.

= oo. Thus,
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en+(_3)n
55. n = g
SOLUTION
e + (—3)" . e\n . —-3\"
— = lim <7) + lim ( —
n—oo \§5 n—oo

lim
n—o00 gn

assuming both limits on the right-hand side exist. But by the Limit of Geometric Sequences, since

-3
-1<—<0< 3 <1
both limits on the right-hand side are 0, so that y, converges to 0.

57. ay = nsin —
n
SOLUTION By the Theorem on Sequences Defined by a Function, we have

. . T . . T
lim nsin— = lim xsin —.
n—o0o n X—>00 X

1 )1
(cos %) (—;2) _ n
= lim (n cos —)
X—00 X

Now,
. . . sink .
lim xsin— = lim —* = lim
X—>0Q X X—> 00 4 X—> 00 _i
X x2

. s
=x lim cos—=ncos0O=x-1=m.

X—>00

. . T
lim nsin—=mx
n—o00 n

Thus,
3—4n
5. by = ———
"T247.4n
soLUTION Divide the numerator and denominator by 4" to obtain
3 _ 4 3
o= Y o w1l
n 2 747 2
2 + 7-4 an + an I + 7
Thus,
; 3 . .
_om L lims o (1) _3limysoo g —limysoel  3.0-1 1
liMy— o0 (4; n 7) 2limy o0 7 — liMysoo7  2:047 7

lim q, = > =
n—0o0 X—> 00 47 + 7

1 n
61. a, = (l + 7>
n
soLUTION Taking the natural logarithm of both sides of this expression yields
1
1\" 1 In 1+ =
oy =) 212 =072
n n =
Thus,
1 1 1 (-1
n(1+1)  Am(+d) ()
= lim = lim —— = lim
X—>00 d (1 X—>00 _1 x—o001 4 1
dx (x) x2 X

lim (Ina,) = lim
n—00 X—00 1
X

Because f(x) = ¢* is a continuous function, it follows that
lim eMan — pliMisoo(ina,) _ 1 _

lim a, =
n—>oo n—>oo

I =140
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In Exercises 63-66, find the limit of the sequence using L’Hopital’s Rule.

Inn)2
63. a, = (Inn)
n
SOLUTION
d 2 2Inx
. In )2 . In x)2 ~(nx) . 2Inx
lim Q:Ilm !zl dx = lim 22— =1
n—>oo n X—>00  x X—00 dix x—oo 1 X—>00 x
X
d | 2
- Ty 'x . X -
= lim 4 = lim £ = lim —=0
X—00 a’ix x—o00 1 X—00 X
X

65. ¢, = n(\/n2 +1-— n)
SOLUTION

x(\/xz—i—l—x) (x/xz—i—l—}—x)

lim n(\/nz—l—l—n): lim x<\/x2+1—x): lim \/27
n—oo X—> 00 X—>0Q x + 1 +x
d
. . T=X . 1
= lim _*  _ lim ——&— — fim ————

xX—00 x2+1—|—x x%oo% x2—|—l+x x—o00 14+

. 1 . 1 1
= lim ——= |lim ——— =

x—00 2 X—>00 1 E
1+y7a Y mam

In Exercises 67-70, use the Squeeze Theorem to evaluate nimoo ap by verifying the given inequality.

1 1 1
67. ap = \/m- N =ap = on2
soLUTION Forall n > 1 we have n# < n8, so the quotient \/ﬁ is smaller than «/n“l+7n4 and larger than n81+n8'
That is,
1 1 1
ap < P =T ﬁnZ; and
1 1 1

ap > = = .
" Vn8 +n8  2n8 Vn4

Now, since lim = 0, the Squeeze Theorem for Sequences implies that lim a, = 0.
n—oQ n— oo

69. ay = (2" +3"HY", 3<a, <@2-3)Y/"=2".3
soLUTION Clearly 2" + 3" > 3" for all n > 1. Therefore:

@ 43 s @mln — 3.
Also 2" +3" <3" +3"=2.3",s0

@' 43 < .gmn _ol/n 3,

Thus,

3< @ +3nYn <ol/n .3,
Because

lim 2Y/7.3=3 Iim 2Y/" =3.1=3

n—00 n—00

and lim,_, oo 3 = 3, the Squeeze Theorem for Sequences guarantees

lim (2" 4+ 3" =3
n—0oo

71. & Which of the following statements is equivalent to the assertion imoo ap = L? Explain.
n

(a) Foreverye > 0, the interval (L — €, L + €) contains at least one element of the sequence {a,}.
(b) Forevery e > 0, the interval (L — ¢, L + €) contains all but at most finitely many elements of the sequence {a,}.



SECTION 10.1 | Sequences (LT SECTION 11.1) 9

SOLUTION Statement (b) is equivalent to Definition 1 of the limit, since the assertion “|a, — L| < € forall n > M”
meansthat L — € < a, < L + ¢ forall n > M; that is, the interval (L — ¢, L + €) contains all the elements a,, except
(maybe) the finite number of elements a1, ap, ..., ay.

Statement (a) is not equivalent to the assertion nimoo an = L. We show this, by considering the following sequence:

1
— for odd n
n

an =

1
1+~ forevenn
n

Clearly for every € > 0, the interval (—¢, €) = (L — ¢, L 4+ ¢€) for L = 0 contains at least one element of {a,}, but the
sequence diverges (rather than converges to L = 0). Since the terms in the odd places converge to 0 and the terms in the
even places converge to 1. Hence, a, does not approach one limit.

2
73. Show thata, = ZL is increasing. Find an upper bound.
ne+2
SOLUTION Let f(x) = xng 5+ Then
, 6x(x2 +2) — 3x2 . 2x 12x
fl = —— = 5
(x2+2) (x2+2)

f'(x) > 0for x > 0, hence f is increasing on this interval. It follows that a,, = f (n) is also increasing. We now show
that M = 3 is an upper bound for a;,,, by writing:

2 2 2
3n <3n +6 3@ +2)=3.

an:n2+2_ n2+2 - n2+2

That is, a, < 3 forall n.

75. Give an example of a divergent sequence {a,} such that lim |a,| converges.
n—od

SOLUTION Leta, = (—1)". The sequence {a,} diverges because the terms alternate between +1 and —1; however, the
sequence {|a, |} converges because it is a constant sequence, all of whose terms are equal to 1.

77. Using the limit definition, prove that if {a,} converges and {b,} diverges, then {a, + b,} diverges.

soLuTION We will prove this result by contradiction. Suppose lim;,—, ~ a, = L1 and that {a, + b,} converges to a
limit Lo. Now, lete > 0. Because {a, } converges to Ly and {a, + b, } convergesto Lo, it follows that there exist numbers
My and M> such that:

€
lan — L1| < 7 foralln > My,
€
| (an + by) — Lo| < 3 foralln > M>.
Thus, forn > M = max{M1, M»},
€ €
lan — L1| < > and | (an +by) — Lo| < 5
By the triangle inequality,
lbp — (L2 — L1)| = lan + bp — an — (L2 — L1)| = [(—an + L1) + (an + by — L2)|
<|L1 —an|+lan + by — Ly|.
Thus, forn > M,

€ €
by — (Ly — L 4o =¢
|bn — (L2 1)|<2+2 €

that is, {b,} converges to L, — L1, in contradiction to the given data. Thus, {a, + b,} must diverge.
79. Theorem 1 states that if lim f(x) = L, then the sequence a, = f(n) converges and lim a, = L. Show that the
X—>0Q n—oo

converse is false. In other words, find a function f(x) such that a, = f(n) converges but ximoo f(x) does not exist.

SOLUTION Let f(x) =sinzwx and a, = sinzwn. Then a, = f (n). Since sinx is oscillating between —1 and 1 the
limit lim f(x) does not exist. However, the sequence {a;, } is the constant sequence in which a, = sinzn = 0 for all n,
X—>0Q

hence it converges to zero.
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81. Let b, = a,1. Use the limit definition to prove that if {a,} converges, then {b,} also converges and nimoo ap =
lim by.
n—>oo

SOLUTION Suppose {ay} converges to L. Let b, = a,41, and let € > 0. Because {a,} converges to L, there exists an
M’ such that |a, — L| < e forn > M’. Now, let M = M’ — 1. Then, whenevern > M, n+1> M +1 = M’'. Thus,
forn > M,

lbw — L| = lay41 — L] < €.

Hence, {b,} converges to L.

83. Proceed as in Example 12 to show that the sequence ~/3, v/ 3V3, V3V 3V3,...is increasing and bounded above by
M = 3. Then prove that the limit exists and find its value.

SOLUTION This sequence is defined recursively by the formula:

an+1 = v/ 3an, a; = V3.

Consider the following inequalities:

=./3a1 =3 =a1 = ap>ay;
az = +/3az > /3 = a3 > ap;
ag = /3a3z > /3a = a4 > as.

In general, if we assume that a; > a;_1, then

ax4+1 = /3ag > /3ap_1 = ai.

Hence, by mathematical induction, a,,1 > a, for all n; that is, the sequence {a,} is increasing.
Because a,, 41 = +/3ay, it follows that a, > 0 for all n. Now, a3 = +/3 < 3. If @ < 3, then

ag4+1 =3 <v3-3=3.

Thus, by mathematical induction, a,, < 3 for all .
Since {a,} is increasing and bounded, it follows by the Theorem on Bounded Monotonic Sequences that this sequence
is converging. Denote the limit by L = lim,_, o a;,. Using Exercise 81, it follows that

L= nIme ap41 = nILmoo V3a, = /Snlew ap = ~3L.

Thus, L2 = 3L, so L = 0 or L = 3. Because the sequence is increasing, we have a, > a1 = +/3 for all n. Hence, the
limit also satisfies L > /3. We conclude that the appropriate solution is L = 3; thatis, lim a, = 3.
n—oo

Further Insights and Challenges
85. Show that nﬂ)moo V/n! = oco. Hint: Verify that n! > (n/2)"/2 by observing that half of the factors of n! are greater
than or equal to n/2.

soLuTIioN We show that n! > (%)"/2. For n > 4 even, we have:
n n n
n‘=17(7+1>n>(7+1) ..... n.
2 \2 —\2
e
3 factors 5 factors 5 factors

Since each one of the % factors is greater than % we have:

mz (1) oz g:(gy/z,
% factors % factors
For n > 3 odd, we have:
n=1-.... n-1 ntl ntl .n.
2 2 -2
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Since each one of the "—erl factors is greater than %, we have:

n+1 n n n\ m+1)/2 n\n/2 [n n\n/2
P> 2T oo 02 (= 2 n
"= "=3 2 (2) (2) V 2(2) :
—_— —— —_———
41 factors 141 factors

In either case we have n! > (%)"/2. Thus,

\/Wz\/g

Since lim \/E = oo, it follows that lim ¥/n! = oco. Thus, the sequence a,, = ¥/n! diverges.
n—>oo n—>oo

87. Given positive numbers a1 < b1, define two sequences recursively by

an + b
an41 = v anbp, byy1 = n2 !

(a) Show that a;, < b, forall n (Figure 13).

(b) Show that {ay,} is increasing and {b,} is decreasing.
by —an

(c) Show that b, 1 —a,41 <
(d) Prove that both {a,} and {b,} converge and have the same limit. This limit, denoted AGM(ay, b1), is called the
arithmetic-geometric mean of a; and b1.

(e) Estimate AGM(1, +/2) to three decimal places.

Geometric  Arithmetic
mean mean
M

an Any t b n+l b n
AGM(ay, b;)

FIGURE 13

SOLUTION
(a) Examine the following:

an + by an + by — 24/anby (M)Z - ZMM‘F («/E)Z
- ,/anbn = = 2

b — =
n+1 — dn+1 2 2

_ W= vE)
5 .

We conclude that b, 1 > a1 for all n > 1. By the given information b1 > ay; hence, b, > a, for all n.

(b) By part (a), b, > a, forall n, so

Apny1 = v anby > Jap -an = \/ag =ap

for all n. Hence, the sequence {a,} is increasing. Moreover, since a, < b, for all n,

b b b 2b
bn—i—l:an—; nf n‘; n=7n=bn

for all n; that is, the sequence {b,} is decreasing.
(c) Since {ay} is increasing, a,4+1 > a,. Thus,

an + by _an—}-bn—Zan_bn—an

b —a <b —ap = —ay = =
n+1 n+1 = Pp+1 n 2 n 2 2

Now, by part (a), a, < by, forall n. By part (b), {b,,} is decreasing. Hence b, < b1 for all n. Combining the two inequalities
we conclude that a, < b4 for all n. That is, the sequence {a, } is increasing and bounded (0 < a, < by). By the Theorem
on Bounded Monotonic Sequences we conclude that {a,} converges. Similarly, since {a,} is increasing, a, > a1 for all
n. We combine this inequality with b,, > a, to conclude that b,, > a4 for all n. Thus, {b,} is decreasing and bounded
(a1 < by < b1); hence this sequence converges.

To show that {a,} and {b,,} converge to the same limit, note that

bpy_1—ap_1 _bp_3—an_2 b1 —ag
bp —ap < 2 = 22 S"'Szni_l‘
Thus,

=0.

nl—l>moo(bn —ap) = (b1 —a1) n|—|>moo on—1
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(d) We have

a, +b
pt1 =+anby, a1 =1, by = n2 n’ bl:‘/E

Computing the values of a, and b, until the first three decimal digits are equal in successive terms, we obtain:

612 = ‘/albl = m = 11892

al—l—bl_l—l—ﬁ
2 2

a3 = \Jazhy = +/1.1892 - 1.2071 = 1.1981
ap+by  1.1892-1.2071

by = =1.2071

b3 = =1.1981
3 2 2
ag = \/azbz = 1.1981
b
by =828 11081
Thus,
AGM (1, ﬁ) ~ 1.198.
89. & Let a, = H,, — Inn, where H, is the nth harmonic number
Hy =1+ L + L +---+ L
" 273 n
n+1 dx
(a) Show that a,, > 0 for n > 1. Hint: Show that H,, > / —_.
1 X

(b) Show that {a,} is decreasing by interpreting a, — a,,41 as an area.
(c) Prove that nimoo ap exists.

This limit, denoted y, is known as Euler’s Constant. It appears in many areas of mathematics, including analysis and
number theory, and has been calculated to more than 100 million decimal places, but it is still not known whether y is an
irrational number. The first 10 digits are y ~ 0.5772156649.

SOLUTION

(a) Since the function y = % is decreasing, the left endpoint approximation to the integral fl’”rl ‘ﬂc—x

integral; that is,

is greater than this

1 1 1 ntl gy
11+ 14214 +=.1> —
2 3 n 1 X

or

Moreover, since the function y = % is positive for x > 0, we have:
n+l gy T dx
[reep
1 x T J1 X

n
an/ — = Inx‘lzlnn—lnlzlnn,
1

Thus,
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and
a, =H, —Inn>0 foralln > 1.
(b) To show that {a,} is decreasing, we consider the difference a, — a,41:

ap —apy1 = Hy —Inn — (H,,+1 —In(n + l)) =H, —Hyp1+Inn+1)—Inn

S I L S +In(m+1)—1In

1
=———+In 1) —Inn.
n—|—1+ (n+1) n

Now, In(n +1) —Inn = f,:”“l %", whereas ﬁ is the right endpoint approximation to the integral f:“ ”ﬂc—x. Recalling

y= % is decreasing, it follows that

n+ld)C 1
- >
,/n x " n+1l

n n+1

SO
an —ap41 > 0.

(c) By parts (a) and (b), {ay} is decreasing and O is a lower bound for this sequence. Hence 0 < a, < a;p forall n. A
monotonic and bounded sequence is convergent, so lim; —, o a;, exists.

10.2 Summing an Infinite Series (LT Section 11.2)

Preliminary Questions
1. What role do partial sums play in defining the sum of an infinite series?

SsoLUTION The sum of an infinite series is defined as the limit of the sequence of partial sums. If the limit of this sequence
does not exist, the series is said to diverge.

2. What is the sum of the following infinite series?

L i, .11,
47816 32 64

SOLUTION This is a geometric series with ¢ = % andr = % The sum of the series is therefore

B

SN
I

1
1-3
3. What happens if you apply the formula for the sum of a geometric series to the following series? Is the formula valid?

143432433434 4.

SOLUTION This is a geometric series with ¢ = 1 and r = 3. Applying the formula for the sum of a geometric series
then gives

o0
anzllsz_%
n=0 n

Clearly, this is not valid: a series with all positive terms cannot have a negative sum. The formula is not valid in this case
because a geometric series with r = 3 diverges.
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o
X 1 1 . . .
4. Arvind asserts that » — = 0 because — tends to zero. Is this valid reasoning?
soLuTIoN Arvind’s réashning is not valid. Though the terms in the series do tend to zero, the general term in the
sequence of partial sums,
s -1 1 1 1
n = +27+37+"'+n77
is clearly larger than 1. Theg sum of the series therefore cannot be zero.

5. Colleen claims that ) ~ — converges because
n
n=1

1
im L _o
n— 00 \/;7;

Is this valid reasoning?

soLUTION Colleen’s reasoning is not valid. Although the general term of a convergent series must tend to zero, a series
o

1 - .
whose general term tends to zero need not converge. In the case of Z 7 the series diverges even though its general
n

n=1
term tends to zero.

o0
6. Find an N such that Sy > 25 for the series Z 2.
n=1

SOLUTION The Nth partial sum of the series is:

— —

N
Sy=)2=2+--4+2=2N.

o
7. Does there exist an N such that Sy > 25 for the series Z 279 Explain.

oo n=1
. —n . . . . 1 L
SOLUTION The series E 27 is a convergent geometric series with the common ratio r = 3 The sum of the series is:
n=1
:
S = 1 — l = 1.
2

Notice that the sequence of partial sums {Sy} is increasing and converges to 1; therefore Sy < 1 for all N. Thus, there
does not exist an N such that Sy > 25.

8. Give an example of a divergent infinite series whose general term tends to zero.

o0
. . 1 . . 1 .
SOLUTION Consider the series E —-- The general term tends to zero, since I_|)moo—9 = 0. However, the Nth partial
- n -
n=1n10 nio

sum satisfies the following inequality:

1 1 1 N 1-9
SN:TJ’_T_F“'_F*QZ*Q =N"10 =NT1
110 210 N0 N1
1 1 1

Thatis, Sy > N 10 forall N. Since Nlim N 10 = oo, the sequence of partial sums S, diverges; hence, the series ZT

—00 10

n=1n 10
diverges.
Exercises
1. Find a formula for the general term a,, (not the partial sum) of the infinite series.
(a)1+1+1+1+ (b)1+5+25+125
39 27 81 172747 8
O 122 N 33 44 N
1 2.1 3.2.1 4.3.2-1
2 1 2 1
d + + + +--
@ 1241 2241 3241 4241
SOLUTION
(a) The denominators of the terms are powers of 3, starting with the first power. Hence, the general term is:
1

an=37.
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(b) The numerators are powers of 5, and the denominators are the same powers of 2. The first term is a1 = 1 so,
5 n—l
ay = <E) .

nl’l
an = (="

(c) The general term of this series is,

(d) Notice that the numerators of a;, equal 2 for odd values of n and 1 for even values of n. Thus,
2

odd
n?+1 "
1

an =

5 evenn
nc+1

The formula can also be rewritten as follows:

_1\yn+1
14 G
ap = ———————

n2+1
In Exercises 3-6, compute the partial sums S», S4, and Sg.
1 1 1
3.1+27+37+47+"'
SOLUTION
1 5
=14 — =2
2= 27y
o1 Lt 1,1 25
AT R TR T2 T
g Lt 1.1 1 15369
6= T2 T2 T2 52T 62 T 3600°
T S B
"1.272.3"73.4
SOLUTION
oo 1,1 1.1 4 2
27127237 27676 3
Sa=S,taztag= 4 — 42,1, 1 _ 4
AT TR T = Ty Ty 5 3 2720 5
Se=Sitastag— o4y 2,1 1 8
B AT T = T s T 5.7 5 30 42 7

1 1

15

7. The series S = 1+ (&) + (g)2 + (5)3 +--- converges to 3. Calculate Sy for N = 1,2, ... until you find an Sy

that approximates % with an error less than 0.0001.

SOLUTION
S1=1
1 6
Sy=1l4-=-=12
2=1%575
1 31
—l4 -4 =124
Ss=1ltc+x=%
1 1 1 156
=14 o4 =2 1248
Ss=1t g+t 1m~ 15
1 1 1 1 781
1l D = o= — 12496
Sa=14c+ 55+ 15 T 65 " 65
1 1 1 1 1 3906
R T I S ST S el P P Y T.V.v X
Ss=1% 5+ 25" 125 " 625 T 3125 ~ 3125 9
Note that

1.25 — S5 = 1.25 — 1.24992 = 0.00008 < 0.0001
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In Exercises 9 and 10, use a computer algebra system to compute S1g, S100, S500, @nd S1ggo for the series. Do these
values suggest convergence to the given value?

9. RS

SOLUTION Write

(—l)"+1
e o @n+ D) 2n+2)

Then

N

SN = Zan

i=1

Computing, we find
T —3

~ 0.0353981635

S10 ~ 0.03535167962
S100 ~ 0.03539810274
Ss00 ~ 0.03539816290
S1000 A 0.03539816334
7—3

It appears that Sy — *7=.

11. Calculate S3, S4, and S5 and then find the sum of the telescoping series

SOLUTION
B RN CEr R i IS
2 3 3 4 4 5 2 5 10
A
5 6 2 6 3
T S
6 7 2 7 14

The general term in the sequence of partial sums is
som (PoLY (oY (Ao
N=\2"3 3 4 45

S= lim Sy = lim L L —1
TN N T NSeo\2 Nt2) T 2

1 1 1 1
N+1 N+2) 2 N+2
thus,

The sum of the telescoping series is therefore 3 5 oo
13. Calculate S3, Sy, and S5 and then find the sum § = Z usmg the identity

1
E(zn—l 2n+1>

SOLUTION
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The general term in the sequence of partial sums is
P W W % S A W % W W A SRS S WU ¥ AU SR
N=2\173)72\3 5)"2\5 7 2\ov -1 2v+1) " 2 2N +1)°

S—IimS—Iimll ! _1L
_N%ooN_Nﬁooz 2N+1) 2

15. Find the sum of ! + ! + ! +

' 1.3 '3.5 5.7

soLUTION We may write this sum as

i 1 _il 1 1
@n—-1@n+1)  “~2\2n-1 2n+1)°

n=1 n=1

The general term in the sequence of partial sums is

S—111+111+111+—|—11 1_11 1 .
N=2\17 3 2\3 5 2\5 7 2\2N -1 2N+1) 2 2N +1)°

1 1
lim Sy = lim -(1-— = -,
N—oo N—oo 2 2N +1 2

and

- 1 1
712::1 @n—-1@n+1) 2

In Exercises 17-22, use Theorem 3 to prove that the following series diverge.

ad n
17. P ————
; 10n + 12

n
SOLUTION The general term, ————, has limit
g 100 + 12

n 1
im — = |Im ——— = —
n—o010n + 12 n—oc0 10+ (12/n) 10

Since the general term does not tend to zero, the series diverges.

SOLUTION The general terma, = (—1)”*1”%1 does not tend to zero. In fact, because lim;,— oo "T_l =1,lim,— o0 an
does not exist. By Theorem 3, we conclude that the given series diverges.

21 cosl+cosl+cosl+
' 2 3 4

SOLUTION The general term a, = cos n—}rl tends to 1, not zero. By Theorem 3, we conclude that the given series
diverges.

In Exercises 23-36, use the formula for the sum of a geometric series to find the sum or state that the series diverges.
1 1 1

23, S 44 4.
iTs et

SOLUTION This is a geometric serieswithc =1 and r = %, S0 its sum is

1 1 8

71:7:
1-1 78T

o] 3\~"
25. —

> (n)

n=3
SOLUTION Rewrite this series as

x(5)

L . . . 11 s
This is a geometric series with r = 3 1, so it is divergent.



18 CHAPTER 10 | INFINITE SERIES (LT CHAPTER 11)
o0
4 n
27. ——
> (-3)
n=-—4

- . . . 4 . .
SOLUTION This is a geometric serieswithc =1 and r = ~g starting at n = —4. Its sum is thus

or—b ¢ 1 9 59049
1—r r4—/5 7 48 8 " 9.44 145 3328

94 " 9

o0
29. Z e
n=1

SOLUTION Rewrite the series as

n=1
to recognize it as a geometric series with ¢ = % and r = % Thus,
oo 1
I e
_1 -1
n=1 1 e €

o0

8+ 2"
3L Z 5n
n=0

SOLUTION Rewrite the series as

oo

[e¢] 8 n [e¢] 1\" 00 o\ "
Sarlm=20(5) +2(s)
n=0 n=0 n=0 n=0

0 0
which is a sum of two geometric series. The first series has ¢ = 8 <%) =8andr = %; the second has ¢ = (%) =1

and r = % Thus,

10,

]2
Me o
N Vo
[ 1) (G20
—— ——
= =
Il Il
=
| |~ ©
Il Il
vglw| »  uIs|
Il Il
w| o

2
n=0 5
and
o0
8+ 2" 5 35
Y P _042=2
5n 3 3
n=0
5 5 5
3B.5——+—5——5+---
it B’
SOLUTION This is a geometric series withc =5and r = —%. Thus,
(o)
1\" 5 5 5
25.<_Z) = n :14_1:5:4'
n=0 1- <_Z) 4 4
35 7 49 N 343 2401 N
"8 64 512 4096
SOLUTION This is a geometric series with ¢ = % and r = —%. Thus,
7
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37. Which of the following are not geometric series?

@ Z 20n (®) Z 4

n= 3
© Z - @ 3
n=5
SOLUTION

7\" . . i . . 7
(a) Z o = 2(:)(29> : this is a geometric series with common ratio = 35"
n=|

(b) The ratio between two successive terms is

1
dn1 _ Gyt nt < n )4.
an i4 414 n+1

o]

1
This ratio is not constant since it depends on . Hence, the series Z — is not a geometric series.
n= 3
(c) The ratio between two successive terms is
(n+1)?
app1 et (4 D? 2" 142 21
an %5 Y on+l n 2
o 2
This ratio is not constant since it depends on n. Hence, the series Z — is not a geometric series.
n= O
ad [ 1\" 1
@ > a"=>" <—) : this is a geometric series with common ratio r = —.
4 4
n=5
o0 o0 o0

19

39. Prove that if Z ap converges and Z by, diverges, then Z (an + by) diverges. Hint: If not, derive a contradiction

o n=1 n=1 n=1
by writing

an—Z(an+bn)_Zan

n=1

SOLUTION  Suppose to the contrary that Y>> ; a, converges, > o0 ; by, diverges, but >">° ; (an + b,) converges. Then

by the Linearity of Infinite Series, we have

'S} 00 00
an = Z(an'f'bn)_ Zan
n=1 n=1 n=1

so that Z —1 bn converges, a contradiction.

41. & Give a counterexample to show that each of the following statements is false.
o

(a) If the general term a, tends to zero, then Z ap =0.
n=1
(b) The Nth partial sum of the infinite series defined by {a,} is ay.
o
(c) If a, tends to zero, then Z ap converges.
n=1

o0
(d) Ifa, tendsto L, then » " a, = L.
n=1

SOLUTION

(a) Leta, = 27" Then lim,—  ay, = 0, but a, is a geometric series with ¢ = 20 —1andr = 1/2, so its sum is
1

1-1/2)
(b) Leta, = 1. Then the n'" partial sumis ag + ap + - - - +a, = n while a, = 1.
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1 . .
(c) Leta, = —. Anexample in the text shows that while a,, tends to zero, the sum E OO ap does not converge.
«/ﬁ n=1
(d) Leta, = 1. Then clearly ay, tends to L = 1, while the series }_° ; a, obviously diverges.

43. Compute the total area of the (infinitely many) triangles in Figure 4.

y

FIGURE 4

SOLUTION The area of a triangle with base B and height H is A = 1 BH. Because all of the triangles in Figure 4 have
height % the area of each triangle equals one-quarter of the base. Now, for n > 0, the nth triangle has a base which
extends from x = =~ tox = 2% Thus,

on+l
1 1 1 1
= o0~ ontl = pnil and A:ZB=2n+3.
The total area of the triangles is then given by the geometric series
5t _§1<1>"_%_1
e P S T

45. Find the total length of the infinite zigzag path in Figure 5 (each zag occurs at an angle of 7).

FIGURE 5

SOLUTION Because the angle at the lower left in Figure 5 has measure % and each zag in the path occurs at an angle of

7 every triangle in the figure is an isosceles right triangle. Accordingly, the length of each new segment in the path is

%2 times the length of the previous segment. Since the first segment has length 1, the total length of the path is

2 (5 -5
) = =
—\V2 1- %
47. Show that if a is a positive integer, then
i LR Y S -
= n(n+a) a 2 a

SOLUTION By partial fraction decomposition

NG

ﬁzz‘f'ﬁ.

1 A B

n(n+a) :; n+a;

clearing the denominators gives
1=Am+a)+ Bn.

Setting n = 0 then yields A = 1, while setting n = —a yields B = —1. Thus,

R S S N5 B
nin+a) n n4+a a\n n+4+a)’
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and

For N > a, the Nth partial sum is

1 11 1
Sy==(1++Z++=)-

11+1+1++1
a\N+1 N+2 N+3 N+a)’

a 2 3 a
Thus,
i;— lim S _1 1+}+}+ —|—E
71n(n+a)_NaooN_a 2 3 al’
"= o0
49. Let {b,} be a sequence and let a, = b,, — b,,_1. Show that Z ap converges if and only if nimoo by, exists.
n=1 00
SOLUTION Leta, = b, — b, _1. The general term in the sequence of partial sums for the series Z ap is then
n=1
Sy = (b1 — bo) + (bg — b1) + (b3 —b2) + - + (bn —bn_1) = by — bg.
(0.¢] oo
Now, if lim by exists, then so does lim Sy and Z an converges. On the other hand, if Zan converges, then
N—oo N—o0
n=1 n=1
o
lim Sy exists, which implies that lim b also exists. Thus, converges if and only if lim b,, exists.
Jim Sy p Jim by Z;an 9 yif lim by
n=
Further Insights and Challenges
Exercises 51-53 use the formula
2 o1 _ 1-=rV
14+r4+ro4---+r =

1—r

51. Professor George Andrews of Pennsylvania State University observed that we can use Eq. (7) to calculate the derivative
of f(x) = xV (for N > 0). Assume that a # 0 and let x = ra. Show that

N N
. — . -1
flay=lim =% _N-1jjp ©
xX—>a x—a r—1 r—1
and evaluate the limit.
soLuTION According to the definition of derivative of f(x) atx = a
N_ _N
@ = lim>——%"
xX—=a x —a
Now, let x = ra. Then x — a if and only if » — 1, and
N(.N
N _ N N _ N a(r —1) N_q
F@=lim =% _jim "= iy — oV Liim ” .
xX—a x—a r—-1 ra—a r—1 a(r—1) r»1r—1
By Eq. (7) for a geometric sum,
1— N N
S =14r+r2 4. 4N
1—r r—1
)
N1 2 N-1 2 N-1
lim =|Im<1+r+r ot —)=1+1+1 +op 1NN,
r—1r—1 r—1

Therefore, f' (@) = a1 N = NaV 1
53. Verify the Gregory—Leibniz formula as follows.
(@) Setr = —x2 in Eq. (7) and rearrange to show that

1 2, 4 No12v—2 , (“DNx2N
=124t (=N, =
1+ x2 =D 14 x2
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(b) Show, by integrating over [0, 1], that

w 1 1 1 (—pN-1 v (12N dx
DA e T O Sl AN B G |
4 sts 7T Ty TP 0 1+x2
(c) Use the Comparison Theorem for integrals to prove that
1 x2N gx 1
0= 5 = 5v 1
0 14+x2 “2N+1
Hint: Observe that the integrand is < x2N
(d) Prove that
T 1 1 n n 1
4 3 5 7
Hint: Use (b)nand (c) to show that the partial sums Sy of satisfy |SN — % < Tlﬂ and thereby conclude that
lim Sy =7%.
N—o0 N 4
SOLUTION
(a) Start with Eq. (7), and substitute —x2 for r:
1— N
l+r+r2+-~~+erl: =
1—r
_ _ 1— (—l)N)CZN
1o pxbg. N1 av—2_~—172) X7
(1) D
3 3 1 (—l)NXZN
T—x2 4344 (—pN-12N-2 _ _
* * b * 1+ x2 1+ x2
1 2., .4 N1 2n—2  (=DNx2N
=1-x"4x"+-+ (-1 +
1+ 2 o T 142

(b) The integrals of both sides must be equal. Now,

1 1 1
/ dy =tan" x| =tan~11_—tan~lo = r
0 1+x2 0 4

while

! _1\N, 2N
/ (1—x2+x4+,..+(_1)N1x21v2+(1)x) i
0

1+ x2
13,15 N-1_ 1  ona1 N/leNdX
=(x-2 s cei - (—1 - -1
(x 3" +5x+ + (=D N 1" + (=1 L 112
11 vo1 1 N (1N dx
=1-Z4+ 4 +(-1 - 4(-1
3Te T + (=1 2N_1+( ) /0 T2
(c) Note that for x € [0, 1], we have 1 +x2 > 1,s0that
2N
0< - — <«
1+ x2
By the Comparison Theorem for integrals, we then see that
1,2N 1 1
OS/x dxifxzzvdx:;xzwrl :;
0 1+x2 0 2N +1 0 2N+1
(d) Write
1
= (=D" , >1
Aan (=1 m—1 n=
and let Sy be the partial sums. Then
1x2Ndx

1 .,2N
7 N x“N dx 1
)N 4 '( ) fo 1+x2 ~2N+1

0 1+ x2
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Thuslimy_ o Sy = % so that

55. The Koch snowflake (described in 1904 by Swedish mathematician Helge von Koch) is an infinitely jagged “fractal”
curve obtained as a limit of polygonal curves (it is continuous but has no tangent line at any point). Begin with an
equilateral triangle (stage 0) and produce stage 1 by replacing each edge with four edges of one-third the length, arranged
as in Figure 8. Continue the process: At the nth stage, replace each edge with four edges of one-third the length.

(a) Show that the perimeter P, of the polygon at the nth stage satisfies P, = %Pn_l. Prove that ngmoo P, = o0. The
snowflake has infinite length.

(b) Let Ag be the area of the original equilateral triangle. Show that (3)4"~1 new triangles are added at the nth stage,
each with area Ag/9" (for n > 1). Show that the total area of the Koch snowflake is %AO.

ARSESEY

Stage 1 Stage 2 Stage 3
FIGURE 8

SOLUTION

(a) Each edge of the polygon at the (n — 1)st stage is replaced by four edges of one-third the length; hence the perimeter
of the polygon at the nth stage is % times the perimeter of the polygon at the (n — 1)th stage. That is, P, = % .—1. Thus,

PL=2py Py =2p = 42P Py=p, = 43P
1—30’ 2—31— 3 0 3—32— 3 0,

and, in general, P, = (%)nPo.ASn — 00, it follows that

. . 4\"
lim P, = Py lim <7) = 00.
n—00 n—oo \ 3

(b) When each edge is replaced by four edges of one-third the length, one new triangle is created. At the (n — 1)st stage,
there are 3. 41 edges in the snowflake, so 3 - 4" 1 new triangles are generated at the nth stage. Because the area of an
equilateral triangle is proportional to the square of its side length and the side length for each new triangle is one-third
the side length of triangles from the previous stage, it follows that the area of the triangles added at each stage is reduced
by a factor of % from the area of the triangles added at the previous stage. Thus, each triangle added at the nth stage has
an area of Ag/9”. This means that the nth stage contributes

1 Ap 3 4\"
-1 20 2 -
3 o 4A°<9>

to the area of the snowflake. The total area is therefore

4

A=A +3Ai‘ A4 23400 —ag A, 228y
—040 9—0401_%—0405—50-

n=1

10.3 Convergence of Series with Positive Terms (LT Section 11.3)

Preliminary Questions
o
1. LetS = Z an. If the partial sums Sy are increasing, then (choose the correct conclusion):
n=1

(@) {an}isanincreasing sequence.
(b) {a,} is a positive sequence.

SOLUTION The correct response is (b). Recall that Sy = a1 +ap + a3z +--- +ay; thus, Sy — Sy_1 =an. If Sy is
increasing, then Sy — Sy—1 > 0. It then follows that ay > 0; that is, {a,} is a positive sequence.

2. What are the hypotheses of the Integral Test?

soLUTION The hypotheses for the Integral Test are: A function f(x) such that a, = f(n) must be positive, decreasing,
and continuous for x > 1.
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o
3. Which test would you use to determine whether Z n~32 converges?
n=1

SOLUTION Because n 32 = % we see that the indicated series is a p-series with p = 3.2 > 1. Therefore, the series

converges.

o0
4. Which test would you use to determine whether Z
converges?

1
12N+ n

SOLUTION Because

1 1 /1)
I S
My gn 2 \2)

E)

n=1

and

is a convergent geometric series, the comparison test would be an appropriate choice to establish that the given series
converges.

o0 o0
1
5. Ralph hopes to investigate the convergence of ) ¢ by comparing it with > =.Is Ralph on the right track?
n n
n=1 n=1

soLUTION No, Ralph is not on the right track. Forn > 1,

1. . . . .
however, Z — is a divergent series. The Comparison Test therefore does not allow us to draw a conclusion about the
n

—n

oo
. . e
convergence or divergence of the series E
n=1

Exercises
In Exercises 1-14, use the Integral Test to determine whether the infinite series is convergent.

* 1
1. an
n=1

SOLUTION Let f(x) = e This function is continuous, positive and decreasing on the interval x > 1, so the Integral
X
Test applies. Moreover,

 dx _ k-, 1. 1 1
— = lim x tdx=—= lim (— -1
1 x4 Roool1 3 R—oo \ R3 -3
o0

1
The integral converges; hence, the series Z — also converges.
n= 1

00
3, Z n—1/3
n=1

1

SOLUTION Let f(x) =x" 3 = ? This function is continuous, positive and decreasing on the interval x > 1, so the
pe

Integral Test applies. Moreover,

00 R
/ xY34x = lim x VB ax = § I|m <R2/3 - 1) =
1 R—o0 J1 2R

o
The integral diverges; hence, the series Z n~1/3

n=1

also diverges.
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00 2

n
R
3 5/2
25 (1 + 9
2
SOLUTION Let f(x) = W This function is positive and continuous for x > 25. Moreover, because
x°+9
2 2
oy 2 2 9”7 -x2.5:34+9%% .32 (36— 11:3)
X) = = N
@3+9° 2:3 +9)"/2

we see that f/(x) < 0 for x > 25, so f is decreasing on the interval x > 25. The Integral Test therefore applies. To
evaluate the improper integral, we use the substitution u = x3 4+ 9, du = 3x%dx. We then find
o0 x2 R x2 1 R+9 gy
————=>dx = lim —————=dx == lim —
/;5 (x3 +9)%/2 R—c0 Jo5 (x3 +9)%/2 3 R—o0 /15634 /2

1 1 2
=—— l|lim — = .
9 R—>o0 <(R3 +9)3/2 156343/2) 9.156343/2
0 2

The integral converges; hence, the series 5 also converges.

"~
n=25 (n3 + 9)5/

=1
7.

Z n?2+1

n=1

SOLUTION Let f(x) =

711 This function is positive, decreasing and continuous on the interval x > 1, hence the
X
Integral Test applies. Moreover,

©  dx . R dx . 1 b/ T T ow
= lim ———— = lim (tan R—f)zf_f:f,
1 x241 RoooJ1 x241 R—o 4 2 4 4

[e¢]

1
The integral converges; hence, the series ——— also converges.
g g E 211 g
n=1
[o/0]
1

9. -
Z nn+1)
n=1

SOLUTION Let f(x) = . This function is positive, continuous and decreasing on the interval x > 1, so the

x(x+1)
Integral Test applies. We compute the improper integral using partial fractions:

g R /1 1 R R 1 1
/ & Iim/ - dr= lim In——| = lim (Ih—— —In=)=Inl1—=In==1In2.
1 x(x+1) R—o00 J1 X x+1 R— o0 x+11 R—o00 R+1 2 2

o0

1
The integral converges; hence, the series ———— converges.
sl convery X g comen
o0
1
11. E _—
2
o n(lnn)

1 . N .. .
SOLUTION Let f(x) = W This function is positive and continuous for x > 2. Moreover,
x(Inx

1

/ _ 2 1 _
flx)=— 1-(Inx) +x-2(|nx)-;)_—m

1

SinceInx > Oforx > 1, f/(x) is negative for x > 1; hence, f is decreasing for x > 2. To compute the improper integral,

1
we make the substitution ¥ = Inx, du = — dx. We obtain:
X

o0 R InR du
/ ———dx = lim ———dx = lim —
2 x(Inx)? R—ooJ2 x(Inx)? R—>ooJin2 u?

= lim ! 1y_ 1
"~ Rooo\INR In2)  In2’
o

The integral converges; hence, the series E (|7
n
n=2

3 also converges.
nn)
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1
13. Z olnn
n=1
SOLUTION Note that

2Inn — (eInZ)Inn - (elnn)InZ — nlnzl

Thus,

— 1 « 1
Z olnn — Z nin2”
n=1 n=1

Now, let f(x) = 7 This function is positive, continuous and decreasing on the interval x > 1; therefore, the Integral
X
Test applies. Moreover,

o dx . R dx 1 _ 1-n2
= lim —_ = lim (R*"% —1) = )
,/1 xn2 " pooo )y xIn2 1-1In2 R»oo( ) =00
1
because 1 — In2 > 0. The integral diverges; hence, the series Z P also diverges.
n=1 2
o0 o
. . . -3
15. Show that ) ° —5 g, converges by using the Comparison Test with ) ~n™>.
n=1 n=1
o0
SOLUTION We compare the series with the p-series Z n=3.Forn > 1,
n=1
1 - 1
n3+8n ~ nd’
o0 1 o
Since )  — converges (itisa p-series with p = 3 > 1), the series ) _ also converges by the Comparison Test.
n3 n3 + dn
n=1 n=1
1
17. Let S = . Verify that forn > 1,
Z n+ \/ﬁ fy n=
n=1
1 1 1 1
< — < —

n+.n " n’ n+.n = Jn

Can either inequality be used to show that S diverges? Show that

1 .
> — and conclude that S diverges.
n+./n 2n

SOLUTION Forn > 1,n 4+ +/n > nand n + +/n > /n. Taking the reciprocal of each of these inequalities yields

1 1 1 1
<—- and — < —.
n+n " n n+n " Jn
1 1 > 1 1
These inequalities indicate that the series is smaller than both — and ——; however, — and
q ) D D e ) = P
n=1 n=1 n=1 n=1
=1
> W both diverge so neither inequality allows us to show that S diverges.
n
n=1
On the other hand, forn > 1,n > \/n, S0 2n > n + /n and
1 1
—_— >,
n+n " 2n
o o0 l
The series Z o= 2 Z — diverges, since the harmonic series diverges. The Comparison Test then lets us conclude
n
n=1 n=1

also diverges.

1
— n+/n

o
that the larger series
n=1
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In Exercises 19-30, use the Comparison Test to determine whether the infinite series is convergent.
o0
1
19. —
D
n=1

o0
soLuUTION We compare with the geometric series (

n=1

o o
. 1\" - . . . . 1
Since E — | converges (it is a geometric series with r = 1), we conclude by the Comparison Test that E — also
T 2 2 n2n

n= n=1
CONVerges.

1
21. —_
T

SOLUTION Forn > 1,
1 1
- <
nl/3 L on — on

o0

. 1. . . . 1 . . 1
The series >7° i isa geometric series with r = 5150 it converges. By the Comparison test, so does Z 1B o
n
n=1

4
23. _—
Z m! 4+ 4m
m=1

SOLUTION Form > 1,
4 4 1\ 1
—_— < — = = .
m! +4m — 4m 4

0 m—1
The series E (Z) is a geometric series with r = 7 so it converges. By the Comparison Test we can therefore

m=1

oo
. 4
conclude that the series E —— also converges.
1 m! 4 4m
m=

4
0 in2
sin© k
25. Z k2
k=1
SOLUTION Fork > 1,0 <sink <1, 50
0 sin?k 1
= 2 = k7
1
The series Z 2 is a p-series with p = 2 > 1, so it converges. By the Comparison Test we can therefore conclude that
k=1
o0 -2
. sin“k
the series Z 2 also converges.
k=1

2
27. —_—
Z 3}’1 + 3—n
n=1
SOLUTION Since 37" > 0 forall n,
n
43 T3 3
. (1\" 1
The series Z 2(§> is a geometric series with r = 3 so it converges. By the Comparison Theorem we can therefore
n=1

o
. 2
conclude that the series E ——— also converges.
3n + —n
n=1

3
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<1
29. _—
Z (n+1)!
n=1
soLUTION Note that forn > 2,

m+D!'=1.2.3--.n-(n+1) <2"
[ —

n factors

so that

o0 o0 o0

1 1 1
ik D e LR DT
n=1 n=2 n=2
1 1 >
But o2 =2 o is a geometric series with ratio r = > so it converges. By the comparison test, Z O converges as
n=1 ’

well.

Exercise 31-36: For all « > 0 and b > 1, the inequalities
Inn < n?, né < b"

are true for n sufficiently large (this can be proved using L’Hopital’s Rule). Use this, together with the Comparison
Theorem, to determine whether the series converges or diverges.

> Inn
L) F
n=1
soLUTION For n sufficiently large (say n = k, although in this case n = 1 suffices), we have Inn < n, so that

nn_n el
ZT 52,,*322,72
n=k n=k n=k

00 Inn

This is a p-series with p = 2 > 1, so it converges. Thus ank

terms for 1 < n < k does not affect this result.
In 100
33, Z ( n)

SOLUTION Choose N so that Inn < n%0005 for , > N. Then also for n > N, (Inn)100 < (5,0-0005y100 _ ,,0.05 Thep

Z (|n n)lOO

also converges; adding back in the finite number of

© 005 o 4

= ,1.05

n=N n=N
1

But Z is a p-series with p = 1.05 > 1, so is convergent. It follows that >0 ('“n’?loo is also convergent;

n= N

)100
adding back in the finite number of terms forn =1, 2, .. — 1 shows that Z ———— converges as well.
n=1

s n
%Y o

n=1

SOLUTION Choose N such thatn < 2" forn > N. Then

The latter sum is a geometric series with r = g < 1, so it converges. Thus the series on the left converges as well. Adding
o
back in the finite number of terms for n < N shows that Z 3% converges.
n=1
1
37. Show that Z sin —5 converges. Hint: Use the inequality sinx < x for x > 0.
n=1 n
SOLUTION Forn > 1,
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therefore, sm > 0 forn > 1. Moreover, forn > 1,

:N‘ [N

1
57-

o0
. 1. . . . .
The series E — s a p-series with p = 2 > 1, so it converges. By the Comparison Test we can therefore conclude that
n 1

1
the series Z sm 5 also converges.
n=1

In Exercises 39-48, use the Limit Comparison Test to prove convergence or divergence of the infinite series.

n n n 1 - . . 1
SOLUTION Leta, = ——. For large n, ~ — = —, 50 we apply the Limit Comparison Test with b, = —.
] nt—1 e A n2
We find
a 4 a?
L= lim 2= lim =L = jim =1
n—00 b, n—>00 % n—oop4 1
n
o oo
1 1
The series Z — isa p-series with p = 2 > 1, so it converges; hence, Z — also converges. Because L exists, by the
n= l n= 2
o 2
Limit Comparison Test we can conclude that the series Z — converges.
n= 2
> n
41. —_—
n=2 nd+1

SOLUTION Leta, = For large n ——, 50 we apply the Limit Comparison test with

n n n
I3 +1 ‘i1l a3 f

1
by, = —. We find
n \/Z

n

N ﬁ

. a, .
L= lim 2 = lim ™= = lim —— =1.

1
n—>0o0 by, n—o00 ﬁ n—o00 /

The series Z[ is a p-series with p = 5 < 1, so it diverges; hence, Z [ also diverges. Because L > 0, by the

Limit Comparison Test we can conclude that the series Z diverges.
\/n +1

0]

3n+5
43. r§3 nn—1n—2)

SOLUTION Let Sn+5 For large Sn+5 3 3 so we apply the Limit Comparison
ap — —m——, n—m—m—m—m—m—m——~" —& = —,
" an -1 —2) 9 nn—1Dm—2) nd3 n? PRl P

1
Test with b, = —- We find
n

3n+5

L fim 9 fiy ROED0TD _ g 30045

n—>o0o b, n—>00 L n—oo n(n + 1)(n + 2)

n
o o0
. 1 . . . . . 1
The series » — is a p-series with p = 2 > 1, s0 it converges; hence, the series > = also converges. Because L
n
n=1 n=3

o
. - . . 3n+5
exists, by the Limit Comparison Test we can conclude that the series E +
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ad 1
45, _
r;l Jn+Inn

SOLUTION Let

1
an = Jn+Inn
. . 1 '
For large n, «/n + Inn &~ /n, so apply the Comparison Test with b, = T We find
n
1 1
L= lim @2 gim L Y -
n—o0 b, n—oo . /n+lInn 1 n—>ool+|rlJ
Jn
=1 1
The series Z 7 isa p-series with p = 7 < 1, so it diverges. Because L exists, the Limit Comparison Test tells us the
n
n=1

the original series also diverges.
o0 1 o0

47. 1 — cos — ) Hint: Compare with -2,
3 (1o i comprevin 3.

1 - . . 1 )
SOLUTION Leta, =1 — cos —, and apply the Limit Comparison Test with b,, = —- We find
n n

1 1
. ap . l—cos% . 1-co % . Tzsiny 1 . sm%
L= Ilm —=Ilim ——2% = lim ——— = lim —/——— =~ |lim .
n—oo b, n—00 1 X—00 1 x—>o0 _ 2 2x—o00 1
n? X x3 X

ASx—)OO,u:%—)O,SO

I— 1 lim sing 1 im SIN# _ 1
T 2x>00 % _Zu—>0 u 2
= 1
The series Z — is a p-serieswith p = 2 > 1, so it converges. Because L exists, by the Limit Comparison Test we can
n
n=1

o
. 1
conclude that the series Z (1 — C0s 7> also converges.
n

n=1

In Exercises 49-74, determine convergence or divergence using any method covered so far.

1
49.

Z n2_-9

n=4

. . . 1
soLUTION Apply the Limit Comparison Test with a,, = 5 and b, = —!
nc — n
1
—— 2
2_ .
L= lim = jim 222 — |im —1
n—oo b, n—>00 % n—oop2 — 9
n
o o0
. . 1 . 1 . . .
Since the p-series Z—Z converges, the series 2—2 also converges. Because L exists, by the Limit Comparison Test
nzln n=4n
o0
we can conclude that the series converges.
Z n2 -9 Y
n=4
o0
sy 2
4n +9
n=1
SO oN Apply the Limit Comparison Test with v and b, L
LUTION = = —
pply p an nto n N
v/ 1
. a . . n
L= lim 2% = lim 22 — |im =Z.
n—00 by, n—oo _1_ n—oo4n +9 4
N

oo
The series E 7 is a divergent p-series. Because L > 0, by the Limit Comparison Test we can conclude that the series
n
n=1

o
NG _
also diverges.
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X n2—n
53.

R

n=1

. . n? —n nn—1) n—1
SOLUTION First rewrite a;, = = = and observe
n® +n n(n4+1) nt+1

n—1 n 1
< —=—
nt+1 nt nd
1
for n > 1. The series E =3 is a convergent p-series, so by the Comparison Test we can conclude that the series
n
n=1

)
n-—n
> g— also converges.
n=1 n>+n

o0
55. ) (4/5)7"
n=5

SOLUTION

1) -2 ()

n=>5

which is a geometric series starting at n = 5 with ratio r = 17 1. Thus the series diverges.

S |

57. —_—
Z n3/2Inn
n=2

SOLUTION Forn >3,Inn > 1,5017%%Inn > n3/2 and
1 1
—— < 5
n3/21nn n3/2

o0 o0
. . . . 1 .
The series ZT/Z is a convergent p-series, so the series 23—/2 also converges. By the Comparison Test we can
n n

n=1 n=3
00 00

1
therefore conclude that the series ———— converges. Hence, the series ———— also converges.
Z;,113/2|nn 9 Z;ng/2 Inn 9
n= n=

o0
59. ) 417k
k=1

SOLUTION

lim a; = lim 4%k =40 =1 %0;

k—o00 k—o00

o0
therefore, the series Z 417k diverges by the Divergence Test.
k=1
=1

oL 2

n=2

SOLUTION By the comment preceding Exercise 31, we can choose N so that for n > N, we have Inn < n1/8, so that
(Inn)* < nl/2. Then
o o
1 1
- S =
D Gnd T 2 g
n=N (Inn) n=N nt/
which is a divergent p-series. Thus the series on the left diverges as well, and adding back in the finite number of terms

o
1 .
for n < N does not affect the result. Thus » ~ ——— diverges.
o (Inn)
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> 1

63. _
Z ninn —n
n=1

SOLUTION Forn > 2,nlInn —n < nlnn; therefore,

1 1
_ >
nlnn—n ~ ninn
1
Now, let f(x) = e Forx > 2, this function is continuous, positive and decreasing, so the Integral Test applies. Using

the substitution u = Inx, du = ¢ dx, we find

® dx . R gx . InR gy .
/ = lim = lim — = lim (In(nR) —In(In2)) = o0
2 xlnx Roocofo xInx RosocoJin2 u R—>00

o

. . . 1 . .
The integral diverges; hence, the series Z . also diverges. By the Comparison Test we can therefore conclude that
n n

s 1
the series —— diverges.
Z ninn—n g
n=2
o0
1
65- 7
n=1 n
SOLUTION Forn > 2, n" > 2"; therefore,

1_1_ (1
=2 \2)

o (0.¢]
. \" . . . 1\" .
The series Z (5) is a convergent geometric series, so Z <§> also converges. By the Comparison Test we can
=2
1 ' 1
therefore conclude that the series Z —- converges. Hence, the series 27 converges.
n n
n=2 n=1
oo
1+ (D"
67. _
2
n=1
SOLUTION Let
1+ (D"
ap = ———
n
Then
0 n odd
an =13 2 1

=% n = 2k even

Therefore, {a,,} consists of 0s in the odd places and the harmonic series in the even places, so >~7°, ay, is just the sum of
the harmonic series, which diverges. Thus Zl —1 an diverges as well.

69. E in —
sm .
n=1
. . . 1 1
soLUTION Apply the Limit Comparison Test with a;, = sin — and b, = —:
n n

. sin= . sinu
L= lim T”:Ilm =1,

where u = % The harmonic series diverges. Because L > 0, by the Limit Comparison Test we can conclude that the
oo

. 1 .
series ) _ sin = also diverges.
1 n
n=

71 ZZn—Fl

SOLUTION Forn>3,2n+1 < 2", s0

241 20 (1)
m T T\2)
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00 00
. 1\" . . . 1\" .
The series Z (5) IS a convergent geometric series, so E (§> also converges. By the Comparison Test we can
n=1 n=3

X on+1 X m+1
therefore conclude that the series » ° converges. Finally, the series %
n=3 n=1

converges.

7 i Inn
' n?—3n
n=4

SOLUTION By the comment preceding Exercise 31, we can choose N > 4 sothatforn > N, Inn < n/2 Then

e8] [e8) 1/2

Yo=Y -y 7

n:N 3n n:N n= N / —3n /
T | f the | ies, | = db, = ! d ly the Limit C i
o0 evaluate convergence of the latter series, let a, = 37 3,12 and b, = 37 and apply the Limit Comparison
Test:

1 1
L= lim &= Jim ——— 32 = lim ——— =0

n—oo b, n—oop3/2 _3,1/2 n—o01—3p-1

Thus Y a, converges if )_ b, does. But }_ b, is a convergent p-series. Thus > a, converges and, by the comparison
test, so does the original series. Adding back in the finite number of terms for n < N does not affect convergence.

1
75. —_
n=2

SOLUTION By the comment preceding Exercise 31, we can choose N > 2 so that forn > N, Inn < n1/4. Then

E 7>§ =
1/2 3/4
n=Nn/ Inn nan/

which is a divergent p-series. Thus the original series diverges as well - as usual, adding back in the finite number of
terms for n < N does not affect convergence.

]

an? + 15n
77.
Z 3nt 17

soLUTION Apply the Limit Comparison Test with

4n? 4+ 15x a2 4
ap = ———+—— bp=— =—

3n4 —5p2 — 17’ 34 32
We have

_ay _ 2 +150  3? 12n* + 4513 ) 12 +45/n
L=Ilm —=Im ——  —=I|lim —— = |lim =
n—o00 b, n—oo3p4 502 17 4  n—>o012p% —20n2 —68 n—00 12 —20/n? — 68/n*

o0
Now, Z;’le by is a p-series with p = 2 > 1, so converges. Since L = 1, we see that Z
n=1

4n? 4 15

—F X Converges as
3n4 —b5p2 — 17 g

well.

o
79. For which a does ) converge?
n=2 n

1
(Inn)4

SOLUTION First consider the case @ > 0 buta # 1. Let f(x) = Tnad This function is continuous, positive and
X X

decreasing for x > 2, so the Integral Test applies. Now,

foo _ INR gy 1 1 1 )

= = lim — = lim — .
2 x(Inx)4 R—>oo x(lnx)“ R—>ooJin2 u¢ 1l—aR—oco\(INR)4L (In2)e-1
Because

. o, O<a<l
lim — =
R—o0 (InR)a—1 0, a>1
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we conclude the integral diverges when 0 < a < 1 and converges when a > 1. Therefore

o
Z ——— converges for a > 1 and diverges for0 < a < 1.
n(Inn)¢

o0
. i 1 1 . L .
Next, consider the case a = 1. The series becomes E ——. Let f(x) = ——. For x > 2, this function is continuous,
5 Inn xInx
n=
positive and decreasing, so the Integral Test applies. Using the substitution u = In x, du = % dx, we find

0 dx _ R gx _ IR gy .
—— = lim —— = lim — = lim (n({InR) —In(In2)) = co.
2 xIlnx Rooofo xInx RoocoJin2 u R—00

The integral diverges; hence, the series also diverges.
(Inn)®

o0
Finally, consider the case ¢ < 0. Let b = —a > 0 so the series becomes Z .Sincelnn > 1foralln > 3, it
n=2
follows that

(nn)? 1
>

(In n)b >1 so
n

(Inn)?
n

o o
. 1 . .
The series E — diverges, so by the Comparison Test we can conclude that E
n
n=3 n=3

also diverges. Consequently,

00 b
|
Z (nn) diverges. Thus,
n

n=2

o0

1 .
> i diverges for a < 0.

To summarize:

o
Z ——— converges if a > 1 and diverges ifa < 1.
n(Inn)4

Approximating I nfinite Sums In Exercises 81-83, let a, = f(n), where f(x) is a continuous, decreasing function such
that f(x) > 0and [ f(x) dx converges.

81. Show that
) o o0
/1 f(x)dxsZansa1+/l Fdx
n=1

SOLUTION From the proof of the Integral Test, we know that
N 00
wratatray < [ fwdss [ rwax
that is,
o0 o0
SN—alff f(x)dx or SN§a1+/ f(x)dx.
1 1
Also from the proof of the Integral test, we know that
N
/ fx)dx <aj+ay+az+---+ay_1 =Sy —any < Sy.
1
Thus,

N [ee)
f FG)dx < Sy <ay +/ Fo) dx.
1 1

Taking the limitas N — oo yields Eq. (3), as desired.
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e ¢]

83. Let S = Z ap. Arguing as in Exercise 81, show that
n=1
M 00 M+1
Zan-f-/ f(x)dx <S < Zan—f—/ f(x)dx
n=1 n=1
Conclude that
M o0
0<S§- Zan—i—/ 1f(x)dx <apm+1
M+
n=1

This provides a method for approximating S with an error of at most a4 1.

soLuTION Following the proof of the Integral Test and the argument in Exercise 81, but starting withn = M + 1 rather
than n = 1, we obtain

o0

o
/ F)dx < Z an < ap41 +/ fx)dx.
M+1 M+1

n=M+1

M
Adding Z ap to each part of this inequality yields
n=1

M+1

M
Zan+/oo f(x)dx<Zan=S< Zan / f)dx.
n=1 M+

M o0
Subtracting E ap + / f(x) dx from each part of this last inequality then gives us
M+1
n=1

M o
0<S-— Zan—i—/ fydx | <ayy1.
=1 M+1

85. CH'S  Apply Eq. (4) with M = 40,000 to show that
— 1
1.644934066 < Z —5 = 1.644934068

Is this consistent with Euler’s result, according to which this infinite series has sum 72/6?

1 1
soLuTION Using Eq. (4) with f(x) = i an = — and M = 40,000, we find
X n

s N /00 dx _ i 1 /00 dx
40,000 — < ) — =< S40,001 + —-
’ 40,001 X2 = w2 = 40,001 X2

Now,
S40,000 = 1.6449090672;
1
S =8, ——— = 1.6449090678;
40,001 40,000 + 40.001
and
© g R 4 1 1 1
/ & = lim & =~ lim (7 - 7) — _~ _ —0.0000249994.
40,001 X R—00 J40,001 X R—oco \ R 40,001 40,001
Thus,

o
1
1.6449090672 + 0.0000249994 Z —2 1.6449090678 + 0.0000249994,
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or

oo

1

1.6449340665 < ) ~ — < 1.6449340672.
n=1""

2
Since % ~ 1.6449340668, our approximation is consistent with Euler’s result.

o0
87. CA'S  Using a CAS and Eq. (5), determine the value of n~° to within an error less than 10~4.

. . =1
soLUTION Using Eq. (5) with f(x) = x2anda, =n~>, we have

o
ESIRE DY n‘5+f xPdx | = +170
n=1 n=1 M+1
To guarantee an error less than 104, we need (M + 1)~° < 10~4. This yields M > 104> — 1 ~ 5.3, so we choose
M = 6. Now,
7

> n7° =1.0368498887,

n=1
and

e} R 1 1
/ xBdx = lim xBdx = 7 i (R_4 - 7—4) — = —0.0001041233.
7

R—o00 J7 R—0 4.7%
Thus,
00 7 00
Yon Sy n S+ / x 7 dx = 1.0368498887 + 0.0001041233 = 1.0369540120.
n=1 n=1 7
o
89. The following argument proves the divergence of the harmonic series S = Z 1/n without using the Integral Test.
n=1
Let
Si=Ltr+p+ s=i+iily
1=°7375 ’ 2727176

Show that if S converges, then

(a) S1 and Sy also converge and S = S1 + S».

(b) Sy > Spand S = 3.

Observe that (b) contradicts (a), and conclude that S diverges.

soLUTION Assume throughout that S converges; we will derive a contradiction. Write

1 1 1
an =—, by Cn

n =2n—1’ ZZ

for the nt" terms in the series S, S1,and Sy. Since 2n — 1 > n forn > 1, we have b, < a,. Since S = > _ a, converges,

. 1 . .
so does S1 = Y_ by, by the Comparison Test. Also, ¢, = S so again by the Comparison Test, the convergence of S
implies the convergence of S, = > ¢,. Now, define two sequences

b — {b(n+1)/2 n odd
! =

0 n even
, 0 n odd
Cc,, =
" lenj2 neven

That s, b}, and ¢}, look like b,, and c,,, but have zeros inserted in the “missing” places compared to a,. Then a, = b}, + c),;
also Sy =Y b, =) b, and So = cn = Y c},. Finally, since S, S1, and S, all converge, we have

00 00 00 00 00 00
S=Zan =Z(b;+c;,):Zb,/1+Zc;, :an—l—ch =851+
n=1 n=1 n=1 n=1

n=1 n=1
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1 . .
Now, b, > ¢, for every n, so that S; > S». Also, we showed above that ¢, = P so that 25, = S. Putting all this
together gives

S=81+852>8+5=25==S

so that S > S, a contradiction. Thus S must diverge.

Further Insights and Challenges
o0
91. Kummer’s Acceleration Method Suppose we wish to approximate S = Z 1/n2. There is a similar telescoping
n=1
series whose value can be computed exactly (Example 1 in Section 10.2):

s 1

2in(n—f—l) =1

(a) Verify that

Gy~ 1 — (1 1
_Zn(n+l)+z<n7_n(n+l)>

n=1 n=1

Thus for M large,
Mo
S~1+ —_
’; n?(n+1) @

M
(b) Explain what has been gained. Why is Eq. (6) a better approximation to S than is Z 1/n2?

n=1
(c) CA5 Compute
1000 100
1 1
. 1+)
2 2
on —n n+21
Which is a better approximation to S, whose exact value is 772 /6?
SOLUTION
1 =1
a) Because the series — and ——— both converge,
(@ . ! an Zn(n—|—l) verd
n=1 n=1
o o0 o0 o0 o0 o0
1 1 1 1 1 1 1
Zn(n—l—l)—’_z<nz n(n—l—l)) Zn(n—l—l)—’—zn2 Zn(n—l—l) an
n=1 n=1 n=1 n=1 n=1 n=1
Now,
1 1 . n+ 1 n _ 1
n2 nn+1) " n2m+1) 2+l n2m+1)
so, for M large,
Mo
SP14Y
2
ol n+1
1
(b) The series Z,‘jozlm converges more rapidly than X:ln—z since the degree of n in the denominator is larger.
n=
(c) Using a computer algebra system, we find
1000 100
— = 1.6439345667 and 1+ ————— = 1.6448848903.

2
The second sum is more accurate because it is closer to the exact solution % ~ 1.6449340668.
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10.4 Absolute and Conditional Convergence (LT Section 11.4)

Preliminary Questions
1. Give an example of a series such that Z ap converges but Z |an | diverges.

SOLUTION The series Z(

|s a divergent p-series.
2. Which of the following statements is equivalent to Theorem 1?

o
(@) If > |an| diverges, then > " ay also diverges.
n=0 n=0

o o0
(b) If > ay diverges, then ) " |a,| also diverges.
n=0 n=0

o0 o0
(c) If ) a converges, then » " |a, | also converges.
n=0 n=0
o o0
SOLUTION The correct answer is (b): If Z ap diverges, then Z |an| also diverges. Take a, = (—1)”% to see that
statements (a) and (c) are not true in genergl. ° "=
o
3. Lathika argues that Z(—l)”ﬁ is an alternating series and therefore converges. Is Lathika right?
n=1
o
soLUTION No. Although Z(—l)”ﬁ is an alternating series, the terms a,, = 1/n do not form a decreasing sequence

n=1
00

that tends to zero. In fact, a, = /n is an increasing sequence that tends to oo, so Z (—1)"/n diverges by the Divergence

n=1
Test.

o0
4. Suppose that a;, is positive, decreasing, and tendsto 0, and let S = Z(—l)”’lan. What can we say about |.S — S1qg]|
n=1
ifajo1 = 10-321s § larger or smaller than S10?

SOLUTION Fromthetext, we knowthat |S — S1gg| < a101 = 1073. Also, the Leibniztesttellsusthat Sy < S < SoN+1
forany N > 1, so that Syg9 < S.

Exercises
1. Show that

) (1)
L

converges absolutely.
oo
.. . 1. . . . 1 .. .
SOLUTION The positive series 227 is a geometric series with r = 7 Thus, the positive series converges, and the

n=0
given series converges absolutely.

In Exercises 310, determine whether the series converges absolutely, conditionally, or not at all.

(1)1’!1
32 S

o -1
. o . . -n"
SOLUTION The sequence a, = nl% is positive, decreasing, and tends to zero; hence, the series Z % converges
n=1 n
1
by the Leibniz Test. However, the positive series Z 13 is a divergent p-series, so the original series converges
n=1

conditionally.
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Sl (_1)}171

n
= (1.1)

o0 n

SOLUTION The positive series Z (ﬁ) is a convergent geometric series; thus, the original series converges abso-
n=0 """

lutely.

o
="
7.
Z ninn
n=2

SOLUTION Leta, =

1
ninn*

Then a,, forms a decreasing sequence (note that » and In n are both increasing functions of

o o
. =" I o .
n) that tends to zero; hence, the series Z =D converges by the Leibniz Test. However, the positive series Z
5N Inn o Inn
n= =
diverges, so the original series converges conditionally.
&\ Cos
N Ppcs
2
o (Inn)

SOLUTION Since cosn alternates between +1 and —1,
i cosnw i (="
(Inn)? B (Inn)?

n=2 n=2

This is an alternating series whose general term decreases to zero, so it converges. The associated positive series,

o0

1
Z (Inn)?

n=2

is a divergent series, so the original series converges conditionally.

s 1
_ _1yn+1l =
11 Lets =) (-1 5
n=1
(a) Calculate S, for 1 <n < 10.

(b) Use Eg. (2) to show that 0.9 < § < 0.902.

SOLUTION
(@
1
S1=1 S = S5 — o3 = 0.899782407
S=1- ==L _og75 S7 = Sg + — = 0.902697859
25 T3 T 1=t T

1 1

S3= 82+ 3 =0012037037  Sp =57 — 5 = 0.900744734
1 1

S3= 83— 3 =0896412037  So=Sg+ 5 = 0902116476

1 1
S5 = Sq4 + — = 0.904412037 S10 = Sg — —5 = 0.901116476
5 =254+ 3 10 =59 ~ 753

(b) By Ea. (2),

113

)

[S10 — Sl < a1 =

SO

1
Sjp— —= <S<S§ ,
10773 =° =210 173

or

0.900365161 < S < 0.901867791.
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00 (_1)n+l
13. Approximate ) ~ ——,— to three decimal places.
n
n=1
o (_1)n+1 1
SOLUTION LetS = 274, so thata, = = By Eq. (2),
n n
n=1
ISy — S| = !
— a = .
AR O

To guarantee accuracy to three decimal places, we must choose N so that

aajg<mdv4m N > /2000 — 1 ~5.7.

The smallest value that satisfies the required inequality is then N = 6. Thus,

1 1 1 1 1

In Exercises 15 and 16, find a value of N such that S, approximates the series with an error of at most 10~°. If you have
a CAS, compute this value of Sy .

00 (_1)n+l
15. _—
2 n(n +2)(n +3)
n=1
S G Ve 1
SOLUTION LetS = — sothatq, = —— . By Eq. (2),
;n<n+2><n+3> = D mty Y@

1
(N+1)(N+3)(N+4)

ISy — Sl <ay41 =

We must choose N so that

1
N+DN+IHN 18 ~

1075 or (N +1)(N +3)(N +4) > 10°.

For N = 43, the product on the left hand side is 95,128, while for N = 44 the product is 101,520; hence, the smallest
value of N which satisfies the required inequality is N = 44. Thus,

44 (_1)n+1
S~ S4q4 = ———————— =0.0656746.
44 Z nn+2)(n+3)

n=1
In Exercises 17-32, determine convergence or divergence by any method.
o
7.y 7
n=0

SOLUTION This is a (positive) geometric series with r = 7 < 1, so it converges.

e¢]

1
19. Z gn _3n
n=1
- . o1
soLuTION Use the Limit Comparison Test with 5—”:
. 1/(5}1 _ 3n) . 51‘1 .
L=tm e = Moe—zn =M1 Gm =

But >0, o is a convergent geometric series. Since L = 1, the Limit Comparison Test tells us that the original series
converges as well.
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> 1

21. _—
r; 3n4 +12n

- . o1
SOLUTION Use the Limit Comparison Test with 3—4:
n
1/(3n* +12 3n4
L= lim MZ lim —" — lim — =
n—00 1/3n% n—>003p4 4 12n n—ool+4n=3
But >"°0 =3 Zn 1 4 is a convergent p-series. Since L = 1, the Limit Comparison Test tells us that the original

series converges as well.
=1
n=1V n? +1

soLUTION Apply the Limit Comparison Test and compare the series with the divergent harmonic series:

23.

1
2
L= lim ¥ jim =1,
n—o00 = n—00 n2—|—l
1
Because L > 0, we conclude that the series W diverges.
nc+1

o0
311 + (_2)}1
s G
n=1
SOLUTION The series

is a convergent geometric series, as is the series

00 (=1 2n 0 2\"
Z?=Z<—g> :

n=1 n=1

3"+( 1)”2" i<3>"+ °°( 2>"
n=1 5 1 5

n=

Hence,

n=1

also converges.

27 Z( 1)}1 2 —n /3

o
. . . . 8 . .
SOLUTION Consider the associated positive series Z n2e~""/3_ This series can be seen to converge by the Integral
n=1
Test:

® 2 353 : R oo w3 L _X33R 173, o _R%3_ 173
x“e dx = lim x‘e dx =— lim e ‘1 =e + lim e =e .
1 R—o00 J1 R—o0 R—00

The integral converges, so the original series converges absolutely.
9. i
1/2 (In n)Z
SOLUTION This is an alternating series with a,, =

o (=D"
to zero, the series —_—
n§2 n1/2(Inn)?

VT PRVE Because a;, is a decreasing sequence which converges
n1/2(Inn)

converges by the Leibniz Test. (Note that the series converges only conditionally, not

absolutely; the associated positive series is eventually greater than 37 which is a divergent p-series).
n
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X Inn
3L Z ,1.05
n=1
SOLUTION Choose N so that for n > N we have Inn < 1991, Then
0.01

= Inn N =1
> 2105 = X;an.os =2 104
n=

n=N n=N

This is a convergent p-series, so by the Comparison Test, the original series converges as well.
33. Show that
11 1 1 1 1

S=-_-4+-_Z — ...
2 2 + 3 3 + 4 4 +
converges by computing the partial sums. Does it converge absolutely?
SOLUTION The sequence of partial sums is
S = 1
1732
1
Sp=8—--=0
2 175
S3 =S5+ 1!
3 =92 373
1
S4g=83—-=0
4 373
and, in general,
1
—, forodd N
0, for even N
Thus, lim Sy =0, and the series converges to 0. The positive series is
N—o00
1 1 1 1 1 1 =1
Ty =2y"2
sty t3tat gt ;n
n=

which diverges. Therefore, the original series converges conditionally, not absolutely.

35. & Assumptions Matter Show by counterexample that the Leibniz Test does not remain true if the sequence
ap tends to zero but is not assumed nonincreasing. Hint: Consider

1 1 (l 1)
4 n

R= 1+
- 16 on

1,1t
2747378

SOLUTION Let
R— 1 1 N 1 1 N 1 1 N n 1 1 n
T2 43 8 4 16 n+1 2ntl

This is an alternating series with

ey =2k-1
e
n =

1

Zkﬁ, n=2k

Note that a,, — 0 asn — oo, but the sequence {a,} is not decreasing. We will now establish that R diverges.
For sake of contradiction, suppose that R converges. The geometric series

<1
Z on+1

n=1
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converges, so the sum of R and this geometric series must also converge; however,
o o
1 1
R =2y
n=1 n=2

which diverges because the harmonic series diverges. Thus, the series R must diverge.

37. Prove that if » " a, converges absolutely, then Z“S also converges. Then give an example where " a, is only
conditionally convergent and > a2 diverges.

SOLUTION  Suppose the series » "a, converges absolutely. Because Y _|ay | converges, we know that
lim |a,| =0.
n—oo
Therefore, there exists a positive integer N such that |a;, | < 1 forall » > N. It then follows that for n > N,
0<d?= 2 _ _
=a, = lan|® = lan| - lan| < lan| - 1 = lan].

By the Comparison Test we can then conclude that Za,% also converges.

— (—1)"
Consider the series
Z
o0 o0

o
. . . -nr . - . . . . 1
divergent p-series; that is, E (f is conditionally convergent. Now, E a,% is the divergent harmonic series E -
n n
n=1 n=1 n=1

Thus, > a2 need not converge if > ay is only conditionally convergent.

. This series converges by the Leibniz Test, but the corresponding positive series is a

Further Insights and Challenges

39. Use Exercise 38 to show that the following series converges:

1 1 2 1 1 2

S=m2"h3 ma s e 7

SOLUTION The given series has the structure of the generic series from Exercise 38 with a, = m Because a, is
a positive, decreasing sequence with nimoo an = 0, we can conclude from Exercise 38 that the given series converges.
41. Show that the following series diverges:
PG PP U
T 723 456 7 8
Hint: Use the result of Exercise 40 to write S as the sum of a convergent series and a divergent series.

SOLUTION Let

and
S=lti4i-Zaiiipl 2y
72 3 4 5 6 7 8

For sake of contradiction, suppose the series S converges. From Exercise 40, we know that the series R converges. Thus,
the series S — R must converge; however,

1 1 1 131
S—R=-4+4+__4+...=Z =
2Tt 42%V

which diverges because the harmonic series diverges. Thus, the series S must diverge.

43. We say that {b, } is a rearrangement of {a,, } if {b,} has the same terms as {a,, } but occurring in a different order. Show

(e.¢] o
that if {b,} is a rearrangement of {a, } and S = Z ay converges absolutely, then 7 = Z by, also converges absolutely.
n=1 n=1
N
(This result does not hold if S is only conditionally convergent.) Hint: Prove that the partial sums Z |b,| are bounded.
n=1

It can be shown further that S = T.
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o0

SOLUTION Suppose the series S = Z ap converges absolutely and denote the corresponding positive series by
n=1
o0
ST =2 lanl.
n=1
N 00
Further, let Ty = ) _ |b,| denote the Nth partial sum of the series ) |b,|. Because {b, } is a rearrangement of {ay,}, we
n=1 n=1

know that

o0
0<Ty <) lanl=ST;

n=1
that is, the sequence {T) } is bounded. Moreover,
N+1
Tngr= Y |bal =Ty + lby11l = Ty;
n=1
o0 o0
thatis, {Tn} is increasing. It follows that {7} converges, so the series Z |bn | converges, which means the series Z by
n=1 n=1

converges absolutely.

10.5 The Ratio and Root Tests (LT Section 11.5)

Preliminary Questions
1. In the Ratio Test, is p equal to lim Gntl or lim an ?
n—o0o | ap n—>00 | ay 41
. . P an+1
SOLUTION In the Ratio Test p is the limit lim —‘
n—>0o | ap
> 1 =1
2. Is the Ratio Test conclusive for Z — 7 1s it conclusive for Z =92
2n n
n=1 n=1
> 1 1
SOLUTION The general term of 227 isan = o thus,
n=1
an+1 _ l Zn _ 1
an T oon+l o
and
. 1
o= lim Gntl) _ 2 <1
n—>0oo | ap 2
1
Consequently, the Ratio Test guarantees that the series Z on converges.
n=1
1 1
The general term of Zf isa, = —; thus,
n n
n=1
ant1| 1 n_ n
a, | n+1 1 n+4+1
and
p= lim |24 — fim —1
n—oo | ayp n—oon+1
1
The Ratio Test is therefore inconclusive for the series Z —.
n
n=1

3. Can the Ratio Test be used to show convergence if the series is only conditionally convergent?
soLUTION No. The Ratio Test can only establish absolute convergence and divergence, not conditional convergence.
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Exercises
In Exercises 1-20, apply the Ratio Test to determine convergence or divergence, or state that the Ratio Test is inconclusive.
o
1
bl
n=1
soLUuTION With a, = 5%,
1 5 1 1
Intl) _ 2= and p= lim &= <1
an sn+l 1 5 n—o0o| ap 5

o
. 1 .
Therefore, the series E = converges by the Ratio Test.

n=1
oo
1
B
n=1

soLUTION With g, = ni,,

apy1| 1 nt 1 n \" 1 1_’_l -
an | 4+l 1 T n4+1\n+1) " n+1 ’
and
; an+1 1
p=lim |—=|=0--=0<1
n—oo| ay e

oo
. 1 .
Therefore, the series Z —- converges by the Ratio Test.
n
n=1

s n
5. -
n=1

SOLUTION With “":rﬂnﬁ'
an4+1| n+1 n2+l_n—|—l n?+1
an | m+12+1 n  on n242n+2
and
o= lim @‘:1-1:1.
n—0o0 an

o0
Therefore, for the series Z ﬁ the Ratio Test is inconclusive.
n

n=
We can show that this series diverges by using the Limit Comparison Test and comparing with the divergent harmonic
series.

o n
I Z 1,100
n=1

- n
soLUuTION With g, = nﬁw

on+1 100 100 _
dntl) _ - " and p= lim Gntll _p 1100 _ 5 q
an (n+ 1)100 2" n+1 n—oo | ay
211
Therefore, the series Z ~100 diverges by the Ratio Test.
n= l
i el
] on?
soLUuTION With g, = ;OZ,
100+t ot .
il 2 2 __10._— and p= lim |&t—10.0=0<1.
ap 2(n+1)?% 107 22n+1 n—oo | ap

71

10
Therefore, the series Z 5 converges by the Ratio Test.
n= 1
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- i
SOLUTION Witha, = 2—,,

any1| entl e n \" e 1+1 -
an | 4+l en T n+1\n+1) " n+1 n ’
and
. 1
p= lim dntll _g.2—0<1.
n—>0o | ap e
o en
Therefore, the series Z —- converges by the Ratio Test.
n=1 n
o0 I’l‘
13 ) o
n=0
soLuTION With g, = g—,l
app1| _ (n+D! 6" n+1l o ey
ol rves el and p—nlem o =o0 > 1.
|
Therefore, the series » o diverges by the Ratio Test.
n=0
o0
1
15.
Z ninn
n=2
soLuTION With a, = ﬁ
api1| 1 ninn — n Inn
an | (m+1DInn+1) T n+llnn+1)’
and
. In
p= lim dntl =1- lim 7n.
n—oo | ay n—oo In(n + 1)
Now,
. Inn . Inx 1/(x+1) . X
Iim ——— = lim ——— = lim ——= = lim =
n—ooIn(n+1) x—oclIn(x+1) x—o0 1/x x—oo x +1
o0
Thus, p = 1, and the Ratio Test is inconclusive for the series Z .
— nlinn

o0

. . 1 .
Using the Integral Test, we can show that the series Z i diverges.
n n

n=2

00 2

n
17. —
:;L 2n +1)!

. 2
soLuTioN  With ay = 7,

1| m+D? @n+D! (n+1)2 1
an | (2n+3) n2 - n @n+3)2n+2)’
and
p= lim “"7“‘=12.0=0<1.
n—>o0o | ap
e 2

Therefore, the series Z _r converges by the Ratio Test

' = (2n +1)! '
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[e.e]

1

19. —_—
2 i
n=2
soLUTION With !
ap = ———,
"oy

api1| 1 2"+1 14277
ap | tly1 1 242n
and
1
o= lim |&4L =2 1
n—oo | ap 2

o0
1
Therefore, the series ——— converges by the Ratio Test.

nX_; i1 ges by

o0
21. Show that Z n* 37" converges for all exponents k.
n=1

soLUTION With a, = n¥377",

an nk3—n 3 ’
and, for all &,
1 1
p=lim [&H =2 12 <1
n—oo | ay 3 3

oo
Therefore, the series Z nk3—n converges for all exponents k by the Ratio Test.
n=1
o
23. Show that »  2"x" converges if x| < 3.
n=1

soLUTION With a,, = 2"x",

a 2n+1 x n+1 ) a
ntl| _ o and p= lim |9tL| Zop).
an 21 x| n—oo | ap
o0
Therefore, p < 1 and the series Z 2" x™ converges by the Ratio Test provided |x| < %
n=1
o0 rn
25. Show that » ~ — converges if || < 1.
n=1 n
soLUTION With g, = %
a Pt on n . a
it | T and o= dim [ 1y = .
an n+1 |r|" n+1 n—oo| ay

X n
Therefore, by the Ratio Test, the series Z - converges provided |r| < 1.
n

n=1

e | 1 n
27. Show that » ™ converges. Hint: Use lim (l + 7> =e.
1 n" n— o0 n
n—=

- !
SOLUTION With a, = r'l’—,,

an+1
an

(4D A" n \" 1+1 -
T+t ont \n41) n ’

ap+1
an

and

p = lim
n— o0

47
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o
. n! .
Therefore, the series E —- converges by the Ratio Test.
n
n=1

In Exercises 28-33, assume that |a,y1/a,| converges to p = % What can you say about the convergence of the given
series?

00
29. Z n?’an
n=1

SOLUTION Letbh, = n3an. Then

3
. b . 1 1 1
p= lim |2ZFL| = lim nt Gntll _93.2_2_1
n—co| by n—oo\ n an 3 3
o
Therefore, the series Z n3an converges by the Ratio Test.
n=1
o0
3. Y 3'ay
n=1
SOLUTION Let b, = 3"a,. Then
n+1 3+t an+1 1
p= lim —|=3--=1
n—oo | by, n—oo 3" | ap 3
o
Therefore, the Ratio Test is inconclusive for the series Z 3ay.
n=1
o
33. ) ah
n=1
SOLUTION Let b, = a2. Then
2 2
. b . 1 1
o= lim el TP i ) [ ==-<1
n—oo| b, n—oo| a, 3 9
o
Therefore, the series Z a,z, converges by the Ratio Test.
n=1
o0
. . . 1
35. Is the Ratio Test conclusive for the p-series | =2
n=1 "
soLUTION With a, = ”i,,,
1 .
Gpr| L P and p= lim |24 —1p =1,
an m+1P 1 n+ n—oo | ap

)
1
Therefore, the Ratio Test is inconclusive for the p-series Z X

In Exercises 3641, use the Root Test to determine convergence or divergence (or state that the test is inconclusive).

00
1

37. Y =
n=1 "

1

soLUTION With a, = 7

W1 1 S
fan = = and nll)moo\/@:0<l.

o0
. 1
Therefore, the series E —- converges by the Root Test.
n
n=1
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v 5 (st)
=0 3k+1

) k
soLUTION With g, = (ﬁ) ,

k \F k 1
g — = and lim Ya =- < 1.
vk <3k+1) %11 koo VKT 3T

00 k
k
Therefore, the series ——— ] converges by the Root Test.
k;) (3k n 1) ges by

00 1 —n?
41, 1+ —
> (1+3)
n=4
2
soLuTioN Withay = (1+ )™,

; 1\ " 1\™" _ 1
Jan = (1 + ;) = (l + ;) and n|—|>moo Yap =e - < L.

2

o0 —
. I\
Therefore, the series E (1 + 7> converges by the Root Test.
n
n=4

In Exercises 43-56, determine convergence or divergence using any method covered in the text so far.

o
2n 4 41
43. %" o

n=1
SOLUTION Because the series

- (3) w25 (2)
— = = and — = <7>
n n

n=1 ! n=1 ! n=1 ! n=1 !
are both convergent geometric series, it follows that

o 0 o

2N 44 2\" 4\"
YEE-Y(5) +2(5)
n=1 n=1 n=1

also converges.
3
n
4. > =
n=1

. . . . 3
soLUTION The presence of the exponential term suggests applying the Ratio Test. With a, = g,

3 n 3
an+1 n+1)>° 5 1 1 . apy1 1 3 1
= —=—-(1+- and = lim |——|=-.1"=- < 1.
ar ol 3o s\tty P =020 ay 5 5 =

o Vl3
Therefore, the series Z o converges by the Ratio Test.

n=1

o0
1

47,
SOLUTION This series is similar to a p-series; because

T 11
f3 2 i3 nd2

for large n, we will apply the Limit Comparison Test comparing with the p-series with p = % Now,

= 3
. /3_ .2 . n
L= lim X — [im =1.
n—oo _1_ n—oo\ n3 — 2
7372

. - . . 1
The p-series with p = % converges and L exists; therefore, the series Z W] also converges.
n=2 nT —n

49
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o0
49 ano.s
n=1
SOLUTION
o0 o0 1
-0.8 _ L
2= 1,08
n=1 n=1
so that this is a divergent p-series.
o0
n=1
SOLUTION Observe
00 [e¢] 00 1\"
—2n+1 _ —2\n __
> 4 =) 4-(4 )_2469
n=1 n=1 n=1

is a geometric series with r = 1—16; therefore, this series converges.

= 1
53. ) sin ~
n=1
soLuTION Here, we will apply the Limit Comparison Test, comparing with the p-series with p = 2. Now,

1 .
. SIn—y . sinu
L= lim 1” = lim =1,
n—oo = u—0 u
n

o0
. . . . 1
where u = niz The p-series with p = 2 converges and L exists; therefore, the series Z sin — also converges.
n

n=1

o0
=2)"
55. )
n=1 \/ﬁ
SOLUTION Because

lim 2o — tim 2e = fim 22"2 _ jim 2l T in2 = 0o £ 0
n%ooﬁ_x%ooﬁ_x%oo 1 T x5 . =00 #0,

2Vx

(_2)11
NG

o
the general term in the series Z does not tend toward zero; therefore, the series diverges by the Divergence Test.

n=1

Further Insights and Challenges

o
57. & Proof of the Root Test Let S = Z ap be a positive series, and assume that L = nimoo Yay exists.
n=0
(a) Show that S converges if L < 1. Hint: Choose R with L < R < 1 and show that a, < R" for n sufficiently large.
Then compare with the geometric series Z R".
(b) Show that S diverges if L > 1.
SOLUTION Suppose nl_l)mooa/an = L exists.

1-L . . . T
(@ IfL <1, lete = — By the definition of a limit, there is a positive integer N such that

—€< Ya, —L<e¢
for n > N. From this, we conclude that

0< Yay <L+e¢
forn > N.Now, let R = L + €. Then

1-L L+1 141

R=L - 1
T3 2 "2 ’

and

0<Ya, <R or 0<a, <R"
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o0 oo

forn > N.Because 0 < R < 1, the series » ~ R" is a convergent geometric series, so the series ) _ a, converges by
n=N n=N
o0

the Comparison Test. Therefore, the series Zan also converges.
n=0

L-1 —_ - . S
(b) IfL >1,lete = — By the definition of a limit, there is a positive integer N such that
—€ < Yap, — L <¢
for n > N. From this, we conclude that
L —¢€< Yay

forn > N.Now, let R = L — €. Then
L—1_L+1 1+1_

R=L— = > =1,
2 2 2
and
R< Ya, or R" <ay,
o o0
forn > N. Because R > 1, the series Z R" is a divergent geometric series, so the series Z an diverges by the
n=N n=N
o0
Comparison Test. Therefore, the series Zan also diverges.
n=0
. "n!
59. Let S = »  ——, where c is a constant.
nn

n=1
(a) Prove that S converges absolutely if |c| < e and diverges if |c| > e.
. . e'n! . . .
(b) Itis known that nl_l)moo Py A /27 . Verify this numerically.
(c) Use the Limit Comparison Test to prove that S diverges for ¢ = e.
SOLUTION

() With a, = <2

nit

a " rm+ 1 A" n \" 1\ 7"
n+l‘=|| ( ) =|c|<7> =|c|<1+;> 7

an (n+ Dt e[t n+1
and
p= lim dntl) _ |C|€_l.
n—o0o | ay
. ¢"'nl
Thus, by the Ratio Test, the series Z -~ converges when |cle~! < 1, or when |¢| < e. The series diverges when
n=1 "
lc] > e. .
(b) The table below lists the value of ni‘ﬁ;Z for several increasing values of n. Since /27 = 2.506628275, the numerical
evidence verifies that
. en!
nl—l)moo W =« 2.
n 100 1000 10000 100000

,15:7’52 2.508717995 | 2.506837169 | 2.506649163 | 2.506630363

o )
(c) With ¢ = e, the series S becomes Z ¢ Z Using the result from part (b),
n=1 "
e'n! '
L= lim == lim ——% =+2n.

n— 00 ﬁ n—oo ph+1/2

e'n!

o0 o
Because the series »  +/n diverges by the Divergence Testand L > 0, we conclude that ) °

. n=1 n=1
Comparison Test.

diverges by the Limit

n"
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10.6 Power Series (LT Section 11.6)

Preliminary Questions
1. Suppose that Zanx" converges for x = 5. Must it also converge for x = 4? What about x = —3?

SOLUTION The power series Zanx” is centered at x = 0. Because the series converges for x = 5, the radius of
convergence must be at least 5 and the series converges absolutely at least for the interval |x| < 5. Both x = 4 and
x = —3 are inside this interval, so the series converges for x = 4 and for x = —3.

2. Suppose that Z an (x — 6)" converges for x = 10. At which of the points (a)—(d) must it also converge?
(@ x=8 (b)y x=11 () x=3 (d) x=0

SOLUTION The given power series is centered at x = 6. Because the series converges for x = 10, the radius of
convergence must be at least |10 — 6] = 4 and the series converges absolutely at least for the interval |[x — 6] < 4, or
2 <x < 10.

(a) x = 8isinside the interval 2 < x < 10, so the series converges for x = 8.

(b) x = 11 is not inside the interval 2 < x < 10, so the series may or may not converge for x = 11.
(c) x = 3is inside the interval 2 < x < 10, so the series converges for x = 2.

(d) x = 0is not inside the interval 2 < x < 10, so the series may or may not converge for x = 0.

3. What is the radius of convergence of F(3x) if F(x) is a power series with radius of convergence R = 12?

soLuTION If the power series F(x) has radius of convergence R = 12, then the power series F(3x) has radius of

convergence R = %2 =4,

oo
4. The power series F(x) = Z nx" has radius of convergence R = 1. What is the power series expansion of F’(x)
n=1
and what is its radius of convergence?

SOLUTION \We obtain the power series expansion for F’(x) by differentiating the power series expansion for F(x)
term-by-term. Thus,

o0
F _ 2. n—1
x) = E n°x .
n=1

The radius of convergence for this series is R = 1, the same as the radius of convergence for the series expansion for
F(x).

Exercises

X n
. R R X . .
1. Use the Ratio Test to determine the radius of convergence R of E o Does it converge at the endpoints x = +R?

n=0
. n
SOLUTION Witha, = ’2‘7
ot ooy

- . =-— and = lim
on+1 |x|" 2 p n— 00

x|

R

An+1
dn

ap4+1
dan

By the Ratio Test, the series converges when p = % < 1, 0r |x| < 2, and diverges when p = % > 1,0r|x| > 2.

The radius of convergence is therefore R = 2. For x = —2, the left endpoint, the series becomes }_>° ,(—1)", which is
divergent. For x = 2, the right endpoint, the series becomes >~°° ; 1, which is also divergent. Thus the series diverges at
both endpoints.

3. Show that the power series (a)—(c) have the same radius of convergence. Then show that (a) diverges at both endpoints,
(b) converges at one endpoint but diverges at the other, and (c) converges at both endpoints.

o0 Xn o xn o0 xn
a — b —_— C —-
()’;3,1 ()nglnsn ();nzsn
SOLUTION

(@) With a, = %7,
xn+l 3n

ntl| _ L2
3n+l xh

an

p= lim

n— o0 n—0o0

=lim[51=3l
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Then p < 1if |x| < 3, so that the radius of convergence is R = 3. For the endpoint x = 3, the series becomes
0 an o)
Y=t
n=1 n=1

which diverges by the Divergence Test. For the endpoint x = —3, the series becomes

o0 oo

(=3)"

Z 3n = Z(_l)n’

n=1 n=1
which also diverges by the Divergence Test.
(b) With a, = 25,

n+1 n
p= lim |dntL) _ xi.ﬂznm I z‘f‘,
n—oo| a, n—oo | (n 4 1)3n+tl  xn n—oo |3 \n+1 3

Then p < 1 when |x| < 3, so that the radius of convergence is R = 3. For the endpoint x = 3, the series becomes

X an

1
i
n=1
which is the divergent harmonic series. For the endpoint x = —3, the series becomes

o (=3 o (=)
ngl n3n _Z n

n=1

n=1

which converges by the Leibniz Test.
(c) Witha, =

o
n23n’

xn+l 23n

(n+1)23n+1 " xn

ap+4+1 n

dan

= = lim
n—o0

p= lim
n—od

n—oo

X n o\ X
§(n+1> :‘5‘

Then p < 1 when |x| < 3, so that the radius of convergence is R = 3. For the endpoint x = 3, the series becomes

71

00 o q
Z n2an = Z }172’
n=1 n=1

which is a convergent p-series. For the endpoint x = —3, the series becomes

= (=3 X (="
Z n23n _Z n2 =’

n=1 n=1

which converges by the Leibniz Test.

o0
5. Show that » ~ n"x" diverges for all x # 0.
n=0

soLUTION With a,, = n"'x™, and assuming x # 0,

(I’l + 1)n+lxn+1

n"x"

= lim
n—>0oo

x(l-i—%) (n—l—l)‘:oo

lim
n—>oo

53

p < lonlyif x = 0, so that the radius of convergence is therefore R = 0. In other words, the power series converges

only for x = 0.

X 2n
7. Use the Ratio Test to show that Z xg—n has radius of convergence R = /3.
2n n=0
soLUTION With g, = ETR
) i1 ) x2(m+1)  an ) 2 2
p= lim |—| = lim |——— —| = lim |—|=|—
n—oo| ay n—oo| 3n+l x2n n—> 00

Then p < 1 when |x2| < 3, or x = +/3, so the radius of convergence is R = +/3.
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In Exercises 9-34, find the interval of convergence.
o0
9. Z nx"
n=0
soLuTION With a;, = nx",

(n+1)x"+1 3
nx"

lim
n—oo

p= lim
n— o0

apn+1|
an

= x|

Then p < 1 when |x| < 1, so that the radius of convergence is R = 1, and the series converges absolutely on the interval

o
x| < 1,0r =1 < x < 1. For the endpoint x = 1, the series becomes Zn which diverges by the Divergence Test.
n=0
oo
For the endpoint x = —1, the series becomes Z(fl)”n, which also diverges by the Divergence Test. Thus, the series
=1
. n
Z nx" converges for —1 < x < 1 and diverges elsewhere.
n=0
0 w2+l
11. =
D
n=1
x2n+1
soLUTION Witha, = (—=1)" ,
2n
i x2(n+1)+l ony, ) x2 n x2
P o i v ) 2| T a2 x| |2

Then p < 1 when |x| < +/2, s0 the radius of convergence is R = +/2, and the series converges absolutely on the interval

. . > V2 & V2
—+/2 < x < /2. For the endpoint x = —+/2, the series becomes Z(—l)"— = X:(—l)’hL Y= which converges
n n

n=1 n=1

o0
2
by the Leibniz test. For the endpoint x = /2, the series becomes Z(—l)” £ which also converges by the Leibniz test.
n
n=1
2n+1

2n

z converges for -2 <x<+/2and diverges elsewhere.

o0
Thus the series Z(—l)"
n=1

o0 Xn
13 ) 5
n=4
soLUTION With a, = %
n

n+1 5

X
n+1)° xn

ap+1 n

an

n—oo

p= lim = lim
n—oo

n—oo

= |x|

< n )5
X

Then p < 1 when |x| < 1, so the radius of convergence is R = 1, and the series converges absolutely on the interval
oo

. . 1 L. .
x| < 1,0r =1 < x < 1. For the endpoint x = 1, the series becomes Z = which is a convergent p-series. For the
n
n=1

o o0
. . =" . L . n
endpoint x = —1, the series becomes y _ % which converges by the Leibniz Test. Thus, the series » x—s converges
n n

A n=1 n=4
for —1 < x < 1 and diverges elsewhere.

o0 .Xn
15 ) —
2
n=o ")
xﬂ

soLUTION With g, = e

ani1 xn-l—l (ny)z

dan

= lim |——— =0
n—>oo'((n+1)!>2 xn

= lim
p n—0o0o

= lim |x
n—oo n+1

p < 1forall x, so the radius of convergence is R = oo, and the series converges absolutely for all x.
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(2n)!
17. Z 1)3
SOLUTION With g, = (2("),)’3‘ , and assuming x # 0,
T Qn+t  @nd | L@+t
T n—o0 an T n—>oo ((n+ 1)!)3 (2n)'xn T n—oo (n+ 1)3
. 4 4+ 6n+2 an~lyen~lyon3
= lim =0

1
T n—oo

X
n3+3n24+3n+1 1+3n_1+3n_2+n_3
Then p < 1 for all x, so the radius of convergence is R = oo, and the series converges absolutely for all x.

0 (=1)"xn

19.
n? +1
SOLUTION With a, = DX
R/
p= lim |“*L = jim | & 1)"“ V2
n—00 | ay n—oo +2n+2 (1)”x”

Vn2 41
y——- =
V2 +2n+42

lim
n—>0oo

) 2+1 . 1+1/n?
= lim |[x,/] 5¥———— lim |x,/] —————
n—00 +2n+2 " n—oo "\ 142/n+2/n2

Then p < 1 when |x| < 1, so the radius of convergence is R =1, and the series converges absolutely on the interval

m

= x|

—1 < x < 1. For the endpoint x = 1, the series becomes Z which converges by the Leibniz Test. For the

o0

endpoint x = —1, the series becomes 27, which diverges by the Limit Comparison Test comparing with the
nc+1
(=1D)*x" .
divergent harmonic series. Thus, the series Z > converges for —1 < x < 1 and diverges elsewhere.
nc+1
©  2n+1
o e
no15 " T
x2n+l
soLUTION Withag;, = —,
n 3n+1
a x21t3 341 3n+1
= lim |2FL| = i x2 = |x2|
P n—soo| g, | n—oo|3n+4 x2”+1 T n—o0 I+ 4 +4

Then p < 1 when |x2| < 1, so the radius of convergence is R = 1, and the series converges absolutely for -1 < x < 1.
o0

For the endpoint x = 1, the series becomes Z Il which diverges by the Limit Comparison Test comparing
15" T
= -1
with the divergent harmonic series. For the endpoint x = —1, the series becomes Z 1 which also diverges by
n=15
o 2n+1
the Limit Comparison Test comparing with the divergent harmonic series. Thus, the series Z ] converges for
n=15
—1 < x < 1 and diverges elsewhere.
X n
X
23. —
Z Inn
n=2
soLuTioN Witha, = %
1l n In(n + 1 1 1
o= lim |&41| ALY M:"m XM x— | = |x|
n—>o0 | ay n—oolln(n+1) x" n—00 Inn n—00 n—>oo n+1
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using L’Hopital’s rule. Then p < 1 when |x| < 1, so the radius of convergence is 1, and the series converges absolutely
o0

1
on the interval |x| < 1, or —1 < x < 1. For the endpoint x = 1, the series becomes Z ——. Because mn > % and

)12
o0

Z — is the divergent harmonic series, the endpoint series diverges by the Comparison Test. For the endpoint x = —1,
n
n=2

00 . 1\n S n
the series becomes E ( - ) , which converges by the Leibniz Test. Thus, the series E % convergesfor—1 <x <1
n n
n=2 n=2

and diverges elsewhere.

o0
25. Z n(x —3)"
n=1
SoLUTION Witha, = n(x — 3)",

(n+1)(x — 3+l n+1

n(x —3)"

Apn+1|
dp

p = lim = lim |(x —3)-
n—0oo n—oo n—oo

'=|x—3|

Then p < 1 when |x — 3| < 1, so the radius of convergence is 1, and the series converges absolutely on the interval
o

|[x — 3| <1,0r2 < x < 4. For the endpoint x = 4, the series becomes Z n, which diverges by the Divergence Test.

n=1
[’

For the endpoint x = 2, the series becomes Z(—l)”n, which also diverges by the Divergence Test. Thus, the series

n=1
%)

Z n(x — 3)" converges for 2 < x < 4 and diverges elsewhere.
n=1

o0
27. Z(—l)”ns(x -7
n=1

SOLUTION With a;, = (=1)"n®(x — 7)",

1n+l 1 7+l 1)°
p= tim |G| = gy |CV O DY D gy D
n—oo | ay n—00 (=D)nd(x — 7" 00 15
5
= lim |x-7-2 Jrs""zlx—ﬂ
n—00

Then p < 1 when |x — 7| < 1, so the radius of convergence is 1, and the series converges absolutely on the interval

[x = 7] < 1,0r6 < x < 8. For the endpoint x = 6, the series becomes Z( 1)2” 5 Z n>, which diverges by the
n=1 n=1

oo
Divergence Test. For the endpoint x = 8, the series becomes Z(—l)”n5, which also diverges by the Divergence Test.
n=1

o0
Thus, the series Z(—l)"nS(x — 7)"* converges for 6 < x < 8 and diverges elsewhere.

n=1
29. Z—( +3)"
n=1
soLUTION With a, = £ (’§+3)n,
2n+1 n+1
o= lim [ZFL = jim CEIT 3 | im a3y
n—oo | ap n—00 3n+1) 2 (x 4+ 3)" n—00 3n+3

= lim ’2(}6 +3)- ’ =12(x +3)|
n—00

14+1/n
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Then p < 1 when |2(x + 3)| < 1, so when |x + 3| < % Thus the radius of convergence is % and the series converges

oo
. . . 1
absolutely on the interval [x + 3| < 3, or —% < x < —3. For the endpoint x = —3, the series becomes y " —,
= 3n

which diverges because it is a multiple of the divergent harmonic series. For the endpoint x = —%, the series becomes
o0 o0

=" . . f 2" n 7 5
Z e which converges by the Leibniz Test. Thus, the series Z 3—(x +3)" converges for —5 < x < —3 and
n=1 " n=1 "
diverges elsewhere.

o

(_5)11 n

31—~ +10)

n=0
soLuTioN Witha, = (_n?)n (x + 10)",

) ) _5 n+1 10 n+1 ! ) 1
p= lim |%tL| = jig |2 FI07 " = lim [5(x+10)=| =0
n—oo | ap n—oo (n+1)! (=5)"(x + 10)" n— 00 n
o (=5)"
Thus p < 1 for all x, so the radius of convergence is infinite, and Z ' (x + 10)" converges for all x.
n.
n=0

o0
3. Y -2
n=12
SOLUTION Witha, = " (x — 2)",

~ i en+1(x _ 2)n+1
e(x —2)

= lim |e(x — 2)| = |e(x — 2)|
n— 00 n—od

an

Thus p < 1when |e(x —2)| < 1,sowhen |x — 2| < e~L. Thus the radius of convergence is e~ 1, and the series converges
absolutely on the interval |x — 2| < e~ 1, 0r2 — e=1 < x < 2+ ™1, For the endpoint x = 2 + e~ 1, the series becomes

o0 o0
Z 1, which diverges by the Divergence Test. For the endpoint x =2 — e~ 1, the series becomes Z(—l)”, which also

n=1 n=1

(0.¢]
diverges by the Divergence Test. Thus, the series Z ¢"(x —2)" converges for 2 — =1 < x < 2+ ¢~ and diverges
n=12
elsewhere.
In Exercises 35-40, use Eq. (2) to expand the function in a power series with center ¢ = 0 and determine the interval of
convergence.

S0 =175,

SOLUTION Substituting 3x for x in Eq. (2), we obtain

1 00 00
— = Z(3x)" = Z 3"x".
1-3x n=0 n=0

This series is valid for [3x| < 1, or |x| < %

87, () = 37—

SOLUTION First write

Substituting 5 for x in Eq. (2), we obtain

Thus,

This series is valid for |x/3| < 1, or |x| < 3.
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1
¥ S0 =10

SOLUTION  Substituting —x2 for x in Eq. (2), we obtain

Z( x Z( l)nx2n

n=0

This series is valid for |x| < 1.
41. Use the equalities

to show that for |x — 4| < 3,

n 1(
_Z( 1)+ 3n+1

SOLUTION  Substituting —*5~ 4 for x in Eg. (2), we obtain
1 e 4 "
- L () - et
1 + (T) n=0

Thus,

,,(x 4)" a1 (6 ="
f——fD D Z( R

This series is valid for | — x—g“| <lorjx—4| <3.

43. Use the method of Exercise 41 to expand 1/(4 — x) in a power series with center ¢ = 5. Determine the interval of
convergence.

SOLUTION First write

1 1 B 1
4—x —-1—-(x—-5  1+(x-5)

Substituting —(x — 5) for x in Eq. (2), we obtain

1 n_ n n
m—2< (x —5) ,;>( H"(x 5"

Thus,

1 o

= Z( )"x—5)" =Y (-)"x - 5"
n=0 n=0

This series is valid for | — (x —5)| < 1,0r |x — 5| < 1.

45. Apply integration to the expansion

1 o0
Ty = LD =l et

n=0

to prove that for -1 < x < 1,
0 —1.n 2 3 4
D" x X X X
|n(1+x)=2%:x—7+?_7+...
n=1

SOLUTION To obtain the first expansion, substitute —x for x in Eq. (2):

1+X—Z< x)”—Z( 12",

n=0

This expansion is valid for | — x| < 1,0or -1 < x < 1.
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Upon integrating both sides of the above equation, we find

In(l+x)=/1+x /(Z( 1" )

Integrating the series term-by-term then yields

o ol
In(1 =C -
A+x)=C+ g( ]
To determine the constant C, set x = 0. Then 0 = In(1 + 0) = C. Finally,

In(1+x) = Z( 1)"

47. Let F(x) = (x + 1) In(L 4+ x) — x.
(a) Apply integration to the result of Exercise 45 to prove that for -1 < x < 1,

n+1

00
_ _n\n+l X
F(X)—n% (=1 Tt D)

(b) Evaluate at x = 3 to prove
2

3|n3 11 1 N 1 1 N
2 2 2 1.2.22 2.3.28 3.4.24 4.5.25

(c) Use a calculator to verify that the partial sum S4 approximates the left-hand side with an error no greater than the
term ax of the series.

SOLUTION
(a) Note that
/In(x+1)dx:(x+1)|n(x+1)—x+C

Then integrating both sides of the result of Exercise 45 gives

n 1n
(X+1)|n(x+1)—x—/In(x—i-l)dx /ZLW

For —1 < x < 1, which is the interval of convergence of the series in Exercise 45, therefore, we can integrate term by
term to get

o ( 1)n71 o+l n+1

i o > i H I
x+DINx+1) —x= /x"dx= : +C=) -D" +C
= n = n n+1 = n(n+1)

(noting that (—1)"~1 = (—=1)"*1). To determine C, evaluate both sides at x = 0 to get
0=In1-0=0+C

so that C = 0 and we get finally

S 41 x”+1
1 n 1) —x= -1
@+DIn(x+1) —x ngl( e D
(b) Evaluating the result of part(a) at x = % gives
3.3 1 & 1
—Ih-—-== B ) —
2 2 2 n;( ) n(n + 1)2n+1
1 1 1 1

= — + — +
1.2.22 2.3.23 3.4.2%4 4.5.25
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(c)
54 = 1.21-22 - 2-31.23 * 3-41.24 - 4-51.25 = 0.1078125
as = = 61. 55 ~ 00005208
g In g - % ~ 0.10819766
and
'54 - g In> - %' ~ 0.0003852 < as

49. Use the result of Example 7 to show that

FOo x2 x* N X8
X)=—F—
1.2 3.4 5.6

x8+
7-8

is an antiderivative of f(x) = tan~1 x satisfying F(0) = 0. What is the radius of convergence of this power series?

soLuTION For —1 < x < 1, which is the interval of convergence for the power series for arctangent, we can integrate
term-by-term, so integrate that power series to get

n o (_1)nx2n+l 2n+2
F = tan— dx = _— - -
*) / rax n; 2n+1 Z( i D@12
EE RN AR SN SRS
1.2 3.4 56 7.8

If we assume F(0) = 0, then we have C = 0. The radius of convergence of this power series is the same as that of the
original poweroséeries, which is 1.
51. Evaluate Z Zn—n Hint: Use differentiation to show that
n=1 00
A-0"2=>"m"t (for|x| <1)

soLuTIiON Differentiate both sides of Eq. (2) to obtain

Setting x = % then yields

Divide this equation by 2 to obtain
oo
Z o
— 21

53. Show that the following series converges absolutely for |x| < 1 and compute its sum:

—x4—x5+x6—x7

F(x):l—x—)cz—i—x3 x84

Hint: Write F(x) as a sum of three geometric series with common ratio %3,

SOLUTION Because the coefficients in the power series are all £1, we find

an+1 _
dn

r= lim
n—0o0o

The radius of convergence is therefore R = r—1 = 1, and the series converges absolutely for |x| < 1.
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By Exercise 43 of Section 10.4, any rearrangement of the terms of an absolutely convergent series yields another
absolutely convergent series with the same sum as the original series. Following the hint, we now rearrange the terms of
F(x) as the sum of three geometric series:

F(x)=(1+x3+x6+~-~)—<x+x4+x7+~-~)—<x2+x5+x8+--~)

s ad i 1 X x2 1—x—x2
3\n 3\n 2,.3\n AT
= X - x(x - x%(x = - - = .
Z( ) Z ™) Z =) 1—yx3 1— 43 1— 3 1— 43
n=0 n=0 n=0
o0 an
55. Find all values of x such that Z —- converges.
o n:
. nz
SOLUTION With a, = XT'
ansa| _ O
an (n +1)! |x|"2 n+1°
if |x] < 1, then
2n+1
LISy
n—oo n+1
and the series converges absolutely. On the other hand, if |x| > 1, then
) |X|2n+1
lim = 00,
n—oo pn-4+1
[e'e) x"z
and the series diverges. Thus, Z —- converges for —1 < x < 1 and diverges elsewhere.
=1 n:
o0
57. Find a power series P(x) = Z apx™ satisfying the differential equation y’ = —y with initial condition y(0) = 1.
n=0
Then use Theorem 1 of Section 5.8 to conclude that P(x) = e~*.
o0
SOLUTION Let P(x) = Z anx" and note that P (0) = ag; thus, to satisfy the initial condition P(0) = 1, we must take
n=0
ap = 1. Now,
o0
P'(x) = Z nanx" 1,
n=1
)
o0 o o0
P'(x)+ P(x) = Z nanx”_l + Z apx" = Z [(n + Day41 + an]x".
n=1 n=0 n=0

In order for this series to be equal to zero, the coefficient of x” must be equal to zero for each n; thus

an

n+Dayy1+a, =0 or a4 = Taa 1

Starting from ag = 1, we then calculate

a, = -7 =-1;

a 1
©=-5 =7

a 1 1
BTTT T e

and, in general,
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Hence,

o0 Xn
P(x) = Z(—l)"?.
n=0 ’

The solution to the initial value problem y’ = —y, y(0) = 1 is y = e¢~*. Because this solution is unique, it follows that

o0 xn
P(x) = Z(—l)”F =e .
n=0 ’

59. Use the power series for y = ¢* to show that
1 1 1 1

e 2 3ta

Use your knowledge of alternating series to find an N such that the partial sum Sy approximates ¢~ to within an error
of at most 10~3. Confirm this using a calculator to compute both Sy and 1.

SOLUTION Recall that the series for e* is

© n . 2 43 4
ZW: +X+§+§+E+“',
n=0
Setting x = —1 yields
“1_4 1+1 1+1 n 1 1+1 .
¢ = 203" 4 T2 3 a4
This is an alternating series with a, = ﬁ The error in approximating e~ 1 with the partial sum Sy is therefore
bounded by
ISy — e_ll <a -t
N = N+1—(N+2)!-

To make the error at most 10~3, we must choose N such that
—— <1073 or (N+2)!> 1000.
(N+2)! — (N+2) =

For N =4, (N +2)! = 6! =720 < 1000, but for N = 5, (N + 2)! = 7! = 5040; hence, N = 5 is the smallest value
that satisfies the error bound. The corresponding approximation is

L o1t 11 536805555

S=a sty 5 e

Now, e—1 = 0.367879441, so
IS5 — e 1| = 1.761 x 1074 < 1073,

61. Find a power series P (x) satisfying the differential equation

/

y' —xy' +y=0 (9]

with initial condition y(0) = 1, y’(0) = 0. What is the radius of convergence of the power series?

o
SOLUTION Let P(x) = Z anx™. Then
n=0

o0 o0
P'(x) = Z napx" 1 and P’(x) = Z n(n — Lyayx" 2.
n=1 n=2
Note that P (0) = ag and P’(0) = ay; in order to satisfy the initial conditions P (0) = 1, P/(0) = 0, we must have ag = 1
and a1 = 0. Now,

o o o
P"(x) —xP'(x)+ P(x) = Z n(n — Dapx""2 — Z nayx" + Z anx"
n=2 n=1 n=0
o0 o0 o
= Z(n +2)(n + Day2x" — Z napx" + Z anx"
n=0 n=1 n=0

00
=2ay +ag + Z [(n +2)(n+ Day 2 —nay + an] x".
n=1
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In order for this series to be equal to zero, the coefficient of x” must be equal to zero for each n; thus, 2a> + ag = 0 and

(n+2)(n+1a,42 — (n —1)a, =0, 0r

1
ay = —an and ap42 =

Starting from a1 = 0, we calculate

n—1

n+2)n+1"

1-1
al = al =
T
2
a5 = —a =
B0k
4
a7 = ————ag5 = U,
T he®
and, in general, all of the odd coefficients are zero. As for the even coefficients, we have ag = 1, ap = —%,
— l — 1 .
“EBHEe?T
3 3
ag = ———-adq4 = ——,
T ®B“ T e
5 15
ag = ———--adg = — =
M e
and so on. Thus,
1, 1, 34 154
Poo=1-o 3%~ ~&"* ~
To determine the radius of convergence, treat this as a series in the variable x2, and observe that
r= lim |£2k£2 k-1
k—oo | ag k—>oo 2k +2)(2k + 1)
Thus, the radius of convergence is R = 1 = o0.
63. Prove that
o0
_ (=D 2k+2
T2t = k;) A2 (k1 3)
is a solution of the Bessel differential equation of order 2:
X2y +xy' + (2 =4y =0
= (-1)
SOLUTION Let Jo(x) = T 3 %H2 Thep
2tx) kg 222 (k21
o0 k
DKk +D
/ —
200 = ];) 22Tk (k+2)
o0 k
Dk +D@2k+1) o
4 _
0= g
and
(—DFk +1)(2k + 1) (DR +1)
X2J ) + xJp0x0) + (2 = (x) = Z PR x2k+2
k=0

e¢]

22%k+1 k1 (k + 2)!

B Z G
= 22k+2 k1 (k + 2)!

= 22k k1 (k + 2)!

= 22k+1 k1 (k + 2)!

S (=DF
w2t _ Z 2k+2

_§:<1%Hk+axﬁw

- (—pk 2%k+2
2% K1k + 2)! 2 *

—1 22k (k — 1)! (k 4 1)!

00 k 00 k
-y -1 (242 _ 3 (=1 2k+2 _ g
= 2%k = DIk + 1)! = 2%k = DIk + D!
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Further Insights and Challenges

o
65. Suppose that the coefficients of F(x) = Z apx™ are periodic; that is, for some whole number M > 0, we have

n=0
ap+n = an. Prove that F(x) converges absolutely for |x| < 1 and that
ag+aix +---+ aM,lfol
1—xM

F(x) =

Hint: Use the hint for Exercise 53.

SOLUTION Suppose the coefficients of F(x) are periodic, with aps4, = a, for some whole number M and all n. The
F(x) can be written as the sum of M geometric series:

F(x)=a0<1+)CM—|—x2M+"'>+a]_<x+xM+l—|—x2M+l

:ag(x2+xM+2+x2M+2+---)+-~-+aM,1 (fol+x2Mfl+x3Mfl+_“>

bo)+

_ap i ax n a2x2 n +aM_1xM71_a0+a1x+a2x2—|—~~-—|—aM_1x
T1—xM 1 xM 1M 1—xM 1—xM

As each geometric series converges absolutely for |x| < 1, it follows that F(x) also converges absolutely for |x| < 1.

M-1

10.7 Taylor Series (LT Section 11.7)

Preliminary Questions
1. Determine f(0) and f"”(0) for a function f(x) with Maclaurin series

T(x)=3+42x +12x% +5x3 + ...
SOLUTION The Maclaurin series for a function f has the form

o L0 SO O

Matching this general expression with the given series, we find f(0) = 3 and
follows that f””(0) = 30
2. Determine f(—2) and £ (—2) for a function with Taylor series

"
0 . L
f 3‘( ) = 5. From this latter equation, it

T() =3 +2)+@+2?—4x+2% 426 +2% 4.
SOLUTION The Taylor series for a function f centered at x = —2 has the form

(=2 f" ( " (=2
1 3!

@2
4!

f(=2)+ (x+2)+ 2 +22 + x+23%+ x+2%+

@2

Matching this general expression with the given series, we find f(—2) = 0 and a

it follows that £ (—2) = 48.
3. What is the easiest way to find the Maclaurin series for the function f(x) = sin(x2)?

= 2. From this latter equation,

SOLUTION The easiest way to find the Maclaurin series for sin (x2> is to substitute x2 for x in the Maclaurin series for
sin x.
4. Find the Taylor series for f(x) centered at c = 3 if £(3) = 4 and f’(x) has a Taylor expansion

Fa=y £

n
n=1

SOLUTION Integrating the series for f’(x) term-by-term gives
-3
C+
Jo = Z n(n+1)
Substituting x = 3 then yields

f=C=
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SO

Sl (x — 3)n+1
f@) =4+ g
n=1

5. Let T'(x) be the Maclaurin series of f(x). Which of the following guarantees that f(2) = T'(2)?
(a) T (x) converges for x = 2.
(b) The remainder Ry (2) approaches a limit as k — oo.

(c) The remainder Ry (2) approaches zero as k — oo.

SOLUTION The correct response is (¢): f(2) = T'(2) if and only if the remainder Ry (2) approaches zero as k — oo.

Exercises
1. Write out the first four terms of the Maclaurin series of f(x) if
fO =2 f©O=3 f'0=4 ("0 =12

soLUTION The first four terms of the Maclaurin series of f(x) are

(0 "0 4 12
) + f/(0)x +f() +f3() =2+3x +2x + X 8 =24 3x 4+ 2x2 + 228,

In Exercises 3-18, find the Maclaurin series and find the interval on which the expansion is valid.

8 S =15

SOLUTION  Substituting 2x for x in the Maclaurin series for 11— gives

1 00 00
— = Z(Zx)" = ZZ”x".
1-2x n=0 n=0

This series is valid for [2x| < 1, or |x| < %
5. f(x) =cos3x
SOLUTION Substituting 3x for x in the Maclaurin series for cos x gives

0 2n o0 ny 2n
5 (3x) 2 Yx
cos3x = Y (=1 o E (=D '
n=0

This series is valid for all x.
7. f(x) =sin(x?)
SOLUTION Substituting x2 for x in the Maclaurin series for sin x gives

o o0
()CZ) n+1 4n+2

sin ,12_;)(_) n +1)'_Z( Vs

This series is valid for all x.

9. f(x)=In1 —x?)
SOLUTION Substituting —x2 for x in the Maclaurin series for In(1 + x) gives

1)2n l 2n X 2n

n—1 s
|n(1_x)_ZM Z :_Z%_

n=1 n=1 n=1
This series is valid for |x| < 1.
11. fx)=tan"1(x?)
SOLUTION Substituting x2 for x in the Maclaurin series for tan~—1 x gives

(x2)2n+1 0 4n+2

1,2 n _n

This series is valid for |x| < 1.
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13. f(x)=e* 2
SOLUTION %2 = ¢~ 2¢%; thus,

This series is valid for all x.
15. f(x) =In(1 — 5x)
SOLUTION Substituting —5x for x in the Maclaurin series for In(1 + x) gives

o -1 n o 2n—1lcn,.n n.,.n
(=" 1 (=5x) -1) 5"x 5%x
In(1 —5x) = E . :E ( . :—E pt
n=1 n=1 n=1

This series is valid for |5x| < 1, or |x| < % and for x = —%.
17. f(x) =sinhx
soLUTION Recall that

1
sinhx = E(ex —e ).

Therefore,
. 1[& xn s (=x)" X xn n
n=0 n=0 n=0
Now,
1 (1) = 0, neven
2, nodd
S0
o 2k+1 o 2k+1
sinhx = .
nnx I;) 22k + 1)! kX_E) 2k + 1)1

This series is valid for all x.

In Exercises 19-28, find the terms through degree four of the Maclaurin series of f(x). Use multiplication and substitution
as necessary.

19. f(x) =e*sinx
soLuTioN Multiply the fourth-order Taylor Polynomials for ¢* and sin x:

x2 3 44 x3
1 T4 _
+x+2+6+24 6

x3 3 x4 x4 .
3 + — — — + — + higher-order terms
3

2 X
2 6 6
2 X .
=x+x°+ 3 + higher-order terms.

=x+x"—

The terms through degree four in the Maclaurin series for f(x) = ¢* sin x are therefore

+x2 o
X X -

3
sinx

21. f()_

—.X

. . . 1
soLuTION Multiply the fourth order Taylor Polynomials for sin x and 1—:

<x—x:> (1+x+x2—|—x3+x4)

3 4

2 _ % a3t o % + higher-order terms

=X+x

5x3  5x4
=x+x2+ o + o + higher-order terms.
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. . sin
The terms through order four of the Maclaurin series for f(x) = l—x are therefore
— X

n 2+5x3 +5x4
X+x 4+ — 4+ —.
6 6

23. f(x) =1 +x)l/4
soLuTION The first five generalized binomial coefficients for a = % are

L @) s @E) 1 H@EEE)

4 21 32 31 128 41 ~ 2048

Therefore, the first four terms in the binomial series for (1 + x)1/4 are
1 3, 7 5 T 4
14—y = L B
T TR et T 208"
25. f(x)=¢" tan—1x
soLUTION Using the Maclaurin series for ¢* and tan—1 x, we find

X 1 x2 x3 x3 2 x3 X3 x4 x4
tan™ =11 - - - — - - - -
e X +x+2+6+ X 3—1— X+x 3+2+6 3+

4

1 1
:x+x2+éx3—6x + e

27. f(x) — eSinX

67

SOLUTION Substituting sin x for x in the Maclaurin series for ¢* and then using the Maclaurin series for sin x, we find

sin? x N sind x N sin% x
2 6 24

2
Y (R SR [ (RSN I I )
= 7% 2\ 76 6" 24

1 1 1 1 1
=l+x+§x2—6x3+6x3—6x4+ﬂx4+~-~

SN — 1 4 siny +

1, 1
=Tt onf = oxt

In Exercises 29-38, find the Taylor series centered at ¢ and find the interval on which the expansion is valid.

29. f(x):%, c=1

SOLUTION Write

1 1
x 1l+@x-1
and then substitute —(x — 1) for x in the Maclaurin series for ﬁ to obtain

1 o0 o0
=2 - = D -
R n=0

This series is valid for [x — 1] < 1.

3L flx) =

Cc =

1—x'

SOLUTION Write




68

CHAPTER 10 |

INFINITE SERIES (LT CHAPTER 11)

Substituting — 7 for x in the Maclaurin series for 1 yields

1x_5 _ Z <_x;5> _ Z(_l)n (x ;’15) )

n=0

Thus,

,,(x 5" i1 (6 =5)"
=—= Z( 1) Z( TN

This series is valid for

"T_5’<l,or|x—5|<4.

33. f(x) =x*4+3x—-1, c¢c=2
SOLUTION To determine the Taylor series with center ¢ = 2, we compute

) =4x3 43, f)=12x2, " (x) = 24x,
and f(4) (x) = 24. All derivatives of order five and higher are zero. Now,
f@ =21, f'@2=3. f'@=48 ["@2 =48
and £@ (2) = 24. Therefore, the Taylor series is
48 48 24
21435 —2)+ —(x —2° + —(x —2° + —(x — 2%,
2 6 24
or
21+35(x —2) +24(x —2)> +8(x — 2% + (x — 2)%.

35. f(x)= iZ‘ c=4

soLuTIoN We will first find the Taylor series for = and then differentiate to obtain the series for

1 1 1 1
XA+ (=4 4 pgat
Now substitute -7 4 for x in the Maclaurin series for 1 < to obtain
1 13 —4\" & L (x— 4"
X 4 Z <_ ) = Z(_l) gn+1l
n= n=0
Differentiating term-by-term yields
4)}'1 1

(x —
Z( 1)n 4n+1 ?

so that
o0

n— 1 (.X 4)n 1 n ( 4)n
Z( D Zo( D+ D)=

This series is valid for |

’<1 or |x — 4| < 4.

1
37. f(x) = m, c=3

SOLUTION By partial fraction decomposition

SO

1 3 3 11
1—x2 (

1
T3 T ar =3 4 1453 8 1,53

>. Write
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Substituting —*2 for x in the Maclaurin series for 12— gives

1 S x=3\" & (=" i
=Y () =L e
1+ XT n=0 2 n=0 2
while substituting —*7= 3 for x in the same series gives
1 >/ x—=3\" (= "
7322(_ >—Z (x—3)".
1+ XT n=0 4 n=0 o
Thus,
1 1 (-1 2 e (=" n (-1
2= @ = gD (=3 Z ez =" +222+3< x—3)"
n=0 n=0 n=0
o0 1 n o0 n+19n+1
) n =DrET -1 n
= Zo( iz T om0 -3 = Zo 22113 (=37
n= n=

This series is valid for |x — 3| < 2.
39. Use the identity cos? x = %(1 + cos 2x) to find the Maclaurin series for cos? x.

SOLUTION The Maclaurin series for cos 2x is

0 2n 0 2n 2n
B n (2x) B 22X
ngo( D" G Z( D" G

so the Maclaurin series for cos? x = %(1 + c0s 2x) is

2n . 2n
L (14 202 (-1 Gy

2

22n 1 2n
O

) 1+Z( 1)"

41. Use the Maclaurin series for In(1 + x) and In(1 — x) to show that

1In 1+x +x3_’_x5+
- — x4
2 1—x 3 5

for |x| < 1. What can you conclude by comparing this result with that of Exercise 40?

SOLUTION Using the Maclaurin series for In (1 + x) and In (1 — x), we have for |x| < 1

InNl+x)—In1—x) = i ﬂx” — i ﬂ(—x)"
n=1 " n=1 "
SN VI S S F S
n=1 " n=1 " n=1 n
Since 1+ (—1)"~1 = 0 for even n and 1 + (=1)" 1 = 2 for odd n,
2
INQ+x)—In(1—x)= Z mxm“"l.
k=0
Thus,
o0 o0

Observe that this is the same series we found in Exercise 40; therefore,

1 l—|—x -1
—In = tanh
2 <1—x> *

69
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. . . . 1
43. Show, by integrating the Maclaurin series for f(x) = — that for |x| < 1,
1—x

. 1-3.5..-(2n — 1) x2nt1
sin~x = x+2 24621 241

SOLUTION From Example 10, we know that for x| < 1

o0

1.3.5. D 5 1.3:5-- -1 ,,
/;_x Z 246 (2n) H=1t) 2.4.6---2n)

n=0 n=1

so, for |x| < 1,

1-3.5...(2n — 1) x2n+1

x‘/ 12 _C+X+Z 2.4.6--(2n) 2m+1

Since sin—1 0 = 0, we find that C = 0. Thus,

o 1.3.5...(2n —1) x2n+1
1 z:

SIn =
r=x 2-4.6-.-(2n) 2n+1°

45. How many terms of the Maclaurin series of f(x) = In(1 + x) are needed to compute In 1.2 to within an error of at
most 0.0001? Make the computation and compare the result with the calculator value.

SOLUTION Substitute x = 0.2 into the Maclaurin series for In (1 + x) to obtain:

00 n 00
In1.2 = Z(—l)"‘l% - Z(_l)”—lwi

n=1 n=1 "
This is an alternating series with a,, = e Using the error bound for alternating series
n-

1

In1.2 — Syl < = ——,
| Nl =any1 (N £ D5V+1

S0 we must choose N so that

ENCE 0.0001 or (N +1)5V+! > 10,000.

For N =3, (N +1)5¥*1 = 4.5% = 2500 < 10,000, and for N =4, (N 4+ 1)5"+1 =5.5% = 15,625 > 10, 000;
thus, the smallest acceptable value for N is N = 4. The corresponding approximation is:

4 -1
(=1 1 1 1 1
Sy = - - — 0.182266666.
4 ,;1 5.n 5 5.2 5.3 5.4

Now, In 1.2 = 0.182321556, so

IN1.2 — S4| = 5.489 x 107> < 0.0001.

47. Use the Maclaurin expansion for e to express the function F(x) = fg‘ e drasan alternating power series in x
(Figure 4).

(a) How many terms of the Maclaurin series are needed to approximate the integral for x = 1 to within an error of at
most 0.001?

(o) A5 Carry out the computation and check your answer using a computer algebra system.

y
F(x)

Tis(%)

X

1 2

X2
FIGURE 4 The Maclaurin polynomial Ty5(x) for F(t) :/ e " dt.
0
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SOLUTION Substituting —z2 for ¢ in the Maclaurin series for ¢’ yields

o 2\n o 2n
-2 _ (—1%) _ nt™
P P Dl
n=0 n=0
thus,
X 2 o x2n+l
~dr = B L e
/0 ¢ Z( ) n!(2n +1)
n=0
(a) Forx =1,
1 > 1
—t n
dt = -
/0 ¢ 2D nl@2n + 1)
n=0
This is an alternating series with a, = m therefore, the error incurred by using Sy to approximate the value of

the definite integral is bounded by

1

< R
SANHLT N T 1)I2N +3)

1 2
/ e dt— Sy
0

To guarantee the error is at most 0.001, we must choose N so that

1

— < 0.001 N +D!(2N +3 1000.
NEDIEN 13) ~ or (NHLIEN+3) >

For N =3, (N +1)!2N +3) =4!-9 =216 < 1000 and for N =4, (N + 1)!(2N + 3) = 5! - 11 = 1320 > 1000;
thus, the smallest acceptable value for N is N = 4. The corresponding approximation is

4

(1) 11 1 1
=32 _q_=z - = 0.747486772.
4 nX_%)n!(Zn—f—l) 3725 3.7 a9

(b) Using a computer algebra system, we find
1 2
/ e " dr =0.746824133;
0
therefore

1
/ e di — S4| = 6.626 x 104 < 1073,
0

In Exercises 49-52, express the definite integral as an infinite series and find its value to within an error of at most 10~4.

1
49, / COS(xz)dx
0

SOLUTION Substituting x2 for x in the Maclaurin series for cos x yields

(x2)2n 3 00 , x4n .
2n)! _112:%(—1) @n)!’

cos(x?) = Z(—l)"
n=0

therefore,

PR I L

1 o0
2 _ _1\n Xi
/0 cos(x?) dx = ,,Z:o( Y @it

-y _ ey
0 aco 2n)!(4n+1)

This is an alternating series with a, =
the definite integral is bounded by

(2n)!(+n+l); therefore, the error incurred by using Sy to approximate the value of

1

< -
SANHLT ON 1 2)I4N £ 5)

1
f cos(x2) dx — Sy
0
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To guarantee the error is at most 0.0001, we must choose N so that

1
(2N +2)!(4N +5)

For N =2, (2N + 2)!(4N +5) = 6! - 13 = 9360 < 10,000 and for N = 3, 2N + 2)!(4N +5) = 8! - 17 = 685,440 >
10,000; thus, the smallest acceptable value for N is N = 3. The corresponding approximation is

< 0.0001 or (2N +2)!(4N +5) > 10,000.

3

S—Zi—l t |1 L 0904522792
3T @mi@ntD) 5.2 9.4 136l ~

1 3
51./ e ¥ dx
0

SOLUTION Substituting —x3 for x in the Maclaurin series for ¢* yields

0 3\n o 3n
- (=x)" n X7
=) o = L
n=0 n=0

therefore,

[e.¢]

1
iy ey
0 n=0n!(3n+l)

therefore, the error incurred by using Sy to approximate the value of

1, 00 3+l
—X d — _1 n -
/o ¢ rg( S @t D

This is an alternating series with a, =
the definite integral is bounded by

1 .
n!(3n+1)’

1 _ s
/ e dx — Sy
0

To guarantee the error is at most 0.0001, we must choose N so that

1
(N+D!3N +4)

For N =4, (N + 1)!(3N +4) =5!-16 = 1920 < 10,000 and for N =5, (N + 1)!(3N +4) = 6! - 19 = 13,680 >
10,000; thus, the smallest acceptable value for N is N = 5. The corresponding approximation is

1

< R
SANHLT NI 1)I3N 1 4)

< 0.0001 or (N+1!IEBN +4)>10,000.

5
=n"
Ss=> 3, = 0-807446200.

In Exercises 53-56, express the integral as an infinite series.
* 1 —cos(z
53. / f() dt, forall x
0

SOLUTION The Maclaurin series for cost is

00 0 t2n 00 0 t2n
CcoSt = -1 =1 -1 s
Z( P =t Z( "
n=0 n=1
S0
00 i t2n 00 nl t2n
1—cost=—9» (=1 =Y (-1 ,
ngl 2n)! ngl 2n)!
and
1-cost 1 i(—l)"“ 2n _ i(—l)"*l (21
t t = @) = @)’
Thus,

X

X 1 —cos(t) i £2n i x2n
- VA= -1 n+1 — -1 n+1 )
[0 t ngl( ) (2n)!2n 0 r;( ) (2n)!2n
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X
55./ In(1 +¢2)dt, for|x| <1
0

SOLUTION Substituting t2 for ¢ in the Maclaurin series for In(1 + ) yields

In(1+t2)—2( H" 1(’ Z( 1)"

n=1
Thus,
/In(l+t2)dt Z( 1)”’2'17“)( i(—l)”ﬂ.
0 = n(2n +1) vt ni2n + 1)

57. Which function has Maclaurin series Z(—l)”Z”x”?
n=0
SOLUTION We recognize that

oo o0
Z (—1)”2"xn — Z(_Zx)n
n=0 n=0
is the Maclaurin series for ﬁ with x replaced by —2x. Therefore,
1 1

o0
,;)( e P e

In Exercises 59-62, use Theorem 2 to prove that the f(x) is represented by its Maclaurin series on the interval I.

59. f(x) =sin (%) +cos (%),
soLUTION All derivatives of f(x) consist of sin or cos applied to each of x/2 and x/3 and added together, so each

summand is bounded by 1. Thus ‘f(")(x)‘ < 2forall nand x. By Theorem 2, f(x) is represented by its Taylor series for
every x.

61. f(x) =sinhx,
SOLUTION By definition, sinh x = %(ex — e ¥), so if both ¢* and e~ are represented by their Taylor series centered
at ¢, then so is sinh x. But the previous exercise shows that e~ is so represented, and the text shows that ¢* is.

In Exercises 63-66, find the functions with the following Maclaurin series (refer to Table 1 on page 599).

46 9 12
X X
63. 1+x +7+§+T+

soLUTION We recognize
6 9 12 3n o0 3\n
X X (x°)
AL R R R DEr b B

n=0 n=0

as the Maclaurin series for ¢* with x replaced by x3. Therefore,

. 69 12 e
+x +7+§+F+ .
53x3 55,5 5Ty7
L I TR
SOLUTION Note
1 53x3 555 5Ty _1_5 5 53x3 555 517
BT TR e TR - R TR
(5x)2n+1
=1-5 1"
x+2( Vs

The series is the Maclaurin series for sin x with x replaced by 5x, so

53x3 555 5lxT .
1— 3 + ST + .-+ =1-—5x +sin(5x).
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In Exercises 67 and 68, let

1
O =a"5a=2
67. Find the Maclaurin series of f(x) using the identity
2 1
FO =15 T 1o

_— . . . 1 .
SOLUTION Substituting 2x for x in the Maclaurin series for 1 gives
— X

1 o o
=) @) =) 2"
. n=0 n=0

which is valid for |2x| < 1, or |x| < % Because the Maclaurin series for 1 is valid for |x| < 1, the two series
— X

together are valid for |x| < 1. Thus, for |x| < 3,

1 — 2 _ 1 zziznxn_ixn
1-2x)1—x) 1—-2x 1—x

o0 o0 o0
_ Z on+lon _ Zx Z (2n+l )
n=0 n=0 n=0

69. When a voltage V is applied to a series circuit consisting of a resistor R and an inductor L, the current at time ¢ is
\%
(1) = (E) (1— e RU/L)

. . . Vit
Expand () in a Maclaurin series. Show that 7(r) ~ T for small ¢.

SOLUTION Substituting —% for ¢ in the Maclaurin series for ¢’ gives

00 Rt 00 oo
‘ R’/L=Z< ) X H(r) e SR

n=0 n=0 n=1
Thus,
0 n n o0 n+1 n
 _RiJL _ 4 _ D" (RN ) (-1 Rt
1=e =1 1+ Z n! L ! o Z n! L ’
n=1 n=1
and

Vex ()" RN Ve V& 1>"+1 Rt
o= XS (1) = RS S (1)
n! L L R
n=1 n=2
If ¢ is small, then we can approximate / (¢) by the first (linear) term, and ignore terms with higher powers of 7; then we
find

vy~ Y
~

71. Find the Maclaurin series for f(x) = cos(x3) and use it to determine f(e) (0).

SOLUTION The Maclaurin series for cos x is

a2
Cos x _rg(— ) @l
Substituting x3 for x gives
61

cos(x®) = Z(— "
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Now, the coefficient of x8 in this series is

11 /90

2! 2 6!

SO

!
r®) = —% = 360

73. & Use substitution to find the first three terms of the Maclaurin series for f(x) = exzo. How does the result
show that £®)(0) =0 for 1 < k < 19?

SOLUTION  Substituting x20 for x in the Maclaurin series for e* yields

(x20)n © x20n

o0
=y =) =
n! n!

n=0 n=0

the first three terms in the series are then

1
1+ x20 + x40,
2
- . . . 0! . .
Recall that the coefficient of x¥ in the Maclaurin series for f is fT(O). For 1 < k < 19, the coefficient of x* in the
Maclaurin series for f(x) = exzo is zero; it therefore follows that
0o
k'

0 or rf®wOy=0

forl <k <19

75. Does the Maclaurin series for f(x) = (1 + x)3/% converge to f(x) at x = 2? Give numerical evidence to support
your answer.

SOLUTION The Taylor series for f(x) = (1 + x)3/4 converges to f(x) for |x| < 1; because x = 2 is not contained on
this interval, the series does not converge to f(x) at x = 2. The graph below displays

N /3
Sy = 4 )
=2 (1)
n=0
for 0 < N < 14. The divergent nature of the sequence of partial sums is clear.

Sn

77. Let f(x) = I+ x.

(a) Use a graphing calculator to compare the graph of f with the graphs of the first five Taylor polynomials for f. What
do they suggest about the interval of convergence of the Taylor series?

(b) Investigate numerically whether or not the Taylor expansion for f is valid forx = 1 and x = —1.

SOLUTION

(a) The five first terms of the Binomial series with a = % are

1(1_ 1(1_ 1_
\/mz1+;x+2(22! 1>x2+2<2 12!<2 2>x3 i
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Therefore, the first five Taylor polynomials are
To(x) =1;

1
T1(x) =1+ Ex;

11
Tp(x) = 14 3x — ga%;

1 1, 1
T3(x):1+§x—§x2+§x3;

1 1, 153 5 4,
Tax) =14 2x — =x2 4+ =x3 — — x4,
40) =14 ox =gt g~ g?

The figure displays the graphs of these Taylor polynomials, along with the graph of the function f(x) = +/1 + x, which
is shown in red.

15 +

N

The graphs suggest that the interval of convergence for the Taylor series is —1 < x < 1.
N o1
(b) Using a computer algebra system to calculate Sy = Z ( Z )x” for x = 1 we find
n=0

S10 = 1.409931183,  S1gp = 1.414073048, Syggo = 1.414209104,

N o1
which appears to be converging to /2 as expected. At x = —1 we calculate Sy = Z ( 3 ) -(=1)", and find
n=0

S10 = 0.176197052,  Sqgg = 0.056348479,  S1gog = 0.017839011,

which appears to be converging to zero, though slowly.

79. Use Example 11 and the approximation sin x = x to show that the period 7 of a pendulum released at an angle 6 has

the following second-order approximation:
L 62
T~2r |— |14+ —=

soLuTION The period T of a pendulum of length L released from an angle 6 is

T =4\/ZE(k),
g

where g ~ 9.8 m/s2 is the acceleration due to gravity, E (k) is the elliptic function of the first kind and k = sin %. From
Example 11, we know that

Tn(1:3:5--2n—1)\? ,,
E<k>=2n§(w> .

Using the approximation sin x &~ x, we have

k—sin9~
T2

moreover, using the first two terms of the series for E (k), we find

2 2 2
E(k)%j;|:1+<;) (g) }:’;(H;).

5

N D
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2
T=4 EE(k)mzn L 1+9— .
g g 16

In Exercises 80-83, find the Maclaurin series of the function and use it to calculate the limit.

Therefore,

sin + 23
i X —x+ =
81. lim 755
x—0 X

SOLUTION Using the Maclaurin series for sin x, we find

2n+l x3 2n+1
sinx = — = X
*= Z( e ki +Z( Vv
Thus,
x3 2n+1
sinx — — =
nx-x+- 120+Z( "D
and
; X2 (2n—4
SiInx —x + 6 _ —|—Z( n—
x5 (2n—|—1)'

Note that the radius of convergence for this series is infinite, and recall from the previous section that a convergent power
series is continuous within its radius of convergence. Thus to calculate the limit of this power series as x — 0 it suffices
to evaluate itat x = 0:

| sinx —x + % w2n—4 1 . 1
im —————— = lim = — = —
x—0 xd x—0 120 + Z( (Zn + 1! 120 * 120

i 2
83. lim sin(x<) _ cosx
x—0 x4 x2

soLUTION We start with

2n+1 0 x2n
sinx = '  cosx=Y (—1)"
inx = ,,XE)( 1) 2n D X ,,2_(:)( ) )]

so that

Sm(xz) 4n+2 4n 2
Z(_) @n + 1)k Z( (2n+1)‘

cosx i( b x2n=2
xz B :

|
n=0 (@n)
Expanding the first few terms gives
sm(x B Z( xHn=2
(2 + 1!
cos x 1 x2n—2
b, + _ n¥*
so that
x4n— 2 2n 2

4 x2 2 @n+1)! Z(_) 2n)!

sin(x¢)  cosx 1
x Zo

Note that all terms under the summation signs have positive powers of x. Now, the radius of convergence of the series
for both sin and cos is infinite, so the radius of convergence of this series is infinite. Recall from the previous section that
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a convergent power series is continuous within its radius of convergence. Thus to calculate the limit of this power series
as x — 0 it suffices to evaluate it at x = 0:

~ [sin(x?) cosx ) 1 & x4n—2 s x2n—2 1 1
fim (2N SN i [ oY ey Sy —Z40==:
m ( x4 x2 ) Im0 Z( ) 2n +1)! Z( ) (2n)! 2 + 2

2
x—0 x— 1 o’

Further Insights and Challenges

85. Letg(r) = !

1412 142
1 T 1

€) Showthat/ gt)ydt == —=1In2.
0 4 2

(b) Showthatg(r) =1—t—r2+3 -4 — >4 ...,

(c) EvaluateS:l—%—%—k%—%—%Jr
SOLUTION
(@
L 1 1 1 T 1
Ndt=(tan"1r— ZIn@? +1 =tan t1-ZI2==—21In2
/0 g() ( > @+ )) ’o > 17
(b) Start with the Taylor series for 1%[:
1 o0
[ — Z(_l)ntn
141 n=0
and substitute 2 for ¢ to get
1 . 2 2 6
—_— = D =12t S
7= ¢
141 o
so that
t o
— = —y B S
7 =2
1+1¢ r
Finally,
t
g(l):m—m:1—f—t2+t3+t4—l5—t6+t7+.,.
(c) We have

1, 1. 1, 1. 1
) dt = 1—z—t2 t3 14—t5—... dz:t—ft2—7t3 7t4 7t5—7t6—-~~ C
/g() /( T ) 2 T3t s T +

The radius of convergence of the series for g(r) is 1, so the radius of convergence of this series is also 1. However, this
series converges at the right endpoint, r = 1, since

(-3-G-2)+G-)-

is an alternating series with general term decreasing to zero. Thus by part (a),

1 1 1 1 1

1---4-4--2-..==2
2 3 4 5 6 4

In Exercises 86 and 87, we investigate the convergence of the binomial series

o0 a ;
T, (x) = Z <n>x

n=0

87. By Exercise 86, T, (x) converges for |x| < 1, but we do not yet know whether T, (x) = (1 + x)4.

(@) Verify the identity
( ) ( ) ( 1)< + )
n n n 1
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(b) Use (a) to show that y = T, (x) satisfies the differential equation (1 + x)y’ = ay with initial condition y(0) = 1.

(c) Prove that T, (x) = (1 + x)¢ for |x| < 1 by showing that the derivative of the ratio (1Ti(x))a is zero.
X
SOLUTION
@
a a _ a(a@a—1)---(a—n+1) a(@—1)---(a—n—+1)(a—n)
n(”)+(n+l)<"+1>_n. n! te+d: (n+1)!
a@—-1---(a—n+1) a(@-1)---(a—n+1)(a—n)
= +
(n—1)! n!
_a@—1--(a-—n+l(n+@—n) a
- n! - n
(b) Differentiating 7, (x) term-by-term yields
o
T)(x) = zln ( Z )x"_l.
Thus,
ad a ad a ad a s a
o= B2 e B (1) Bren( 52 ) (1)
o o0
n=0 n=0
Moreover,
a
no-(§)-1
(©
d ( Ty (x) ) _ A+ ) — a4 0T () | A+ 0T —ale) _
dx \(1+x)a ) (1 + x)2a o (1 +x)atl -
Thus,
Ty(x) _
d+x)7
for some constant C. For x = 0,
T.0 _1_ _
110y =1 =1,s0C=1.

Finally, T, (x) = (1 + x)%.

89. Assume that a < b and let L be the arc length (circumference) of the ellipse (%)2 + (%)2 = 1 shown in Figure 5.

There is no explicit formula for L, but it is known that L = 4bG (k), with G (k) as in Exercise 88 and k = /1 — a2/b2.
Use the first three terms of the expansion of Exercise 88 to estimate L when a = 4 and b = 5.
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SOLUTION Witha =4andb =5,

2 2
and the arc length of the ellipse (%) + <%> =1is

i (1.3...(2n—1))2 (%>2n

3 n
L=20G<§>=20 5~ 2.4-..(2n) n—1

NS

n=1

Using the first three terms in the series for G (k) gives

2 2 3\ 2 4
L ~ 107 — 107 ((1> . (/5 + (1 3) . 3/5) ) =107 (1 - li 243 ) = 36,1577 ~ 28.398.

2 1 2.4 3 00 40,000 4000

91. Irrationality of e Prove that e is an irrational number using the following argument by contradiction. Suppose that
e = M/N,where M, N are nonzero integers.

(@) Show that M!e~1 is a whole number.

(b) Use the power series for ¢* at x = —1 to show that there is an integer B such that M! el equals
1 1
B+—1M+1< - +>
1 M+1 M+1D(M+2)

(c) Use your knowledge of alternating series with decreasing terms to conclude that 0 < |M!e~1 — B| < 1 and observe
that this contradicts (a). Hence, e is not equal to M/N.

SOLUTION Suppose thate = M /N, where M, N are nonzero integers.
(@) Withe =M/N,

4N
Mle " =M'— = (M —1)IN,
M

which is a whole number.

(b) Substituting x = —1 into the Maclaurin series for ¢* and multiplying the resulting series by M! yields

o= — a1 1 1 (=D
et =MI[1-14+-— =+ + +o ).

20 3! k!

M! .
Forallk < M, o is a whole number, so

( 1 1 (—1)k>
M(1-1+-—-2 4.+

20 31 M!

is an integer. Denote this integer by B. Thus,

1 (_1)M+1 (_1)M+2 3 M1 1 . 1
Mie _B+M’<(M+1)!+(M+z>!+"' =frED <M+l Minm+ )

(c) The series for M!e~1 obtained in part (b) is an alternating series with a, = % Using the error bound for an
alternating series and noting that B = Sj;, we have

1

— < 1.
M+1

‘M!e_l —B} <apyi1=

This inequality implies that M!e~1 — B is not a whole number; however, B is a whole number so M!e~1 cannot be a
whole number. We get a contradiction to the result in part (a), which proves that the original assumption that e is a rational
number is false.
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n—3 . .
1. Leta, = — and b, = a,43. Calculate the first three terms in each sequence.
n!

(@) af (b) bn
(©) anby (d) 2a,41 — 3an
SOLUTION
(@)
1-3)\?2
2 _ — (_9\2 —
al—( 1 > =(-2)" =4
2 (2-3\2 [ 1)\* 1
“=\"2 ) “\72) T 7%
3-3)\?
2 _ —
as— 3 > —O.
(b)
b3 L
S TV
5-3 1
b = = = —
2=B= 5 T 0
6—-3 1
by=ds = 6~ = 540"
(c) Using the formula for a,, and the values in (b) we obtain:
,_1-3 1 _ 1
A= T T T
,,_2-3. 1 _ 1
4272 =7 Te0 T 1200
3-3
b3 =3 240 =
(d)
1
2a2—3a1_2<—§>—3(—2):5,
1 3
2a3 —3ap =2 0—3<—f)=§;
2 3az = 3-0= !
R YR TS

In Exercises 3-8, compute the limit (or state that it does not exist) assuming that imoo ap = 2.
n

3. lim (5a, — 2a2)
n—oo

SOLUTION
: 2 : L2 - - 2 2
lim (5ay —242) =5 lim a,—2 lim a? =5 lim a, —2( lim a,)" =5-2-2.22 =2.
n— o0 n— o0 n— o0 n—oQ n— oo
5. lim e%
n— oo

soLUTION The function f(x) = ¢* is continuous, hence:

lim % = elMoooan — o2,
n—oo

7. lim (=) "a,
n—0oo

SOLUTION Because lim a, # 0, it follows that lim (—1)"a, does not exist.
n—oo n—0o0
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In Exercises 9-22, determine the limit of the sequence or show that the sequence diverges.

9. ap=~/n+5—+V/n+2

SOLUTION First rewrite a,, as follows:

. _ (Vn+5-vn+2)(Vn+5+Vn+2) (n+5-(n+2) 3
" Vnt5+/n+2 T Vn+54+vn+2 Jn+5+/n+2
Thus,
3

nILmooan - nIme /n 54+ /n+2
11. a, = 2Y/7°

SsoLUTION The function f(x) = 2% is continuous, so

lim_a, = lim_ 1/n? _ plimoo(/n?) _ 90 _ 1.
n—oo
13. by = 1+ (—1)™

SOLUTION Because 1 + (—1)" is equal to 0 for m odd and is equal to 2 for m even, the sequence {b,, } does not approach
one limit; hence this sequence diverges.

n+2
15. by = tan~1
" <n+5>

soLUTION The function tan—Lx is continuous, so

. . 2 . 2
lim b, = lim tan—1 (n + ) = tan_l( lim i) —tan~11= il
n— 00 n—o00 n+5 n—oon+5 4

17. by =vVn2+n—+vn2+1

SOLUTION Rewrite b, as

, (ViZn =2+ 1) (Va2 n+ V2 +1)  (n?4n) = (n2+1) no1
" n2 +n+n2 +1 VitV 41 VnZ a2 +1
Then
lim b, = lim i % = lim 1_% = 1-0 :E_
=00 n—>°°\/ + 8y \/Lﬁ% "—>°°\/1+%+\/1+n% V1+0+VI+0 2

l 3m
19. by, = <l+ —)
m
l m
SOLUTION lim b, = lim <1+ —) =e.
m— 00 m— 00 m

21. b, = n(ln(n +1—1In n)

SOLUTION Write

Using L’Hépital’s Rule, we find

lim b, = lim M: lim M: lim <1+%>_1'(_712) = lim <1+1>1=1.

n—00 n— 00 1 X—00 1 X—00
X
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arctan (n2
23. Use the Squeeze Theorem to show that i arctan(n”) =0.
n— 00 ﬁ

soLUTION Forall x,
g s
—— < arctanx < o

S0
7/2  arctan(n?) 7/2

I

for all n. Because
2 2
( 7/ ) im /2 _o,

it follows by the Squeeze Theorem that
arctan(n?)

n |—|>moo ﬁ

. 1
25. Calculate lim "*L where a, = =3" — =2
n—>00 ay, 2 3

SOLUTION Because
1 1 1 1 3"
73}1 _ 721‘1 > 73}1 _ 73}’1 —-
3 2 3 6
and
.
M, =0

83

we conclude that lim;,—, ~ a, = 00, so L’Hopital’s rule may be used
n+1
1 l3n+l 12n+1 3142 _ on+2 3-2 (% 3_0
lim —+ lim = lim —— = lim =3.
n—oo ay n—00 13n _ § n—oo 3+l _on+l 7 pSoo 1 (2)n+1 1—-0
—\3

-2
27. Calculate the partial sums S4 and S7 of the series Z PR
n

SOLUTION
1 1 2 11
Sg=—=404+ — 4= === = _0183333;
4= 30T 51217 w0
1 1 2 3 4 5 287
S7 =404 —4— 4> 202200 4065070,
=3ttt s T st e T a0
4 16 32
29. Find the sum —+ =+ =
: Umot oy te Tt
SOLUTION This is a geometric series with common ratio r = % Therefore,
4.8 16 3 5 4
9 27 81 ' 243 1-2 3
00 2n+3
31. Find the sum Z .
n=-1
SOLUTION Note
[o/0] o0 o0
2n+3 3 n 2\ "
=2y —=8) (7) ;
n n

n=-1 3 n=-—1 3 n=-—1 3

therefore,
oo
2n+3
3 21— %
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o0 o o
33. Give an example of divergent series Z a;, and Z by, such that Z(an +by) = 1.

n=1 n=1 n=1

n
SOLUTION Leta, = (%) + 1, b, = —1. The corresponding series diverge by the Divergence Test; however,

00 00 1\" 1

_ _ 2 _
E (an +byp) = E (E) —1_7;—1-
n=1 =1 2

n=

e ¢]

35. Evaluate S = Z
n=3
soLUTION Note that

1
nn+3)

1 1/1 1
nn+3 3\n n+3
so that
RS (e
nn+3) 3 n n+3
n=3 n=3
_L((rony, (o), (1t
“3\\3 6 4 7 5 8
1 1 + + 1 1 " 1 1
6 9/  T\N-1 N+2 N N+3
BEN S S S S
“3\3 4 5 N+1 N4+2 N+3
Thus
o] N
1 1 1 1
Yot =2 im Y (=-
nn 4+ 3) 3 N> n n+3
n=3 n=3

1 1+1+1 1 1 1 1 1+1+1 a7
" 3\3 4 5 N+1 N+2 N+3) 3\3 4 5/718
In Exercises 37-40, use the Integral Test to determine whether the infinite series converges.
0 2
n
37.
Z n3+1
n=1

2 R . . . -
SOLUTION Let f(x) = xé‘ﬁ This function is continuous and positive for x > 1. Because

P+ D) - 223 x2-xd

!/
xX) = = s
1 (x3 +1)2 (x3 +1)2
we see that /(x) < 0and £ is decreasing on the interval x > 2. Therefore, the Integral Test applies on the interval x > 2.
Now,
00 .)C2 R 2 1
/ s dx = lim dx =3 lim (In(R*+1) ~In9) = oo.
2 x°+1 R—o00 J2 )C3+1 3 R—>oo
o n2 o n2

The integral diverges; hence, the series Z a1 diverges, as does the series Z IR

n=2" + n=1 " +

s 1

% ngl (n +2)(In(n + 2))3

SOLUTION Let f(x) = Using the substitution u = In(x 4 2), so that du = ﬁ dx, we have

R
In2

-1
x4+2)In3(x+2)"

o0 1 %1 1
dx = —du = lim —du= lim |—-——
/0 fax)dx /InZ ud “T R In2 u3 ‘T Rono 2u?

= lim ( ! — ! )— !
T R—oo\2(In2)2  2(InR)2) T 2(In2)2

Since the integral of f(x) converges, so does the series.
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In Exercises 41-48, use the Comparison or Limit Comparison Test to determine whether the infinite series converges.

o0

1
41, -
,12::1 (n + 1)2

SOLUTION Foralln > 1,

1 1 1 1
< <- S0 ——s < —
n+l n (n+1)2 2
o0 1 0
The series is a convergent p-series, so the series converges by the Comparison Test.
nzl . gent p- Z 12 ges by p
2
nc+1
43.
Z n3 5_ 2
n=2

L. . . 2
SoLUTION Apply the Limit Comparison Test with a;,, = % and b, = n% Now,

2
n-+1
A n35 4 15
L= lim 1 = lim T:1.
n— 00 n—oo p -2
nl5

oo
Because L exists and Z —5 Is a convergent p-series, we conclude by the Limit Comparison Test that the series
nl.

X n241
n35_-2

n=2

also converges.

45,
Z r =
SOLUTION Foralln > 2,
n n 1
T I
515 n5/2 ~ ;3/2

o0
The series ) is a convergent p-series, so the series Z \/7 converges by the Comparison Test.

n3/2
n=2
i i n10 4 10n
et an
o . : n10410" 0\"
soLUTION Apply the Limit Comparison Test with a;, = P and b, = (ﬁ) . Then,
n10410" n194+10" n10
L= tim % = fim 2 i 10 2t
n—oo b, n—oo (10\" n—oo nil411n n—o00 nit 1 ’
ﬂ 11n 1}1 +

oo n
The series Z (ﬂ) is a convergent geometric series; because L exists, we may therefore conclude by the Limit

= nl0 + 10"
Comparison Test that the series Z PRI also converges.

49. Determine the convergence of Z il - using the Limit Comparison Test with b,, = (%) .
n= 1

SOLUTION With a,, = %,,Jr” we have

1\
. ap 2"+n I . 6" 4 n3" _1tn <?)
L= lim — = lim —=lim — = Ilim —— =1
n—oo by, n—oo 31 —2 2n n—oo g — 2n+l  n—oo 1_9 1\"
- 3

00 n
Since L = 1, the two series either both converge or both diverge. Since Z <§> is a convergent geometric series, the
n=1

J’_
Limit Comparison Test tells us that Z 5 also converges.
n= l
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0.¢]
51. Leta, =1—/1— % Show that lim a;, = 0 and that Z ap, diverges. Hint: Show that a,, > %
n—oo 1
n=
SOLUTION
n—1 f—«/n— n—m-1) 1
1--=1-
v f(f"’\/”—) n++vn2—n
> — = .
n + ~/n2 2"
1
The series Z o diverges, so the series 50, ( —1- 7> also diverges by the Comparison Test.
n=2
as n
53. Let S = —.
n;l (n? + 1)

(a) Show that S converges.
(o) CA5S  UseEq. (4) in Exercise 83 of Section 10.3 with M = 99 to approximate S. What is the maximum size of the
error?

SOLUTION
(a) Forn > 1,
n n 1
——5 < —55 = —&3-
(n2 + 1)2 (n2)2 n3
o
1 .
The series Z — IS a convergent p-series, so the series Z Tl) also converges by the Comparison Test.
n= 1

(b) Witha, = (n2+1)2, fx) = 2+1)2 and M = 99, Eq (4) in Exercise 83 of Section 10.3 becomes

9, o 100 o
2 1 1)2 +/ o dx = f dx,
n; (n? + 12~ Jioo (x* +1)? ,Z (n? +1)2 100 (x2 +1)2
or
99 o
n X 100
,12::1 2 +12  Jioo (x2 +1)2 * (1002 + 1)2
Now,
9
Y ———— =0.397066274; and
— =+ 1
/Ooxdlimedllim<l+1>
— s dx = s dx=Z _
100 (x? +1)2 R—00 J100 (x2 + 1)2 2 e \ TR T 1002+ 1
1
=——7=0 4 ;
20002 0.000049995
thus,

S A 0.397066274 + 0.000049995 = 0.397116269.

The bound on the error in this approximation is

10
__100 9998107,

(1002 + 1)2
In Exercises 54-57, determine whether the series converges absolutely. If it does not, determine whether it converges
conditionally.

o
. . . . 1
soLUTION Consider the corresponding positive series Z ———— . Because
= ntline +1)

1 1

—_— <
ntlinn+1) nll
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o
1 (="
and Z =1 is a convergent p-series, we can conclude by the Comparison Test that Z m also converges.

n= 1 n=1

_ 1\
Thus, Z e 1(In(r2 D converges absolutely.

cos (% + 27n)

57 ) i
Y=

SOLUTION €0S (% +27n) =cos § = \/Ti )

n=1 Vﬁ{ 2 n=1 "
X cos(Z +2mn
This is a divergent p-series, so the series Z y diverges.
n=1 V%
— (—DF

59. Catalan’s constant is defined by K = —_—
y k; (2k + 1)2

(a) How many terms of the series are needed to calculate K with an error of less than 1062
(b)y CAS  Carry out the calculation.
soLUTION Using the error bound for an alternating series, we have

1 1
QN+ +12 2N +3)2°

ISy — K| =
For accuracy to three decimal places, we must choose N so that
——— - <5x1073 or (2N +3)? > 2000.
(2N + 3)2 ( )
Solving for N yields

N> %(m—s)zzo.g.

Thus,
1)k
~ Z - ) = 0.915707728.
(2k
o
61. Let Z an be an absolutely convergent series. Determine whether the following series are convergent or divergent:
n=1

(@ i ( N %) ® Y D,

n=1
o lan]
(© (d) -
Z Tr a2 gl p
o (0.¢] oo
SOLUTION Because Z an, converges absolutely, we know that Z ay, converges and that Z an | converges.
n=1 n=1 n=1
o0 o 1
(a) Because we know that Z ap converges and the series Z — is a convergent p-series, the sum of these two series,
n=1 n=1
& 1
> (a,, + —2) also converges.
n
n=1
(b) We have,

o0 o0
Dol an] =) lanl
n=1 n=1

o0 o0 o0
Because Z |lan | converges, it follows that Z(—l)”an converges absolutely, which implies that Z(—l)"an converges.
n=1 n=1 n=1
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[o)0]
(c) Because Z ay, converges, lim, o0 a, = 0. Therefore,
n=1

1
lim = —— =
”_>°°1+a,% 1+02

140,

o0
and the series ) ° T diverges by the Divergence Test.
+a

n=1 n
o o
. . a .
(d) “%' < |ay| and the series Z |an | converges, so the series Z lan] also converges by the Comparison Test.
n

n=1 n=1

In Exercises 63-70, apply the Ratio Test to determine convergence or divergence, or state that the Ratio Test is inconclusive.

5
63. n
5n

n=1

) 5
SOLUTION Witha, = g—n

any1| +15 51 1\°
= =g 1+ )

an | 5+l 45 n
and
- lapg1| 1 1\°> 1 1
p= lim |—=| == lim (1—}-7) =—.1=-.
n—oo| ay 5 n—00 n 5 5

Because p < 1, the series converges by the Ratio Test.

> 1
65. — 3
Zn2"+ﬂ3
n=1
i =1 _
soLutioN  Witha, = —= a3
3 2 (1412 5
an41| _ n2" 4+n _ " ( +27) _lon Lo
an | 04D 0 D3 ot (14 @)Y T2 nd L g
and
~ gim || L 40
p_n|—|>moo an | 2 ! 1_2.

Because p < 1, the series converges by the Ratio Test.

00 Hp2
67. —_

n!
n=1

. 27!2
soLUTION With a, = T

2
Any1 2(n+1) n! 3 22n+1

an

ap+1
an

T+ D! T n+1l

and p = nimoo

Because p > 1, the series diverges by the Ratio Test.
69 Z (n)n :
' T 2/ n!
n—=

SOLUTION With a,, = (%)” %

ani1 n+1\" 1 2\" 1
= = n! = —
an 2 n+1! \n 2

and

Because p = § > 1, the series diverges by the Ratio Test.



Chapter Review Exercises 89

In Exercises 71-74, apply the Root Test to determine convergence or divergence, or state that the Root Test is inconclusive.

1
LY w
n=1
soLuTION With a;, = 4%,,
o1 1
L= I|m<>Q Yay = nllm TR

Because L < 1, the series converges by the Root Test.
o
3 n
73. —
> ()
n=1

n
soLUTION With g, = (%) ,

A0 3Y" .3
L= I|m Yan = I|m n =nI|m — =0

n —00 4n
Because L < 1, the series converges by the Root Test.

In Exercises 75-92, determine convergence or divergence using any method covered in the text.
o
2 n
75. P
> (3)
n=1
SOLUTION This is a geometric series with ratio r = % < 1; hence, the series converges.

00
77. Z e—0.0Zn
n=1
1

SOLUTION This is a geometric series with common ratio r = oz ~ ~ 0.98 < 1; hence, the series converges.

(=" 1
79. _—
Z\/ﬁ—l-\/n—i—l

n=1
SoLUTION In this alternating series, a;, = —1___ Thesequence {a,) is decreasin ,and
g n ﬁ+m q { n} g
lim a, =0;
n—oo

therefore the series converges by the Leibniz Test.

00
=n"
8L. Z Inn
n=2

SOLUTION The sequence a, = - is decreasing for n > 10 and

lim a, =0;
n— 00

therefore, the series converges by the Leibniz Test.

1
83. _—
n§1 nv/n+1Inn

SOLUTION Forn > 1,

1 1 1
—_— < = —.
nvn+Inn ~ nyn n3/2

1 1
The series Z 372 is a convergent p-series, so the series Z T converges by the Comparison Test.
n=1
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SOLUTION This series telescopes:
LG5 (o) ()

s0 that the nt" partial sum S, is

=) G ) i) ()

and then

/1 1 1
Z(W_Jm):nimms’l:l_nlmm n_|_]_=1

n=1

X1
87.
rgn—kﬁ

SOLUTION Forn > 1, \/n <n, so that

= 1 =1
2 =2
n=1 n+ \/ﬁ n=1 2n
o
which diverges since it is a constant multiple of the harmonic series. Thus Z
n=1

diverges as well, by the Comparison
n

Test.
o0
1
89. Z ninn
n=2
SOLUTION Forn > N large enough, Inn > 2 so that
o o
1
Z Inn Z 2

n=N n=N n
oo

which is a convergent p-series. Thus by the Comparison Test, Z also converges; adding back in the terms for

n < N does not affect convergence.

s T
91. sin? =
2 sin®
n=1
soLuTioN Forall x > 0, sinx < x. Therefore, sin? x < x2, and for x = z,
2
.o T 1
sin? = < 7:”2‘7'
n
o
1
The series Z — is a convergent p-series, so the series Z sin? ~ also converges by the Comparison Test.
n
n= 1 n=1

In Exercises 93-98, find the interval of convergence of the power series.

93. Z:
2nxn

soLUTION With a, = =

271}’1

2n+lxn+l n!

Intl)| _ £ .
(n+ 1)  2nxn

p= lim ‘ = lim =0
an n—o00 n—o00

n—oo

X - —
n

Then p < 1 for all x, so that the radius of convergence is R = oo, and the series converges for all x.
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o0 6

n n
95. Z 11874-1()6 -3
n=0
- _ nbu-3)"
SOLUTION With a;, = W8Tl
C i |@tt] o | DO =3 a4
P00 an | T nmoo|l i+ D1 nbx—3)

o n+1°m8 +1)
- n|—|>moo =9 n8((n+1)8 +1)

14
. terms of lower degree
— i -3 9

14 =lx—3
n—00 n+* + terms of lower degree

Then p < 1 when |x — 3| < 1, so the radius of convergence is 1, and the series converges absolutely for |[x — 3| < 1, or
6

o0
2 < x < 4. For the endpoint x = 4, the series becomes Z ﬁ, which converges by the Comparison Test comparing
n
=0

o0 o
. . 1 . .
with the convergent p-series Z —- For the endpoint x = 2, the series becomes E
n
n=1 n=0

> 08 —3)
Leibniz Test. The series Z ——
S +1

n8(~1y"

, Which converges by the
n8+1 gesby

n
therefore converges for 2 < x < 4.

o0
97. Z(nx)"
n=0

soLUTION With a,, = n"'x™, and assuming x # 0,

(I’l + 1)n+lxn+l

nxn

lim =
n—oo

= lim
p n—>0oo

= lim
n—>0oo

An+1|
an

-

n n
since <%) = (l + %) converges to e and the (n + 1) term diverges to co. Thus p < 1 only when x = 0, so the

series converges only for x = 0.

99. Expand f(x) = asapower series centered at ¢ = 0. Determine the values of x for which the series converges.

4 — 3x

SOLUTION Write

Substituting 3.x for x in the Maclaurin series for 11—, we obtain

1 3\,
1—3x=Z<Z> T

1 n=0

This series converges for ‘%x‘ < 1,0r |x| < 3. Hence, for |x| < 3,
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00 2%
101 Let F(x) =) F
k=0
(a) Show that F(x) has infinite radius of convergence.

(b) Show that y = F(x) is a solution of
Yi=xy'+y,  yO=1 Y0 =0

(c) A5 Plot the partial sums Sy for N = 1, 3,5, 7 on the same set of axes.

SOLUTION
(a) With a = S,
ag1| |x|2k+2 2k k! _ x2
ag | 21k + 1) |x12%F T 2(k+1)°
and
p= lim [ZFL _2.0-0
k—oo| ag

Because p < 1 for all x, we conclude that the series converges for all x; that is, R = oo.

(b) Let
i 2k
y=F(x)= T .
k=02 - k!

Then

v i 2hex2k—1 B i 2k—1

- k - k=1 — 1)1’
o 2k o2tk -
Z (2k — 1)x2k 2
2k 1(k
and
) 0 2k—1 0o 2k 0 x2k
xy+y:x];2k—1(k—1)!+,§2kk!:sz Th—1 +szk'
0 2%k  © 2%k X 2k—2
2k +1 2k +1 2k —1
=1+Z( k)x ZZ( k)x =Z(k_1 x ="
] 2¢k! 2¢k! -1 281k — 1)!

Moreover,

00 g2k 0 02k—1

0)=1+ =1 and 0 —— =0
YO =143 o= V(0 = sz,l(k_l)!
k=1 =1
2k
Thus, Z Kl |s the solution to the equation y” = xy’ + y satisfying y(0) = 1, y’(0) = 0.
k=0

(c) The partial sums Sq, S3, S5 and S7 are plotted in the figure below.

y

N Wb oo N

-2 -1 1 2
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In Exercises 103-112, find the Taylor series centered at c.

103. f(x) =M, =0

SOLUTION Substituting 4x for x in the Maclaurin series for ¢* yields

105. f(x)=x% c¢=2
soLUTION \We have
) =4ax3 f/x)=12x2 ") =24x fPD(x) =24
and all higher derivatives are zero, so that
f@2)=2"=16 f@2=4-22=32 '@ =12.22=48 ("2 =24.2=48 P2 =24

Thus the Taylor series centered at ¢ = 2 is

4 rmeo 32 48 48 24
> 2@ oy —164+ -2+ D —22+ D —23 4+ D -2
Ll 1 2! 3! 41

=16+ 32(x —2) + 24(x —2)* + 8(x —2)° + (x — 2)*
107. f(x) =sinx, c=m
SsoLUTION We have
FO )y =sinx F@ Do) =cosx  FAD(x) = —sinx  F@ T (x) = —cosx
so that
9@ =sing =0 @@y =cosm = -1 fEHD ()= —sing =0 @)= —cosx =1

Then the Taylor series centered at ¢ = 7 is

oo
0w i 1 3, 1 5 1 7
nZ:o n! (x —m) :F(x—ﬂ)-i-g(x—ﬂ) +§(X—n) +ﬂ(x_ﬂ) _
= —G-m+ g = -+ (x—m) —
6 120 5040
109 f() = g5 €=

SoLUTION Write

1 1 1 1
1—2x_5—2(x+2)_51_%(x+2)'

Substituting £ (x + 2) for x in the Maclaurin series for 12— yields

- izn( +2)"
N2, :
1-2(x+2) = 5"

hence,

1 1O°n X on

2 n 2 n
T 25257(x+2) ZZw(x—l—Z) .

n=0 n=0

93
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11 f(x)=In % c=2

SOLUTION Write

Inlen<w>=ln<l+x_2>.
2 2 2

Substituting % for x in the Maclaurin series for In(1 + x) yields

n
N ) (_1)n+1()52;2) 00 (—l)"+l(x—2)"
R D P Shrs aa

n=1 n=1
This series is valid for |x — 2| < 2.
In Exercises 113-116, find the first three terms of the Maclaurin series of f(x) and use it to calculate f(3) 0).
13 f(x) = (2 — x)e*’

SOLUTION Substitute x2 for x in the Maclaurin series for ¢* to get

2 1 1
er :1+x2+§x4+6x6+...

so that the Maclaurin series for f(x) is

2 1 1
(xz—x)ex =x2+x4+5x6+~~~—x—x3—§x5—~~-=—x+x2—x3+x4+...
The coefficient of x is
"
1o _
3!

so that f”/(0) = —6.

WS J) =T nx

SOLUTION  Substitute — tan x in the Maclaurin series for 1 to get

1

——— =1—tan tan x)2 — (tanx)3 + . ..
LT+tanx x + (tanx)® = (tanx)” +

We have not yet encountered the Maclaurin series for tan x. We need only the terms up through x3,50 compute
tan’(x) = sec?x  tan”(x) = 2(tanx)sec®x tan”’(x) = 2(1 + tan? x) sec? x + 4(tan? x) sec? x
so that
tan’(0)=1 tan”(0)=0 tan”’(0) =2

Then the Maclaurin series for tan x is

tan’(0) tan”(0) , tan”’(0) 3 13
1 X+ o x° + 3 X —|—~-~=x—|—§x +...

Substitute these into the series above to get

. 1 +538) . +132 +133+
—_— = — 1 X —X X —X — | X —X
1+tanx 3 3 3

1 .
=1—-x-— §x3 +x2 - 33+ higher degree terms

tanx =tan0 +

4
=1-x+x%— §x3 + higher degree terms

The coefficient of x3 is

f///(o) _ _ﬂ
3 3

so that

f///(O) - _6. g —_8
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23 5 7

T T 4
117. Calculate — — — + —— — ——
2 2383 + 2551 277 +

SOLUTION We recognize that

P 73 s 7t7 (ﬂ/2)2n+1

R - — _1\n
2 233z+255z 277' Z( b (2n + 1)!

is the Maclaurin series for sin x with x replaced by 7 /2. Therefore,

T 7'[3 7T5 7'[7

. T
st o e =sin- =1
2 233z+255! 277'+ 2
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11 PARAMETRIC EQUATIONS,
POLAR COORDINATES,
AND CONIC SECTIONS

11.1 Parametric Equations (LT Section 12.1)

Preliminary Questions
1. Describe the shape of the curve x = 3cos¢, y = 3sinz.

soLUTION Forall ¢,

x2 4 y2 = (3cosr)2 + (?)sinz)2 = 9(coszz+sin21) =9.1=09,

therefore the curve is on the circle x2 + y2 = 9. Also, each point on the circle x2 4+ y2 = 9 can be represented in the
form (3cost, 3sint) for some value of . We conclude that the curve x = 3cos¢, y = 3sint is the circle of radius 3
centered at the origin.

2. How does x = 4 4+ 3cos¢, y = 5+ 3sin differ from the curve in the previous question?

SOLUTION In this case we have
(x — 4)2 +(y— 5)2 = (30031)2 + (3sint)2 = 9(C052t + sin? 1)=9-1=9
Therefore, the given equations parametrize the circle of radius 3 centered at the point (4, 5).

3. What is the maximum height of a particle whose path has parametric equations x = 12, y = 4 — 12?

soLUTION The particle’s height is y = 4 — 2. To find the maximum height we set the derivative equal to zero and
solve:

d d
Y L 4—?)=—21=0 or 1=0
dt dt

The maximum height is y(0) = 4 — 0% = 4.
4. Can the parametric curve (¢, sin t) be represented as a graph y = f(x)? What about (sin¢, ¢)?

SOLUTION In the parametric curve (¢, sin¢) we have x = ¢ and y = sin¢, therefore, y = sin x. That is, the curve can be
represented as a graph of a function. In the parametric curve (sin¢, ) we have x = sint, y = ¢, therefore x = sin y. This
equation does not define y as a function of x, therefore the parametric curve (sinz, r) cannot be represented as a graph of
a function y = f(x).

5. Match the derivatives with a verbal description:

dx dy dy
a) — b) — c) —
@ 5 ®) 2 © &
(i) Slope of the tangent line to the curve

(i) \ertical rate of change with respect to time
(iii) Horizontal rate of change with respect to time

SOLUTION
odx . . . .
(a) The derivative I is the horizontal rate of change with respect to time.

ody . . . .
(b) The derivative d% is the vertical rate of change with respect to time.

(c) The derivative j—y is the slope of the tangent line to the curve.
X
Hence, (a) <> (iii), (b) <> (ii), (c) < (i)
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Exercises
1. Find the coordinates at times r = 0, 2, 4 of a particle following the path x = 1 + = y=9-— 32,

SOLUTION Substitutingr = 0,7 = 2, and r = 4 into x = 1+ 13, y = 9 — 312 gives the coordinates of the particle at
these times respectively. That is,

(t=0 x=1+03=1,y=9-3.02=9 = (1,9)
(t=2) x=1+22=9,y=9-3.22=-3 = (9,-3)
(t=4) x=1+43=65 y=9-3-42=-39 = (65, —39).

3. Show that the path traced by the bullet in Example 3 is a parabola by eliminating the parameter.

soLUTION The path traced by the bullet is given by the following parametric equations:
x = 200z, y = 400f — 16¢2

We eliminate the parameter. Since x = 200¢, we have t = 2% Substituting into the equation for y we obtain:

X x \2 x2
= 4007 — 1612 =400 - —— — 16 (== ) =2x —
Y 200 (200) ¥ 2500
2
The equation y = ~ 2500 + 2x is the equation of a parabola.

5. Graph the parametric curves. Include arrows indicating the direction of motion.

@ t,1), —oco<t<oo (b) (sint,sint), 0<rt<2m
(€) (', e"), —oo<t<oo (d) 3,13, —-1<r<1
SOLUTION

(a) For the trajectory c(¢) = (¢,t), —0o < t < oo we have y = x. Also the two coordinates tend to co and —oo as
t — oo and t — —oo respectively. The graph is shown next:

y

(b) For the curve ¢(t) = (sint,sint), 0 < r < 27, we have y = x. sint is increasing for0 < r < % decreasing for
% <t< 37” and increasing again for 37” <t < 27. Hence the particle moves from ¢(0) = (0, 0) to c(%) = (1,1), then

moves back to c(%”) = (—1, —1) and then returns to c¢(2r) = (0, 0). We obtain the following trajectory:

y y y

t= 3(1,1) t= g(l,l)

_3me g _3m g
t=2(1-1) t=2(-1-1)

0<r<3% T<t<¥ M <t<om

These three parts of the trajectory are shown together in the next figure:
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<

t= 21

M (1,-1)

tzz

(c) For the trajectory c(t) = (¢, e'), —oo < t < 0o, we have y = x. However since lim ¢/ =0and lim ¢’ = oo,
—>—00 —>00

the trajectory is the part of the line y = x, 0 < x.

<

(d) For the trajectory c(r) = (3, 13), —1 < ¢ < 1, we have again y = x. Since the function ¢3 is increasing the particle
moves in one direction starting at ((—1)3, (—1)3) = (-1, —1) and ending at (13, 13) = (1, 1). The trajectory is shown
next:

<

t=1(1,1)

t=—1(-1,-1)

In Exercises 7-14, express in the form y = f(x) by eliminating the parameter.

7. x=t4+3, y=4t
soLuTION We eliminate the parameter. Since x = ¢ + 3, we have r = x — 3. Substituting into y = 4¢ we obtain

y=4dt=4x—-3)=>y=4x—-12

9. x =1, y=tan_l(t3+et)
SOLUTION Replacing ¢ by x in the equation for y we obtain y = tan=1(x3 + ¢*).
11. x = 6_2’, y= 6eH
SOLUTION We eliminate the parameter. Since x = e~2, we have —2¢ = Inx or ¢ = —% Inx. Substituting in y = 6¢%

we get

- 6
y = et = 664'(7%“”) = ge—2INx _ goInx - 6x~2 = y=—, x>0.
x
13. x=Int, y=2—1t

SOLUTION Since x = Int we have r = ¢*. Substituting in y = 2 — r we obtain y = 2 — ¢*.
In Exercises 15-18, graph the curve and draw an arrow specifying the direction corresponding to motion.
15. x = %t, y = 2¢2

SOLUTION Letc(r) = (x(2), y(¢)) = (%t, 2t2). Then c(—t) = (—x (), y(¢)) so the curve is symmetric with respect to
the y-axis. Also, the function %t is increasing. Hence there is only one direction of motion on the curve. The corresponding
function is the parabolay = 2 - (2x)% = 8x2. We obtain the following trajectory:



SECTION 11.1 | Parametric Equations (LT SECTION 12.1) 99

17. x =mt, y=sint
soLuTioN We find the function by eliminating z. Since x = 7z, we have r = Z. Substituting r = Z into y = sint we
get y = sin =. We obtain the following curve:

A
TRV

19. Match the parametrizations (a)—(d) below with their plots in Figure 14, and draw an arrow indicating the direction of

motion.
y y y y
51i 2 E f 10 f ZﬂF
X X X X
5 5 5 -1
0] (1) (1 (V)
FIGURE 14

(@) c(r) = (sint, —1) (b) c(t) = (12 — 9,8t — 13)
©) c(t)=@1—1,12-09) (d) c(r) = (4t +2,5—3r)
SOLUTION

(a) Inthe curve c(r) = (sint, —t) the x-coordinate is varying between —1 and 1 so this curve corresponds to plot IV. As
t increases, the y-coordinate y = —¢ is decreasing so the direction of motion is downward.

y
2n

—
—
1
< .
-1 ;
<
\—2n

(V) c(t) = (sint, —t)

(b) The curve c(r) = (12 — 9, —t3 — 8) intersects the x-axis where y = —r3 — 8 = 0, or t = —2. The x-intercept is
(=5, 0). The y-intercepts are obtained where x = t2-9=0,0rt = £3. The y-intercepts are (0, —35) and (0, 19). As
t increases from —oo to 0, x and y decrease, and as ¢ increases from 0 to oo, x increases and y decreases. We obtain the

following trajectory:
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(c) Thecurvec(t) = (1 —1, 2 — 9) intersects the y-axiswhere x =1 —r =0, 0rt = 1. The y-intercept is (0, —8). The
x-intercepts are obtained where t2 -9 =00rt = %3. These are the points (—2, 0) and (4, 0). Settingt = 1 — x we get

y:t2_9:(l—x)2—9:x2—2x—8.
As ¢ increases the x coordinate decreases and we obtain the following trajectory:

y
10

-2 4 5
()

(d) The curve ¢(t) = (4t + 2,5 — 3¢) is a straight line, since eliminating 7 in x = 4r + 2 and substitutingin y =5 — 3¢

givesy =5—-3- % =—3x+ % which is the equation of a line. As ¢ increases, the x coordinate x = 4¢ + 2 increases

and the y-coordinate y = 5 — 3¢ decreases. We obtain the following trajectory:

y

N

5

0

21. Find an interval of z-values such that ¢(r) = (cost, sin t) traces the lower half of the unit circle.

SOLUTION For ¢t =, we have c() = (-1, 0). As ¢ increases from 7 to 27, the x-coordinate of c¢(¢) increases from
—1to 1, and the y-coordinate decreases from 0 to —1 (at + = 37/2) and then returns to 0. Thus, for 7 in [, 27], the
equation traces the lower part of the circle.

In Exercises 23-38, find parametric equations for the given curve.

23. y=9—4x

soLUTION Thisis a line through P = (0, 9) with slope m = —4. Using the parametric representation of a line, as given
in Example 3, we obtain c(r) = (¢, 9 — 4¢).

25. 4x —y2 =5
_ 5+ y2 +2 o
soLUTION \We define the parameter + = y. Then, x = = i giving us the parametrization c(t) =
(5—|—t2 t>
4 )

21, (x + 92+ (y — 4% =49

SsoLUTION This is a circle of radius 7 centered at (-9, 4). Using the parametric representation of a circle we get
c(t) = (=9 +7cost,4+7sint).

29. Line of slope 8 through (—4, 9)

SOLUTION Using the parametric representation of a line given in Example 3, we get the parametrization c(r) = (-4 +
1,9+ 8t).

31. Line through (3, 1) and (-5, 4)

SsoLUTION \We use the two-point parametrization of a line with P = (a,b) = (3,1) and Q = (¢, d) = (-5, 4). Then
c(t) =(3—-8¢1+3r) for —oc0 < t < 0.
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33. Segment joining (1, 1) and (2, 3)

soLUTION We use the two-point parametrization of a line with P = (a,b) = (1,1) and Q = (¢, d) = (2, 3). Then
c(t) = (1 +1t,1+ 2r); since we want only the segment joining the two points, we want 0 < ¢ < 1.

35. Circle of radius 4 with center (3, 9)

SOLUTION Substituting (a, b) = (3, 9) and R = 4 in the parametric equation of the circlewe getc(t) = (3+4cost, 9+
4sint).

37. y = x2, translated so that the minimum occurs at (—4, —8)

SOLUTION We may parametrize y = x2 by (¢, %) for —oo < ¢ < oo. The minimum of y = x2 occurs at (0, 0),
so the desired curve is translated by (—4, —8) from y = x2. Thus a parametrization of the desired curve is c(t) =
(—4+1,-8+1%).

In Exercises 39-42, find a parametrization c(¢) of the curve satisfying the given condition.

39. y=3x—-4, ¢c(0)=(2,2

SOLUTION Letx(t) =t+aand y(t) =3x — 4 = 3(t + a) — 4. We want x(0) = 2, thus we must use a = 2. Our line
isc(t) = (x@), y@) =t +2,3t+2)—4) =(+2,3+2).

41. y = x2, c(0)=@3,9

SOLUTION Let x(f) =t 4+ a and y(r) = x2 = (t + a)?. We want x(0) = 3, thus we must use « = 3. Our curve is
c(t) = (x(1), y(1)) = (1 +3, 1 +3)%) = (1 + 3,12 + 61 + 9).

43. Describe ¢(r) = (sect,tanr) for0 <t < % in the form y = f(x). Specify the domain of x.

SOLUTION The function x = secr has period 27 and y = tanr has period . The graphs of these functions in the
interval —7 <t < 7, are shown below:

y y
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
-7 | | T | |
+ + + X u + X
z z Tz z/ 7z
2 2 2 2
| | | |
| | | |
| | | |
| | | |
X = Sect y=tant
x =sect = x? =sec’t
in2 2
sinfr  1-—cos“t
y=tant:>y2=tan2t= 5, = 5 =sec?t—1=x2-1
COS* ¢ COS* ¢

Hence the graph of the curve is the hyperbola x2 — y2 = 1. The function x = sec is an even function while y = tan is
odd. Also x has period 2 and y has period 7. It follows that the intervals —7 <7 < =%, 5F <t < Zand 5 <1 <7
trace the curve exactly once. The corresponding curve is shown next:

y

__Z_
=3

c(t) = (sect, tan¢)

45. The graphs of x(¢) and y(¢) as functions of z are shown in Figure 15(A). Which of (I)-(l11) is the plot of c(¢) =

(x(2), y(1))? Explain.
y y y
x(t)
y(®) / b
t X X X
0} (1 (

1

(A)
FIGURE 15
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SOLUTION As seen in Figure 15(A), the x-coordinate is an increasing function of ¢, while y(¢) is first increasing and
then decreasing. In Figure I, x and y are both increasing or both decreasing (depending on the direction on the curve).
In Figure 11, x does not maintain one tendency, rather, it is decreasing and increasing for certain values of ¢. The plot
c(t) = (x(2), y(r)) is plot 111

47. Sketch c(r) = (13 — 4¢, 12) following the steps in Example 7.

SOLUTION We note that x(¢) = 3 — 4¢ is odd and y(t) = t2 is even, hence c(—1) = (x(—t), y(=1)) = (—x(@), y(t)).
It follows that c(—1) is the reflection of ¢ () across y-axis. Thatis, c(—¢) and c(¢) are symmetric with respect to the y-axis;
thus, it suffices to graph the curve for ¢+ > 0. For r = 0, we have ¢(0) = (0, 0) and the y-coordinate y(¢) = £2 tends to oo
ast — oo. To analyze the x-coordinate, we graph x(¢) = t3 — 4z for ¢t > 0:

y

N~ O

-4

x=13 -4

We see that x(¢) < 0 and decreasing for 0 < ¢t < 2/«/§, x(t) < 0 and increasing for 2/\/§ <t <2andx(t) > 0and
increasing for r > 2. Also x(¢) tends to co as t — oo. Therefore, starting at the origin, the curve first directs to the left of
the y-axis, then at r = 2/+/3 it turns to the right, always keeping an upward direction. The part of the path for r < 0 is
obtained by reflecting across the y-axis. We also use the points ¢(0) = (0, 0), ¢(1) = (-3, 1), ¢(2) = (0, 4) to obtain the
following graph for ¢(¢):

y
t=1 (-3, 1)
t=0 X
=0 X
Graph of ¢(¢) forr > 0. Graph of ¢(¢) for all ¢.

In Exercises 49-52, use Eq. (7) to find dy/dx at the given point.

49. 13,12 -1), t=-4

SOLUTION By Eq. (7) we have

dy Y ?-1 2 2

dx X0 @3 32 3

Substituting ¢+ = —4 we get
dy 2 2 1

dx  3t|__4 3-(=% 6

51. (3‘71 — 3s, s3), s=-1

soLuTION Using Eq. (7) we get

dy y'(s) 3 352 354

dx ~ X)) (L35 —s2-3 —1-3¢2

Substituting s = —1 we obtain

dy 3s4 _3.(-D? 3

dx ~ “1-32|__; -1-3.(-12 4



SECTION 11.1 | Parametric Equations (LT SECTION 12.1) 103

In Exercises 53-56, find an equation y = f(x) for the parametric curve and compute dy/dx in two ways: using Eq. (7)
and by differentiating f (x).

53. c(t) =2t +1,1—-91)

) -1 o
SOLUTION Since x = 2r + 1, we haver = XT Substituting in y = 1 — 9 we have

x—1 9 u
=1-9 - xt =
Y ( 2 ) ¥ T3

. - 9 1 . d 9 . dy
Differentiating y = —5¥ + > gives d—y =3 We now find d—y using Eq. (7):
X X

dy y(@® (1-9)" 9

dx  xX'(t) @ +1)/ 2

55. x:s3, y:s6+s_3

soLUuTION We find y as a function of x:
2 -1
y =56+s_3 = (53) + (ss) =x2+x_l.

We now differentiate y = x2 + x 1. This gives

d
ﬁ =2x —x 2.

Alternatively, we can use Eq. (7) to obtain the following derivative:

6., -3
dy y'(s) _ (S ts ) 6s° — 354

= = = — 253 _ 76,
dx  x'(s) (s3)/ 352 s
Hence, since x = s3,
d
Y _ox—x2,
dx

57. Find the points on the curve c(¢) = (3t2 — 21,13 — 6¢) where the tangent line has slope 3.

SoLUTION We solve

dy _3°-6_,
dx — 6t—2

or3t2 — 6 = 18t — 6, or t2 — 6¢ = 0, 50 the slope is 3 at ¢+ = 0, 6 and the points are (0, 0) and (96, 180)

In Exercises 59-62, let c(r) = (12 — 9, 12 — 8¢) (see Figure 17).

y
60

40

7({ g —
N 0

FIGURE 17 Plotof c(t) = (t2 — 9, 12 — 8¢).

59. Draw an arrow indicating the direction of motion, and determine the interval of #-values corresponding to the portion
of the curve in each of the four quadrants.

soLUTION We plot the functions x () = 12 — 9 and y(r) = 12 — 8¢:



104 CHAPTER 11 | PARAMETRIC EQUATIONS, POLAR COORDINATES, AND CONIC SECTIONS (LT CHAPTER 12)

x y
t
-3 3 + t
32— 234561k9
|
|
Y
x=12-9 y=12-8t

We note carefully where each of these graphs are positive or negative, increasing or decreasing. In particular, x () is
decreasing for ¢ < 0, increasing for r > 0, positive for |¢| > 3, and negative for || < 3. Likewise, y(¢) is decreasing for
t < 4, increasing for # > 4, positive forr > 8 or ¢ < 0, and negative for 0 < r < 8. We now draw arrows on the path
following the decreasing/increasing behavior of the coordinates as indicated above. \We obtain:

t=-3(0,33)

=0 t=8
(-9,0) (55,0) .~

This plot also shows that:

e The graph is in the first quadrant for+ < —3 or¢ > 8.
e The graph is in the second quadrant for -3 < ¢ < 0.
e The graph is in the third quadrant for 0 <z < 3.

e The graph is in the fourth quadrant for 3 < ¢ < 8.

61. Find the points where the tangent has slope %
SOLUTION The slope of the tangent at 7 is
2 /
dy_<f—80 2t —8 4

= 7 = :1—7
dx (,2_9) 2t t

The point where the tangent has slope % corresponds to the value of ¢ that satisfies

dy 4 1 4 1

— =1 = - - == t =8.

dx i T27 1727

We substitute r = 8 in x(r) = 12 — 9 and y(¢) = r2 — 8t to obtain the following point:

x(8) =82 -9 =55

9 = (55,0)

y@8)=8-8-8=0
63. Let A and B be the points where the ray of angle 6 intersects the two concentric circles of radii » < R centered at
the origin (Figure 18). Let P be the point of intersection of the horizontal line through A and the vertical line through B.
Express the coordinates of P as a function of  and describe the curve traced by P for0 < 6 < 2.

<

/,

;/r R

/
/
;
A/
0

(1

FIGURE 18
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soLUTION \We use the parametric representation of a circle to determine the coordinates of the points A and B. That is,
= (rcoso,rsinf), B = (Rcosf, Rsinf)
The coordinates of P are therefore
P = (Rcos@,rsing)

In order to identify the curve traced by P, we notice that the x and y coordinates of P satisfy % = cos 6 and % =siné.
Hence

(f)z + (%)2 = c0s%0 + sin%6 = 1.

The equation

(' ()=
is the equation of ellipse. Hence, the coordinates of P, (R cos 6, r sin ) describe an ellipse for0 < 6 < 27x.
In Exercises 65-68, refer to the Bézier curve defined by Eqgs. (8) and (9).
65. Show that the Bézier curve with control points
Ph=1,4), P=@G,12), Py=(6,15), P3=(7,4)
has parametrization
c(t) = (146t + 312 — 313, 4+ 241 — 15¢% — 9%)

Verify that the slope at + = 0 is equal to the slope of the segment Pg P;.

SOLUTION For the given Bézier curve we haveag = 1,a1 = 3,ap = 6,a3 = 7,and bg = 4,b1 = 12,bp = 15, b3 = 4.
Substituting these values in Eq. (8)-(9) and simplifying gives

x)=A-03+9 A -2 +182A —1)+ 713
=1-3t+32 -3 +9r(1— 2t +12) +18:2 — 183 + 713
=1-3t+32— 13+ 9r — 1812 + 93 + 182 — 1813 + 743
33+ 32461 +1
y(t) = 41 — )3 +361(1 — )2 + 45:2(1 — 1) + 4¢3
=4(1 — 3t + 312 — 13) + 361 (1 — 2t + 12) + 45¢2 — 45¢3 4 4¢3
=4 — 12t + 1212 — 413 4+ 361 — 7212 + 3613 + 4512 — 45;3 4 43
=4+ 241 — 15/ — 93
Then
c(t) =1 +60+3>—33,4424r — 15> —9%), 0<r<1.
We find the slope at # = 0. Using the formula for slope of the tangent line we get

dy_(4+24t—15t2—9t3)/_24—30[—271‘2:>dy _#_,
dx (146t +3r2—33) 646192 dx|,_og 6

The slope of the segment Py P; is the slope of the line determined by the points Py = (1, 4) and Py = (3, 12). That is,

13:1“ = 5 = 4. We see that the slope of the tangent line at ¢ = 0 is equal to the slope of the segment Py Py, as expected.
67. £HS Find and plot the Bézier curve c(r) passing through the control points

Pp=@,2), P1=(0,2, P,=(5,4, P3=(24)

SOLUTION Setting ag = 3, a1 = 0,ap = 5,a3 = 2,and by = 2, by = 2, by = 4, b3 = 4 into Eq. (8)—(9) and
simplifying gives
x(t) =31 -3+ 041521 — 1) + 213
=31 -3 432 — 13 + 1512 — 1513 + 213 = 3 — 9r + 241> — 16¢°
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y(t) =21 — )3 +6:(1 — )2 + 12121 — 1) + 4¢3
=21 =3t +3:2 — 13) 1 6r(1 — 2r +12) + 1262 — 123 + 4¢3
=26t +62 — 203 + 61 — 1262 + 63 + 1202 — 123 + 43 = 2+ 612 — 413

We obtain the following equation

c(t) =B -9+ 2412 — 1613, 2 + 612 — 4z3), 0<r<l.

The graph of the Bézier curve is shown in the following figure:

1
-

69. Abullet fired from a gun follows the trajectory
x = at, y=bt—16t2 (a,b > 0)

Show that the bullet leaves the gun at an angle 6 = tan—1 (2) and lands at a distance ab/16 from the origin.

soLUTION The height of the bullet equals the value of the y-coordinate. When the bullet leaves the gun, y(r) =
t(b — 16¢) = 0. The solutions to this equation are t = 0and r = %, with 1 = 0 corresponding to the moment the bullet
leaves the gun. We find the slope m of the tangent line at r = 0:

dy y'(1) _ b—32

N _ b—32
dx ~ X))  a "= a

It follows that tan 6 = % org =tan—1 (g) The bullet lands at 7 = %. We find the distance of the bullet from the origin

at this time, by substituting r = 1% in x(¢) = at. This gives
b ab
x| ===
16 16
71. CAS  Plot the astroid x = cos3 6, y = sin® 6 and find the equation of the tangent line at & = z

SOLUTION The graph of the astroid x = cos3 6, y= sin3 6 is shown in the following figure:

y

6=2(0,1)
/ \ 0=0
(1:0)
X
6=m
(-1,0) \ /
9:3?“(0, 1)
The slope of the tangent line at & = % is
d sin3 )’ 3sin2 0 cos o sing
dx|g=ms3  (€05°0) lg=r/3  3€0S°0(—siN0)|g=r/3 €080 |g—r/3 7/3

We find the point of tangency:
1343 )

(GG -5 ) - (35
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The equation of the tangent line at 6 = % is, thus,

y—%z—ﬁ(x—%):yz—ﬁx—k?

73. Find the points with horizontal tangent line on the cycloid with parametric equation (5).
SOLUTION The parametric equations of the cycloid are

x=t—sint, y=1-—cost
We find the slope of the tangent line at ¢:

dy (1—cost)  sint
dx ~— (r—sinr) ~ 1—cost

The tangent line is horizontal where it has slope zero. That is,

dy  sint sint =0

[ = = t=0Ck—Dn, k=0%£1,£2,...
dx 1-—cost cost #1

We find the coordinates of the points with horizontal tangent line, by substituting ¢t = (2k — 1)t in x(¢) and y(¢z). This
gives
x = 2k — ) —sin@k — ) = 2k — D)
y=1-cos((2k —Dnm)=1—-(-1)=2
The required points are
(Ck —Dm,2), k=041, 42, ...

75. A curtate cycloid (Figure 21) is the curve traced by a point at a distance ~ from the center of a circle of radius R
rolling along the x-axis where 1 < R. Show that this curve has parametric equations x = Rt — hsint, y = R — hcost.

y

[N

2n 4in
FIGURE 21 Curtate cycloid.

SOLUTION Let P be a point at a distance i from the center C of the circle. Assume that at + = 0, the line of CP is
passing through the origin. When the circle rolls a distance Rt along the x-axis, the length of the arc SQ (see figure) is
also Rt and the angle ZSC Q has radian measure ¢. We compute the coordinates x and y of P.

s
‘ q
5 Rt Q

x=Rt—PA=Rt—hsin(w —t) = Rt —hsint

y=R+AC=R+hcos(xt —t) = R — hcost
We obtain the following parametrization:

x = Rt —hsint, y=R — hcost.

77. & Show that the line of slope ¢ through (—1, 0) intersects the unit circle in the point with coordinates

1—¢2 2t
X = N = —_———
241 YT

Conclude that these equations parametrize the unit circle with the point (—1, 0) excluded (Figure 22). Show further that
t=y/(x+1).
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y

Slope t
(_L/O)w |

FIGURE 22 Unit circle.

SOLUTION The equation of the line of slope ¢ through (—1,0) is y = 7(x + 1). The equation of the unit circle is
x2 4+ y2 = 1. Hence, the line intersects the unit circle at the points (x, y) that satisfy the equations:

y=tx+1) 1)
y?=1 @)
Substituting y from equation (1) into equation (2) and solving for x we obtain
2P 4+12=1
242?412 =1
A+ 2% + 2% + (2 -1) =0

This gives
22 £ /A 42+ )12 —1) —212+2 112
2= 2 = 2 2
2(141%) 2(141%) 141+
1—12 _ _ . )
Sox; = —1land xp = 711 The solution x = —1 corresponds to the point (—1, 0). We are interested in the second
t
point of intersection that is varying as ¢ varies. Hence the appropriate solution is
112
X ="
2+1

We find the y-coordinate by substituting x in equation (1). This gives

(D) =1 1—t2+1 . 1-2 44241 2t
= X = = . =
Y 241 241 241

We conclude that the line and the unit circle intersect, besides at (—1, 0), at the point with the following coordinates:

1—¢2 2t
X = s =
211 YT 211

@)
Since these points determine all the points on the unit circle except for (—1, 0) and no other points, the equations in (3)
parametrize the unit circle with the point (—1, 0) excluded.

We show that 1 = —>—. Using (3) we have
x+1

2t 2t 2t

Yoo 241 12+1 L & =
x+1 1= 11241241 2
231 1 241 1241

79. Use the results of Exercise 78 to show that the asymptote of the folium is the line x + y = —a. Hint: Show that
Iiml(x +y) = —a.
t——

soLUTION \We must show that as x — oo or x — —oo the graph of the folium is getting arbitrarily close to the line
x + y = —a, and the derivative % is approaching the slope —1 of the line.

In Exercise 78 we showed thatx — cowhenr — (—17)andx — —ocowhent — (—171). We first show that the graph
is approaching the line x + y = —a as x — oo or x — —oo, by showing that Iiml x+y= Iiml x+y=—a.
t—>—1— t——1+
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3at 3at? ) ) . -
For x(¢) = L, y(t) = L, a > 0, calculated in Exercise 78, we obtain using L’Hopital’s Rule:
14143 1413
lim G+ ) lim 3at + 3at? lim 3a +6at 3a—6a
X = —_— = = = —qa
f—>—1— APl T P t—>—1— 3t2 3
lim G+ ) lim 3at + 3at? im 3a +6at 3a—6a
X = —_— = = = —qa
t—>—1+ APl T P t—>—1+ 312 3

dy . _ dy  6at —3ar* ) )
We now show that ad isapproaching —last — —1—andast — —1+.We use &y _ iz eal computed in Exercise
dx dx 3a — 6ar3

78 to obtain
d 6at —3ar* -9
lim & gim 2T ¥
t—>-1-dx t—>—1— 3a — 6ar3 9a
. dy . 6at —3ar*  —9a
lim —= Ilim ——8M=—=—
t—>-1+dx t—>-1+ 3a — 6ard 9a

We conclude that the line x 4+ y = —a is an asymptote of the folium as x — oo and as x — —oo.

81. Second Derivative for a Parametrized Curve Given a parametrized curve c(t) = (x(¢), y(¢)), show that

dx

i(dy) _ X0y =y 0)x" @)
dt N x/(1)2

Use this to prove the formula

d?y X0y @) -y )x" @)

dx x/(1)3

SoLUTION By the formula for the slope of the tangent line we have

dy _y'(@®

dx ~ X'(t)

Differentiating with respect to ¢, using the Quotient Rule, gives

d (dl) _d (y’(t)) _ X0y =y 0x" (@)
dr \dx )~ X)) ¥/ ()2

dt

By the Chain Rule we have

d’y _d (dy d (dy\ dt
dx2  dx \dx dt \dx dx

Substituting into the above equation { and usin ﬂ _ —— ) gives
g a g dx — dx/dt ~ x'(1) g

dy X0y -y 1 X0y o-yoxo

dx2 *(1)2 Y@ )3

In Exercises 83-86, use Eq. (11) to find d2y/dx?.

83. x=13+12, y=T2—4 (=2

soLUTION We find the first and second derivatives of x(¢) and y(¢):
()=3%+21= X2 =3-224+2.2=16
X'H=6r+2 =x"(2)=6-2+2=14
Y (1) = 14¢ = Y2 =14-2=128
y'(t) =14 =y"(2) =14

Using Eq. (11) we get

Ayl Xoy'®-yox")|  16-14-28-14 -21

dx?|,_p x'(1)3 1=2 163 "~ 512
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85. x =849, y=1—4r, 1=-3
soLUTION We compute the first and second derivatives of x(¢) and y(z):
X)=8 = x'(-3)=8
X()=0 =x"(-3)=0
Yy =-4= y(-3)=-4
Y')=0 =y"(-3)=0
Using Eq. (11) we get

Pyl X33 —y(=31"(-3) _8-0-(-4)-0 _

_ 0
dx? ;=3 x/(=3)3 83

87. Use Eq. (11) to find the z-intervals on which c() = (¢2, 3 — 4¢) is concave up.

42
SOLUTION The curve is concave up where d% > 0. Thus,
X
OV (1) — v (Ox" (¢
x'(0)y" (1) é()x()>0 1)
x/(t)
We compute the first and second derivatives:
X' = 2t, X)) =2

Y(t) =32 =4, y'(t) =6t
Substituting in (1) and solving for ¢ gives

121> — (6> —8) 612 +8

8r3 8r3

Since 612 + 8 > 0 for all ¢, the quotient is positive if 8:% > 0. We conclude that the curve is concave up for ¢ > 0.

89. Area Under a Parametrized Curve Letc(t) = (x(¢), y(¢)), where y(z) > Oand x’(¢) > 0 (Figure 24). Show that
the area A under c(¢) fortg <t <1t is

n

A= / y(O)x' () dt
]

Hint: Because it is increasing, the function x(¢) has an inverse t = g(x) and c(¢) is the graph of y = y(g(x)). Apply the

change-of-variables formulato A = ;‘((t;l)) y(g(x))dx.

c(t)

X(to) x(ty)
FIGURE 24

SOLUTION Let xg = x(fp) and x1 = x(¢1). We are given that x’(z) > 0, hence x = x(¢) is an increasing function of
t, S0 it has an inverse function r = g(x). The area A is given by f;i)l y(g(x))dx. Recall that y is a function of r and

t = g(x), so the height y at any point x is given by y = y(g(x)). We find the new limits of integration. Since xg = x(fg)

and xq = x (1), the limits for ¢ are 7y and 7, respectively. Also since x’ () = 4x \ve have dx = x'(t)dt. Performing this

. . dt’
substitution gives

X1 151
A =/ y(g(x))dx =/ y(g(x)x' (1) dt.

0 ]

n
Since g(x) =, we have A = / y(0)x' (1) dt.
0]
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91. What does Eq. (12) say if c(¢) = (¢, f(1))?
SOLUTION In the parametrization x(t) =1, y(t) = f(¢t) we have x'(¢) = 1, 19 = x(t), t1 = x(t1). Hence Eq. (12)

becomes
41 x(11)
A:/ y(r)x/(t)dz:/ f(0)dt
I X

0 (t0)
We see that in this parametrization Eq. (12) is the familiar formula for the area under the graph of a positive function.

93. Galileo tried unsuccessfully to find the area under a cycloid. Around 1630, Gilles de Roberval proved that the area
under one arch of the cycloid ¢(r) = (Rt — Rsint, R — R cost) generated by a circle of radius R is equal to three times
the area of the circle (Figure 25). Verify Roberval’s result using Eq. (12).

y

—— + X

nR 2nR
FIGURE 25 The area of one arch of the cycloid equals three times the area of the generating circle.

SOLUTION This reduces to

2 2
f (R — Rcost)(Rt — Rsint) dt = f R2(1 - cosz)2 dt = 37 R2.
0 0

Further Insights and Challenges

95, & Derive the formula for the slope of the tangent line to a parametric curve c(r) = (x(¢), y(¢)) using a method
different from that presented in the text. Assume that x’(¢g) and y’(¢g) exist and that x’(¢g) # 0. Show that

y(to +h) —y(to) _ ¥'(t0)
h—0 x(tg +h) — x(t9) ~ x'(1)

Then explain why this limit is equal to the slope dy/dx. Draw a diagram showing that the ratio in the limit is the slope
of a secant line.

SOLUTION Since y’(tp) and x’(tp) exist, we have the following limits:

. y(to +h) — y(to) /
lim —————————— =y/(tp), lim
h—0 h v (o) h—0 h

We use Basic Limit Laws, the limits in (1) and the given data x’(¢g) # 0, to write

Y(to+h)—y(to) y(to+hlz—y(to)

y(to +h) = y(to) _imyo _ Y (1)
h=>0x(ig +h) = x(tlo)  h—0 Xloth=xl) jjm, o xlorh)=xlo)  x'(1p)

y(o + 1) — y(10)

x(10 + h) — x(fo)
0 = (x(tg + h), y(tg + h)). Hence, the limit of the quotient as 4~ — 0 is the slope of the tangent line at P, that is the

. . dy
derivative T

Notice that the quotient is the slope of the secant line determined by the points P = (x(zp), y(tp)) and

Y(tg ) f-omememee s

/?to) ”””””” 1

Xt xgrh)

T

97. In Exercise 54 of Section 9.1 (LT Exercise 54 of Section 10.1), we described the tractrix by the differential equation
dy y

dx /62 — y?

Show that the curve c(¢) identified as the tractrix in Exercise 96 satisfies this differential equation. Note that the derivative
on the left is taken with respect to x, not 7.
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SOLUTION Note that dx/dt = 1 — sech?(¢/¢) = tanh?(¢/¢) and dy/dt = — sech(t/£) tanh(z/£). Thus,

dy _dy/dt _ —sech(t/t)  —y/t
dx  dx/dt  tanh(t/0) /1 _ y2/02

Multiplying top and bottom by ¢/¢ gives

dy -y

dx 02— 2

In Exercises 98 and 99, refer to Figure 28.

99. Show that the parametrization of the ellipse by the angle 6 is

abcoso
X =
VaZsin26 + b2 cos? 6
absind
y

Va?sin?6 + b2 cos2

soLUTION \We consider the ellipse

2 2
X
S+l =1
a b
For the angle 6 we have tan6 = )XC hence,
y=xtané Q)

Substituting in the equation of the ellipse and solving for x we obtain

x2  x2tan2g _

a? b2
b2x2 + azxztanzﬁ = a2b2

(@®tan?0 + b?)x? = a?b?
) a2p? _ a’bcos?y
a?tan2g + b2 42sin29 + h2cos29

We now take the square root. Since the sign of the x-coordinate is the same as the sign of cos 8, we take the positive root,

obtaining
bcoso
x= )
Va?sin20 + b2cos26
Hence by (1), the y-coordinate is
abcosftand absing

y=xtand =

®)

Va2sin20 + b2cos20  v/a2sin20 + b2cos20
Equalities (2) and (3) give the following parametrization for the ellipse:

©) ( abcos6 absing )
Cl = N
Va2sin?0 + b2cos26  v/'a2sin26 + b2c0s260

11.2 Arc Length and Speed (LT Section 12.2)

Preliminary Questions
1. What is the definition of arc length?

SOLUTION A curve can be approximated by a polygonal path obtained by connecting points

po = c(tp), p1 =c(t1), ..., pN = c(ty)
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on the path with segments. One gets an approximation by summing the lengths of the segments. The definition of arc
length is the limit of that approximation when increasing the number of points so that the lengths of the segments approach
zero. In doing so, we obtain the following theorem for the arc length:

b
S= / VA (0O + y (02 dr,

which is the length of the curve ¢(¢) = (x(¢), y(¢)) fora <t < b.

2. What is the interpretation of /x/()2 + y’(1)? for a particle following the trajectory (x(z), y(1))?

SOLUTION The expression ,/x’(t)z + y’(t)2 denotes the speed at time ¢ of a particle following the trajectory (x(¢), y(¢)).

3. Aparticle travels along a path from (0, 0) to (3, 4). What is the displacement? Can the distance traveled be determined
from the information given?

SOLUTION The net displacement is the distance between the initial point (0, 0) and the endpoint (3, 4). That is

\/(3—0)2+<4—0)2=J£=5.
The distance traveled can be determined only if the trajectory c(¢) = (x(¢), y(¢z)) of the particle is known.

4. A particle traverses the parabola y = x2 with constant speed 3 cm/s. What is the distance traveled during the first
minute? Hint: No computation is necessary.

SOLUTION Since the speed is constant, the distance traveled is the following product: L = st = 3 - 60 = 180 cm.

Exercises
In Exercises 1-10, use Eq. (3) to find the length of the path over the given interval.

1. B3r+1,9—-4r), 0<tr=<2

SOLUTION Since x = 3¢ + 1and y = 9 — 4 we have x’ = 3and y’ = —4. Hence, the length of the path is
2 2
szf V32 + (—H2dr :5[ dt = 10.
0 0

3. (212,312 -1), 0<t<4

soLuTION  Since x = 22 and y= 312 — 1, we have x’ = 47 and y’ = 6t. By the formula for the arc length we get

4 4 4 2|4
t
S = / VA O+ y (1) dr = / V1612 4+ 3612 dt = ¢52/ tdt =~/52- E‘ =16V13
0 0 0 0

5. (3t2,43), 1<t<4

sOLUTION We have x = 372 and y = 4¢3. Hence x’ = 6¢ and y’ = 12¢2. By the formula for the arc length we get

4 4 4
S = / VO 4y )2dt = / V36¢2 + 1444 dt = 6/ V1442t dr.
1 1 1

Using the substitution u = 1 + 4¢2, du = 8¢ dt we obtain

6 [65 3 2 65
Szf/. «/ﬁdu=7~fu3/2‘
5 4 3

1
5 - 5(653/2 — 5%/2) x 256.43
5

7. (sin3¢t,cos3f), 0<t=<m

SoLUTION We have x = sin 3¢, y = cos 3¢, hence x’ = 3cos 3¢ and y’ = —3sin 3¢. By the formula for the arc length

we obtain:
T b s T
S=/ ,/x’(t)2+y/(t)2dt=/ \/900523z+9sin23tdt=/ V9dt =3n
0 0 0
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In Exercises 9 and 10, use the identity

9. (2cost —cos2t,2sinr —sin2r), 0<t< %

SOLUTION Wehavex = 2c0st —C0s2¢t,y = 2sint —sin 2¢t. Thus, x’ = —2sint 4+ 2sin2tand y’ = 2cost — 2 cos 2¢.
We get

x’(z)2 + y’(t)2 = (=2sint + 2sin 2t)2 + (2cost — 2cos 2t)2
= 4sin® ¢ — 8sin¢sin2r + 4sin® 2t + 4cos? 1 — 8¢oS 1 €OS 2t + 4 €S 21
= 4(sin2 t + cos? 1)+ 4(sin2 2t + cos? 2t) — 8(sintsin 2t + cos ¢ COS 2¢)
=4+4—-8cos(2r —t) =8 —8cost = 8(1 —cosr)

We now use the formula for the arc length to obtain

/2 /2 /2 t 7/2 t
S:/ VX2 + ¥/ (1)? :f ,/8(1—cosr)dz:/ ‘/165in2§dt:4/ sinédt
0 0 0 0

7[/2 2
:—8(cosg—coso>=—8 i—l ~ 2.34
4 2

11. Show that one arch of a cycloid generated by a circle of radius R has length 8R.

= —8cos =
2

0

soLUTION Recall from earlier that the cycloid generated by a circle of radius R has parametric equations x = Rt —
1—cost

. ) . ot
Rsinz, y = R — Rcost. Hence, x’ = R — Rcost, y) = Rsint. Using the identity sin? 5= 5

, we get
X' (1)% 4+ )% = R?(1 — cost)? + R%sin®t = R?(1 — 2cost + cos? t + sin 1)
ot
= R2(1 —2cost+1) = 2R2(1 —C0St) = 4R? sin? 3

One arch of the cycloid is traced as ¢ varies from 0 to 2. Hence, using the formula for the arc length we obtain:

2 2 t 2 ¢ T
S=/ \/x/(t)z—l—y/(t)zdt:/ ‘/4R23in2—dt=2R/ sin—dz=4R/ sinudu
0 0 2 0 2 0
o

= —4Rcosu| = —4R(cosm —cos0) =8R

0
13. Find the length of the tractrix (see Figure 6)
c(t) = (t — tanh(r), sech(z)), 0<t<A
SOLUTION Since x =t — tanh(¢) and y = sech(¢) we have x’ = 1 — sechz(t) and y’ = —sech(r) tanh(z). Hence,
X0 + 5 (12 = (1 — sech?(1))” + sech?(r)tanh2(r)
=1 — 2sech?(r) + sech*(r) + sech?(r)tanh?(7)
=1- Zsechz(t) + sechz(t)(sechz(t) + tanhz(t))
=1- Zsechz(t) + sechz(t) =1- sechz(t) = tanhz(t)

Hence, using the formula for the arc length we get:

A A A A
S =/ VX' 0O2 + (1) dt =/ Vtanh2(s) dt =/ tanh(¢) dt = In(cosh(?))
0 0 0 0

= In(cosh(A)) — In(cosh(0)) = In(cosh(A)) — In1 = In(cosh(A))
In Exercises 15-18, determine the speed s at time 7 (assume units of meters and seconds).

15. (13,12), t=2
SOLUTION We have x (1) = 13, y(r) = 12 hence x/(r) = 312, y/(t) = 2t. The speed of the particle at time ¢ is thus,

ds =[x/ + ' (1)? = VOr* + 412 = 11/9:2 + 4. At time 1 = 2 the speed is
9| 5922 14— 2440 = 410 ~ 12.65 m/s.

=2

dt



SECTION 11.2 | Arc Length and Speed (LT SECTION 12.2) 115

17. 65t +1,4t-3), t=9

SOLUTION Since x = 5¢ + 1, y = 4t — 3, we have x’ = 5 and y’ = 4. The speed of the particle at time 7 is

d
d—j :‘/x/(t)—{—y/(t :\/52+42 :\/H%6.4m/s.

We conclude that the particle has constant speed of 6.4 m/s.

19. Find the minimum speed of a particle with trajectory c(¢) = (3 — 4¢,t2 + 1) for + > 0. Hint: It iis easier to find the
minimum of the square of the speed.

soLuTioN W first find the speed of the particle. We have x(r) = 3 — 41, y(r) = t? + 1, hence x' (1) = 31> — 4 and
y'(t) = 2t. The speed is thus

d
ch =312 — 4% 1 20)2 = V% — 2412 + 16 + 42 = v/9r* — 2012 + 16.

The square root function is an increasing function, hence the minimum speed occurs at the value of ¢ where the function
F(@) = 9r* — 2072 + 16 has minimum value. Since lim_ (1) = 0o, f hasaminimum value on the interval 0 < r < oo,
— 00

and it occurs at a critical point or at the endpoint ¢+ = 0. We find the critical point of f onz > 0:

10
/() =362 — 40t = 4t(92 —10) =0 =t = 0,1 = 5

We compute the values of f at these points:

£(0)=9-0*-20.02+16 =16

4 2
10 10 10 44
(V=) =9(/=) -20 16 = = ~ 4.89

We conclude that the minimum value of f on ¢ > 0 is 4.89. The minimum speed is therefore

d
<i> ~ V489~ 2.21.
dt ) min

21. Find the speed of the cycloid c¢(r) = (4t — 4sint, 4 — 4 cost) at points where the tangent line is horizontal.

soLuTION W first find the points where the tangent line is horizontal. The slope of the tangent line is the following
quotient:

dy _dy/dt _ 4sint  sint
dx ~ dx/dt — 4—4cost  1—cost

To find the points where the tangent line is horizontal we solve the following equation for z > 0:

dy sinz .
— =0, ———— =0=sinr=0 and cost # 1.
dx 1—cost = 7
Now, sint =0 and 7 > 0 at the points t = 7k, k =0, 1,2, .... Since costk = (—1)", the points where cost # 1 are

t = wk for k odd. The points where the tangent line is horizontal are, therefore:
t=n(k—-1), k=123, ...

The speed at time 7 is given by the following expression:

d: .
d% = \/x/(t)z +y ()% = \/(4 — 4c0s1)2 + (4sint)?

= \/16 —32cost + 16cos? ¢ + 16sin? r = /16 — 32cost + 16

— J/32(1 —cost) = /32 25in2% —38

That is, the speed of the cycloid at time ¢ is

sin !
2
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We now substitute
t=m(k-1), k=12,3,...

to obtain
ds

— -1 k+1 —
o 8l(-1)"""|=8

. mw(2k—1)
-8 2= 2
’sm ) ’

CH5 InExercises 23-26, plot the curve and use the Midpoint Rule with N = 10, 20, 30, and 50 to approximate its
length.

23. c(t) = (cost, &SNy for0 <t <27
SOLUTION The curve of ¢(r) = (cost, eSN7) for 0 < + < 27 is shown in the figure below:

y

t=7(0¢

t=m, (-1, 1) t=0,t=2m, (1, 1)

X
8l
| t==-00,7)

c(t) = (cost, SN, 0 < ¢ < 27

The length of the curve is given by the following integral:

2 2w 5
S = / VX O+ y®)2dt = / \/(— sint)2 + (cost eSiNt)* ds.
0 0

That is, S = fOZ” Vsin2 ¢ + cos2 £ €25t dz. We approximate the integral using the Mid-Point Rule with N = 10, 20,
30, 50. For £ () = +/sin? ¢ + cos2 ¢ 25N we obtain

2 1
(N = 10): Ax=i=§,ci=<,~_,).i

10
T
My = 3.2 f(c;) = 6.903734
i=1
2 T 1 T
(N = 20): Ax:E:E,ci:<,_E>.IO

20
g
Mog = E2 f(ci) = 6.915035
1=

(N =30): A 2 (. 1\ =
R VR T- A Y T
7130

M3g = EZ f(ci) = 6.914949
i=1
2 b4 1 T
(N = 50): Ax:azg,c,:(,_é).%

50
T
Mspy = E; f(c;) = 6.914951

. x\2 y\2
25. The ellipse (5) + (5) =1
SOLUTION We use the parametrization given in Example 4, section 12.1, that is, ¢(¢) = (5cost, 3sint),0 <t < 2rx.

The curve is shown in the figure below:

I
>

y
/T\
t
W

c(t) = (5cost,3sint), 0 <t < 2.
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The length of the curve is given by the following integral:

2w 2w
S = / VX (O2 4+ y/(0)2dt = / \/(—5 sint)2 + (3cost)2 dt
0 0
2 2 2
= / V25sin2 1 +9cos2 ¢ dt = / \/9(sin2t +c0s2¢) + 16sint dt = / V9 + 16sin? ¢ dr.
0 0 0

That is,

2
S =/ V9 +16sin? 1 dr.
0

We approximate the integral using the Mid-Point Rule with N' = 10, 20, 30, 50, for £(¢) = v'9 + 165sin? ¢. We obtain

2 1
(N=10): Ax=-"-T C‘:(l-_,).ﬁ

10
T
My = 52 f(c;) = 25.528309
i=1
2 T 1 T
=20 Ax = — = — . = | — — - —
(V=20 Av=75 =15 (’ 2) 10
- 20
Mpy = E_X; f(c;) = 25.526999
1=

(N=30): A 2 b4 1 b1
= . X=—=—,¢; =\|1— — -
30 157" 2) 15

7t30

Msg = TS.Zf (c;) = 25.526999

i=1
2 b4 1 b3
= N =—=—. =l —=) - —
(V=30 Ax =55 = 75:¢i (’ 2) 25

50
T
Mso = > 2; F(c;) = 25.526999
1=

27. If you unwind thread from a stationary circular spool, keeping the thread taut at all times, then the endpoint traces a
curve C called the involute of the circle (Figure 9). Observe that P Q has length R6. Show that C is parametrized by

c(®) = (R(cos® +0sin6), R(sin6 — 6 cosH))

Then find the length of the involute for 0 < 6 < 2.

FIGURE 9 Involute of a circle.

SOLUTION Suppose that the arc (’Q\T corresponding to the angle 6 is unwound. Then the length of the segment O P
equals the length of this arc. That is, Q P = R#. With the help of the figure we can see that

x=0A+AB=0A+EP =Rcosé + QPsind = Rcosd + ROsin0 = R(cosH + 6sinh).
Furthermore,

y=QA— QFE = Rsin@ — QP cosd = Rsinf — RHcosH = R(sin6 — 6 cos o)
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The coordinates of P with respect to the parameter 6 form the following parametrization of the curve:
c(0) = (R(cosO + 6sind), R(sind — O cosh)), 0<6<2nm.

We find the length of the involute for 0 < 6 < 27, using the formula for the arc length:

2
S= f VX' 02+ y'(0)2 dob.
0
We compute the integrand:

d . . .
x'(0) = E(R(COSQ +0sinf)) = R(—sin6 +sind 4 6 cosd) = RO cosH

d . . .
v (0) = 5 (R(6InG — 0 cos6)) = R(cos6 — (cosf — #sin6)) = RO sing

\/x/(9)2 +/(0)2 = \/(RG 0s0)2 + (ROsSING)2 = \/R262(c0529 +5sin20) = vV R262 = RO
We now compute the arc length:

2 _ R. (27.[)2

= 27°R.
0 2

2 R@Z
S =/ ROdO = —
0 2

In Exercises 29-32, use Eq. (4) to compute the surface area of the given surface.

29. The cone generated by revolving c(t) = (¢, mt) about the x-axisfor0 <t < A
SOLUTION Substituting y(¢t) = mt, y'(t) = m, x’'(t) = 1,a = 0, and b = 0 in the formula for the surface area, we get
21A

A A
t
S=2r mt\/1+m2dt:27t\/1+m2m/ tdt=27tm\/1—f—mz~E = mv/1 + m27 A2
0 0

0

31. The surface generated by revolving one arch of the cycloid ¢(t) = (+ — sin¢, 1 — cost) about the x-axis

soLUTION One arch of the cycloid is traced as ¢ varies from 0 to 2r. Since x(¢) = ¢ —sinz and y(t) = 1 — cos ¢, we
have x/(t) = 1 — cos¢ and y/(z) = sin¢. Hence, using the identity 1 — cos¢ = 2sin? % we get

. . Lot
x’(z)2 + y’(t)2 =1- cost)2 +sin?t=1—2cost +cost +sin’t =2 — 2cost = 4sin? 3
By the formula for the surface area we obtain:

2 27 t
S =27 / YO X ()2 + Y ()2 dt = Zn/ (1 —cos¢) - 2sin 5 dt
0 0

2 t ¢ 2 t T
=271/ 25in27-25infdt=8n/ sin3fdz=167r/ sind u du
0 2 2 0 2 0

We use a reduction formula to compute this integral, obtaining

S = 16w [% cos® u — cos u:|

T 4 641
=167 |- |= —
0 ”[3] 3

Further Insights and Challenges
33. CHS Let b(r) be the “Butterfly Curve™:

5
t
=sinz [ %! —2cosdr —sin | —
x(1) i (e t i B
5
y(t) = cost (ecos’ — 2co0s4t —sin (f—2> )

(a) Use a computer algebra system to plot 5(¢) and the speed s'(r) for 0 < ¢ < 127
(b) Approximate the length b(¢) for 0 < ¢t < 107.
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SOLUTION

(@) Let f(r) = %S —2cos4r — sin (ﬁ)5 then
x(t) = sintf(t)
(1) = costf (1)
and so
()2 + (7 (1)? = [sintf (1) + costf ) + [cosef' (1) —sinf ()]
Using the identity sin?7 +cos?t =1, we get
')+ O/ 0) = (') + (f0)2.

Thus, s/(¢) is the following:

1\° 2 5 /1\* 1> 2
COSt __ —_q] _qj COSt 1 —
e 2cos4t sm(lz) + sinte + 8sin4t 12<12> cos<12> .

The following figures show the curves of b(¢) and the speed s/(¢) for 0 < t < 107

y
20

‘-0 10

—=—t=107
X

X

10 20 30
The “Butterfly Curve” b(¢),0 <t < 107 s'(1),0<t<10m

Looking at the graph, we see it would be difficult to compute the length using numeric integration; due to the high
frequency oscillations, very small steps would be needed.

(b) The length of b(r) for 0 < ¢ < 10z is given by the integral: L = 010” s’ (t) dt where s’(¢) is given in part (a). We

approximate the length using the Midpoint Rule with N = 30. The numerical methods in Mathematica approximate
the answer by 211.952. Using the Midpoint Rule with N = 50, we get 204.48; with N = 500, we get 211.6; and with
N = 5000, we get 212.09.

35. Asatellite orbiting at a distance R from the center of the earth follows the circular path x = Rcoswt, y = R sin wt.
(a) Show that the period T (the time of one revolution) is T = 27 /w.
(b) According to Newton’s laws of motion and gravity,

X y
x(t) = ~Gme—gz., V(1) = ~Gme—s

where G is the universal gravitational constant and m, is the mass of the earth. Prove that R3/T2 = Gme/4712. Thus,
R3/T2 has the same value for all orbits (a special case of Kepler’s Third Law).

SOLUTION
(a) Asshown in Example 4, the circular path has constant speed of % = wR. Since the length of one revolution is 27 R,
the period T is

_ 27 R _ 2

T

wR w
(b) Differentiating x = R cos wt twice with respect to ¢ gives
x'(t) = —Rwsin wt

x"(f) = — Rw? cos wt
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Substituting x(z) and x” (¢) in the equation x” (1) = —Gm, % and simplifying, we obtain

2 R cos wt
—Rw coSwt = —Gme - ———
R3
_R 2 _ Gme 3 _ Gme
@ = R? Y]

2 2
By part (a), T = iy Hence, w = ?n Substituting yields
w

R3 Gme TZGme R3 Gme

a2 T 4g2 :ﬁ_hrz
TZ

11.3 Polar Coordinates (LT Section 12.3)

Preliminary Questions

1. Points P and Q with the same radial coordinate (choose the correct answer):
(a) Lie on the same circle with the center at the origin.
(b) Lie on the same ray based at the origin.

SOLUTION Two points with the same radial coordinate are equidistant from the origin, therefore they lie on the same
circle centered at the origin. The angular coordinate defines a ray based at the origin. Therefore, if the two points have the
same angular coordinate, they lie on the same ray based at the origin.

2. Give two polar representations for the point (x, y) = (0, 1), one with negative r and one with positive r.

SOLUTION The point (0, 1) is on the y-axis, distant one unit from the origin, hence the polar representation with positive
ris (r,0) = (1, %). The point (r,6) = (-1, %) is the reflection of (r,6) = (1, %) through the origin, hence we must
add 7 to return to the original point.

We obtain the following polar representation of (0, 1) with negative r:

:0) = (1.7 +7) = (-1, 37”) .

3. Describe each of the following curves:
@ r=2 (b) 2 =2 (c) rcosh =2
SOLUTION
(a) Converting to rectangular coordinates we get

Jr24+y2=2 or x%4y2=2°

This is the equation of the circle of radius 2 centered at the origin.

(b) We convert to rectangular coordinates, obtaining x2 + y2 = 2. This is the equation of the circle of radius +/2, centered
at the origin.

(c) We convert to rectangular coordinates. Since x = r cos 6 we obtain the following equation: x = 2. This is the equation
of the vertical line through the point (2, 0).

4. If f(—0) = f(8), then the curve r = f () is symmetric with respect to the (choose the correct answer):
(a) x-axis (b) y-axis (c) origin
SOLUTION The equality f(—0) = f(0) for all 6 implies that whenever a point (r, 8) is on the curve, also the point

(r, —6) is on the curve. Since the point (r, —0) is the reflection of (r, 8) with respect to the x-axis, we conclude that the
curve is symmetric with respect to the x-axis.

Exercises
1. Find polar coordinates for each of the seven points plotted in Figure 16.
y
4
g () =(@v3.2)
E F
B
7 X
&%
G

FIGURE 16
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soLUTION We mark the points as shown in the figure.

F(2V3, 2)

G(2V3,-2)

Using the data given in the figure for the x and y coordinates and the quadrants in which the point are located, we obtain:

/ 2432 _
(A), with rectangular coordinates (—3, 4): " (=3) +3§1 =18 = (r0) = (3\/5, 37”)
4

_ T _ 31w
9_71—4_

A
3\2

3n

X
(B), with rectangular coordinates (—3, 0): ;z 3 = (r,0) =(@3,7)
y

T

B3 X

(C), with rectangular coordinates (—2, —1):

r=+v22+12=.5~22

0 =tan~1 (:—%) =tan~! (%) — 71 046~36 (r,0) ~ (fo 3,6)

@

(D), with rectangular coordinates (—1, —1):

— T _ 57 4
9—71+4— Z

— /12412 =7~
r=v124+12=.2~14 :(r,@)%(ﬁ,&r)

<

<
AE
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_ ) r=v124+12=/2~14
(E), with rectangular coordinates (1, 1): 1 /1 . = (r,0) ~ (ﬁ %)
6 = tan (I) =z

INE

r= (2J§)2+22=JT:4
7=t (3%) = (J5) =

y

(F), with rectangular coordinates (2+/3, 2): = @0 =4%)

F(2V3,2)

m\‘\>

(G), with rectangular coordinates (2+/3, —2): G is the reflection of F about the x axis, hence the two points have equal
1lx

radial coordinates, and the angular coordinate of G is obtained from the angular coordinate of F: 6 = 2 — % =
Hence, the polar coordinates of G are (4, ﬂ%)

3. Convert from rectangular to polar coordinates.
(@ 1,0 (b) 3.v3) (©) (-2,2) (d) (-1.v3)

SOLUTION
(a) The point (1,0) is on the positive x axis distanced one unit from the origin. Hence, r =1 and 6 = 0. Thus,

r,0) = (1,0).

2
(b) The point (3, \/§> is in the first quadrant so 6 = tan—1 (?) =% Also, r = /3 + <\/§) = +/12. Hence,
0 = (V2. §).

(c) The point (—2, 2) is in the second quadrant. Hence,

2 T 37
=tan i Z)=tan - =r- =",
9an<_2)an()n44
Also, r = /(—=2)2 + 22 = /8. Hence, (r, 0) = <\/§ 37”)
(d) The point (—1, «/§) is in the second quadrant, hence,
B N T N W 2.4
6 = tan (_1)_tan ( «/5)_71 T =3
2
Also, r =,/ (=1)? + («/ﬁ) = /4 = 2. Hence, (r, 0) = (2, %”)
5. Convert from polar to rectangular coordinates:
@ (&%) (b) (6. %) © (0.%) @ (5.-%)

SOLUTION

() Sincer =3and 6 = %, we have:
3
x:rcos@:Scos% :3-%%2.6
= (x,y)~(2.6,1.5).

T 1
=rsinf=3sin—=3--=15
y=r 6 2
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(b) For (6, 37”) we haver =6and 0 = 37”. Hence,

X =rcosf = 6cos37n ~ —4.24
3 = (x,y)~(—4.24,4.24).
y=rsind =6$in7n ~ 4.24

(c) For (0, %) we have r = 0, so that the rectangular coordinates are (x, y) = (0, 0).
(d) Since r =5and § = —7 we have

x=rcos€=5cos<—%> =5.0=0
n = (x.y)=(0.-5
y =rsingd = 5sin (—E) =5.(-1)=-5

7. Describe each shaded sector in Figure 17 by inequalities in r and 6.

y y y
45°
el
3 /5 3 /5 X 3 /5 X
@) ®) ©
FIGURE 17

SOLUTION

(a) In the sector shown below r is varying between 0 and 3 and 6 is varying between 7 and 2. Hence the following
inequalities describe the sector:

0<r=<3
T <0<2m

(b) In the sector shown below r is varying between 0 and 3 and 6 is varying between % and % Hence, the inequalities
for the sector are:

IA
<
IA

~lR o
IA
D
IA
ojs @

(c) In the sector shown below r is varying between 3 and 5 and 6 is varying between 37” and . Hence, the inequalities
are:

IA

IA
ol

3<r
3

— <46
4

IA
IA
N

9. What is the slope of the line 8 = %l?
SOLUTION This line makes anangle 6y = %” with the positive x-axis, hence the slope of the line ism = tan %’T ~ —3.1.
In Exercises 11-16, convert to an equation in rectangular coordinates.

1. r=7

SOLUTION r = 7 describes the points having distance 7 from the origin, that is, the circle with radius 7 centered at the
origin. The equation of the circle in rectangular coordinates is

x2 42 =72 = 49

13. r =2sin6
soLuTiON We multiply the equation by  and substitute 72 = x2 + y2, r sin@ = y. This gives
2 =2rsing
224 y2 =2y

Moving the 2y and completing the square yield: x2 + y2 — 2y = 0 and x2 + (y — 1)2 = 1. Thus, r = 2sin# is the
equation of a circle of radius 1 centered at (0, 1).
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1
cosf — sinf
soLuTioN We multiply the equation by cos @ — sin 6 and substitute y = r sin6, x = r cos . This gives

15. r =

r(cosf —sing) =1
rcosf —rsing =1
x—y=1=y=x—1Thus,

1
r=—
cosf —sinf

is the equation of the line y = x — 1.

In Exercises 17-20, convert to an equation in polar coordinates.

17. x24y2 =5

SOLUTION We make the substitution x2 + y2 = r2 to obtain; r2 = 5 or r = +/5.
19. y= x2

SOLUTION Substituting y = rsind and x = r cos @ yields

2

rsing = r2 cos? 6.

Then, dividing by r cos? 6 we obtain,

sin@
5 =T S0 r =tané@sech
c0s% 6

21. Match each equation with its description.

(@ r=2 (i) \ertical line

(b) 6 =2 (ii) Horizontal line

(c) r =2seco (iii) Circle

(d) r =2csco (iv) Line through origin
SOLUTION

(a) r = 2 describes the points 2 units from the origin. Hence, it is the equation of a circle.

(b) 6 = 2 describes the points P so that O P makes an angle of 8y = 2 with the positive x-axis. Hence, it is the equation
of a line through the origin.

(c) Thisisrcos® = 2, whichis x = 2, a vertical line.

(d) Converting to rectangular coordinates, we get »r = 2c¢sc#, so rsind = 2 and y = 2. This is the equation of a
horizontal line.

23. Suppose that P = (x, y) has polar coordinates (r, 9). Find the polar coordinates for the points:

@ (x,=y) (b) (=x,—y) (€) (=x,y) (d) (y.x)

SOLUTION

(@) (x, —y) is the symmetric point of (x, y) with respect to the x-axis, hence the two points have the same radial
coordinate, and the angular coordinate of (x, —y) is 2z — 6. Hence, (x, —y) = (r, 27 — 0).

4 x
K —o

27-6

(b) (—x, —y) is the symmetric point of (x, y) with respect to the origin. Hence, (—x, —y) = (r, 0 + 7).

xy)
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(©) (—=x,y) is the symmetric point of (x, y) with respect to the y-axis. Hence the two points have the same radial
coordinates and the angular coordinate of (—x, y) isw — 6. Hence, (—x, y) = (r, 7 — 0).

(d) Let (r1, 61) denote the polar coordinates of (y, x). Hence,
rlz\/y2+x2=\/x2+y2=r

X 1 1 b4
tan91=fz—z—zcoteztan(——e)
y y/x tané 2

Since the points (x, y) and (y, x) are in the same quadrant, the solution for 61 is 61 = % — 6. We obtain the following
polar coordinates: (y, x) = (r, 5 — 6).

25. What are the polar equations of the lines parallel to the line r cos (9 — %) =1?

soLUTION The line r cos (¢ — §) = 1, or r = sec (¢ — §), is perpendicular to the ray 6 = % and at distance d = 1
from the origin. Hence, the lines parallel to this line are also perpendicular to the ray 6 = % so the polar equations of

these lines are r = dsec (6 — %) orrcos (6 — §) = d.

27. Sketch the curve r = %0 (the spiral of Archimedes) for 6 between 0 and 2 by plotting the points for 6 =
0,Z,.%,...,2m.
’ 4 ’ 2 L) ’

soLUTION W first plot the following points (r, ) on the spiral:

0=00, = (35) 1= (3 o= (5.5). 0= Gr)

Eo (5T p (B3 G (TR o
=\%5°'72 ) =\2'2 ) "=\3% %) =, ).

z
2
3z z
4 4
C
. B
D H
V.4 A 0
(0} 2n
E #
* G
5r F x
4 4
3z
2

Since r(0) = % = 0, the graph begins at the origin and moves toward the points A, B, C, D, E, F, G and H as 6 varies
from 6 = 0 to the other values stated above. Connecting the points in this direction we obtain the following graph for
0<6 <27
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£
2
3z z
4 4
c B
D/—\ "
T A 0
O 27
E
57 F iz
4 4

29. Sketch the cardioid curve r = 1 + cos .

SOLUTION Since cos 6 is period with period 27, the entire curve will be traced out as 6 varies from 0 to 2;7. Additionally,
since cos(2mr — 6) = cos(6), we can sketch the curve for 6 between 0 and 7 and reflect the result through the x axis to
obtain the whole curve. Use the values 8 = 0, %, %, % % %’T 37”, %”, and m:

0 |r point

0 | 1+cos0=2 2,0)

T 7 _ 243 2+/3 7
§ | 1tcosg === (Té)
b1 T _ 2442 242 &
7 | l+cosg === (TZ)
big T _ 3 3

3 |1tcosz=3 (?’?)
Z | 14cos% =1 (1%)
2 27 1 1 2n
T | ltcosFz =3 TT)
3 3r _ 2-4/2 2-+/2 3n
7 | 1t+cosg == (TT)
5t 57 _ 2—/3 2—/3 57
% | 1t+cosg === (TT)

6 = 0 corresponds to the point (2, 0), and the graph moves clockwise as 6 increases from 0 to . Thus the graph is

s
2 2 z
3£3 37I
5£4 471
6 6
0
g o

Reflecting through the x axis gives the other half of the curve:

<

.

31. Figure 20 displays the graphs of r = sin 26 in rectangular coordinates and in polar coordinates, where it is a “rose
with four petals.” Identify:

(a) The points in (B) corresponding to points A—1 in (A).

(b) The parts of the curve in (B) corresponding to the angle intervals [0, 5], [%. x], [x, 3], and [ 3%, 2x].
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' y
B F
A C E/\G |
g 3 2 0
2 2
D H
(A) Graph of r as a function (B) Graph of r =sin 20
of 6, where r = sin 26 in polar coordinates
FIGURE 20
SOLUTION
(a) The graph (A) gives the following polar coordinates of the labeled points:
A: 6=0, r=0
T .
B: 0=—, =sin— =1
A 4
T
C: 6=, =0
2 r
3 . 2-3m
D: §=—, r=sin =-1
4
O=m, r=0
5
F: 6=—, =1
Z r
3
G: 60=—, =0
2 r
7
H: 0= —n, r=-1
4
I: 0=2n, r=0.
Since the maximal value of |r| is 1, the points with » = 1 or r = —1 are the furthest points from the origin. The corre-

sponding quadrant is determined by the value of 6 and the sign of r. If rg < 0, the point (rg, 8g) is on the ray 6 = —6.
These considerations lead to the following identification of the points in the xy plane. Notice that A, C, G, E, and I are

the same point.

(b) We use the graph (A) to find the sign of r =sin20 : 0 <6 < % =r>0= (r,0) is in the first quadrant.

s

37” <60 <27 = r <0= (r,0) isin the second quadrant. That is,

5<0<m=r=<0= (r0) is in the fourth quadrant. = <6 < 37” =r >0= (r,0) is in the third quadrant.
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33. LAH5S Plot the cissoid r = 25sin @ tan  and show that its equation in rectangular coordinates is

2 X3

Y =2—x

soLUTION Using a CAS we obtain the following curve of the cissoid:

r
2
y

2
We substitute sin¢ = < and tan® = % in r = 2sin6 tan 6 to obtain

r=22.2,
r X
Multiplying by rx, setting r2 = x2 + y2 and simplifying, yields
rex = 2y2
@2+ yHx = 2y?
X34 y2x = 2y2
Y @2-x) =13

SO

35. Show that
r=acosd + bsino
is the equation of a circle passing through the origin. Express the radius and center (in rectangular coordinates) in terms

of a and b.

soLuTION We multiply the equation by » and then make the substitution x = r cos 6, y = rsin9, and r2 = x2 + y2.
This gives
2 = ar cosO + brsin o
X2+ y2 =ax + by
Transferring sides and completing the square yields

xz—ax-i-yz—by:()

(-2 ger (5« (22 3o (5) ) - (5 +(5)
S RCHES

This is the equation of the circle with radius 7”22“’2 centered at the point (% %) By plugginginx =0and y = 0iitis
clear that the circle passes through the origin.

37. Use the identity cos 26 = cos? 6 — sinZ 6 to find a polar equation of the hyperbola x2 — y2 = 1.
SOLUTION We substitute x = r cos6, y = rsin 6 in x2 — y2 = 1 to obtain

r2cos? 6 — r?sin?g =1

r2(cos? 6 —sin?6) = 1
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Using the identity cos 26 = cos? 6 — sin @ we obtain the following equation of the hyperbola:

r2c0s20 =1 or r%=sec26.

39. Show that cos 39 = cos3 8 — 3cos 6 sin? § and use this identity to find an equation in rectangular coordinates for the
curve r = cos 36.

2 2

soLUTION We use the identities cos(e + 8) = cosa cospB — sinasin B, coS2a = €o0s“ o — Sin“«, and sin 2o =
2sin o cos « to write
€0s 360 = c0s(20 + 0) = cos 26 cosO — sin 26 sin 6

= (cos2 0 — sin? 0)cosH — 2sinH cosH sinH

=020 — sin @ cos® — 2sin 6 cos O

= cos® 9 — 3sin? 6 cosd
Using this identity we may rewrite the equation » = cos 360 as follows:

r =cos 6 — 3sin? 0 cosO 1)

Since x = rcos6 and y = rsin@, we have cosd = < and sin6 = % Substituting into (1) gives:

=) -36)° ()

We now multiply by 3 and make the substitution r2 = x2 + y2 to obtain the following equation for the curve:
=3 - 3y2x
(x2 + y2)2 =x3— 3y2x
In Exercises 41-44, find an equation in polar coordinates of the line £ with the given description.

41. The point on L closest to the origin has polar coordinates (2, %)

SOLUTION In Example 5, it is shown that the polar equation of the line where (r, ) is the point on the line closest to
the origin is r = d sec (6 — ). Setting (d, «) = (2, ) we obtain the following equation of the line:

r:ZSec(Q—%).

43. £ is tangent to the circle r = 2+/10 at the point with rectangular coordinates (—2, —6).

SOLUTION

<

26 T~

Since L is tangent to the circle at the point (—2, —6), this is the point on £ closest to the center of the circle which is at
the origin. Therefore, we may use the polar coordinates (d, «) of this point in the equation of the line:

r=dsec(® —a) )]

We thus must convert the coordinates (—2, —6) to polar coordinates. This point is in the third quadrant so 7 < @ < 37

We get
d =+/(=2)2 + (=6)2 = /40 = 2/10

—6
o =tan~1 (—2> —tan"13~ 7 +1.25~4.39
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Substituting in (1) yields the following equation of the line:

r = 2+/10sec (6 — 4.39).

45. Show that every line that does not pass through the origin has a polar equation of the form

b
r=——"
sinf — acosé

where b # 0.

soLUTION Write the equation of the line in rectangular coordinates as y = ax + b. Since the line does not pass through
the origin, we have b # 0. Substitute for y and x to convert to polar coordinates, and simplify:
y=ax+b
rsin® =arcosd + b
r(sin@ —acosd) =b

b
r=———""
sinf — acosé

47. For a > 0, a lemniscate curve is the set of points P such that the product of the distances from P to (a, 0) and
(—a, 0) is a. Show that the equation of the lemniscate is

(2 + 9% = 2a°(x* = %)

Then find the equation in polar coordinates. To obtain the simplest form of the equation, use the identity cos26 =
cos? 6 — sin? 6. Plot the lemniscate for « = 2 if you have a computer algebra system.

soLUTION \We compute the distances d; and dp of P (x, y) from the points (a, 0) and (—a, 0) respectively. We obtain:

dl=\/(x—a)2+(y—0)2=\/(x—a)2+y2

dz=\/(x+a)2+(y—0)2=\/(X+a)2+y2

For the points P(x, y) on the lemniscate we have didy = a?. That s,

az=\/(x—a)2+y2\/(X+a)2+y2=\/[(x—a)2+y2][(X+a)2+y2]

= & — @20 +a? +y2(x —a +y2(x +a? 4y

= \/(xz —a®)2 +y2[(x —a)? + (x + a)2] + y4

:\/x4—2a2x2—|—a4—|—y2 (x2—2xa+a2+x2+2xa+a2)+y4

_ \/x4 —2a2x2 4 b 4 29252 24242 4 yA

= \/x4 +2x2y2 4 y4 4+ 242(y2 — x2) +

= \/(x2 +32)? +242(y2 — x2) + ab,
Squaring both sides and simplifying yields
at = (x2 + y2)2 + 2412(y2 — xz) +a*
0= 2 +y%)2+242(y? —x?)
so

(2 +y9)? = 2a°(x* = %)
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We now find the equation in polar coordinates. We substitute x = » cos@, y = rsin@ and x2 + y2 = r2 into the equation
of the lemniscate. This gives
r%)2 = 2a%(r2 c0s? 6 — r?sin? 0) = 2a%r2(cos? 6 — sin? §) = 2a%r? cos 26
= 2a2r2 cos 20

r = 0 is a solution, hence the origin is on the curve. For r # 0 we divide the equation by r2 to obtain r2 = 242 cos 26.
This curve also includes the origin (» = 0 is obtained for 6 = % for example), hence this is the polar equation of the

lemniscate. Setting @ = 2 we get 2 = 8.cos 26.

SIS

r2=8cos 26

49. The Derivative in Polar Coordinates Show that a polar curve r = f(0) has parametric equations
x = f(#)coso, y= f(@)sing

Then apply Theorem 2 of Section 11.1 to prove

dy f(©)cosd + f'(0)sino 2]
dx — —f(©)sind + f'(0)cos6

where f/(0) = df/de.

soLUTION Multiplying both sides of the given equation by cos yields r cos® = f(6) cos8; multiplying both sides
by sin 6 yields r sin® = f () sin 6. The left-hand sides of these two equations are the x and y coordinates in rectangular
coordinates, so for any 6 we have x = f(6)cos6é and y = f(#)sin6, showing that the parametric equations are as
claimed. Now, by the formula for the derivative we have

dy _y'®)
dx ~— x’(9)

)
We differentiate the functions x = f (6) cosé and y = f () sin 6 using the Product Rule for differentiation. This gives
y' (@) = f (0)sinf + f (6)cosh
x' (0) = f'(8)cosH — f (0)sin6

Substituting in (1) gives
dy _ f'(0)sin0+ f(0)cos®  f(O)cosd + f'(6)sinb

dx — f(0)cosd — f(H)sing  —f(@)sind + f' () cosh’

51. Use Eq. (2) to find the slope of the tangent linetor =6 at9 = % and 6 = 7.

SOLUTION In the given curve we have r = f (8) = 6. Using Eq. (2) we obtain the following derivative, which is the
slope of the tangent line at (r, 9).

dy  f(0)cosf + f'(f)sind  Hcosh +1-sinb )
dx — —f(0)sin@+ f/ (H)cosd  —6sinf +1-coso

The slope, m, of the tangent line at 6 = % and 6 =  is obtained by substituting these values in (1). We get (6 = %):

B % cos % +sin % B 7-0+1 12
—Zsin% +cosy  -%.1+40 -% T
O =m)
T CcoSm + sinm -7

- = — =n7.
—m Sinm 4 coS -1
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53. Find the polar coordinates of the points on the lemniscate »2 = cos 2¢ in Figure 23 where the tangent line is horizontal.

y r? = cos (2t)

FIGURE 23

SOLUTION This curve is defined for —% <2t < % (where cos 2t > 0), so for —% <t< %. For each 6 in that range,
there are two values of r satisfying the equation (£=+/cos 2¢). By symmetry, we need only calculate the coordinates of the
points corresponding to the positive square root (i.e. to the right of the y axis). Then the equation becomes » = +/cos 2¢.
Now, by Eq. (2), with £(t) = /c0s(2¢) and f’(¢) = — sin(2¢)(cos(2¢))~1/2, we have

dy _ f@t)cost + f'(t)sint COS £1/C0S(27) — Sin(2¢) sin ¢t (cos(2t)) /2

dx ~ —f@)sint + f/(1)cost  —sin+/cos(2r) — sin(2¢) cos ¢ (cos(2t))—1/2

The tangent line is horizontal when this derivative is zero, which occurs when the numerator of the fraction is zero and the
denominator is not. Multiply top and bottom of the fraction by /cos(27), and use the identities cos 2¢ = cos? 1 — sin? 7,
sin2¢ = 2sint cost to get

COS? COS2¢ — sin ¢ sin 2¢ cost(cos? t — 3sin? )
sintcos2t +cosssin2s  Sinzcos2¢ + Cosz sin 2¢

The numerator is zero when cost = 0, so when ¢ = % ort = 37” orwhentant = i%, sowhent = ﬂ:% ort = i%”.

Of these possibilities, only r = i% lie in the range —% <t< %. Note that the denominator is nonzero for r = i%, S0

these are the two values of ¢ for which the tangent line is horizontal. The corresponding values of » are solutions to

r2:cos<2-%):cos(%):%

Finally, the four points are (r, t) =

G (2D GD 5D

If desired, we can change the second and fourth points by adding 7 to the angle and making r positive, to get
(L) BT 39 (D)
/26) 726 ) 726 ) 76
55. Use Eqg. (2) to show that for r = sin9 + cos 9,
dy _ €0s20 +sin2¢

dx ~ €020 —sin20
Then calculate the slopes of the tangent lines at points A, B, C in Figure 19.

SOLUTION In Exercise 49 we proved that for a polar curve r = f (8) the following formula holds:

dy _ f (@) cosh + f/()sind

= - ; 1)
dx —f(@®)sind+ f’(0)cosH
For the given circle we have » = f (9) = sin@ + cosd, hence £’ (§) = cos6 — sin . Substituting in (1) we have
dy _ (sinf +cos6)cosf + (Cosf —sinB)sing  sind cosé + cos? & + cos sin @ — sin? 0
dx ~ —(sin@ 4+ cosh)sinf + (cosd —sin@)cosd  —sin2H — cosHsin 6 + cos2 6 — sin 6 cos o
_ c0s?6 —sin? g + 2sin 6 cos 6
cos2 6 — sin2 @ — 2sin 6 cos
We use the identities cos? & — sin? @ = cos 20 and 25sin 6 cos @ = sin 26 to obtain
dy  c0s20 +sin20
= 2

dx ~ 0520 —sin20
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The derivative % is the slope of the tangent line at (r, ). The slopes of the tangent lines at the points with polar coordinates
A=(1L%)B= (O, 37”) C = (1, 0) are computed by substituting the values of 6 in (2). This gives

cosw +sinm -1+40 _1

dy cos(2- %) +sin(2- %)
Z) Z)  cosm —sinx T —-1-0
3z

s
dx|y cos(2-%)—sin(2-

3 - -
dy _cos(2~7”)+sln<2-7)_00537”+Sln37”_0—1 1

dx|p cos(Z-%’)—sin(Z-g’Tﬂ) cos 3 —sin3  0+1

dy cos(2~0)+:~:in(2-0)_cosO+sinO_1+O_1
dx|c c0s(2-0)—sin(2-0) cosO—sin0 1-0

Further Insights and Challenges

57. Use a graphing utility to convince yourself that the polar equations r = f1(0) = 2cos6 —landr = f>(0) =
2cosf + 1 have the same graph. Then explain why. Hint: Show that the points (f1(0 + 7),6 + ) and (f2(9), 6)
coincide.

SOLUTION The graphs of r = 2cos® — 1and r = 2cos6 + 1 in the xy -plane coincide as shown in the graph obtained
using a CAS.

Recall that (r, 0) and (—r, 6 + ) represent the same point. Replacing 6 by 6 + 7 and » by (—r) inr =2c0s6 — 1 we
obtain

—r=2c0s(@+m)—1
—r =-2c0s0 — 1
r=2c0860 +1

Thus, the two equations define the same graph. (One could also convert both equations to rectangular coordinates and
note that they come out identical.)

11.4 Area and Arc Length in Polar Coordinates (LT Section 12.4)

Preliminary Questions

1. Polar coordinates are suited to finding the area (choose one):
(a) Under a curve between x = a and x = b.
(b) Bounded by a curve and two rays through the origin.

soLUTION Polar coordinates are best suited to finding the area bounded by a curve and two rays through the origin. The
formula for the area in polar coordinates gives the area of this region.

2. Is the formula for area in polar coordinates valid if f(0) takes negative values?
soLUTION The formula for the area
1 (P 2
5 / f©)do
2 Ja

always gives the actual (positive) area, even if f(6) takes on negative values.
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) ) ) ) ) ) 1 [7/2
3. The horizontal line y = 1 has polar equation » = csc 6. Which area is represented by the integral 3 / csc? 0 do

/6
(Figure 12)?

(a) JABCD (b) AABC () AACD
y
A B X
V3
FIGURE 12

SOLUTION This integral represents an area taken from 6 = = /6 to 6 = /2, which can only be the triangle AACD, as
seen in part (c).

Exercises
1. Sketch the area bounded by the circle » = 5 and the rays 6 = % and 6 = m, and compute its area as an integral in
polar coordinates.

SOLUTION The region bounded by the circle r = 5 and the rays 6 = % and @ = = is the shaded region in the figure.
The area of the region is given by the following integral:

3. Calculate the area of the circle » = 4sin 6 as an integral in polar coordinates (see Figure 4). Be careful to choose the
correct limits of integration.

SOLUTION The equation r = 4sin 0 defines a circle of radius 2 tangent to the x-axis at the origin as shown in the figure:

\
w|a

The circle is traced as 6 varies from 0 to . We use the area in polar coordinates and the identity
.1
sin“ 6 = 3 (1 —cos20)
to obtain the following area:

1 T 1 T T T
Asz r2d0=7/ (4sin9)2d¢9=8/ sin20d9=4/ (l—cos26)d6=4[9—
2 Jo 2 Jo 0 0

() )

sin 29]”
2 1o
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5. Find the area of the shaded region in Figure 14. Note that 6 varies from 0 to %

y

1 2
FIGURE 14

SOLUTION Since 0 varies from 0 to % the area is
1 [7/2 1 [7/2 1 r7/2
f/ r2d0=7/ (92+40)2d9=7/ 0% +80°% + 1602 4o
2 Jo 2 Jo 2 Jo

1(1c .4 164
== (26%+20% + Zo
2(5 Tty

/2 5 4 2

T b/ T

0 “320 "1 "3

7. Find the total area enclosed by the cardioid in Figure 16.

FIGURE 16 The cardioid r = 1 — cosé.

soLUTION We graph r =1 — cos6 in r and 6 (cartesian, not polar, this time):

We see that as 6 varies from 0 to 7, the radius r increases from 0 to 2, so we get the upper half of the cardioid (the lower
half is obtained as 6 varies from 7 to 2 and consequently r decreases from 2 to 0). Since the cardioid is symmetric with
respect to the x-axis we may compute the upper area and double the result. Using

_ cos20 +1

2
cos“ 6
2

we get

1 ris T m
A= .7/ r2d9=/ (1—c059)2d0=/ (1—2c050+c0520) d6
2 Jo 0 0

T 20 +1 T /3 1
=/ 1—2c039+M d@:/ — —2C0s6 + - c0s20 ) db
0 2 0 \2 2

T 3

0

3 1
= -0 —2sinf + =sin20
2 +4

The total area enclosed by the cardioid is A = 37”
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9. Find the area of one leaf of the “four-petaled rose” r = sin 26 (Figure 17). Then prove that the total area of the rose
is equal to one-half the area of the circumscribed circle.

FIGURE 17 Four-petaled rose r = sin 26.

soLUTION We consider the graph of » = sin 26 in cartesian and in polar coordinates:

~lat
~
IS

-1

We see that as 6 varies from 0 to 7 the radius r is increasing from 0 to 1, and when 6 varies from 7 to 7, r is decreasing
back to zero. Hence, the leaf in the first quadrant is traced as 6 varies from 0 to % The area of the leaf (the four leaves
have equal areas) is thus

1 [7/2 1 [7/2

Asz r2d9:7/ sin® 20 do.
2 Jo 2 Jo

Using the identity

1 — cos46
2

1 (72 /1 cos4d 1/6 sindd\ |2 1/(/x sin2x 7
A== Rk P ALl =2 ((E-EZ) o0)=Z
2y 272 22778 ), 2\\a" "% 8

The area of one leaf is A = § ~ 0.39. It follows that the area of the entire rose is 7. Since the “radius” of the rose (the
point where 6 = %) is 1, and the circumscribed circle is tangent there, the circumscribed circle has radius 1 and thus area
7. Hence the area of the rose is half that of the circumscribed circle.

sin? 29 =

we get

11. Sketch the spiral »r = 6 for 0 < 6 < 27 and find the area bounded by the curve and the first quadrant.

SOLUTION The spiral r = 6 for 0 < 6 < 2x is shown in the following figure in the xy-plane:

The spiral r =6

We must compute the area of the shaded region. This region is traced as 6 varies from 0 to % Using the formula for the
area in polar coordinates we get

1 (72 1 (/2 10372 1
Asz r2d9:7/ 02do =>—| =
2 Jo 2 Jo 23

3
, “6l2) ~ 7@
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13. Find the area of region A in Figure 19.

r=4cos 0
r=1 A
X
-1 1 2 4
FIGURE 19

soLuTION We first find the values of 6 at the points of intersection of the two circles, by solving the following equation
for—Z <x <
2 — —

oF
1 1
4cosf =1= cost = 2 =601 = cost (Z)

y
=132

0=-1.32

We now compute the area using the formula for the area between two curves:
1 (0 1 [0
Asz ((4cos9)2—12) desz (16c0s?0 — 1) ao
2)_p, 2 ) g,
Using the identity cos? 6 = 25201 we get

1 (% /16(cos20 +1 1 4% 1 .
A=7/ (g—o de=7/ (8C0S20 +7) dO = = (4sin 20 + 76)
2 ) g, 2 2)_p, 2

01

,91
= 45sin 201 + 761 = 8sin 61 cosfy + 761 = 8,/1 — cos? By cos by + 761
Using the fact that cos 61 = % we get

V15 1
A=+ 7cos~ 1 (Z) ~ 11.163

15. Find the area of the inner loop of the limagon with polar equation r = 2 cos6 — 1 (Figure 21).

y

-1

FIGURE 21 The limagon r = 2cos6 — 1.

soLUTION We consider the graph of » = 2cos6 — 1 in cartesian and in polar, for —% <x <

[CEl

y

s
3

N
w|a
w|a
nla

wla

r=2c0s6 —1
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As 9 varies from —% to 0, r increases from 0 to 1. As @ varies from 0 to % r decreases from 1 back to 0. Hence, the
inner loop of the limagon is traced as 6 varies from —% to % The area of the shaded region is thus

1 /3 2 1 r7/3 2 1 [7/3 9
Asz r d9=7/ (2086 — 1) d0=7/ (4cos 9—4c059+1>d(9
2) 73 2

2 —/3 —/3
1 (7/3 1 [7/3
:f‘/ (2(cos20 +1) —4cosb + 1) d@:f/ (2c0s20 — 4cosO + 3) db
2) 73 2 ) /3
1 /3 1 2 T 2 b4
= — (sin20 — 4sin6 + 30 =—|((sin— —4sin - —(sin{—— ) —4sin{—=) —
;! can| =5 (05 s fen) = (sn(-5) san(-5) 7))
3 43 33
S e i s

17. Find the area of the part of the circle r = sin6 + cos 6 in the fourth quadrant (see Exercise 26 in Section 11.3).

SOLUTION The value of 6 corresponding to the point B is the solution of »r =sind + cos6 =0 for —7 <0 < .

y

That is,
sin9+c059=O:>sin9=—cos€:>tan9=—1:>6=—%

At the point C, we have 6 = 0. The part of the circle in the fourth quadrant is traced if 6 varies between —% and 0. This
leads to the following area:

100 5, 10 2 10 o - 2
A== r2do = - (sin6 +cos6)2do = = (sm 6 + 2sin6 cos 6 + cos 9) d6
2 - /4 2 - /4 2 - /4

Using the identities sin 6 + cos? # = 1 and 25sin 6 cos6 = sin 26 we get:

1 /0 i 1 cos 20
Az—/ (1+4sin20) do = - (6 —
/4 2 2

() (5T =352

0

r=2+sin26

(A

FIGURE 22

soLUTION \We compute the area A between the two curves as the difference between the area A1 of the region enclosed
in the outer curve r = 2 4 cos 20 and the area A of the region enclosed in the inner curve » = sin 26. That is,

A=A — Ay
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r=2+2cosf

A r=sinf

QY

R

In Exercise 9 we showed that A, = 7, hence,

T
A=A — -

We compute the area Aj.

ART
N

Using symmetry, the area is four times the area enclosed in the first quadrant. That is,
1 [7/2 9 /2 9 /2 9
Ap = -7/ r d9:2/ (2 + c0s 20) d9:2/ (4+4c0529+cos 29>d9
2 Jo 0 0
Using the identity cos? 26 = 1 cos46 + § we get

/2 1 1 T/279 1
A1=2/ <4+400329+Ecos49+7> d@:z/ <7+§cos49+400529> de
0 0

2 2
99  sin4f /2 9 in2 9
:2<—+Sm +23in29> :2<<—ﬂ+sm n+2$inn)—0>:—n
2 0 4 8 2
Combining (1) and (2) we obtain
7 =«
A = ——_— = 4
2 2 "
21. Find the area inside both curves in Figure 23.
y 2+sin26

E:cos 20

FIGURE 23

SOLUTION The area we need to find is the area of the shaded region in the figure.

r=2+sin 26
D
A
X
QDCOSZ@

(@]

139

()

@
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We first find the values of 9 at the points of intersection A, B, C, and D of the two curves, by solving the following
equation for —7 <60 < x:

240520 =2 +5sin20

€0s 20 = sin 20
wk

/4 b
tan20 =1= 20 = — k=0=>=4+—
= 4+né 8+2

The solutions for —7r < 6 < 7 are

T
37
c: 9=-'"
: g
D o=2%
8

Using symmetry, we compute the shaded area in the figure below and multiply it by 4:

INVE

On

r=2+cos 20

INVE

1 57/8 5 /8
A=4~A1:4-—-/ (2+c0520)2d0=2/ <4+4c0529+c05229) do
2 /8 /8
57/8 1+ cos4 57/8
=2 <4+4c0529++7> de:/ (9 4 8cos 26 + cos46) db
/8 2 /8
in4¢ |°7/8 5 5 1 5 9
=90 +4sin20 + Sl =9(—n - ﬁ) +4<sin—ﬂ —sinz> + - (sin—ﬂ —sing) =T — 42
7/8 8 8 4 4 4 2 2 2

23. Calculate the total length of the circle r = 4sin 6 as an integral in polar coordinates.
soLuTION We use the formula for the arc length:

B
5= / Jr©2 + fr0)2do 1)

o

In this case, f(8) = 4sind and f'(8) = 4cosé, hence

\/f(e)z + 116)% = \/(4sin 0)2 + (4cosH)2 =16 =4
The circle is traced as 6 is varied from 0 to . Substituting « = 0, 8 = 7 in (1) yields § = fé’ 4d0 = 4x.

y

The circle r = 4sin6
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In Exercises 25-30, compute the length of the polar curve.

25. The lengthof r =62 for0 <6 <

soLUTION We use the formula for the arc length. In this case f (9) = 02, f(9) = 26, so we obtain
T 2 s T
S= / V(62" + (20)%2do = f Vo4 + 402 do =/ 0v02 + 4do
0 0 0

We compute the integral using the substitution u = 62 + 4, du = 26 d6. This gives

7T2+4 1

. =3 ((nz +4)3/2 - 43/2> = % ((712 +4)3/2 - 8) ~ 14.55

27. The equiangular spiral r = ¢? for0 <6 < 2x

1 w244

12
s== du=>.%
2 /s Vidu =3 - 3

SOLUTION Since f(8) = ¢, by the formula for the arc length we have:

2 2 2
L =/ \/f/(9)2+f(9)d9+/ V(€)% + (¢9)? do =/ V226 4o
0 0 0
2
0

:ﬁ[)zne9d9=ﬁe9 :\/§<62”—60>:«/§(62”—1>%755.9

29. The cardioid r = 1 — cos 6 in Figure 16

SOLUTION In the equation of the cardioid, f(6) = 1 — cos 6. Using the formula for arc length in polar coordinates we

have:
B
L= f VIFO?2+ f(0)2do 1)
o

We compute the integrand:

\/f(e)2 + (0% = \/(1 —c0s6)2 + (sin6)? = \/1 — 2056 + €052 6 + sin2 6 = /2 (1 — cosh)

We identify the interval of 6. Since —1 < cosf < 1, every 0 < 6 < 27 corresponds to a nonnegative value of r. Hence,
0 varies from 0 to 2. By (1) we obtain

2
L :/ 2(1 —cosH)deo
0

Now, 1 — cos® = 25in2(9/2), and on the interval 0 < 6 < 7, sin(8/2) is nonnegative, so that \/2(1 —cosf) =

/4sin2(8/2) = 2sin(6/2) there. The graph is symmetric, so it suffices to compute the integral for 0 < 8 < =, and we
have

b b4 0 g
L=2/ v2(1 —cos0)do =2/ 2sin(0/2)do =8sin—-| =8
0 0 2o

In Exercises 31 and 32, express the length of the curve as an integral but do not evaluate it.

3. r=02—-cos®) L, 0<0<2r

SOLUTION We have f(8) = (2 —cos6)™L, £/(8) = —(2 — cos8)~2sin 6, hence,

\/fz(e) + f1(0)% = \/(2 —¢0s0) "2 4 (2 — cosH) 4sin? o = \/(2 —cosf)~4 ((2 —€056)2 + sin? 9)

=2- cos@)’2 \/4 — 4¢c0S0 +c0s2 0 +sin2 0 = 2- cos@)’2 V5 —4cos6

Using the integral for the arc length we get

2
L= «/5—4cose(2—cose)_2d0.

0
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In Exercises 33-36, use a computer algebra system to calculate the total length to two decimal places.

33. £A'S The three-petal rose r = cos 36 in Figure 20
soLUTION We have f(6) = cos 30, f'(6) = —3sin 36, so that

VFO)2+ f1(0)2 = \/cos2 36 +9sin236 = \/cos2 360 +sin? 39 + 8sin? 39 = \/1 +8sin%30

Note that the curve is traversed completely for 0 < 6 < m. Using the arc length formula and evaluating with Maple gives
T b
L= / F©)? + f/(6)2do = / V' 1+ 8sin?30 d6 ~ 6.682446608
0 0

35. LAS Thecurver =6sind in Figure 24 for0 < 6 < 4x

y

10

+ + X
5 5
FIGURE 24 r =0sing for0 <0 < 4m.

SOLUTION We have f(0) = 6sin6, f/(9) =sin@ + 6 cos 6, so that

\/f(e)z + f1(0)2 = \/92 Sin2 6 + (sin@ + 6 cos9)2 = \/92 sin2 6 +sin2@ 4 20 sin @ cos 6 + 62 cos2 @

:\/92+sin29+05in26

using the identities sin26 + cos?6 = 1 and 2sin6 cos@ = sin 26. Thus by the arc length formula and evaluating with
Maple, we have

4 A
L= / fF©)2+ f'(6)?d6 = / \/92 +sin? 0 + 6'sin 20 d6 ~ 79.56423976
0 0

Further Insights and Challenges

37. Suppose that the polar coordinates of a moving particle at time ¢ are (r(¢), 6(¢)). Prove that the particle’s speed is
equal to \/ (dr/dt)2 + r2(de/dr)2.

SOLUTION The speed of the particle in rectangular coordinates is:

% = /X' (1) + y'(1)? @)

We need to express the speed in polar coordinates. The x and y coordinates of the moving particles as functions of ¢ are
x(t) =r@®)cosd(), y@) =r()sind(r)
We differentiate x(¢) and y(z), using the Product Rule for differentiation. We obtain (omitting the independent variable ¢)
x' =r"cosd —r(sinh) o’
y =r'sin@ —r (cos @) 6’
Hence,
x% 432 = (¥ cost — o' sin0)? + (' sin 6 + r6’ cos )

2

= '2c0s26 — 270 cos 6 5in 6 + r26"%sin2 6 + /2 5in2 6 + 20’ sin2 6. cos 6 + r26'% cos? 6

= (cos2 6 + sin? 9) +r20 (sin2 6 + cos? 9) =2+ 20'? )
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Substituting (2) into (1) we get

d Y o, dr\? do\?
ji: r/2+r29/2:\/<d:> +r2<$>

11.5 Conic Sections (LT Section 12.5)

Preliminary Questions
1. Which of the following equations defines an ellipse? Which does not define a conic section?
(@) 4x2 —9y2 =12 (b) —4x +9y2 =0
(c) 4y2 +9x%2 =12 (d) 4x3 +9y% =12
SOLUTION

2
2 ,
(a) This is the equation of the hyperbola (L) — (%) = 1, which is a conic section.
V3

el

(b) The equation —4x + 9y2 = 0 can be rewritten as x = %yz, which defines a parabola. This is a conic section.

V3

2
2
(c) The equation 4y2 + 9x2 = 12 can be rewritten in the form (L) + <§> =1, hence it is the equation of an
V3

ellipse, which is a conic section.

(d) This is not the equation of a conic section, since it is not an equation of degree two in x and y.

2. For which conic sections do the vertices lie between the foci?

soLuTION If the vertices lie between the foci, the conic section is a hyperbola.

y
y

Vertex

Focus |Vertex | Vertex [ Focus

Vertex{ Focus Focus \Vertex E =
X 2 1
\FI\J

Vertex

ellipse: foci between vertices hyperbola: vertices between foci

3. What are the foci of

(2)2 + (%)2 —1 ifa<b?

SOLUTION If a < b the foci of the ellipse (j‘—l)2 + (%)2 =1 are at the points (0, ¢) and (0, —c) on the y-axis, where

c=+vb? - a2

y

/b F=00,0)
\ |
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4. What is the geometric interpretation of 5/a in the equation of a hyperbola in standard position?

SOLUTION The vertices, i.e., the points where the focal axis intersects the hyperbola, are at the points (a, 0) and (—a, 0).
The values i% are the slopes of the two asymptotes of the hyperbola.

Hyperbola in standard position

Exercises
In Exercises 1-6, find the vertices and foci of the conic section.

X\2 /2
1 (g) +(3) =t
soLuTIoN This is an ellipse in standard position witha = 9and b = 4. Hence, ¢ = v/92 — 42 = /65 ~ 8.06. The foci
are at F, = (—8.06, 0) and F» = (8.06, 0), and the vertices are (9, 0), (-9, 0), (0,4), (0, —4).

JOROIEE

soLuTION This is a hyperbola in standard position with = 4 and » = 9. Hence, ¢ = va? + b2 = /97 ~ 9.85. The
foci are at (4/97, 0) and the vertices are (+2, 0).

a2 2
5. (F23) (1),
7 4
soLuTION We first consider the hyperbola (%)2 — (%)2 = 1. For this hyperbola, a =7, b =4 and c = V72 + 42 ~
8.06. Hence, the foci are at (8.06, 0) and (—8.06, 0) and the vertices are at (7, 0) and (—7, 0). Since the given hyperbola
is obtained by translating the center of the hyperbola (%)2 - (%)2 = 1 to the point (3, —1), the foci are at F; =

(8.06 +3,0—1) = (11.06, —1)and F, = (—8.06 + 3,0 — 1) = (—5.06, —1) and the verticesare A = (7+3,0— 1) =
(10, -1l and A’ = (=7+3,0—1) = (-4, —-1).

In Exercises 7-10, find the equation of the ellipse obtained by translating (as indicated) the ellipse

(550 (5 =

7. Translated with center at the origin
soLUTION Recall that the equation
(x — h)? N o-k?
a? b2 -
describes an ellipse with center (k, k). Thus, for our ellipse to be located at the origin, it must have equation

1

9. Translated to the right six units
soLUTION Recall that the equation

=1

(x — h)? Lo —k)?
a2 b2
describes an ellipse with center (i, k). The original ellipse has center at (8, —4), so we want an ellipse with center (14, —4).
Thus its equation is

_14)2 2
(x —14) +(y+4) _

62 32 !
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In Exercises 11-14, find the equation of the given ellipse.

11. Vertices (5, 0) and (0, £7)

SOLUTION Since both sets of vertices are symmetric around the origin, the center of the ellipse is at (0, 0). We have
a =5and b = 7, so the equation of the ellipse is

13. Foci (0, +£10) and eccentricity e = %

SOLUTION Since the foci are on the y axis, this ellipse has a vertical major axis with center (0, 0), so its equation is

()G -
Wehavea:5:%2§and

e

2500 1 4
b=+va2—c?2= T—100= §«/2500—90 = —

0
3
X 2 y 2
(40/3> +(%) =1

In Exercises 15-20, find the equation of the given hyperbola.

Thus the equation of the ellipse is

15. Vertices (£3, 0) and foci (£5, 0)

soLuTION  The equation is (£)? — (%)2 = 1. The vertices are (+a, 0) with a = 3 and the foci (£c, 0) with ¢ = 5. We
use the relation ¢ = v/a2 + b2 to find b:

b=V —a?2 =52 -2 =16=4

Therefore, the equation of the hyperbola is

17. Foci (44, 0) and eccentricity e = 2

soLUTION We have ¢ =4 and e = 2; from ¢ = ae we get a = 2, and then
b=vV2—a2 =82 -22=2J3

The hyperbola has center at (0, 0) and horizontal axis, so its equation is

6 -(Za) =

19. Vertices (—3, 0), (7, 0) and eccentricity e = 3

SOLUTION The center is at # = 2 with a horizontal focal axis, so the equation is

2
x—2 y\2
< a ) _(Z) =1
Thena =7—-2=5,and ¢ = ae =5 -3 = 15. Finally,

b=vc2—a2 =152 _52 =102

(-G -

so that the equation of the hyperbola is
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In Exercises 21-28, find the equation of the parabola with the given properties.
21. Vertex (0, 0), focus (5. 0)

soLUTION Since the focus is on the x-axis rather than the y-axis, and the vertex is (0, 0), the equation is x = 4—1€y2.
The focus is (0, ¢) with ¢ = 1—12 so the equation is

23. Vertex (0, 0), directrix y = —5

SOLUTION The equation is y = z-x2. The directrix is y = —c with ¢ = 5, hence y = #x2.

25. Focus (0, 4), directrix y = —4

soLUTION The focus is (0, ¢) with ¢ = 4 and the directrix is y = —c with ¢ = 4, hence the equation of the parabola is

y:Ex :E,

27. Focus (2, 0), directrix x = —2

soLUTION The focus is on the x-axis rather than on the y-axis and the directrix is a vertical line rather than horizontal
as in the parabola in standard position. Therefore, the equation of the parabola is obtained by interchanging x and y in

2
y = 4 x2. Also, by the given information ¢ = 2. Hence, x = £ y% = ;)% orx = 4.
In Exercises 29-38, find the vertices, foci, center (if an ellipse or a hyperbola), and asymptotes (if a hyperbola).

29. x2 +4y2 =16

soLuTION W first divide the equation by 16 to convert it to the equation in standard form:

4

R RGN

LA RN S A
16 1wt

For this ellipse, a = 4 and b = 2 hence ¢ = v/42 — 22 = \/12 ~ 3.5. Since a > b we have:

e The vertices are at (4, 0), (0, £2).

e The foci are F; = (—3.5,0) and F» = (3.5, 0).

¢ The focal axis is the x-axis and the conjugate axis is the y-axis.
o The ellipse is centered at the origin.

_a\2 2
31. X 3 — LH =1

4 7
soLuTION For this hyperbolaa = 4 and b = 7s0 ¢ = V42472 = /65 ~ 8.06. For the standard hyperbola
(2)% = (3)* = 1, we have

e The vertices are A = (4,0) and A’ = (-4, 0).

The foci are F = (+/65, 0) and F’ = (—+/65, 0).

The focal axis is the x-axis y = 0, and the conjugate axis is the y-axis x = 0.
The center is at the midpoint of F F’; that is, at the origin.

The asymptotes y = i%x arey = :I:%x.

The given hyperbola is a translation of the standard hyperbola, 3 units to the right and 5 units downward. Hence the
following holds:
e The verticesareat A = (7, =5) and A’ = (-1, —5).
The foci are at F = (3 + +/65, —5) and F’ = (3 — /65, —5).
The focal axis is y = —5 and the conjugate axis is x = 3.
The center is at (3, —5).
The asymptotes are y +5 = £ (x — 3).
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33. 4x? — 3y? 4 8x + 30y = 215

SOLUTION Since there is no cross term, we complete the square of the terms involving x and y separately:
2 2 _ 2 2 _ 2 2 _
4x2 _ 3y +8x+30y_4(x +2x) —3<y —10y) — 4+ 12— 4-3(y—524+75=215
Hence,

4(x +1)° —3(y —5)> = 144

4x+1)? 3(y-52
144 144

(x+1)2_ (y—5>2_
6 Jag )
2
This is the equation of the hyperbola obtained by translating the hyperbola (%)2 - (\/%) = 1 one unit to the left and
five units upwards. Since a = 6, b = /48, we have ¢ = /36 + 48 = /84 ~ 9.2. We obtain the following table:

1

Standard position  Translated hyperbola
vertices (6,0), (—6,0) (5,5), (=7,5)

foci (£9.2,0) (8.2,5), (—10.2, 5)
focal axis The x-axis y=5
conjugate axis The y-axis x=-1
center The origin (-1,5)

asymptotes y = £1.15x y=-115+385

y=115x +6.15

35. y = 4(x — 4)2

SOLUTION By Exercise 34, the parabola y = 4x2 has the vertex at the origin, the focus at (O, 1—16) and its axis is the
y-axis. Our parabola is a translation of the standard parabola four units to the right. Hence its vertex is at (4, 0), the focus

is at (4, 1—16) and its axis is the vertical line x = 4.

37. 4x% +25y° — 8x — 10y = 20

SOLUTION Since there are no cross terms this conic section is obtained by translating a conic section in standard position.
To identify the conic section we complete the square of the terms involving x and y separately:

2
4x2 4 25y% —8x — 10y = 4(x2 - 2x) 125 (y2 — gy>

l 2
=4(x—1)2—4+25(y—g) —-1

1 2
=4(x—1>2+25<y—§> —5=20
Hence,

1 2
4x — 12 + 25<y - g) =25

4 ) 1\2

STRGEE
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2
This is the equation of the ellipse obtained by translating the ellipse in standard position (%) + y2 = 1 one unit to the
2

right and ¢ unit upward. Since a = 3, b = 1 we have ¢ = (%)2 1 ~ 2.3, 50 we obtain the following table:
Standard position Translated ellipse
Vertices | (+£3.0), 02D (1£3.4).(LE+1)
Foci (-23.0,23.0 (-13.1).(33.3)
Focal axis The x-axis y = %
Conjugate axis The y-axis x=1
Center The origin 1, %)

In Exercises 39-42, use the Discriminant Test to determine the type of the conic section (in each case, the equation is
nondegenerate). Plot the curve if you have a computer algebra system.

39. 4x% 4 5xy +7y? =24
SOLUTION Here, D =25—4.4.7 = —87, so the conic section is an ellipse.
41. 2x° —8xy +3y2 —4=0
SOLUTION Here, D =64 — 4.2 .3 =40, giving us a hyperbola.
43. Show that the “conic” x? + 3y? — 6x + 12y + 23 = 0 has no points.
SoLUTION Complete the square in each variable separately:
—28=x?—6x+3y?+12y = (x> —6x+9 + By2 + 12y +12) —9-12 = (x —3)?> +3(y+2)° - 21
Collecting constants and reversing sides gives
(x =32 +3(y+2?2 =2

which has no solutions since the left-hand side is a sum of two squares so is always nonnegative.

b . .

45. Show that — = m for a standard ellipse of eccentricity e.
a

SOLUTION By the definition of eccentricity:

e=S< @)
a

For the ellipse in standard position, ¢ = v/a2 — b2. Substituting into (1) and simplifying yields
_\/az—bz_ a2—b2_ 1 b\2
€= a - a? - a

We square the two sides and solve for g:

) b\?>  [(b\? s b 5
F=1-(2) 5 (2) =1-2=2=Vi-
a

47. Explain why the dots in Figure 23 lie on a parabola. Where are the focus and directrix located?

FIGURE 23
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soLUTION All the circles are centered at (0, ¢) and the kth circle has radius kc. Hence the indicated point P, on the kth
circle has a distance kc from the point F = (0, ¢). The point P; also has distance k¢ from the line y = —c. That is, the
indicated point on each circle is equidistant from the point F = (0, ¢) and the line y = —c, hence it lies on the parabola
with focus at F = (0, ¢) and directrix y = —c.

3c

0¥ s

y=-¢

49. A latus rectum of a conic section is a chord through a focus parallel to the directrix. Find the area bounded by the
parabola y = x2/(4c) and its latus rectum (refer to Figure 8).

SOLUTION The directrix is y = —c, and the focus is (0, ¢). The chord through the focus parallel to y = —c is clearly

y = ¢; this line intersects the parabola when ¢ = x2/(4c) or 4¢? = x2, so when x = £2¢. The desired area is then
2c 1 1 2c
/ c— —x%dx = (cx — —x3
—2¢ 4c 12¢ ¢

3 —2¢0)3 4
:202—8C—<—202—( ) )2462—3C2=862

In Exercises 51-54, find the polar equation of the conic with the given eccentricity and directrix, and focus at the origin.

5lLe=3, x=3

SOLUTION Substituting e = % and d = 3 in the polar equation of a conic section we obtain

Nl

ed -3 3 N 3
r = = = = —
1+ ecosf l+%c039 2 +cos 6 2 4 cosf

3. e=1, x=4
soLUTION We substitute e = 1 and d = 4 in the polar equation of a conic section to obtain

_ e _ 14 4 4
T 1tecos6 1+1-cos6 1+cos6 ~  1+cosd

In Exercises 55-58, identify the type of conic, the eccentricity, and the equation of the directrix.
_ 8
" 144cosh

soLUTION Matching with the polar equation r = H:ﬁ we get ed = 8 and e = 4 yielding d = 2. Since e > 1, the
conic section is a hyperbola, having eccentricity e = 4 and directrix x = 2 (referring to the focus-directrix definition (11)).

_ 8
" 4+ 3cos6

. . . . _ ed . .
soLuTION  We first rewrite the equation in the form r = %, obtaining

55. r

57. r

2
r=——a
1+Zcose

Hence, ed =2 and e = % yielding d = %. Since e < 1, the conic section is an ellipse, having eccentricity e = % and
directrix x = %.
59. Find a polar equation for the hyperbola with focus at the origin, directrix x = —2, and eccentricity e = 1.2.

SOLUTION We substitute d = —2 and e = 1.2 in the polar equation r = H;% and use Exercise 40 to obtain

1.2.(-2) —2.4 -12 12

" T 1f12cos6 1+12cos6 5+6cosf 5—6cosh
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61. Find an equation in rectangular coordinates of the conic
16
g = —
5+ 3cosé
Hint: Use the results of Exercise 60.
SOLUTION Put this equation in the form of the referenced exercise:

16 16 3
16 5 35

5+3cosf 1+ 2 cosd B 1+ 3 cosé

so thate = % andd = %6. Then the center of the ellipse has x-coordinate

de? $.% 16 9 25
1.2 9 T "3 "925 18
l—e 1-5% 3 25 16
and y-coordinate 0, and A has x-coordinate
de _ %5 _ 1635
l—e 1_%_ 3 5 2

and y-coordinate 0, so « = —3 — (—8) = 5, and the equation is
x+3\%2  /y\2
< 5 ) +(3) =1

To find b, set§ = %; thenr = %O§. But the point corresponding to 6 = % lies on the y-axis, so has coordinates <0, %?)
This point is on the ellipse, so that

2
0+3\% (¥ 256 16 256
-2 S =1 == - =22~ 16 b=4
( 5 ) +<b M -

and the equation is

(22 ()=

63. Kepler’s First Law states that planetary orbits are ellipses with the sun at one focus. The orbit of Pluto has eccentricity
e ~ 0.25. Its perihelion (closest distance to the sun) is approximately 2.7 billion miles. Find the aphelion (farthest
distance from the sun).

soLuTION We define an xy-coordinate system so that the orbit is an ellipse in standard position, as shown in the figure.

y

A'(-a, 0) /_ mA(a, 0

Fi(c, 0)

The aphelion is the length of A’ F1, that is a + c. By the given data, we have
025=c= 2 = ¢=0.25a
a—c=21T=c=a—-27
Equating the two expressions for ¢ we get

0.25a =a — 2.7

2.7
75a = 2.7 =—=36,¢c=36-27=0.
0.75a =a 0TS 3.6, c=3.6 0.9

The aphelion is thus

A'Fg =a + ¢ = 3.6 + 0.9 = 4.5 billion miles.
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Further Insights and Challenges
65. Verify Theorem 2.

SOLUTION Let F; = (¢,0) and F», = (—c, 0) and let P (x, y) be an arbitrary point on the hyperbola. Then for some
constant a,

PFy — PFy =22a

y

Fy=(-c,0) F1=(c,0)
> X

- /
TXP=(xY)

Using the distance formula we write this as

Joa—o? 32— Jat ot +y2 =42

Moving the second term to the right and squaring both sides gives

\/(X—C)2+y2=\/(x+c)2+y2:|:2a
(X_C)2+y2:(X+C)2+y2:|:4a\/m_|_4a2
(x—0)% —(x+0)% —4a® = ﬂ:4a\/m
XC+a2=ﬂ:a\/m

We square and simplify to obtain
x2c% + 2xca® + a* = a? ((x + 6)2 + yz)
= ax? + 2a®xc + a®c? + a2y2

(62 _ az) 2 azyz — g2 (62 _ az)
2

X
I A—
2 22

Forb = +v/c? — a2 (or ¢ = va? + b?) we get

X ye x\2 y\2

2w =t= () -(G) -t
67. Verify that if e > 1, then Eq. (11) defines a hyperbola of eccentricity e, with its focus at the origin and directrix at
x=d.

SOLUTION The points P = (r, 6) on the hyperbola satisfy PF = ¢P D, e > 1. Referring to the figure we see that
PF=r,PD=d—rcoso 1)
Hence

r =e(d —rcosf)

r = ed — er COSO
ed

1+ecos®)=ed=>r=—
ril+e y=e ! 14 ecosé
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rcos €
d—rcos 8

x=d
Remark: Equality (1) holds also for 6 > % For example, in the following figure, we have

PD=d+rcos(r —6)=d—rcosb

rcos (7— 6)
——

A

Reflective Property of the Ellipse In Exercises 68-70, we prove that the focal radii at a point on an ellipse make equal
angles with the tangent line £. Let P = (xg, yg) be a point on the ellipse in Figure 25 with foci F; = (—c¢, 0) and
Fy = (c, 0), and eccentricity e = c/a.

(a1, BY) Y

P = (X0, Yo)
/

\1b\
% Ry = (az B2)
DR
// )
N
Q .

FIGURE 25 The ellipse (2)2 + (%)2 =1

69. Points Ry and Ry in Figure 25 are defined so that F; Ry and F» R, are perpendicular to the tangent line.
(a) Show, with A and B as in Exercise 68, that

a1+c ap—c A

B1 B2 B

(b) Use (a) and the distance formula to show that
nR_ A
F2Ry B2
(c) Use (a) and the equation of the tangent line in Exercise 68 to show that
by — B(1+ Ac) _ B(1-Ao)
YT a2 27 AT B2

SOLUTION
(a) Since R1 = (a1, B1) and Ry = (a2, B2) lie on the tangent line at P, that is on the line Ax + By = 1, we have

Aag+ BB =1 and Aax+ BB =1

The slope of the line R{ F is and it is perpendicular to the tangent line having slope — % Slmllarly, the slope of

B
ai+c
the line Ry Fy is ’52 - and it is also perpendicular to the tangent line. Hence,

0l1+C_é and ozg—c_é
P1 B B2 B’
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(b) Using the distance formula, we have

_2
RiF1” = (a1 4 ¢)% + B2

2
RiFy” = B} (("‘1/;6) +1) @

By part (a), “};l“c = 4. Substituting in (1) gives

Thus,

2
— ) A
R1F™ =B8] <32 + 1> 2
Likewise,
R F2 2 2 2 (e2—c)?
RoFy = (a2 — 0+ B2 =p2 5 +1 3
but since %2-¢ = 4 substituting in (3) gives
— A2
RyFp” = 2 <32+1)' (@)
Dividing, we find that
Rily AL KR A
Ry F22 ﬂzz Ry F B2
as desired.
(c) In part (a) we showed that
Aa; +Bp1 =1
Pr _B
ar+c A
Eliminating «1 and solving for 81 gives
B(1+ Ac)
= —>". 5
bL=—"7 g ®)
Similarly, we have
Aas +Bpr =1
P2 _ B
ap—c A
Eliminating ap and solving for 8o yields
B(1— Ac)
2 =7 6
Po=— 53 (6)

71. & Here is another proof of the Reflective Property.

(a) Figure 25 suggests that £ is the unique line that intersects the ellipse only in the point P. Assuming this, prove that
QF1 + QF> > PF1 + PF, for all points Q on the tangent line other than P.

(b) Use the Principle of Least Distance (Example 6 in Section 4.7) to prove that 61 = 65.

SOLUTION

(a) Consider a point Q # P on the line £ (see figure). Since L intersects the ellipse in only one point, the remainder of
the line lies outside the ellipse, so that Q R does not have zero length, and F> QR is a triangle. Thus

QF1+QF)=QR+RF1+ QF)=RF1+(QR+ QFy) > RF1 + RF»

since the sum of lengths of two sides of a triangle exceeds the length of the third side. But since point R lies on the ellipse,
RFy + RF, = PFy + P Fy, and we are done.
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(b) Consider a beam of light traveling from Fy to F, by reflection off of the line £. By the principle of least distance,
the light takes the shortest path, which by part (a) is the path through P. By Example 6 in Section 4.7, this shortest path
has the property that the angle of incidence (61) is equal to the angle of reflection (65).

73. Show that y = x2/4c is the equation of a parabola with directrix y = —¢, focus (0, ¢), and the vertex at the origin,
as stated in Theorem 3.

SOLUTION The points P = (x, y) on the parabola are equidistant from F = (0, ¢) and the line y = —c.

That is, by the distance formula, we have

PF=PD

VA2 + =02 =1y+c

Squaring and simplifying yields

-0 =0+0?
xz—i—yz—Zyc—i—cz=y2—|—2yc—|—c2
x2—2yc=2yc

x2

2
* e=r 4c

Thus, we showed that the points that are equidistant from the focus F = (0, ¢) and the directrix y = —c satisfy the
. 2
equation y = .

75. & Derive Eqgs. (13) and (14) in the text as follows. Write the coordinates of P with respect to the rotated axes
in Figure 21 in polar form x’ = r cosa, y' = r sina. Explain why P has polar coordinates (r, « + 0) with respect to the
standard x and y-axes and derive Egs. (13) and (14) using the addition formulas for cosine and sine.

soLuTION If the polar coordinates of P with respect to the rotated axes are (r, «), then the line from the origin to P
has length » and makes an angle of « with the rotated x-axis (the x’-axis). Since the x’-axis makes an angle of  with the
x-axis, it follows that the line from the origin to P makes an angle of « + 6 with the x-axis, so that the polar coordinates
of P with respect to the standard axes are (r, « + 8). Write (x’, y’) for the rectangular coordinates of P with respect to
the rotated axes and (x, y) for the rectangular coordinates of P with respect to the standard axes. Then

x =rcos(a +6) = (rcosa) cosh — (rsina)sind = x’cosh — y'sing

y =rsin(a+0) =rsinacosd +rcosasingd = (r cosa) sinf + (rsina) cosd = x’sinb + y’ cos o

CHAPTER REVIEW EXERCISES

1. Which of the following curves pass through the point (1, 4)?
@) ct) = (2,1 +3) (b) c(r) = (1%, 1 —3)
© ct)=@%3-1) (d) c(r) = (t — 3,12
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SOLUTION To check whether it passes through the point (1, 4), we solve the equations c(r) = (1, 4) for the given curves.
(a) Comparing the second coordinate of the curve and the point yields:

t+3=4
t=1
We substitute r = 1 in the first coordinate, to obtain
?=12=1

Hence the curve passes through (1, 4).
(b) Comparing the second coordinate of the curve and the point yields:

t—3=4
t=17
We substitute r = 7 in the first coordinate to obtain
2 =72=49£1

Hence the curve does not pass through (1, 4).
(c) Comparing the second coordinate of the curve and the point yields

3—t=4
r=-1
We substitute + = —1 in the first coordinate, to obtain
?=(-1?=1

Hence the curve passes through (1, 4).
(d) Comparing the first coordinate of the curve and the point yields

t—3=1
t=4
We substitute # = 4 in the second coordinate, to obtain:
?=42-16+4
Hence the curve does not pass through (1, 4).

3. Find parametric equations for the circle of radius 2 with center (1, 1). Use the equations to find the points of intersection
of the circle with the x- and y-axes.

soLUTION Using the standard technique for parametric equations of curves, we obtain
c(t) =1 +2cost,1+2sint)

We compare the x coordinate of ¢(¢) to O:

142cost=0
1
cosr:—E
P
3

Substituting in the y coordinate yields

2 3
l+2$in<i§):1i2§:1i«@

Hence, the intersection points with the y-axis are (0, 1 & +/3). We compare the y coordinate of ¢ () to 0:
1+4+2sint=0

sint = L
)
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Substituting in the x coordinates yields

T V3
1+2003(—g)=1+27=1+«/§

7 T V3
1+2cos<én> =1—2cos(g)=1—27=1—«@

Hence, the intersection points with the x-axis are (1 £ /3, 0).
5. Find a parametrization ¢(0) of the unit circle such that ¢(0) = (-1, 0).

SOLUTION The unit circle has the parametrization
c(t) = (cost,sint)

This parametrization does not satisfy ¢(0) = (—1, 0). We replace the parameter ¢ by a parameter 6 so thatr = 6 + «, to
obtain another parametrization for the circle:

c*(0) = (cos(@ + ), sin(® + a)) @
We need that ¢*(0) = (1, 0), that is,

¢*(0) = (cose, sina) = (—1,0)
Hence

cosa = —1
sina =0

Substituting in (1) we obtain the following parametrization:
c*(8) = (cos(f + m), sin(@ + 7))

7. Find a path c(¢) that traces the line y = 2x + 1 from (1,3) to (3,7) for0 < ¢ < 1.

soLUTION Solution 1: By one of the examples in section 12.1, the line through P = (1, 3) with slope 2 has the
parametrization

ct)=01A+1t,3+2r)

But this parametrization does not satisfy ¢(1) = (3, 7). We replace the parameter ¢ by a parameter s so that t = as + B.
We get

) =A+as+B,3+2as+p) =(as+B+1,2as+28+3)
We need that ¢*(0) = (1, 3) and ¢*(1) = (3, 7). Hence,
c*0)=(1+8,3+28)=(,3)
Al =@+p+1,2a+28+3) =3,7)

We obtain the equations

1+8=1

3+28=3
p = B=0a=2

a+p+1=3

204+28+3=7
Substituting in (1) gives
c*(s)=2s+1,4s +3)
Solution 2: The segment from (1, 3) to (3, 7) has the following vector parametrization:
A-0L3)+:t@3,7N={1—-1t+3t,30—-1t)+7t) =(14+2t,34+4t)
The parametrization is thus

c(t) = (1+2t,3+4t)
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In Exercises 9-12, express the parametric curve in the form y = f(x).

9. ¢(t) =(4r—-3,10—1)
soLUTION We use the given equation to express ¢ in terms of x.

x =4t -3

4t =x+3
_x+3
T4

Substituting in the equation of y yields
x+3 X 37

4 4+4

y=10—1=10—

That is,

2 1
11. c(t) = (3 - ;,z3 + ?>

soLUTION We use the given equation to express ¢ in terms of x:

2
x=3— -
t
-=3—x
t— 2
T 3—x

Substituting in the equation of y yields

_<2>3+ 1 _ 8  8-x
YE\3Tx) T T 303 T2

In Exercises 13-16, calculate dy/dx at the point indicated.

13. c(t) = (3 +1,t2—-1), t=3

157

SOLUTION The parametric equations are x = 3 + ¢ and y = 2 — 1. We use the theorem on the slope of the tangent

; ioq dy .
line to find T

d _ G2

dx ~ % - m
We now substitute r = 3 to obtain
dy 2-3 3
dx|,_3 3-32+1 14
15. ¢(t) = (¢! —1,sint), t =20
soLUTION We use the theorem for the slope of the tangent line to find %:

d .
dy % _ (sint)  cost

d t / t
dx dit‘ (el — 1) e
We now substitute r = 20:

dy _ cos20
dx|—g 20

17. £AS  Find the point on the cycloid ¢(r) = (r — sin¢, 1 — cos¢) where the tangent line has slope %
SOLUTION Sincex = —sint and y = 1 — cos ¢, the theorem on the slope of the tangent line gives

d .
dy sint
dx ~ dx ~ 1—cost

dt
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The points where the tangent line has slope % are those where % = % We solve for ¢:
dy 1
dx 2
sint 1
i 1
l—cost 2 @

2sint =1 —cost

We let u = sinz. Then cos7 = +v/1 — sin?s = ++v/1 — u2. Hence
2u=1++v1—-u?

We transfer sides and square to obtain

+V1-ul=2u—-1
1—u?=4u? —du+1
5u2 — 4u = u(Gu —4) =0

4
=0, u=-
u u 5

We find 7 by the relation u = sin¢:
u=0: sint=0=r=0,t=m

4 4
=—: sint= - t~0.93,r~221
u 5 5 =
These correspond to the points (0, 1), (r, 2), (0.13, 0.40), and (1.41, 1.60), respectively, for0 < ¢t < 27.
19. Find the equation of the Bézier curve with control points

soLUTION \We substitute the given points in the appropriate formulas in the text to find the parametric equations of the
Bézier curve. We obtain

x(t)=—1-0° =30 -2 +2A—1) +7°
=—(1-3t+ 32 — t3) — 3t — 612 +3t3) + (t2 — z3) +13
= (23 + 42 - 1)

y(i)=—(1- t)3 +3r (1 — t)2 +t2(l —1) — 3
=—-(1-3t +312 - t3) + 3t — 612 +3t3) + (t2 - t3) -3

= (2t3 — 82 + 61 — 1)

21. Find the speed (as a function of ¢) of a particle whose position at time 7 seconds is c(t) = (sint + ¢, cost + t). What
is the particle’s maximal speed?

soLUTION \We use the parametric definition to find the speed. We obtain

ds . .
= \/((smt +1))2 + ((cost +1))2 = \/(cost + 1)2 + (1 —sinr)?

:\/c052t+2cosz+1+1—25inz+sinzz =+/3+2(cost —sint)

We now differentiate the speed function to find its maximum:

d?s 3T 2ot —snD / —sinz —cost
_( 3+2(COSt_S|m)) © 3+ 2(cost —sint)

di2
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We equate the derivative to zero, to obtain the maximum point:

—sint — cost
J3+2(cost —sint)

—sint —cost =0

—sint = cost

sin(—t) = cos(—t)

—t:%—f—rrk
t n+ k
=——+4

4

Substituting ¢ in the function of speed we obtain the value of the maximal speed:

\/3+2(cos—%—sin—%) = 3+2(ﬁ— (—ﬁ>> =/3+2V2

2 2

In Exercises 23 and 24, let c(r) = (e~ cost, e~ ! sint).

23. Show that c¢(¢) for 0 < ¢ < oo has finite length and calculate its value.

soLUTION We use the formula for arc length, to obtain:

s = /Oo \/((e_’ c0st))2 + ((e~" sinr))2dt
0

o
= / \/(—e—f cost — e~!sint)2 4+ (—e~! sint + e~ cost)2ds
0

o0
=/ \/e—ZI(COSt +5sint)2 + e=2(cost — sinr)2dt
0

o0
= / e”\/coszt +2sinzcost +sin? ¢ + cos2 ¢t — 2sint cost + sin? tdt
0

=/Ooe"ﬁdt=f2(—e") = —ﬁ( lim e~ _60>
0 t—00

o0

0
=—V20-1)=+2

25. CAS Plot c(r) = (sin2t,2cost) for 0 < ¢+ < . Express the length of the curve as a definite integral, and

approximate it using a computer algebra system.

SsoLUTION We use a CAS to plot the curve. The resulting graph is shown here.

Plot of the curve (sin 2¢, 2 cost)
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To calculate the arc length we use the formula for the arc length to obtain

b T
5= / \/(2 €05 21)2 + (=2sin)2dr = 2/ \/cos2 2t + sin? ¢ dt
0 0

We use a CAS to obtain s = 6.0972.

27. Convert the points (r, 0) = (L. &), (3. 3F) from polar to rectangular coordinates.

soLUTION \We convert the points from polar coordinates to cartesian coordinates. For the first point we have

T V3

=rcosf =1-c0s— = —
X r 6 2

sing =1 sinn !
=r = . —_— = =
Y 6 2

For the second point we have

cos® = 3cos o —3\[2
=r = —_— = =
* 4 2
. 57 3V2
=rsing =3sin — = ———
y=r 4 2
. 2cosé L .
29. Write r = ——————— as an equation in rectangular coordinates.
cos® —sinf

soLuTION We use the formula for converting from polar coordinates to cartesian coordinates to substitute x and y for
rand 6:

2cos6
r=—
cosf —sin6

2r cos o
rcosf —rsing

2x
[x2 4 y2 =
X =y

X242 =

31. Convert the equation

9% +y%) = (x? +y2 —2y)?
to polar coordinates, and plot it with a graphing utility.

soLUTION \We use the formula for converting from cartesian coordinates to polar coordinates to substitute » and 6 for
x and y:

92 + %) = (x? + y% — 2y)?
or2 = (r2 — 2rsin 0)2

3r =72 —2rsing

3=r—2sin6
r=3+2sino
The plot of r = 3 + 2sin 6 is shown here:

5

4

3 r=3+2sin6

2

1

0

-1

-2

Plot of r =3 4 2sin 0
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33. Calculate the area of one petal of » = sin 46 (see Figure 1).

n =2 (4 petals) n =4 (8 petals) n =6 (12 petals)
FIGURE 1 Plot of r = sin(n0).

soLUTION We use a CAS to generate the plot, as shown here.

4sino

2108 04 0 04 081

Plot of r = sin 49

. [% . .
We can see that one leaf lies between the rays 6 =0and 6 = 7 We now use the formula for area in polar coordinates to

obtain
/4
0 )

1A, 1[4 1 sin 860
A=<z sin®40do = =~ 1—cos80)dd == [0 —
2]0 4/0 ( ) 4 8

T 1 . . b4
=E—§(sm2n—sm0)_E

35. Calculate the total area enclosed by the curve 2 = cosgeSin? (Figure 2).

FIGURE 2 Graph of r2 = cos6eSin?.

soLuTION Note that this is defined only for 6 between —sr /2 and 7 /2. We use the formula for area in polar coordinates
to obtain:

1 [7/2 1 [7/2 .
Asz r2d0:f/ cos 057 dp
2 —1/2 2 —1/2

We evaluate the integral by making the substitution x = sin6 dx = cos6 d6:

1
“3ee)

1 2

37. Find the area enclosed by the cardioid » = a(1 + cos#), where a > 0.

1 [7/2 i 1 1
A= 7/ cos0eSNPdp = Ze*
2 ) np2 2

soLUTION The graph of r = a (1 + cos9) in the r6-plane for 0 < 6 < 27 and the cardioid in the xy-plane are shown
in the following figures:
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h
|
!
k3 T 3n 2n
2

r =a(l+cos6) The cardioid r = a (1 +c0s6),a >0

As 6 varies from 0 to  the radius r decreases from 2a to 0, and this gives the upper part of the cardioid.
The lower part is traced as 6 varies from 7 to 27 and consequently r increases from 0 back to 2a. We compute

the area enclosed by the upper part of the cardioid and the x-axis, using the following integral (we use the identity
cos? 6 = 1 + 3 cos29):

1 (7 2 1 (7 5 5 a2 T 5
S| 2ae=Z | a2 +cosh)?de =L (1+20059+cos 9) do
2 Jo 2 Jo 2 Jo

2 pm 2 pm

a 1 1 a 3 1

= — 1+4+2cos6 + =+ =cos20 ) do = — — +2c0s6 + = cos20 | do
2/0(+ 272 ) 2/0<2+ T2 )
T a2
2

2 2
a“c [ 36 . 1 . 3 . 1 . 3ma
= — +2sin —sin2 — +2sin —sin2r — 0| =

[ +2s 9+4s 9] [2 +2s 7r+4s T O] 2

212

0

Using symmetry, the total area A enclosed by the cardioid is

A2 37ra2_37ra2
a 4 2

39. £H5  Figure 5 shows the graph of r = ¢%-57 sin 6 for 0 < 6 < 27. Use a computer algebra system to approximate
the difference in length between the outer and inner loops.

| + X
FIGURE 5

soLUTION \We note that the inner loop is the curve for 6 € [0, ], and the outer loop is the curve for 6 € [z, 27]. We
express the length of these loops using the formula for the arc length. The length of the inner loop is

™ ™ 059 sing 2
51 = /O \/(e0'59 sin)2 + ((0-% sin 0)")2d6 = /0 efsin2o + (# + 050 cos@) de

and the length of the outer loop is

2 0.50 gin o 2
sy = / \/ef’ sin 6 + <7e 5 + 050 cos@) do
T

We now use the CAS to calculate the arc length of each of the loops. We obtain that the length of the inner loop is 7.5087
and the length of the outer loop is 36.121, hence the outer one is 4.81 times longer than the inner one.

In Exercises 41-44, identify the conic section. Find the vertices and foci.

w (4 ()=

soLuTIoN This is an ellipse in standard position. Its foci are (+/32 —22,0) = (£+/5,0) and its vertices are
(£3,0), (0, £2).
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43 (2x+3y)? =4— (x — y)?

soLUTION We simplify the equation:

1 2
(2x+§y) =4—(x —y)?

1
4x2+2xy+zy2=4—x2+2xy—y2
5
5x2+>y2 =4
X +4y
5x2 5y2_
4 16

This is an ellipse in standard position, with foci

1) (5)-
(o=

T 7 ) (0 +/2 ) and vertices (-2 Z. 0),

(0=)

In Exercises 45-50, find the equation of the conic section indicated.
45. Ellipse with vertices (8, 0) and foci (£+4/3,0)
soLUTION Since the foci of the desired ellipse are on the x-axis, we conclude that a > b. We are given that the points

(8, 0) are vertices of the ellipse, and since they are on the x-axis, a = 8. We are given that the foci are (£+/3, 0) and
we have shown that a > b, hence we have that v/a? — b2 = /3. Solving for b yields

Va2 = 3
a? —p? =3
82 —p> =3

b =61
b=+/61

Next we use a and b to construct the equation of the ellipse:

2
x\2
() -
8 V61
47. Hyperbola with vertices (18, 0), asymptotes y = i%x

SOLUTION Since the asymptotes of the hyperbola are y = i—%x, and the equation of the asymptotes for a general

hyperbola in standard position is y = i%x, we conclude that % = %. We are given that the vertices are (48, 0), thus
a = 8. We substitute and solve for b:

>~ OIS S

D MW MW

Next we use a and b to construct the equation of the hyperbola:

-G -

49. Parabola with focus (8, 0), directrix x = —8
soLUTION This is similar to the usual equation of a parabola, but we must use y as x, and x as y, to obtain

1 V2.

~ 32
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51. Find the asymptotes of the hyperbola 3x2 4+ 6x — y2 — 10y = 1.

soLuTION We complete the squares and simplify:

3x2+6x—y2—10y=1
3(x2+2x)—(y2+10y) =1
3% +2x+1—-1)— (> +10y+25—-25) =1
3x+1)?—-3—(y+5°+25=1

3+ 12— (y+572%=-21

() ) -

We obtained a hyperbola with focal axis that is parallel to the y-axis, and is shifted —5 units on the y-axis, and —1 units
in the x-axis. Therefore, the asymptotes are

x+1=:|:\/%(y+5) or y+5==+v3(x+1).

53. Show that the relation % = (e — l)f holds on a standard ellipse or hyperbola of eccentricity e.

soLUTION \We differentiate the equations of the standard ellipse and the hyperbola with respect to x:

Ellipse: Hyperbola:

2 2 2 2
Xy ¥y
a2 b2 a2 b2
2x  2yd 2 2y d
2 2ydy o 2 2vdy _
a? ' b?dx a? b2 dx
dy b2 x dy b2 x
dx ~ a2y dx a2y

.. . . 2_12 2 . . 2
The eccentricity of the ellipse is e = Y%= hence ¢2a? = a2 — b2 ore? = 1 — 2—2 yielding Z—z =1-—¢2
.. . 2 2 2 .. 2
The eccentricity of the hyperbola is e = Y9 2% ‘hence e2a? = a? + b2 or e? = 1 + 2—2, giving 2—2 =2 — 1.

- . : dy .
Combining with the expressions for ﬁ we get:

Ellipse: Hyperbola:
dy

dx

d
——l-AHr=(@P-n= ZL-@2-n=
y y dx y
We, thus, proved that the relation % = (e? — 1)% holds on a standard ellipse or hyperbola of eccentricity e.

55. Refer to Figure 25 in Section 11.5. Prove that the product of the perpendicular distances F1 R and F» Ry from the
foci to a tangent line of an ellipse is equal to the square b2 of the semiminor axes.

soLUTION \We first consider the ellipse in standard position:

2 2
X
=l
a b
The equation of the tangent line at P = (xg, yg) is
xoX Yoy _
a? b2

or
bzxox + azyoy —a’b?> =0
The distances of the foci F; = (¢, 0) and F» = (—c, 0) from the tangent line are

I b2xgc — alb? b2xgc + a2b?
F1R1=| 0 | F2R2=| oc + |

,/b4xg +a4y5 ,/b4xg +a4y§
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We compute the product of the distances:

(bzxoc - azbz) (bzxoc + a2b2>
F1R, - FoRy = =
b4x§ + a4y8

b4x502 — a*p*
b4x8 + a4yg

)

The point P = (xg, yo) lies on the ellipse, hence:

K22
% + b% =1= a4yo = a*p? azbzxg
a
We substitute in (1) to obtain (notice that b2 — a2 = —c?)
R EBR |b4xéc2 - a4b4| |b4x§c2 — a4b4|
1R1-FoRy = =
b4x2 + a%b? — a2b2x3| |22 — a?)xE + a*b?|
R —atht g —at) NI
| = b2x3c2 +a*p?| | — (xfc? — a%)|

The product F1 R1 - F» Ro remains unchanged if we translate the standard ellipse.



12 VECTOR GEOMETRY

12.1 Vectors in the Plane (LT Section 13.1)

Preliminary Questions

1. Answer true or false. Every nonzero vector is:
(a) Equivalent to a vector based at the origin.
(b) Equivalent to a unit vector based at the origin.
(c) Parallel to a vector based at the origin.
(d) Parallel to a unit vector based at the origin.

SOLUTION
(a) This statement is true. Translating the vector so that it is based on the origin, we get an equivalent vector based at the
origin.

(b) Equivalent vectors have equal lengths, hence vectors that are not unit vectors, are not equivalent to a unit vector.

(c) This statement is true. A vector based at the origin such that the line through this vector is parallel to the line through
the given vector, is parallel to the given vector.

(d) Since parallel vectors do not necessarily have equal lengths, the statement is true by the same reasoning as in (c).
2. What is the length of —3a if ||a]| = 5?

SOLUTION Using properties of the length we get
—3all =|-3lllall =3llall =3-5=15

3. Suppose that v has components (3, 1). How, if at all, do the components change if you translate v horizontally two
units to the left?

SOLUTION Translating v = (3, 1) yields an equivalent vector, hence the components are not changed.
4. What are the components of the zero vector based at P = (3, 5)?
SOLUTION The components of the zero vector are always (0, 0), no matter where it is based.

5. True or false?
(a) The vectors v and —2v are parallel.
(b) The vectors v and —2v point in the same direction.

SOLUTION
(a) The lines through v and —2v are parallel, therefore these vectors are parallel.

(b) The vector —2v is a scalar multiple of v, where the scalar is negative. Therefore —2v points in the opposite direction
asv.

6. Explain the commutativity of vector addition in terms of the Parallelogram Law.

SOLUTION To determine the vector v + w, we translate w to the equivalent vector w’ whose tail coincides with the head
of v. The vector v + w is the vector pointing from the tail of v to the head of w'.

To determine the vector w + v, we translate v to the equivalent vector v/ whose tail coincides with the head of w. Then
w + Vv is the vector pointing from the tail of w to the head of v'. In either case, the resulting vector is the vector with the
tail at the basepoint of v and w, and head at the opposite vertex of the parallelogram. Therefore v +w = w + v.
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Exercises

1. Sketch the vectors vq, v, v3, v4 with tail P and head Q, and compute their lengths. Are any two of these vectors
equivalent?

V1 Vo V3 Vg
P24 | (13|13 | &I
0| 44| L3y | 24 |63

SOLUTION Using the definitions we obtain the following answers:

Vi=PQ=(4—24—4)=(2,0) Vo =(1-(-1),3-3) = (2,0)
Ivill = V22 +02 =2 Ivall = V22 +02 =2
y y
P.V:.Q Po—»\/.ZQ
“““““““ X I e e e A
v3={(2-(-1),4-3)=(3,1) Vp=(6-4,3-1)=(272)
[vall = v32 +12 = V10 [Vall = V22 +22 = /8 =212
y y
Q
Po//\lv. oQ
3 P/</4
vvvvvvvvvvvvvv X —————t +————t—+—+— X

v1 and v, are parallel and have the same length, hence they are equivalent.

3. What is the terminal point of the vector a = (1, 3) based at P = (2, 2)? Sketch a and the vector ag based at the origin
and equivalent to a.

soLUTION The terminal point Q of the vector a is located 1 unit to the right and 3 units up from P = (2, 2). Therefore,
0 =(2+1,2+3) = (3,5). The vector ag equivalent to a based at the origin is shown in the figure, along with the
vector a.

In Exercises 5-8, find the components of P_Q>.
5. P=(3,2), 0=2,7)

soLUTION Using the definition of the components of a vector we have P_Q> =(2-3,7-2)=(-1,5).
7. P=(3,5, 0=(@1,-9

SOLUTION By the definition of the components of a vector, we obtain P_>Q =(1-3,—-4-5) =(-2,-9).



168 CHAPTER 12 | VECTOR GEOMETRY (LT CHAPTER 13)

In Exercises 9-14, calculate.
9. (2,1)+(3,4)
SOLUTION Using vector algebra we have (2,1) + (3,4) = (2+ 3,1+ 4) = (5,5).
11. 5(6,2)
SOLUTION 5(6,2) = (5-6,5-2) = (30, 10)

13 (-3.5)+(3 %)

SOLUTION The vector sum is —} 5 + LO = —E+3 5—1—9 = §5
2’3 "3/ 2 T3 3/ \2°7f

15. Which of the vectors (A)—(C) in Figure 21 is equivalent to v — w?

M T T
A ®)

FIGURE 21

©

SOLUTION The vector —w has the same length as w but points in the opposite direction. The sum v + (—w), which is
the difference v — w, is obtained by the parallelogram law. This vector is the vector shown in (b).

123456><
FIGURE 23

SOLUTION The scalar multiple 2v points in the same direction as v and its length is twice the length of v. It is the vector
2v = (4, 6).

N w s g
N
<
N w s g

\

X X
123 456 123 456

—w has the same length as w but points to the opposite direction. It is the vector —w = (—4, —1).

y

-W

The vector sum v + w is the vector:
V+w=(2,3)+(4,1) = (6,4).

This vector is shown in the following figure:



SECTION 12.1 | Vectors in the Plane (LT SECTION 13.1)

V+w

The vector 2v — w is

2v—w=2(2,3)—(4,1) = (4,6) — (4,1) = (0, 5)
It is shown next:

19. Sketchv = (0, 2), w = (=2, 4), 3v +w, 2v — 2w,
soLUTION \We compute the vectors and then sketch them:

3v+w=23(0,2) + (—2,4) = (0, 6) + (—2, 4) = (-2, 10)
2v —2w = 2(0,2) — 2(—2,4) = (0,4) — (—4,8) = (4, —4)
y

3v+w

2V — 2w

21. Sketch the vector v such that v + vq 4+ vo = 0 for vy and vo in Figure 24(A).

y y

V.
3t 4y 8
] 1 A o
+ + X X
-3 1
V1
(A (B
FIGURE 24
SOLUTION Since v + v; + vo = 0, we have that v = —v1 — vp, and since vi = (1,3) and vo = (=3, 1), then
V= —Vy —Vp = (2, —4), as seen in this picture.
y
3+ 1
Vo 1
X
-3 v1 2
Ay
AY
\
\
4 w

169
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23. Letv = P_Q> where P = (—2,5), Q0 = (1, —2). Which of the following vectors with the given tails and heads are
equivalent to v?

(@ (=3,3), 0.4 (b) (0,0), (3,-7)
(C) (_17 2)7 (25 _5) (d) (47 _5)1 (17 4)

SOLUTION Two vectors are equivalent if they have the same components. We thus compute the vectors and check
whether this condition is satisfied.

—

V=P0=(1-(-2),-2-5) =(3,-7)

(@ (0-(=3),4-3)=3,1) (b) 3—-0,—-7-0)=(3,-7)
(© 2-(=1,-5-2)=(@3,-7) (d) (1-4,4—(-5)=(=3,9)
We see that the vectors in (b) and (c) are equivalent to v.
In Exercises 25-28, sketch the vectors AB and P Q, and determine whether they are equivalent.
25.A=(11), B=@3, 7, P=4 -1, 0=(,5
soLUTION \We compute the vectors and check whether they have the same components:

AB=(3-17-1)=(26)

—_ = The vectors are equivalent.
PO =(6-45-(-1)=(26)

27. A=(-3,2, B=(0,0), P=(0,0, Q0=(@3,-2
—> —
soLUTION We compute the vectors AB and PQ :

—
AB = (0—(=3),0—2) = (3, -2)

— = The vectors are equivalent.
PO=(3-0,-2-0)=(3,-2)

In Exercises 29-32, are AB and P_Q> parallel? And if so, do they point in the same direction?
29. A=(1,1), B=@34, P=(11, 0=(7,10

— —
SOLUTION \We compute the vectors AB and P Q:

|

AB=(3-1,4-1)=(2,3)

|

PO=(7T—-1,10-1)=(6,9)
Since AB = %(6, 9), the vectors are parallel and point in the same direction.
3l. A=(2,2, B=(-6,3, P=(9,5, 0=(174
— —>
soLuTioN We compute the vectors AB and P Q:
AB=(—6-2,3-2)=(-8,1)
—>
PQ=(17-9,4-5)= (8, 1)
Since AB = — P Q, the vectors are parallel and point in opposite directions.
In Exercises 33-36, let R = (—2, 7). Calculate the following.
33. The length of OR
SOLUTION Since OR = (—2, 7), the length of the vector is | OR || = v/ (—2)2 + 72 = /3.
35. The point P such that PR has components (—2, 7)
soLUTION Denoting P = (xg, yg) we have:
PR=(-2-x0.7—yo) = (-2.7)
Equating corresponding components yields:

2 xp =2
0 = x=0 =0 = P=(0,0)
T—yy=17
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In Exercises 37-42, find the given vector.

37. Unit vector ey where v = (3, 4)

SOLUTION The unit vector ey is the following vector:

1

ey = —V
vl

We find the length of v = (3, 4):

V] =32 +42=425=5
Thus

1 3 4
= — ’4 =\=,=).
v 5(3 ) <5 5>
39. Vector of length 4 in the direction of u = (—1, —1)
SOLUTION Since |u|| = +/(=1)2 + (=1)2 = /2, the unit vector in the direction of u is ey = <—% —%> We
multiply ey by 4 to obtain the desired vector:

tey = 4<—%, —%> =(-2v2.-2v2)

41. Unit vector e making an angle of 47” with the x-axis

SOLUTION The unit vector e is the following vector:

4 4
e= <cos 7” sin 77T> = (—0.22,0.97).

43. Find all scalars A such that 2 (2, 3) has length 1.

SOLUTION We have:

142, 3) = [A[I1(2, 3) | = [AV22 + 32 = |2|/13

The scalar A must satisfy

AV13 =1 1 1
1 = M=— A= ———
M= SV T NV

45. What are the coordinates of the point P in the parallelogram in Figure 25(A)?

y
@.9)
p
(-1,b)
() @3
@2) o @y
®)

*)

y

FIGURE 25
soLUTION We denote by A, B, C the points in the figure.

y
C(.9

P (X0, Yo)
B (5,4)

A2
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Let P = (xg, yp). We compute the following vectors:
P—C>= (7 — x0,8 — yo)
AB=(5-2,4-2)=(3,2)
—_— —> . R
The vectors PC and A B are equivalent, hence they have the same components. That is:

7—x0=3

= x=4 y9=6 = P=(4,6)
8-y =2

47. Letv = ABandw = A_C)‘ where A, B, C are three distinct points in the plane. Match (a)—(d) with (i)-(iv). (Hint:
Draw a picture.)

(a —w (b) —v () w—v (d) v—w
(i) CB (i) CA (iii) BC (iv) BA
SOLUTION

(a) —w has the same length as w and points in the opposite direction. Hence: —w = CA.

C

A

(b) —v has the same length as v and points in the opposite direction. Hence: —v = BA.

B

A

(c) By the parallelogram law we have:

That is,

(d) By the parallelogram law we have:

That is,
—
v—w=CB.
B
v —W+V:C%
A c

In Exercises 49-52, calculate the linear combination.

49. 3j+ (9 +4))
SOLUTION We have:

3j+ (9 +4j)=3(0,1)4+9(1,0)+4(0,1) =(9,7)
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51. @Bi+j)—6j+2(—4i)
SoLUTION We have:
@Bi+j)—6j+2(F—4i) = ((3,0) +(0,1)) — (0,6) +2({0, 1) — (4,0)) = (-5, —3)

53. For each of the position vectors u with endpoints A, B, and C in Figure 26, indicate with a diagram the multiples rv
—
and sw such that u = rv + sw. A sample is shown foru = 0 Q.

AO
w
c 8
° %
rv
I’I X
sw/l--"Q
FIGURE 26
soLUTION See the following three figures:
y y y
A
SW/"/ 4
w /, w
/ f Cor| fw v
v X X ! X

In Exercises 55 and 56, express u as a linear combination u = rv + sw. Then sketch u, v, w, and the parallelogram
formed by rv and sw.

55. u=(3,—1); v=(2,1),w=(1,3)

SOLUTION We have
u=@Q,-1)=rv+sw=r(2,1) +s(1,3)
which becomes the two equations

3=2r+s
—1=r+3s

Solving the second equation for r gives r = —1 — 3s, and substituting that into the first equation gives 3 = 2(—1 — 3s) +
s =—-2—6s+s,505= —bs,50s = —1, and thus » = 2. In other words,

u=(3,-1)=2(2,1) — 1(1,3)

as seen in this sketch:
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57. Calculate the magnitude of the force on cables 1 and 2 in Figure 27.

FIGURE 27

SOLUTION The three forces acting on the point P are:
e The force F of magnitude 50 Ib that acts vertically downward.
e The forces F1 and F, that act through cables 1 and 2 respectively.
y
F1 115° F,
25°

Since the point P is not in motion we have
F1+F+F=0 1)
We compute the forces. Letting ||[F1]| = f1 and ||F2|| = fo we have:

F1 = f1(cos115°, sin115°) = f;(—0.423, 0.906)
Fy = f2(c0s 25°, 5in 25°) = £,(0.906, 0.423)
F = (0, —50)

Substituting the forces in (1) gives
f1(—0.423,0.906) + f2(0.906, 0.423) + (0, —50) = (0, 0)
(—0.423 1 + 0.906 f», 0.906 f1 + 0.423 f, — 50) = (0, 0)
We equate corresponding components and get

—0.423f; +0.906f, = 0
0.906 f1 + 0.423f, — 50 = 0

By the first equation, f> = 0.467 f1. Substituting in the second equation and solving for f; yields

0.906 f1 + 0.423 - 0.467 f; — 50 = 0
1104f; =50 = f; =45.29, f, = 0.467f; = 21.15

We conclude that the magnitude of the force on cable 1 is f; = 45.29 Ib and the magnitude of the force on cable 2 is
fo =21.15 Ib.

59. A plane flying due east at 200 km/h encounters a 40-km/h wind blowing in the north-east direction. The resultant
velocity of the plane is the vector sum v = v1 + vy, where v is the velocity vector of the plane and v, is the velocity
vector of the wind (Figure 29). The angle between v4 and v is %. Determine the resultant speed of the plane (the length
of the vector v).

}J_ vi

b 200 km/h
\

FIGURE 29
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SsoLUTION The resultant speed of the plane is the length of the sum vector v = v1 + vo. We place the xy-coordinate
system as shown in the figure, and compute the components of the vectors v4 and v;. This gives

vy = (v, 0)

T .o V2o o2
V2=<U2COSZ,U2$IHZ>= V) —(—,V2 " —(—

X
vy A

We now compute the sum v = vy + vy:

R —V2 + V1, —V
2 2 2 1 2

V:<v1,0>+<\/§v2 \/§v2>=<\£§ ‘2@ >

The resultant speed is the length of v, that is,

2 2
V2v V2 v2 V2 v2
v=|v| = ( 22 + v+ 22 = ?2—}—1)%—{-2-71)21)1—}—?2=,/v%+v§+\/§v1v2

Finally, we substitute the given information vy = 200 and v = 40 in the equation above, to obtain

v =\/2002+402+ﬁ-200-40m230 km/hr

Further Insights and Challenges

In Exercises 60-62, refer to Figure 30, which shows a robotic arm consisting of two segments of lengths L1 and L.

61. LetL; =5and L, =3.Findrfor6; = %, 6, =
SOLUTION In Exercise 60 we showed that
r=(L1sin61 + Lysinfy, L1 cos6y — LyC0S6Hy)

Substituting the given information we obtain

o o ps T 5/3 342 5 342
r=<55|n3+35|n,5cos—3cos>=<2+2,2—2

~ (6.45, 0.
2 3 2 > (6.45, 0.38)

63. Use vectors to prove that the diagonals AC and B D of a parallelogram bisect each other (Figure 31). Hint: Observe
that the midpoint of BD is the terminal point of w + %(v —w).

1
E(V*W)

FIGURE 31
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SOLUTION We denote by O the midpoint of BD. Hence,

A

Using the Parallelogram Law we have

— = — —> 1—
A0:AD+D0:AD+§DB
. — —
Since AD =wand DB = v —w we get
1 W+ V
A—0)=W—|—§(V—W)= ;— (1)

On the other hand, AC = AD + DC = w + v, hence the midpoint O’ of the diagonal AC is the terminal point of WiV,

That is,

W+ Vv
2

—
A0 =

O]

We combine (1) and (2) to conclude that O and O’ are the same point. That is, the diagonal AC and B D bisect each other.
65. Prove that two vectors v = (a, b) and w = (c, d) are perpendicular if and only if

ac+bd =0

SOLUTION Suppose that the vectors v and w make angles 6; and 65, which are not % or 37” respectively, with the

positive x-axis. Then their components satisfy

a = ||v|| cos 61 b  sino
i = - = = tan 91
b = ||v|| sin 61 a  Ccosbq
¢ = ||w| cosé: d sing
I ||_ 2 d_ 2 _ taney
d = ||w/|| sin 6y ¢ C0SHo

That is, the vectors v and w are on the lines with slopes Z and %, respectively. The lines are perpendicular if and only if
their slopes satisfy

SRS
o | X

—=-1 = bd=-ac = ac+bd =0

We now consider the case where one of the vectors, say v, is perpendicular to the x-axis. In this case a = 0, and the
vectors are perpendicular if and only if w is parallel to the x-axis, thatis,d = 0. Soac +bd =0-¢c+b-0=0.

12.2 Vectors in Three Dimensions (LT Section 13.2)

Preliminary Questions
1. What is the terminal point of the vector v = (3, 2, 1) based at the point P = (1, 1, 1)?
soLUTION \We denote the terminal point by Q = (a, b, ¢). Then by the definition of components of a vector, we have

3,2 =(a—1,b—1,c—1)
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Equivalent vectors have equal components respectively, thus,

3=a-1 a=4
2=b-1 = b=3
l=c-1 c=2

The terminal point of v is thus Q = (4, 3, 2).
2. What are the components of the vector v = (3, 2, 1) based at the point P = (1, 1, 1)?

SOLUTION The component of v = (3, 2, 1) are (3, 2, 1) regardless of the base point. The component of v and the base
point P = (1, 1, 1) determine the head Q = (a, b, ¢) of the vector, as found in the previous exercise.

3. If v = —3w, then (choose the correct answer):
(a) vandw are parallel.
(b) v and w point in the same direction.

SOLUTION The vectors v and w lie on parallel lines, hence these vectors are parallel. Since v is a scalar multiple of w
by a negative scalar, v and w point in opposite directions. Thus, (a) is correct and (b) is not.

4. Which of the following is a direction vector for the line through P = (3,2,1) and Q0 = (1, 1, 1)?
(@ (3,2,1) () (1,1,1) (c) (2,1,0)
SOLUTION Any vector that is parallel to the vector P Q is a direction vector for the line through P and Q. We compute
the vector PO:

PO=(1-31-21—1)= (-2, —1,0).

The vectors (3, 2, 1) and (1, 1, 1) are not constant multiples of P Q, hence they are not parallel to P Q. However (2, 1, 0) =
—1(-2,—1,0) = — P Q, hence the vector (2, 1, 0) is parallel to P Q. Therefore, the vector (2, 1, 0) is a direction vector
for the line through P and Q.

5. How many different direction vectors does a line have?

soLuTION All the vectors that are parallel to a line are also direction vectors for that line. Therefore, there are infinitely
many direction vectors for a line.

6. True or false? If v is a direction vector for a line £, then —v is also a direction vector for L.

SOLUTION True. Every vector that is parallel to v is a direction vector for the line L. Since —v is parallel to v, it is also
a direction vector for L.

Exercises
1. Sketch the vector v = (1, 3, 2) and compute its length.

SOLUTION The vector v = (1, 3, 2) is shown in the following figure:

Z

The length of v is

vl = v12 432 4-22 = V14

3. Sketch the vector v = (1, 1, 0) based at P = (0, 1, 1). Describe this vector in the form P_Q) for some point Q, and
sketch the vector vq based at the origin equivalent to v.

SOLUTION The vector v = (1, 1, 0) based at P = (0, 1, 1) is shown in the figure:
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The head Q of the vector v = P_)Q isatthepoint 0 =(0+1,1+1,1+0)=(1,2,1).

z

The vector v based at the origin and equivalent to v is

v = (1,1,0) = 08, where S = (L, 1,0).

In Exercises 5-8, find the components of the vector P_)Q.
5. P=(,0,1), 0=(2,1,0)
soLUTION By the definition of the vector components we have

—
PO=(2-1,1-00-1)=(1,1,-1)

7. P =460, 0=(-33.1)
SOLUTION Using the definition of vector components we have

— 19 9 3
PO=(->-4,--61-0)=(—2,—>,1
0=(5 450105 p3)

In Exercises 9-12, let R = (1, 4, 3).

9. Calculate the length of OR.
SOLUTION The length of a)? is the distance from R = (1, 4, 3) to the origin. That is,

IOR] :\/(1—0)2+(4—0)2+(3—0)2 =26 ~5.1.

11. Find the point P such thatw = PR has components (3, —2, 3), and sketch w.
soLUTION Denoting P = (xg, yo, zo) We get

PR=(1-x0,4—y0,3—20) = (3,-2,3)

Equating corresponding components gives

1l—x=3
4—yy=-2 = x9g=-2,y9=6,z0=0
3—z0=3

The point P is, thus, P = (-2, 6, 0).

R=(1,4,3)
W,
P:(—Z,G,O)/ ,

/"(/0, 6,0)

X

(-2,0,0)

13. Letv = (4, 8, 12). Which of the following vectors is parallel to v? Which point in the same direction?

(@ (2,4,6) (b) (-1,-2,3)

(c) (—7,-14,-21) (d) (6,10, 14)

SOLUTION A vector is parallel to v if it is a scalar multiple of v. It points in the same direction if the multiplying scalar
is positive. Using these properties we obtain the following answer:

(@) (2,4,6) = %v = The vectors are parallel and point in the same direction.

(b) (-1, —2,3) is not a scalar multiple of v, hence these vectors are not parallel.

(c) (-=7,-14,-21) = — v = The vectors are parallel but point in opposite directions.

(d) (6, 10, 14) is not a constant multiple of v, hence these vectors are not parallel.
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In Exercises 14-17, determine whether AB is equivalentto P Q.

A=(1,4,1 B=(-2,20)
"P=(2,57 0=(-3,21

soLuTION We compute the two vectors:

15

AB=(-2-1,2-40-1) = (-3, -2,-1)
PO=(-3-2,2-51—7)= (-5, —3,—6)

— —> .
The components of AB and P Q are not equal, hence they are not a translate of each other, that is, the vectors are not
equivalent.

A=(1,1,00 B=@3,3,5)

17 P=2,-97 0=(@4,-17,13)

SOLUTION The vectors A B and PO are the following vectors:
AB=(3-1,3-15-0)=(225)
—
POQ=(4-2-7-(-9,13-7)=(2,2,6)
The z-coordinates of the vectors are not equal, hence the vectors are not equivalent.
In Exercises 18-23, calculate the linear combinations.

19. —2(8,11,3)+4(2,1,1)
soLUTION Using the operations of vector addition and scalar multiplication we have

—2(8,11,3) +4(2,1,1) = (—16, —22, —6) + (8, 4,4) = (—8, —18, —2).

21. }(4,-2,8) - 1(12,3,3)
SOLUTION Using the operations on vectors we have

1 1
3 (4,-2,8) — 3 (12,3,3) = (2, -1,4) — (4,1,1) = (-2, -2, 3).

23. 4(6,-1,1) —2(1,0, —1) +3(—2,1,1)
SOLUTION Using the operations of vector addition and scalar multiplication we have
4(6,-1,1) —2(1,0,-1) +3(—-2,1,1) = (24, —4,4) + (-2,0,2) + (—6, 3, 3)
= (16, -1,9).

In Exercises 24-27, find the given vector.

25. ew, Wherew = (4, -2, —1)
soLUTION W first find the length of w:

Iw|| = /42 4+ (=22 + 12 = V21
Hence,
o — 1W_<4 -2 —1>
Y wl T \V2T Vet Va2
27. Unit vector in the direction opposite to v = (—4, 4, 2)
SOLUTION A unit vector in the direction opposite to v = (—4, 4, 2) is the following vector:

—ey = ——V
vl

IV =/ (—4)% + 42 +22 =6

We compute the length of v:

The desired vector is, thus,
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In Exercises 29-36, find a vector parametrization for the line with the given description.
29. Passes through P = (1, 2, —8), direction vector v = (2, 1, 3)
SOLUTION The vector parametrization for the line is
r@) = 0P +tv
Inserting the given data we get
re) =(1,2,-8)+1(2,1,3) =(1+2¢,2+1t,—8+ 3r)

31. Passes through P = (4,0, 8), direction vector v = 7i + 4k

SOLUTION Since v = 7i + 4k = (7, 0, 4) we obtain the following parametrization:
—>
rt)=0OP +1tv=(4,0,8)4+1(7,0,4) = (44 71,0, 8 + 4r)

33. Passes through (1, 1, 1) and (3, -5, 2)
soLUTION \We use the equation of the line through two points P and Q:
—> —

rt)=1L—-t)OP +1t0Q

Since 0P = (1,1, 1) and 0O = (3, —5, 2) we obtain
ri)y=0A-0(1,1,1)+¢(3,-52)=1—t,1—t,1—1)+ (3t,-5¢,2t) = (1 +2¢t,1 —6¢t,1+1)

35. Passes through O and (4, 1, 1)
SOLUTION By the equation of the line through two points we get

r(t) =(1-1){(0,0,0) +¢(4,1,1) =(0,0,0) + (4¢t,1,t) = (4¢,t,1)

In Exercises 37-40, find parametric equations for the lines with the given description.

37. Perpendicular to the xy-plane, passes through the origin

SOLUTION A direction vector for the line is a vector parallel to the z-axis, for instance, we may choose v = (0, 0, 1).
The line passes through the origin (0, 0, 0), hence we obtain the following parametrization:

r@) =(0,0,0)+1¢(0,0,1) = (0,0, ¢)

orx=0,y=0,z=rt.
39. Parallel to the line through (1, 1, 0) and (0, —1, —2), passes through (0, 0, 4)

SOLUTION The direction vectorisv = (0 — 1, -1 — 1, -2 — 0) = (—1, —2, —2). Hence, using the equation of a line
we obtain

r(t) =(0,0,4) + (-1, -2, -2) = (—t, —2t,4 — 2t)

41. Which of the following is a parametrization of the line through P = (4, 9, 8) perpendicular to the xz-plane (Figure

18)?
(@ r@r) =(4,9,8) +1(1,0,1) (b) r(t) =(4,9,8) +1(0,0,1)
() r(r) =(4,9,8) +1(0,1,0) (d) r(®) =(4,9,8) +1(1,1,0)

/

P=(4,9,8)
.
) Tt

—

TPl i\y

FIGURE 18
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SOLUTION Since the direction vector must be perpendicular to the xz-plane, then the direction vector for the line must
be parallel to j, which is only satisfied by solution (c).
In Exercises 43-46, let P = (2,1, —1) and Q = (4, 7, 7). Find the coordinates of each of the following.

43. The midpoint of PQ
soLUTION W first parametrize the line through P = (2,1, —1)and Q = (4,7, 7):

r()=0-1)(2,1, -1)+t(4,7,7) = (24 2t,1 + 61, —1 + 8¢)

The midpoint of PQ occursatt = % that is,
. 1 1 1 1
mldpomt_r(E) _<2+2-E,1+6~§,—1+8-5>_(3,4,3)

The midpoint of P Q is the terminal point of the vector r(¢), that is, (3, 4, 3). (One could also use the midpoint formula
to arrive at the same solution.)
45, The point R such that Q is the midpoint of PR

soLUTION We denote R = (xgq, yo, zg)- By the formula for the midpoint of a segment we have

2 1 -1
4.7.7) = +x0’ —|—y0’ + 20
2 2 2
Equating corresponding components we get
2+ xg

4=——

2
7— 1+2y° = x=6, yp=13 z0=15 = R=(6,13,15)
;- "1t

2

47. Show that rq(¢) and ry(¢) define the same line, where
ri(t) = (3,—-1,4) +1t (8,12, —6)
rp(r) = (11,11, —-2) +¢ (4,6, —3)
Hint: Show that ry passes through (3, —1, 4) and that the direction vectors for rq and ro are parallel.
soLUTION We observe first that the direction vectors of rq(¢) and rp(¢) are multiples of each other:
(8,12, —6) =2(4,6, —3)

Therefore rq(z) and ro(¢) are parallel. To show they coincide, it suffices to prove that they share a point in common, so
we verify that r{(0) = (3, —1, 4) lies on rp(¢) by solving for ¢:

3,-1,4) =(11,11,-2) +1 (4,6, -3)
(3,—-1,4) — (11,11, —-2) =t (4,6, —3)
(—8,-12,6) =1 (4,6, -3)
This equation is satisfied for r = —2, so rq and r» coincide.
49. Find two different vector parametrizations of the line through P = (5, 5, 2) with direction vector v = (0, —2, 1).
SOLUTION Two different parameterizations are
ri(t) ={5,5,2) +(0,-2,1)
ra(t) = (5,5,2) +1(0, —-20, 10)

51. Show thatthe linesrq(r) = (-=1,2,2) +t (4, —2,1)and ro(t) = (0,1, 1) + ¢ (2, 0, 1) do not intersect.
SOLUTION The two lines intersect if there exist parameter values 71 and » such that

(—1,2,2) +11(4,-2,1) = (0,1,1) + 12(2,0,1)
(—1+4+411,2 211,24+ 11) = (2t5,1, 1 + 19)
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Equating corresponding components yields

—14+41n =2n
2-2n=1
2411 =1+n

The second equation implies 11 = % Substituting into the first and third equations we get

1

1
2+E=1+t2 = =

We conclude that the equations do not have solutions, which means that the two lines do not intersect.

53. Determine whether the linesrq () = (0,1, 1) +¢(1,1,2) and ra(s) = (2,0, 3) + s (1, 4, 4) intersect, and if so, find
the point of intersection.

SOLUTION The lines intersect if there exist parameter values r and s such that

0,1,1) +1(1,1,2) = (2,0, 3) +s(1, 4, 4)
(t,1+1,1+2t) = (2+ 5, 4s, 3 + 4s) 1)

Equating corresponding components we get

t=2+s
1+t=4s
14+2t=3+4s

Substituting ¢ from the first equation into the second equation we get

1+2+s5s=4s
3s =3

We now check whether s = 1, + = 3 satisfy the third equation:

1+2.-3=3+4-1
7=7

We conclude that s = 1, r = 3 is the solution of (1), hence the two lines intersect. To find the point of intersection we
substitute s = 1 in the right-hand side of (1) to obtain

(2+1,4-1,3+4.1)=(3,4,7)
The point of intersection is the terminal point of this vector, that is, (3, 4, 7).

55. Find the components of the vector v whose tail and head are the midpoints of segments AC and BC in Figure 19.

B=(11,0)
FIGURE 19

soLuTioN We denote by P and Q the midpoints of the segments AC and BC respectively. Thus,

v="P0 @)
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X B=(1,1,0)

We use the formula for the midpoint of a segment to find the coordinates of the points P and Q. This gives

140 041 1+1 11
P‘( 2 0 2 0 2 )_(E’E’l>

140 141 0+1 1 1
Q‘( 2 0 2 7 2 )‘(5’1’§>

Substituting in (1) yields the following vector:
— 1 1 11 1 1
V:PQ:<5‘5’1‘575‘1>:<°’§"5>~
Further Insights and Challenges
In Exercises 57-63, we consider the equations of a line in symmetric form, whena # 0,5 # 0, ¢ # 0.
X —Xp Y=o <—20

a b c -
57. Let £ be the line through Py = (xq, yg, cg) with direction vector v = {a, b, ¢). Show that £ is defined by the
symmetric Eq. (12). Hint: Use the vector parametrization to show that every point on £ satisfies Eq. (12).
SOLUTION L is given by vector parametrization

r(t) = {xo, y0, z0) +1{a, b, c)

which gives us the equations

X =Xxq + at
y =yo+bt
z=2z0+tct.
Solving for 7 gives
X — X
="
a
;= Y=o
b
z2—z
t= 0
C

Setting each equation equal to the other gives Eq. (12).
59. Find the symmetric equations of the line through P = (1,1,2) and Q = (-2, 4, 0).

SOLUTION This line has direction vector P_)Q = (=3, 3, —2).Using (xq, yg.20) = P = (1,1,2)and {(a, b, ¢) = P_Q> =
(—3,3, —2) in Eq. (12) gives

-3 3 -2
61. Find a vector parametrization for the line
x—5 y+3
=>——=27z-10
9 7 ¢

soLUTION Using (xq, y0, z9) = (5, —3,10) and {(a, b, ¢) = (9, 7, 1) gives
r) =(5,-3,10) +1(9,7,1)
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63. Show that the line in the plane through (xq, yg) of slope m has symmetric equations

y—Jo
m

X —x0 =

sOoLUTION The line through (xq, yg) of slope m hasequation y — yg = m(x — xg), whichbecomes x — xg = %(y —Y0)»
which becomes

X—=X0 _ ¥y=)0

1 m

65. A median of a tetrahedron is a segment joining a vertex to the centroid of the opposite face. The tetrahedron in Figure
20(B) has vertices at the origin and at the terminal points of vectors u, v, and w. Show that the medians intersect at the
terminal point of %(u +Vv+w).

soLUTION \We first find vectors from the origin to the centroids of the four faces (labelled 1,2,3,4 after their opposite
vertices, also labelled 1,2,3,4). Now, by the previous problem (Exercise 64), a vector from the origin (vertex 1) to the
centroid of the opposite face (face 1) is %(u + v 4+ w). As for face 2, a vector from vertex 2 to the centroid of face 2 is

%(—u + (v —u) + (w — u)), but since vertex 2 is at the head of vector u, then a vector from the origin to the centroid of
face 2isu + %(—u +V=-u+W-u) = %(v + w). Similarly, a vector from the origin to the centroid of face 3 is

v+ %(—v +U—=-V)+(W—-V)) = %(u + w), and from the origin to the centroid of face 4 is %(u + V).
We now find the paramentric equations of four lines £1, ..., £4, each from vertex i to the centroid of the (opposite)
facei.

1
1) =10+ (1 — t)g(u +Vv+w)
1
() = tu+(1—z)§(v+w)
1
L3(t) =tv + (1—t)§(u+w)
1
La(t) =tw+ (1 — z)g(u + V)
By substituting # = 1/4 into each line, we find that they all intersect in the same point:
1
01(1/4) =1/40+ (1 — 1/4)§(u +Vv+w) =1/4U+V+w)
1
(/4 =1/4u+ (1 — 1/4)§(v +w)=1/4u+vVv+w)
1
l3(1/4) =1/4v+ (1 — 1/4)§(u +w)=1/4u+Vv+w)

04(1/4) =1/4w + (1 — 1/4)%(u +Vv)=1/4Uu+V+w)

We conclude that all four lines intersect at the terminal point of the vector 1/4(u + v + w), as desired.

12.3 Dot Product and the Angle hetween Two Vectors (LT Section 13.3)

Preliminary Questions

1. Is the dot product of two vectors a scalar or a vector?
soLUTION The dot product of two vectors is the sum of products of scalars, hence it is a scalar.

2. What can you say about the angle between aand b ifa-b < 0?
SOLUTION Since the cosine of the angle between a and b satisfies cosé = ﬁ)ﬂ' also cosé < 0. By definition
0 <6 <, butsince cos® < 0then @ isin (;r/2, ]. In other words, the angle between a and b is obtuse.

3. Which property of dot products allows us to conclude that if v is orthogonal to both u and w, then v is orthogonal to
u-+w?

SOLUTION One property is that two vectors are orthogonal if and only if the dot product of the two vectors is zero. The
second property is the Distributive Law. Since v is orthogonal to u and w, we have v - u = 0 and v - w = 0. Therefore,

V-U+w)=v-u+v-w=0+0=0

We conclude that v is orthogonal to u + w.
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4. Which is the projection of v along v: (a) v or (b) ey?
SOLUTION The projection of v along itself is v, since

V-V
V||=(7)V=V
V-V

Also, the projection of v along ey is the same answer, v, because

V- ey
V|| = ev=|viey=v
ey - ey

5. Letuy be the projection of u along v. Which of the following is the projection u along the vector 2v and which is the
projection of 2u along v?

(@ zuj (b) uy (©) 2uy

SOLUTION  Since uy; is the projection of u along v, we have,

u-v
uj=(—»v
=)
The projection of u along the vector 2v is

u-2v v — 2u-v v — 4u-v v—(u'v>v—u

2v - 2v T \4v.v “\awv) T\
That is, u)| is the projection of u along 2v, so our answer is (b) for the first part. Notice that the projection of u along
v is the projection of u along the unit vector ey, hence it depends on the direction of v rather than on the length of v.

Therefore, the projection of u along v and along 2v is the same vector.
On the other hand, the projection of 2u along v is as follows:

(F5)v=2(3)v=2

6. Which of the following is equal to cos 8, where 6 is the angle between u and v?
(@ u-v (b) u-ey (c) eu-ev

giving us answer (c) for the second part.

SOLUTION By the Theorems on the Dot Product and the Angle Between Vectors, we have

u-v u
fufiivie fafe (vl

€u - ev

The correct answer is (C).

Exercises
In Exercises 1-12, compute the dot product.

1. (1,2,1)-(4,3,5)
soLUTION Using the definition of the dot product we obtain
(1,2,1)-(4,3,5=1-44+2-3+1.5=15
3. (0,1,0) - (7,41, —3)
SOLUTION The dot product is
(0,1,0)-(7,41,-3)=0-7+1-4140-(-3) =41
5 (3,1)-(4,-7)
SOLUTION The dot product of the two vectors is the following scalar:
(3,1)- (4, -7)=3-441-(-7)=5
7. k-j
SOLUTION By the orthogonality of j and k, we have k - j =0
9. (i+)-d+k)
SOLUTION By the distributive law and the orthogonality of i, j and k we have

(i+h-G+k=i-j+i-k+j-j+j-k=0+0+14+0=1
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1. (i+j+Kk) - @i+2j—5k)
soLUTION We use properties of the dot product to obtain
(i+j+Kk) -Bi+2j—5k)y=3i-i+2i-j—5i-k+3j-i+2j-j—5j-k+3k-i+2k-j—5k-k
=3l +2/ljl* — k> =3-1+2-1-5-1=0

In Exercises 13-18, determine whether the two vectors are orthogonal and, if not, whether the angle between them is
acute or obtuse.

13. (1,1,1), (1,-2,-2)
soLUTION \We compute the dot product of the two vectors:
(1,1,1)-(1,-2,-2)=1-1+1-(=2)+1-(-2) = -3
Since the dot product is negative, the angle between the vectors is obtuse.
15. (1,2,1), (7,-3,-1)
soLUTION We compute the dot product:
(1,2,1)-(7,-3,-1) =1.7+2-(-3)+1-(-1) =0
The dot product is zero, hence the vectors are orthogonal.
. (8.-4) (-3
soLuTioN \We find the dot product of the two vectors:

L2 4\ 1 7\ 121 (4 7\ 12 28_13
5° 5/ \2" 4/ 5 2 5 4)710 20 5

The dot product is positive, hence the angle between the vectors is acute.
In Exercises 19-22, find the cosine of the angle between the vectors.

19. (0,3,1), ¢(4,0,0)

soLUuTION Since (0,3,1)-(4,0,0) =0-4+3-0+1-0 =0, the vectors are orthogonal, that is, the angle between
themis & = 90° and cosd = 0.

2L i+, j+2k

soLUTION \We use the formula for the cosine of the angle between two vectors. Letv =i+ jand w = j + 2k. We
compute the following values:

Ivil = ||i+j||:\/m:ﬁ

Iwll = [Ij + 2K]| =V12+22=15

Vw=(@+j)-G+2K)=i-j+2i-K+j-j+2j-k=[jl’=1
Hence,

V-w 1 1

IVIwI ~ V245~ V1o

In Exercises 23-28, find the angle between the vectors. Use a calculator if necessary.
23.(2.v/2), (1+v2.1-V72)

SOLUTION Wewritev = (2, V2)andw = <2, ﬁ> To use the formula for the cosine of the angle 6 between two vectors
we need to compute the following values:

IVl =v4+2=+6
Wl =@+ V22 + (1 — V22 = V6
VoW=2+2v2++v2-2=3V2
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Hence,
g VW _ NV ﬁ
I N
and so,
2
0 =cos L % = /4

25. (1,1,1), (1,0,1)

soLUTION We denote v = (1,1,1) and w = (1, 0, 1). To use the formula for the cosine of the angle 6 between two
vectors we need to compute the following values:

vl =v12+124+12 =3
[w| =v12 +02 +12 =2

v-w=14+0+1=2

Hence,
g VW _ 2 e
Iviliwl  /3v2 3
and so,
9 = cos~! ? ~ 0.615

27. (0,1,1), (1,-1,0)

soLuTION We denote v = (0, 1, 1) and w = (1, —1, 0). To use the formula for the cosine of the angle 6 between two
vectors we need to compute the following values:

vl =v02+12+12 =2
Iwl = /12 + (=1)2 + 02 = V2

vV-w=0+(-1)+0=-1

Hence,
_vew -1 _ 1
Iviliwll - V242 2
and so,
1 27
§=cos 12 =22
2 3

29. Find all values of b for which the vectors are orthogonal.
@ (p.3.2), (1,b.1) (b) (4,-2.7), (b.b.0)

SOLUTION
(a) The vectors are orthogonal if and only if the scalar product is zero. That is,

(0,3,2)-(1,b,1) =0

b-1+3-b4+2-1=0

1
h+2=0 = b=-—3

(b) We set the scalar product of the two vectors equal to zero and solve for b. This gives
(4,—2,7) - (b%,5,0) =0
4% —2b+7-0=0

1
2b(2b—1)=0 = b=0 orb:E
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31. Find two vectors that are not multiples of each other and are both orthogonal to (2, 0, —3).
soLUTION \We denote by (a, b, ¢), a vector orthogonal to (2, 0, —3). Hence,

{a,b,c)-(2,0,-3) =0
204+0—-3c=0

3
20 —3c=0 = a=§c

Thus, the vectors orthogonal to (2, 0, —3) are of the form

<gc, b, c> .

We may find two such vectors by setting c =0, 5 = 1 and ¢ = 2, b = 2. We obtain

vi=(0,1,0), vy=(3,22).
33. Find v - e where ||v|| = 3, e is a unit vector, and the angle between e and v is ZT”
SOLUTION SinceV -e = |v|||le]| cos27/3,and ||v]| =3and |le]| =1, wehavev-e =3-1-(-1/2) = —3/2.
In Exercises 35-38, simplify the expression.
35 (V—w)-V+v-w
SOLUTION By properties of the dot product we obtain

(V—W) - VHV-W=V-V—W-V+V-W= V]2 =V -W+V-w=|v|?
37. (V+wW)-v—(V+W)-w
SOLUTION We use properties of the dot product to write
V+W) - V- (V+W) - W=V-V+W-V—V-W—W- -W
= IVIZ+w-v—w-v— ) = v)Z = w]?

In Exercises 39-42, use the properties of the dot product to evaluate the expression, assuming that u - v = 2, |lu|| = 1,
and ||v|| = 3.
39. u- (4v)
SOLUTION Using properties of the dot product we get

u-M@4v)y=4u-v)=4.2=28.
41. 2u- (3u—vV)
SOLUTION By properties of the dot product we obtain

2u-Bu—Vv)=(2u) - (Bu) — 2u) -v="6(Uu-u) —2(u-v)
=6ul?—2u-v)=6-12-2.2=2

43. Find the angle between v andw ifv-w = —|v| ||w].

soLUTION Using the formula for dot product, and the given equation v - w = —||v|| [|w]|, we get:
Vil llwllcos& = —[lv]| [Iwll,

which implies cos 6 = —1, and so the angle between the two vectors is 0 = n.

45. Assume that ||v|| = 3, ||w| = 5 and that the angle between v and w is § = %
(a) Use the relation [|v +w||? = (v + W) - (V + w) to show that ||V +w/[|2 = 3% + 52 4 2v - w.
(b) Find v+ w|.
SOLUTION For part (a), we use the distributive property to get:
IV+W[? = (V+W) - (V+w)
=V-V+V-WH+W-V+W-W
= IVIZ +2v-w+ w2

:32+52+2v-w
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For part (b), we use the definition of dot product on the previous equation to get:
||v+w||2 =324+524+2v.w
=34+2-3-5-cos7/3
=34+15=49
Thus, [V +w| = +/49 = 7.
47. Show that if e and f are unit vectors such that ||e + || = % then |le — f|| = 4 Hint: Show thate - f = %.
soLUTION We use the relation of the dot product with length and properties of the dot product to write
9/4=lle+fl°=(+f)-(e+f)=e-e+e-f+f.e+f-f
= llel> +2e-f+|[f|2=12+2e-f+12 =2+ 2e-f
We now find e - f:
9/4=2+2-f = e.-f=1/8
Hence, using the same method as above, we have:
le—fl2=@—-f)-e—f)=e-e—e-FT—f.-e+f-f
=lel?—2e-f+|f|I2=12-2e-f+12=2—-2e.-f=2-2/8=7/4.

Taking square roots, we get:

J7
e—fll=—

Il I >

49. Find the angle 6 in the triangle in Figure 12.
y
(0, 10)
(10, 8)
(3.2
X

FIGURE 12

soLUTION \We denote by u and v the vectors in the figure.
y
(0, 10)
(10, 8)
u
(3.2
X
Hence,
v-u
0= ()
(vl

We find the vectors v and u, and then compute their length and the dot product v - u. This gives
v =(0-10,10 — 8) = (—10, 2)
u=(3-10,2—-8)=(-7,-6)

IVl =/ (—10)2+22 = /104

lull =/ (=7)% + (-6)2 = /85
v-u=(-10,2) - (-7,—6) = (—-10) - (-7) +2- (—6) =58
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Substituting these values in (1) yields

cosf = L ~ 0.617

/10485

Hence the angle of the triangle is 51.91°.
In Exercises 51-58, find the projection of u along v.

5. u=(2,5), v=(1,1)
soLUTION W first compute the following dot products:

u-v={(2,5-(1,1)=7
vov=|v[2=124+1%2=2

The projection of u along v is the following vector:
u-v 7 77
Uy=—)V==V={-, =
I <v . v) 2 <2 2>

53. u=(-1,2,0), v=4(2,0,1)
SOLUTION The projection of u along v is the following vector:

o= ()
We compute the values in this expression:
u-v=(-1,2,0-(2,0,1)=-1-2+2.-04+0-1=-2
vov=|v[2=224+0%+12=5

Hence,

2 4 2

55. u=5i+7j—4k, v=k
SOLUTION The projection of u along v is the following vector:

o= ()
We compute the dot products:
u-v=_0Bi+7j—4k) - k= -4k -k=—4
vov=vi? = k|2 =1

Hence,

—4
U = Tk = —4k

57. u={a,b,c), v=i

SOLUTION The component of u along v is a, since
U-ey=(ai+bj+ck)-i=a
Therefore, the projection of u along v is the vector

U= (u-eyey = ai

In Exercises 59 and 60, compute the component of u along v.

59. u=¢3,2,1), v=¢(1,0,1)

soLUuTION W first compute the following dot products:
u-v=¢(3,2,1)-(1,0,1) =4

vov=|v[2=124+12=2
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The component of u along v is the length of the projection of u along v

G

4
V| =5 =21vi =272
61. Find the length of O P in Figure 14

FIGURE 14

sOoLUTION This is just the component of u = (3, 5) along v = (8, 2). We first compute the following dot products
u-v={(3,5)-

(8,2) =34
vov= v =82 422
The component of u along v is the length of the projection of u along v

(50l =gvi=ggves

In Exercises 63-68, find the decomposition a = &) +a_ with respectto b
63. a=(1,0), b=(11)

SOLUTION

Step 1. We computea-bandb-b

a-b=¢{

1,0)-(1,1)=1-1+40-1=1
b-b=|b2=12+1%2=2
Step 2. We find the projection of a along b

a-b 1
= — b =
= (5%)
Step 3. We find the orthogonal part as the difference

11
b= <§’ 5>

a—aa—(lO)ll—ll
L= =1 22/ \2° 72
Hence,
a—ajta = (2 (21
—ATEL =\ 2T\ T2/
65 a=(4,-1,0), b=1(0,1,1)

soLUTION We first compute a - b and b - b to find the projection of a along b

a-b=(4,-1,0)-(0,1,1) =4-04(=1)-1+0-1=—1
b-b=bJ?=02+1%+12=2
Hence,

a-b 1 1
= — _ —_— 1 1 = R ——
l <b~b)b 7 (OLD) <0’ 2 2>

We now find the vector a | orthogonal to b by computing the difference

Thus, we have

1 1 11

a-ay =10~ 0.-3.—3)=(¢.-3.5)
1 1
a:a||+aj_:<0

11
- _Z 4. — = =
32+ -53)

272

191
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67. a=(x,y), b=(1,-1)
soLuTION W first compute a - b and b - b to find the projection of a along b:

a-b=(x,y)-{1,-1)=x—y
b-b=|bl?=1%+(-1)2=2

Hence,

_(a-b _x=y _[x=y y—x
a“_<ﬁ>b_7(1’ 1>—< 2 2 >

We now find the vector a; orthogonal to b by computing the difference:

x—y y—x\_ [x+y x+y
2 2 - 2 02

a—a||=(x,y)—<

Thus, we have

X—y y—x x+y x+y
2 7 2 2 72
69. Leteg = (cos, sind). Show that eg - ey, = cos(§ — ¥) for any two angles 6 and .

a=a||+aL=<

SOLUTION First, eg is a unit vector since by a trigonometric identity we have

legll =/ cos26 +sin?6 =v1=1
The cosine of the angle « between eg and the vector i in the direction of the positive x-axis is

. €g - i

lleg Il - il
The solution of cose = cos# for angles between 0 and 7 is « = 6. That is, the vector ey makes an angle 6 with the
x-axis. We now use the trigonometric identity

CoSs =gy -1 = ((cosH)i—+ (sinh)j) -i = cosh

€0s 6 cos ¥ + sinf siny = cos(6 — )
to obtain the following equality:

89 - €y = (C0SH, sinB) - (Cos, sinyr) = cos 6 cos ¥ + sin O sinyr = cos(d — 1)
In Exercises 71-74, refer to Figure 15.

A=(0,0,1)

B=(1,0,0) C=(1,1,0)

FIGURE 15 Unit cube in R3.
71. Find the angle between AB and AC.
SOLUTION The cosine of the angle o between the vectors ﬁ and A_C) is
— —>
AB - AC

—_——— )
IABIIIACI

CoOSa =

A=(0,0,1)

A

B=(1,0,0)

D=(0,1,0)

c=(,1,0)
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We compute the vectors AB and AC and then calculate their dot product and lengths. We get

|

AB=(1-0,0-0,0-1)=(1,0,—1)

|

AC=(1-0,1-0,0-1) = (1,1, —1)

— —
AB-AC=(,0,-1)-(1,1,-1)=1-1+40-14+(-1) - (-1) =2
IAB| = /12 + 02 + (—1)2 = V2
IACH = 12+ 12 + (=12 = V3

Substituting in (1) and solving for 0 < « < 90° gives

CoSo = ~ 0816 = o~ 35.31°

2
NN

73. Calculate the projection of AC along AD.

soLuTIOoN DC is perpendicular to the face O AD of the cube. Hence, it is orthogonal to the segment A D on this face.
Therefore, the projection of the vector AC along AD is the vector AD itself.

75. & Let v and w be nonzero vectors and set u = ey + ey. Use the dot product to show that the angle between u
and v is equal to the angle between u and w. Explain this result geometrically with a diagram.

soLUTION We denote by « the angle between u and v and by g the angle between u and w. Since ey and ey are vectors
in the directions of v and w respectively, « is the angle between u and ey and 8 is the angle between u and ey. The cosines
of these angles are thus

u-ey u-ey u-ew u-ew

o= = ; C0Sp=— = ———
lulllievll lull lTuliliew |l full

To show that cos @ = cos B (which implies that « = 8) we must show that
U-ey =U-ew.
We compute the two dot products:
U-ey =(ey +ew)-6y =8By -y +ew-ey =1+ew-ey
U-ew = (By +€w) 6w =6y -Ew+ew- 6w =¢8y-ew+1

We see that u - ey = U - eyw. We conclude that cos« = cos B, hence « = 8. Geometrically, u is a diagonal in the rhombus
O ABC (see figure), hence it bisects the angle <A OC of the rhombus.

ey

77. Calculate the force (in newtons) required to push a 40-kg wagon up a 10° incline (Figure 16).

A0 9

10°
FIGURE 16

soLUTION Gravity exerts a force Fg of magnitude 40¢g newtons where g = 9.8. The magnitude of the force required to
push the wagon equals the component of the force F, along the ramp. Resolving F, into a sum Fg = F|; + F |, where
F|, is the force along the ramp and F | is the force orthogonal to the ramp, we need to find the magnitude of F||. The angle
between F and the ramp is 90° — 10° = 80°. Hence,

Fj| = lIFgllcos80° = 40-9.8 - cos80° ~ 68.07 N.
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Therefore the minimum force required to push the wagon is 68.07 N. (Actually, this is the force required to keep the
wagon from sliding down the hill; any slight amount greater than this force will serve to push it up the hill.)

79. A light beam travels along the ray determined by a unit vector L, strikes a flat surface at point P, and is reflected
along the ray determined by a unit vector R, where 6; = 6, (Figure 18). Show that if N is the unit vector orthogonal to

the surface, then
R=2(L-N)N—-L
Incoming light Reflected light
N
Ay

P
FIGURE 18

soLUTION \We denote by W a unit vector orthogonal to N in the direction shown in the figure, and let 61 = 6, = 6.

Incoming light Reflected light

We resolve the unit vectors R and L into a sum of forces along N and W. This gives

w

R = c0s(90 — 0)W + cos &N = sin OW + cos 6N

L = —cos(90 — )W + cosN = —sin 6W + cos N (1)
N
W
Now, since
L-N=|L|/IN|lcos6 =1-1cos® = cosb
N N
L R
6 0

\90+6 w 90— g "

we have by (1):

2(L-N)N —L = (2cos8)N — L = (2cos9)N — ((—sin )W + (cos8)N)
= (2¢c0sO)N + (sinf)W — (cosO)N = (sin9)W + (cos®)N =R
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81. Prove that v +w/[? — [[v — w||> = 4v - w.
soLUTION We compute the following values:
VW2 = (V+W) - (VFW) = V-V V- WAW- VW W= V242V w+ w2
||v—w||2:(v—w)-(v—w):v.v—v-w—w-v—W-W= ||v\|2—2v~w+||w||2
Hence,

IV +wi% — v —w|? = (IVI? +2v - w + [w]?) — (V)% —2v-w + [w]?) = 4v - w

83. Show that the two diagonals of a parallelogram are perpendicular if and only if its sides have equal length. Hint: Use
Exercise 82 to show that v — w and v + w are orthogonal if and only if ||v|| = ||w]].

soLUTION We denote the vectors AB and AD by

Then,

The diagonals are perpendicular if and only if the vectors v + w and v — w are orthogonal. By Exercise 82 these vectors
are orthogonal if and only if the norms of the sum (v + w) + (v — w) = 2v and the difference (v +w) — (v —w) = 2w
are equal, that is,

l2vll = 12w

2vil=2lwll = lIvll = lIwll
85. Verify that (Av) - w = A(v - w) for any scalar .
soLUTION We denote the components of the vectors v and w by

vV ={ag,az,a3) W= (b1, b, b3)
Thus,

(V) -w = (AMaq, az, a3)) - (b1, bz, b3) = (Aa1, Aap, rag) - (b1, b2, b3)
= Aa1by + ragby + razbs

Recalling that A, a;, and b; are scalars and using the definitions of scalar multiples of vectors and the dot product, we get

(AV) - W = A(a1b1 + apby + azb3) = A ({(a1, az, az) - (b1, by, b3)) = A(V - W)

Further Insights and Challenges

87. In this exercise, we prove the Cauchy—Schwarz inequality: If v and w are any two vectors, then

IV-wl < v [[wl] [6]

(@) Let f£(x) = ||lxv + w]|? for x a scalar. Show that f(x) = ax? + bx + ¢, wherea = ||v||2, b = 2v - w, and ¢ = |w||.
(b) Conclude that 52 — 4ac < 0. Hint: Observe that f(x) > 0 for all x.

SOLUTION

(a) We express the norm as a dot product and compute it:

£ = xv+ W2 = (v 4+ W) - (xV + W)
= X2V VA XVW 4 XW -V AW - W = V)22 2(v - w)x + w2
Hence, f(x) = ax? + bx + ¢, where a = ||v||2, b = 2v - w, and ¢ = |w]|2.
(b) If f has distinct real roots x; and x», then f(x) is negative for x between x; and x5, but this is impossible since f is
the square of a length.
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X1 X2

f(x)=ax2+bx+c,a>0

Using properties of quadratic functions, it follows that f has a nonpositive discriminant. That s, b2 —4ac < 0. Substituting
the values for a, b, and ¢, we get

awv-w)? — 4|v|3w|? < 0
W -w)? < v]?w]?
Taking the square root of both sides we obtain

v-w| < [vlliw]

89. This exercise gives another proof of the relation between the dot product and the angle 6 between two vectors
V = (a1, b1) and w = (ay, b) in the plane. Observe that v = ||v|| (cos 81, sindy) and w = ||w|| (cos 62, sin B), with 61
and 67 as in Figure 21. Then use the addition formula for the cosine to show that

V-w = |v| [lw]| cos@

y y
w
,,,,, &y Y
i 0
iby
X L X
0=0,-0,
FIGURE 21

soLUTION Using the trigonometric function for angles in right triangles, we have
az = |[v|isin 6, ai = ||v|l cos 61
by = ||w]| sin 6y, b1 = ||w| cos 6y
Hence, using the given identity we obtain
V-W = (ay, ap) - (b1, by) = ay1b1 + axby = ||| c0s 61 ||W| cos 6y + V] Sin O ||w]| sin 62
= |IV|lIlw]l(cos 81 cos By + sin B sin ) = ||V||||w]|| cos(61 — 6)
That is,

V- W = |lv[|[|wl] cos(d)

91. Let v be a nonzero vector. The angles «, 8, y between v and the unit vectors i, j, k are called the direction angles of
v (Figure 22). The cosines of these angles are called the direction cosines of v. Prove that

cos® a + cos? B+ cos? y=1

X
FIGURE 22 Direction angles of v.



SECTION 12.3 | Dot Product and the Angle hetween Two Vectors (LT SECTION 13.3) 197

soLUTION We use the relation between the dot product and the angle between two vectors to write

Vi Vi
o= - = —
VI~ v
V-j V-j
0SB = — = — 1
VI~ v ™)
o5y — V- k _ V- k
Y= vk T vl

We compute the values involved in (1). Letting v = (vq, vp, v3) we get
V-i=(vy,v2,v3)-(1,0,0) = v
V-j={v1,v2,v3)-(0,1,0) = v

v-K = (vg,v2,v3)-(0,0,1) = v3

IVl = /v3 + v + v2 ()
We now substitute (2) into (1) to obtain

U3

V1 v2
0Sa¢ = ——, COSB=——, COSYy=——
v VIl

vl
Finally, we compute the sum of squares of the direction cosines:

2 2 2 v\ (w2 (v _ 1l a5,
C0s“ « 4 cos” B 4 cos y:(—) +(—) -I—(—) =—> (] +tv)+v3) =

2
AviiF =1
vl vl vl MK

Mk

93. The set of all points X = (x, y, z) equidistant from two points P, Q in R3 is a plane (Figure 23). Show that X lies
on this plane if

1
Po-0% = (1001 - 1071°)

Hint: If R is the midpoint of P Q, then X is equidistant from P and Q if and only if XR is orthogonal to P_Q)

FIGURE 23

SOLUTION Let R be the midpoint of the segment P Q. The points X = (x, y, z) that are equidistant from P and Q are
the points for which the vector X R is orthogonal to P Q. That is,

XR-PO=0 0
Since Xk = XO + OR we have by (1):
— =\ = = —> —> —> —> = —> —>
O=(X0+0R>-P =X0-PO+OR-PQO=-0X-PO+OR-P
Transferring sides we get
— — - —
OX - PO=0R-PO @)
0P +00
—
We now write PO = PO + 00 on the right-hand-side of (2), and OR = —— - We get
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Thus, we showed that the vector equation of the plane is

—s — 1/ — 2 — 2
OX~PQ=§ ool —lor|

95. Use Eq. (7) to find the equation of the plane consisting of all points X = (x, y, z) equidistant from P = (2, 1, 1) and
0=(,02.

soLuTION Using Eq. (7) with X = (x, y,2), P = (2,1,1),and Q = (1,0, 2) gives

1 1
(3.2 (-1 -1.0) = 3 (5 - (V8)?) = =3

This gives us —Lx — 1y + 1z = — 3, which leads to 2x + 2y — 2z = 1.

12.4 The Cross Product (LT Section 13.4)

Preliminary Questions
3 4 2
1. What is the (1, 3) minor of the matrix | -5 -1 1 |?
4 0 3

SOLUTION The (1, 3) minor is obtained by crossing out the first row and third column of the matrix. That is,

3 4 2 5 _1
-5 -1 1 = 4 0
4 0 3

2. The angle between two unit vectors e and f is %. What is the length of e x f?

soLuTION We use the Formula for the Length of the Cross Product:

lle x £l = llell[If]Isin&

Since e and f are unit vectors, |le|| = ||f|| = 1. Also 6 = %, therefore,
1 1
exf|l=1-1-sihn— ==
lle x £l 5= 2

The length of e x f is 3.
3. What is u x w, assuming thatw x u = (2, 2, 1)?

SOLUTION By anti-commutativity of the cross product, we have

UXxwW=-wxu=—(2,2,1) =(-2,-2,-1)

4. Find the cross product without using the formula:
(@) (4,8,2) x (4,8,2) (b) (4,8,2) x (2,4,1)

SOLUTION By properties of the cross product, the cross product of parallel vectors is the zero vector. In particular, the
cross product of a vector with itself is the zero vector. Since (4, 8, 2) = 2(2, 4, 1), the vectors (4, 8,2) and (2, 4, 1) are
parallel. We conclude that

(4,8,2) x (4,8,2) =0 and (4,8,2) x (2,4,1) =0.

5. Whatarei x jand i x k?

SOLUTION The cross producti x jand i x k are determined by the right-hand rule. We can also use the following figure
to determine these cross-products:
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We get
ixj=kandixk=—j

6. When is the cross product v x w equal to zero?

SOLUTION The cross product v x w is equal to zero if one of the vectors v or w (or both) is the zero vector, or if v and
w are parallel vectors.

Exercises
In Exercises 1-4, calculate the 2 x 2 determinant.

12
Ak

SOLUTION Using the definition of 2 x 2 determinant we get
1 2
‘4 3‘_1-3—2-4_—5

—6 9

3"1 1

soLUTION We evaluate the determinant to obtain

In Exercises 5-8, calculate the 3 x 3 determinant.

1 2 1
514 -3 0
1 0 1

SOLUTION Using the definition of 3 x 3 determinant we obtain

1 2 1

30 4 0 4 -3
4—30:1‘ ‘—2‘ ‘+1‘ ‘
Lo 1 0 1 11 1 0

=1-(-3-1-0-0)—2-(4-1-0-1) +1-(4-0—(=3)-1)

=-3-8+3=-8
1 2 3
7. 2 4 6
-3 -4 2
soLUTION We have
1 2 3
4 6 2 6 2 4
2 4 6 =1} ‘—2‘ ’+3' ‘
5 4 -4 2 -3 2 -3 —4

=1(4-2-6-(-4)—2(2-2-6-(=3) +3Q2- (-4 —4-(-3))
=32—-44+4+12=0
In Exercises 9-12, calculate v x w.

9.v=(1,2,1), w=(3,11)

soLUTION Using the definition of the cross product we get

=N -
[

vw—i —21i—1l'+12k
X_g =111 3 1973 1

=Q2-1)i—-1-3)j+@—-6)k=i+2j—5k
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1. v=(2

21.1), w=(4-623)

SOLUTION We have

; ) l: ’ 1 %' ’% %' + % 1
vxw=| % 1 5 |= i— j ‘ ’k

3 2 — _

i 6 3 6 3 4 3 4 6

=@+3)i—-2-2)j+(-4-4dHk=06i -8k
In Exercises 13-16, use the relations in Eq. (5) to calculate the cross product.

13. (i+)j) xk
soLUTION \We use basic properties of the cross product to obtain

(i+j)xk=ixk+jxk=—j+i

\

i xk=—j
jxk=i
15. (i—3j+2K) x (j— k)
soLuTION Using the distributive law we obtain
(i—3+2k) x —k)=(1—3j4+2K) x j— (i — 3j +2k) x (k)
=ixj+2kxj—ixk—(=3j)xk
=i+j+k

In Exercises 17-22, calculate the cross product assuming that
uxv=(110, uxw=1{031, vxw=(2,-11)

17. vxu

soLUTION Using the properties of the cross product we obtain
Vvxu=-uxv=(-1-10)
19. w x (U+V)
SsOLUTION Using the properties of the cross product we obtain
WX U+V)=WXU+WXV=—UXW-—VXW= (-2, -2,-2).
21 (U—2v) x (U+2V)
soLUTION Using the properties of the cross product we obtain
U—2V) x (U+2V) =(U—2V) XU+ (U—2V) x2V=UXU—2V X U+ U X 2V — 4V x V
=0+2uxVv+2uxv—0=0+4uxv={(440)

23. Letv = (a, b, c). Calculate v x i, v x j,and v x k.
soLuTION We write v = ai + bj + ck and use the distributive law:

VXi=(@i+bj+ck)xi=aixi+bjxi+ckxi=a-0—bk+cj=—-bk+cj=(0,c,—b)

VXxj=(ai+bj+ck)xj=aixj+bjxj+ckxj=ak+b0—ci=ak —ci=(—c,0,a)

vV x k = (ai + bj+ cK) x kK = ai x K+ bj x K+ ck x k = —aj + bi 4+ c0 = —aj + bi = (b, —a, 0)
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In Exercises 25 and 26, refer to Figure 16.

FIGURE 16

25. Which of uand —u is equal to v x w?

SOLUTION The direction of v x w is determined by the right-hand rule, that is, our thumb points in the direction of
v x W when the fingers of our right hand curl from v to w. Therefore v x w equals —u rather than u.

27. Letv = (3,0,0) and w = (0, 1, —1). Determine u = v x w using the geometric properties of the cross product
rather than the formula.

SOLUTION The cross product u = v x w is orthogonal to v.

Since v lies along the x-axis, u lies in the yz-plane, therefore u = (0, b, ¢). u is also orthogonal to w, so u - w = 0.
Thisgivesu-w = (0,b,¢)- (0,1, -1) =b—c =0 = b = c. Thus, u = (0, b, b). By the right-hand rule, u points
to the positive z-direction so » > 0. We compute the length of u. Sincev-w = (3,0,0) - (0,1, —1) = 0, vand w are
orthogonal. Hence,

v < wil = [villwl Siﬂ% = viliw] =3- V2.
Also since b > 0, we have
lull = 110, b. b) | = V262 = bv/2
Equating the lengths gives
W2=3V2 = b=3.

We conclude thatu =v x w = (0, 3, 3).
29. Show that if v and w lie in the yz-plane, then v x w is a multiple of i.

SOLUTION V X W is orthogonal to v and w. Since v and w lie in the yz-plane, v x w must lie along the x axis which is
perpendicular to yz-plane. That is, v x w is a scalar multiple of the unit vector i.

31. Let e and € be unit vectors in R3 such that e L €. Use the geometric properties of the cross product to compute
e x (¢/ xe).

SOLUTION Letu =¢e x (e’ X e) and v = ¢’ x e. The vector v is orthogonal to ¢’ and e, hence v is orthogonal to the
plane 7 defined by e’ and e. Now u is orthogonal to v, hence u lies in the plane 7 orthogonal to v. u is orthogonal to e,
which is in this plane, hence u is a multiple of ¢’:

u=axe 1)
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The right-hand rule implies that u is in the direction of &', hence A > 0. To find A, we compute the length of u:

. T
IVl = lle" x el = lle'lllle]l sin 7= 1.1.1=1

. T
lull = lle x vl =||e||||V||SIn§=1-1-1=1 )
Combining (1), (2), and A > 0 we conclude that
u=ex (e xe)=¢e.

33. An electron moving with velocity v in the plane experiences a force F = g(v x B), where ¢ is the charge on the
electron and B is a uniform magnetic field pointing directly out of the page. Which of the two vectors F1 or F» in Figure
17 represents the force on the electron? Remember that ¢ is negative.

FIGURE 17 The magnetic field vector B points directly out of the page.

SOLUTION Since the magnetic field B points directly out of the page (toward us), the right-hand rule implies that the
cross product v x B is in the direction of F, (see figure).

Since F = ¢ (v x B) and ¢ < 0, the force F on the electron is represented by the opposite vector Fy.
35. Verify identity (10) for vectorsv = (3, —2,2) and w = (4, —1, 2).
SOLUTION \We compute the cross product v x w:

-2 2‘. ‘3 2‘. '3 —2‘
vxw=|3 -2 2 |= i— j+ k
4 ~1 2 -1 2 4 2 4 -1

=(—4+2)i—(6—-8)j+ (-3+8)k=—-2i+2j+5k =(-2,2,5)

Lt

We now find the dot product v - w:
v-w=(3-22)-4-1,2=3-44(-2)-(-1)+2-2=18
Finally we compute the squares of the lengths of v, w and v x w:
IVI? =32 4 (=2)* + 22 =17
Iwj? = 42 + (-1)2 +22 =21
IV x w))? = (=2)? + 2% + 52 = 33
We now verify the equality:

IVIZIW]2 — (v-w)2 = 17 - 21 — 182 = 33 = |lv x w2
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37. Find the area of the parallelogram spanned by v and w in Figure 18.

SOLUTION The area of the parallelogram equals the length of the cross product of the two vectors v = (1, 3, 1) and
w = (—4, 2, 6). We calculate the cross product as follows:

i J k
v><w=| 1 3 1 |=(18-2)i—(6+4j+ 2+ 12k =16i —10j + 14k
-4 2 6

The length of this vector 16i — 10j + 14k is /162 4 102 + 142 = 2./138. Thus, the area of the parallelogram is 2/138.
39. Sketch and compute the volume of the parallelepiped spanned by

u=(10,0), v=1{0,20), w=(11,2)
soLUTION Usingu = (1,0,0), v = (0,2,0), and w = (1, 1, 2), the volume is given by the following scalar triple

product:

u-(vxw)= =14-0—-0+0=4.

— o
=N o
N oo

41. Calculate the area of the parallelogram spanned by u = (1,0, 3) and v = (2, 1, 1).
SOLUTION The area of the parallelogram is the length of the vector u x v. We first compute this vector:

0 3 1 3. 10 . . . .
UuxvVv= =’1 1‘I—'2 1‘]4—’2 1‘k:—3|—(1—6)J+k=—3|+5]+k

N B -

j k
0 3
11

The area A is the length

A=[uxvV|=(-32+52+12 = /35~ 5092

43. Sketch the triangle with vertices at the origin O, P = (3, 3,0), and Q = (0, 3, 3), and compute its area using cross
products.

SOLUTION The triangle O P Q is shown in the following figure.

z

Q=(,3,3)

P=(3,3,0)

The area S of the triangle is half of the area of the parallelogram determined by the vectors m)’ = (3,3,0) and
00 = (0,3,3). Thus,

1 — —
S=§||0P><0QII (€
We compute the cross product:
i j k
a‘)’x—Q)ZSSOZSOi_?’Oj+33k
0 3 3 3 3 0 3 0 3

=09i—9j+ 9k = 9(1, -1, 1)
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Substituting into (1) gives

1 9 9 9v3
$=319(L =L Dl = I -1 1l = 5\/12 +(-1)%+12= Tf ~ 178

The area of the triangle is S = % ~71.8.

In Exercises 45-47, verify the identity using the formula for the cross product.

45, VX W=—W XV

SOLUTION Letv = (a,b,c)andw = (d, e, f). By the definition of the cross product we have

i j k
VXW=|a b ¢ |= boc i—| ¢ ¢ j+ a b k = (bf —ec)i — (af —dc)j + (ae — db)k

e f d f d e

d e f

We also have
i j k
—wWxV=| —-d —e —f |=(—ec+bf)i— (—dc+af)j+ (—db+ ea)k

a b c

Thus, v x w = —w x Vv, as desired.
A47. U+ V) XW=UXW+V XW

soLUTION We let u = (aq, ap, a3), v = (b1, by, b3) and w = (c1, ¢, ¢3). Computing the left-hand side gives

i j K
(U+V) XW = (ag +b1,ap + by, a3 +b3) x {c1,¢c2,¢c3) =| ar+by ax+by az+b3
a &) 3

a1 +b1 az+b3
1 c3

a1 +b1 ax+by
c1 c2

ay + by a3+b3‘i_ K

2 3

i

= (c3(ag + bp) — ca(ag + b3)) i — (c3 (a1 + b1) — c1 (ag +b3)) j + (c2(ag + b1) — c1(az + b)) K

We now compute the right-hand-side of the equality:

i j k i j k
UXWHVXW=|a1 ap» a3 |+ | b1 by b3
1 €2 €3 1 2 €3
=‘a2 a3‘i— ay as ’J+ ay az'k+ by b3 i by b3 '_I-l— by bz‘k
¢ 3 1 3 ¢ ¢ 3 1 c3 c1 ¢

= (age3 — age)i — (age3 — age)j + (arc2 — azepk

+ (bac3 — bacp)i — (brc3 — bge1)j + (brcz — bacr)k
= (agc3 — agcy + bacg — b3c2)i — (a1c3 — age1 + bicg — bac)j + (a1c2 — azen + bicg — bacpk
= (c3(ag + b2) — ca(ag + b3)) i — (cg(ay + by) — c1(az + b3)) j + (c2(a1 + b1) — c1(az + b)) k

The results are the same. Hence,

U4+V)XW=UXW+VXW.

49. Verify the relations (5).

soLuTION We must verify the following relations:
ixj=k, jxk=i, kxi=j, ixi=jxj=kxk=0

We compute the cross products using the definition of the cross product. This gives

1 0. 10
|—‘0 O’J+‘O 1’k:k

0
110

o o X

i
ixj=|1 0
01
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51. The components of the cross product have a geometric interpretation. Show that the absolute value of the k-component
of v x w is equal to the area of the parallelogram spanned by the projections vg and wg onto the xy-plane (Figure 20).

FIGURE 20

SOLUTION Letv = (a1, ap, a3z) and w = (b1, by, b3), hence, vo = (ay, ap, 0) and wg = (b1, by, 0). The area S of the
parallelogram spanned by vg and wy is the following value:

We compute the cross product:

Vo XWp = | ap
by

Using (1) we have

S =

We now compute V X W:
i
VXW=/| a
by

The k-component of v x w is, thus,

S = [lvo x woll (1)

j k

_|a 0. ta 0. |a a
azo_bzol b1 0‘J+b1 bz'k
by O

= 0i — 0 + (a1 — apby)k = (0,0, a1by — azby)
V02 + 02 4 (ayhy — agby)? = layby — aghy] @
iz z _| @ a |, _|a a3 |, a4
2 03 by b3 by by |) b1 by
by b3

a a

bi bz '=a1b2—azb1 3

By (2) and (3) we obtain the desired result.
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53. & Show that three points P, Q, R are collinear (lie on a line) if and only if P_>Q x PR =0.

SOLUTION The points P, Q, and R lie on one line if and only if the vectors P_Q) and PR are parallel. By basic properties
of the cross product this is equivalent to PO x PR = 0.

® 0

/Q

P

55. Solve the equation (1, 1, 1) x X = (1, —1, 0), where X = (x, y, z). Note: There are infinitely many solutions.

.‘1
1 —
a

=(c—-bi—(c—a)j+b—-—ak={(c—b,a—c,b—a)

SOLUTION Let X = (a, b, ¢). We compute the cross product:

i K
1 1 11
(1.1.1) x (@.b.c) =| 1 i Z‘b ¢ a b'k

1'+
e

S

The equation for X is, thus,
(c—b,a—c,b—a)=(1,-1,0)

Equating corresponding components we get

c—b=1
a—c=-1
b—a=0

The third equation implies @ = b. Substituting in the first and second equations gives
c—a=1
= c¢c=a+1
a—c=-1
The solution is thus, b = a, ¢ = a + 1. The corresponding solutions X are
X={(a,b,c)=(a,a,a+1)
One possible solution is obtained for « = 0, that is, X = (0, 0, 1).

57. & Let X = (x, y, z). Show that i x X = v has a solution if and only if v is contained in the yz-plane (the
i-component is zero).

SOLUTION The cross product vector i x X = v must be orthogonal to the vector i = (1, 0, 0). This condition is true if
and only if (1,0, 0) - v = 0, which is true if and only if the i-component of v is zero (that is, v is in the yz-plane).

In Exercises 59-62: The torque about the origin O due to a force F acting on an object with position vector r is the vector
quantity = = r x F. If several forces F; act at positions r ;, then the net torque (units: N-m or Ib-ft) is the sum

T = Z rj X Fj
Torque measures how much the force causes the object to rotate. By Newton’s Laws, 7 is equal to the rate of change of
angular momentum.

59. Calculate the torque t about O acting at the point P on the mechanical arm in Figure 21(A), assuming that a 25-N
force acts as indicated. Ignore the weight of the arm itself.

10m

FIGURE 21
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soLUTION We denote by O and P the points shown in the figure and compute the position vector r = 0P and the
force vector F.

Denoting by 6 the angle between the arm and the x-axis we have
r= 0P =10(cosfi + sin 6j)
The angle between the force vector F and the x-axis is (¢ + 125°), hence,
F = 25(cos (6 4 125°) i + sin (¢ + 125°) j)

The torque 7 about O acting at the point P is the cross product T = r x F. We compute it using the cross products of the
unit vectors i and j:

T =r x F=10(cos0i+sin6j) x 25 (cos (¢ + 125°) i + sin (6 + 125°) j)
= 250 (cos 0i + sin0j) x (cos (6 + 125°) i + sin (6 + 125°) j)
= 250 (cos 6 sin (0 + 125°) k + sin 6 cos (0 + 125°) (—k))
= 250 (sin (6 -+ 125°) cos 6 — sin 6 cos (6 + 125°)) k
We now use the identity sin « cos 8 — sin 8 cosa = sin(ae — B) to obtain
t = 250sin (9 +125° — 9) k = 2505sin 125°k = 204.79k

61. Let t be the net torque about O acting on the robotic arm of Figure 22. Assume that the two segments of the arms
have mass m1 and m» (in kg) and that a weight of m3 kg is located at the endpoint P. In calculating the torque, we may
assume that the entire mass of each arm segment lies at the midpoint of the arm (its center of mass). Show that the position
vectors of the masses m1, my, and m3 are

1 N .

rg = 5Ll(sm 011 + cos61]))
L . 1 L .
rop = L1(sinf11 + cosH)) + ELg(sm 621 — cos b))

rz = L1(sin61i + cos61j) + Lo(sin 620 — cos6j)

Then show that
1 . 1 .
t=—g|L1 §m1+m2+m3 sinfy + Ly §m2+m3 sin6, | k

where g = 9.8m/s2. To simplify the computation, note that all three gravitational forces act in the —j direction, so the
j-components of the position vectors r; do not contribute to the torque.

FIGURE 22

soLuTION We denote by O, P, and Q the points shown in the figure.
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The coordinates of O and Q are
0 =1(0,0), Q= (Lysin61,Lqcosbq)
The midpoint of the segment O Q is, thus,

0+ Lysinf; 0+ Lycosby _ Lqsinf; Lqcosfq
2 ’ 2 - 2 ’ 2

Since the mass m1 is assumed to lie at the midpoint of the arm, the position vector of m1 is
L . . .
rg= 71 (sin 611 + cos 1)) Q)

We now find the position vector ro of mo. We have (see figure)

y

L
S
M i_(90—
AP (90-6,)
P
)
fo) X
—_— =
r,=00+ 0M @)
0Q = Lqsinfqi+ LqcosH1j = L1 (sinBqi + cosH1j) 3)

The vector Q_I)VI makes an angle of — (90° — 92) with the x axis and has length % hence,

L22 (cos (—(90° — 6y)) i +sin (— (90° — 67)) j) = % (sin B2i — cos 7)) (4)

oW =
Combining (2), (3) and (4) we get

ry = Lq (sin6qi + cos61j) + % (sin @,i — cos 67j) (5)
Finally, we find the position vector r3:

—_— = —> _—

r3=00+ 0P =00 +20M

y

Q
‘\ M
-\P
3
o X
Substituting (3) and (4) we get
r3 = L1 (Sin61i + cos61j) + L (sin 621 — cos62])) (6)

The net torque is the following vector:

T =11 X (—=m1g]) + rz2 x (—=magj) + rz x (—m3gj)
In computing the cross products, the j components of rq, ro and r3 do not contribute to the torque since j x j = 0. We
thus consider only the i components of rq, ry and r3 in (1), (5) and (6). This gives

Ly . . . . Ly . . . . . . .
T = 71 sin01i x (—mqgj) + <L1 sinfy + 72 sin 92> i x (—mog)) + (L1Sin6B1 + Lysinéy) i x (—m3g]))

L siné .
= —%k — (lezg sinfy +

L . . .
21;12g sin 02) k — (Lim3zgsin6; + Lom3zgsin6y) k

1 . 1 .
=—g (Ll <§ml +my + m3> sinf; + Ly <§m2 + mg) sin 92) k
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Further Insights and Challenges

63. Show that 3 x 3 determinants can be computed using the diagonal rule: Repeat the first two columns of the matrix
and form the products of the numbers along the six diagonals indicated. Then add the products for the diagonals that slant
from left to right and subtract the products for the diagonals that slant from right to left.

- - - + + +

= a11azpaz3 +a12a3az] +a13a1a3y — a13daz) — a11a3a3p — a12a1433
SOLUTION Using the definition of 3 x 3 determinants given in Eq. (2) we get

a2 az3
azz  asz

a1 az3

det(A) = ayq a3 az

ay1  ap ‘

+a13
‘ azy  asz2

‘ —ajp
Using the definition of 2 x 2 determinants given in Eq. (1) we get

det(A) = a1 (appasz — apzazy) — aip(az1ass — azzasy) + az(ax1azp — az2asy)
= aj1ap7a33 — a11a23a32 — A12G21433 + a12a23a3] + a13a21a3 — a13a2a31

= a11a2a33 + a12a3a3] + a13a1a3 — a13ap2az] — 4d11a3a3p — a12d21433

65. Prove thatv x w = v x u if and only if u = w + Av for some scalar A. Assume that v # 0.

soLUTION Transferring sides and using the distributive law and the property of parallel vectors, we obtain the following
equivalent equalities:

VXW=VXU
0=vxu—vxw
O0=vx(Uu-—w)
This holds if and only if there exists a scalar A such that
U—Ww=Av
Uu=w-+Av
67. Show that if u, v, and w are nonzero vectors and (u x v) x w = 0, then either (i) u and v are parallel, or (ii) w is
orthogonal to u and v.
soLUTION By the theorem on basic properties of the cross product, part (c), it follows that (u x v) x w = 0 if and only
if
euxv=_0or
e W=A(UXV)
We consider the two possibilities.

1. u x v =0isequivalent to u and v being parallel vectors or one of them being the zero vector.
2. The cross product u x v is orthogonal to u and v, hence w = A (u x v) implies that w is also orthogonal to u and v
(for A £ 0) orw = 0 (for A = 0).

Conclusions: (u x v) x w = 0 implies that either u and v are parallel, or w is orthogonal to u and v, or one of the vectors
u, v, w is the zero vector.

69. & Let a, b, ¢ be nonzero vectors. Assume that b and ¢ are not parallel, and set
v=ax (bxc), w=(a-cb-—(a-b)c

(a) Prove that

(i) v lies in the plane spanned by b and c.

(ii) v is orthogonal to a.

(b) Prove that w also satisfies (i) and (ii). Conclude that v and w are parallel.
(c) Show algebraically that v = w (Figure 23).
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bxc

ax(bxc)

FIGURE 23

SOLUTION

(a) Since v is the cross product of a and another vector (b x c), then v is orthogonal to a. Furthermore, v is orthogonal
to (b x ¢), so it is orthogonal to the normal vector to the plane containing b and c, so v must be in that plane.
(b) w-a=((@a-cbb—(a-b)c)y-a=(-cyb-a)—(a-b)y(c-a)y=0(sincea-c=c-aandb-a=a-b). Thus, wis
orthogonal to a. Also, w is a multiple of b and ¢, so w must be in the plane containing b and c.

Now, if a is perpendicular to the plane spanned by b and c, then a is parallel to b x c and so a x (b x ¢) = 0, which
means v = 0, butalsoa - b = a- ¢ = 0 which means w = 0. Thus, v and w are parallel (in fact, equal).

Now, if a is not perpendicular to the plane spanned by b and c, then the set of vectors on that plane that are also
perpendicular to a form a line, and thus all such vectors are parallel. We conclude that v and w, being on that plane and
perpendicular to a, are parallel.

(c) On the one hand,

i j k

v=ax (bxc)=(ay,ap,a3) x| b1 by b3
c1 ¢ c3

i j k

= ai az as

(bacz — bzcp)  (b3cr —bic3)  (bico — bacy)

(a2(brca — bacr) — az(bzer — bica), az(bac — bacz) — ag(bicz — bacy),
a1 (bgey — bicz) — ap(bacs — bycy))
but on the other hand,
w=(a-c)b—(a-b)c
= (a1c1 + agep +aze3) (b1, by, b3) — (a1b1 + azby + azbz){c1, c2, c3)
= (apcoby + azesby — apbycy — agbacy, ajc1by + agesby — ajbycy — agbsey,
ayc1bz + apcoby — arbicz — azbzcg)
= (az(b1ca — bpcy) — az(bgey — bicz), ag(bacy — bacp) — ag(bicz — bacy),
ay(b3cy — b1cz) — aa(bacs — bcy))
which is the same as v.

71. Show that if a, b are nonzero vectors such that a _L b, then there exists a vector X such that

axX=Dhb
Hint: Show that if X is orthogonal to b and is not a multiple of a, then a x X is a multiple of b.

soLUTION \We define the following vectors:

bxa
X:*XZ, c=Xxa (1)
llall

We show that ¢ = b. Since X is orthogonal to a and b, X is orthogonal to the plane of a and b. But c is orthogonal to X,
hence c is contained in the plane of a and b, that is, a, b and ¢ are in the same plane. Now the vectors a, b and c are in
one plane, and the vectors ¢ and b are orthogonal to a.

It follows that ¢ and b are parallel. 2
We now show that ||c|| = ||b||. We use the cross-product identity to obtain

llcl? = X x all2 = [X[1?[la)? — (X - &)
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X is orthogonal to a, hence X - a = 0, and we obtain

bxal? 1 1
2 201412 2 21412 2
el = 1IXl“lal® = H*H lal® = —lb xall“llal® = —= b x a]
llall llaf4 a2
By the given data, a and b are orthogonal vectors, so,
1
lel2 = — (IbI2lal?) = Ibl2 = el = bl @®)
a

bxa

By (2) and (3) it follows that c = b or ¢ = —b. We thus proved that the vector X = ” X”z
a

X xa=—b.If X x a= —b, then (—X) x a = b. Hence, there exists a vector X such that X x a = b.

satisfies X x a = b or

73. Assume that v and w lie in the first quadrant in R? as in Figure 24. Use geometry to prove that the area of the

parallelogram is equal to det( v\(/ )

(@a+c,b+d)

FIGURE 24

soLUTION We denote the components of u and v by

u=c,d)
vV ={(a,b)

We also denote by O, A, B, C, D, E, F, G, H, K the points shown in the figure.

(a+c¢,b+d)

Since OGCK is a parallelogram, it follows by geometrical properties that the triangles O FG and K HC and also the
triangles DGC and AK O are congruent. It also follows that the rectangles EF DG and ABH K have equal areas. We
use the following notation:

The area of the parallelogram
S:  The area of the rectangle OBCE
S1: The area of the rectangle EFDG

Sp: The area of the triangle OF G
S3:  The area of the triangle DGC

Hence,
A=S8S—-2(51+ 82+ S3) (1)
Using the formulas for the areas of rectangles and triangles we have (see figure)

S=0B-OE=(a+c)d+b)

cd _ ab

S1 = be, 5227, 53—2
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Substituting into (1) we get

A=(a+c>(d+b)—2(bc+ﬂ+@>

2 2
=ad+ab+cd +cb —2bc — cd — ab (2)
=ad — bc
On the other hand,
Y a b
det<w>_ c d‘_ad—bc 3)

By (2) and (3) we obtain the desired result.

75. In the notation of Exercise 74, suppose that a, b, ¢ are mutually perpendicular as in Figure 25(B). Let Sg be the area
of face F. Prove the following three-dimensional version of the Pythagorean Theorem:

5% + 5% + S& = 85,
SOLUTION Since ||Vp| = Sp then using Exercise 74 we obtain
S%) = IVpl? =Vp -Vp = (VAo +Vp +V¢) - (V4 +Vp + V()

=VA-VA+VA-VB+Va-Vc+VB-Va+Vp VB +VR-Vc+Vc: Va+Vc-Vg+Vc-Ve

= VAl + Vg1 + IVClI? +2(Va - Vg +Va - Ve +VE V) )
Now, the normals v 4, Vg, and v to the coordinate planes are mutually orthogonal, hence,

VA VB =V4 -Vc=Vp-Vc =0 (2)

Combining (1) and (2) and using the relations ||vg || = Sr we obtain

2 2 2 2

12.5 Planes in Three-Space (LT Section 13.5)

Preliminary Questions
1. What is the equation of the plane parallel to 3x + 4y — z = 5 passing through the origin?

SOLUTION Thetwo planesare parallel, therefore the vector n = (3, 4, —1) that is normal to the given plane is also normal
to the plane we need to find. This plane is passing through the origin, hence we may substitute (xg, yg, zg) = (0, 0, 0) in
the vector form of the equation of the plane. This gives

n-{x,y,z) =n-(xo, Y0, 20)
3,4, -1) - (x,y,2)=(3,4,-1)-(0,0,0) =0
or in scalar form

3x+4y—z=0

2. The vector k is normal to which of the following planes?
@ x=1 (b) y=1 () z=1
soLUTION The planes x = 1, y = 1, and z = 1 are orthogonal to the x, y, and z-axes respectively. Since the plane
z = 1 is orthogonal to the z-axis, the vector k is normal to this plane.
3. Which of the following planes is not parallel to the plane x + y + z = 1?
(@ 2x+2y+2z=1 (b)) x+y+z=3
) x—y+z=0
SOLUTION The two planes are parallel if vectors that are normal to the planes are parallel. The vectorn = (1,1, 1) is
normal to the plane x + y + z = 1. We identify the following normals:

e v =(2,2,2)isnormal to plane (a)
e u=(1,1,1)isnormal to plane (b)
e w = (1,1, 1) is normal to plane (c)

The vectors v and u are parallel to n, whereas w is not. (These vectors are not constant multiples of each other). Therefore,
only plane (c) is not parallel to the plane x + y + z = 1.
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4. To which coordinate plane is the plane y = 1 parallel?
SOLUTION The plane y = 1 is parallel to the xz-plane.

z

I\
/ y
X
5. Which of the following planes contains the z-axis?
(@ z=1 b) x+y=1 ) x+y=0
SOLUTION The points on the z-axis are the points with zero x and y coordinates. A plane contains the z-axis if and only
if the points (0, 0, ¢) satisfy the equation of the plane for all values of c.
(a) Plane (a) does not contain the z-axis, rather it is orthogonal to this axis. Only the point (0, 0, 1) is on the plane.
(b) x = 0and y = 0 do not satisfy the equation of the plane, since 0 + 0 # 1. Therefore the plane does not contain the
z-axis.
(c) The plane x + y = 0 contains the z-axis since x = 0 and y = 0 satisfy the equation of the plane.
6. Suppose that a plane P with normal vector n and a line £ with direction vector v both pass through the origin and
that n - v = 0. Which of the following statements is correct?
(a) L iscontained in P.
(b) L is orthogonal to P.
soLUTION The direction vector of the line £ is orthogonal to the vector n that is normal to the plane. Therefore, £ is
either parallel or contained in the plane. Since the origin is common to £ and P, the line is contained in the plane. That
is, statement (a) is correct.

Exercises
In Exercises 1-8, write the equation of the plane with normal vector n passing through the given point in each of the three
forms (one vector form and two scalar forms).

1. n={(3,2, 4 -1
SOLUTION The vector equation is

(1,3,2) - (x,y,2) =(1,3,2)- (4, -1,1) =4 -3 +2=3
To obtain the scalar forms we compute the dot product on the left-hand side of the previous equation:
x+3y+2z=3

or in the other scalar form:

x-—H+3y+D+2z-D+4-3+2=3

x—H+3y+1)+2(z=-1) =0
3. n=(-121), (41,5
SOLUTION The vector form is
(-1,2,1) - (x,y,z) =(-1,2,1) - (4,1,5) = -4 +24+5=3

To obtain the scalar form we compute the dot product above:

—x+2y+z=3
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or in the other scalar form:
—(x—4H+2y-1)+(z—-5=3+4-2-5=0
—x—4H+2(y-1)+((z—-5=0

5 n=i, 3,1,-9
soLuTiON \We find the vector form of the equation of the plane. We write the vector n =iasn = (1, 0, 0) and obtain

(1,0,0) - {x,y,2) =(1,0,0)-(3,1,-9) =3+04+0=3
Computing the dot product above gives the scalar form:
x+04+0=3
x=3
Or in the other scalar form:

x=3)+0-y-1D+0-(z+9=3-3=0

7.n=k, (6,7,2)
soLUTION \We write the normal n = Kk in the form n = (0, 0, 1) and obtain the following vector form of the equation
of the plane:
(0,0,1) - {x,y,z) =(0,0,1)-(6,7,2) =04+0+2=2

We compute the dot product to obtain the scalar form:

Ox +0y+1z=2

z=2

or in the other scalar form:

0x —6)+0(y —7)+1(z —2) =0

9. Write down the equation of any plane through the origin.

soLUTION \We can use any equation ax + by + cz = d which contains the point (x, y, z) = (0, 0, 0). One solution
(and there are many) isx + y +z = 0.

11. Which of the following statements are true of a plane that is parallel to the yz-plane?

(8 n=(0,0,1) is anormal vector.

(b) n= (1,0, 0) is a normal vector.

(c) The equation has the form ay + bz = d

(d) The equation has the form x = d

SOLUTION

(a) For n = (0,0, 1) a normal vector, the plane would be parallel to the xy-plane, not the yz-plane. This statement is
false.

(b) Forn = (1,0, 0) a normal vector, the plane would be parallel to the yz-plane. This statement is true.

(c) For the equation ay + bz = d, this plane intersects the yz-planeat y =0,z =d/b or y = d/a, z = 0 depending on
whether a or b is non-zero, but it is not equal to the yz-plane (which has equation x = d) Thus, it is not parallel to the
yz-plane This statement is false.

(d) For the equation of the form x = d, this has (1, 0, 0) as a normal vector and is parallel to the yz-plane. This statement
is true.

In Exercises 13-16, find a vector normal to the plane with the given equation.

13. 9x —4y — 11z =2

soLUTION Using the scalar form of the equation of the plane, a vector normal to the plane is the coefficients vector:
n=(9, -4, —11)

15. 3(x —4) —8(y — 1) + 11z =0

soLuTION Using the scalar form of the equation of the plane, 3x — 8y + 11z = 4 a vector normal to the plane is the
coefficients vector:

n= (3, -8, 11)
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In Exercises 17-20, find an equation of the plane passing through the three points given.
17. P=(2,-1,4, 0=(,1,1), R=(@3,1,-2)
soLUTION We go through the steps below:

Step 1. Find the normal vector n. The vectors a = P_)Q and b = PR lie on the plane, hence the cross productn =a x b
is normal to the plane. We compute the cross product:

—

a=PO=(1—21—(=1),1—4) = (1,2, —3)
b=PR=(3—2,1—(=1),—2—4) = (1,2, —6)

i j k
2 =3 |. -1 -3 . -1 2
n=axb=| -1 2 -3 =‘ ‘—’ 'j—i—‘ ’k
‘ L 2 e 2 -6 1 -6 1 2

= —6i — 9 — 4k = (=6, -9, —4)

Step 2. Choose a point on the plane. We choose any one of the three points on the plane, for instance Q0 = (1,1, 1).
Using the vector form of the equation of the plane we get

n-{x,y, z) =n-{xo, y0. 20)
(—6,—-9,—4) - (x,y,z) = (—6,-9,-4) - (1,1, 1)
Computing the dot products we obtain the following equation:
—6x —9y —4z=-6-9-4=-19

6x + 9y +4z =19
19. P =(1,0,0, Q0=(0,1,1), R=(2,0,1)
soLUTION We use the vector form of the equation of the plane:

n-(x,y,z)=d 1)

To find the normal vector to the plane, n, we first compute the vectors P_Q> and PR that lie in the plane, and then find the
cross product of these vectors. This gives

—

PO =(0,1,1)—-(1,0,0) = (-1,1,1)

—

PR =(2,0,1) — (1,0,0) = (1,0, 1)

i j k _ _
n=POxPR=| -1 1 1 :‘é Hi—‘ 1 Hj+‘ i (l)‘k
10 1
—i42j—k=(1,2 -1) @)

We now choose any one of the three points in the plane, say P = (1, 0, 0), and compute d:
d=n-0P=(1,2,-1)-(1,0,0)=1-142.04+(-1)-0=1 3)
Finally we substitute (2) and (3) into (1) to obtain the following equation of the plane:
(1,2, -1) - (x,y,z) =1
x+2y—z=1

In Exercises 21-28, find the equation of the plane with the given description.

21. Passes through O and is parallel to 4x — 9y +z =3

SOLUTION The vector n = (4, —9, 1) is normal to the plane 4x — 9y + z = 3, and so is also normal to the parallel
plane. Setting n = (4, =9, 1) and (xg, 0, z0) = (0, 0, 0) in the vector equation of the plane yields

4,-9,1) - (x,y,z) =(4,-9,1)-(0,0,0) =0
4x —9y+2z=0
23. Passes through (4, 1, 9) and is parallel to x = 3
SOLUTION The vector form of the plane x = 3 is

(1,0,0) - (x,y,z) =3
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Hence, n = (1, 0, 0) is normal to this plane. This vector is also normal to the parallel plane. Setting (xg, yo, z0) = (4, 1, 9)
and n = (1, 0, 0) in the vector equation of the plane yields

(1,0,0) - (x,y,2) =(1,0,0)-(4,1,9)=44+04+0=4

or

x+04+0=4 = x=4
25. Passes through (—2, —3, 5) and has normal vector i + k
soLuTIoN We substitute n = (1, 0, 1) and (xg, yo, z0) = (—2, —3, 5) in the vector equation of the plane to obtain

(1,0,1) - (x,y,2) =(1,0,1) - (—2, =3, 5)

or

x+0+z=-24+0+5=3

x+z=3

27. Contains the lines ri(r) = (2,1, 0) + (¢, 2¢, 3ty and ro(r) = (2, 1, 0) + (3¢, ¢, 8¢)

SOLUTION Since the plane contains the lines rq(¢) and ry (), the direction vectors v = (1, 2, 3) and v = (3, 1, 8) of
the lines lie in the plane. Therefore the cross product n = vq x vy is normal to the plane. We compute the cross product:

2 3 13| |1 2
AER LR ER R P

o w X

i
n=1(1,2,3)x(3,1,8)=| 1 2
3 1

=13i +j — 5k = (13,1, —5)

We now must choose a point on the plane. Since the line r1 (r) = (2 4+, 1 + 2¢, 3r) is contained in the plane, all of its
points are on the plane. We choose the point corresponding to ¢ = 0, that is,

(x0, 0, 20) = (2,1,0)
We now use the vector equation of the plane to determine the equation of the desired plane:
n-{x,y,z) =n-(xo, Yo, z0)
(13,1, -5) - {x,y,2) = (13,1, =5) - (2,1,0)
1Bx+y—5:=26+1+0=27
3x+y—5z=27

29. Are the planes %x +2x —y =5and 3x + 12x — 6y = 1 parallel?

SOLUTION The planes Z%x —y =5and 15x — 6y = 1, are parallel if and only if the vectors ny = (2% —1,0) and
ny, = (15, —6, 0) normal to the planes are parallel. Since n, = 6n4 the planes are parallel.

31. Find an equation of the plane P in Figure 8.

FIGURE 8

soLuTioN We must find the equation of the plane passing though the points P = (3,0,0), Q = (0,2,0),and R =
0,0,5).
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We use the following steps:

Step 1. Find a normal vector n. The vectors a = P_>Q and b = PR lie in the plane, hence the cross product n = a x b is
normal to the plane. We compute the cross product:

a=P0=(0-32-0,0—0)=(—3,2,0)

b=PR=(0-30-0,5-0)=(—3,0,5)
i j ok B B

n=axb=|-3 2 0 :‘2 g‘i—‘_g g‘j—k‘_g (Z)‘k
-3 0 5

= 10i + 15j + 6k = (10, 15, 6)

Step 2. Choose a point on the plane. We choose one of the points on the plane, say P = (3,0, 0). Substituting n =
(10, 15, 6) and (xg, yo, z0) = (3, 0, 0) in the vector form of the equation of the plane gives

n-(x,y,z) =n-(xg, yo, 20)
(10, 15, 6) - (x, y, z) = (10, 15,6) - (3,0, 0)
Computing the dot products we get the following scalar form of the equation of the plane:
10x + 15y +6z=10-34+0+0=130
10x 4+ 15y + 6z = 30

In Exercises 33-36, find the intersection of the line and the plane.

B.x+y+z=14, r(r)=(1,1,0)+1(0,2,4)
SOLUTION The line has parametric equations

)C=1, y=1+2t, Z=4l

To find a value of ¢ for which (x, y, z) lies on the plane, we substitute the parametric equations in the equation of the
plane and solve for ¢:

x+y+z=14
1+1+20)+4r=14
6r=12 = =2
The point P of intersection has coordinates
x=1 y=142.-2=5 z=4.2=8
Thatis, P = (1,5, 8).

35. z=12, r(t)=1(—6,9,36)
SOLUTION The parametric equations of the line are

x=—6t, y=9 z=236¢t 1)
We substitute the parametric equations in the equation of the plane and solve for ¢:
z=12

br=12 = ¢
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The value of the parameter at the point of intersection is r = % Substituting into (1) gives the coordinates of the point P
of intersection:

1 1 1
x=-6-=-=-2, y=9-§=3, z7=36-- =12
That is,
P=(-2,3,12).

In Exercises 37-42, find the trace of the plane in the given coordinate plane.

37. 3x —9y+4z=5, yz

SOLUTION The yz-plane has the equation x = 0, hence the intersection of the plane with the yz-plane must satisfy both
x = 0 and the equation of the plane 3x — 9y + 4z = 5. That is, this is the set of all points (0, y, z) in the yz-plane such
that —9y + 4z = 5.

39. 3x+4z=-2, xy

SOLUTION The trace of the plane 3x + 4z = —2 inthe xy coordinate plane is the set of all points that satisfy the equation
of the plane and the equation z = 0 of the xy coordinate plane. Thus, we substitute z = 0 in 3x + 4z = —2 to obtain the
line3x = —2orx = —% in the xy-plane.

41, —x+y =4, xz

SOLUTION The trace of the plane —x + y = 4 on the xz-plane is the set of all points that satisfy both the equation of
the given plane and the equation y = 0 of the xz-plane. That is, the set of all points (x, 0, z) such that —x + 0 = 4, or
x = —4. This is a vertical line in the xz-plane.

43. Does the plane x = 5 have a trace in the yz-plane? Explain.

SOLUTION The yz-plane has the equation x = 0, hence the x-coordinates of the points in this plane are zero, whereas
the x-coordinates of the points in the plane x = 5 are 5. Thus, the two planes have no common points.

45. Give equations for two distinct planes whose trace in the yz-plane has equation y = 4z.

SOLUTION The yz-plane has the equation x = 0, hence the trace of a plane ax + by + ¢z = 0 in the yz-plane is
obtained by substituting x = 0 in the equation of the plane. Therefore, the following two planes have trace y = 4z (that
is, y — 4z = 0) in the yz-plane:

x+y—47=0; 2x+y—4z=0

47. Find all planes in R3 whose intersection with the xz-plane is the line with equation 3x + 2z = 5.

SOLUTION The intersection of the plane ax + by + cz = d with the xz-plane is obtained by substituting y = 0 in the
equation of the plane. This gives the following line in the xz-plane:

ax+cz=d
This is the equation of the line 3x + 2z = 5 if and only if for some A # 0,
a=3\, ¢c=2\, d=5x
Notice that 4 can have any value. The planes are thus
BrMx +by+ 20z =51, A #0.

In Exercises 49-54, compute the angle between the two planes, defined as the angle 6 (between 0 and =) between their
normal vectors (Figure 9).

n
T )
N
n
a
n, =4 /

L

FIGURE 9 By definition, the angle between two planes is the angle between their normal vectors.
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49. Planes with normalsny = (1,0,1),n, = (-1,1, 1)

soLUTION Using the formula for the angle between two vectors we get

ni-n 1,0,1)-(-1,1,1 -14+0+1
cose—lz—( ) ) +0+

Inallinll ~ IO DL LT~ 7052 /024 24 12

The solutionfor0 <0 < is6 = %

51. 2x +3y+7z=2and4x — 2y + 2z =4

SOLUTION The planes 2x + 3y + 7z = 2 and 4x — 2y + 2z = 4 have the normals ny = (2,3, 7) and np = (4, -2, 2)
respectively. The cosine of the angle between ny and ny is
ng-n 2,3,7)-(4,-2,2 8—-6+14
0s 0 1-n2 | )+ ) +

16
Inallingl = 123221~ /oy 7+ 2 a2 4 (22 422 Vo224

The solution for0 <8 < w7 is@ = 1.143 rad or = 65.49°.

~ 0.415

53. 3(x — 1) — 5y + 2(z — 12) = 0 and the plane with normal n = (1, 0, 1)

soLUTION The plane 3(x — 1) — 5y + 2(z — 12) = 0 has the normal n; = (3, —5, 2), and our second plane has given
normal ny = (1, 0, 1). We use the formula for the angle between two vectors:

ng-np (3,-5,2)-(1,0,1) 3+0+4+2

5
9 = = = =
Ingliingl — 18 =5. 201001~ [~ 52 g0 /i yg412 V382

The solution for0 < 6 < w is® = 0.96 rad or & = 55°.

~ 0.5735

55. Find an equation of a plane making an angle of % with the plane 3x + y — 4z = 2.

SOLUTION The angle 6 between two planes (chosen so that 0 < 6 < ) is defined as the angle between their normal
vectors. The following vector is normal to the plane 3x + y — 4z = 2:

n =31 -4

Letn- (x, y, z) = d denote the equation of a plane making an angle of % with the given plane, where n = (a, b, ¢). Since
the two planes are perpendicular, the dot product of their normal vectors is zero. That is,

n-ny={a,b,c)-(3,1,-4)=3a+b—-4c=0 = b=-3a+4c
Thus, the required planes (there is more than one plane) have the following normal vector:
n = (a, —3a+4c, c)
We obtain the following equation:
n-(x,yc)=d
(a, =3a+4c,c) - (x,y,z) =d
ax + (4c —3a)y+cz=d

Every choice of the values of a, ¢ and d yields a plane with the desired property. For example, we seta =c=d =1to
obtain

x+y+z=1

57. Find a plane that is perpendicular to the two planes x + y = 3and x + 2y — z = 4.

soLUTION The vector forms of the equations of the planes are (1,1,0) - (x,y,z) = 3and (1,2, —1) - {x, y,z) = 4,
hence the vectorsny = (1, 1, 0) and np = (1, 2, —1) are normal to the planes. We denote the equation of the planes which
are perpendicular to the two planes by

ax+by+cz=d (1)

Then, the normal n = (a, b, c¢) to the planes is orthogonal to the normals ny and n, of the given planes. Therefore,
n-ny = 0and n-ny = 0 which gives us

(a,b,c)-{(1,1,0) =0, (a,b,c)-{(1,2,-1)=0
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We obtain the following equations:

a+b=0
a+2b—c=0

The first equation implies that b = —a. Substituting in the second equation we geta — 2a — ¢ = 0, 0r ¢ = —a. Substituting
b= —aandc = —ain (1) gives (for a # 0):

d
ax —ay—az=d = x—y—z=-—
a

d

& is an arbitrary constant which we denote by f. The planes which are perpendicular to the given planes are, therefore,

x—y—z=f

59. Let £ denote the intersection of the planes x — y — z = 1 and 2x 4+ 3y + z = 2. Find parametric equations for the
line £. Hint: To find a point on £, substitute an arbitrary value for z (say, z = 2) and then solve the resulting pair of
equations for x and y.

soLUTION \We use Exercise 56 to find a direction vector for the line of intersection £ of the planesx — y —z = 1and
2x + 3y + z = 2. We identify the normals ny = (1, —1, —1) and np = (2, 3, 1) to the two planes respectively. Hence, a
direction vector for £ is the cross product v = ny x ny. We find it here:

i j K
V=ngxnp=|1 -1 -1 |=2i—3j+5k=(2 —3,5)
2 3 1

We now need to find a point on £. We choose z = 2, substitute in the equations of the planes and solve the resulting
equations for x and y. This gives

x—y—2=1 x—y=3
or
2x+3y+2=2 2x+3y=0
The 1st equation implies that y = x — 3. Substituting in the 2nd equation and solving for x gives

2x+3x—=3)=0

5x =9 = X = -, y:7_3:_,

We conclude that the point (% —% 2) is on £. We now use the vector parametrization of a line to obtain the following
parametrization for L:

9 6
r@ = <§, 3 2> +1(2,-3,5)
This yields the parametric equations

9 6
= — 21‘7 :—7—31’, =2 5[
X 5—|— y 5 z +

61. Two vectors v and w, each of length 12, lie in the plane x + 2y — 2z = 0. The angle between v and w is 7 /6. This
information determines v x w up to a sign £1. What are the two possible values of v x w?

soLUTION The length of v x w is ||v||||w|| sin &, but since both vectors have length 12 and since the angle between them
is /6, thenthe length of v x wis12-12-1/2 = 72. The direction of v x w is perpendicular to the plane containing them,
which is the plane x + 2y — 2z = 0, which has normal vector n = (1, 2, —2). Since v x w must have length 72 and must

be parallel to (1, 2, —2), then it must be 72 times the unit vector (1, 2, —2) //12 + 22 + (—2)2 = (1/3,2/3, —2/3).
Thus,

VxW=£72.(1/3,2/3,-2/3) = +£24 - (1,2, -2)

63. & In this exercise, we show that the orthogonal distance D from the plane P with equation ax + by + cz =d
to the origin O is equal to (Figure 10)

|d|
Va2 +b? + ¢

Let n = (a, b, ¢), and let P be the point where the line through n intersects 7. By definition, the orthogonal distance
from P to O is the distance from P to O.

D =
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. . . d
(a) Show that P is the terminal point of v = (ﬂ) n

(b) Show that the distance from P to O is D.

FIGURE 10

d .
SOLUTION Let v be the vectorv = (ﬂ) n. Then v is parallel to n and the two vectors are on the same ray.

(a) First we must show that the terminal point of v lies on the plane ax + by + cz = d. Since the terminal point of v is
the point

( d )( b.o) < da db dc )
E— a,b,c) = ) s

n-n a2 +b2 42 a2 4 b2 +¢2" a2 + b2 42
then we need only show that this point satisfies ax 4+ by 4+ ¢z = d. Plugging in, we find:

da db de a?d +bv%d +cd

+b- +c- =
a? +b? +c? a? +b? +c? a? +b? +c? a? +b? +c?

ax+by+cz=a-

(b) We now show that the distance from P to O is D. This distance is just the length of the vector v, which is:

A Cldl d|
Vil={—)Inl=+— = ———
n-n ”n” ’a2+b2+c2

as desired.

Further Insights and Challenges

In Exercises 65 and 66, let P be a plane with equation
ax+by+cz=d

and normal vector n = (a, b, c). For any point Q, there is a unique point P on P that is closest to Q, and is such that
P Q is orthogonal to P (Figure 11).

FIGURE 11

65. Show that the point P on P closest to Q is determined by the equation
d—00-n
SN _ .
0+ () n

n-n
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SOLUTION Since P Q is orthogonal to the plane P, it is parallel to the vector n = (a, b, ¢) which is normal to the plane.
Hence,
PO =in 1)

Q

P ¥
oé’

Since OP + PO = 00, we have PO = 00 — O P. Thus, by (1) we get
—_— = —_— =
OQ—-—0OP=xn = OP=0Q-xn 2
The point P is on the plane, hence m)’ satisfies the vector form of the equation of the plane, that is,
n.0P=d 3)
Substituting (2) into (3) and solving for A yields
n- (0_Q) - An) =d
—
n-0Q—-xn-n=d
n-00—d
AN-n=n-00-d = A= @)
n-n
d—n-00
) .

=00
=00+ T

3l

Finally, we combine (2) and (4) to obtain

00
Q‘n>n
-Nn

<d_
+ [ —
n

We substitute n = (1, 1, 1), O_Q) = (2,1,2)and d = 1in this equation to obtain
(L1,1)=(2,1,2) +

ol

(1,1,1)

3l

67. Use Eq. (7) to find the point P nearestto Q = (2,1,2) onthe planex +y +z = 1.
soLuTioN We identify n = (1, 1, 1) as a vector normal to the plane. By Eq. (7) the nearest point P to Q is determined

by
1-Q2+1+2)
1+1+1

1-(2,1,2)-(1,1,1)

(111111
2 12
37 3’3

0P =(2.1,2) +
=212 - z(L11) =
1)

The terminal point P = (% —%, %) of m)’ is the nearest pointto Q = (2, 1, 2) on the plane.

69. Use Eq. (8) to find the distance from Q = (1, 1, 1) to the plane 2x + y + 5z = 2.
SOLUTION By Eq. (8), the distance from Q = (x1, y1, z1) to the plane ax + by + cz =d is

_ laxg +by1 +cz1 —d|
lInil

L
We identify the vector n = (2, 1, 5) as a normal to the plane 2x + y +5z = 2. Alsoa =2, b =1,¢ =5,d = 2, and
i ~ 1.095

(x1, y1,z1) = (1, 1, 1). Substituting in (1) above we get
£_|2-1+1-1+5-1—2|_ 6 B
V22412452

30

(2,1, 5)1
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71. What is the distance from Q = (a, b, c) to the plane x = 0? Visualize your answer geometrically and explain without
computation. Then verify that Eq. (8) yields the same answer.

SoLUTION The plane x = 0 is the yz-coordinate plane. The nearest point to Q on the plane is the projection of Q on
the plane, which is the point Q' = (0, b, ¢).

Hence, the distance from Q to the plane is the length of the vector Q—’Q> = (a, 0, 0) which is |a|. We now verify that Eq. (8)
gives the same answer. The plane x = 0 has the vector parametrization (1, 0, 0) - (x, y, z) = 0, hence n = (1, 0, 0). The
coefficients of the plane x = 0are A =1, B = C = D = 0. Also (x1, y1, z1) = (a, b, ¢). Substituting this value in
Eq. (8) we get

|[Axp+ By1 +Cz1—D|  |1-a+0+0-0] la| ]
Inll {1, 0,01 12 4+ 02 4+ 02

The two answers agree, as expected.

12.6 A Survey of Quadric Surfaces (LT Section 13.6)

Preliminary Questions
1. True or false? All traces of an ellipsoid are ellipses.

soLuTION This statement is true, mostly. All traces of an ellipsoid (g)2 + (%)2 + (g)2 = 1 are ellipses, except for
the traces obtained by intersecting the ellipsoid with the planes x = +a, y = £b and z = %c. These traces reduce to the
single points (+a, 0, 0), (0, £b, 0) and (0, 0, +c) respectively.

2. True or false? All traces of a hyperboloid are hyperbolas.

SOLUTION The statement is false. For a hyperbola in the standard orientation, the horizontal traces are ellipses (or
perhaps empty for a hyperbola of two sheets), and the vertical traces are hyperbolas.

3. Which quadric surfaces have both hyperbolas and parabolas as traces?

soLUTION The hyperbolic paraboloid z = (ﬁ)2 — (%)2 has vertical trace curves which are parabolas. If we set x = xg
or y = yg we get

(-G~ e
(-G - -G

The hyperbolic paraboloid has vertical traces which are hyperbolas, since for z = zg, (zg > 0), we get
x\2 Y32
0=(3)" - ()
4. Is there any quadric surface whose traces are all parabolas?

soLUTION There is no quadric surface whose traces are all parabolas.

5. Asurface is called bounded if there exists M > 0 such that every point on the surface lies at a distance of at most
M from the origin. Which of the quadric surfaces are bounded?

soLUTION The only quadric surface that is bounded is the ellipsoid

x\2 2 7\2
G +G) +C) =
a b c
All other quadric surfaces are not bounded, since at least one of the coordinates can increase or decrease without bound.

6. What is the definition of a parabolic cylinder?
SOLUTION A parabolic cylinder consists of all vertical lines passing through a parabola C in the xy-plane.
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Exercises

In Exercises 1-6, state whether the given equation defines an ellipsoid or hyperboloid, and if a hyperboloid, whether it is
of one or two sheets.

x\2 Y32 7\2
L (5)+(G) +E) =1
SOLUTION This equation is the equation of an ellipsoid.
3. x2+3y2—|—912=1

soLUTION \We rewrite the equation as follows:

2
2 y z\
xX° + I + <1> =1
V3 3
This equation defines an ellipsoid.
5. x2 -3y +92=1
soLuTION We rewrite the equation in the form
2 2
2 y < _
X — I + <l) =1
/3 3

This is the equation of a hyperboloid of one sheet.

In Exercises 7-12, state whether the given equation defines an elliptic paraboloid, a hyperbolic paraboloid, or an elliptic
cone.

x\2 12
1:=(3) +(3)
SOLUTION This equation defines an elliptic paraboloid.
X\2 y\2
% :=(5) - ()
SOLUTION This equation defines a hyperbolic paraboloid.
1. 32 - 7y2 =¢

SOLUTION Rewriting the equation as

2 2
X y
=\ | T
V3 V7
we identify it as the equation of a hyperbolic paraboloid.

In Exercises 13-20, state the type of the quadric surface and describe the trace obtained by intersecting with the given
plane.

13. x2—|—(%)2—|—22=1, y=0

SOLUTION The equation X2+ (%)2 + 72 = 1 defines an ellipsoid. The xz-trace is obtained by substituting y = 0 in the
equation of the ellipsoid. This gives the equation x2 4 z2 = 1 which defines a circle in the xz-plane.

N2, 2 1

15 2+ (3) +2=1 2=

X~ + 7 +z 1=7
soLuTioN The quadric surface is an ellipsoid, since its equation has the form (2)% + (%)% + (£)? = 1 fora = 1,

b =4, c = 1. To find the trace obtained by intersecting the ellipsoid with the plane z = %, we set z = % in the equation

of the ellipsoid. This gives
2
2 (2 (L) -
2+ (%) +<4) =1

2
2,y _ 15
SRETIRET:
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To get the standard form we divide by %—g to obtain

2
2 2 2
X y X y
I A O +<—> =1 )
15 " 1615 /15
B 15 ( ofs ) V15
We conclude that the trace is an ellipse on the xy-plane, whose equation is given in (1).

17. (%)2 + (%)2 _52-1, y=1

SOLUTION Rewriting the equation in the form

G (5) -

we identify it as the equation of a hyperboloid of one sheet. Substituting y = 1 we get

2
X 1 2
Yo 5221
g T35
2
X 2 24
52
9 > T35
% , 25.5,
2 2 =1
2497 " 24 ¢

2
2 — < =1
() (e
Thus, the trace on the plane y = 1 is a hyperbola.
19. y =3x%, =27

soLUTION This equation defines a parabolic cylinder, consisting of all vertical lines passing through the parabola

y = 3x2inthe xy-plane. Hence, the trace of the cylinder on the plane z = 27 is the parabola y = 3x2 on this plane, that
is, the following set:

{x.y. 2y = 32, 7= 27}.

21. Match each of the ellipsoids in Figure 12 with the correct equation:
(8) x2 +4y? +4:2 = 16 (b) 4x®+ )% +42% =16
(©) 4x2 +4y2 + ;2 =16

FIGURE 12

SOLUTION
(a) We rewrite the equation in the form

N2 /YN /772
() +(G) +(G) =1

Theellipsoid intersects the x, y, and z axes at the points (£4, 0, 0), (0, =2, 0),and (0, 0, -2), hence (B) is the corresponding
figure.

(b) We rewrite the equation in the form

(3)+ () +(3) =

The x, y, and z intercepts are (£2, 0, 0), (0, £4, 0), and (0, 0, +2) respectively, hence (C) is the correct figure.
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(c) We write the equation in the form
X\ 2 32 772
3)+(G)+(G) =1
The x, y, and z intercepts are (£2, 0, 0), (0, +2, 0), and (0, 0, +4) respectively, hence the corresponding figure is (A).
y

2 2
23. What is the equation of the surface obtained when the elliptic paraboloid z = (%) + <Z> is rotated about the
x-axis by 90°? Refer to Figure 13.

FIGURE 13

SOLUTION The axis of symmetry of the resulting surface is the y-axis rather than the z-axis. Interchanging y and z in
the given equation gives the following equation of the rotated paraboloid:

x\2 7\2
y=(3) + (%)
In Exercises 25-30, sketch the given surface.
25 x24y2 - 2=1
SOLUTION This equation defines a hyperboloid of one sheet. The trace on the plane z = zgisthecirclex? + y2 = 1+ z%.

The trace on the plane y = yq is the hyperbola x2 — z2 = 1 — yg and the trace on the plane x = xq is the hyperbola
y2—2=1- xg. We obtain the following surface:

x

Graph of x2 + y2 —-2=1

- G+ ()

SOLUTION This equation defines an elliptic paraboloid, as shown in the following figure:
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2 _ (%) 4 (2
29. 2 = (4) +(8)
soLUTION This equation defines the following elliptic cone:

z

N

g =

31. Find the equation of the ellipsoid passing through the points marked in Figure 14(A).

z Z
6
+ —4 -2
L
2 4 y 2 4 y
X -6 X
(A) (B)
FIGURE 14

SOLUTION The equation of an ellipsoid is

x\2 V32 772
) +G)+() =1 @
The x, y and z intercepts are (+a, 0, 0), (0, £b, 0) and (0, 0, &) respectively. The x, y and z intercepts of the desired
ellipsoid are (£2, 0, 0), (0, +4, 0) and (0, 0, £6) respectively, hence a = 2, b = 4 and ¢ = 6. Substituting into (1) we

get
x\2 y\2 772
() +(G)+(G) -t
33. Find the equation of the hyperboloid shown in Figure 15(A).
z
N 8
\\ )&/ N
—= /
9
3 6
y y
' D)
X

(A (B)
FIGURE 15

SsoLUTION The hyperboloid in the figure is of one sheet and the intersections with the planes z = zg are ellipses. Hence,
the equation of the hyperboloid has the form
x\2 y\2 Z\2
) +G)-() =t @

Substituting z = 0 we get

() + () =

By the given information this ellipse has x and y intercepts at the points (£4, 0) and (0, £6) hence a = 4, b = 6.

Substituting in (1) we get
@) +G) ()= @
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Substituting z = 9 we get

x2 N y2 92 B
16 36 2
x2 +y2 _1+81 B 481
16 ' 36 2 2
c2x2 CZyZ

+ =1
16(81 + ¢2) = 36(81 + ¢?)

2 2
X " y -1
(21\/81—1—62) <S\/81+c2)

By the given information the following must hold:

4

v 2

" 8l+c¢c=8 . m ~

6 =
SVBL+ 2 =12 ¢

C

2 = 814+c2=4® = 32=81

Thus, ¢ = 3+/3, and by substituting in (2) we obtain the following equation:

x\2 y\2 2\
- Z) (== ) =1
( 4 ) + ( 6 ) <3ﬁ)
35. Determine the vertical traces of elliptic and parabolic cylinders in standard form.

soLUTION The vertical traces of elliptic or parabolic cylinders are one or two vertical lines, or an empty set.

37. Let C be an ellipse in a horizonal plane lying above the xy-plane. Which type of quadric surface is made up of all
lines passing through the origin and a point on C?

SOLUTION The quadric surface is the upper part of an elliptic cone.

z

Further Insights and Challenges

39. LetS be the hyperboloid x2 + y2 = z2 + 1 and let P = («, S, 0) be a pointon & in the (x, y)-plane. Show that there
are precisely two lines through P entirely contained in S (Figure 16). Hint: Consider the line r(¢) = (o + at, B + bt, 1)
through P. Show that r(¢) is contained in S if (a, b) is one of the two points on the unit circle obtained by rotating («, 8)
through +% . This proves that a hyperboloid of one sheet is a doubly ruled surface, which means that it can be swept
out by moving a line in space in two different ways.

FIGURE 16
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SOLUTION The parametric equations of the lines through P = («, 8, 0) have the form
x=a+ks, y=p+4Ls, z=ms
Setting the parameter r = ms and replacing % and % by a and b, respectively, we obtain the following (hormalized) form
x=a+at, y=pB+0bt, z=t
The line is entirely contained in S if and only if for all values of the parameter #, the following equality holds:
(@+a)’>+B+b)?=1>+1

That is, for all 7,

2

o + 2aat + a®t? + B2+ 2Bbt + b?1> =12 + 1

@ +b? — 1)1 + 2(aa + Bb)t + (@® + B2 —1) =0

This equality holds for all ¢ if and only if all the coefficients are zero. That is, if and only if

a?+p2-1=0

aa+Bb=0

2 2 _

ac+pc—-1=0
The first and the third equations imply that (a, b) and (., B) are points on the unit circle x2 + y2 = 1. The second equation
implies that the vector u = (a, b) is orthogonal to the vector v = («, 8) (since u - v = aa + b = 0).

Conclusions: There are precisely two lines through P entirely contained in S. For the direction vectors (a, b, 1) of
these lines, (a, b) is obtained by rotating («, B8) through i% about the origin.

In Exercises 40 and 41, let C be a curve in R3 not passing through the origin. The cone on C is the surface consisting of
all lines passing through the origin and a point on C [Figure 17(A)].

/,C
Cr
y
X
(o) =8
E—
X
I
Cone on ellipse C Cone on parabola C
(half of cone shown)
FIGURE 17

41. Let g and ¢ be nonzero constants and let C be the parabola at height ¢ consisting of all points (x, ax2, ¢) [Figure
17(B)]. Let S be the cone consisting of all lines passing through the origin and a point on C. This exercise shows that S
is also an elliptic cone.

2

(a) Show that S has equation yz = acx*®.

(b) Show that under the change of variables y = u + v and z = u — v, this equation becomes acx? = u? — v2 or
u? = acx? + v2 (the equation of an elliptic cone in the variables x, v, u).

SOLUTION A point P on the parabola C has the form P = <x0, axg, c), hence the parametric equations of the line
through the origin and P are

X =txg, Yy ztaxg, z=tc

To find a direct relation between xy and z we notice that

yz = taxgct = ac(tx0)2 = acx?

Now, defining new variables z = u — v and y = u + v. This equation becomes

(u+v)(u—v) = acx?

u2 —v2 =acx2 = u2 =acx2+v2

This is the equation of an elliptic cone in the variables x, v, u. We, thus, showed that the cone on the parabola C is
transformed to an elliptic cone by the transformation (change of variables) y =u + v,z =u — v, x = x.
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12.7 Cylindrical and Spherical Coordinates (LT Section 13.7)

Preliminary Questions
1. Describe the surfaces » = R in cylindrical coordinates and p = R in spherical coordinates.

SOLUTION The surface r = R consists of all points located at a distance R from the z-axis. This surface is the cylinder
of radius R whose axis is the z-axis. The surface p = R consists of all points located at a distance R from the origin. This
is the sphere of radius R centered at the origin.

2. Which statement about cylindrical coordinates is correct?
(a) If 6 =0, then P lies on the z-axis.
(b) If & =0, then P lies in the xz-plane.

SOLUTION The equation & = 0 defines the half-plane of all points that project onto the ray & = 0, that is, onto the
nonnegative x-axis. This half plane is part of the (x, z)-plane, therefore if & = 0, then P lies in the (x, z)-plane.

z

The half-plane =0

For instance, the point P = (1, 0, 1) satisfies & = 0, but it does not lie on the z-axis. We conclude that statement (b) is
correct and statement (a) is false.

3. Which statement about spherical coordinates is correct?
(@) If ¢ =0, then P lies on the z-axis.
(b) If ¢ =0, then P lies in the xy-plane.

SOLUTION The equation ¢ = 0 describes the nonnegative z-axis. Therefore, if ¢ = 0, P lies on the z-axis as stated in
(a). Statement (b) is false, since the point (0, 0, 1) satisfies ¢ = 0, but it does not lie in the (x, y)-plane.

4. The level surface ¢ = ¢q in spherical coordinates, usually a cone, reduces to a half-line for two values of ¢g. Which
two values?

SOLUTION For ¢g = 0, the level surface ¢ = 0 is the upper part of the z-axis. For ¢g = 7, the level surface ¢ = 7 is
the lower part of the z-axis. These are the two values of ¢g where the level surface ¢ = ¢ reduces to a half-line.

5. For which value of ¢g is ¢ = ¢q a plane? Which plane?

SOLUTION  For ¢g = 7, the level surface ¢ = 7 is the xy-plane.

Exercises
In Exercises 1-4, convert from cylindrical to rectangular coordinates.

1. 4,7, 4)
SOLUTION By the given datar = 4,6 = = and z = 4. Hence,
x=rcosf =4coswr =4-(-1)=-4

y=rsind =4sint =40 = (x,y,20=(-4,0,4
z=4
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T 1
310, -, >
(052

SOLUTION Wehaver =0,60 = % 7= % Thus,

x:rcos@:O-cos%:O

y:rsinezo-singzo = (x,y,z):(0,0,%)

Z=§

In Exercises 5-10, convert from rectangular to cylindrical coordinates.

5 1,-1,1)
soLUTION Wearegiventhatx =1,y = -1,z = 1. We find r:

r= x4y =12+ (12 = V2

Next we find 6. The point (x, y) = (1, —1) lies in the fourth quadrant, hence,

y -1 3 T
tang = = = — = -1 —<h<?2 = 0 -
X 1 ’ 2 - = 4

We conclude that the cylindrical coordinates of the point are

(r,0,7) = (ﬁ,%”,l).

7. (1,V/3,7)
SOLUTION Wehavex =1,y = V3, z = 7. We first find r:

r=+x24+y =‘112+(«/§>2=2

Since the point (x, y) = <1, «/§) lies in the first quadrant, 0 < 6 < % Hence,

&

tang=2=""=43 0<6<
X

The cylindrical coordinates are thus

(559

soLUTION We have x = 5 ;=2 Wefindr:

5 _ 5
NARSRN]

i () e

Since the point (x, y) = (% %) is in the first quadrant, 0 < 6 < 7, therefore,
5/v2
tanerzlzl, Os@fg = =21
x  5/42 2 4

The corresponding cylindrical coordinates are

(r,0,z) = (5, %, 2).

In Exercises 11-16, describe the set in cylindrical coordinates.

1 x24+y2<1
soLuTION The inequality describes a solid cylinder of radius 1 centered on the z-axis. Since x2 + y2 = r2, this
inequality can be written as r2 < 1.
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13. y2+12 <4, x=0

SOLUTION The projection of the points in this set onto the xy-plane are points on the y axis, thus 6 = % ore = 37”
Therefore, y = rsin% =r-1=rory=rsin (%’T) = —r. In both cases, y2 = r2, thus the inequality y2 + z2 < 4
becomes r2 + z2 < 4. In cylindrical coordinates, we obtain the following inequality

3
or 6 =—

2 2 g Qzﬁ
r-+z- <4, 5 5

15. x2+y2§9, x>y

SOLUTION The equation x2 4+ y2 < 9 in cylindrical coordinates becomes 2 < 9, which becomes < 3. However, we
also have the restriction that x > y. This means that the projection of our set onto the xy plane is below and to the right
of the line y = x. In other words, our @ is restricted to —37 /4 < 6 < /4. In conclusion, the answer is:

r <3, —3n/4 <6 <m/4

In Exercises 17-24, sketch the set (described in cylindrical coordinates).

17. r =4

soLUTION The surface r = 4 consists of all points located at a distance 4 from the z-axis. It is a cylinder of radius 4
whose axis is the z-axis. The cylinder is shown in the following figure:

z

'

SOLUTION z = —2 is the horizontal plane at height —2, shown in the following figure:

4
>~<y
X

SOLUTION Theregion1l <r < 3,0 < z < 4 is shown in the following figure:

19. z=-2

21. 1<r<3, 0<z<4

|
s}

23. 2+r2<4

SoLUTION The region z2 + r2 < 4 is shown in the following figure:
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In rectangular coordinates the inequality is z2 + (x2 + yz) <4, 0rx2 + y2 4 72 < 4, which is a ball of radius 2.
In Exercises 25-30, find an equation of the form r = (6, z) in cylindrical coordinates for the following surfaces.

25. z=x+y
SOLUTION We substitute x = r cos6, y = r sin 6 to obtain the following equation in cylindrical coordinates:

z=rCcosh +rsind z
. :> V= ——.
z =r(cos6 + sino) cos6 +sind

2

27. = =1
vz
soLUTION \We rewrite the equation in the form
o
)*CZ
Substituting x = r cos® and % = tan 6 we get
rcose
(tan9)z
_ztan 0
Y

29. x2+y2 =4
soLUTION  Since x2 + y2 = r2, the equation in cylindrical coordinates is, r2=4orr=2.

In Exercises 31-36, convert from spherical to rectangular coordinates.

3L (3, 0, %)

soLUTION We are giventhatp =3,0 =0, ¢ = % Using the relations between spherical and rectangular coordinates
we have

x:psindbcos@:35in%cosO:3-1-l:3

y:psin¢sin9:3sin%sin0:3-l-ozo = (x,y,2)=(3,0,0)
T

z=pcos¢=30055=3-0=0

33. 3,7,0)

SOLUTION We have p = 3,0 = 7, ¢ = 0. Hence,
x =psingcosf =3sin0coswt =0
y=psingsing =3sin0sint =0 = (x,y,2) =(0,0,3)
z=pC0S¢ =3cos0 =3

w5
35. |6, —, —
(5%)

SOLUTION Since p =6,6 = %, and ¢ = 5” we get

) 5t x 1 V3 3V3
x_,osm¢>cose_65|n?cosg_6-5-7_—2
T 11 3/3 3
y_,osm¢>sm9—63|n—smg 6- 2 2=5 = (x,y’z):<2’2,_3\@
57 3
z—pcos¢—6005?—6 < \g)
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In Exercises 3742, convert from rectangular to spherical coordinates.

37. (+/3,0,1)
SOLUTION By the given data x = V3, y =0, and z = 1. We find the radial coordinate:

2
p=yx2+y2+22= («/§) +024+12=2

0
tan@:X:—:O = 60=0 o O=m
X

V3

Since the point (x, y) = (ﬁ O) lies in the first quadrant, the correct choice is & = 0. The angle of declination ¢ satisfies

The angular coordinate 6 satisfies

z 1 T
Cosp=-=, O<p<m = ¢==
p 2 3

The spherical coordinates of the given points are thus
b
(p.0.9) = (2.0.3)

39. (1,1, 1)
SOLUTION We have x = y = z = 1. The radial coordinate is

p=yx2+y2+2=V12+124+12=3

The angular coordinate 6 is determined by tan6 = % = % = 1 and by the quadrant of the point (x, y) = (1, 1), that is,
0= %. The angle of declination ¢ satisfies

z 1
cosp=—=—, 0<¢p<m = ¢=0955

P 3

The spherical coordinates are thus
b
(\/ﬁ, z 0.955)
1 V3

41. | =, —, 3

SOLUTION We have x = % y = ¢T§ and z = /3. Thus

pz@zl<;>2+<f>2+(x/§)2=2

The angular coordinate 6 satisfies0 < 6 < % since the point (x, y) = (% @) is in the first quadrant. Also tan6 =

% = % = /3, hence the angleis 6 = % The angle of declination ¢ satisfies
3
cos¢=£=£, O<¢p<m = <;5=E
0 2 6

We conclude that

w00 (255)

In Exercises 43 and 44, convert from cylindrical to spherical coordinates.

43. (2,0,2)
soLuTIOoN We are given that » = 2,0 = 0, z = 2. Using the conversion formulas, we have

p=yx2 4242 =Vr2 4+ 2=J2 1 22=22
0=60=0
¢ = cos’l(z/,o) = cos’l(Z/(Z\/i)) =n/4
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In Exercises 45 and 46, convert from spherical to cylindrical coordinates.
45. (4,0, %)

soLUTION We are given that p = 4,6 = 0, and ¢ = /4. To find r, we use the formulas x = rcosé and x =
p C0S 6 sin ¢ to get r cos@® = p cos 6 sin ¢, and so

r=psing =4sinw/4 =22
Clearly # = 0, and as for z,

7= pcos¢ =4cosn /4 =22
So, in cylindrical coordinates, our point is (2+/2, 0, 2/2)
In Exercises 47-52, describe the given set in spherical coordinates.
47. X2 +y2 + 2 <1
SOLUTION  Substituting p2 = x2 + y2 + z2 we obtain p2 <1or0 < p < 1.
49. x2+y2+2=1, x>0, y>0, z>0

SOLUTION By p? = x2 + y2 + 72 we get p2 = 1 or p = 1. The inequalities x > 0, y > 0 determine the first quadrant,
which is also determined by 0 < 6 < 7. Finally, z > 0 gives cos ¢ = % >0.Als00 < ¢ <m hence0 < ¢ < Z.We
obtain the following description:

4 T
=1 0<0<-, O0<¢=<—
o =0=3 ] 2

51, y24+272<4, x=0
SoLUTION e substitute y = p sin@sin ¢ and z = p cos ¢ in the given inequality. This gives
4 > p?sin®0sin? ¢ + p? cos® ¢ (1)
The equality x = 0 determines that 6 = % or 6 = 37” (and the origin). In both cases, sinZ # = 1. Hence by (1) we get
,02 sin? ¢+ pz cos? ¢ <4
pP(1) <4
p=2

We obtain the following description:

{wﬁmespszezgmez%q

In Exercises 53-60, sketch the set of points (described in spherical coordinates).
53. p=4
SOLUTION p = 4 describes the sphere of radius 4. This is shown in the following figure:

L

4

5. p=2, 0=—
p 4
SOLUTION The equation p = 2 is a sphere of radius 2, and the equation 6 = % is the vertical plane y = x. These two

surfaces intersect in a (vertical) circle of radius 2, as seen here.
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T

57. p =2, 05¢>§2

SOLUTION The set

is shown in the following figure:

It is the upper half of the sphere with radius 2.

50. p<2, 0<0<2 Z<p<n

2 2
SOLUTION This set is the part of the ball of radius 2 which is below the first quadrant of the xy-plane, as shown in the
following figure:

In Exercises 61-66, find an equation of the form p = f (6, ¢) in spherical coordinates for the following surfaces.
61. z =2
SOLUTION Since z = p C0S ¢, We have pcos¢ = 2, 0r p = ﬁ.
63. x = 72
SOLUTION Substituting x = p cos6 sin¢ and z = p cos ¢ we obtain
pCOSHSiNg = ,02 cos? ¢
cosfsing = pCOSZ¢

__cosOsing  cosotané
T cos?¢p  cose

65. x2 —y2 =4

SOLUTION \We substitute x = p cos @ sin¢ and y = p sin 8 sin ¢ to obtain

4 = p?cos? 0sin ¢ — p?sin?0sin ¢ = p? sin? ¢(0052 0 — sin? 0)



SECTION 12.7 | Cylindrical and Spherical Coordinates (LT SECTION 13.7) 237

Using the identity cos? 6 — sin? @ = cos 26 we get
4 = p?sin? ¢ cos 26
4
pP= 5
sin“ ¢ cos 26
We take the square root of both sides. Since 0 < ¢ < 7 we have sin¢ > 0, hence,

2
r= sin ¢+/c0s 20

67. & Which of (a)—(c) is the equation of the cylinder of radius R in spherical coordinates? Refer to Figure 15.
(@ Rp =sing (b) psing =R () p=Rsing

74

P!

)
=,

FIGURE 15

SOLUTION The equation of the cylinder of radius R in rectangular coordinates is X2+ y2 = R? (z is unlimited).
Substituting the formulas for x and y in terms of p, 6 and ¢ yields
R? = p?cos? 0sin? ¢ + p?sin? 0sin? ¢ = p?sin? p(cos? 0 + sin?6) = p?sin? ¢
Hence,
R% = ,02 sin? ¢
We take the square root of both sides. Since 0 < ¢ < 7, we have sin¢ > 0, therefore,
R =psing

Equation (b) is the correct answer.
69. Find the spherical angles (0, ¢) for Helsinki, Finland (60.1° N, 25.0° E) and Sao Paulo, Brazil (23.52° S, 46.52° W).

SOoLUTION For Helsinki, 6 is 25° and ¢ is 90 — 60.1 = 29.9°.
For Sao Paulo, 6 is 360 — 46.52 = 313.48° and ¢ is 90 + 23.52 = 113.52°.

71. Consider a rectangular coordinate system with origin at the center of the earth, z-axis through the North Pole, and
x-axis through the prime meridian. Find the rectangular coordinates of Sydney, Australia (34° S, 151° E), and Bogota,
Colombia (4° 32" N, 74° 15" W). A minute is 1/60°. Assume that the earth is a sphere of radius R = 6370 km.

soLuTION W first find the angle (9, ¢) for the two towns. For Sydney 6 = 151°, since its longitude lies to the east of
Greenwich, that is, in the positive 6 direction. Sydney’s latitude is south of the equator, hence ¢ = 90 + 34 = 124°.
For Bogota, we have § = 360° — 74°15' = 285°45’, since 74°15’'W refers to 74°15’ in the negative @ direction. The
latitude is north of the equator hence ¢ = 90° — 4°32" = 85°28'.
We now use the formulas of x,y and z in terms of p, 8, ¢ to find the rectangular coordinates of the two towns. (Notice
that 285°45" = 285.75° and 85°28' = 85.47°).

Sydney:
x = pcos6sing = 6370cos151°sin 124° = —4618.8
y = psin@sing¢ = 6370sin 151° sin 124° = 2560
7 = pCcos¢p = 6370c0s124° = —3562.1

Bogota:

x = pcosHsin¢g = 6370c0s 285.75° sin 85.47° = 1723.7
y = psinfsin¢ = 6370sin 285.75° sin 85.47° = —6111.7
7z = pCoS¢ = 6370c0s85.47° = 503.1
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73. Find an equation of the form z = f(r, #) in cylindrical coordinates for 2 =x2—y2

soLuTION In cylindrical coordinates, x = r cos® and y = r sin 6. Hence,

2 :xz—y2 =r2cos?0 — r2sine

We use the identity cos? 6 — sin2 9 = cos 26 to obtain

z2 = r2c0s26 = 7z ==%r+/cos20

75. & Explain the following statement: If the equation of a surface in cylindrical or spherical coordinates does not
involve the coordinate 6, then the surface is rotationally symmetric with respect to the z-axis.

soLUTION Since the equation of the surface does not involve the coordinate 6, then for every point P on the surface
(P = (po, fo. ¢o) in spherical coordinates or P = (rg, 0p, zo) in cylindrical coordinates) so also all the points (g, 6, o)
or (rg, 6, zg) are on the surface. That is, all the points obtained by rotating P around the z-axis are on the surface. Hence,
the surface is rotationally symmetric with respect to the z-axis.

77. Find equations » = g(8, z) (cylindrical) and p = £(0, ) (spherical) for the hyperboloid x2 + y2 = z2 + 1
(Figure 16). Do there exist points on the hyperboloid with ¢ = 0 or 7#? Which values of ¢ occur for points on the
hyperboloid?

FIGURE 16 The hyperboloid x2 + y2 = z2 + 1.
SOLUTION For the cylindrical coordinates (r, 6, z) we have x2 + y2 = r2. Substituting into the equation x2 + y2 =
22 + 1 gives

2

rP=2+1 = r=vz2+1

For the spherical coordinates (o, 8, ¢) we have x = psin¢ cos6, y = psingsiné and z = p cos ¢. We substitute into
the equation of the hyperboloid x2 + y2 = z2 + 1 and simplify to obtain

p2 sin? ¢ cos? 6 + ,o2 sin? ¢ sin2 = ,02 cos? o+1
02 sin? ¢(0052 0 + sin® 6) = p2cos? ¢ +1
,oz(sin2 ¢ — cos? $)=1

Using the trigonometric identity cos 2¢ = cos? ¢ — sin? ¢ we get

2 _ _ | 1
pe-(—cos2¢) =1 = p=| 0520

For¢ = 0and ¢ = 7w we have cos2 - 0 = 1 and cos2z = 1. In both cases —ﬁ = —1 < 0, hence there is no real
value of p satisfying p = —ﬁ. We conclude that there are no points on the hyperboloid with ¢ = 0 or =.

To obtainareal p suchthat p = /—ﬁ, we must have —ﬁ > 0.Thatis, cos 2¢ < 0 (and of course0 < ¢ < m).
The corresponding values of ¢ are

3

< —
<¢ < 2

N

|
N
&9
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Further Insights and Challenges

In Exercises 78-82, a great circle on a sphere S with center O is a circle obtained by intersecting S with a plane that
passes through O (Figure 17). If P and Q are not antipodal (on opposite sides), there is a unique great circle through P
and Q on S (intersect S with the plane through O, P, and Q). The geodesic distance from P to Q is defined as the length
of the smaller of the two circular arcs of this great circle.

Smaller circle Great circle
/ g through P and Q
v /

FIGURE 17

79. Show that the geodesic distance from Q = (a, b, ¢) to the North Pole P = (0, 0, R) is equal to R cos 1 (%)

. — —
SOLUTION Let ¢ be the central angle between P and Q, that is, the angle between the vectorsv = OP andu = 0 Q.
By Exercise 78 the geodesic distance from P to Q is Ryr. We find . By the formula for the cosine of the angle between
two vectors, we have
o u-v
ufHlivl

0s (1)

We compute the values in this quotient:
u-v={(0,0,R) -{a,b,c)=0+0+ Rc = Rc
—
Ivil=110P|=R
lull = 1001I= Va2 + b2 +¢2 = R
Substituting in (1) we get
_ Rc ¢ _ _1
cosw_ﬁ—— = ¢ =Cos (—)
The geodesic distance from Q to P is thus

Ry = Rcos ™ (%)

81. Show that the central angle ¢ between points P and Q on a sphere (of any radius) with angular coordinates (6, ¢)
and (¢’, ¢’) is equal to
Y= cos_l(sin ¢sing’ cos(® —0') + cos¢ cos¢’)

Hint: Compute the dot product of 0P and O_Q> Check this formula by computing the geodesic distance between the
North and South Poles.

— —
soLUTION We denote the vectors u = O P and v = O Q. By the formula for the angle between two vectors we have

_ -1 u-v
v = o8 (nunnvn)

Denoting by R the radius of the sphere, we have ||u|| = ||v|| = R, hence,

v = cost (%) 1)

The rectangular coordinates of u and v are

u v

x = Rsin¢cosé x" = Rsin¢’ coso’
y = Rsingsiné y' = Rsin¢’sing’
7= RCOS¢ 7 = Rcos¢’
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Hence,
u-v = R%singcossing’ cosd + RZsingsindsing’sing’ + R? cos$ cos ¢’
= R?[sin¢sin¢’ (cos6 cosd’ + sin@sin6’) + cos ¢ cos ¢']
We use the identity cos (¢« — 8) = cos« cos B8 + sin « sin B to obtain
u-v=R2 (singsin g’ cos (0 — 0”) + cos ¢ cos ¢’)
Substituting in (1) we obtain
¥ = cos™ L (sin ¢ sin ¢’ cos (6 — 6') + cos ¢ cos ¢') 2)

We now check this formula in the case where P and Q are the north and south poles respectively. In this case § = 6’ = 0,
¢ =0, ¢’ = 7. Substituting in (2) gives

Y= cos 1 (sin0sinw cos0+ cosOcosw) = cos_l(—l) =7

Using Exercise 78, the geodesic distance between the two poles is Ry = R, in accordance with the formula for the
length of a semicircle.

CHAPTER REVIEW EXERCISES

In Exercises 1-6, letv = (—2,5) and w = (3, —2).
1. Calculate 5w — 3v and 5v — 3w.
soLUTION \We use the definition of basic vector operations to compute the two linear combinations:
5w — 3v = 5(3, —2) — 3(—2,5) = (15, —10) + (6, —15) = (21, —25)
5v — 3w = 5(—2,5) — 3(3, —2) = (—10, 25) + (-9, 6) = (—19, 31)
3. Find the unit vector in the direction of v.
SOLUTION The unit vector in the direction of v is

1

ev = —V
v

We compute the length of v:

IVl =/ (=2)% +52 = v29

e _L_(_2’5>_<_2 5>
YTV V29 '

5. Express i as a linear combination rv + sw.

Hence,

- )

V29 /29

soLUTION \We use basic properties of vector algebra to write
i=rv+sw (1)
(1,0) = r(—2,5) + s(3, —2) = (—2r + 3s, 5r — 2s)
The vector are equivalent, hence,
1=-2r+3s
0=5r—-2s

The second equation implies that s = %r. We substitute in the first equation and solve for r:
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Substituting in (1) we obtain

7. If P = (1, 4) and Q = (3, 5), what are the components of P 0? What is the length of P (?
SoLUTION By the Definition of Components of a Vector we have

—
PO=(-3-1,5-4)=(-41)

The length of PO is
PO =/ (-4 +12 = V7.

9. Find the vector with length 3 making an angle of 77” with the positive x-axis.

soLUTION We denote the vector by v = (a, b). v makes an angle 6 = 77” with the x-axis, and its length is 3, hence,

7
a = ||v]|cosf = 3COSTH =

w
w S

. 7
b =|Vv|sind = SSln% =

V2
That is,

11. Find the value of g for whichw = (-2, ) is parallel to v = (4, —3).
sOLUTION Ifv = (4, —3) and w = (—2, 8) are parallel, there exists a scalar A such that w = Av. That is,
(—2, B) = A(4, —3) = (41, —3A)
yielding
—2=4) and B =-3A
These equations imply that A = —% and A = —% Equating the two expressions for A gives

1 B 3
=73 O Py

13. Letw = (2,-2,1)andv = (4,5, —4). Solve for u if v + 5u = 3w — u.
SOLUTION Using vector algebra we have
vV+5u=3w—-u

6u =3w —V
UV SO DU W - A I L
) 6  \ T2 6’6" 6/ \3" 66

15. Find a parametrization rq(¢) of the line passing through (1, 4, 5) and (—2, 3, —1). Then find a parametrization ro(¢)
of the line parallel to rq passing through (1, 0, 0).

SOLUTION Since the points P = (-2, 3, —1) and Q = (1, 4, 5) are on the line /1, the vector P_>Q is a direction vector
for the line. We find this vector:

PO=(1—(=2),4—3,5—(-1) = (3,1,6)

Substituting v = (3, 1, 6) and Pg = (1, 4, 5) in the vector parametrization of the line we obtain the following equation
forly:

—
ri(t)= 0Py +tv

ri(t) = (1,4,5) +1(3,1,6) = (1+ 3,4+ 1,5+ 6t)
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The line I, is parallel to /1, hence P_)Q = (3,1, 6) is also a direction vector for /. Substituting v = (3,1, 6) and
Pg = (1, 0, 0) in the vector parametrization of the line we obtain the following equation for /5:

e
ra(t) = OPy+tv
ry(1) =(1,0,0) +¢(3,1,6) = (1 + 3¢,1, 61)

17. Find a and b such that the linesr; = (1,2, 1) + (1, -1, 1) and rp, = (3, —1, 1) + t{a, b, —2) are parallel.

soLUTION The lines are parallel if and only if the direction vectors vi = (1, —1, 1) and vo = (a, b, —2) are parallel.
That is, if and only if there exists a scalar A such that:

Vo = AVp

{a,b,=2) =21, -1,1) = (A, =4, &)
We obtain the following equations:

X

B)
FIGURE 1
soLuTION Using the Parallelogram Law we obtain the vector sum shown in the figure.
y

\7]
V3

We first add vq and —vo, then we add v to vy — vo.

In Exercises 21-26, letv = (1, 3, —2) and w = (2,

—1,4).
21. Compute v - w.

soLuTION Using the definition of the dot product we have

v.-w=(1,3-2)-(2,-1,4)=1-24+3-(-1)+(-2)-4=2-3-8=-9
23. Compute v x w.

soLUTION \We use the definition of the cross product as a “determinant”:

ik
1 3 -2
2 -1

VXW=

s 2| 2|t
ATl 2 4|

2 -1 'k
= (12— 2)i — (4+ 4)j + (—1 — 6)k = 10i — 8] — 7k = (10, -8, —7)
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25. Find the volume of the parallelepiped spanned by v, w, and u = (1, 2, 6).
soLUTION The volume V of the parallelepiped spanned by v, w and u is the following determinant:

v 1 3 -2
V=ldet| w ||=|2 -1 4 =‘1.‘_; g‘—s‘i g‘—z'i _; H
u 1 2 6

=|1-(-6—8)—3(12—4) —2(4+1)| = 48

27. Use vectors to prove that the line connecting the midpoints of two sides of a triangle is parallel to the third side.
SOLUTION Let E and F be the midpoints of sides AC and BC in a triangle ABC (see figure).

A E c
=
B
We must show that
— —>
EF | AB
Using the Parallelogram Law we have
— —_— > —>
EF =EA+ AB+ BF 1)
By the definition of the points E and F,
— 1 — — 1
EA=_-CA; BF=-BC
2 2
We substitute (1) to obtain
—_ s - 1las - 1l - —
EF =SCA+AB+ EBC:AB-%E(CA—I—BC)
— 1l,— — — 1l — 11— 1—
:AB+E(BC+CA) =AB+SBA=AB—SAB=AB

Therefore, E F is a constant multiple of A B, which implies that EF and A B are parallel vectors.

29. Calculate the component of v = { — 2, 3, 3)along w = (1,2, 2).

soLUTION We first compute the following dot products:
1
VW= (=2, 5,3>~<1,2,2) =5
wow=|wj=12+224+22=9

The component of v along w is the following number:

|G wl = g =g-3=3

31. A 50-kg wagon is pulled to the right by a force F; making an angle of 30° with the ground. At the same time the
wagon is pulled to the left by a horizontal force F».

(a) Find the magnitude of F1 in terms of the magnitude of F, if the wagon does not move.
(b) What is the maximal magnitude of F that can be applied to the wagon without lifting it?

SOLUTION
(a) By Newton’s Law, at equilibrium, the total force acting on the wagon is zero.

‘, _@@J Fi
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We resolve the force F1 into its components:
Fi=F +FL

where F is the horizontal component and F is the vertical component. Since the wagon does not move, the magnitude
of F; must be equal to the magnitude of F,. That is,

IF) I = lIF1]lcos30° = ||F2||
The above equation gives:

V3 20IF2|l
Fil— = |IF = Fill =
IFLIl 2 IF2 1l IFLll 73

(b) The maximum magnitude of force F1 that can be applied to the wagon without lifting the wagon is found by comparing
the vertical forces:

[|F1]lsin30° = 9.8 - 50

1
IF11l - 2 =98.-50 = |[F1]|=9.8-100=980N

In Exercises 33-36, letv = (1, 2,4),u = (6, —1, 2), and w = (1, 0, —3). Calculate the given quantity.
33. vxw

soLuTION We use the definition of the cross product as a determinant to compute v x w:

i j kK
2 4 | 1 4 |. 1 2
o RIS SHET T

= (=6 —0)i — (=3 —4)j+ (0 — 2)k = —6i + 7j — 2k = (=6, 7, —2)

u
35. det| v
w

soLuTION We compute the determinant:

u 6 -1 2
det v | =|1 2 4 =6~‘(2) _g’+1-‘i _g‘+2‘
1 0 -3

=6-(—6-0)+1-(-3-4)+2-(0-2) =47

=
o N

37. Use the cross product to find the area of the triangle whose vertices are (1, 3, —1), (2, —1, 3), and (4, 1, 1).
SOLUTION LetA=(1,3,-1),B=(2,-1,3)andC = (4,1,1).

z

B=(2 -1,3)

The area S of the triangle ABC is half the area of the parallelogram spanned by AB and AC. Using the Formula for the
Area of the Parallelogram, we conclude that the area of the triangle is:

1
S:EHEXRH )
We first compute the vectors AB and AC:
—_
AB=(2-1,-1-3,3—(=1) =(1,—4,4)
—_—

AC=(4-1,1-3,1-(-1)=(3,-2,2)
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We compute the cross product of the two vectors:

i ok ~ ~
ABxAC=|1 —4 a|=| 4|2 44 4k
3 o o 2 2 3 2 3 -2

=(-8—-(-8)i—(2—-12)j+ (-2 — (-12))k
= 10j + 10k = (0, 10, 10) = 10(0, 1, 1)

The length of ﬁ X A_é is, thus:
|4B x AC| = 110(0, 1, 1)|| = 1001(0, 1, 1)|| = 10v/02 + 12 + 12 = 102

Substituting in (1) gives the following area:

1
S=§-10«/§=5ﬁ.

39. Show that if the vectors v, w are orthogonal, then [|v -+ w||2 = ||v[|2 + [w]|2.

SOLUTION The vectors v and w are orthogonal, hence:
v-w=0 ey
Using the relation of the dot product with length and properties of the dot product we obtain:
IV+WI2=(V+W) - (VFEW) =V (V+W) +W- (V+W)
:v-v+v»w+w-v+w-w:|\v||2+2v-w+||w\|2 )
Combining (1) and (2) we get:

2 2 2
IV +w(® = [IvII® + [Iw]|*.

41. Find ||e — 4f||, assuming that e and f are unit vectors such that |je + f|| = V3.

soLUTION We use the relation of the dot product with length and properties of the dot product to write
3=le+fl?=(+f-(e+f)=e-ete-f+f.et+f-f
— el +2e-f+|flé=12+2e-f+12 =242 f
We now find e - f:
3=24+2-f = e.f=1)2
Hence, using the same method as above, we have:
lle — 411 = (e — 4f) - (e — 4f)
=llef?—2-e-4f + |4f> =12 —8e - f+ 42 =17 -4 =13
Taking square roots, we get:

lle — 4f| = /13

43. Show that the equation (1, 2, 3) x v = (—1, 2, a) has no solution for a # —1.

SOLUTION By properties of the cross product, the vector (—1, 2, a) is orthogonal to (1, 2, 3), hence the dot product of
these vectors is zero. That is:

(-1,2,a)-(1,2,3) =0
We compute the dot product and solve for a:

—-14+443a=0

3a=-3 = a=-1

We conclude that if the given equation is solvable, then a = —1.
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45. Use the identity

Ux (Vxw)=U-W)V—(Uu-Vv)w
to prove that

UX (VXW)+VX (WxU+Wx(UuxV)=0

SOLUTION The given identity implies that:

UX(VXW)=(U-W)V—(U-V)W

VX (WXxU=(\V-uyw—(Vv-w)u

WX UXV)=W-V)U—(W-U)V
Adding the three equations and using the commutativity of the dot product we find that:

UX (VXW)+VX(WXU)+Wx (UxV)
=U-W—wWw-WV+V-U—U-V)W+W-V—-Vv-w)u=20
47. Write the equation of the plane P with vector equation
(1,4, -3) - (x,y,z) =7
in the form
a(x—xp)+b(y—y)+c(z—2z0) =0
Hint: You must find a point P = (xq, yo, zg) on P.
soLUTION \We identify the vector n = (a, b, ¢) = (1, 4, —3) that is normal to the plane, hence we may choose,
a=1 b=4 c=-3

We now must find a point in the plane. The point (xg, yg, zg) = (0, 1, —1), for instance, satisfies the equation of the plane,
therefore the equation may be written in the form:

1x-0+4(y—-1) —-3z—-(-1))=0
or
x—-0+4Hy-1)—-3(z+1) =0

49. Find the plane through P = (4, —1, 9) containing the line r(t) = (1,4, —3) + (2,1, 1).

soLUTION Since the plane contains the line, the direction vector of the line, v = (2, 1, 1), is in the plane. To find another
vector in the plane, we use the points A = (1,4, —3) and B = (4, —1, 9) that lie in the plane, and compute the vector
u=AB:

—

U=AB=(4—1-1-4,9—(=3)) = (3, -5, 12)

We now compute the cross product n = v x u that is normal to the plane:

i K
1 1. 2 1. 2 1

n=vxu=| 2 1 1 :‘ |_‘ 'J"_‘ ’k
S b 1 5 12 3 12 3 -5

= (12 +5)i — (24 — 3)j + (=10 — 3)k = 17i — 21j — 13k = (17, —21, —13)

Finally, we use the vector form of the equation of the plane with n = (17, —21, —13) and Py = (4, —1, 9) to obtain the
following equation:

n- <x3 y,Z> =n- <x0’)’OvZO>
(17, =21, -13) - (x, y,z) = (17, -21, —13) - (4, —1,9)
17x — 21y — 13z =17-4421—-13-9=-28
The equation of the plane is, thus,

17x — 21y — 13z = —28.
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51. Find the trace of the plane 3x — 2y + 5z = 4 in the xy-plane.

soLUTION The xy-plane has equation z = 0, therefore the intersection of the plane 3x — 2y + 5z = 4 with the xy-plane
must satisfy both z = 0 and the equation of the plane. Therefore the trace has the following equation:

3x—2y+5-0=4 = 3x-2y=4
We conclude that the trace of the plane in the xy-plane is the line 3x — 2y = 4 in the xy-plane.
In Exercises 53-58, determine the type of the quadric surface.
XN2 (VN2 .2
53, <§) + <Z) +2:2=1

soLUTION Writing the equation in the form:

we identify the quadric surface as an ellipsoid.

s (3 + () 2=0

soLUTION We rewrite this equation as:

or

This is the equation of an elliptic paraboloid.

. (5 - () - =0

SOLUTION This equation may be rewritten in the form

we identify the quadric surface as an elliptic cone.

59. Determine the type of the quadric surface ax? + by? — z2 = 1 if:

@ a<0, b<0

(b)y a>0, b>0

(©)a>0 b<0

SOLUTION

(@) Ifa < 0, b < O then for all x, y and z we have ax? + by? — z2 < 0, hence there are no points that satisfy
ax? + by2 — z2 = 1. Therefore it is the empty set.

(b) Fora > 0and b > 0 we rewrite the equation as

which is the equation of a hyperboloid of one sheet.
(c) Fora > 0, b < 0 we rewrite the equation in the form

2 2
X y 2_
— | || =1
va Viol

which is the equation of a hyperboloid of two sheets.

61. Convert (x, y, z) = (3,4, —1) from rectangular to cylindrical and spherical coordinates.
soLUTION In cylindrical coordinates (r, 8, z) we have

r=+/x24+y2 tang =

= =
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Therefore, » = /32 +42 =5and tan 6 = %. The projection of the point (3, 4, —1) onto the xy-plane is the point (3, 4),

in the first quadrant. Therefore, the corresponding value of 6 is tan—1 % a2 0.93 rad. The cylindrical coordinates are, thus,

(r,6,7) = (5, tan*lg, —1>

The spherical coordinates (p, 6, ¢) satisfy

Z
p=yx2+y2 422 tang = % cosp =

Therefore,
p=1/32+42 4+ (1) =26
tan 0 = 4
3
cosp = -1
- V26
The angle 6 is the same as in the cylindrical coordinates, that is, § = tan—1 %. The angle ¢ is the solution of cos ¢ = \7—2%

that satisfies 0 < ¢ < 7, that is, ¢ = cos! (JT%) ~ 1.77rad. The spherical coordinates are, thus,

4 -1
,0,¢) = (v26,tan"1 =, cos™? (—))
(p,6,9) ( 3 7%
63. Convert the point (p, 6, ¢) = (3, %, %) from spherical to cylindrical coordinates.

SOLUTION By the given information, p = 3,0 = %, and ¢ = % We must determine the cylindrical coordinates
(r, 0, z). The angle 0 is the same as in spherical coordinates. We find z using the relation cos ¢ = %, orz = pcos¢. We
obtain

T 1 3

=pC0s¢p =3Cc05s— =3- - = —

G=peose 3 272
2

We find r using the relation p2 = x? + y2 + 72 = r? + 22, or r = \/p2 — 22, we get

SRS

Hence, in cylindrical coordinates we obtain the following description:

3/3 7 3
(r.6.2) = (2’ 5 2)'

65. Sketch the graph of the cylindrical equation z = 2r cos 6 and write the equation in rectangular coordinates.
SOLUTION To obtain the equation in rectangular coordinates, we substitute x = r cos 6 in the equation z = 2r cos 9:
7=2rcosf =2x = =22

This is the equation of a plane normal to the xz-plane, whose intersection with the xz-plane is the line z = 2x. The graph
of the plane is shown in the following figure (the same plane drawn twice, using the cylindrical coordinates’ equation and
using the rectangular coordinates’ equation):




Chapter Review Exercises 249

67. Show that the cylindrical equation

r2(1—2sin?0) +22 =1
is a hyperboloid of one sheet.
SsoLUTION We rewrite the equation in the form

r2—2rsing)? +72=1
To write this equation in rectangular coordinates, we substitute r2 = x2 + y2 and r sin6 = y. This gives
x2+y2—2y2+22=1
P y2 +2=1
We now can identify the surface as a hyperboloid of one sheet.
69. Describe how the surface with spherical equation
,02(1 + Acos? ¢)=1

depends on the constant A.
soLUTION To identify the surface we convert the equation to rectangular coordinates. We write

,o2 + A,o2 c052¢ =1
To obtain the following equation in terms of x, y, z only, we substitute p2 = x2 + y2 + z2 and p cos ¢ = z:
x2+yz+zz+Az2 =1
Py A+ At =1 €

Case1l: A < —1.Then A+ 1 < 0and the equation can be rewritten in the form

2
2 2 <
xX° + - — =1
Y (|1+A|*1/2>

The corresponding surface is a hyperboloid of one sheet.
Case 2: A = —1. Equation (1) becomes:

24y2=1
In R3, this equation describes a cylinder with the z-axis as its central axis.
Case 3: A > —1. Then equation (1) can be rewritten as

2., .2 2 2
Y+ ) =1
Y ((1 n A)*1/2>
Then if A = 0 the equation x2 + y2 + z2 = 1 describes the unit sphere in R3. Otherwise, the surface is an ellipsoid.

71. Letc be ascalar, letaand b be vectors, and let X = (x, y, z). Show that the equation (X —a) - (X — b) = 2 defines
a sphere with center m = %(a + b) and radius R, where R? = ¢? + | %(a - b)||2.
soLUTION We evaluate the following length:

2
||x—m||2= x—%(a+b)” = ((x—a)+%(a—b))-((x—b)—%(a—b))

1 1 1
=(X=a)-(x=b)—>(x-a-@=-b+5@-b-x-b-;@-b- @b

=(x—a)-(x—b)+%(a—b)-(x—b—x+a)—%(a—b)-(a—b)

=(X—a)~(X—b)+%(a—b)~(a—b)—%(a—b)~(a—b)

=(x—a)-(x—b)+%(a—b)-(a—b)

1 2
=(X—a)-(X—b)+H§(a—b)H

Since R? = ¢ + |3 (a—b) 1% we get
X —m[2 = (X —a) (x—b)+ R? — ¢?

We conclude that if (x — a) (x — b) = ¢? then [x — m||2 = RZ. That is, the equation (x — a) (X — b) = ¢? defines a
sphere with center m and radius R.
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13 CALCULUS OF
VECTOR-VALUED
FUNCTIONS

13.1 Vector-Valued Functions (LT Section 14.1)

Preliminary Questions
1. Which one of the following does not parametrize aline?
(@) ri(r) =(8-1t,2t,3r)
(b) ra() = 3i — 713) + 13k
(©) ra(n) = (8— 43,2+ 52,93
SOLUTION
(a) Thisisaparametrization of theline passing through the point (8, 0, 0) in the direction parallel tothevector (—1, 2, 3),
since:

(8—1,2t,3t) =(8,0,0) +1(-1,23)
(b) Using the parameter s = 13 we get:
(13, =73, 63) = (s, ~Ts,5) =5 (1, =7, 1)

Thisis a parametrization of the line through the origin, with the direction vector v = (-1, 7, 1).
(c) The parametrization (8 — 43,2+ 512, 913) does not parametrize aline. In particular, the points (8, 2, 0) (at r = 0),
4,7,9) (atr =1),and (—24, 22, 72) (at t = 2) are not collinear.

2. What isthe projection of r(r) = ti + r%j + ¢’k onto the xz-plane?

SOLUTION The projection of the path onto the xz-plane is the curve traced by i + e’k = <t, 0, ¢! ) This is the curve
z = ¢* inthe xz-plane.

3. Which projection of (cost, cos2s, sint) isacircle?

SOLUTION The parametric equations are
X = COSt, y=C0S2t, z=sgint

The projection onto the xz-plane is (cost, O, sint). Sincex? + z2 = cos?t + sin¢ = 1, the projection isacirclein the
xz-plane. The projection onto the xy-planeis traced by the curve (cosz, cos2s, 0). Therefore, x = cost and y = cos2t.
We express y interms of x:

y =c0s2t = 2c0s°t —1=2x2 — 1

The projection onto the xy-plane is a parabola. The projection onto the yz-plane is the curve (0, cos2t, sint). Hence
y = c0s2r and z = sint. Wefind y asafunction of z:

y = C0S2t = 1-2sin?t =1- 272
The projection onto the yz-planeis again a parabola.
4. What is the center of the circle with parametrization

r(t) = (—2+ cost)i+ 2j + (3—sint)k?
SOLUTION The parametric equations are

x=-24c0st, y=2, z=3-snt
Therefore, the curveis contained in the plane y = 2, and the following holds:

(x +2)2+(z—3)2 =cos?t +sn’t =1

We conclude that the curve r(r) isthe circle of radius 1 in the plane y = 2 centered at the point (-2, 2, 3).
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5. How do the pathsr{(r) = (cost, sint) and rp(¢) = (sint, cost) around the unit circle differ?

SOLUTION Thetwo pathsdescribetheunit circle. However, ast increasesfrom0to 27, the point onthepath sin ¢i + cost¢j
moves in a clockwise direction, whereas the point on the path coszi + sinzj movesin a counterclockwise direction.

6. Which three of the following vector-valued functions parametrize the same space curve?
(@) (—2+cost)i+ 9+ (3—sinrHk (b) (24 cost)i —9j + (=3 —sinnk
() (—2+4cos3t)i+9j + (3—sin3t)k (d) (—=2—-cost)i+9j+ (3+sint)k
() (24 cost)i+9j+ (3+sin)k

soLuTION All the curves except for (b) liein the vertical plane y = 9. We identify each one of the curves (a), (c), (d)
and (e).
(a) The parametric equations are:

x=-2+cost, y=9 z=3-dnt
Hence,
(x +2)°2+ (z—3)2% = (cost)? + (—sinp)? =1

Thisisthecircle of radius 1 in the plane y = 9, centered at (—2, 9, 3).
(c) The parametric equations are:

x=-24c0s3t, y=9, z=3-8n3t
Hence,
(x +2)°2+ (z—3)% = (cos31)2 + (—sin3)2 =1

Thisisthecircle of radius 1 in the plane y = 9, centered at (—2, 9, 3).
(d) Inthiscurvewe have:

x=-2-cost, y=9 z=3+sdnt
Hence,
(x+2°2+ (z—3)% = (—cost)? + (snp)? =1

Again, thecircle of radius 1 inthe plane y = 9, centered at (—2, 9, 3).
(e) Inthisparametrization we have:

x=24cost, y=9, z=3+4sint
Hence,
(x =22+ (z —3)2 = (cost)? + (sinr)2 =1

Thisisthecircle of radius 1 intheplane y = 9, centered at (2, 9, 3).
We conclude that (a), (c) and (d) parametrize the same circle whereas (b) and (€) are different curves.

Exercises
1. What isthe domain of r(¢) = e’i + l}j + @ +1)3k?

SOLUTION r(¢) isdefined for r £ 0 and ¢ # —1, hence the domain of r(z) is:

D={teR:t#0,t # -1}

3. Evauate r(2) and r(—=1) for r(s) = <sjn T2, (1% + 1)—1>.
SOLUTION Sincer(s) = (sin Z1.12, (12 + 1)—1>, then
. . 1
rQ) = (Smn,4, 5 >= 0,4,

and

r(—1) = <sin _—2” 1, 2—1> = <—1, 1, }>
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5. Find avector parametrization of the line through P = (3, —5, 7) inthedirectionv = (3,0, 1).
SOLUTION We use the vector parametrization of the line to obtain:

r()= 0P +1v= (357 +1(301) = (3+3,—57+1)

or inthe form:
r()=@B+3)i—5+(7+nk, —-oco<t<oo

7. Match the space curvesin Figure 8 with their projections onto the xy-plane in Figure 9.

z

©

FIGURE 8

y y y

VA X X
Vi T S

(i) (iif)
FIGURE 9

sOoLUTION The projection of curve (C) onto the xy-plane is neither a segment nor a periodic wave. Hence, the correct
projection is (iii), rather than the two other graphs. The projection of curve (A) onto the xy-planeisavertical line, hence
the corresponding projectionis (ii). The projection of curve (B) onto the xy-planeis a periodic wave asillustrated in (i).

9. Match the vector-valued functions (a)—(f) with the space curves (i)—(vi) in Figure 10.

@) r() = (r + 15, %% cost, 9% siny) (b) r(r) = (cost, sint, sin12r)
25¢ .3 .
© rin = <t, t m) (d) r() = (cos®t, sin%1, sin2r)
@) re) ={r, 1%, 2) (f) r(t) = (cost, sint, cost sin 12¢)

(vi)

FIGURE 10

SOLUTION

@ ) (b) (i) () (i)
(d) (vi) (€ (@iv) () (i)
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11. Match the space curves (A)—(C) in Figure 11 with their projections (i)—iii) onto the xy-plane.

z

- y N D y y
e
% ™ u)_\\x | -

(A) (8) ©

X X
z
y y
y
X X
X
0] (ih) (iii)
FIGURE 11

sOLUTION Observing the curves and the projections onto the x y-plane we conclude that: Projection (i) corresponds to
curve (C); Projection (ii) corresponds to curve (A); Projection (iii) corresponds to curve (B).

In Exercises 13-16, the function r(¢) traces a circle. Determine the radius, center, and plane containing the circle.

13. r(¢) = (9cost)i + (9sin7)j

SOLUTION Sincex(r) = 9cost, y(tr) = 9sint we have:
x2 4+ y2 =81cos? + 81sin?t = 81(cos’ ¢ + sin®t) = 81
Thisisthe equation of acircle with radius 9 centered at the origin. The circle liesin the x y-plane.

15. r(¢) = (sint, 0, 4 + cost)

SOLUTION x(t) = sint, z(t) = 4 + cost, hence:
2t (z—H2=sn’t+cofr=1

y = 0 isthe equation of the xz-plane. We conclude that the function traces the circle of radius 1, centered at the point
(0, 0, 4), and contained in the xz-plane.

17. LetC bethecurver(r) = (t cost, tsint, t).
(a) Show that C lieson the cone x2 + y2 = 72,

(b) Sketch the cone and make arough sketch of C on the cone.
SOLUTION x = {COSt, y =tsint and z = ¢, hence:

x? 4+ y2=12cos1 +12sn?1 = 1?(cos? 1 + sin’1) =12 = 2%,

x2 4+ y2 = 72 isthe equation of a circular cone, hence the curve lies on a circular cone. As the height z = ¢ increases

linearly with time, the x and y coordinates trace out points on the circles of increasing radius. We obtain the following
curve:

r(t) = (tcost, tsint, t)
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In Exercises 19 and 20, let
r(r) = (sint, cost, sint cos2t)

as shown in Figure 12.

N
)(/
X \
y
FIGURE 12

19. Find the points where r(¢) intersects the xy-plane.

SOLUTION The curve intersectsthe xy-plane at the pointswherez = 0. That is, sinz cos2t = 0 and so either sinr = 0
or cos2t = 0. The solutions are, thus:

k

t=nkort=—+—, k=041 %2, ...

g
4

2
Thevauest = wk yield the points. (sinzk, cosnk, 0) = (0, (=D)k, O). Thevaluest = % + ”—2" yield the paints:

=0 (sm ,cos%,o) = (iz %0)
k=1 (sm 34 ,0053%,0) = (iz —iz,o)
k=2 (sm 5%,0055%,0) = (—iz —%,0)
k= (sin%t,cos%f,o =<—\%,%,0)

(Other values of k do not provide new points). We conclude that the curve intersects the xy-plane at the following points:
(0.1,0), (0, -1,0) (i io) (i -1 ) (—i -1 o) (—i io)

b ] 1 b ] i) ﬁ7 ﬁ7 1 ﬁv ﬁs 1 \/E’ ﬁ’ ’ ﬁ7 ﬁ7
21. Parametrize the intersection of the surfaces

y2—z2=x—2, y2+12=9

using t = y asthe parameter (two vector functions are needed as in Example 3).

SOLUTION Wesolvefor z and x intermsof y. From the equation y2 + z2 = 9wehavezZ2 = 9— y2 orz = £/9 — y2.
From the second equation we have:

x :y2—12+2:y2—(9—y2)+2:2y2—7
Taking 1 = y asaparameter, we have z = /9 — 12, x = 212 — 7, yielding the following vector parametrization:

r(l):<2t2—7,t,:|:\/9—t2> Jfor —3<r <3

23. Viviani’s Curve C istheintersection of the surfaces (Figure 13)

(a) Parametrize each of the two parts of C correspondingto x > O and x < 0, taking r = z as parameter.
(b) Describe the projection of C onto the xy-plane.

(c) Show that C lies on the sphere of radius 1 with center (0, 1, 0). This curve looks like afigure eight lying on a sphere
[Figure 13(B)].
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x24y2=22

(/

OV

(A) (B) Viviani’s curve viewed
from the negative y-axis.

FIGURE 13 Viviani'scurveistheintersection of the surfaces x2 + y2 = z2 and y = z2.

Viviani's curve | y=z

SOLUTION
(a) Wemust solvefor y and x interms of z (which is a parameter). We get:

)’:Zz

=2y = x=%2-y2=+4/72- 4

Here, the & from x = =++/z2 — z% represents the two parts of the parametrization: + for x > 0, and — for x < 0.
Substituting the parameter z = ¢ we get:

y=12, x=2V12—t4=£1V/1 -2,

We obtain the following parametrization:
r@) = (:l:t\/l — 1242, z> for —1<r<1 @)

(b) The projection of the curve onto the xy-plane is the curve on the xy-plane obtained by setting the z-coordinate of
r(¢) equal to zero. We obtain the following curve:

<iz l—t2,t2,0), —1<r<1
Wealsonotethat sincex = £v/1 — 12, thenx2 = 12(1 — 12), butalso y = 12, sothat givesustheequationx2 = y(1— y)
for the projection onto the xy plane. We rewrite this as follows.
=yl-y) = x2+y?—y=0
24 y2—y+1/4=1/4
4+ (v - 1/2% = (1/2)°

We can now identify this projection asacirclein the xy plane, with radius 1/2, centered at the xy point (0, 1/2).
(c) The equation of the sphere of radius 1 with center (0, 1, 0) is:

XXt (y-1D2+2=1 )

To show that C lies on this sphere, we show that the coordinates of the points on C (given in (1)) satisfy the equation of
the sphere. Substituting the coordinates from (1) into the left side of (2) gives:

2
Pry-1242= (ﬂ:t\/l— t2> 21242 =21 - %) + (2= 12+ 42
= -2 -1-1H+1%=1
We conclude that the curve C lies on the sphere of radius 1 with center (0, 1, 0).

25. Use sine and cosine to parametrize the intersection of the cylinders 24+y2 =1landx?+:2 =1 (use two
vector-valued functions). Then describe the projections of this curve onto the three coordinate planes.
soLUTION Thecirclex? + z2 = 1inthe xz-planeis parametrized by x = cost, z = sint, and thecirclex2 + y2 =1
inthe xy-planeis parametrized by x = coss, y = sins. Hence, the points on the cylinders can be written in the form:
x24+272=1. (cost,y,snr), 0<r<2m
x2+y2=1 (coss,sins,z), 0<tr<2m
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The points (x, y, z) on the intersection of the two cylinders must satisfy the following eguations:

COSt = COSs
y=sns
z=4gint

Thefirst equationimpliesthat s = +¢ + 2 k. Substitutinginthe second equation givesy = sin (£z + 2zk) = sin(t) =
+sint. Hence, x = cost, y = +sint, z = sint. We obtain the following vector parametrization of the intersection:

r(r) = (cost, =sint, sint)

The projection of the curve on the xy-plane is traced by (cost, +sint, 0) which is the unit circle in this plane. The
projection of the curve on the xz-planeistraced by (cost, 0, sin¢) which isthe unit circlein the xz-plane. The projection
of the curve on the yz-planeistraced by (0, &= sin¢, sint) whichisthetwo segmentsz = yandz = —yfor—1 <y < 1.

27. Usesine and cosine to parametrize the intersection of the surfaces x2 + y2 = 1 and z = 4x2 (Figure 14).

FIGURE 14 Intersection of the surfaces x2 4+ y2 = 1 and z = 4x2.

SOLUTION The points on the cylinder x2 + y2 = 1 and on the parabolic cylinder z = 4x2 can be written in the form:

X2+ y2 =1: (cost,sint,z)
7= 4x2 <x, y,4x2>

The points (x, y, z) on the intersection curve must satisfy the following equations:

X = COSt
y=s8nt = x:COSt,y:Sint,z=4COSZt
z=4x2

We obtain the vector parametrization:
r(t) = (cost, sint, 4c032t), 0<t<2rm

Using the CAS we obtain the following curve:

r(r) = (cost, sint, 4cos’ 1)
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In Exercises 28-30, two paths rq(¢) and ry(¢) intersect if there is a point P lying on both curves. We say that rq(z) and
ro(t) collideif rq(fg) = ro(tp) at some time zg.
29. Determine whether r1 and ro collide or intersect:
ri(t) = <t2 +3,1+1, 6t_1>
ro(t) = (4,21 — 2, 12— 7)

soLUTION To determineif the paths collide, we must examine whether the following equations have a solution:

243=4u
t+1=2t-2
6

- =12_-7

We simplify to obtain:
2 —4+3=(1-3)(1—-1)=0
t=3
B—7-6=0

The solution of the second equation is¢t = 3. Thisis also a solution of the first and the third equations. It follows that
r1(3) = ra(3) so the curves collide. The curves aso intersect at the point where they collide. We now check if there are
other points of intersection by solving the following equation:

ri(@) = ra(s)

<t2+3,t+1,§>:<4s,2s—2,32—7>

Equating coordinates we get:

12 +3=4s
r+1=25-2
6

=527

t
By the second equation, r = 2s — 3. Substituting into the first equation yields:

(25 —3)2 +3=14s
452 — 125 + 9+ 3 =4s
s2—45+3=0 = s1=1, sp=3
Substituting s1 = 1 and so = 3 into the second equation gives:
n+1=2-1-2 = n=-1
th+1=2-3-2 = 1t=3
The solutions of the first two equations are:
n=-1 s1=1 tp=3, =3

We check if these solutions satisfy the third equation:

6 6 2 2 6 2
22 - 6 2-7=12-7=-6 2 o527
n 1 , 81 = n s1

6 6 2 2 6 2

We conclude that the paths intersect at the endpoints of the vectors rq(—1) and r1(3) (or equivalently ro(1) and r(3)).
That is, at the points (4, 0, —6) and (12, 4, 2).

In Exercises 31-40, find a parametrization of the curve.

31. Thevertical line passing through the point (3, 2, 0)

soLUTION The points of the vertical line passing through the point (3, 2, 0) can be written as (3, 2, z). Using z = t as
parameter we get the following parametrization:

rit) =(3,2,t), —oo<t<oo
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33. Thelinethrough the origin whose projection on the x y-planeisaline of slope 3 and whose projection on the yz-plane
isalineof slope5 (i.e, Az/Ay =5)

soLUTION We denote by (x, y, z) the points on the line. The projection of the line on the xy-plane is the line through
the origin having slope 3, that isthe line y = 3x in the xy-plane. The projection of the line on the yz-planeis the line
through the origin with slope 5, that istheline z = 5y. Thus, the points on the desired line satisfy the following equalities:

y =3

2 =5y = y=3x,z=5-3x =15«

We conclude that the points on the line are al the points in the form (x, 3x, 15x). Using x = ¢ as parameter we obtain
the following parametrization:
r(t) = (t,3t,15t), —oco <t < Q.

35. Thecircle of radius 2 with center (1, 2, 5) in aplane paralel to the yz-plane

SsOLUTION Thecircleis paralel to the yz-plane and centered at (1, 2, 5), hence the x-coordinates of the points on the
circle are x = 1. The projection of the circle on the yz-plane is a circle of radius 2 centered at (2, 5). This circle is
parametrized by:

y=2+2cost, z=5+2snt

We conclude that the points on the required circle can be written as (1, 2+ 2cost, 5+ 2sinr). This gives the following
parametrization:

r(r) =(1,2+2cost,5+ 2sint), 0<t <27.

37. Theintersection of the plane y = 3 with the sphere x? + y2 + 72 = 1
SOLUTION  Substituting y = 3 in the equation of the sphere gives:
1\? 3
x2+ <§> +z2= 1 = x2+Z2= 2
This circle in the horizontal plane y = % has the parametrization x = § Cost, 7 = § sint. Therefore, the points on

the intersection of theplane y = % and thespherex2 + y2 +72 = 1, can bewritten in the form (? Cost, % § sint),
yielding the following parametrization:

3 1 V3
r(r) =<£COSI, 2,£sint>, 0<t<2nm.

z\2

2
39. Thedlipse (%) + <§) = linthe xz-plane, translated to have center (3, 1, 5) [Figure 15(A)]

z z

|
|
X

N
3

(A) (B)
FIGURE 15 The ellipses described in Exercises 39 and 40.

SOLUTION The trandated ellipse isin the vertical plane y = 1, hence the y-coordinate of the points on this ellipse is
y = 1. The x and z coordinates satisfy the equation of the ellipse:

(50 (5% -

This ellipse is parametrized by the following equations:

x =3+ 2cost, z=>5+3snr.
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Therefore, the points on the trandated ellipse can be written as (3 + 2cost, 1, 5+ 3sin#). This gives the following
parametrization:

r(t) = (3+2cosr,1,5+3sint), 0<t <27.

Further Insights and Challenges
41. Sketchthe curve parametrized by r(r) = (|t| + ¢, |t| — 1).

soLUTION We have:

0 r=<0 2t t<0

= 1~ =
0 >0

t|+1=
Il 2t t>0

)

As ¢t increases from —oo to O, the x-coordinate is zero and the y-coordinate is positive and decreasing to zero. As ¢
increases from 0 to +o0, the y-coordinate is zero and the x-coordinate is positive and increasing to +oo. We obtain the
following curve:

r@) = (el +1, 1t —1)

43, & Let C be the curve obtained by intersecting a cylinder of radius » and a plane. Insert two spheres of radius
r into the cylinder above and below the plane, and let F1 and F» be the points where the plane is tangent to the spheres
[Figure 16(A)]. Let K bethe vertical distance between the equators of the two spheres. Rediscover Archimedes's proof
that C isan ellipse by showing that every point P on C satisfies

PFi+PF =K

Hint: If two linesthrough apoint P aretangent to a sphere and intersect the sphereat Q1 and Q» asin Figure 16(B), then
the segments P Q1 and P Q> have equal length. Use thisto show that PF; = PRy and PFy = PR».

<y
T—_—
FZ
7 |«
Fl
() tql
Q2
&»/ -
Rz
P
v
(A) (B)

FIGURE 16

SOLUTION To show that C is an ellipse, we show that every point P on C satisfies:
F1P + F,P =K

We denote the points of intersection of the vertical line through P with the equators of the two spheresby R and R (see
figure).
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()

\R

(R

We denote by 01 and O» the centers of the spheres.

0y

=]

Since Fy isthetangency point, theradius 04 F1 is perpendicular to the plane of the curve C, and thereforeit is orthogonal
to the segment P F; on this plane. Hence, AO1 F1 P isaright triangle and by Pythagoras' Theorem we have:

O1F1> + PF> = 01P°
P2+ PF°=01P° = PF=y01P°—2 )

(o] r
1 Ry

P
AO1R1 P isasoaright triangle, hence by Pythagoras' Theorem we have:

O1R1> + RiP> = 01P°

P2+ RPP=01P° = PRi=y01P /2 @
Combining (1) and (2) we get:
PF=PRy ®
Similarly we have:
PF;=PRy @

We now combine (3), (4) and the equality PR1 + P Ro = K to obtain:
F1P+ F,P =PR1+ PRy =K

Thus, the sum of the distances of the points P on C to the two fixed points F, and F» isaconstant K > 0, henceC isan
elipse.

45. TH'S  Nowreprovetheresult of Exercise43 using vector geometry. Assumethat thecylinder hasequationx? + y2 =
r2 and the plane has equation z = ax + by.
(a) Show that the upper and lower spheresin Figure 16 have centers

C1= <O,O,r\/a2+b2+1)
Co= (o, 0, —rva2 + b2 + 1)
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(b) Show that the points where the plane is tangent to the sphere are

r 2,2

F]_: a,b,a +b
\/a2+b2+1( )

—r 2,2

F2: a,b,a +b
a2+h2+1( )

Hint: Show that C1 Fy and C2 F» have length r and are orthogonal to the plane.
(c) Verify, with the aid of a computer algebra system, that Eq. (2) holds with

K=2rva2+b2+1

To simplify the algebra, observe that since a and b are arbitrary, it suffices to verify Eq. (2) for thepoint P = (r, 0, ar).
SOLUTION

(a) and (b) Since F; isthetangency point of the sphere and the plane, theradiusto F7 isorthogonal to the plane. Therefore
to show that the center of the sphereisat Cq and the tangency point is the given point we must show that:

—_—
IC1F1ll =7 (1)
C1F, isorthogonal to the plane. )
—_—
We compute the vector C1 Fy:
— b 242
Y G | NS it o0 SN e By B W Sy P Y
Va2 +02+1 Va2 +b2+1 Va2 +p2+1 Va2 + b2 +1
Hence,
—_— r r
IC1F1l = —=—=—=1(a,b. =1) | = —=—=—=a? + b2 + (=12 =7
Va2 +b2+1 a?+b2+1

We, thus, proved that (1) is satisfied. To show (2) we must show that C1 F; is parallel to the normal vector (a, b, —1) to

theplane z = ax + by (i.e, ax + by — z = 0). The two vectors are paralel since by (1) C1 F1 isaconstant multiple of
—

{(a, b, —1). In asimilar manner one can show (1) and (2) for the vector Co F>.

(c) Thisis an extremely challenging problem. As suggested in the book, we use P = (r, 0, ar), and we also use the
expressions for Fy and F> as given above. This gives us:

PF1=\/(1+2a2+b2—2a 1+a?+2) 12

Prr= (14262 412 4 205 21 12) 12

Their sumis not very inspiring:

PF1+PF2=\/(1+2a2+b2—2a\/1+a2+b2> r2+\/(1+2a2+b2+2a\/1+a2+b2) r2

Let us look, instead, at (P Fy + P F»)2, and show that thisis equal to k2. Since everything is positive, this will imply
that PFy + PF, = K, asdesired.

(PF1+ PF2)2 =2,2 + 4azr2 + 2b2r2 + 2V + 20274 4 A4

=2r2+4a%r2 4+ 2% 12 + 2(1+ b?)r? = 421+ a® + b?) = K?

13.2 Calculus of Vector-Valued Functions (LT Section 14.2)

Preliminary Questions
1. State the three forms of the Product Rule for vector-valued functions.
soLUTION The Product Rule for scalar multiple f (¢) of avector-valued function r(z) states that:

d
— S Or® = fOr' o + /oo
The Product Rule for dot products states that:

d
21020 =110 - ro(t) + ry(0) - ra(r)
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Finally, the Product Rule for cross product is

%rl(l) X Fp(1) = rq(1) X ry(1) + ry(0) x ra().

In Questions 2-6, indicate whether the statement is true or false, and if it is false, provide a correct statement.

2. Thederivative of avector-valued function is defined asthe limit of the difference quotient, just asin the scalar-val ued
case.

SOLUTION The statement is true. The derivative of a vector-valued function r(z) is defined a limit of the difference
quotient:

ri¢+h)—r(@)

r'(t) = lim
® t—0 h
in the same way asin the scalar-valued case.

3. Therearetwo Chain Rulesfor vector-valued functions: one for the composite of two vector-valued functions and one
for the composite of a vector-valued and a scalar-valued function.

SOLUTION This statement is false. A vector-valued function r(¢) is a function whose domain is a set of real numbers
and whose range consists of position vectors. Therefore, if rq(z) and ro(¢) are vector-valued functions, the composition
“(rq - rp)(t) = rq(ro(r))” has no meaning since ry(¢) is a vector and not a real number. However, for a scalar-valued
function £ (¢), the composition r ( f (¢)) hasameaning, and thereisa Chain Rulefor differentiability of this vector-valued
function.

4. Theterms “velocity vector” and “tangent vector” for apath r(r) mean one and the same thing.
SOLUTION This statement istrue.
5. The derivative of avector-valued function is the slope of the tangent line, just asin the scalar case.

SOLUTION The statement is false. The derivative of avector-valued function is again a vector-valued function, hence
it cannot be the slope of the tangent line (which is a scalar). However, the derivative, I’ (¢g) isthe direction vector of the
tangent line to the curve traced by r(z), at r(zg).

6. The derivative of the cross product is the cross product of the derivatives.
SOLUTION The statement isfalse, since usualy,
d / /
7 r1(7) x ra(f) # ry@@) x ry(t)

The correct statement is the Product Rule for Cross Products. That is,

%rl(f) X rp(1) = rq(1) X ry(1) + ry(0) x ra(t)

7. State whether the following derivatives of vector-valued functions rq(¢) and ra(¢) are scalars or vectors:
d d d
(@) Erl(r) (b) a(rl(t) N10)) (© E(l’l(l) X ra(1))

SOLUTION (&) vector, (b) scalar, (c) vector.

Exercises
In Exercises 1-6, evaluate the limit.

. 1
1. lim <t2, 4, —>
t—3 t
SOLUTION By the theorem on vector-valued limits we have:
. 1 . . 1 1
lim <l‘2, 4, 7> = <I|m 12, lim 4¢, lim 7> = <9, 12, 7>.
t—3 t t—-3 (=3 (>3t 3
3. lim eZi+ In(t + 1)j + 4k
t—0
soLUTION Computing the limit of each component, we obtain:

lim (eZ’i +In@t+1)j +4k) = <Iim ezf) i+ (Iim In(t + 1))j + (Iim 4) k =%+ (InD)j + 4k = i + 4k
t—0 t—0 t—0 t—0
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r(t+h)—r@
5. Evaluate lim re+h—re forr(t) = (t‘l, sinz,4>.
h—0 h
SOLUTION Thislimitisthe derlvatlve . Using componentwise differentiation yields:

lim —mMmM—~ = —
h—0 h T dt

dt

ri+h) —r() dr _<i (I—l)’%(sint)’ %(4)>:<_t12,cosz,0>.

In Exercises 7-12, compute the derivative.

7. 1) = (t, 12, 1)
SOLUTION Using componentwise differentiation we get:

d
' <—<> —(rz) —<z3)>

— (1, 2t, 3t2>

dt

9. r(s) = (e?“', e s, s4)

soLUTION Using componentwise differentiation we get:
dr d d d
— <7(e3s)7 7(e—s)’ 7(34)> — (363s7 —eS, 4S3>
ds

ds

11. c(t) = t7Li — ¥k
SOLUTION Using componentwise differentiation we get:
¢ty = (Y i— (¥)k = =72 — 2%k

13. Calculater’(r) and r' () for r(r) = (t, 1%, 1%).
soLUTION We perform the differentiation componentwise to obtain
ro) =), ®, @) = (12,373

We now differentiate the derivative vector to find the second derivative:

() = %(1, 26,3%) = (0,2,61).

(LT SECTION 14.2) 263

15. Sketch the curve ry(r) = (t, 2) together with its tangent vector at r = 1. Then do the samefor r(1) = (r3, 1)
2 Likewise, o/ (1) =

= (1, 2). The graph of r1(¢) satisfiesy = x

soLuTION Notethat ri’(r) = (1, 2t) and so ry’(1)
(3, 6). Thegraph of ro(¢) also satisfiesy = x2.Both graphs and tangent vectors are given here.

(3r2, 6%) and sory/ (1) =

[ri® [ra0)

In Exercises 17-20, evaluate the derivative by using the appropriate Product Rule, where
rz([) — <e3t’ 621’ et>

ri() = (1%, 13,1),
d
17. E(rl(t)*z(t))

SOLUTION
d ,
—(r1(1) - ra(t)) = r1(1) - ro(t) + ry(0) - rat)

= <t2, t3, t> . <3€3t, 2@2’, et> + <21, 3t2, 1> . (eal, eZI, e’>

= 3263 £ 2302 4 rol 4 263 4 3202

= 324+ 20)e¥ + 23 + 3% + (1t + e’
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d
19. E(rl(t) X ra(1))
SOLUTION d

=, (M0 X r2(0) = r1(0) x ro@t) + 1y (1) x ra(t)

= <t2, t3, t> X (363[, 2e2[, et> + <2t, 3t2, 1> X <€3[, €2t, et>

i K| i j k
=12 B |+l H 1
3e3r 2le el e3z eZl ol

= (t3et — 2te2t)i + (3te3t — tzet)j + (ZtZeZt — 3t3€3t)k
+ (32! — e?)i + (€3 — 2te")j + (2te? — 323k
=13 + 3% e — (2t + e i + [(3t + Ve — (12 + 20)e']j
+[(2% + 20)¢® — (32 + 3?)e 1k

In Exercises 21 and 22, let
r =(t%,1,2),  ra0=(12¢)

d .
21. Compute 7 r1(t) - ra(t) 1 in two ways:

(a) Cdculatery(t) - ro(z) and differentiate.
(b) Usethe Product Rule.

SOLUTION
(a) First wewill caculatery () - ro(z):

) ra0 = (2 1.21)- (1.2 ¢)
=124+ 2+ 2te'
And then differentiating we get:

d d
Tr o) - r2() = E(tz 424 2te) =21 + 2te! + 2¢!

=2+2¢+2e=2+4e
=1

v 1) - r2())
7 [( 1) -r2
(b) First we differentiate:
ri() = <t2, 1, 2t>, ryt =(2:,0,2)
ra() = (1.2 ¢'), ry(t) = (0,0, ¢')
Using the Product Rule we see:
d /
E(rl(l) - 1(1)) = r1(t) - (1) + 1y (0) - (1)
=(2121)-(0.0.¢')+ (21,0,2) (1.2, ¢!)

=2te' + 2t + 2¢'

=2e+2+2e=2+4e¢

t=1

%(l’l(t) - 1a(1))

. d . .
In Exercises 23-26, evaluate El’(g(l)) using the Chain Rule.

23. r()={r?,1—1), g)=¢
soLuTION Wefirst differentiate the two functions:

r) = %(zz, 1- z> — (21, -1)

ey Dy
g(t)—dt(e)—e
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Using the Chain Rule we get:
d
Tr(g0) = g (O (5(0) = ¢' (26, ~1) = (2%, ~¢')

25. r(t) = (', e*,4), g(t)=4+9
soLuTION Wefirst differentiate the two functions:

r'(t) = %(e’, eZt, 4) = <et, ZeZI, 0)

d
"H=— @G +9 =4
g @) dt( +9)
Using the Chain Rule we get:

d
Er g®)) =g Or'(g) = 4<e4t+97 262(4t+9)’ 0) — <4e4t+9’ 8e81+18, 0)

27. Letr(t) = (12, 1- t,4t>. Calculate the derivative of r(¢) - a(r) a + = 2, assuming that a(2) = (1, 3,3) and
a'(2) =(-141).
SOLUTION By the Product Rule for dot products we have
d _ / /
Er(r) -ait)y=r@)-a'@)+r@)-a@)
At = 2wehave
Ley.an| =r@ d@+r@-a@ @
dt (=2
We compute the derivative r'(2):
r'(r) = %(rz, 1-—1,4)=(2,-1,4) = r@=@4-14 )

Also, r(2) = (22, 1-2,4-2)= (4, —1, 8). Substituting the vectors in the equation above, we obtain:

%r(t) -a(t) =4,-1,8 - -(-1,41)+4,-1,4-(1,33)=(-4-4+8+(“4—-3+12) =13
t=2

Thederivativeof r(¢) -a(t) atr = 2is13.
In Exercises 29-34, find a parametrization of the tangent line at the point indicated.
29. r(t) = (1%, 1%, 1=-2
SOLUTION The tangent line has the following parametrization:
£(t) =1r(=2) +tr' (=2 1)

We compute the vectors r(—2) and r'(—2):

r(=2) = (=22 (-2% = (4, 16)

r() = %{rz, =243 = (-2 =(-4-32
Substituting in (1) gives:
L(t) =(4,16) + 1 (—4, —32) = (4 — 4,16 — 32r)
The parametrization for the tangent lineis, thus,
x=4—4, y=16—-32, —-oco<t< 0.

To find adirect relation between y and x, we express ¢ in terms of x and substitutein y = 16 — 32z. Thisgives:

x—4
—4

Hence,
x—4
y=16—32t=16—32~—4=16+8(x—4)=8x—16.

The equation of the tangent lineisy = 8x — 16.
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3L r() =(1—-12,56,2%), 1=2
SOLUTION Thetangent lineis parametrized by:
(1) =12 +1r'(2) 1)
We compute the vectors in the above parametrization:
r =(1-225.22-2%=(-310,16)
() = %(1 —12,50,28%) = (~21,5,612) = r'(2)=(-4,524)
Substituting the vectorsin (1) we obtain the following parametrization:

£(t) = (—3,10,16) + 1 (—4,5, 24) = (—3 — 4¢, 10 4 5¢, 16 + 24¢)

33 r(s) =45t - 8573k, s=2

SOLUTION Thetangent lineis parametrized by:
0(s) =r(2) +sr'(2) )

We compute the vectors in the above parametrization:
8 1
=427 ti- 2@ 3k=2i -k
r2 (2 3( ) 1 3
d . 8 . o1
)= — (45 Li— 253k ) =-4s2i+8 %% = r@=—-i+-k
ds 3 2
Substituting the vectorsin (1) we obtain the following parametrization:
1 1 . 1 1
d / 2t
35. Use Example 4 to calculate E(r x r'), wherer(r) = (1,12, ¢').
SOLUTION |n Example 4 itis proved that:
d
Erxr/:rxr” (€}
We compute the derivatives ' (r) and r” (¢):

r'@) = %(I ‘2, el)=(12¢)

d
r(t) = E(l, 2t, e[> = <O, 2, e[)

Using (1) we get
d i j k
Zrxrt=rxr’" =2 )x(0,2¢)=| 1 2 o |=(1%" —2e")i— (0—1e')j+ (2t — O)k
dt 0 2
2

= (12 = 2)eli+re'j+ 2tk = ((1? — 21)e! , 1e! | 2)

37. Show that the derivative of the norm is not equal to the norm of the derivative by verifying that ||r(z)||” # ||[r'(¢)|| for
r(t) = (t,1,1).

SOLUTION First let us compute ||r(2) ||’ for r(z) = (z, 1, 1):

. d
Irol = 5 W2 +2) = —

ViZ 42

Now, first let us compute the derivative, r'(¢):
r'(z) = (1,0, 0)
and then computing the norm:
IOl =1(1,00]=v1i=1

Itisclear inthisexample, that ||[r(H)|” # Ir' ()].
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In Exercises 39-46, evaluate the integrals.

30. /_31 <8t2 63+ z) di

soLuTION Vector-valued integration is defined via componentwise integration. Thus, we first compute the integral of
each component.

P (9 8 1\ 212

1 2 3 2 3

3

243 9 3 1
=(EZ=4+2)-(242)=124
(7)) -(Ga)

3 8 [2
82 —tdt = ~13— —
/—1 3 2

3 3 t
63+ rdt = o+ —
/‘—1 + 2 + 2

Therefore,
3 3 3 212
/ <8t2—t, 6t3+t> dt = / 8t2—ldt,/ 6t3+zdt :<—,124>
-1 -1 -1 3

2
41./ (i + u®j) du
-2

SOLUTION The vector-valued integration is defined via componentwise integration. Thus, we first compute the integral
of each component.

2 42
5 " 6 16
du="] =2_22_0p
/_2” T ,T 4 g
2 62
[Lita=tf o
_ 6|, 6 6

Therefore,

1
43.[ (2t,4r, — cos3t) dt
0

SOLUTION The vector valued integration is defined via componentwise integration. Therefore,

1 1 1 1
f (2t, 4t, — cos3t) dt = / 2tdz,/ 4tdz,/ —cos3tdr) = (12
0 0 0 0

4
45./ (rti+avij—83/2k)dr
1

1 1

_S|n3z >=<1’ 2’_sm3>
0 3

’

0

1
s 22
0

soLuTION We perform the integration componentwise. Computing the integral of each component we get:
4
=In4d—-Inl=In4

4
/ t~Ldt =Int
1 1

4 2
/ AJidt = 4. 43/2’
1 3

=393

4 16 5|4 16 496
—832dr = ——5?| = = (42 1) = =
/1 5 1 5 < ) 5

Hence,

4
56. 96k

4
f (t‘li + 41— 8t3/2k) dt =(nd)i+ =j— —
1 3 5
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In Exercises 47-54, find both the general solution of the differential equation and the solution with the given initial

condition.
47, % =(1-2t,4t), r(0)=(3,1)

soLuTIoN Wefirst find the general solution by integrating 4

r(t) :/(1—2:,4:) dt =</ (1—2) dt,/4tdt>:<t —12, 2% ¢
Sincer(0) = (3, 1), we have:
r0=(0-0%2-04+c=(3 1) =c=(31)
Substituting in (1) gives the solution:

re) =t — ‘2, 2t2> +(3,1 = (—t2 4143224+ 1)

49. r'(t) =%+ 5tj+k, r(l) =j+2k
soLuTtioN Wefirst find the general solution by integrating r/(¢):

r(t):/(t2i+5tj+k> dt = (/tzdt>i+</5tdt>j+(/1dl)k= (%t3)i+(gt2>j+tk+c

The solution which satisfies the initial condition must satisfy:

1
r) = (5«13>i+<g-12>j+1-k+c=j+2k
That is,
1. 3
=——i—-j+1k
c 3| 2]+
Substituting in (1) gives the following solution:

_(L3)is (22) L8 (Y 1Y (53
r(t)_<3t>l+<2t>J+tk 3| 2J+k—(3t 3>|+(2 2]+(l+1)k

51. r’(z) = 16k, r(0)=(1,0,0), r'(0)=(0,1,0)
soLuTioN To find the general solution wefirst find r’(¢) by integrating r” (¢):

r'@) = / r(t)dt = / 16k dt = (16t) k +¢q
We now integrate ' (¢) to find the general solution r(z):
r(t) = / r'(t)dt = / (A6t k +¢q) dr = (/ 16(¢) dz) K+ 1t + Co = (89K +C17 + Co

We substitute the initial conditionsin (1) and (2). This gives:

r'(0)=c1=1(0,1,0) =]

r(0)=0k+c1-0+c2=(1,0,00 = ¢=(100 =i
Combining with (2) we obtain the following solution:

r(t) = 8K +1j+i=i+1j+ Bk
53. r'(1) =(0,2,0),r(3 = (1,1,0),r'(3) = (0,0, 1)
soLuTioN To find the general solution we first find r’(r) by integrating r” (¢):
r'@) = / r'(t)dt = / (0,2,0) dt =(0,2t,0) + ¢

We now integrate 1’ (¢) to find the general solution r(z):

r(t) = / r'(t)dt = / ((0,2¢,0) +¢1) dt = (0, 12, 0> +c1t +C

)

)

)

2

)

@)
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We substitute the initial conditionsin (1) and (2). This gives:
r'3) = (0,6,0)+¢c1=(0,0,1) = <¢1=1(0—6,1)
r(3 = (0,9,0) +c1(3) +co = (1,1,0)
(0,9,0) + (0, —18,3) +co = (1,1,0)
= €2 =(1,10,-3)
Combining with (2) we obtain the following solution:

r(r) = (o, 2, o> 4£1(0,—6,1) + (1,10, —3)

:(l,t2—6t+10,t—3>

55. Find thelocation at r = 3 of a particle whose path (Figure 8) satisfies

dr

1
EZ=@“‘EII?2”‘§’ rO) = (3.8)

5 10 15 20 2
FIGURE 8 Particle path.

SOLUTION To determinethe position of the particlein general, we performintegration componentwiseon r’(¢) to obtain:

r) =/r’(t)dt

:/<2t—;,2t—4>dt
(t +1)2

1
2 2
=(t ——,t“—4)+cC
< +t—i—l > 1

Using theinitial condition, observe the following:
r0=(10+c1=(3,8
= 1=(2,8)

Therefore,
rit) = t2+i 2 —4t)+ (2,8 = t2+i+2 ?—4+8
t+1 ’ t+1 7
and thus, the location of the particleat ¢+ = 3isr(3) = (45/4,5) = (11.25, 5)

57. Afighter plane, which can shoot alaser beam straight ahead, travelsalong thepath r () = <5 —1,21—12,3— t3/27).
Show that there is precisely onetime ¢ at which the pilot can hit atarget located at the origin.

SOLUTION By the given information the laser beam travels in the direction of (). The pilot hits a target located at
the origin at thetime t when r’(¢) points towards the origin, that is, when r(¢) and r'(¢) are parallel and point to opposite
directions.

20
r(

10 r)
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Wefind r'(¢):

d 3 t2
')=—{(5-1,21-123— —)={(-1,—2r,——
r'(t) = <5 t, t<,3 >7 t 9

Wefirst find ¢ such that r(¢) and r’(¢) are parallel, that is, we find ¢ such that the cross product of the two vectorsiis zero.
We obtain:

i j k

O=r@Oxr@)=| -1 —2t ’§
2

5-—t 21—t 3—ﬁ

= 2t (3 s t221 2y )i 3 r t25 NHlij 21— 13 +2t(5—- 1))k
=|-2|3-5 ) +g@-)i-(-(3-5|+g6-n)i+(-(L-r)+26-1)

4 2 3 2
47 [ 23 5
:<t+t—6t>|—<—2t?+;—3>1+( 124100 — 21)k

Equating each component to zero we obtain the following equations:

4
t 72

—— 4+ =tc—6tr=0
73 Y
23 52

S 3.0
27+ 9

2410 -2l = —(t —T)(t - 3) =

The third equation impliesthat 1 = 3 or r = 7. Only r = 3 satisfies the other two equations as well. We now must verify
that r(3) and r’(3) point in opposite directions. We find these vectors:

33
rd) = <5— 3,21-3%,3— 27> =(2,12,2)

2
r'@) = <—1, —-2-3, —i> =(-1,-6,-1)

Since r(3) = —2r/(3), the vectors point in opposite direction. We conclude that only at time ¢+ = 3 can the pilot hit a
target located at the origin.

59. Find all solutionsto r’(¢) = v with initial condition r(1) = w, where v and w are constant vectorsin R3.
soLUTION \We denote the components of the constant vector v by v = (v1, vp, v3) and integrate to find the general

solution. This gives:
r(t) —/th / v1, V2, v3) dt = </ v1dt, /vzdl /vgdt>

(vif + c1, vor + 2, V3t + c3) = 1 {v1, V2, v3) + (c1, €2, €3)

Welet c = (c1, ¢2, c3) and obtain:
r¢)=tv+c=c+1tv

Notice that the solutions are the vector parametrizations of all the lines with direction vector v.
We are also given theinitial condition that r(1) = w, using thisinformation we can determine:

r)=Qv+c=w

Thereforec = w — v and we get:
riy=wW—-v)+tv=_¢t—-1v+w

61. Find all solutionsto r'(r) = 2r(¢) wherer(t) is avector-valued function in three-space.
soLuTION Wedenotethecomponentsof r(z) by r(r) = (x(1), y(1), z()). Then, r'(t) = (x'(z), y' (), 2’ (1)). Substituting
in the differential equation we get:
('@, Y @), 7 ®) =2, y@), 2(0))

Equating corresponding components gives:

x'(t) = 2x(1) x(t) = cre¥

Y@ =2y1) = y(t)=cpe?

Z(t) = 2z(1) 2(t) = cze%
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We denote the constant vector by ¢ = (¢4, ¢2, ¢3) and obtain the following solutions:

2t 2t ) 2t

r@) = (0162’, cpe”, c3e 2 (1, c2,c3) = €'

=e

63. Prove that the Bernoulli spiral (Figure 9) with parametrization r(¢) = (e’ cos4t, ¢’ sin 4z) has the property that the
angle v between the position vector and the tangent vector is constant. Find the angle v in degrees.

FIGURE 9 Bernoulli spiral.

SOLUTION First, let us compute the tangent vector, r'(z):
r(t) = (e cosdt, ' sinde), = r'(1) =(—4e’ Sindr + ¢’ cos4t, 4e’ cosdt + e’ sin4t)
Then recall theidentity thata - b = ||a]| - ||b|| cos6, where 6 isthe angle between a and b, so then,
r(t) - r'(t) = (¢’ cosdr, e’ sindr) - (—4e’ sindt + e’ cos4t, 4e’ cosdt + e’ sin4t)
= —4¢% sin4t cosar + e cos? 4t + 4e? sin4r cosdt + e sin? 4t
= 2 (cos? 4t + sin? 4¢)
- eZt

Then, computing norms, we get:

Ir)| = \/er coS2 4t + 2 Sin? 4t = \/er(cos2 4 +sin24t) = ¢

Ir' @ = \/(—4et SiN4t + ef cos4t)2 + (de! cos4t + ef sindr)2

- \/16e2’ SN2 4t — 4e2 Sin4t cos4t + e cos? 4t + 16e2 OS2 4t + 4e2! sin At cosdt + e2! Sin? 4t

— \/16e2’ (SN2 4t + cOs2 4¢) + €2 (cos? 4t + sin? 4r)

T
= V17!
Then using the dot product relation listed above we get:
€% = ¢! (v/17e') cosh = v/17e% cosh
Hence

1
cosh = ——, = 0 ~7596°
17

Therefore, the angle between the position vector and the tangent vector is constant.

65. & Prove that if ||r(z)|| takes on alocal minimum or maximum value at tq, then r(zg) is orthogonal to r’(zg).

Explain how thisresult isrelated to Figure 11. Hint: Observethat if ||r(zg)|l isaminimum, thenr(z) istangent at ¢ to the
sphere of radius ||r(zg)|| centered at the origin.

FIGURE 11
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SOLUTION Suppose that ||[r(z)|| takes on a minimum or maximum value at t = #g. Hence, Ir(»)]1? also takes on a
minimum or maximum value at ¢+ = tq, therefore % lrs) ||2][:t0 = 0. Using the Product Rule for dot products we get

d / / /
= 1 -1()]  =1(t0) - ¥'(t0) +1'(t0) - T(1) = 2r(10) - (1) = O

d
Enr(r)nz
t=to

=ty

Thusr(tg) - ' (tg) = 0, which implies the orthogonality of r(zg) and r’(zg). In Figure 11, ||r(tg)|| is a minimum and the
path intersects the sphere of radius ||r(zg)|| at asingle point. Therefore, the point of intersection isatangency point which
impliesthat I’ (z) istangent to the sphere at #g. We conclude that r(tg) and r’(¢g) are orthogonal.

Further Insights and Challenges

67. Letr(t) = (x(¢), y(¢)) traceaplane curve C. Assumethat x’(tg) # 0. Show that the slope of the tangent vector I’ (zg)
isequal to the slope dy/dx of the curve at r(rg).

SOLUTION

(a) By the Chain Rulewe have

dy dy dx

dt ~ dx dt

Hence, at the points where fl—’t‘ # 0 we have:

d-
dy @ y®

dx % X))

(b) Theline(t) = (a, b) + tr'(tg) passesthrough (a, b) at t = 0. It holds that:
£(0) = (a, b) +Or'(tg) = (a, b)

That is, (a, b) isthe termina point of the vector £(0), hence the line passes through («, b). The line has the direction
vector r'(1g) = (x’ (1), ¥/ (t0)), therefore the slope of thelineis )yc/ggg which is equal to % . by part (a).
t=to

69. Verify the Sum and Product Rules for derivatives of vector-valued functions.
soLuTION Wefirst verify the Sum Rule stating:

(re(0) + r2() = ry() + 1)
Letri(t) = (x1(1), y2(2), z2(0)) and ra(t) = {x2(1), y2(2), z2(1)). Then,
, d
(ri() +ra())" = o (x1(®) +x2(), y1() + y2(2), z2(t) + z2(1))

= ((X1(t) +x20)), 1) + y20), (z1(1) + zz(t))’)
x1(1) 4 x5(1), y1(1) + yo(1), 24(1) + 25(1))

/

x1(0), y1(1), 21 (0) + (x5(0), y5 (1), 25(0)) = 1) + r5(0)

~(
-

The Product Rule states that for any differentiable scalar-valued function f () and differentiable vector-valued function
r(t), it holds that:

d /
2 S orn = FOr@ + f@or@

To verify thisrule, we denoter(¢) = (x(¢), y(¢), z(t)). Then,

d d
Ef(l)l’(t) =7 (f@Ox@), fFOY @), fB)z(D))

Applying the Product Rule for scalar functions for each component we get:
d /! / / 4 / !/
Ef(t)r(t) =(fOx' @)+ f'Ox@), fFOY @O + fOy@), fFO) @) + fD)z(0)

=(fx'@), fOY @), fFOIO)+ (' Ox@), f(O)y@), f(z1))
= fO) ('@, Y ). O)+ £ @) (x@), y@), 2(0)) = fFOF' @) + f'(Or @)
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71. Verify the Product Rule for cross products [Eq. (5)].

SOLUTION Letri(t) = (a1(1), a2(t), az(r)) and ra(¢) = (b1 (1), ba(¢), b3(¢)). Then (we omit the independent variable
t for simplicity):

i j k
ay az as
by by b3

ri(t) x rp(t) = = (agh3 — azby) i — (a1b3 — azby) j + (a1bp — agxhy) Kk

Differentiating this vector componentwise we get:

d . .
Erl X Iy = (0217/3 + a/2b3 - agb/z - a/sbz) I — (albé + aibg - agba_ - aébl)j + (alb/z + aibz - azba_ - a/zbl) k

= ((a2b3 — agbp) i — (arbs — ash}) j + (arby — azby) k)
+ ((a/zbg — aébz) i— (aibg — aébl)j + (aibz — a/zbl) k)

Notice that the vectorsin each of the two brackets can be written as the following formal determinants:

i j k i ] k
d
d—rl Xrp=|ay a2 az |+ a/l a/z a/3 = <a1’a2, a3> X <b’1, b/z, b/3> + <a/l, a/z, aé} X (bl’bz, b3)
! b, b, bl by by b
1 2 3 1 2 3

=ryxry+r;xr

73. Provethe Substitution Rule (where g(¢) is a differentiable scalar function):

b P!
/ F(g(t)g (1) di = / Fu) du
a

¢ Ha)

soLUTION (Note that an early edition of the textbook had the integral limits as g(a) and g(b); they should actually
be g_l(a) and g_l(b).) We denote the components of the vector-valued function by r(¢) dt = (x(¢), y(¢), z(¢)). Using
componentwise integration we have:

b b b b
/ I’(t)dt:</ x(t)dt,/ y(l)dt,/ z(t)dt>
g )

b b

Write/ x(t)dt as/ x(s)ds. Lets = g(t), sods = g’(t) dt. The substitution gives us/ . x(g@®)g' () dt. A
a a g (a)

similar procedure for the other two integrals gives us:

b gl ) FaR() ) Fai()) )
[roa=([" Cxeogod. [ yeangoa. [1 zeogod
a g~

(@) g (a)

g Ha)

gil(b) / / /
=/ L @@ g,y (e (0, 2 (2(1) &'(1)) dt
g (@)

FaR() , FaRl)! )
:/ (x (g(®),y(g®),z(g®)) g () dt 2/ rg@) g (t)de
8

L) FaRl()

13.3 Arc Length and Speed (LT Section 14.3)

Preliminary Questions

1. Atagiveninstant, acar onaroller coaster hasvelocity vector r’ = (25, —35, 10) (in miles per hour). What would the
velocity vector beif the speed were doubled? What would it beiif the car’s direction were reversed but its speed remained
unchanged?

SOLUTION The speed is doubled but the direction is unchanged, hence the new velocity vector has the form:
Ar’ =1 (25, —35,10) fora > 0

We use A = 2, and so the new velocity vector is (50, —70, 20). If the direction is reversed but the speed is unchanged,
the new velocity vector is:

—r’ = (-25,35, -10).
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2. Two cars travel in the same direction along the same roller coaster (at different times). Which of the following
statements about their velocity vectors at agiven point P on theroller coaster isare true?

(a) Thevelocity vectors areidentical.

(b) The velocity vectors point in the same direction but may have different lengths.
(c) Thevelocity vectors may point in opposite directions.

SOLUTION

(a) The length of the velocity vector is the speed of the particle. Therefore, if the speeds of the cars are different the
velocities are not identical. The statement is false.

(b) Thevelocity vector istangent to the curve. Since the cars travel in the same direction, their velocity vectors point in
the same direction. The statement is true.

(c) Sincethecarstravel inthe same direction, the velocity vectors point in the same direction. The statement isfalse.

3. A mosquito flies along a parabolawith speed v(¢) = 2. Let s(¢) bethetotal distance traveled at time .
(a) How fastiss(r) changing at t = 2?
(b) Iss () equal to the mosquito’s distance from the origin?
SOLUTION
(a) By theArc Length Formula, we have:

t t
s@) = | IIF@)|d: =/ v(1) dt
b1

fo 0
Therefore,

s'(t) = v(t)
To find the rate of change of s(¢) at + = 2 we compute the derivative of s(¢) at r = 2, that is,
SQ=v@)=2=4

(b) s(¢) isthe distance along the path traveled by the mosquito. This distance is usually different from the mosquito’'s
distance from the origin, which is the length of r(z).

Distance L(t) rt)

Distance from
the origin

4. What isthe length of the path traced by r(¢) for 4 < ¢t < 10if r(¢) isan arc length parametrization?

SOLUTION Sincer(t) isan arc length parametrization, the length of the path for 4 < ¢ < 10isequal to thelength of the
timeinterval 4 < r < 10, whichis6.

Exercises
In Exercises 1-6, compute the length of the curve over the given interval.

1 r@t)=3,4—-3,6t+1), 0<r=<3
soLUTION Wehavex(t) = 3¢, y(t) = 4t — 3, z(t) = 6t + 1 hence

X =3 y@)=4 @) =6

We use the Arc Length Formulato obtain:

3 3 3
s=/ ur/(r)ndr:/ \/x’(t)z—l—y’(t)z—i-z’(t)zdz=/ V32442 4+ 6241 = 3761
0 0 0

3.r() =(2,In0,1?), 1<r<4

SOLUTION Thederivative of r(¢) isr'(t) = (2, 71 2t>. We use the Arc Length Formula to obtain:

4 4 1\2 4 1 4 1\2
s:/ ||r’(z)||dt:/ 22+(7) +(2t)2dt:/ ,/4t2+4+—2dt:/ (21+7> dt
1 1 t 1 t 1 t

4 1 4
=/ <2t+—) dt =12+ Int
1 t

=(16+1In4) —(1+In1l)=15+1In4
1
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5. r(t) = (rcost,tsint, 3r), 0<t <27
SsoLUTION Thederivative of r(¢) isr’(+) = (cost — ¢ sint, sint + ¢ cost, 3). Thelength of r/(¢) is, thus,

Ir' @ = \/(cosz —tsint)2 + (sint +tcost)2 + 9

:\/coszt—choszsint+t23in2t+sin2t+215intcost+12coszz+9
=\/<C082t+sin2t> + 12 (sin2t+coszt) +9=+r2+10

Using the Arc Length Formula and the integration formula given in Exercise 6, we obtain:

2 2 1 1
s=f nr’(z)ndz:/ V2 +10dt = Ezw2+10+§.10|n(z+ t2+10>
0 0

2
0

2
— 7v/472 1+ 10+ 5In (271 +Var2 4 1o>  5InvI0 = nv/4r2 1+ 10 4 5in X F VAT +10 %M) ~ 293

t
In Exercises 7 and 8, compute the arc length function s(¢z) = / It" (u) || du for the given value of a.
a

7.1 =(1%,22,13), a=0

soLuTION The derivative of r(z) isr'(r) = (2, 41, 3t2). Hence,

I O1 = V@02 + @2 + @22 = VaZ + 167 1+ 94 — 11/20 1 92

Hence,
t t
S(t)=/ ||r’(u)||du=/ uvV'20 + 2 du
0 0

We compute the integral using the substitution v = 20 + %2, dv = 18u du. This gives:

1 20492 ) 1 2 20492 ¢
_ 124y = = . 432 = = (204 9?32 — 20%/2

S0 =18 /20 vAv= 183" ‘20 77 (@049 )
In Exercises 9-12, find the speed at the given value of 7.

9. rt) =(2t+3,4—-3,5—1), t=4
SOLUTION The speed is the magnitude of the derivative r’(t) = (2, 4, —1). That is,

v(0) = IF ()] =22+ 42+ (-1)2 = V21 ~ 4.58

11. r(t) = (sin3r, cos4r, cos5t), = %
soLUTION The velocity vector is r'(r) = (3cos3r, —4sin4s, —5sin5t). At = 7 the velocity vector is 1/ (%) =
(300337”, —4sin2x, —5sn 57”> = (0, 0, —5). The speed is the magnitude of the velocity vector:

v(3)=100-5]=5

13. What isthevelocity vector of aparticletraveling to theright along the hyperbola y = x ~1 with constant speed 5 cm/s
when the particle'slocation is (2, %)?

SOLUTION The position of the particleisgivenasr(z) = +~1. The magnitude of the velocity vector r’(z) isthe speed
of the particle. Hence,

IF @l =5 @)

The velocity vector points in the direction of motion, hence it is parallel to the tangent line to the curve y = x~1 and
points to the right. We find the slope of the tangent lineat x = 2:

dy

m= —

dx

_d 1
_E(x)

x=2 x=2
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We conclude that the vector <1, —%) isadirection vector of the tangent lineat x = 2, and for some A > 0 we have at the
given instance:

@

NI

To satisfy (1) we must have:
1\? V17 20
Il = 12+<_Z> =AT=5 = A= —

Substituting in (2) we obtain the following velocity vector at (2, %)
r/_£<1 }>_<£ ;5>
V77 4] \ViT viT

27Nt . (27Nt
r(z)=<Rcos( ),Rsm( ; )l> O<t=<h

(a) Show that r(z) parametrizes a helix of radius R and height 7 making N complete turns.
(b) Guesswhich of the two springsin Figure 5 uses more wire.
(c) Compute the lengths of the two springs and compare.

15. Let

]ﬁ%ﬁﬁ x__-__—_-;/ 3 cm

3turns, radlus 7cm  5turns, radius4 cm
(A) (B)

FIGURE 5 Which spring uses more wire?

soLuTION Wefirst verify that the projection p(r) = (R cos(Z”hN’) ,Rsin (%) , O> onto the xy-plane describes a

point moving around the circle of radius R. We have:
2 2
x(H)? + y(1)? = R? cos” ( HhNt> + R%gin? (”TNI) = R? ((:os2 (?) + sin? (2ﬂhNt)) =R?

Thisisthe equation of the circle of radius R in the xy-plane. Ast changesin theinterval 0 < ¢ < h the argument %
changes from 0 to 2 N, that is, it covers N periods of the cos and sin functions. It follows that the projection onto the
xy-plane describes a point moving around the circle of radius R, making N complete turns. The height of the helix isthe
maximum value of the z-component, whichis¢ = h.

(a) The second wire seemsto use more wire than the first one.

(b) Setting R =7, h = 4and N = 3in the parametrization in Exercise 15 gives:

27 - 3t 27 - 3t 3 3t
rl(t):<7cos n4 ,79n n4 R >:<7cos%t,73in%,z> 0<t<4
Setting R = 4, h = 3and N = 5 in this parametrization we get:
27 -5 27 -5 10: 10
r2(1)=<4cos 3 [,43in 713 ! > <4 osTm 4s ?mt> 0<r<3
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We find the derivatives of the two vectors and their lengths:

2lr . 3wt 2w 3mt [ 44172 1
r’l(t):<—75|n > ’TC057’1> = Inoll= 7 +l=§\/441712+4

407 . 10zt 40 107t 160072 1
ré(z)=<—?ﬂsn%,7ﬂcos%,l> = ol = 971 +l=§\/1600n2+9

Using the Arc Length Formula we obtain the following lengths:

41
sl:/ SV 4di = 2/ W17 + 4~ 132
0

31
s2=/ 3160072 + 941 = V160072 + 9 ~ 125.7
0

We see that the first spring uses more wire than the second one.
17. The cycloid generated by the unit circle has parametrization

r(t) = (t — sint, 1 — cost)
(a) Findthevaueof rin [0, 27] where the speed is at a maximum.

(b) Show that one arch of the cycloid has length 8. Recall the identity sin2(1/2) = (1—cost)/2.
SOLUTION Onearch of thecycloid istraced as0 < ¢ < 2r. By the Arc Length Formulawe have:

2
s = /0 X ()|l dt o

We compute the derivative and its length:

r'(t) = (1 — cost, sint)

Ir' @ = \/(1— cost)2 + (sint)2 = \/1— 2cost + Cos2 ¢ + sin? ¢

Y
= /2= 2cost = \/2(1 — cost) =1/2-25m2E =2

ForO<:7 < 27,wehave0 < & <

sint
2

,808n ’? > 0. Therefore we may omit the absolute value sign and write:

t
/ =2sin—
Ir @i sn3

Substituting in (1) and computing the integral using the substitution u = % du = %dt, gives:

2 t T bid
s:/ ZSinfdt:[ 25inu-(2du):4/ sinudu
0 2 0 0

V1

= 4(—cosu)| =4(—cosm — (—cos0) =4(1+1) =8
0

The length of one arc of the cycloid iss = 8. The speed is given by the function:
o(t) = [P (] = 2sin % O<i<n
To find the value of ¢ in [0, 2] where the speed is at maximum, we first find the critical point in thisinterval:

1 t t
V() =2 Zcos= = cos—

2 2 2
t t om
COSE =0 = E = E = t=m
Since v (t) = —%sin%,wehave V() = —% sn% = —% < 0, hence the speed v(¢) hasamaximum value at t = .

19. Letr(t) = (3t + 1,4t — 5, 2t).

1
(a) Evaluate the arc length integral s(r) = / Y ()| du.
0
(b) Findtheinverse g(s) of s(z).
(c) Verify that r1(s) = r(g(s)) isan arc length parametrization.
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SOLUTION
(a) Wedifferentiate r(z) componentwise and then compute the norm of the derivative vector. This gives:

r@)=(3,4,2)
IF ()] = V32442 +22 =429

We compute s (t):
t t t
s(t) =/ Ir ()|l du =/ V29du = ~29u| = /29
0 0 0

(b) Wefind theinverse g(s) = t(s) by solving s = +/29 for ¢. We obtain:
s=42% = t=g(s)= L
s 8(s) N
We obtain the following arc length parametrization:
F1(s) r( s ) < 3s i1 4s 5 2s >
S) = Ey— ={— y = — 9, ——
! v29) T\v29 T T Um0

To verify that r(s) is an arc length parametrization we must show that || (s)|| = 1. We compute ' (s):

) = i<i+1,i—5,ﬁ>=<i,—4 2 >= L Ba2
ds \ /29 V29 V29 V29 /29" V29 /29
Thus,
AL i|| 3,42 = 1 32442422 = 1 v29=1
V29 V29 V29

21. Letr(r) = w + rv be the parametrization of aline.

t
(a) Show that thearclength function s(¢) = f ¥’ (u)|| du isgiven by s(t) = ¢|v]. Thisshowsthat r(s) isan arc length
0
parametrizaton if and only if v isaunit vector.
(b) Find an arc length parametrization of thelinewithw = (1, 2, 3) andv = (3, 4, 5).

SOLUTION
(@) Sincer(t) =w +rv,thenr’'(t) = v and ||r'(¢)|| = ||v||. Then computing s (t) we get:

t t
S(t)=/ Ir ) du:/ VIl du = t|lv]|
0 0
If we consider s(1),
s(t)y =rtifandonlyif |v| =1
(b) Sincev = (3, 4, 5), then from part (a) we get:

sO) =tV = VR + 82+ 52 =150, =1 =g(s) = \/%

Therefore, sincewe are given r(t) = w + tv, the arc length parametrization is:

K 3s 4s 5s
ri(s) =(1,2,3) + — (3,4,5 =<1+7,2+7,3+7>
= > @( ) VB0'T /B0 /50

23. Find a path that traces the circle in the plane y = 10 with radius 4 and center (2, 10, —3) with constant speed 8.
soLuTION We start with the following parametrization of the circle:
r(t) = (2,10, —3) + 4 (cost, 0, sint) = (2 + 4cost, 10, —3 + 4sint)

We need to reparametrize the curve by making a substitution 7 = g(s), so that the new parametrization rq(s) = r (g(s))
satisfies || (s) || = 8 for al s. Wefind r} (s) using the Chain Rule:

d /
ri(s) = i (g(s) = &'GIr' (g(s)) @
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Next, we differentiate r(¢) and then replacet by g(s):
r'(t) = (—4sint, 0, 4cosr)
' (g(s)) = (—4sing(s). 0, 4cosg(s))
Substituting in (1) we get:
ri(s) = g'(s) (~4sing(s), 0. 4cosg(s)) = —4g'(s) (sing(s), 0, — cosg(s))

Hence,

1))l = 4lg'(5)1y/ (SN g(5)% + (— cosg(s))2 = 4lg(5)]

To satisfy ||r’1(s)|| = 8 for al s, we choose g’(s) = 2. We may take the antiderivative g(s) = 2 - s, and obtain the
following parametrization:

ri(s) =r(g(s)) =r(2s) = (2+ 4cos(2s), 10, —3 + 4sin(2s)) .
Thisis a parametrization of the given circle, with constant speed 8.
25. Find an arc length parametrization of r(r) = (2, r3).

soLuTION We follow two steps.
Step 1. Find the inverse of the arc length function. The arc length function is the following function:

t
s(t) = /0 ¥ o)l du &

Inour caser'(t) = (21, 3t2> hence ||[r' (1)|| = \/4t2 + 94 = \/4 + 9r2¢. We substitute in (1) and compute the resulting
integral using the substitution v = 4 + 9u?, dv = 18u du. This gives:

1 1 4+ 1 2
sty = / VAT 9udu = - / W2gy = L 232
0 18 J4 18 3

- ?17 ((4+ 9:2)3/2 - 8)

We find the inverse of + = s(¢) by solving for 7 in terms of s. This function isinvertiblefor + > Oandfors < 0.

4+9:2

_i 2,\3/2 3/2
\ _27((4—|—9t) —4)

_1 2,3/2
5= §<(4+9t ) —8)
27s + 8= (4+ 9%)%/2
(27s + 8)2/3 — 4 =92

1 1 4
2_ = 2/3 _ _ - 2/3 _ ~*
2 =3 <(27s +8) 4) 5@ +8) 5

t =j:%,/(27s+8)2/3—4 )

Step 2. Reparametrize the curve. The arc length parametrization is obtained by replacing 7 by (2) in r(z):

1 4 1 3/2
ri(s) = <§(27s +8%° o, iﬁ((m +8?%/° - 4) >

27. Find an arc length parametrization of theline y = mx for an arbitrary slope m.

SOLUTION
Step 1. Find the inverse of the arc length function. We are given the line y = mx and a parametrization of thislineis
r(t) = (t,mt), thusr’(+) = (1, m) and

I @) = V14 m2

We then compute s (¢):

t
s(t) :/ V1i+m?2du =tvV1+m?
0

Solving s = ¢/ 1+ m?2 for t we get:

N

V1+m?

=
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Step 2. Reparametrize the curve using the r we just found.

N sm
ri(s) = :
1) <\/1+m2 \/1+m2>

29. The curve known as the Bernoulli spiral (Figure 6) has parametrization r(¢) = (e’ cos4t, ef sin4t>.
t
(a) Evaluates(t) = / I’ ()|l du. It is convenient to take lower limit —oo because r(—oo) = (0, 0).
—0o0

(b) Use (a) to find an arc length parametrization of r(z).

FIGURE 6 Bernoulli spiral.

SOLUTION
(a) Wedifferentiate r(z) and compute the norm of the derivative vector. This gives:

r'(t) = (' cos4t — e’ sindt, e’ sindt + 4e’ cosdt) = ¢ (cosdt — 4sind, sin4t + 4cosdt)

Ir' @l = e’\/(cos4t — 4sin40)2 + (sin4t + 4cosdt)?

= ¢! (cos? 4r — 8cos4r sin4s + 16sin? 41 + sin? 41 + 8sin 41 cos4r + 1600324t)l/2

= e’\/cosz4t +sin? 4t + 16(sin 4 + cos? 4r) = ¢/ V14 16- 1 = V/17¢!
We now evaluate the improper integral:
t t
s(t) =/ X )| du= lim f V17 du = lim /17
—00 R——o0c0 JR R——00
=V17(' — 0) = V17¢

t
= lim \/17(et—eR)
R R——oc0

(b) An arc length parametrization of r(¢) isri(s) = r(g(s)) wheret = g(s) is the inverse function of s(z). We find
t = g(s) by solving s = +/17¢' for 1
s =17 = et:L:>t:g(s):|nL

V17 V17

An arc length parametrization of r(z) is:

ri(s) =r(g(s)) = <e'”(s/(*/ﬁ)) cos <4In %) L N6/WID) gy <4In \/%»

=\/%<cos<4ln\/%>,sin<4ln\/%)> @)

Further Insights and Challenges
31. Theunit circle with the point (—1, 0) removed has parametrization (see Exercise 73 in Section 11.1)

‘o 1-12 X ,
={—,—), —00 <t <00
1412 1442

Use this parametri zation to compute the length of the unit circle as an improper integral. Hint: The expression for ||r/(¢)||
simplifies.
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12
1+12?

y(t) = —2,. Hence,

soLuTION Wehavex(t) = T2

2 2 1 2 2
5 5 1—12 2 1-22 4%+ 42 1422444 ( +f)
x“@) +y°() = 5 2] = 2 = 2 = 2

141 1+ (1+12) (1+12) (1+12)
It follows that the path r(¢) lies on the unit circle. We now show that the entire circle is indeed parametrized by r(z)
as + moves from —oo to co. First, note that x'(r) can be written as [—2¢(1 + %) — 2¢(1 — t2)]/(1 + 12)? which is
—4t/(1 + t2)2. So, for ¢ negative, x(¢) is an increasing function, y(z) is negative, and sjncel lim x() = —1 and
——00

Iimox(t) = 1, we conclude that r(z) does indeed parametrize the lower haf of the circle for negative 7. A similar
—

argument proves that we get the upper half of the circle for positive ¢. We now compute r’ (¢) and its length:

) = —2(A+1D) —2(1—12) 20412 —2t-2
B (1+12)2 ’ (14 12)2

4 2212 1 2
=(- , = —41,2(1—
< (1+12)2 (1+t2)2> (1+t2)2( et )>

: 2
IF 0l = m/m: NN
2
S SN T R

@+:2% 1+

That is,

royl=—;
e @i 1422
We now use the Arc Length Formulato compute the length of the circle:
o ® dr . .
s =/ I ()| dt = 2/ 2( lim tan"1R — lim tan_1R> = 2(E - (—f» —2n
o

oo 14127 T\ R>oo R—>—00 2

33. Thecurver(t) = (+ — tanht, sechr) iscalled a tractrix (see Exercise 92 in Section 11.1).
(a) Show that s(¢) = -/Ot ¥’ ()| du isequal to s(r) = In(cosht).
(b) Show thatr = g(s) = In(e’ + m) isaninverse of s(r) and verify that

ri(s) = (tanh_l (\/1 - e*zs') V1o e, e‘s>

isan arc length parametrization of the tractrix.

SOLUTION
(a) We compute the derivative vector and its length:

r') =(1- sech?t, — secht tanhz)

I’ @l :\/(1—sech2t)+sech2ztanh2t :\/1—Zsech2t+sech4t+sech2ttanh2t

:\/—sechzt(Z—tanhzt)+l+sech4z

We use the identity 1 — tanh? 1 = sech?  to write:

I @)l =\/—sech2t(l+sech21)+l+sech4z =\/—sech2t—sech4t+l+sech4t

=/1—sech?s = Vtanh?t = |tanh¢|

For ¢ > 0, tanht > 0 hence, || ()| = tanh¢. We now apply the Arc Length Formulato obtain:

t

t t
s(l):/ I’ )| du:/ (tanh ) du = In(coshu)
0 0

= In(cosht) — In(cosh 0)
0

=In(cosht) — In1 = In(cosht)
Thatis:
s(t) = In(cosht)
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(b) We show that the function r = g(s) = In (es + Ve — 1) is an inverse of s(¢). First we note that s'(t) = tanht,

hence s’ () > 0 fort > 0, which impliesthat s(¢) has an inverse function for ¢+ > 0. Therefore, it suffices to verify that
g(s(1)) = t. We have:

g(s() =1In (e'”(cosm) + Ve2In(coshr) _ 1) =In <coshz +y/cosh?r — 1 )

Since cosh?s — 1 = sinh? we obtain (for 7 > 0):

el 4 et el —

—t
g(s(t)):ln(cosiwz+vgnh2t>=In(cosht+s'nht)=|n( + ¢ > =In(e') =1

2 2

We thus proved that 1 = g(s) isan inverse of s(r). Therefore, the arc length parametrization is obtained by substituting
t =g(s)inr(t) = (¢t — tanht, sechr). We compute ¢, tanh ¢t and sech ¢ in terms of 5. We have:

s=In(cosht) = e’ =cosht = sechr=¢""*
Also:
tanh?r =1—-sech?t=1-¢ 2 = taht=v1-e2 = t=tah 1y/1—e2

Substituting in r(z) gives:

ri(s) = (t —tanht, secht) = <tanh’1\/1 —e 2 /12, e’s>
(c) Thetractrix isshown in the following figure:

y
1

13.4 Curvature (LT Section 14.4)

Preliminary Questions
1. What isthe unit tangent vector of aline with direction vector v = (2, 1, —2)?

SOLUTION A linewith direction vector v has the parametrization:
——
rt) = OPy+1tv
. e
hence, since O P and v are constant vectors, we have:
r@e)=v
Therefore, since ||v|| = 3, the unit tangent vector is:

O _ VY _ 2313 -2/3)

T = = =
O=ror = v

2. What isthe curvature of acircle of radius 4?
SOLUTION The curvature of acircleof radius R is % , hence the curvature of acircle of radius4 is 711.
3. Which haslarger curvature, acircle of radius 2 or acircle of radius 4?

SOLUTION The curvature of acircle of radius 2 is % , and it islarger than the curvature of acircle of radius 4, which is
1

I
4, What isthe curvatureof r(t) = (2+ 3¢, 7t,5—1)?

SOLUTION I (¢) parametrizestheline (2, 0, 5) 4+ ¢ (3, 7, —1), and aline has zero curvature.
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5. What isthe curvature at a point where T'(s) = (1, 2, 3) in an arc length parametrization r(s)?
SOLUTION The curvature is given by the formula:

Tl
“O =)

Inan arc length parametrization, ||r'(z)|| = 1for all ¢, hencethe curvatureisk (r) = || T'(¢)||. Using the given information
we obtain the following curvature:

k={L23) | =vV12+22+FP =14

6. What isthe radius of curvature of acircle of radius 4?

soLUTION The definition of the osculating circle implies that the osculating circles at the points of acircle, isthecircle
itself. Therefore, the radius of curvature is the radius of the circle, that is, 4.

7. What isthe radius of curvatureat P if kp = 9?
soLUTION Theradius of curvature isthe reciprocal of the curvature, hence the radius of curvatureat P is:

1 1

_5_9

Exercises
In Exercises 1-6, calculate r’(¢) and T(¢), and evaluate T(1).

L r(r) = (42, %)
soLUTION We differentiate r(z) to obtain:

F@e) =89 = |Fr@)l=+y6)2+92=+64:2+81

We now find the unit tangent vector:

T="0 1 g
IOl Jeaz 181
For r = 1 we obtain the vector:
1 8 9
Tt) = ——=8,9) =(—, —).
® 64—1—81< ) <«/145 \/145>

3. r(t) =(3+4r,3—5¢,9%)
soLuTioN Wefirst find the vector ' (¢) and its length:

P =4,-59 = [F©l =2+ (52+9%=i2

The unit tangent vector is therefore:

Ty = e 1 (4_59>_< 4 5 9 >
vl Jizz o T \V1220 V12t V12

We see that the unit tangent vector is constant, since the curve is a straight line.
5. r(t) = (cosmt,sinmt, 1)
soLuTION We compute the derivative vector and its length:

r'(t) = (—m sinxt, w cosnt, 1)

Ir'®| = \/(—7{ snnt)? + (mcosnt)2 4+ 12 = \/nz(sinzm +conr)+1=vVa2+1

The unit tangent vector isthus:

T®) ro = (—msinmt, w cosxt, 1)
= = —TT L, i,
IOl Jz2+1
Forr = 1 we get:
1 1 T 1
T(l) = —— (—nsinmg,wcosn, 1) = ——— (0, —7,1) = (0, — , .
Vil 41 n2+1 < Vil 41 \/712+1>
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In Exercises 7-10, use Eq. (3) to calculate the curvature function « (¢).

7.r@) =(L¢ 1)
soLUTION We compute the first and the second derivatives of r(z):

r@ =01, r"@=(0¢.0.

Next, we find the cross product r'(r) x r”(¢):

I T S t '
ryxr@=10 & 1 =‘ ' é‘l—‘g é‘]—i—'g ‘ k=—eti=<—et,0,0>
0 ¢ O

We need to find the lengths of the following vectors:
IF'@) x r"@0)] = |(~¢', 0,0)| = ¢’

IO = 2 + (12 + 12 = VT4 &

We now use the formulafor curvature to calculate « (¢):

Ir' @) < r"®l _ e e

K(t) =
IFOr (JireE) @)’

9. r()=(4+1,4 —3,2)
soLUTION By Formula (3) we have:

) = IIr/(t),x r’;(r)\l
Il
We compute r’(¢) and r” (z):
r'@) =442, r@#) =000
Thusr'(r) x r’(t) = (0,0, 0), ||[r'(t) x r'" ()| =0, and « (t) = O, as expected.
In Exercises 11-14, use Eq. (3) to evaluate the curvature at the given point.

10 r(r) = (1/1,1/1%,4?), t=-1
soLUTION By the formulafor curvature we know:

IF @) x r (@)l
= ——
K@ TZOIE

We now find r'(z), r” (t) and the cross product. These give:
r(t) = <—t‘2, —u3, 2t>, == =(-1.2 -2
ro =262, =5r-n=(-262
r'(—=1) x r’"(=1) = (16,6, —2)

Now finding the norms, we get:

IF Dl = (-12+ 22+ (-2 =3

IF(—1) x r""(=1)| = /162 + 62 + (—2)2 = +/296 = 2/74
Therefore,

(=D x (=D 274 274
Ir-yni3 ¥ 27

k(=1 =

13. r(t) = (cost,sint,12), 1=5%
SOLUTION By the formulafor curvature we know:

IF (@) x r ()]
= — -
K TZOIE
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We now find r'(¢), r’ (¢) and the cross product. These give:
r'(t) = (—sint,cost, 2t) = r'(7/2) =(-1,0,7)
r’(t) = (—cost, —sint,2) = r"(7/2) =(0,—1,2)

r'@/2) x v (n/2) = (7, 2, 1)

Now finding norms we get:
IV /2 =/ (D24 02+ 72 =1+ 72

K /2y x v (/2)| = /72 + (=12 +22 =72 +5

Therefore,
Ir'(z/2) x r'"(z/2)] Vr245 Vr2+45
K(m/2) = 3 = = 5375 0.108
I (/2| (V14723 Q+7d)¥
In Exercises 15-18, find the curvature of the plane curve at the point indicated.
15. y=¢', t=3
SOLUTION We use the curvature of agraph in the plane:
|f" ()]
(1+ 702
Inour case f(¢) = €', hence f'(t) = f"(t) = ¢' and we obtain:
t e3
kKt) = ——— = k(B =——>25 ~0.0025
(L+e2)%2 (1+8)/2

17. y=14 t=2

SOLUTION By the curvature of agraph in the plane, we have:

ey = 0L
1+ rw?)¥?
Inthiscase f(t) = t4, f/(¢) = 43, f(t) = 12t2. Hence,
) — 122 _ 1212
(1+ @37 (+169Y2
At = 2 we obtain the following curvature:
K(2) = 12.2 8B 00015

(1+16-26)32 ~ (1025)3/2

19. Find the curvature of r(r) = (2sinz, cos3t, 1) att = % andr = 7 (Figure 16).

FIGURE 16 Thecurver(t) = (2sint, cos3t, t).

285
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SOLUTION By the formulafor curvature we have:

_ @ <@l

k(1)
I @3

@
We compute the first and second derivatives:

r'(t) = (2cost, —3sin3¢, 1), r’(@) = (—2sint, —9cos3t, 0)
Atthepointst = % andr = % we have:

T .
= 1> = <2cos§, _3sin, 1) —(1,0,1)

)
) = <—25in % —QCOS%T, O> = (—\@, 9, 0>
)

T 3
—,—3sn—,1)=(0,3,1
5 5 > 0,3,1)

3
r (%) = <—25in%, —9cos7”,o> = (=2,0,0)

We compute the cross products required to use (1):

i j k
0 1 1 1 1 0 ) .
F(E) < (Z) = 1 01 =‘ ’I—‘ ‘H—’ ‘k:—gl—\/éﬁ—gk
(3) (3) _J3 9 0 9 0 -v3 0 -v3 9
r/<7> r//(z)_ (') 13 I; S T P L 0 R R P T
“t\2) = =lo o 2 oPT| 2 o|¥T74
-2 00
Hence,

() () = o () v
(G- v

Atr = % wehave:

(T (TN = /=22 £ 62 = _
r(z)xr<2>H— (—2)2 + 62 = /40 = 2/10
(TN = Vo2 £ 32+ 12 =

r (Z)H_w +324+12=10
Substituting the values for t+ = % andr = % in (1) we obtain the following curvatures:

r\ VI VI
(3)=W=M”454
K(n)_ 210 _ 2/10 — 02

© (vio)® 10v10

21. Show that thetractrix r(r) = (r — tanh, sechr) hasthe curvature function « (r) = sechr.

SOLUTION Writing r(z) = (x(¢), y(#)), wehave x(t) =t — tanht and y(¢t) = sechr. We compute the first and second
derivatives of these functions. We usetanh? + = 1 — sech?s to obtain:

x/(t) = 1 — sech?t = tanh?¢

x(t) = —2secht (— secht tanh 1) = 2 sech? ¢ tanh ¢

y'(t) = —sechttanht

y"(1) = —(—sechr tanh? 1 + sech®1) = sech(tanh? 1 — sech? 1) = sech (1 — 2sech?1)
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We compuite the cross product ||’ x r”||:
x'(1)y"(t) — x"(t)y'(t) = tanh? t sech (1 — 2sech? ) + 2sech® ¢ tanh? ¢
=tanh?¢ [wchz —2sech®r + 29ech3t] = tanh?r sech¢
We compuite the length of 1’
x/(t)z + y’(t)2 = tanh* ¢ + sech? ¢ tanh? ¢ = tanh? z(tanhzz + sech? 1) = tanh? ¢
Hence

3/2

I ® = (tanh2 )7 = tanh ¢

Substituting, we obtain

|sechrtanh?s|  sechrtanh®s  sechr

Kk(t) = = =
tanh3 ¢ tanh3 ¢ tanh?

23. Find the value of « such that the curvature of y = ¢“* at x = Oisaslarge as possible.

soLUTION Using the curvature of a graph in the plane we have:

Kk(x) =

[y (x)]

— €
(1+y'x)%)

Inour case y'(x) = ae®, y”(x) = a2e®*. Substituting in (1) we obtain

O[Zeozx

K(x) = 4(1 n azez‘”)3/2

The curvature at the origin isthus

a28a-0 a2

k(0) = =
(1+a262a-0)3/2 (1+a2)3/2

Since « (0) and KZ(O) have their maximum values at the same values of «, we may maximize the function:

o

@) =k?(0) = ————
(14 a2)®

We find the stationary points:

431 +0?’ e+ ed 2 _ 231+ 0D 2 a?)

—-0
(1+a2)® (14028

g (@)

The stationary points are the solutions of the following equation:

20314 a?)2(2-a?) =0

v N
a3=0 o 2-a?2=0
a=0 oe:j:\/é

Since g(o) > 0 and g(0) = 0, « = 0 isaminimum point. Also, g’ () is positive immediately to the left of V2 and
negativeto theright. Hence, & = +/2 isamaximum point. Since g(«) isan even function, @ = —+/2 isamaximum point
aswell. Conclusion: « (x) takes its maximum value at the origin when o = +./2.

25. Show that the curvature function of the parametrization r(¢) = {(a cost, bsint) of the ellipse

)Y -

ab
(b2 cos? t + a2 sin?1)3/2

k(1) =

SOLUTION The curvature is the following function:

_IFoxrol
I )12

@
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We compute the derivatives and their cross product:
r'(t) = (—asint, beost), r’(t) = (—acost, —bsint)
r'(t) x r’(t) = (—asinti + b costj) x (—a costi — bsintj)
— absin? tk + ab cos? tk = ab(sin?t 4 cos® 1)k = abk
Thus,
¥ (@) x r" (@) = llabk] = ab

Ir' @) = \/(—a sinr)2 + (bcost)? = \/az sin?t + b2 cos? ¢
Substituting in (1) we obtain the following curvature:
ab ab
k() = 3 = :
(x/azsin2t+b2c032z) (a2sint 4 b2 cos? 1)

3/2

27. Inthe notation of Exercise 25, assumethat @ > b. Show that b/a? < k(1) < a/b? for al ¢.
SOLUTION |n Exercise 25 we showed that the curvature of the ellipse r(t) = {(a cost, b sint) isthe following function:

ab

k(t) =
(b2 cos? t + a2 sin? 1)

32

Sincea > b > 0 the quotient becomes greater if we replace a by b in the denominator, and it becomes smaller if we
replace b by a in the denominator. We use the identity cos?t + sin?t = 1 to obtain:

ab <k() < ab
(a2co 1 + a2sin?1) Y2 (b2cos 1 + h2sin?1)¥?
ab <) < ab
(a2(co? 1 + sin21))¥/? (b2(cos? ¢ + sin?1))*/?
ab  ab a ab
B (4232 w232 B
L <kt <
a? b2

In Exercises 29-32, use Eq. (10) to compute the curvature at the given point.
29. (1%,18), 1=2
SOLUTION For the given parametrization, x () = 2, y(t) = 3, hence

X@t)=2
X)) =2
Y (1) = 312
y'(t) = 6t

At the point r = 2 we have

K@ =4 x'2=2 y@2=32=12 y'2=12
Substituting in Eq. (10) we get
1x'(2)y"(2) — x"(2)y'(2)] _14-12-2.12| 24

K@= @2+ @22 (@+12)%2  160%2 oo
31. (rcost,sint), r=m
soLUTION Wehavex(t) =t cost and y(¢) = sint, hence:
x'(t) =cost —tsint = x'(m) =cosm —mwsing = —1
x"(t) = —sint — (sint +rcost) = —2sint —tcost = x’(7) = —2sinm —wcosw = 7
y (@) =cost = y'(7)=cosmr=-1

y't)=—sint = y'(m)=—-snz =0
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Substituting in Eq. (10) gives the following curvature:

’ " -/ / —1.0—7.(—
ctmy = Y0 =@y @] [ =1:0-m (DL

Wm2+ymd¥? (D24 (1)YE 22

33. Let s(t) = /t ¥ (u)|l du for the Bernoulli spiral r(r) = (¢’ cos4r, e sin4t) (see Exercise 29 in Section 13.3).
Show that the raji_LT; of curvatureis proportional to s(z).
soLUTION Theradius of curvature isthe reciprocal of the curvature:
R(t) = 1
k(1)
We compute the curvature using the equality given in Exercise 29 in Section 3:

_ @y = x"@)y' o)

(1) @
(x/(t)Z + y/(l)2)3/2

Inour case, x(t) = e’ cos4t and y(t) = e’ sin4t. Hence:
x' (1) = ' cosdt — 4e’ Sindt = ¢! (cosdr — 4sin4r)
x"(1) = €' (cosdt — 4sindt) + e (—4sindt — 16c0s4t) = —e' (15c0s4t + 8sin4r)
y'(t) = e’ Sin4t + 4e’ cosdr = ¢ (sin4t + 4cosér)
y'(t) = e’ (sin4t + 4cosdr) + e' (4cosdr — 16sin4r) = ¢ (8cosdr — 15sin4r)
We compute the numerator in (1):
X ()Y (1) — X" ()Y (t) = €% (cosat — 4sin4t) - (8cosdt — 15sin4r)
+e (15cos4r + 8sindr) - (Sin4t + 4cos4t)
= ¢? (6800s” 4t + 685N 41) = 68¢%
We compute the denominator in (1):
X' (12 + 9 ()% = e (cosdt — 4sindt)? + e (sindt + 4cos4t)?
= ¢? (cos? 4t — 8cos4s sin4t + 165in? 4¢ + sin? 4r + 8sin 41 cos4t + 16.cos” 4r)
= ¢?(cos? 4t + sin 4t + 16(sin? 4t + cos 4r))
=eZ(1+16-1) = 174 (@)
Hence
W02 +y 1?) 7 = 17323
Substituting in (2) we have

» 68¢% 4 L g
K = — = —@ =
173/2e3 /17

On the other hand, by the Fundamental Theorem and (2) we have

SO = IF @) = X' ©2+ ¥/ ()2 = V172 = J/17e!

S ®

We integrate to obtain
s(t) = / Vi7e'dt =17 +C 4
t
Sinces(t)=/ ¥’ ()|l du, wehave lim s(t) = O, hence by (4):
— 00 t——00

0= lim (Jﬁe’+c)=o+c=c.

1——00
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Substituting C = 0in (4) we get:
s(t) = V17e! (5
Combining (3) and (5) gives:
R(1) = }S(t)
4

which means that the radius of curvature is proportional to s(z).

35. CA'S  Plot and compute the curvature « (¢) of the clothoid r(r) = (x (1), y(t)), where
t us t u3
X(l)=f sin — du, y(t)=/ cos — du
0 3 0 3

soLUTION We use the following formulafor the curvature (given earlier):

Ix'@)y" (1) — x" )y (1)

Kk(t) =
(' ()2 +y' 0)2)

)

We compute the first and second derivatives of x(¢) and y(r). Using the Fundamental Theorem and the Chain Rule we

get:
, 13
t) =sin —
x'(1) 3
(1) &2 cost3 t2cos[3
X = — —_— = —
3 3 3
3
"(t) = cos —
Y 3
32 13 3
"ty="[-sin= | = —r?sin=
y (1) 3 ( 3> sn3

Substituting in (1) gives the following curvature function:

3 3 3 3 3 3
in 24qnt 2 t t 2(qn2t t
’9n§<—t Sné)—t COS§COS§’ B t (sm §+COSZ ?)

((sn2) 4 (es5)") W

That is, «(t) = 2. Here isaplot of the curvature as afunction of ¢:

k() = 2

=1

K

k() =12

37. Find the unit normal vector N(¢) to r(¢) = (4, sin2t, cos2t).
soLuTIoN Wefirst find the unit tangent vector:
r'(r)

T =
O =Tl

(1)
We have

d . . .
r'(t) = = (4,sin2¢, cos2t) = (0, 2cos2t, —2sin2t) = 2 (0, cos2t, — Sin2t)

Ir' @ = 2\/02 +cos22t + (—sin2)2=2/0+1=2
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Substituting in (1) gives:

2(0, cos2t, —sin2t .
T@) = < 5 ) _ (0, cos2t, —sin2t)

The normal vector is the following vector:

T'(1)

N =
O =m0l

@)
We compute the derivative of the unit tangent vector and its length:

d . . .
T (@) = Z (0, cos2t, —sin2t) = (0, —2sin2¢, —2cos2t) = —2(0, sin 2¢, cos2t)

1T Ol = 2\/02 +sin?2r +cos?2r =2/0+1=2
Substituting in (2) we obtain:

—2(0, sin2t, cos2t)

N(#) = 5 = (0, —sin2t, — cos2r)
39. Find the normal vectorsto r(z) = (¢, cosr) att = 7 andt = 37”.

r'(t)
(6]

r@)= (1 —sin) = @O =12+ (nnH2=/1+sin?s

SOLUTION Thenormal vector to r(¢) = (¢, cost) isT'(¢), where T(¢) = isthe unit tangent vector. We have

Hence,
1 .
T(t) = ————— (1, —9n1)
V14sin?:
We compute the derivative of T(¢) to find the normal vector.We use the Product Rule and the Chain Rule to obtain:
1 d 1 '
T(t) = ———— (1, —sin1) + () (1, —sint)
V1+sin?g dt V1+sin?;
1 1 2sint cost
=——— (0, —cost) — - . (1, —sing)
V14sin?s 1+snr 21+ sn?;
1 sin2t .
= (0, —cost) — ——33 (1, —sint)
V1+sin“t 2(1+sin2z>

Atr = % we obtain the normal vector:

O e e e S R N ER R B o )
Atr = %”weobtain:
"5 b A et R (R (E S

41. Find the unit normal to the clothoid (Exercise 35) at t = =1/3.

soLUTION The Clothoid isthe plane curve r(r) = (x(¢), y(¢)) with

t u3 t u3
)= [ sin—du, )= [ cos—d
x(1) /0 3 du y(@) /0 3 u
The unit normal is the following vector:

T (1)

N(r) =
O =0l

@



292 CHAPTER 13 | CALCULUS OF VECTOR-VALUED FUNCTIONS (LT CHAPTER 14)

Wefirst find the unit tangent vector T(¢) = ﬁ By the Fundamental Theorem we have

r'() = ntg cost3 = Iro| = sin213+coszt3—xfl—
- 3'73 N 3 37 T

3 t3
Tt =(snZ cos™
(1) ={sin -, cos

We now differentiate T(¢) using the Chain Rule to obtain:

T () = SLZcosf itzsinf =72 cosf smf
1\ 3 3’ 3 3/ 3’ 3

3 3
t ot
1T 0 = tz\/cos2 3+ (—sm 5) =2

Substituting in (1) we obtain the following unit normal:

3 13
N(t) = { co n—
0 S5 —d 3

Hence,

Hence,

At the point T = 71/3 the unit normal is

1/33 1/33 f
13) _ (o™  Gn TN ee ™ _gn V(L V3
N(x )—<COS 3 SN _<0053, sm3>_ 55

In Exercises 43-48, use Eq. (11) to find N at the point indicated.
43. (1%,1%), 1=1
SOLUTION We use the equality

v @) =V (Or @)

N =
O = horo —vorol

For r(r) = (2, ) we have

r'(t) = (2, 3t3)
r'(t) = (2, 61)

o) = PO = (@)% + (3% = Va2 + o

8 +36r3 4 +18°
2/ M2 L oh 42 Lo

V(1) =

At the point 7 = 1 we get

r'() =26, V)= j:le = j—%
and also
r'() =23, vl=+v4+9=+13
Hence,

s 18,12
Vi 13 ViRl

, [468
[vr”" @) — v Or'@| = H—( 18, 12) H ,/( 18)2 4+ 122 = ==

s — o (DF (D) = VI3(2,6) — 2= . (2,3) = <26 a4 18- 66>

3.;
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Substituting in (1) gives the following unit normal:

1
-1 (-1812)
Np= VBT L gy
6 V13
45. (2/2,18/3,1), 1=1

soLUTION We use the following equality:

/! / /
N() = v(t)r”(t) — v (O (1)
lo@)r" () —v'@Or @)l

We compute the vectors in the equality above. For r(¢) = <t2 /2,13/3, t) we get;

r'@) = <t, 12, 1)
r’(t) = (1, 2, 0)
v() = IO =Vi2+4+1

1 43 + 2
V() = @A) Y2l oy = o A
2 2V + 14+ 1
At the point r = 1 we get:
r'(1) =(1,1,1)

(1) =(1,2,0)

6 3
/1 :7:7:@
vO=0RT 7
U(l):\/é

Hence,

V(L) — ' (W (D) = /3(1,2,0) —v/3(1, 1, 1) = (o, V3, —J@)

lo@r" (@) — o' @ = \/o2 +(V3)2+(-v3)2=16

We now substitute these values in (1) to obtain the following unit normal:

v (1) — v (D (D) (o,ﬁ,-ﬁ) < 1

1
N l = = — 077’_7
@ lo@r” 1) — v (Or' | V6 V2 «/§>
47. (1, e',1), 1=0

soLUTION We use the equality

N(r) = v(t)r”(t) — v (O (1)
lo@)r" () —v'@Or @)l

Forr(t) = (t, ¢', t) we have
r') =(1¢"1)
r’(t) = (0, ¢, 0)

v = IP O =12+ (@2 + 12 = V& 1 2

2621‘ eZt

2/e2 12 Je2 2

V() =

At the point r = O we have

rOo=(1L11), r’©0=(010, v0 =3 V(O = =,

&
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Hence,
1

v(O)r"(0) — v/ (0)r'(0) = v/3(0,1,0) — 7

(1,1, 1)
353

[lv©@r”(0) —v'(Or' () = %m -2

(—1,2,-1)

Substituting in (1) we obtain the following unit normal:

1
Li1t2-1y
N() = \/éT = % (=1,2,-1)

49. Let f(x) = x2. Show that the center of the osculating circle at (xo, x3) is given by (—4x(3), 3+ 3xg).

SOLUTION \We parametrizethe curveby r(x) = (x, x2>. The center Q of the osculating circleat x = xg hasthe position

vector

— B

00 = r(xp) +«(x0) " *N(xo) D
Wefirst find the curvature, using the formulafor the curvature of agraphinthe plane. Wehave f/(x) = 2x and 7" (x) = 2,
hence,

" 2 1 3/2
K(x) = /70l 35 = 3/ = /c(xo)_:L = 5(1—0—4)65) /
1+ f'(0)?) (14 4x2)

To find the unit normal vector N(xq) we use the following considerations:
o Thetangent vector isr’(xg) = (1, 2xq), hence the vector (—2xq, 1) is orthogonal to r’(xg) (since their dot product
iszero). Hence N(xq) is one of the two unit vectors + \/172 (—2x0, 1).
l+4x0

e Thegraphof f(x) = x2 shows that the unit normal vector pointsin the positive y-direction, hence, the appropriate
choiceis:

1
N(xo) = ———=(-2x0. 1) @

,/1+4xg

y

f(x) =x2

We now substitute (2), (3), and r(xg) = (xo, x2) in (1) to obtain
1

2

J1+ 4x0

= <x0, xcz)) + <—xo - 4xg, %(1 + 4xg)> = <—4xg, % + 3xg>

1 3/2 1
O—Q) = <xo7 xczj) + é(l + 4x(2)) /2. <_2x07 1> = <x0’ xcz)) + 5(1 + 4xC2]) (=2xo, 1)

The center of the osculating circle is the terminal point of 0_Q> that is,

1
0= (—4x8, > + 3xc2)>
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In Exercises 51-58, find a parametrization of the osculating circle at the point indicated.
51. r(r) = (cost,sint), t=7%

SOLUTION Thecurver(t) = (cost, sint) isthe unit circle. By the definition of the osculating circle, it follows that the
osculating circle at each point of the circleisthe circleitself. Therefore the osculating circle to the unit circleat r = % is
the unit circle itself.

53. y= xz, x=1

SOLUTION Leét f(x) = x2. We use the parametrization r(x) = (x, x2) and proceed by the following steps.

Step 1. Find « and N. We compute « using the curvature of agraph in the plane:

ety =
1+ 1032
We have f/(x) = 2x, f”(x) = 2, therefore,
2 2 2
O e aran T VT wR @

To find N(x) we notice that the tangent vector isr’(x) = (1, 2x) hence (—2x, 1) isorthogonal to r’(x) (their dot product
is zero). Therefore, N(x) is the unit vector in the direction of (—2x, 1) or — (—2x, 1) that points to the “inside” of the
curve.

y=2x2

As shown in the figure, the unit normal vector points in the positive y-direction, hence:

(—2x,1) 1
N@x)=—= = NO=-—=(21 2
S/ NG @

Step 2. Find the center of the osculating circle. The center Q at r(1) has the position vector
—_ 1
00 =r(1)+«1)""N(

Substituting (1), (2) and r(1) = (1, 1) we get:

— 5%/2 1 5 7
00=1L1+— =5 {(-221)=1L )+ -(-2,1)=(-4, =
0=+ 5 (20 =11+ (-2 < ,2>
Step 3. Parametrize the osculating circle. The osculating circlehasradius R = K(ll) = iz/z and it iscentered at the point
(—4, %) therefore it has the following parametrization:
7 53/2
ct) = <—4, §> + - (cost, sint)
55. (r —sint,1—cost), t=m
SOLUTION
Step 1. Find « and N. In Exercise 44 we found that:
N@T) = (0, -1) (€

To find « we use the formula for curvature:

P x @l

k()
I (o) |13

@
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For r(t) = {t — sint, 1 — cost) we have:
r'(t) = (1—cost,sint) = ' (x)=(1—-cosx,sinm) = (2, 0)
r’(t) = (sint,cost) = r”(x)=(sinm, cosx) = (0, —1)
Hence,
v (o) x v (1) =2i x (—j) = -2k
IV )y xr" @ ll=I-2kl=2 and [F(@)|=[(20[=2
Substituting in (2) we get:

2 1
K(ﬂ)=§zz ©)]

Step 2. Find the center of the osculating circle. The center Q of the osculating circleat r (r) = (i, 2) has position vector
—_ 71
0Q =r(m)+«(@m) ~N(m)

Substituting (1), (3) and r (r) = (mr, 2) we get:

-1
00 = (1,2) + (}) 0, —1) = (7, 2) + (0, —4) = (7, —2)

4
Step 3. Parametrize the osculating circle. The osculating circle hasradius R = T%r) and it is centered at (7r, —2), hence
it has the following parametrization:
c(t) = (w, —2) + 4(cost, sint)
57. r(t) = (cost,sint,t), t=0
SOLUTION The curvature is the following quotient:
r'@) < r'(t
t=||()>< 3()H )
Ir @l
We compute the vectors r/ () and r” (¢):
, d . .
r@e) = T (cost, sint, t) = (—sint, cost, 1) 2
/" d : ;
r'(t) = 7 (—sdint, cost, 1) = (— cost, — sint, 0)
We now compute the following cross product:
i ] K cost 1 snt 1 sint  cost
/ /! _ o _ H - H -
P> = snrcost 1 _' —sint O‘ ' —cost O ‘JJF‘ —cost —sinr |¥
—cost —sint O
= (sint)i — (cost)j+1-k 3)
We calculate the norms of the vectorsin (1). By (2) and (3) we have:
Ir' ) < @) = \/sjnzt +(—cost)2+12=/1+1=+/2
||r/(t)||:\/(—sint)2+0032z+12=¢1+ =2 4
Substituting (4) in (1) yields the following curvature:
V2 1 1
k() = 3= 5 = k(0 = > (5)
(v2)
The unit normal vector is the following vector:
T'(1)
N(7) (6)

Tl
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By (2) and (4) we have:
T@) = ”:/8” = \% (—sint,cost, 1) = T@) = % (—cost, —sint, 0) @)
IT' )l = %\/(— cosr)2 + (—sint)2 4+ 02 = % 1= iz
Combining (6) and (7) gives:
N(t) = (—cost, —sint,0) = N() =(-1,0,0) (8)

The center of curvatureat t = 0iis:

H 71

00 =r0) +«(0)"N®©O
By (5), (8) and r(0) = (1, 0, 0) we get:

O_Q> =(1,0,00+2(-1,0,0) =(1,0,0) + (—2,0,0) = (—1, 0, 0)

Finally, we find a parametrization of the osculating circle at + = 0. The osculating circle has radius R = L — 2and

«(0)
center (—1, 0, 0), hence it has the following parametrization:

2
c(t) = (—1,0,0) + 2N(0) cost + 2T(0)sint = (—1,0,0) + 2(—1, 0, 0) cost + ﬁw’ 1,1)sint
2si 2si
ct) = <—1— 2cost, S0t smt>

V2 V2

59. Figure 18 showsthegraph of the half-ellipse y = #+/2rx — px2, wherer and p are positive constants. Show that the
radius of curvature at the origin isequal to r. Hint: One way of proceeding is to write the ellipse in the form of Exercise
25 and apply Eq. (9).

FIGURE 18 Thecurve y = +,/2rx — px2 and the osculating circle at the origin.

SoLUTION Theradius of curvature is the reciprocal of the curvature. We thus must find the curvature at the origin. We
use the following simple variant of the formulafor the curvature of a graph in the plane:

X"l
KyY)=—""735 @
(1+x'(n3)¥?

(The traditional formula of «(x) = W isinappropriate for this problem, as y’(x) is undefined at x = 0.) We
y (X
find x interms of y:

y =+/2rx — px2

y2= 2rx—px2
px2—2rx+y2:O

We solve for x and obtain:
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Wefind x” and x”:

—2py y
x/ = :ti = :ti
2py/r2—py2  Jr2—py?
1.r2 — 2 _ . —py
v _ R N el e r?
==+ 2 )2 =+ n32 T o n3/2
Py (r2 = py?) (r? = py?)

At the origin we get:

/ _ ” _ +r? _ E
x' (0 =0, x"(0)= 7(;’2)3/2 =
Substituting in (1) gives the following curvature at the origin:
" +1
== 1 1
o= 5111
A+x'023%2  QA+03%2 || r

We conclude that the radius of curvature at the originis

61. Theangle of inclination at apoint P on aplane curveisthe angled between the unit tangent vector T and the x-axis
(Figure 20). Assume that r(s) is aarc length parametrization, and let & = 6(s) be the angle of inclination at r(s). Prove
that

0 =7
ds
Hint: Observe that T(s) = (cosf(s), SiNO(s)).

y

T =(cos6, sino)

X
FIGURE |20 The curvature at P isthe quantity |d6/ds|.
SOLUTION Since T(¢) isaunit vector that makes an angle 6 (¢) with the positive x-axis, we have
T(t) = (cosO(t),sSinO(z)) .
Differentiating this vector using the Chain Rule gives:
T () =(=0"(t)sin6(1), 6" (1) cosH (1)) = 6 (1) (—sinB (1), cosH (1))

We compute the norm of the vector T’ (¢):

IT' @) = 116"(t) (—sin6 (), coso (1)) | = \9’(1)\\/(—Sin9(t))2 + (cosO(1)? = 16" (1) - 1= 10/ (1)]
When r(s) is aparametrization by arc length we have:

[ dT ||| dr a8
| ar

de ds

1
10 (®)]

dae
ds

do
ds

=o'

s) = dT
K= ds

as desired.
63. Let 6(x) betheangle of inclination at a point on the graph y = f(x) (see Exercise 61).

. , _ ﬁ _ ()
(a) Usetherelation f’'(x) = tan6 to prove that i 7(14_ D

ds
h length int that — = ,/1+ f/(x)2.
(b) Usethe arc length integral to show that T + f'(x)
(c) Now give aproof of Eq. (5) using Eq. (12).
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SOLUTION

(a) By therelation f/(x) = tan6 we have = tan—1 #/(x). Differentiating using the Chain Rule we get:

de d
= —(tan"1f' () =

1 d
dx ~ dx

’ _ f//(x)
T reras VO = T

S 14 ()2

(b) We use the parametrization r(x) = (x, f(x)). Hence, r'(x) = (1, f’(x)) and we obtain the following arc length

function:
Mm=A|WMWM=AH@ﬁmwwzﬁ\h+ﬂm%u

Differentiating using the Fundamental Theorem gives:

ds _ d * AYA _ R YA
el (/0 V1+ () du)_\/l-i—f(x)
(c) By Eq. (12),
do
K(S)Z‘E‘ D

Using the Chain Rule and the equalitiesin part (a) and part (b), we obtain:

9 _do dx _do 1 f'(x) 1 _ . I"w

ds dxods o de @14 02 1 g2 (L4 £@2)

Combining with (1) we obtain the curvature as the following function of x:

Lf" G0l

(1 + f/(x)2)3/2

k(x) =

which proves Eq. (5).
In Exercises 65-67, use Eq. (13) to find the curvature of the curve given in polar form.
65. f(0) = 2cose

SOLUTION By Eq. (13);,

|£©)%+2f©)% — £ f6)]
(f @2+ 1726))%?

K (0) =

We compute the derivatives £ () and f”(6) and evaluate the numerator of « (9). This gives:
() = —2sino
7"(0) = —2cos6
FO2+2f )% — fO)f"(©O) = 4c0s20 + 2- 4sin 6 — 2c0SH(—2coSH)
= 8cos?0 + 8sin?0 = 8

We compute the denominator of « (0):

(F©2+ £'©?2)%? = (4cos20 + 4sin260) "% = 432 = 8

Hence,

K(e)zgzl

67. f(6) =¢’

SOLUTION By Eq. (13) we have the following curvature:

_ @2 +2f'0) - f0) /"0

(9)
(f @2+ 1726))%?
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Since £ (9) = ¢? dso £(9) = f”(0) = . We compute the numerator and denominator of « (9):
FO2+2F 02— £O) f"0) = + 262 — ¢ . ¢ = 2%
(1©@2+ £ )% = (% +#)* = (2%)%% = 2v2:%
Substituting in the formulafor « (6) we obtain:

9 = ——=
k(0) /203 ﬁe

69. Showthatbothr’(r) andr” (¢) lieinthe osculating planefor avector function r(z). Hint: Differentiater’ (1) = v(1) T(¢).

SOLUTION The osculating plane at P isthe planethrough P determined by the unit tangent T and the unit normal N at
P.SinceT(t) = Hr’(t)H we haver’(r) = v(1)T(t) where v(z) = ||r'(¢)||. That is, r' () isascaar multiple of T(z), hence

it liesin every plane containing T(z), in particular in the osculating plane. We now differentiate r'(r) = v(¢t)T(¢) using
the Product Rule:

r(t) = v (OT@) + v T (1) 1)

By N(?) = we have T'(¢) = b(r)N(z) for b(¢) = || T'(#)||. Substituting in (1) gives:

HT/(l)II
() =V @OT@E) +v)b(E)N@)

We seethat r”(¢) isalinear combination of T(¢) and N(¢), hence r”(¢) liesin the plane determined by these two vectors,
that is, r”’(¢) liesin the osculating plane.

71. Two vector-valued functions r1(s) and ro(s) are said to agree to order 2 at sq if

ri(so) = ra(so). ry(so) = ra(sp), r{(sg) = ry(so)
Let r(s) be an arc length parametrization of apath C, and let P be the terminal point of r(0). Let y (s) be the arc length

parametrization of the osculating circle given in Exercise 70. Show that r(s) and y (s) agreeto order 2 at s = 0O (in fact,
the osculating circle is the unique circle that approximates C to order 2 at P).

SOLUTION The arc length parametrization of the osculating circle at P, described in the x y-coordinate system with P
at the origin and the x and y axesin the directions of T and N respectively, is given in Exercise 70 by:

1 1 .
y(s) = =N+ =((sinks)T — (cosks)N)
K K

Hence

1 1 1 1 1
y(0) = 7N+ ((smO)T (cosON) = =N+ =(0—1-N)=-N—-=-N=0
K K K K

r0) =0pP =0
We get:
¥ (0) = r(0) Q)
Differentiating y (s) gives (noticethat N, T, and « are fixed):
y'(s) = %((K cosks)T + (k sinks)N) = (cosks)T + (sinks)N
Hence:

Y/ (0) = (cosk -0) T+ (sink -O)N=1-T+0-N=T
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Also, sincer(s) isthe arc length parametrization, ||r'(s)| = 1, hence:
/
T=TO= ||:’Eg;|| =ro
We conclude that:
y'(0) =r'(0) %)
We differentiate y’ (s) to obtain:
y"(s) = (—k sSinks) T + (k cosks) N
Hence:
y"(0) = (= SiN0) T + (k cos0) N = 0T + «N = «N
For the arc length parametrization r(s) we have:
r(s) = T'() = IT'G)INC) = IF' () e (5IN(s) = 1+ k (s)N(s)
Hence:
r’(0) = k (O)N(0) = kN
We conclude that:
y"(©0) =r"0 ©)
(2), (2), and (3) show that r(s) and y (s) agreeto order two at s = 0.
Further Insights and Challenges
73. Show that the curvature of Viviani’s curve, given by r(t) = (1+ cost, sinz, 2sin(¢/2)), is
o) VBT BasT
(3+ cosr)3/2
soLuTION We usethe formulafor curvature:
= IO X0l @
Il

Differentiating r(r) gives

1 t t
r'(t) =(—sint, cost,2- = cos— ) = (—sint, cost, COS —
o= 253) = 3

r’(t) = (— cost, —sint, —}sinE
2 2

We compute the cross product in (1):

i j K
() xr’(t) =| —sint  cost cos$
—cost —sint —3sin

1
2
= 1c05tsint+sintcost i 1sintsinz+c05tcost j+k
T\ 2 2 2 2 2 2)!

We find the length of the cross product:

2 2
1 .t . t 1. .t t
||r’(t)><r”(t)||2= —-costsin- +sinfrcos- | + | =sintsin- +cosrcos- | +1
2 2 2 2 2 2

= lesinzé (coszz+sin21)+coszé (Sin2t+00321)+1

1. 51t
= -gn?2

2l
4 Sn? 5 +cos’ 5 +
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We use the identities sin § + cos® 5 = 1and cos? 5 = 5 + 1 cost to write:

1 1 t t 3
||r(t)xr”(t)|| Z 5 cos2 +1_4<sin2§+c032§)+10052£2+1
1 3 COSt +1= 3 cost + 13
4 4 8 8
Hence:
1
Ir' @) x r'" )| = —=+/13 + 3cost o)

V8

We compute the length of r'(z):

2 .2 t t 1 1 3 1
r'(t = (—dgint cos?t+cos? — =1+cos? = =1 — + = cost | = = + = cost
Ir @I~ =( )+ + > + > + 2+2 2+2

Hence,

Ir' o) = %«/34—00& ©)

Substituting (2) and (3) in (1) gives:
1 1
\/7«/13+3COSI f«/13+3cos 13 + 3cost

K(l): 3:

(Lv3+cost)

In Exercises 75-82, let B denote the binormal vector at a point on a space curve C, defined by B =T x N.

(3 + cosz)3/2 (3+ cost)3/2

N‘l—‘ [ee]

75. Show that B isaunit vector.

soLUTION T and N are orthogonal unit vectors, therefore the length of their cross product is:
. T
IBIl = 1T x NIl = TN snz = 1-1-1=1

Therefore B is a unit vector.
77. Show that if C is contained in aplane P, then B isaunit vector normal to P. Conclude that © = O for aplane curve.

soLuTION If C iscontained in a plane P, then the unit normal N and the unit tangent T arein P . The cross product
B = T x N isorthogonal to T and N which are in the plane, hence B is hormal to the plane. Thus, B is a unit vector
normal to the plane. There are only two different unit normal vectorsto aplane, one pointing “up” and the other pointing
“down”. Thus, we can assume (due to continuity) that B is a constant vector, therefore

dB
— =0 or =0.
ds t

79. Usetheidentity
ax(bxc)=(@-cb-(a-b)c
to prove

NxB=T, BxT=N

soLuTION We use the given equality and the definition B = T x N to write:
NxB=Nx(TxN)=(N-N)T—-(N-T)N (1)

The unit normal N and the unit tangent T are orthogonal unit vectors, henceN - N = ||N||2 =2landN - T = 0. Therefore,
(2) gives:

NxB=1-T—-ON=T
To prove the second equality, we substitute T = N x B and then use the given equality. We obtain:

BxT=Bx(NxB)=(B-B)N—(B-N)B )
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Now, B is a unit vector, hence B- B = |B||2 = 1. Also, since B = T x N, B is orthogonal to N which implies that
B - N = 0. Substituting in (2) we get:

BxT=1IN—-0B=N.

81. Show that r’ x r” isamultiple of B. Conclude that

rxr”’
=— 17
Xl =
SOLUTION By the definition of the binormal vector, B =T x N. We denotea(t) = m and write:
r'(1) ,
T@®) = =a(t)r(t) 1
Ir @l @

We differentiate T(¢) using the Product Rule:
T'(1) = a(®r" (1) +d' OF (1)

We denote b(r) = || T(¢)|| and obtain:

_Two  aw aa ,
NO=Tmor s O e "
Forc1 = % andcy = ‘f;((t’)) we have:
N() = c1()r" (1) + co()r (1) (@)

We now find B as the cross product of T(z) in (1) and N(¢) in (2). This gives:
B(t) = a())r'(t) x (ca()r" (1) + c2()r' (1)) = a)ca () (1) x ¥ (1) + a(t)e2()r (1) x ' (1)
=at)c1(OF @) x ") +0 = a@®)er()r' () x r' (1)
We seethat B isparallel to r’ x r”. Since B isaunit vector we have:

r xr”
S x|

13.5 Motion in Three-Space (LT Section 14.5)

Preliminary Questions
1. If aparticle travels with constant speed, must its acceleration vector be zero? Explain.

soLuTION If the speed of the particle is constant, the tangential component, ar (1) = v’(¢), of the acceleration is zero.
However, the normal component, ay () = « (t)v(t)2 is not necessarily zero, since the particle may change its direction.

2. For aparticlein uniform circular motion around a circle, which of the vectorsv(z) or a(r) always points toward the
center of the circle?

SOLUTION For a particle in uniform circular motion around a circle, the acceleration vector a(¢) points towards the
center of the circle, whereas v(¢) istangent to thecircle.

3. Two objects travel to the right along the parabola y = x2 with nonzero speed. Which of the following statements
must be true?
(a) Their velocity vectors point in the same direction.
(b) Their velocity vectors have the same length.
(c) Their acceleration vectors point in the same direction.

SOLUTION
(a) Thevelocity vector pointsin thedirection of motion, hencethevelocitiesof the two objects point inthe samedirection.
(b) The length of the velocity vector is the speed. Since the speeds are not necessarily equal, the velocity vectors may
have different lengths.

(c) The acceleration is determined by the tangential component v’ (¢) and the normal component « (H)v(r)2. Since v and
v’ may be different for the two objects, the accel eration vectors may have different directions.
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4. Usethe decomposition of acceleration into tangential and normal components to explain the following statement: If
the speed is constant, then the acceleration and velocity vectors are orthogonal .

soLuTION |f the speed is constant, v/(¢) = 0. Therefore, the acceleration vector has only the normal component:
at) = an@N(@)
Thevelocity vector always pointsin the direction of motion. Sincethevector N(¢) isorthogonal to thedirection of motion,

the vectorsa(r) and v(¢) are orthogonal.

5. If aparticletravelsalong astraight line, then the accel eration and vel ocity vectors are (choose the correct description):
(a) Orthogona (b) Parale

SOLUTION Since aline has zero curvature, the normal component of the acceleration is zero, hence a(r) has only the
tangential component. The velocity vector is dways in the direction of motion, hence the acceleration and the velocity
vectors are parallel to the line. We conclude that (b) is the correct statement.

6. What is the length of the acceleration vector of a particle traveling around a circle of radius 2 cm with constant
velocity 4 cm/s?

SOLUTION The acceleration vector is given by the following decomposition:
a(n) = v (OT @) + k (Ov()*N(r) (1)
Inour casev(t) = 4isconstant hencev’(r) = 0. In addition, the curvature of acircleof radius2is« (t) = % Substituting

v(t) = 4,v'(1) = 0and « (1) = 3 in (1) gives:

alt) = % CA2N(1) = 8N (1)

The length of the acceleration vector is, thus,

la@r)| = 8 cm/s?

7. Two cars are racing around a circular track. If, at a certain moment, both of their speedometers read 110 mph. then
the two cars have the same (choose one):

(@) at (b) an
SOLUTION The tangential acceleration ar and the normal acceleration a are the following values:

ar(@) =v'(1);  ay@) = k(Ov(t)?

At the moment where both speedometers read 110 mph, the speeds of the two cars are v = 110 mph. Since the track is
circular, the curvature « (¢) is constant, hence the normal accelerations of the two cars are equal at this moment. Statement
(b) is correct.

Exercises

1. Usethetable below to calculate the difference quotients
the velocity and speed at ¢ = 1.

TA+M =1 foh — 02 -0.1,0.1, 0.2 Then etimate

r(0.8) | (1.557, 2.459, —1.970)
r(0.9) | (1.559, 2.634, —1.740)
r(l) | (1.540,2.841, —1.443)
r1.1) | (1.499, 3.078, —1.035)
r1.2) | (1.435,3.342, —0.428)
SOLUTION
(h = —0.2)
r(1—02)—r(l) r0.8) —r(l) (15572459 —1.970) — (1.540, 2.841, —1.443)
-0.2 - -0.2 - -0.2
0.017, —0.382, —0.527
_ ) (~0.085, 1.91, 2.635)
-0.2
(h = —0.1)
r(l—01)—r@) r0.9 —r) (1559, 2.634, —1.740) — (1.540, 2.841, —1.443)
-0.1 - -0.1 - -0.1

.019, —0.207, —0.297
= 0.019. ~0 001 0.297) = (—0.19, 2.07, 2.97)
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(h=0.1)
rd+0n —rh) _ r@d —rd) _ (1499, 3078 1035 — (1.540,2.841, —1.443)
0.1 01 o1
—0.041, 0.237, 0.408
_ 0.237.0408) _ 41,237, 4.08)
0.1
(h=0.2
rl+02) —r() r.2)—r(d) (14353342 —0.428) — (1.540, 2.841, —1.443)
0.2 T 02 0.2
_ (0105, (()).5;01, 1015 _ (0525, 2505, 5.075)

The velocity vector is defined by:

. r@t4+h)—r@)
=r® = lim ——~
Vo == fim =
We may estimate the velocity at ¢+ = 1 by:
v(l) ~ (-0.3,2.2,3.5)

and the speed by:
v(l) = V(D) ~/0.32+222 + 35241

In Exercises 3-6, calculate the velocity and acceleration vectors and the speed at the time indicated.
3r)=(31-1,42, 1=1
soLuTION Inthiscaser(r) = (r3, 1 — 1, 4%) hence:
vy =rm={3%-18) = v()=(3-18
a(t) =r"(t)=(61,0,8) = a(l)=(6,0,8)

The speed is the magnitude of the velocity vector, that is,

v(D) = VD) = 3P+ (-1)24+82 =74

5. r(0) = (sinf, coso, cos3), 6 =7%

soLUTION Differentiating r(9) = (sin6, cos6, cos36) gives:

v(0) = r'(8) = (cos@, —sind, —3sin 30)

o u(5) = fon. - an G asna) = 5.

o[ S

,0
3 3 >
a@®) = r’(#) = (—sind, — cosh, —9cos3h)

n) =<—sinﬂ,—cosﬂ,—9005n>=<—ﬁ —} 9>

:”"(5 3 3 22

The speed is the magnitude of the velocity vector, that is:

GG () () v
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7. Find a(r) for a particle moving around a circle of radius 8 cm at a constant speed of v = 4 cm/s (see Example 4).

Draw the path and acceleration vector at t = %.

SOLUTION The position vector is:

r(r) = 8{coswt, Sinwt)
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Hence,
V() = r'(t) = 8 (—wSinwt, w coswt) = 8w (— SiNwt, COSwt) (0]

We are given that the speed of the particleis v = 4 cm/s. The speed is the magnitude of the velocity vector, hence:

1
v:8w\/(—sinwt)2+coszwt:8w:4 = o=3 rad/s

Substituting in (2) we get:

t t
V() = < sin 2,C032>

We now find a(¢) by differentiating the velocity vector. This gives

at)=Vv'(t)=4 —}cosi —}sini = —2(cost snl
a o 2 20 2 2/ 2’ 2

The path of the particleisr(¢) = 8(cos’?, sin %) and the acceleration vector at ¢ = % is:
3

al—)=-2 cosi,sjnz ~ (—1.85, —0.77)
(3) = —2{oososng

The path r(¢) and the acceleration vector at r = % are shown in the following figure:

(1
NI

r(r) =8(cos%,sin %)

9. Sketch the path r(r) = (2, +3) together with the velocity and acceleration vectorsat t = 1.
soLUTION \We compute the velocity and acceleration vectorsat r = 1:
Vi =r () =237 = v)=(23
a) =v'() =(2,6t) = al)=(26)
The following figure shows the path r(r) = (2, 3) and the vectors v(1) and a(1):

y
a(1)

V(1)

r(t) = (t3 t5)

In Exercises 11-14, find v(¢) given a(z) and the initial velocity.
1. a(r) = (r.4), v(0) =(3.-2)
soLuTION Wefind v(¢) by integrating a(z):

t t 1,
V() = / a(u)du =/ (u, 4) du = <7u ,4u>
0 0 2

t 2
+vog=(—=,4t)+Vp
0 2
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Theinitial condition gives:

v(0) =(0,0) +vg = <% —2> = Vo= <% —2>

12 1 3242
13. a(r) =k, v(0) =i

soLUTION We compute v(¢) by integrating the acceleration vector:

Hence,

t

' t
V(t):/ a(u)du:/ kdu =ku| +vg=rk+vg
0 0 0

Substituting the initial condition gives:
vO)=0k+vg=i = vg=i
Combining with (1) we obtain:

v(t) =i+1tk

In Exercises 15-18, find r(¢) and v(¢) given a(z) and the initial velocity and position.

15. a(r) = (t,4), v(0) =(3,-2), r(0) =(0,0)

soLUTION Wefirst integrate a(z) to find the velocity vector:

t MZ
V(1) =/ (u,4) du = < 4u>
0 2

The initial condition v(0) = (3, —2) gives:

t

t2
+Vvo={(=.4)+Vvo

0 2

viO)=(0,00+vg=(3,-2) = vg=(3,-2)

12 12
V() = <2, 4t> +(3,—-2) = <2 + 3,4t — 2>

We now integrate the velocity vector to find r(z):

t u2 u3 )
I’(t)=/ — +3,4u—2)du={—+3u,2u—2u
o\ 2 6

Theinitial condition r(0) = (0, 0) gives:

Substituting in (1) we get:

t

3

t
+r0=<+3t,212—21>+r0
0 6

r0=(0,0+ro0=(0,0 = 1ro=(00)

Hence,

t3
r) = {5 +3 22 2t

17. a() =1k, v(0) =i, r(0) =j
SOLUTION |ntegrating the acceleration vector gives:

u?

t t 2
V(1) =/ ukdu = —Kk
0 2

t
+vo= =Kk+Vvp
0 2

Theinitial condition for v(¢) gives:

02
V(0)=?k+Vo=i = Vo=i

307
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We substitutein (1):

12 £2
)= —=k+i=i+—=k
Vi) = Skti=it s

We now integrate v(¢) to find r(z):

t u2 u3
= i+ —Kk|)du=ui+—Kk
r(t) /0 (H— > ) u=ul+ 6

Theinitial condition for r(z) gives:

t 3
+rp=ti+—K+rg 2
0 6

r0=0i+0k+rp=j = ro=j
Combining with (2) gives the position vector:

3
r(t)=ti+j+gk

In Exercises 19-24, recall that g = 9.8 m/s? is the acceleration due to gravity on the earth’s surface.

19. A bullet isfired from the ground at an angle of 45°. What initial speed must the bullet havein order to hit the top of
a120-m tower located 180 m away?

soLUTION We place the gun at the origin and let r(¢) be the bullet’s position vector.

Step 1. Use Newton's Law. The net force vector acting on the bullet is the force of gravity F = (0, —gm) = m (0, —g).
By Newton’s Second Law, F = mr”(¢), hence:

m(0,—g)=mr"(t)y = r"({t)=1(0,—g)

We compute the position vector by integrating twice:

t t
r'@) = /0 r"(u)du = [O (0, —g)du = (0, —gt) + Vo
2

t t
r(z):/ r’(u)du=/ ({0, —gu)+vo)du=<0, -z
0 0 2

> +vot + g
Thatis,
—8.2
r() = <O, 7: >+voz +ro @
Since the gun is at the origin, ro = 0. The bullet is fired at an angle of 45°, hence the initial velocity vg points in the

direction of the unit vector (cos45°, sin45°) = <§ §> therefore, vg = uo<§, %) Substituting these initial values
in (1) gives:

- V2 V2
r() =<o, 2gz2>+tv0<2, 2>

Step 2. Solve for vg. The position vector of the top of the tower is (180, 120), hence at the moment of hitting the tower
we have,

(o =82 V2 v2\ _
r(l)—<0, 2[>+tv0< 5 5 >—(180,120)

V2 —g, V2

_—, = — = (180, 120
<tv02, > ! + 5 1vo (180, 120)
Equating components, we get the equations:

3
tvog — 180

8 2 \/é
_82 Y0 =120
2" T
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Thefirst equation impliesthat r = % We substitute in the second equation and solve for vg (weuse g = 9.8 m /):
0

9.8/ 360 \2 2/ 360
_7<7> L2 (7> vo = 120
2 \ Vv 2 \V2v

2
—2.45(@> + 180 = 120
vo
360\2 1200 360 1200
=) =22 o o [ o g0 =42V3~ 72746 m)s
) 49 ) 49

Theinitial speed of the bullet must be vy = 42+/3m/s ~ 72.746 m/s.

21. Show that aprojectile fired at an angle 6 with initial speed vg travels atotal distance (vg/g) sin 26 before hitting the
ground. Conclude that the maximum distance (for a given vg) is attained for 6 = 45°.

soLUTION We place the gun at the origin and let r(z) be the projectile’s position vector. The net force acting on the
projectileis F = (0, —mg) = m (0, —g). By Newton’s Second Law, F = mr” (¢), hence:

m{0,—g)=mr’(t) = r’'@)=1(0,—g)
Integrating twice we get:

t t
r'@) = / r’ (u) du = / (0, —g) du = (0, —gt) + vo
0 0

t t
r(t) = / r'(u) du = / (0, —g - u) + Vo) du = (0, —§t2> + vot + g (0]
0 0 2

Sincethe gunisat the origin, ro = 0. Thefiring was at an angle 6, hence theinitial velocity pointsin the direction of the
unit vector (cosé, sin@). Hence, vg = vg (cosH, sind). We substitute the initial vectorsin (1) to obtain:

rit) = (0, —%t2> + vot (CosH, sing) 2
The total distance is obtained when the y-component of r(¢) is zero (besides the original moment, that is,
—%tz + (vpsSinf)r =0

. 2vpsing
t(—§t+vosme>:o = t=0 o = 0
8

Theappropriatechoiceist = ZUOgﬂ.Wenowfindthetotal distance x7 by substituting thisvalueof ¢ in the x-component
of r(z) in (2). We obtain:

x(t) = vot cosH

2vsiné _ 2vZ cos sin® _ vasin2o
8 8 8

XT = vgCOSéh -

The maximum distance is attained when sin20 = 1, that is 260 = 90° or § = 45°.

23. A bullet isfired at an angle§ = % at atower located d = 600 m away, with initial speed vg = 120 m/s. Find the
height H at which the bullet hits the tower.

soLUTION We place the gun at the origin and let r(r) be the bullet’s position vector.

Step 1. Use Newton's Law. The net force vector acting on the bullet isthe force of gravity F = (0, —gm) = m (0, —g).
By Newton's Second Law, F = mr”(¢), hence:

m(0,—g)=mr"(t) = r"(t)=1(0,—g)

We compute the position vector by integrating twice:

t t
r'@) = /O r"(u) du :/0 (0, —g) du = (0, —gt) + Vo

2

t t
Fr) = f ) du = / (. —gu>+vo>du=<o, —g2>+vor+ro
0 0
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That is,

|
o4

2

r(r) = <O, t > + Vot + g (@0)]

Q N

Since the gun is at the origin, rg = 0. The bullet is fired
i irecti i i (1L 1
mthecﬁrectlorlwoftheunltvector (cosm/4,sinm/4) = VAN
valuesin (1) gives:

an angle of /4 radians, hence the initial velocity vg points
therefore, Vo = 1o (% %) Substituting these initial

—8 2 11 >
r(t) =(0, —=t<) +rv <——
® < 2 > Nz
Step 2. Solvefor H.
The position vector for the point at which the bullet hits the tower, 600 meters away, is (600, H), hence at the moment
of hitting the tower we have,

—8 2 1 1 >
0, =t°)+tvg{ —=, — ) = (600, H
< 2 > °<f2 V2 ( )
Therefore, for vg = 120:

v 600+/2
— =600 =—— =5y2
7 = 1=—0" V2
and
2
t t —9.8(50 5(v/2)(120
_gi® v _ <>+(f)( ) _y
2 )2 2 J?2
Hence, H = 355 meters. The bullet hits the tower at 355 meters high.

25. A constant force F = (5, 2) (in newtons) acts on a 10-kg mass. Find the position of themassat ¢+ = 10sif itislocated
at theorigin at + = 0 and hasinitia velocity vg = (2, —3) (in meters per second).
soLUTION Weknow that F = ma and thus (5, 2) = 10a so thena = (0.5, 0.2). Using integration we know

V(1) = /a(t)dr =ta+cC
and we know v(0) = (2, —3) = c. Therefore,
v(t) =ta+vg=1(0.5,0.2) + (2, —3) = (0.5t + 2, 0.2t — 3)

Again, integrating,

r(t) = /v(z) dt

:/ta+vodt

2

t
= —a-+tv, C
> + v +

12
=5 (0.5,0.2) +1 (2, =3)

= <O.2512 21,012 - 3:) +ro
Using theinitial condition r(0) = (0, 0) = c, we conclude
r() = (0252 + 21,042 - 31)
and hence the position of themassat t = 10isr(10) = (45, —20).

1 T
27. A particlefollowsapath r(r) for 0 < ¢ < T, beginning at the origin O. The vector v = ?/ r'(¢) dt iscalled the
0

average velocity vector. Suppose that Vv = 0. Answer and explain the following:
(a) Whereisthe particlelocated at time T if v = 0?

(b) Isthe particle’s average speed necessarily equal to zero?

SOLUTION

(a) If the average velocity is 0, then the particle must be back at its original position at timer = T. Thisis perhaps best
T

T
seen by noting that v = %/ r'(t)dt = r(t)
0

0
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(b) The average speed need not be zero! Consider a particle moving at constant speed around a circle, with position
vector r(r) = (cost, sint). From 0 to 2, this has average velocity of 0, but constant average speed of 1.

29. At acertain moment, a particle moving along a path has velocity v = (12, 20, 20) and accelerationa = (2, 1, —3).
Isthe particle speeding up or slowing down?

soLUTION Weareasked if the particleis speeding up or slowing down, that isif ||v|| or ||v||2 isincreasing or decreasing.
We check (|Iv]12)":
(||v||2)/ =Ww-vY=2V.v=2.a.v=2(21,-3)-(12,20,20) =2- (24+20—-60) = —32 <0
So the speed is decreasing.
In Exercises 30-33, use Eq. (3) to find the coefficients a1 and ap as a function of ¢ (or at the specified value of ).
31. r(t) = (t, cost, sint)
soLUTION Wefind a1 and ay using the following equalities:

lla x v
ar=a-T,ay = .
(%]

We compute v and a by differentiating r twice:

V() =r'(n) = (L, —sint,cost) = Vo)l = \/1+ (—sint)? 4+ cos? 1 = V2
a(r) =r’(r) = (0, — cost, —sinr)
The unit tangent vector T is, thus:

v(t 1 .
@) — (1, —sint, cost)

T Ivol - V2

Since the speed is constant (v = ||[v(¢)|| = +/2), the tangential component of the acceleration is zero, that is:

T@®)

ar=0

To find an we first compute the following cross product:

i j k . .
) —cost —sint |. 0 -—sint 0 —cost
axv=|0 —cost —sint |= . - . k
. —sint cost 1 cost 1 —sint
1 —sint cost
=—<COSZt+S|I’12t)I—Sntj-l—COStk:—I—Slntj+COStk:(—1,—Slnt,COSt)

Hence,

_llaxv] \/(—1)2+(—sint)2+coszt 3 2

v V2 V2

33. 1) =(e?,1,e7"), =0
soLuTioN Wewill use the following equalities:

_Jaxv|
IVl

ar=a-T, an
Wefirst find a and v by twice differentiating r. We get:
Vi) =r' () = <2e2’, 1, —e">

am) =r"(t) = <462f’ 0, e—t>

Then evaluating at t = 0 we get:

v(0) = (2,1, -1), = [VO)| =y/22+12+ (-1)2=+6

a0 =(4,0,1)
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Hence, T = o = iﬁ (2,1, —1) and we obtain:

1 1 7
ar=a-T={(4,01.-—(21-1)=—B8+0-1) =—
T NG NG /6
To find an we first compute the following cross product:
i j k
axv=14 0 1|=(-164
2 1 -1

Therefore,

laxvl v()?+62+42  [83
aN = = = —_
N v NG 6

In Exercise 34-41, find the decomposition of a(¢) into tangential and normal components at the point indicated, as in
Example 6.

3.0 =(§%1-3) 1=-2

SOLUTION First note here that:

V() =r'(t) = <t2, —3)
a(t) =r"@) = (2t,0)
Atr = —2wehave:
v=r/(-2) = (4, -3)
a=r"(—-2)=(-4,0)
Thus,
a-v=(—-40) -4, -3 =-16
IVl =v16+9=5
Recall that we have:

v (4, —3) _<4 3>

Ivi ~ 5 5 5
_a-v_ 16
T T s

Next, we compute an and N:

16 /4
aNN:a_aTT:(_4’o>+76<, —§>=<—

36 48
5\5° 5

25 25
This vector has length:

N = (38 2+ 48\2 60 12
=N =Y 725 5) “%5° 5

and thus,
36 _ 48
woan (B 8) 3 4
T ay 0 12/5 T\ 5 5
Finally we obtain the decomposition,
16 12
a=(-4,0=—=T+ =N
( ) 5 + 5
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37. r(t) = (z, 312, %t3>, =4

SOLUTION First note here that:

v(it) =r'(t) = <1, t %12>
a@) =r"(t)=1(0,1,1)
Atr = 4wehave:
v=r'(4) = (14,8
a=r"(4 =014
Thus,
a-v=(0,1,4)-(1,4,8 =36
IVl =v1+16+64=+81=9
Recall that we have:

%] 9 9'9’9
a-v 36
aT = —— = — =
vl 9
Next, we compute an and N:
148 4 7 4
N=a—atT=1(0,14)—4(- N=(—=,—=, =
an a—ar (0,1,4) <9,9,9> <9, 9,9>
This vector has length:
16 49 16
aN = llanN]| TR

and thus,

_4 _7 4
N _(~§-538) 4 74
V9 99
Finally we obtain the decomposition,
a=1(0,1,4) =4T + ()N
whereT:(l 4 §>andN=<—4 - i">
9°9'9 9>~ 99/
39. r(t) =(t, ¢, te'), 1=0
SOLUTION First note here that:
V(i) =r'(t)=(L e, ¢+ De)
a@)=r"@t) =(0,¢, (t +2)¢')
Atr = 0we have:
v=r0)=(111
a=r"(0)=(0,12)
Thus,

a-v=(0,1,2)-(1,1,1)=3

IVl =v1+1+1=+3
Recall that we have:
Y 1
T=—=—2(111
v /3
av_3

a = = — =
T T B
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Next, we compute an and N:
1
anN=a—a1T=(0,1,2) —v/3—(1,1,1) = (1,0, 1)
V3

This vector has length:
an = lanN| = VI+1=+2

and thus,
N:aNN:M=<_i 0 i>
an V2 V22
Finally we obtain the decomposition,
(0,1,2) = 3T+ V2N
where T = (1.1, 1) and N = < 5. %)

41. r(¢) = (t,cost,tsSint), t = %

SOLUTION First note here that:
v(r) =r'(t) = (1, —sint, t cost + sint, )
a(r) = r'(r) = (0, — cost, —r sint + 2cost)
Atr = % wehave:
v=r(n/2)=(1,-11)
a=r'(-2) = (o, 0. —%)
Thus,

av_(oo ><1 1,1 =

IVl =vI+1+1=+3
Recall that we have:
-V _ 1 (1, -1, 1)
e V3T
a-v. —m/2 T
aTziz [ pp—
vl V3 23
Next, we compute an and N:
g s
anNN=a—a7T=(0,0, ——= )+ — (1, -1, 1)
N T 2) sz
=00 -2)+ T -1y

This vector has length:

T b3 T
= NIl=|=(L-1,-2)||==vV14+14+4= — = —
aN = [lanN]| H6< >H 6v +1+ 6 7
and thus,
N Z(1,-1,-2 1
N= N _ 5t —1 2 _ >:7<1,—1,—2)
anN NG 6
Finally we obtain the decomposition,
b v Vs
a=(0,0,—=)=—=T+ —=N
( 2> 23 /6
whereT = L (1, -1, 1) andN = (1 -1,-2).

/3



SECTION 13.5 | Motion in Three-Space (LT SECTION 14.5) 315

43. Find the components a1 and ap of the acceleration vector of a particle moving aong a circular path of radius
R = 100 cm with constant velocity vg = 5 cm/s.

SOLUTION Since the particle moves with constant speed, we have v/ () = 0, hence:
ar=v'()=0

The normal component of the acceleration isay = K(t)v(t)z. The curvature of a circular path of radius R = 100 is

k(1) = % = 15, and the velocity is the constant value v(r) = vg = 5. Hence,

1, 25
= v5i=-—=02
aN = 2% = 700 0.25 cm/&>

45. Suppose that the Ferris wheel in Example 5 is rotating clockwise and that the point P at angle 45° has acceleration
vector a = (0, —50) m/min? pointing down, asin Figure 11. Determine the speed and tangential acceleration of the Ferris
whesl.

<

Ferris wheel \

\ 45°

FIGURE 11

SoLUTION The normal and tangential accelerations are both 50/+/2 ~ 35 m/min2. The normal acceleration is v2 /R =
v2/30 = 35, so the speed is

v =/35(28) ~ 31.3

47. A space shuttle orbitsthe earth at an altitude 400 km above the earth’s surface, with constant speed v = 28,000 km/h.
Find the magnitude of the shuttle’s acceleration (in km/h?), assuming that the radius of the earth is 6378 km (Figure 12).

- _ -

FIGURE 12 Space shuttle orbit.

soLUTION The shuttleisin a uniform circular motion, therefore the tangential component of its acceleration is zero,
and the acceleration can be written as:

a=«v2N (0]

The radius of motion is 6378 + 400 = 6778 km hence the curvature isk = W178' Also by the given information the
constant speed is v = 28000 km/h. Substituting these valuesin (1) we get:

_ 1 2 _ 4 2
ac (ﬁ . 28000 ) N = (11.5668 - 10* km/h?)N

The magnitude of the shuttle's acceleration is thus:
la| = 11.5668 - 10* km/h2
In units of m/s? we obtain

11.5668 - 104 . 1000
36002

lall = =8.925m/s°
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49. A runner runs along the helix r(z) = (cost, sinz, r). When he is at position r(%), his speed is 3 m/s and he is

accelerating at arate of % m/s. Find his acceleration vector a at this moment. Note: The runner’s acceleration vector
does not coincide with the acceleration vector of r(z).

soLUTION We have

r'(r) = (—sint, cost, 1), P @) = \/(—sint)2+coszt +12=./2,

1
= T=—(—sint, cosr, 1)

V2

By definition, N is the unit vector in the direction of

dT 1
— = — (—cost, —sint, 0 N = (—cost, —sint, 0
’r fz( , ) = ( )
Therefore N = (— cost, —sint, 0). Att = /2, we have
T—1<101) N = (0, -1,0)
- ﬁ ] £l 9 - tl ¢l

The acceleration vector is
a=vT+ KU2N

We need to find the curvature, which happens to be constant:

4T —cost, —sint, 0| 1
|z :

1
A 1

T V2 2

Now we have

_ onv- (L ez (LY (1) 90 _
a_vT+KvN_<2>T+(2>(3)N_(2><ﬁ)( 1.0.1)+ 5 (0. ~1.0)

_<_i 9 i>

T\ 2v20 22,2

51. & Figure 14 shows acceleration vectors of a particle moving clockwise around a circle. In each case, state
whether the particle is speeding up, slowing down, or momentarily at constant speed. Explain.

(A) () ©

FIGURE 14

soLuTION In (A) and (B) the acceleration vector has a nonzero tangential and normal components; these are both
possible acceleration vectors. In (C) the normal component of the accel eration toward the inside of the curveis zero, that
is, aisparalel to T, s0« - v(¢)2 = 0, so either k = 0 (meaning our curveisnot acircle) or v(¢) = 0 (meaning our particle
isn't moving). Either way, (C) is not a possible acceleration vector.

53. Suppose that r = r(¢) lies on a sphere of radius R for al ¢. LetJ = r x r’. Show that r' = (J x r)/||r||2. Hint:
Observe that r and r’ are perpendicular.

SOLUTION
(a) Solution 1. Since r = r(¢) lies on the sphere, the vectorsr = r(¢) and r’ = r/(¢) are orthogonal, therefore:

r-r=0 (1)
We use the following well-known equality:

ax((bxc)=(@-c)b—(a-b)-c
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Using this equality and (1) we obtain:

JXr=(rxr/)sz_rx(l")(r/)z—((r.r/)r_(r.r)r/)

= —(r-r)r+ri?¢ = or + )2’ = r?r’

Divided by the scalar ||r||2 we obtain:

,_dxr

lIr||2

(b) Solution 2. The cross product J = r x r’ isorthogonal tor and r’. Also, r and r’ are orthogonal, hence the vectorsr,
r’ and J are mutually orthogonal. Now, since r’ is orthogonal to r and J, the right-hand rule implies that r’ pointsin the
direction of J x r. Therefore, for some« > 0 we have:

Jxr
13 xrf

rr=adxr=|r|-

@

By properties of the cross product and since J, r, and r’ are mutually orthogonal we have:

19 5 el = [l = e < il = el Hel = el
Substituting in (2) we get:
= = 2T
Irei2iey )2

Further Insights and Challenges

In Exercises 55-59, we consider an automobile of mass m traveling along a curved but level road. To avoid skidding,
the road must supply a frictional force F = ma, where a is the car’s acceleration vector. The maximum magnitude of the
frictional force is umg, where w is the coefficient of friction and ¢ = 9.8 m/s2. Let v be the car’s speed in meters per
second.

55. Show that the car will not skid if the curvature « of the road is such that (with R = 1/«)

2 2
(v’)2+<”> < (ng)?

R
Note that braking (v/ < 0) and speeding up (v" > 0) contribute equally to skidding.
SOLUTION To avoid skidding, the frictional force the road must supply is:
F =ma

where a is the acceleration of the car. We consider the decomposition of the acceleration a into normal and tangential
directions:

a(t) = v T + cv(ON@)
Since N and T are orthogonal unit vectors, T-N=0and T-T = N-N = 1. Thus:

la)2 = <v/T 4 KU2N> : (v/T i szN) = 02T T+ 2002N- T+ «2v*N - N

4
= v’2+/c2v4: v/2+ v
R2
Therefore:
4
2 v
lal = /()" + =5

Since the maximal fractional force is umg we obtain that to avoid skidding the curvature must satisfy:
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Hence,
4
2 v
(V) + 2 = (1g)?,
which becomes:
2
2
2 v
(V) + (R) < (ug)?

57. Beginning at rest, an automobiledrivesaround acircular track of radius R = 300 m, accelerating at arate of 0.3 m/s2.

After how many seconds will the car begin to skid if the coefficient of frictionis u = 0.6?

SOLUTION By Exercise 55 the car will begin to skid when:

We are given that v/ = 0.3 and vg = O. Integrating gives:

t t
v= / v dt = / 0.3dt = 0.3t 4+ vg = 0.3
0 0

We substitute v = #, v’ = 0.3, R = 300, u = 0.6 and g = 9.8in (1) and solve for . This gives:

0.3%4
032 + 300; —062.9.82
4 300%(0.6-9.8% —0.3?)
4= 03 = 383,160,000
t=139.91s

After 139.91 s or 2.33 minutes, the car will begin to skid.

)

59. What isthe smallest radius R about which an automobile can turn without skidding at 100 km/hif . = 0.75 (atypica

value)?

SOLUTION |n Exercise 55 we showed that the car will not skid if the following ineguality holds:

() + 25 < 26

In case of constant speed, v’ = 0, so the inequality becomes:

w4

2.2
22 <18

Solving for R we get:

v4 < M282R2
U4 2 U2
neg HE

The smallest radius R in which skidding does not occur is, thus,

We substitute v = 100 km/h, 1 = 0.75, and g ~ 127,008 km/h? to obtain:

1002

R~ ———2 _0105km.
0.75-127.008 m
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13.6 Planetary Motion According to Kepler and Newton (LT Section 14.6)

Preliminary Questions
1. Describe the relation between the vector J = r x r’ and the rate at which the radial vector sweeps out area.

SOLUTION The rate at which the radial vector sweeps out area equals half the magnitude of the vector J. Thisrelation
is expressed in the formula

dA 1
— = = [JII.
=31l

2. Equation (1) showsthat r” is proportional to r. Explain how this fact is used to prove Kepler's Second Law.
soLUTION |Inthe proof of Kepler's Second Law it is shown that the rate at which areais swept out is

dA

1||J|| where J=r() x r'(¢)
—_ = = = X
dt 2

To show that ||J|| is constant, show that J is constant. This is done using the proportionality of r’” and r which implies
that r(+) x r”’(¢+) = 0. Using this we get:

d) _d

= (rx)=rxr"+rxr=0+0=0=J=const
dt dt( ) + +

3. How isthe period T affected if the semimajor axisa isincreased four-fold?
soLUTION Kepler's Third Law states that the period 7' of the orbit is given by:

472
T2 — T a3
GM

2 3

or

If a isincreased four-fold the period becomes:

2r 3/2 2 3
L )% =g. =8
\/GM( ) ~GM

That is, the period isincreased eight-fold.

Exercises

1. Kepler'sThird Law states that T2/a3 has the same value for each planetary orbit. Do the datain the following table
support this conclusion? Estimate the length of Jupiter’s period, assuming that a = 77.8 x 1010 m,

Planet Mercury Venus Earth Mars
a (1019 m) 5.79 10.8 15.0 22.8
T (years) 0.241 0615 1.00 1.88

sOoLUTION Using the given datawe obtain the following valuesof T 2 /a3, wherea, asalways, ismeasured not in meters
but in 1010 m:

Planet Mercury Venus Earth Mars
T2/a® 299-1004 3.100% 296-104 2.98.107%

The data on the planets supports Kepler's prediction. We estimate Jupiter’s period (using the given a) as T ~

Va3 -3-10~4 ~ 11.9 years.

3. Ganymede, one of Jupiter’'s moons discovered by Galileo, has an orbital period of 7.154 days and a semimajor axis
of 1.07 x 109 m. Use Exercise 2 to estimate the mass of Jupiter.

SOLUTION By Exercise 2, the mass of Jupiter can be computed using the following equality:

_4712a3
TG T2
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WesubstitutethegivendataT = 7.154- 24 - 60% = 618,105.64 = 1.07 x 109mand G = 6.67300 x 10~ Im3kg—1s~1,
to obtain:

42 (1.07 x 109)3

- ~ 1.897 x 10% kg.
6.67300 x 10~ L. (618,105.6)2 9

5. Mass of the Milky Way The sun revolves around the center of mass of the Milky Way galaxy in an orbit that is

approximately circular, of radiusa ~ 2.8 x 1017 km and velocity v &~ 250 km/s. Use the result of Exercise 2 to estimate
the mass of the portion of the Milky Way inside the sun’s orbit (place all of this mass at the center of the orbit).

SOLUTION Writea = 2.8 x 1020 m and v = 250 x 103 my/s. The circumference of the sun’s orhit (which is assumed

circular) is 2ra m; since the sun’s speed is a constant v m/s, its period is T = oa s. By Exercise 2, the mass of the
v
portion of the Milky Way inside the sun’s orbit is

472 ad
mMm=Z)(Z
G T2
Substituting the values of @ and T from above, G = 6.673 x 10~ m3kg—1s72 gives

4r2a® 2 28.10%0. (250 x 103)°
M=—"2_ 2 8-10 (50><110) = 2.6225 x 10* kg.
G(4” a ) G 6.673 x 10~
v

The mass of the sun is 1.989 x 1030 kg, hence M is 1.32 x 10™ times the mass of the sun (132 hillions times the mass
of the sun).

7. Show that aplanet inacircular orbit travels at constant speed. Hint: Usethat J is constant and that r(r) is orthogonal
to r’(¢) for acircular orbit.

SOLUTION Itisshowninthe proof of Kepler's Second Law that the vector J = r(r) x r'(¢) is constant, henceits length
is constant:

191 = lIr(®) x r'()]| = const )

We consider the orbit as a circle of radius R, therefore, r(¢) and r’(r) are orthogonal and ||r(z)|| = R. By (1) and using
properties of the cross product we obtain:

. T
Ir(0) x F' @ = [r@OIlIF @) sin 5= R-[F'(t)]| = const
We conclude that ||r/(¢) || is constant, that isthe speed v = || (r)| of the planet is constant.
9. Prove that if a planetary orbit is circular of radius R, then vT = 27 R, where v is the planet’s speed (constant by
. . . ) [k
Exercise 7) and T isthe period. Then use Kepler’'s Third Law to provethat v = z

soLuTION By the Arc Length Formula and since the speed v = ||r/(¢)|| is constant, the length L of the circular orbit
can be computed by the following integral:

T T
L=/ ||r’(t)||dt=f vdt = vt
0 0 0

On the other hand, the length of acircular orbit of radius R is 27 R, so we obtain:

T
=T

27R
T =27R =T = 28 0
v

In acircular orbit of radius R, a = R, hence by Kepler’'s Third Law we have:

42
72 = &1& @

We now substitute (1) in (2) and solve for v. This gives:

(271R>2 _ 472R3

v T GM

472R? _ 472R3
v2  GM
GM

1
2Zoom TV VR
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11. A communications satellite orbiting the earth hasinitial position r = (29,000, 20,000, 0) (in km) and initial velocity
r = (1,1, 1) (in km/s), where the origin is the earth’s center. Find the equation of the plane containing the satellite’s
orbit. Hint: This planeis orthogonal to J.

soLUTION The vectors r(r) and r'(¢) lie in the plane containing the satellite’s orbit, in particular the initial position
r = (29,000, 20,000, 0) and the initial velocity r' = (1, 1, 1). Therefore, the cross product J = r x r’ is perpendicular
to the plane. We compute J:

i ik
J_rxr—| 20000 20000 0 :‘ 20,000 o‘._‘ 29,000 o‘. ‘29,000 20,000 |,
1 L s 1 1 11 1 1

= 20,000i — 29,000j + 9000k = (20,000, —29,000, 9000)

We now use the vector form of the equation of the planewith n = J = (20,000, —29,000, 9000) and (xg, yg, z0) = =
(29,000, 20,000, 0), to obtain the following equation:

(29,000, —20,000, 9000) - (x, y, z) = (29,000, —20,000, 9000) - (29,000, 20,000, 9000)
1000 (29, —20,9) - (x, y, z) = 1000 (29, —20, 9) - (29,000, 20,000, 9000)
29x — 20y + 9z = 841,000 — 400,000 + 81,000 = 0
29x — 20y + 9z — 522,000 = 0

The plane containing the satellite’s orbit is, thus:

P ={(x,y,2):29x — 20y + 9z — 522,000 = 0}

Exercises 13—-19: The perihelion and aphelion are the points on the orbit closest to and farthest from the sun, respectively
(Figure 8). The distance from the sun at the perihelion is denoted rper and the speed at this point is denoted vper. Similarly,
we write rap and vgp for the distance and speed at the aphelion. The semimajor axis is denoted a.

y

Aphel imvpa
\ .

F, o kR
Ve Perihelion
Je——
Semimajor axis
FIGURE 8 randv = r’ are perpendicular at the perihelion and aphelion.

13. Use the polar equation of an ellipse

r=—r
1+ ecosé

to show that rper = a(1 — e) and rgp = a(1 + e). Hint: Use the fact that rper + rgp = 2a.

soLUTION We use the polar equation of the elliptic orbit:

r=7P
1+ ecos6

@

Attheperigee, 6 = Oandat theapogeed = 7. Substituting thesevaluesin (1) givesthe distancesrper and rap respectively.
That is,

1+ ecoso 1+e
1+ ecosn l1—e

@

rper

rap (©)
To obtain the solutions in terms of « rather than p, we notice that:

)’per+}’ap=2a
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Hence:

PP _pl-e)+p(l+te) 2p

o=t T 1l+teol—-e  (A+tol—e

yielding

p=a(l+e)(l—e)
Substituting in (2) and (3) we obtain:

a(l+e)(1—e)

=T, —ato
TS CE S

15. Usethefact that J = r x r’ is constant to prove
Uper(l — 6) = Uq_)(l + e)

Hint: r is perpendicular to r’ at the perihelion and aphelion.

soLuTION Sincethe vector J(¢) = r(¢) x r'(¢) isconstant, it isthe same vector at the perigee and at the apogee, hence
we may equate the length of J(¢) at these two points. Since at the perigee and at the apogee r(¢) and 1’ (¢) are orthogonal
we have by properties of the cross product:

Irap x r/apH = ||rap|\||rép|| = rapUap
ITper x r;)er\l = ||rper||||r£;er|| = Iper Uper
Equating the two values gives:
TapVap = I'perUper @
In Exercise 13 we showed that rper = a(1 — ¢) and rgp = a(1 4 ¢). Substituting in (1) we obtain:
a(l+ e)vap = a(l— e)vper
1+ e)vap = (L — e)vper

17. Conservation of Energy Thetotal mechanical energy (kinetic energy plus potential energy) of a planet of massm
orbiting a sun of mass M with position r and speed v = ||| is

E = }mvz — GMm
2 lIril
(a) Provethe equations
d 2 d GMm GMm
a 2"V T =V'<_ TE r)

. . dE
(b) Then use Newton's Law to show that E is conserved—that is, e 0.

soLuTION We start by observing that since || r12=r-r, wehave (using Eq. (4) in Theorem 3, Section 13.2)

d d d d
2 =2r| - lrl, ad —|r|>=--r-r=2r-r
dt dt dt dt

Equating these two expressions gives

r-r

[Tl

d
2= )

(a) Applying (1) to r’, we have

L2 L e L = i) = ey = v -
dt 2 dt 2 dt Il
proving half of formula 2. For the other half, note that again by (1),
d GMm d 1 _od 5 r.r
— =GMm—||r =—-GMm]|r —|Irl|l = —=GMm)||r .
il mdtll I mr] dlll I m|r|| T

_y ( GMm)r_v ( GMmr>
E I3
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(b) We have by part (a)

dE d (1 2) d (GMm) V- (ma) + v (GMm I’) v ( a4 GMm r) @
— =— | zm*) - — =V-(m . =Vv-|m -
dt  dt \2 dr \ |r| |3 Ir|3

By Newton's Law, formula (1) in the text,

, GM GM

=—— ey =——r €)
T{ETTE

Substituting (3) into (2), and noting that v = r’ and a = r” gives
dE v ( e GMmr) v ( GMmr+ GMmr> 0
—=r.(m =r.|—-—— —
dt ry® lry3 lry3

GM\ 1
19. Prove that vper = (—) F asfollows:

a
(a) Use Conservation of Energy (Exercise 17) to show that

Uger — vgp = 2GM(rp_e% — ra_pl)

2e
-1 -1 _ : .
(b) Show that oer —Tap = m using Exercise 13.
(c) Show that vy — v = 4(1%)2% using Exercise 15. Then solve for vper Using (8) and (b).
SOLUTION

(a) Thetotal mechanical energy of aplanet is constant. That is,

Therefore, E has equal values at the perigee and apogee. Hence,

—mv — ———— = —MUgy —

2 per rper 2 & rap

1 /5 5 11
— — =GM - _
2m <Uper Uap) m (rper rap)

2 2 R
Vpger — Ugp = 2GM (”per — Iy )
(b) In Exercise 13 we showed that rper = a(1 — ¢) and ragp = a(1 + ¢). Therefore,
p ap

_1_ -1 _ 1 _ 1 _1+€—(1—6)_ 2e
T T i1 ) a(lte al-e(lte) a(l—e?d)

(c) InExercise 15 we showed that
Uper(l — e) = Uap(l + e)
Hence,

l1—e
vap = v
® l—|—eper

We compute the following difference,

l1—e 2 l1—e 2
2 2 2 2
S22 = 1—
per ™ tep = Tper <1+evpe’> Upe'( <1+e>)
s I+e?—1-e)? 5 1+2+e?—(1—2¢+e?) 4 € 2
= =V = Y
per 1+ e)? per 1+ e)? (1+e)2 P&

We combine this equality with the equality in part (a) to write

4e

2 |
0% =2GM (rpg — 7
(1t )2 Per ( per — "ap )
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Replacing the difference in the right-hand side by ( ) (from part (b)) and solving for vper We obtain:

de 2
1+e) a(l—e%)
2 AGMe .(1+e)2:GM(1+e)
P al—e)dl+e)  4e a(l—e)
or,
_ GM 1+e
Uper = a 1l—e

2 1
21. Provethat v’ = GM <f - 7> at any point on an elliptical orbit, where » = ||r||, v is the velocity, and a is the
r a

semimajor axis of the orbit.

soLuTION Thetotdl energy E = mv? — GHM”’"

—GMm We obtain the following equality:

M T T T T
Algebraic manipulationsyield:
2 _2GM _GM (2 1)
v ———=GM(=-=
r a r a

Further Insights and Challenges
Exercises 23 and 24 prove Kepler’s Third Law. Figure 10 shows an elliptical orbit with polar equation

_ 14
1+ ecoso

where p = Jz/k. The origin of the polar coordinates is at F1. Let @ and b be the semimajor and semiminor axes,

respectively.
Semiminor amsIb

Sem|mauoraX|s
FIGURE 10

23. Thisexercise showsthat b = ,/pa.

(@) Show that CFy = ae. Hint: rper = a(1 — e) by Exercise 13.
(b) Show that a = 1_” 5.
(c) Show that FhA + F;A = 2a. Concludethat F1B + FoB = 2a and hence F1B = F»B = a.
(d) Usethe Pythagorean Theorem to provethat b = ,/pa.

SOLUTION

(a) Since CF> = AFq, we have:

FoA=CA—CFy=2a— F1A
Therefore,
F1A+ FpA =2a 0

B

AN
N

The ellipse isthe set of all points such that the sum of the distances to the two foci F; and F» is constant. Therefore,

F1A + FpA = F1B + F»>B 2
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Combining (1) and (2), we obtain:
F1B+ FoB =2a
Thetriangle F> B Fy isisosceles, hence Fo B = F1 B and so we conclude that
Fi1B=FB=ua
(b) The polar equation of the ellipse, where the focus F7 is at the originis

r=—r
1+ ecos6d

The point A correspondsto 6 = 0, hence,
P P

F1A = =
1 l14+ecosO 1+e

The point C correspondsto 6 = r hence,

p _ 4
1+ ecosm 1-—e¢

We now find F»A. Using the equality C Fp = AF1 we get:

FC =

F2A:F2F1+F1A:F2F1+F2C:F1C:1p
— e
That is,
)4
FoA = —1—
2 1—e
Combining (1), (4), and (5) we obtain:
14 p
=2a
1+e+1—e
Hence,
=}< p p )zp(l—e)+p(1+e)= 2p ___p
2\14+e 1-e 21+ e)(1—e) 2(1—¢?) 1-¢2

(c) We use Pythagoras' Theorem for the triangle O B Fy:
OB? + OF} = BF?

Using (4) we have

OFi=a—FlA=a-—

2
b2+<a— p > =a2
l+e

Also OB = b and BF1 = a, hence (6) gives:

We solvefor b:

2
p p 2
b’ +a®— =
1+e (1+e)?
L2 2ap p?

325
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In part (b) we showed that a = ﬁ. We substitute to obtain:

R S L
l1+e 1—¢2 (1+4¢)2
a2 PP 2pP-pil-e
AL+e20—e) @A+e)2 (A+e21—e)
__PPAte p?
(1+e)2(1—e) 1—e2
Hence,
b= p
1—e2
Since1 - ¢? = £ wealso have
b: p :/ap

25. & According to Eq. (7) the velocity vector of aplanet as afunction of the angle 6 is

k
V() = —eg + ¢
®) Je+

Use this to explain the following statement: As a planet revolves around the sun, its velocity vector traces out a circle
of radius k/J with center ¢ (Figure 11). This beautiful but hidden property of orbits was discovered by William Rowan

Hamilton in 1847.

v(6)

C

-
N

Planetary orbit

Velocity circle

FIGURE 11 Thevelocity vector traces out acircle as the planet travels along its orbit.

soLUTION Recall that ey = (—sin#, cos6), so that

V() = é(— sing, cosd) + ¢ = é(sin(—e), cos(—6)) + ¢

Thefirst term is obviously aclockwise (due to having —6 instead of 6) parametrization of acircle of radiusk/J centered
at the origin. It followsthat v(6) is a clockwise parametrization of acircle of radius k/J and center c.

CHAPTER REVIEW EXERCISES

1. Determine the domains of the vector-valued functions.
@ ="t e+ntsn )

SOLUTION

(b) ra(t) = (V8—13,Int, V")

(a) Wefind thedomain of ry(r) = (r=1, (r + 11, sin~1¢). The function % is defined for 7 # 0. (r + 1)~ L is defined
fort # —1and sin~1¢ isdefined for —1 < 1 < 1. Hence, the domain of r1(¢) isdefined by the following inequalities:

t#0
t#-1 =
-1<r<1

—1<t<0 or

O<tr<1
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(b) We find the domain of ry(r) = (\/8 —13,Int, eﬁ). The domain of /8 — t3is8 — 3 > 0. The domain of Int is
t > 0and eV? is defined for ¢ > 0. Hence, the domain of ry(¢) is defined by the following inequalities:

8—13>0
3<8
t>0 = B = 0<t<2
-0 t>0
r=

3. Find avector parametrization of the intersection of the surfaces x2 + y4 +283=6andx = y2 inR3.
soLUTION We need to find avector parametrization r(¢) = (x(¢), y(t), z(t)) for theintersection curve. Usingt = y as

aparameter, we have x = 12 and y = . We substitute in the equation of the surface x2 + y* + 2z3 = 6 and solve for z
intermsof 7. Thisgives:

At r28=6
24 +2:8=6
B=3-1* = =V3-14
We obtain the following parametrization of the intersection curve:

r(t) = <t2, 13— 14).

In Exercises 5-10, calculate the derivative indicated.
5 1@, r()=(1-1, 12, Int)
soLUTION We use the Theorem on Componentwise Differentiation to compute the derivative r’ (). We get

F@ ={Q-0', 2 (nty) = <—1, —2t~3, ;1>

700, 1) =(¥, e, )
soLuTION We differentiate r(r) componentwiseto find r/(z):
/
(1) = ((eZI)/, (e—4t2) 7 (th)’> _ <262t7 —8te_4t2, 6€6t>
The derivative r'(0) is obtained by settingr = 0in r’(¢). This gives

r'(0) = (2620, —8. 047" 6:50) = (2,0, 6)

9. ie’(l, t t2)
dt

soLUTION Using the Product Rule for differentiation gives

d (1,2 + (') (1,1,1%) = €' (0,1, 21) + €' (1,1, 1)

ie'(l, t, t2> = eta

dt
= ((0, 1,20 + (1,1, t2>) = e, 141,21 +1?)

In Exercises 11-14, calculate the derivative at r = 3, assuming that
rid=(110, rnOd=(11.0
r’l(S) =(0,0,1), r’2(3) = (0,2 4)
1.4 6r10) — 4- 1)

soLUTION Using Differentiation Rules we obtain:

% (Bry(r) — 4ro(1)) =6ry(3) — 4ry(3) =6-(0,0,1) —4-(0,2,4)

=3

=(0,0,6) — (0, 8, 16) = (0, —8, —10)

d
13. E(rl(f) - r(1))

soLuTION Using Product Rule for Dot Products we obtain:

d
2@ 2@ =110 - ro(1) + ry(0) - ra()
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Setting r = 3 gives:

dr 1) - ro(t
51()' 2(1)

=r13) -, +ry@3d - ra3) =(1,10-(0,24)+(0,01) (11,00 =2+0=2
t=3

3

15. Calculate/ (4 + 3,12, —4r%) ar.
0

SOLUTION By the definition of vector-valued integration, we have

3 3 3 3
/ <4t + 3, t2, —4t3> dt = / (4t + 3) dt, / 2 dt, / —43dr
0 0 0 0

We compute the integrals on the right-hand side:

3 3
/ (4I+3)dt=212—|—3l
0 0

3 3,3 3
/tzdt:t— _¥ g
0 3lp 3

3
/ —43dr = —1*
0

Substituting in (1) gives the following integral:

=2-943-3-0=27

3
f (4 + 3,12, —4r3) dr = (27,9, —81)
0

17. Aparticlelocated at (1, 1, 0) attimer = Ofollowsapath whose velocity vector isv(t) = (l, t, 2t2>. Findtheparticle's
location at t = 2.

soLuTioN Wefirst find the path r(r) by integrating the velocity vector v(z):

r(t) = /(1,t, 2l2> dt =</ 1dt,/tdt,/2t2dl> =<t+c1, }t

2
2 3
, =t
> +c2 3 + C3>
Denoting by ¢ = (c1, ¢2, c3) the constant vector, we obtain:

1,23
r(r) =(t, =t%, =t c 1
0 =(r3%50)+ &
To find the constant vector ¢, we use the given information on the initial position of the particle. Attimer = Oitisat
thepoint (1, 1, 0). That is, by (1):

r(0)=(0,0,0)4+¢c=(1,10)
or,

c=(1,10
We substitute in (1) to obtain:

1223 12,,23
rit) =(t, =t=, =t 1,1,0)=(r+1, =t 1 -t
) <,2,3>+(,,)<+,2+,3
Finally, we substitute ¢+ = 2 to obtain the particle’slocation at 1 = 2:

1 2 16
r(2)=<2+1,§-22+1,§-23>:<3,3, —>

3
Attimer = 2 the particleislocated at the point

16
3,3, —
(22%)
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19. Calculate r(r) assuming that
(1) =<4—16t, 12;2—z>, r©) = (L0, r0) =01

SOLUTION Using componentwise integration we get:

r'@t) = / <4— 16¢, 122 — t> dt

:</4—16tdt,/12t2—tdt>
2 12
= {4 — 8¢ ,413—E +cC1

Then using the initial condition r’(0) = (1, 0) we get:
r'(0)=(1,0) =cg

so then
12 12
r'(t) = (4 — 82, 43 — 5 )+ L0 = (4~ 82+ 1,41 — 5

Then integrating componentwise once more we get:

2
t
r(z):/<4z—8t2+1,4t3—2> dt
/2
= /4[—8[2+1dt,/4t3—§dt

8 13
=<2¢2— §t3+t,t4— 6>+c2

Using theinitial condition r(0) = (0, 1) we have:
r0)=(0,1=cy
Therefore,

3

r(t) = 2t2—§t3+tt4—f +(0,1) = 2t2—§t3+t,t4—t—+1
3 ’ 6 3 6

21. Compute the length of the path
r(t) =(sin2r,cos2,3r—1) forl<r<3

soLuTION We use the formulafor the arc length:

3
S=/ IF' @)1 dr
1

We compute the derivative vector r’(¢) and its length:

r'(t) = (2cos2t, —2sin2r, 3)

IF @) = \/(2c0321)2 +(=2sn2)? +32 = \/4c0822t +4sn?2 +9

:\/4(003221+sin221) +9=v4.1+9=+13

We substitute in (1) and compute the integral to obtain the following length:

3
s:/ J1Bdr = VI3| =2V13,
1

3
1

329
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23. Find an arc length parametrization of a helix of height 20 cm that makes four full rotations over a circle of radius
5cm.

SOLUTION Sincetheradiusis5cm and the height is 20 cm, the helix is traced by a parametrization of the form:
r(t) = (5cosat, 5sinat,t), 0<tr<20

Since the helix makes exactly 4 full rotations, we have:

a-20=4-2n = a:%r
The parametrization of the helix is, thus:
2 2
r(r) = 5cos£,55in lt,z , 0<r<20
5 5

The helix is shown in the following figure:
To find the arc length parametrization for the helix, we use:

t

s(1) = /O ¥ )l du (1)

We find 1’ (¢) and its length:

2 2
Ty 27”,5- gcos@, 1> = <—27'r sin it, 2 cos@, 1>

/ = {—9 - —
r(t)_<5 5 IMNTF 25 S 5 5

. 5 2mt 2t . 5 2mt 2t
IIF/(I)||=\/47125|n25+4n2c052751+1=\/4n2<sm25+00525>+1=\/1+4n2

Substituting in (1) we get:
t
s(l)=/ V14 472du = tvV/1+ 4n2
0

Therefore, welet s = 1+/1 + 472 and thus,

S
f= = g(s)

V1+4r2

Thus, we can write

r(s) = {5cos id ,5sin ik , 5 , 0<s<20V1+ 472~ 127.245
V1+4r2 V1i+472 1+ 472

25. A projectilefired at an angle of 60° lands 400 m away. What wasitsinitial speed?

soLUTION Placethe projectile at the origin, and let r(7) be the position vector of the projectile.

Step 1. Use Newton’s Law
Gravity exerts a downward force of magnitude mg, where m is the mass of the bullet and g = 9.8 m/s2. In vector
form,
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Newton’s Second Law F = mr/(¢) yields m (0, —g) = mr”(¢t) or r"(t) = (0, —g). We determine r(¢) by integrating
twice:

t t
r'() = / r(u) du = / (0, —g) du = (0, —gt) + Vg
0 0

t t
r(t) = / r'(u) du = / (0, —gu) +vg)du = <0, —%gt2> +tvg+ g
0 0

Step 2. Use the initial conditions
By our choice of coordinates, ro = 0. Theinitia velocity vg has unknown magnitude vg, but we know that it points
in the direction of the unit vector (cos60°, sin 60°). Therefore,

1 V3
Vo = vg (cos60°, sin60°) = v0<2, {>

1 5 13
r(t) = <O, _Egt >+ tv0<2, 2>
Step 3. Solve for vg.

The projectile hits the point (400, 0) on the ground if there exists atime ¢ such that r(z) = (400, 0); that is,

15 1 v3\

Equating components, we obtain

1 1 , 43

. o v 800 PR ; ; .
Thefirst equation yieldsr = T Now substitute in the second equation and solve, using g = 9.8m/s?:

o904 2 (%)

Vo 2 To

800\2  400/3
v/ 49
(E)Z _ 4.9
800 4003

v% = 4526.42611, vg ~ 67.279 m/s

~ 0.00707

We obtain vg &~ 67.279 m/s.
27. During ashort timeinterval [0.5, 1.5], the path of an unmanned spy plane is described by

1
r(t) = <—% 7—1,40 — t2>
t

A laser isfired (in the tangential direction) toward the yz-plane at time+ = 1. Which point in the yz-plane does the laser
beam hit?

soLUTION Noticefirst that by differentiating we get the tangent vector:
200
r'@) = <t—3 -1, —2t>, = r'(1) =(200,-1,-2)
and the tangent line to the path would be:
£(s) =r(1) +sr'(1) = (—100, 6, 39) + s (200, —1, —2) = (—100 + 200s, 6 — s, 39 — 2s)

If the laser isfired in the tangential direction toward the yz-plane means that the x-coordinate will be zero - thisis when
s = 1/2. Therefore,

£(1/2) = (0, 11/2, 38)

Hence, the laser beam will hit the point (0, 11/2, 38).
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29. Find the unit tangent vector to r(r) = (sinz, ¢, cost) at 1 = 7.
SOLUTION The unit tangent vector at r = n is

R C))
Il

T(m)

@
We differentiate r (1) componentwise to obtain:
r'(t) = (cost, 1, —sint)
Therefore,
r'(x) = (cosm, 1, —sinz) = (-1, 1, 0)

We compute the length of 1’ (r):

IF @)l = (12 + 12+ 07 = V2
,o>

Substituting in (1) gives:

Sl
N

T(m) =<

31. Calculatex (1) for r(r) = (In¢, 1).
SOLUTION Recall,

Ir' @) xr" @]
= —2
“O=" o

Computing derivatives we get:
1
r’(z)=<;,1>, = =1y, = I'LI=v2

r'() = <—t12 0>, = r’(1)=(-10)

Computing the cross product we get:

i j kK
roxr=|1 1 =(0,0,1)
-1 0 0
and ||r' (1) x r”(1)|| = 1. Therefore,
e Iroxror 11
TENE W23 232

In Exercises 33 and 34, write the acceleration vector a at the point indicated as a sum of tangential and normal components.
33. r(0) =(cosh,sin26), 6 =7%
soLuTION First note here that:

V() =1 (0) = (—sind, 2cos20)

a@) =r"(@) = (—cosb, —4 sin20)

Att = /4 we have:

vV=r'(n/4 = <—% 0>
a—r”(n/4)—<—i —4>
= =\~
Thus,
1 1 1
=(——. —4).(—— i
= -
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Recall that we have:

1
v %9
T=— =1 1 _(10
(vl 1/V/2 { )

_awv_ 12 1

TN Ty 2

Next, we compute an and N:

anN=a—a7T = <—% —4> - \i@ (—1,0) = (0, —4)

This vector has length:
aN = [lanN|| =4

and thus,

anN (0, —4)

=0, 1)

Finally, we obtain the decomposition,

where T = (—1,0) and N = (0, —1).

333

35. Atacertaintimeq, the path of amoving particleistangent to the y-axisin the positive direction. The particle’'s speed

at timetg is4 m/s, and its acceleration vector isa = (5, 4, 12). Determine the curvature of the path at 1.

soLUTION We are given that the particle is moving tangent to the y-axis with speed 4 m/s, so then:
r' =(0,4,0)

anda =r" = (5, 4, 12). Recall the formula for curvature:

x|
[Ir/)I3
First calculate the cross product:
i j k
rxr"=|0 4 0|=(48,0,-20)
5 4 12

Then thelength of r’ and r’ x r”:

I =4, | x 1’| = V482 + 202 = v/2704 = 52

so then for curvature we get:

x| 52 13

o3 437 16
37. Parametrize the osculating circletoy = /x at x = 4.
sOLUTION First differentiate twice:

1 1
/ _ % - _
f) = NG VANEY) 32

and at the point x = 4 we get:

fy =7 =
4 32
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Step 1. Find the radius
Then recall the formulafor curvature:

K (x) = Lf” ()]
[1+ (f"(x))213/2
and evaluating at x = 4 we have:
@ = » 1 1 11882 2
K = [1+ i]3/2 ~ 3 (H)S/Z T 32173/2 7 173/2
16 16

. . . . 173/2

Therefore the radius of the osculating circleis R = =»—.

Step 2. FindNatx =4
First we will parametrize the curve f(x) = /x as:

r(x) = (x, ﬁ) ri4) =(4,2)
and differentiate:

o) = <1, %x_l/2>

Note here that the vector <%x -2 _ 1> isorthogonal to r’(x) for all values of x and pointsin the direction of the bending

of thecurve y = /x.
Computing the unit normal to the curve, using the vector orthogonal to r’(x) we get:

1 - 1
NGo) B2 N d _ <1 1>
X)) —m —]—, = ==, —
1 1 17 \4
NE Ly VU7
Step 3. Find the center Q

Now to find the center Q of the osculating circle:

=2 -1
00 =r4+« "N®¥

=42+
4,2) + 2 I

1732 4 1
7

1
= (4, 2>+34<Z’_1>

17
= (4,2 +<3, —34>

25
=({—,—-32
7=
The center of the osculating circleis Q = (%, -32).

Step 4. Parametrize the osculating circle
Then parametrizing the osculating circle we get:

25 173/2 .
c(t) = <?’ —32> + — (cost, sint)

39. Supposethe orbit of aplanetisan ellipse of eccentricity e = ¢/a and period T (Figure 2). Use Kepler’'s Second Law
to show that the time required to travel from A’ to B’ isequal to

l+eT
4 2n
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y

b

ﬂ

FIGURE 2

B
A[-‘ Sun \A
\i
B

soLUTION By the Law of Equal Areas, the position vector pointing from the sun to the planet sweeps out equal areas
in equal times. We denote by S; the area swept by the position vector when the planet moves from A’ to B, and ¢ isthe
desired time. Since the position vector sweeps out the whole area of the ellipse (rab) intime T, the Law of Equal Areas

implies that:
N TS
s S f= 01 (1)

mab T = wab
We now find the area S1 as the sum of the area of a quarter of the ellipse and the area of thetriangle ODB. That is,

mab OD-OB mab c¢b b
Sl T-l—#:T-l—?:Z(na—%—Zc)

Substituting in (1) we get:

T - S
_ b(na+2€):T(na—|—2¢):T }_Fii _7 }+i
4ab 4a 4 2ma 4 27

y

b
A a D(c, 0)
(0} Sun

Sy

B
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14 DIFFERENTIATION
IN SEVERAL VARIABLES

14.1 Functions of Two or More Variables (LT Section 15.1)

Preliminary Questions
1. What is the difference between a horizontal trace and a level curve? How are they related?

SOLUTION A horizontal trace at height ¢ consists of all points (x, y, ¢) such that f(x, y) = c. Alevel curve is the curve
f(x,y) = cinthe xy-plane. The horizontal trace is in the z = ¢ plane. The two curves are related in the sense that the
level curve is the projection of the horizontal trace on the xy-plane. The two curves have the same shape but they are
located in parallel planes.

2. Describe the trace of f(x, y) = x2 — sin(x3y) in the xz-plane.

SOLUTION The intersection of the graph of f(x, y) = x2 — sin(x3y) with the xz-plane is obtained by setting y = 0 in
the equation z = x2 — sin(x3y). We get the equation z = x2 — sin 0 = x2. This is the parabola z = xZ in the xz-plane.

3. Isit possible for two different level curves of a function to intersect? Explain.

soLUTION Two different level curves of f(x, y) are the curves in the xy-plane defined by equations f(x, y) = ¢; and
f(x,y) = ¢ for ¢1 # . If the curves intersect at a point (xg, yg), then f(xg, yg) = ¢1 and f(xg, yg) = c¢2, which
implies that ¢1 = ¢p. Therefore, two different level curves of a function do not intersect.

4. Describe the contour map of f(x, y) = x with contour interval 1.

soLUTION The level curves of the function f(x, y) = x are the vertical lines x = ¢. Therefore, the contour map of f
with contour interval 1 consists of vertical lines so that every two adjacent lines are distanced one unit from another.

5. How will the contour maps of

fx,y)=x and g(x,y) =2x

with contour interval 1 look different?

SOLUTION The level curves of f(x, y) = x are the vertical lines x = ¢, and the level curves of g(x, y) = 2x are the
vertical lines 2x = c or x = % Therefore, the contour map of f(x, y) = x with contour interval 1 consists of vertical
lines with distance one unit between adjacent lines, whereas in the contour map of g(x, y) = 2x (with contour interval
1) the distance between two adjacent vertical lines is %

Exercises
In Exercises 1-4, evaluate the function at the specified points.

Lofy)=x+yx3 (22),(-1.4)
soLUTION \We substitute the values for x and y in f(x, y) and compute the values of f at the given points. This gives
f@R,2)=2+2.22=18
f(-1,4)=-1+4.(-1)%=-5

3. h(x,y,2) =xyz72, (3,8,2), (3,2, —6)
SOLUTION Substituting (x, v, z) = (3, 8,2) and (x, y, z) = (3, —2, —6) in the function, we obtain

h(3,8,2)=3.8.272-3.8.- =6

N

2 6)=3.(-2) (—6) 2= 6. — =+
h@3.~2.—6) =3 (=2) (-6) 2= =6 2o = —

In Exercises 5-12, sketch the domain of the function.

5. f(x,y)=12x — 5y
soLuTION The function is defined for all x and y, hence the domain is the entire xy-plane.
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7. f(x,y) =In(@4x? - y)
soLuTION The function is defined if 4x2 — y > 0, that is, y < 4x2. The domain is the region in the xy-plane that is
below the parabola y = 4x2.

Yy o y=4x2

9. ¢(v,2) =
i z+y?

soLuTION The function is defined if z + y2 # 0, that is, z # —y2. The domain is the (y, z) plane with the parabola

z = —y? excluded.

D={(y.2):z#—y%
y

z2=-y?

z+y2 #0
11. F(I,R) =+/IR

soLuTION The function is defined if 7R > 0. Therefore the domain is the first and the third quadrants of the 7 R-plane
including both axes.

IR >0
In Exercises 13-16, describe the domain and range of the function.

13, f(x,y,2) =xz+¢€

soLUTION The domain of f is the entire (x, y, z)-space. Since f takes all the real values, the range is the entire real
line.

15. P(r,s,1) = V16 — r2s2s2
soLuTION The domain is subset of RS where rst <4 andtherangeis {w : 0 < w < 4} because the minimum is 0 and
the maximum of P is +/16 = 4.

17. Match graphs (A) and (B) in Figure 21 with the functions
() fx, y) = —x + 2 (i) g(x, y) = x + y?
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z z
; "Z’ 7\y X ; ;é §
X y
(A) (B)
FIGURE 21

SOLUTION

(i) The vertical trace for f(x, y) = —x + y2 in the xz-plane (y = 0) is z = —x. This matches the graph shown in (B).
(ii) The vertical trace for f(x, y) = x + y2 in the xz-plane (y = 0) is z = x. This matches the graph show in (A).

19. Match the functions (a)—(f) with their graphs (A)-(F) in Figure 23.

(@ flx,y) = x| +Iyl (b) f(x,y) =cos(x —y)
-1 2,2
c Y= d . y) = cos(y2)e~0-1(x"+y%)
© fx,y 110212 d f@xy e
-1 2, .2,,-0.1(x2+y?)
e V= ,y) = Cos(x“ + : Y
(€ f(x,» 11092 19)2 ® fx,» (x*+y%e
Z z
P
y y
X X
(A) (B)
Z
y
X
©)
z
y
X
(E)
FIGURE 23
SOLUTION

(@) |x|+ |yl|. Thelevel curvesare |x| + |y| = ¢,y = ¢ — |x|,0r y = —c + |x|. The graph (D) corresponds to the function
with these level curves.

(b) cos(x — y). The vertical trace in the plane x = c is the curve z = cos(c — y) in the plane x = c. These traces
correspond to the graph (C).
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© —— @ —
14+9x2 4 y2 1+9x2 +9y2°
The level curves of the two functions are:
-1 -1
_— = —F = C
149x2 +y? 1+9x2 +9y?
1
1492 +y2=-= 1+9x249y2 ==
C
1 1
9?4 y2=-1-"= 9x249y2=-1-=
c c
l1+c¢

For suitable values of ¢, the level curves of the function in (c) are ellipses as in (E), and the level curves of the function
(e) are circles as in (A).

(d) cos(x?)e~ VD) (f) cos(x? + y2)e~ VD),

The value of |z| is decreasing to zero as x or y are decreasing, hence the possible graphs are (B) and (F).

In (f), z is constant whenever x2 + y2 is constant, that is, z is constant whenever (x, y) varies on a circle. Hence (f)
corresponds to the graph (F) and (d) corresponds to (B).

To summarize, we have the following matching:
@<® <€ (©<(E)
de® @@ O<F

In Exercises 21-26, sketch the graph and describe the vertical and horizontal traces.

21, f(x,y)=12—-3x —4y
soLUTION The graph of f(x, y) = 12 — 3x — 4y is shown in the figure:

z

2]

/1

The horizontal trace at height ¢ isthe line 12 — 3x —4y = cor3x + 4y = 12 — cinthe plane z = c.

z

/

A

The vertical traces obtained by setting x = a or y = a are the lines z = (12 — 3a) — 4y and z = —3x + (12 — 4a) in the
planes x = a and y = a, respectively.

X
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23. f(x,y) = X2+ 4y2
soLUTION The graph of the function is shown in the figure:

z

Ve

The horizontal trace at height c is the curve x2 + 4y2 = ¢, where ¢ > 0 (if ¢ = 0, it is the origin). The horizontal traces
are ellipses for ¢ > 0.

X

H
/

X

The vertical trace in the plane x = a is the parabola z = a? + 4y2, and the vertical trace in the plane y = a is the parabola
2 2
7 = x° +4a“.

ST

X

25. f(x,y) =sin(x —y)
SOLUTION The graph of f(x, y) = sin(x — y) is shown in the figure:

The horizontal trace at the height z = cissin(x — y) = ¢ (we could alsowritex — y = sin~l)or y=x-— sin—l(c)).
The trace consists of multiple lines all having slope 1, with y-intercepts separated by multiples of 2.
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The vertical trace in the plane x = a is sin(a — y) = —sin(y — a) = z. This curve is a shifted sine curve reflected
through the z-axis.

The vertical trace in the plane y = a is sin(x — a) = z. This curve is a shifted sine curve as well.

y

0.8 T
0.6 1
0.4+
0.2t

27. Sketch contour maps of f(x, y) = x + y with contour intervals m = 1 and 2.

soLUTION The level curvesare x + y = ¢ or y = ¢ — x. Using contour interval m = 1, we plot y = ¢ — x for various
values of c.

In Exercises 29-36, draw a contour map of f(x, y) with an appropriate contour interval, showing at least six level curves.

29. flx,y)=x%—y

SOLUTION The level curves are the parabolas y = x2 + ¢. We draw a contour plot with contour interval m = 1, for
c=0,1,234,5:

3 -2-1 0 1 2 3
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3L f(x,y) =2

X
SOLUTION The level curves are % =cory=cx.Weploty = cx forc = -2, —1, 0, 1, 2, 3 using contour interval
m=1.

33. f(x,y) =x% 4 4y2

soLUTION The level curves are x2 + 4y2 = ¢. These are ellipses centered at the origin in the xy-plane.

Y

35. f(x,y) = x2

sOLUTION The level curves are x2 = ¢. For ¢ > 0 these are the two vertical lines x = /c and x = —./c and forc = 0

it is the y-axis. We draw a contour map using contour interval m = 4 and ¢ = 0, 4, 8, 12, 16, 20:

| |
A N O NBs

37. [5=]  Find the linear function whose contour map (with contour interval m = 6) is shown in Figure 25. What is
the linear function if m = 3 (and the curve labeled ¢ = 6 is relabeled ¢ = 3)?

X

- c=6

c=

Sl

FIGURE 25 Contour map with contour interval m = 6

soLuTION A linear function has the form f(x, y) = Ax + By + C.
Case 1: According to the contour map, the level curve through the origin (0, 0) has equation f(x, y) = 6. Therefore

f(0,00=A0)+BO)+C=6 = C=6
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Next, we see from the contour map that the points (—3, 0) = 0 and f (0, —1) lie on the level curve f(x, y) = 0. Hence

f(=3,00=A(-3)+B(0)+6=0 = A=2
f0,-1)=A0)+B(-1)+6=0 = B=6

Therefore f(x, y) = 2x + 6y + 6.
Case 1: If m = 3, then (0, 0) lies on the level curve f(x, y) = 3, and we proceed as before
f0,00=A0)+B0)+C=3 = C=3f(-3,0=A(-3)+B0)+3=0 = A=1
fO0,-1)=A0)+B(-1)+3=0 = B=2

Therefore f(x,y) =x+ 3y + 3.

39. Referring to Figure 27, answer the following questions:

(a) Atwhich of (A)—(C) is pressure increasing in the northern direction?
(b) Atwhich of (A)-(C) is pressure increasing in the easterly direction?
(c) Inwhich direction at (B) is pressure increasing most rapidly?

g

FIGURE 27 Atmospheric Pressure (in millibars) over the continental U.S. on March 26, 2009

SOLUTION
(a) (A)and (B)
(b) (C)

(c) west

In Exercises 40-43, p(S, T) is seawater density (kg/m3) as a function of salinity S (ppt) and temperature 7 (°C). Refer
to the contour map in Figure 28.

25

AT

20

15

10

Temperature T °C

A
\

iy v
A

3L5 320 325 330 335 340 345
Salinity (ppt)
FIGURE 28 Contour map of seawater density p(S, T) (kg/m3).

41. Calculate the average rate of change of p with respect to S from B to C.

SOLUTION For fixed temperature, the segment BC spans one level curve and the level curve of C is to the right of the

level curve of B. Therefore, the change in density from B to C is Ap = 0.0005 kg/m3. The salinity at C is greater than
the salinity at B and AS = 0.8 ppt. Therefore,

Ap _ 0.0005

A ROC fi Bt = =
verage rom B to C AS 08

= 0.000625 kg/m? - ppt.
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43. Does water density appear to be more sensitive to a change in temperature at point A or point B?

SOLUTION The two adjacent level curves are closer to the level curve of A than the corresponding two adjacent level
curves are to the level curve of B. This suggests that water density is more sensitive to a change in temperature at A than
at B.

In Exercises 44-47, refer to Figure 29.

C
°540
B
e 500
i d
¢ i 400 D
L)
Siii
A
Contour interval =20 m
0 1 2 km
FIGURE 29

45. Estimate the average rate of change from A and B and from A to C.

SoLUTION The change in elevation from A to B is 140 m. The scale shows that A B is approximately 2000 m. Therefore,

140
A ROC from Ato B = —— ~ 0.07.
wverage ROC from A to 2000 0.0
The change in elevation from A to C is obtained by multiplying the number of level curves between A and C, which is 8,
by the contour interval 20 meters, giving 8 - 20 = 160 m. Using the scale, we approximate the distance AC by 3000 m.
Therefore,

160
Average ROC from Ato C = 3000 0.0533.

47. Sketch the path of steepest ascent beginning at D.

SOLUTION Starting at D, we draw a path that everywhere along the way points on the steepest direction, that is, moves
as straight as possible from one level curve to the next to end at the point C.

Further Insights and Challenges

49. Let f(x,y) = % for (x, y) # 0. Write f as a function f(r, 6) in polar coordinates, and use this to find the
xc+y
level curves of f.

soLuTION In polar coordinates x = r cos@ and r = v/x2 + y2. Hence,

r oS 6

£, 6) = = o6,

N _

/

The level curves are the curves cos® = c in the ré-plane, for |c| < 1. For —1 < ¢ < 1, ¢ # 0, the level curves cos6 = ¢
are the two rays 6 = cos 1 cand § = —cos Lc.



SECTION 14.2 | Limits and Continuity in Several Variables (LT SECTION 15.2) 345

AN ;

/

For ¢ = 0, the level curve cos6 = 0 is the y-axis; for ¢ = 1 the level curve cos6 = 1 is the nonnegative x-axis.

A

/

X

For ¢ = —1, the level curve cos& = —1 is the negative x-axis.

14.2 Limits and Continuity in Several Variables (LT Section 15.2)

Preliminary Questions
1. What is the difference between D(P, r) and D*(P, r)?

SOLUTION D(P, r) is the open disk of radius r and center (a, b). It consists of all points distanced less than r from P,
hence D(P, r) includes the point P. D*(P, r) consists of all points in D(P, r) other than P itself.

2. Suppose that f(x, y) is continuous at (2, 3) and that 7(2, y) = y3 for y # 3. What is the value £(2, 3)?

SOLUTION f(x, y) is continuous at (2, 3), hence the following holds:

f@2.3) = lim (x,y)
! <x,y>—><2,3>f Y

Since the limit exists, we may compute it by approaching (2, 3) along the vertical line x = 2. This gives

2,3)= lim ,y) = lim £(2,y) = lim y3 =33 =27
f2,3) (X’y)_)(z’s)f(x y) y—>3f( y) y_)gy

We conclude that f(2, 3) = 27.
3. Suppose that Q(x, y) isafunction suchthat 1/Q(x, y) is continuous for all (x, y). Which of the following statements
are true?
(a) Q(x, y) is continuous for all (x, y).
(b) Q(x, y) is continuous for (x, y) # (0, 0).
(©) O(x,y) #0forall (x, y).

soLUTION All three statements are true. Let f(x, y) = 1

1 -
oG Hence Q(x,y) = Ty
(a) Since f is continuous, Q is continuous whenever f(x, y) # 0. But by the definition of f it is never zero, therefore

Q is continuous at all (x, y).
(b) Q is continuous everywhere including at (0, 0).
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(c) Since f(x,y) = ﬁ}) is continuous, the denominator is never zero, that is, Q(x, y) # 0 forall (x, y).

Moreover, there are no points where Q(x, y) = 0. (The equality Q(x, y) = (0, 0) is meaningless since the range of Q
consists of real numbers.)

4. Suppose that f(x,0) = 3 forall x # 0and f(0,y) = 5 for all y # 0. What can you conclude about

(x,¥)?
(xy) (OO)f Y

soLuUTION We show that the limit lim(, ), (0,0) f (x, ¥) does not exist. Indeed, if the limit exists, it may be computed
by approaching (0, 0) along the x-axis or along the y-axis. We compute these two limits:
lim ,y) = lim ,00=1lim3=3
(x,y)— (0 0) Fee ) x—0 fx.0 x—0
along y=

lim x,y) = lim f(0,y) = lim5=5
0.0 fxy) y_)of( y) iy
along x=0

Since the limits are different, f (x, y) doesnotapproach one limitas (x, y) — (0, 0), hencethelimitlim(, yy 0,0y f(x, ¥)
does not exist.

Exercises
In Exercises 1-8, evaluate the limit using continuity
1 @2 +y)
(x, y) (1 2)
SOLUTION  Since the function x2 + y is continuous, we evaluate the limit by substitution:

lim  ?+y)=124+2=3
@.y)—>(12)

3. lim (x — 32 3)
(x,y)—~>(2,-1) Y Y

sOoLUTION The function xy — 3x y3 is continuous everywhere because it is a polynomial, hence we compute the limit
by substitution:

lim  (xy —3x%y%) = 2(=1) = 3@ (-1)% = -2+ 12 =10
(@)= @2.~1)

5. lim tan X COSy
(x, )~ (7.0
soLuTION We use the continuity of tan x cos y at the point (% 0) to evaluate the limit by substitution:

lim tanxCOSy:tanzCOSOZJ.-l:l
(.= (5.0) 4

2 )
et —e Y

7. lim -
(=L x+y
soLUTION The function is the quotient of two continuous functions, and the denominator is not zero at the point (1, 1).
Therefore, the function is continuous at this point, and we may compute the limit by substitution:

. P e L CS % 1 -1
lim = = =Z(e—e¢Y
(=@ x4y 1+1 2 2
In Exercises 9-12, assume that
S, y) = lim glx, =7
(x, ))—>(2 5) (x,y)—(2,5)
9. lim 2 f(x,
oMo, (g(x,y) = 2f(x, )
SOLUTION
lim_ (g(x,y) —2f(x,y)=7-23)=1
(x, y)—>(2 5)( )
11. lim  of =gy
(x,y)—>(2,5)
SOLUTION

lim e/ G?=g(y) _ 37 _ 2
(x.3)—(2.5)
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13. Does lim -
(r.3)—>(0.0) x2 + 2
soLUTION This limit does not exist. Consider the following approaches to the point (x, y) = (0, 0) - first along the line
x = 0 and second, along the line y = x.
First along the line x = 0 we calculate:

exist? Explain.

2 2
lim = lim =liml=1
)00 x2 +y2  y5002 432 y—0

Second, along the line y = x we calculate:

oo x? = lim

lim = lim
(x,y)=(0,0) x2 + y2 x—0 x2 + x2 x%O 272

does not exist.

2
Since these two limits are not equal, the limit in question, lim, yy_. (0,0 x2+ v

15. Prove that

lim ——
(x,5)—(0,0) x2 + y2
does not exist by considering the limit along the x-axis.
SOLUTION Compute this limit approaching (x, y) = (0, 0) along the x-axis (y = 0):

lim ———=1Ilim ——==Ilim—
@9)—>00) x2+y2  x>0x2+0%2  x—0x
This limit is known not to exist (it gets arbitrarily large from the right and arbitrarily small from the left), therefore the
limit in question, lim, y)_, (0,0 XZ"? also does not exist.

17. Use the Squeeze Theorem to evaluate

lim (x2 — 16) cos (

1
(x,y)—(4,0) (x— 2+ y2>

SOLUTION Consider the following inequalities:

1
1<cos(— ) <1
- ((x—4)2+y2>_

Then for x such that x > 4 then x2 - 16 > 0 and we have:

(=1)(x% — 16) < (x% — 16) cos ( ) < (x2 —16)

1
(x — 42 4 y2

(-2 -16) < lim (x2—16)cos( (x2 — 16)

e T ()40 (x —4)2 + y2> LAY
Then the two limits at the ends of the inequality are clearly equal to 0, by the Squeeze Theorem.
Now, if x < 4, then x2 — 16 < 0 and we have:

(x2 — 16) < (x2 — 16) cos ( ) < (=1)(x% —16)

1
(x —4)2 + y?

lim %2-16)< lim (x%2—16) cos( ( 1)(x? — 16)

(x,y)—>(4,0) ~ (x)— 4.0 (x — 42+ y2> (x, >>ﬁ<4

Then the two limits at the ends of the inequality are clearly equal to 0, by the Squeeze Theorem.
Thus we can conclude

lim (x2 — 16) cos (

(o) (4.0) -2+ y2> -

In Exercises 19-32, evaluate the limit or determine that it does not exist.

o cos(rw)
@w)—>(=2,1)  etw
SOLUTION This function is continuous everywhere since the denominator is never equal to 0, therefore, we will evaluate
the limit by substitution:

19.

Aeos(mw)  (—=2)%cos(r)  16(-1)

i = = =-16
(z,w)»(f2,1) eZ+w €_2+1 8_1 ¢
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. y—2
21. lim —_
(x,)—=>4.2) /x2 _ 4
sOoLUTION The function is continuous at the point (4, 2), since it is the quotient of two continuous functions and the
denominator is not zero at (4, 2). We compute the limit by substitution:

yZ 2-2 0

lim -
>4 Jx2—a J2_a JI2

23.

1
lim  ——
@)= B4) \/x2 + y2

SOLUTION The function o i is continuous at the point (3, 4) since it is the quotient of two continuous functions
xc+y
and the denominator is not zero at (3, 4). We compute the limit by substitution:

lim t 1!
@»—=>@4 /x24+y2  J9+16 5

25. lim 7V In(x —y)
(x,y)—>(1,-3)

soLUTION This function ¢*~Y In(x — y) is continuous at the point (1, —3) since it is the product of two continuous
functions. We can compute the limit by substitution:

li SV Inx —y) =3 In@ +3) = ¢* In4
(x.)—>(1.-3)

27. lim (%32 + 4xy)
Gz

soLuTioN The function x2y3 + 4xy is continuous everywhere because it is a polynomial. We can compute this limit
by substitution:

li (x2y3 4+ 4xy) = 9(—8) + 4(=3)(—2) = —72 + 24 = —48
(@)= (=3,-2)

. 1
29. lim tan(x2 + y2)tan’1 <7>
(x.)—>(0.0) x2 +y?

soLUTION Consider the following inequalities:

T -1 1
—— <tan s
= (7)) -

T tan(x? + y?) < tan(x2 + y?) - (

:l

b
2
< —tan(x? + y?)
242 ) Y

and then taking limits:

a4+ < dim tan(? +y?) - (

lim < ) lim —tan(x +y )
(x.y)—>(0,0) 2 (x,y)—(0,0)

x24+y2) 7 (2,900 2

Each of the limits on the endpoints of this inequality is equal to 0, thus we can conclude:

1

2, 2

tan + . =0
(o) (x2+y2)

lim
(x,y)—>(0,0)

x2 +y
(xy)—>(00) Vx2+y2 41

soLUTION We rewrite the function by dividing and multiplying it by the conjugate of v/x2 + y2 + 1 — 1 and using the
identity (a — b)(a + b) = a® — b2. This gives

2 4 y2 (2 4+ y?) <\/x2 +y2+1+ 1) (x? 4+ y?) (\/x2 +y2+1+ 1)

\/xz—l—yz—l—l—l_(\/ﬁ )(\/ﬁ+l) (x2+y2+1) -1
_ (x2+y2)(\/x2+y2+1+l> _ T+y2+1+1

x2+y2

31.
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The resulting function is continuous, hence we may compute the limit by substitution. This gives

2 2
im Y im (,/x2+y2+1+1>=\/02—|—02+l+1=2
@N=>00) /x2+y2+1-1  (x.)—>0.0)

x3+y3

33. Let Y = ——.
S, y) 24y

(a) Show that
3 < %+, 3 = vl + 9P
(b) Show that | f (x, y)| < |x| + [yl
(c) Use the Squeeze Theorem to prove that lim f(x,y)=0.
(x,y)—(0,0)

SOLUTION

(@) Since |x|y2 > 0, we have

3] < 13+ Ixly? = x B+ xly? = [xl(e? + yP)
Similarly, since |y|x2 > 0, we have

3 < 131+ Iyle? = 1y + Iyl = Iylee® + yP)
(b) We use the triangle inequality to write

EEE R P A
fE = <5
xXc+y xXc+y

We continue using the inequality in part (a):

G2+ %) + 2+ %) (xl+ yDE + 52

f G )l < g el R

That is,

[fCe, Y < |x]+ [yl
(c) In part (b) we showed that

[fCe, Y=< Ix] =+ [yl (1)
Lete > 0. Thenif |x| < § and |y| < 5, we have by (1)

€ €
If(x,y)—OISIXI+|y|<§+§=e 2

. . 2 2 2 )
Notice that if x2 + y2 < &, thenx? < < and y? < <. Hence |x| < § and |y| < §, so (1) holds. In other words, using

D* (%) to represent the punctured disc of radius € /2 centered at the origin, we have

€

(x.3) € D* (5

) > |l<<
2
and
€
Iyl < 3 = [flx,y)—0l<e
We conclude by the limit definition that

lim fx,y)=0
(x,y)—(0,0)

35. & Figure 7 shows the contour maps of two functions. Explain why the limit ( Ii)m » f(x, y) does not exist.
X,y)—>

Does lim 0 g(x, y) appear to exist in (B)? If so, what is its limit?

(x,y)—>
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/NN

18
Q 12
6
0
(A) Contour map of f(x, y) (B) Contour map of g(x, y)

FIGURE 7

SOLUTION As (x, y) approaches arbitrarily close to P, the function f(x, y) takes the values 1, 3, and 5. Therefore
f(x,y) does not approach one limit as (x, y) — P. Rather, the limit depends on the contour along which (x, y)
is approaching P. This implies that the limit lim(, ,)_, p f(x, y) does not exist. In (B) the limit lim(, ). o g(x, )
appears to exist. If it exists, it must be 4, which is the level curve of Q.

Further Insights and Challenges

37. Is the following function continuous?

Fy) = x24y2 ifx24y2 <1
’ 1 ifx24+y2>1
SOLUTION f(x, y) is defined by a polynomial in the domain X2+ y2 < 1, hence f is continuous in this domain. In

the domain x2 + y2 > 1, f is a constant function, hence f is continuous in this domain also. Thus, we must examine
continuity at the points on the circle x2 + y2 = 1.

<

N
N

We express f(x, y) using polar coordinates:

2 0O<r<l1

r
1 r>1

f(r,9)={

Since lim f(r,0) = lim r2=1and lim f(r,0) = lim 1=1,wehave lim f(r,0) = 1. Therefore f(r,0) is
r—1— r—1— r—1+ r—1+ r—1

continuous at » = 1, or f(x, y) is continuous on x2 4+ y2 = 1. We conclude that f is continuous everywhere on R2.

39. Prove that the function

(2¥ = 1)(siny) .
Fly) = 7)@} ifxy #£0
In2 ifxy=0

is continuous at (0, 0).

soLUTION To solve this problem it is necessary to show that lim(, y)_, 0,0y f(x,y) = f(0,0) = In2. Consider the

following:

lim ¥ —Dsiny _ . 2¥ —1 siny

(x,y)—(0,0) Xy (x,y)—>(0,00 x y

X .

=<Iim 2 1><Iim ﬂ)
x—0 pY y—>0 y
In 2)2*
= lim (In2) (1) =1In2
x—0 1

(Using L’Hopital’s Rule on the limit in terms of x.) Thus since lim(, ) 0,0) f(x, y) = (0, 0), we see that f(x, y) is
continuous at (0, 0).
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41. & The function f(x, y) = xzy/(x4 + y2) provides an interesting example where the limit as (x, y) — (0, 0)
does not exist, even though the limit along every line y = mx exists and is zero (Figure 8).
(a) Show that the limit along any line y = mx exists and is equal to 0.
(b) Calculate f(x, y) at the points (10~1, 10~2), (10~°, 10~19), (10=20, 10-49). Do not use a calculator.
(c) Show that( )Iim(O 0 f(x, y) does not exist. Hint: Compute the limit along the parabola y = x2.
X,y)— (U,

X

FIGURE 8 Graph of f(x, y) x%y
X,y) = ——.
V=2
SOLUTION
(@) Substituting y = mx in f(x, y) = x4X7+yVZ we get
X2 -mx mx3 mx
Sx,mx) =

4+ (mx)2 = 2(x2 + m2) T 21 m2
We compute the limit as x — 0 by substitution:

mx m-0

xlino o, mx) = xlino x2 + m? - 02 +m2
(b) We compute f(x, y) at the given points:
1 .o 1072.1072 104 1
JA0 A = 10t T 204 2
10-10. 1010 1020 1
1070 110°20 " 2.10°0 " 2
10~40. 1040 10780 1
1080110780 ~ 2.1080 " 2

£(1075,10710) =

(c) We compute the limit as (x, y) approaches the origin along the parabola y = x2 (by part (b), the limit appears to be
%). We substitute y = x2 in the function and compute the limit as x — 0. This gives

2. .2 4 1 1

lim  floy) = lim fonx?) = lim ——— % — Jim = = lim ===

(x,y)—0 x—0 x—0 x4 (xZ)Z x—02x4% x>02 2
along y=x2

However, in part (a), we showed that the limit along the lines y = mx is zero. Therefore f(x, y) does not approach one

limit as (x, y) — (0, 0), so the limit lim f(x, y) does not exist.
(x,y)—(0,0)

14.3 Partial Derivatives (LT Section 15.3)

Preliminary Questions
1. Patricia derived the following incorrect formula by misapplying the Product Rule:

0
a—<x2y2> = x2(2y) + y?(2x)
X

What was her mistake and what is the correct calculation?
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SOLUTION To compute the partial derivative with respect to x, we treat y as a constant. Therefore the Constant Multiple
Rule must be used rather than the Product Rule. The correct calculation is:

] 0
8—){(ny2) = yzafx(xz) =y2.2x = 2xy°.

. - . d .
2. Explain why it is not necessary to use the Quotient Rule to compute P (x i i) Should the Quotient Rule be used
XAy

il
to compute — (x +y>?
oy \y+1

soLuTIioN In differentiating with respect to x, y is considered a constant. Therefore in this case the Constant Multiple

Rule can be used to obtain
B + 1 9 1 1
() = = =
ax \y+1 y+1ox y+1 y+1

As for the second part, since y appears in both the numerator and the denominator, the Quotient Rule is indeed needed.

3. Which of the following partial derivatives should be evaluated without using the Quotient Rule?

Jd xy a xy 0 y2
(a) a2 (b) ay 2 (C) a9, .2

ox y>+1 dy yc +1 ax y4 41
SOLUTION

(a) This partial derivative does not require use of the Quotient Rule, since the Constant Multiple Rule gives

0 xy \_ 0y 9 . Yy 1o
Pvell B = =) == ==
ox \y¢+1 ye+1 ye+1

(b) This partial derivative requires use of the Quotient Rule.
(c) Since y is considered a constant in differentiating with respect to x, we do not need the Quotient Rule to state that

9 2
K O Y
ax \ y2 +1

4. What is fy, where f(x, y,2) = (sin yz)e? —2 V32

soLuTION In differentiating with respect to x, we treat y and z as constants. Therefore, the whole expression for
f(x,y,z) is treated as constant, so the derivative is zero:

%(sin yzez3_zil*/y) =0.

5. Assuming the hypotheses of Clairaut’s Theorem are satisfied, which of the following partial derivatives are equal to
Jrxy?
@) fryx (b) fyyx (©) fryy (d) fyxx

SOLUTION fyy involves two differentiations with respect to x and one differentiation with respect to y. Therefore, if
f satisfies the assumptions of Clairaut’s Theorem, then

fxxy = fxyx = fyxx

Exercises
1. Use the limit definition of the partial derivative to verify the formulas
d 2 _ 2 9 2
— = — = 2
ax xy Yo, ByXy Xy

soLUTION Using the limit definition of the partial derivative, we have

. +h)y2 —xy?2 24y —xy? oy
—xyzzllmuzImu:hmizhmyz:yz
0x h—0 h h—0 h h—0 h h—0

_ 02— xv2 2 L ouk 4 k2) — xy2 _ 2 L vk 4+ xk2 — xv2
9 2 = tim FOFRT =m0y XOTF DR ART) m oy XY Zeyk A xk” —

ay k—0 k k—0 k k—0 k

= lim (2xy + k) = 2xy + 0 =2
k—0 k k~>0( w6 Y Y
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]
3. Use the Quotient Rule to compute P 2
y X

+y
soLUTION Using the Quotient Rule we obtain

9y :<x+y>3%,<y> yay(x+y) x+y-1-y.1  «x
dyx+y (x +y)? C+y? @+ ?

5. Calculate f;(2, 3, 1), where f(x, y, z) = xyz.
soLUTION We first find the partial derivative f;(x, y, z):

d
felx,y,2) = ?(xyz) =Xy
z
Substituting the given point we get
f:(2,3,1)=2-3=6

7. The plane y = 1 intersects the surface z = x% + 6xy — y* in a certain curve. Find the slope of the tangent line to
this curve at the point P = (1, 1, 6).
soLuTION The slope of the tangent line to the curve z = z(x, 1) = x* 4+ 6x — 1, obtained by intersecting the surface
z = x* + 6xy — y* with the plane y = 1, i the partial derivative 9 (1, 1).
9z d
— = —(x4 + 6xy —y4) = 453 + 6y
dax dx

9
m=-2(1,1)=4-134+6-1=10
ax

L

/50
/70

In Exercises 9-12, refer to Figure 8.

70 50 30

<

\i

N

|
N

|
IS

/

FIGURE 8 Contour map of f(x, y).

9. Estimate f, and fy at point A.
soLUTION To estimate f; we move horizontally to the next level curve in the direction of growing x, to a point A’. The
change in f from A to A’ is the contour interval, Af = 40 — 30 = 10. The distance between A and A’ is approximately
Ax =~ 1.0. Hence,

Af 10

=10
Ax 1.0

fx(A) =
To estimate f, we move vertically from A to a point A” on the next level curve in the direction of growing y. The change
in f from Ato A” is Af =20 — 30 = —10. The distance between A and A” is Ay = 0.5. Hence,
Af  —10

— =~ —20.

fy(A) = A7y =05

11. Starting at point B, in which compass direction (N, NE, SW, etc.) does f increase most rapidly?

SOLUTION The distances between adjacent level curves starting at B are the smallest along the line with slope —1,
upward. Therefore, f is increasing most rapidly in the direction of & = 135° or in the NW direction.

In Exercises 13-40, compute the first-order partial derivatives.
13. z=x2+ y2

soLUTION We compute z, (x, y) by treating y as a constant, and we compute z (x, y) by treating x as a constant:

9 9
— P y) =20 —(xP 4y =2y
dax ay
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15. z = x4y + xy_2
soLUTION \We obtain the following partial derivatives:

9 _ _
a()«“y +xy 2y =4x8y 472

d
5()(4)1 + xy_z) =x*+x- (—2y_3) =x4 - 2xy_3

17. =%
y

SOLUTION Treating y as a constant we have

a (x 109 1
—(2)="rw==1
ox \y y 0x y

We now find the derivative zy (x, y), treating x as a constant:
B (x) 0 (1) -1 —x
RN — =X - — —_ =X - 7 = T
ay \y ay \y y y
19. 7 =9 —x2 — 2

soLuTION Differentiating with respect to x, treating y as a constant, and using the Chain Rule, we obtain

0 1 a —2x —Xx
T Joy2_y2y = = % 9g_,2_\2y_ -
Bx( 9= y) g_xZ_yZE))c(9 =) 2\/9—x2—y2 \/9—x2—y2

We now differentiate with respect to y, treating x as a constant:

a 1 a -2 —
7(/9_)52_))2):7—(9—)(2—)72): Y = )
9_x2_ 20y 2\/9—x2—y2 \/9—x2—y2

dy

21. z = (sinx)(siny)
soLUTION \We obtain the following partial derivatives:

0 . . . 0 . .
—(sinx siny) = sin y— sinx = sin y cos x
0x 0x

a . . R R .
—(sinx siny) = sinx— siny = sinx cos y
dy dy

23. z =tan il
y
SOLUTION By the Chain Rule,
d 1 du d 1 du
—tanu=——-—— and —tanu=——5——.
dx cos2u dx dy cos2u dy

(We could also say that the derivative of tan u is sec? u, but of course sec? u = 1/ cos? u, so it really is the same thing.)
We apply this with u = )}i to obtain

25. z = In(x% + y?)
SOLUTION Using the Chain Rule we have

82 1 d 2+ 2) 2 2x
_ = — —(x = cLX =
0x  x24+y20x x2 4 y2 x2 +y2
0z 1 a 1 2

_ D 2442 = 2y y

ay  x24y2 39y x24y2 T x24y2
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27. W=¢1s

soLuTIoN We use the Chain Rule to compute 3% and 2%

ﬂ :er+s . i(r—ks) :er+s .1:er+s
ar ar
31 — s i(r +5) = TS 1=t
as as

29. z=¢€YY

i d u _ udu. d ju _ udu ,; _ P
soLUTION We use the Chain Rule, we = et =gy with u = xy to obtain

9 Ly bl ,
—eY =V —(xy) =7y = ye
ox 0x

0 a )
—eV =V —(xy) = eVx =xe"?
dy dy

22
3l. z=e % 7Y

soLuTION We use the Chain Rule to find 92 and g—;

9 2.2 90 2_\2 2_y2
T L () = (2 = 2w Y
0x 0x
9 2 .29 2_\2 —x2—y2
o () = e 2y = 2y Y
dy ay

e—rt

33. U =

r

SOLUTION We have

AU  —te " .r—e.1 B —(L+rt)e "t

or r2 r2
and also

AU  —re "t
ar r

35. z= Sinh(xzy)

SOLUTION By the Chain Rule, 4 sinhu = cosh u 4% and diy sinhu = cosh u%. We use the Chain Rule with u = x2y
to obtain

J . 0

— Slnh(xzy) = COSh(xzy)—(xzy) = 2xy COSh(xzy)
ax ax

0 d

— Sinh(xzy) = COSh(xzy)—(xzy) = x2 COSh(xzy)
dy dy

37. w= xyzz3

SOLUTION The partial derivatives of w are

ow 23

ax r2

Jw d

— =x8 = =x3 2y = 2x3%y
dy dy

w d

W 2 () = xy? . 322 = 3xy22
0z 9z



35%6 CHAPTER 14 | DIFFERENTIATION IN SEVERAL VARIABLES (LT CHAPTER 15)

30. Q= %E_LI/M

SOLUTION
0 _ 2 (Le—Lz/M)
aL AL \ M
L _rim —tym 1
= —. (—=t/M - —
A (—t/M) +e i
_ Lty M
M2 M
90 _ 9 (ie—Lt/M)
aIM M \ M
_ L pym Lt | _pym —L
B R 7]
_ Lﬁe—Lt/M _ L -1ym
T M8 M2
99 _ 8 (ie—Lt/M)
ot at \ M
_ Lze—Lz/M
M

In Exercises 41-44, compute the given partial derivatives.
41, f(x,y) = 3%y +4x3y2 —7xy%, £ (1,2)
soLuTION Differentiating with respect to x gives
Sx(x,y) =6xy+ 12x2y2 — 7y5
Evaluating at (1, 2) gives

fe1,2)=6-1.2+12.1%2.22 _7.25 = _164.

43, gw,v) =uln(u +v), gul,2)
soLUTION Using the Product Rule and the Chain Rule we get

9 1
g, v) = — @@ +v) =11 +v) +u- —— = In(u+v) + ——
ou u+v u+v

At the point (1, 2) we have

1 1
1,2)=In(1+2 —— =1In3+ =.
gu(l,2) 1+ )+1+2 +3

Exercises 45 and 46 refer to Example 5.

45. Calculate N for L = 0.4, R = 0.12, and d = 10, and use the linear approximation to estimate AN if d is increased
from 10 to 10.4.

SOLUTION From the example in the text we have

(2200R>1'9
N =
Ld

Calculating N for L = 0.4, R = 0.12, and d = 10 we have

(2200 -0.12
N= (2=

1.9
~ 2865.058
0.4-10 )

then we will use the derivation

IN
AN ~ —Ad
ad
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since d is increasing from 10 to 10.4. We need to compute dN/dd, with L and R constant:

ad ~ ad

_ (2200R\*® & @19,
L ad

2200R \ 19
—1.9( (20 ) d—29

IN 8 (2200R\*°
Ld

we have first

oN 2200-0.12
1.9 <7

L9 2.9
= 10)%7 ~ —544.361
0.4 ) (19

9d |(L,R.d)=(0.4,0.12,10)

Therefore we can conclude:
oN
AN =~ aAd ~ (—544.361)(10.4 — 10) = —217.744

47. The heat index I is a measure of how hot it feels when the relative humidity is H (as a percentage) and the actual air
temperature is 7 (in degrees Fahrenheit). An approximate formula for the heat index that is valid for (T', H) near (90, 40)
is

I(T, H) = 45.33 + 0.6845T + 5.758H — 0.0036572
— 0.1565HT + 0.001H T2

(a) Calculate I at (T, H) = (95, 50).
(b) Which partial derivative tells us the increase in I per degree increase in T when (T, H) = (95, 50). Calculate this
partial derivative.

SOLUTION
(a) Letus compute 7 when T =95 and H = 50:
1(95,50) = 45.33 4 0.6845(95) + 5.758(50) — 0.00365(95)2 — 0.1565(50)(95) + 0.001(50)(95)2
= 73.19125

(b) The partial derivative we are looking for here isa1/0T:

al
3T = 0.6845 — 0.00730T — 0.1565H + 0.002HT

and evaluating we have:

1
g—T(QS, 50) = 0.6845 — 0.00730(95) — 0.1565(50) + 0.002(50)(95) = 1.666

49. The volume of a right-circular cone of radius r and height 2 is V = %rzh. Suppose that r = & = 12 cm. What leads
to a greater increase in V, a 1-cm increase in r or a 1-cm increase in 2? Argue using partial derivatives.

soLUTION We obtain the following derivatives:

A% 0 h o h 2mh
(Tron) =02 mh o, 2nhe

ar o \3" 3 or 3 3
8V 8 7T2 7'[2
Y (S
oh 8h<3r> 3"

An increase Ar = 1 cm in r leads to an increase of %—‘r/(lZ, 12) - 1 in the volume, and an increase Ak = 1 cm in h leads
to an increase of %(12, 12) - 1in V. We compute these values, using the partials computed. This gives

2 hr
3

_2r-12-12
(12,12) 3

11(12, 12) = = 3016
.

aVv b4 2
—(12,12) = - - 12 = 150.8
ah ( ) 3

We conclude that an increase of 1 cm in r leads to a greater increase in V than an increase of 1 cm in 4.
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51. Calculate 9W/9E and 9W /T, where W = e~ E/kT \where k is a constant.
soLUTION We use the Chain Rule

with u = — £, to obtain

oW _ e 9 (_EN_ —Enr 1 :_iefE/kT
0E 0E kT kT kT

W epr D (CEN e (CEN O (LN epr (CEN(CL\_ E ppr
aT aT \ kT k)oar \T k T2 kT2

53. & Use the contour map of f(x, y) in Figure 9 to explain the following statements.
(@) fyislargerat P thanat Q,and fy is smaller (more negative) at P than at Q.
(b) fx(x,y) is decreasing as a function of y; that is, for any fixed value x = a, fx(a, y) is decreasing in y.

207 16~

10
/ —

// X

FIGURE 9 Contour interval 2.

\

\
x

\

)

SOLUTION
(a) A vertical segment through P meet more level curves than a vertical segment of the same size through Q, so f is
increasing more rapidly in the y at P than at Q. Therefore, £, are both larger at P than at Q.

Similarly, a horizontal segment through P meet more level curves at P than at Q, but f is decreasing in the positive
x-direction, so f is decreasing more rapidly in the x-direction at P than at Q. Therefore, f, is more negative at P than
at 0.

(b) For any fixed value x = a, a horizontal segment meets fewer level curves as we move it vertically upward. This
indicates that fy (a, y) in a decreasing function of y.

55. Over most of the earth, a magnetic compass does not point to true (geographic) north; instead, it points at some angle

east or west of true north. The angle D between magnetic north and true north is called the magnetic declination. Use

Figure 11 to determine which of the following statements is true.

(a)8£ >8—D (b)a—D >0 (C)B—D >0
yla 9ylip ax |¢ ay lc

Note that the horizontal axis increases from right to left because of the way longitude is measured.

Magnetic Declination for the U.S. 2004

B TTTITTT
/’/"'ﬁ f
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[l
30°N | 10/ 1111

50°N

——

7Y /“ L ‘ \
120°W 110°W 100°W 90°W  80°W  70°W
X

FIGURE 11 Contour interval 1°.

SOLUTION

(a) To estimate %’; |A and % }B, we move vertically from A and B to the points on the next level curve in the direction

of increasing y (upward). From A, we quickly come to a level curve corresponding to higher value of D; but from B,
moving vertically, there is hardly any change as we move along the curve. The statement is thus true.

(b) The derivative %—? |C is estimated by %. Since x varies in the horizontal direction, we move horizontally from C
to a point on the next level curve in the direction of increasing x (leftwards). Since the value of D on this level curve is
greater than on the level curve of C, AD = 1. Also Ax > 0, hence

aD| _AD 1

—_— =—>0.
ox |¢ Ax Ax

The statement is correct.
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(c) Moving from C vertically upward (in the direction of increasing y), we come to a point on a level curve with a smaller
value of D. Therefore, AD = —1and Ay > 0, so we obtain

aD| _AD -1

— ~x —=—<0
ylc Ay Ay

Hence, the statement is false.

In Exercises 57-62, compute the derivatives indicated.

32 f 32 f
57. f(x,y) = 3x%y — 6xy4, —Z< and —=
VACIR)) y 32 02

soLUTION W first compute the partial derivatives % and %
af

= = 6xy — 6y*;
ax Xy y

af

=L =3x%—6x- 4y3 =3x? — 24xy3
dy

We now differentiate % with respect to x and % with respect to y. We get

92

fo9 22f 9 2 2
— L = — f =6y, —= = — f, = —24x - 3y? = —T2x)°.
3)62 9x fx y 3)72 ay fy X - 3y Xy
u
59. h(u,v) = m, hyy(u, v)
SOLUTION e first note
oh _ —du
v (u+ 4v)?

so thus

dh? ( —4u )_ 32u
a2 w \(w+M)2)  w+4v)3

61 f(x,y) =xInG?), fy(2,3)
soLuTioN We find f, using the Chain Rule:

f a( In y2) 91 '
. = —(X y = X— y = X— - y:—
T ay dy 2 y

We now differentiate f) with respect to y, obtaining

a . a (1 —2x
Sy, y) = g]‘y =2x— <7> =—-
The derivative at (2, 3) is thus

fyy(@2.3) = _372

63. Compute fyyyxzy for

-1
f(x,y,2) = ysin(xz)sin(x +z) + (x + zz) tany + x tan <Z+Zl)
y—=y
Hint: Use a well-chosen order of differentiation on each term.

SOLUTION At the points where the derivatives are continuous, the partial derivative fxy.,y, may be performed in any
order. To simplify the computation we first consider f(x, y, z) as the sum of the following terms:

-1
. . Z+z
F(x,y,2) = ysin(xz)sinx +2), G(x,y,2) = (x+z9)tany, H(x,y,z) =xtan (_1>
y—y

so that

fx,y,20)=F@y,20+Gx,y,20)+H(x,y,2)
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We can differentiate each in any order. First, let us work with F(x, y, z) = ysin(xz) sin(x + z):

d . . . .
Fy(x,y,2) = @(y sin(xz) sin(x + z)) = sin(xz) sin(x + z)
then
b
Fyy(x,y,2) = @(Fy(x, y,2) =0
hence,
Fyyxxz(x,y,2) = 0
Next, let us work with G(x, y, z) = (x + z2) tan y:
0
Gx(x,y,2) = a((x + zz)tan y)=tany
then
d
Gyx(x,y,2) = —(Gx(x,5,2)) =0
0x
Hence

Grxyyz(x,y,2) = 0

y—y1

P ~1 -1
Hy(x,y,z7) = — [xtan inl = tan szl

dx y—y y—y

d
Hyx(x,y,2) = a(Hx(x» v,2) =0

-1
Finally, let us work with H(x, y, z) = x tan (z-i—z)

then

hence,

Hyxyyz(x,y,2) =0
Therefore, we can conclude that fyyxzy(x,y,2) =0+04+0=0.
In Exercises 65-72, compute the derivative indicated.

65. f(u,v) = cos(u +v?), fuuv
sOoLUTION Using the Chain Rule, we have

0 . a .
fu = — cos(u + v2) = —sin(u + vz) . a—(u + v2) = —sin(u + v2)
u

ou

Suu = ai(— sin(u + v2)) = —cos(u + U2)
u

d . d .
Suuv = 87(_ cos(u + vz)) = sin(u + v?) - a—(u +v%) = 2usin(u + v
v v

67. F(r.s.0) =r(s> +1%), Frg
SOLUTION For F(r, s, t) = r(s? + t2), we have

Fr = s2 + t2
Frg =25
Frst = 0

69. F(6,u,v) = sinh(uv +62), Fuup
SOLUTION \We can compute:

F, = v-cosh(uv + 02)
Fuu = v2 - sinh(uv + 62)

Fuuo = 202 cosh(uv + 6%)

2)
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71. g(x, y,z) = \/Xz +y2 +127 8xyz

soLUTION Differentiating with respect to x, using the Chain Rule, we get

a 1 a 1 X
8x = ;T\/xz+y2+z2 = (VD s e =
x 2yx2 4 y2 4 72 0x 2yx% +y? +2° Vx2 4+ y? + 22
We now differentiate g, with respect to y, using the Chain Rule. This gives
d -1/2 1 -3/2 —Xy
gxy = x50+ 4+ 2P) 2 ox. (—5> W24y2 42 gy = ————
y (2 +y2+22)

Finally, we differentiate gy, with respect to z, obtaining

d —3/2 3 -5/2 3xyz
8xyz =—xy3—(x2+y2+zz) =—xy- <—§> @2 +y% +2%) =
2 (2 +y2+22)
. . a d
73. Find a function such that o = 2xy and G = x2.
0x ay

soLuTION The function f(x, y) = x2y satisfies % = x2 and % = 2xy.

75. Assume that fyy and fy, are continuous and that fy . exists. Show that fyy, also exists and that fyxy = fyyx.
SOLUTION Since fyy and fy, are continuous, Clairaut’s Theorem implies that

fxy = fyx (1)
We are given that fy, exists. Using (1) we get

9 9 d
il T
Therefore, fyyx also exists and fyxx = fryx.

77. Find all values of A and B such that f (x, 1) = eA* 1B satisfies Eq. (3).
soLuTION We compute the following partials, using the Chain Rule:

a
fyxx = fyx = afxy = fxyx

% — i(eAX*FBl) — eAx+Bt3(Ax + Bt) — BeAx+Bl
ot ot ot
a a ad
A _ 9 Ax+Bry _ jaxtBt O (4 4 gy p A+
0x 0x 0x

Pf D st 9 Ax+Bt Ax+Br 9 2 Ax+Bt
—= = —(Ae )=A—=(e ) = Ae (Ax + Bt) = A%e
9x2 dx ox ox

Substituting these partials in the differential equation (3), we get

BeAx+Bt — AZeAx+Bt
We divide by the nonzero e4**5! to obtain
B = A?
We conclude that f(x, 1) = eA*T B! satisfies equation (5) if and only if B = A2, where A is arbitrary.

In Exercises 79-82, the Laplace operator A is defined by Af = fxx + fyy. A function u(x, y) satisfying the Laplace
equation Au = 0 is called harmonic.

79. Show that the following functions are harmonic:

@ u(x,y)=x (b) u(x,y) =e*cosy

©) u(x,y) =tan~1 % (d) u(x,y) = In(2 + y2)

SOLUTION
(@) We compute uyy and uyy for u(x, y) = x:

ad ad
sza(x)z:[; Uxx 5(1)20

d 0
uy = @(x) =0; uyy = @(0) =0

Since uyxx + uyy = 0, u is harmonic.
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(b) We compute the partial derivatives of u(x, y) = ¢* cos y:
Uy = i(e" cosy) = COSyiex = (cos y)e*
X 0x 0x
Uy = i(eXCOSy) :e"icow =—e"siny
Y ay ay

d d
= —((cos y)e*) = cos y—e* = (cos y)e*
oy = o ((cos y)e¥) yo¢t = (Cosye

a X o1 X 8 H X
y = —(—e” SIn = —e"— SIny = —e” COS
tyy = 5o(=etsiny) = —et o siny = —e*cosy
Thus,
_ XX _
Uyx +uyy = (COSy)e” —e cosy =0

Hence u(x, y) = e* cos y is harmonic.
(c) We compute the partial derivatives of u(x, y) = tan—12 using the Chain Rule and the formula
X

d 4 1
—tanTtr= ——
dt 1412
We have
; :itanle:;iX:#<;y>:_L
T ax x 14+ G/x0)20x x 1+ (y/x)2 \ x2 x2 4 y2
u:itan_lzzil iz=41 (E>= x
Yoy X1+ (/20y x T 1+ (/02 \x) T x24y2
9 ( y ) 2xy
u = — | - =
X ax X2 +y2 ()C2 +y2)2
] X 2xy
Uyy = — = —
Ty k24020 (24 y2)2
Therefore uyy + uyx, = 0. This shows that u(x, y) = tan—1 4 is harmonic.
X
(d) We compute the partial derivatives of u(x, y) = In(x? + y?) using the Chain Rule:
8 2 2 l 2x
=—1In = 22X = s
’/‘x 8)( (X +y ) x2+y2 X x2+y2
d 2.2 1 2y
uy = — In(x* + = 2y=—"—
Y dy o=+ 24y2 T2
We now find u and uyy using the Quotient Rule:
9 2x 202 +y%) —2x-2x  2(y?2 —x?)
Uxx = = = =
dx x? 4 52 (2 +y2)° (2 +2)°
3y 2y 22 +y2) —2y-2y  2(x% —y?)
u = — = =
Tyt (2 4 y2)? (2 42

Thus,
262 —x%) 262 —y%) _ o
(2 +3y2)? (2 4 y2)?

Uxx + Uyy =

Therefore, u(x, y) = In(x2 + y2) is harmonic.
81. Show that if u(x, y) is harmonic, then the partial derivatives du/dx and du/dy are harmonic.

soLUTION \We assume that the second-order partials are continuous, hence the partial differentiation may be performed
in any order. By the given data, we have

Uxy +uyy =0 1)
We must show that

(ux)yx + (ux)yy =0 and  (uy)  + (uy)y, = 0
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We differentiate (1) with respect to x, obtaining
0= (uxx)y + (uyy), = thxxx + tixyy = (Ux)xx + (Ux)yy 2
We differentiate (1) with respect to y:
0= (uxx)y + (yy), = thxxy + ttyyy = tyxx +ttyyy = (uy) + (y) (3)
Equalities (2) and (3) prove that u, and u,, are harmonic.

83. Show that u(x, 1) = sech?(x — 1) satisfies the Korteweg—deVries equation (which arises in the study of water
waves):

dur + uxxx +12uuy =0
soLUTION In Exercise 72 we found the following derivatives:
Uy = —2 sechz(x —f)tanh(x — 1)
Uxxx = 16sech4(x —t)tanh(x — 1) — 8$ech2(x —1) tanh3(x —1)
Hence,
Qur 4+ uxxy + 12uuy = 83ech2(x —t)tanh(x — ) + 16 sech4(x —t)tanh(x — 1)
- 83ech2(x —1) tanh3(x —1) —24 sech4(x —f)tanh(x — 1)
= 8sech?(x — n{tanh(x — 1) — tanh3(x — n}- 8sech?(x — 1) tanh(x — 1)
= 8sech?(x — 1) tanh(x — n{1- tanh2(x — n}— 8sech?(x — ) tanh(x — 1)
= 8sech?(x — 1) tanh(x — t){sechz(x o 8sech*(x — 1) tanh(x — 1)

=0

14.4 Differentiability and Tangent Planes (LT Section 15.4)

Preliminary Questions
1. How is the linearization of f(x, y) at (a, b) defined?

SOLUTION The linearization of f(x, y) at (a, b) is the linear function
L(x,y)= f(a,b) + fx(a,b)(x —a) + fy(a,D)(y — b)

This function is the equation of the tangent plane to the surface z = f(x, y) at (a, b, f(a, b)).
2. Define local linearity for functions of two variables.

SOLUTION f(x, y) is locally linear at (a, b) if

fx.y) = Lix, y) = €(x, y>\/<x —a)? + (y — b)?

for all (x, y) in an open disk D containing (a, b), where € (x, y) satisfies lim e(x,y)=0.
(x,y)—(a,b)

In Exercises 3-5, assume that
f2,3)=8  fx(2,3)=5 = f,(2,3=7
3. Which of (a)—(b) is the linearization of f at (2, 3)?

(@ L(x,y)=8+5x+7y
(b) L(x,y) =8+4+5(x—-2)+7(y —3)
soLUTION The linearization of f at (2, 3) is the following linear function:

Lx,y) = f(2,3)+ fx2,3)(x =2) + ,(2,3)(y = 3)
That is,

L(x,y)=8+4+5(x—-2)+7(y—3)=—-23+5x+7y

The function in (b) is the correct answer.
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4. Estimate f(2, 3.1).

soLUTION We use the linear approximation
fla+h,b+k)= f(a,b)+ fx(a,b)h + fy(a, bk
We let (a,b) = (2,3),h =0,k =3.1—-3=0.1.Then,
f2,3D) ~ f(2,3) + fx(2,3) -0+ f,(2,3)-01=8+0+7-01=87
We get the estimation f(2, 3.1) ~ 8.7.
5. Estimate Af at (2, 3) if Ax = —0.3and Ay =0.2.
SOLUTION The change in f can be estimated by the linear approximation as follows:
Af =~ fx(a,b)Ax + fy(a,b)Ay
Af ~ fx(2,3)-(=0.3) + fy(2,3)-0.2
or
Af~5.(-03)+7-02=-0.1

The estimated change is Af ~ —0.1.
6. Which theorem allows us to conclude that f(x, y) = x3y8 is differentiable?

soLuTioN The function f(x,y) = x3y8 is a polynomial, hence fy(x,y) and fy(x, y) exist and are continuous.
Therefore the Criterion for Differentiability implies that f is differentiable everywhere.

Exercises
1. Use Eq. (2) to find an equation of the tangent plane to the graph of f(x, y) = 2x2 — 4xy? at (-1, 2).

SOLUTION The equation of the tangent plane at the point (—1, 2, 18) is
2= f(-L2)+ fx (=L, 2)(x + 1) + fy(=1,2)(y — 2) @

We compute the function and its partial derivatives at the point (—1, 2):

f(x,y) = 2x% — 4xy? f(=1,2) =18
fee,y) =4x —4y2 = fi(=1,2) = —20
fy(x,y) = —8xy fy(=1,2) =16

Substituting in (1) we obtain the following equation of the tangent plane:
z=18—20(x + 1) + 16(y — 2) = —34 — 20x + 16y
That is,
z=—34—20x + 16y

In Exercises 3-10, find an equation of the tangent plane at the given point.

3 faw=xty+x® @21
SOLUTION The equation of the tangent plane at (2, 1) is

z=f@2, D+ fx@Q,Dx -2+ /2, Dy -1 @)
We compute the values of f and its partial derivatives at (2, 1):
Fxy) = x%y +xy° f@.1=6
ey =2+ = f@21)=5
fy(x, y) = x% + 3xy? fy(2,1) =10

We now substitute these values in (1) to obtain the following equation of the tangent plane:
z=6+4+5x —2)+10(y — 1) =5x + 10y — 14
That is,
z =5x + 10y — 14.
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_ .2 -2
S o f,y=x"+y 5, 4D
SOLUTION The equation of the tangent plane at (4, 1) is

:=fAD+ A DEx-H+ HEDO-D ()

We compute the values of f and its partial derivatives at (4, 1):

f,y)=x?4y7? f(4,1) =17
fX(xvy):zx = fx(4,1):8
fyle,y) = —2y73 fy(4,1) = =2

Substituting in (1) we obtain the following equation of the tangent plane:
z=174+8(x —4) —2(y —1) =8x — 2y — 13.
1. F(r,s) = r2s=1/2 4 s73, 2,1
SOLUTION The equation of the tangent plane at (2, 1) is
z=fRQD+ QD=+ 2, D -1 (€

We compute f and its partial derivatives at (2, 1):

fr,s) =r2s™Y2 4 3 f2,1)=5
fr(rs) = 2rs~1/? = £2,1)=4
folr,s) = —%rzs***/z —3s74 fs(2,1) = -5

We substitute these values in (1) to obtain the following equation of the tangent plane:
z=5440r —2) -5 —1) =4r — 55 + 2.
9. f(x,y)=sech(x —y), (In4,In2)
SOLUTION The equation of the tangent plane at (In 4, In 2) is:
z=f(n4,In2) + fr(In4,In2)(x —In4) + fy(In4,In2)(y — In2)

We compute f and its partial derivatives at (In4, In 2):
4
f(x,y) =sech(x —y), f(n4,In2) =sech(In2) = 3

frx(x,y) = —tanh(x — y)sech(x —y), fx(In4,In2) = —tanh(In2)sech(In2) = —%

fy(x,y) =tanh(x — y)sech(x — y), fy(In4,In2) =tanh(In2)sech(In2) = %

We substitute these values in the tangent plane equation to obtain:

4 12 12 4
z:g—2—5(x—ln4)+2—5(x—|n2)=—£(3X—3y—5—|n8)

11. Find the points on the graph of z = 32— 4y2 at which the vector n = (3, 2, 2) is normal to the tangent plane.
SOLUTION The equation of the tangent plane at the point (a, b, f(a, b)) onthe graph of z = f(x, y) is
z= f(a,b) + fx(a,b)(x —a) + fy(a, b)(y — b)
or
fxla,D)(x —a)+ fy(a,b)(y —b) —z+ f(a,b) =0
Therefore, the following vector is normal to the plane:

V= (fr(a,b). fya.b). 1)
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We compute the partial derivatives of the function f(x, y) = 3x2 — 4y2:
fxx,y)=6x = fx(a,b)="6a
fyx,y)=-8y = fy(a,b)=-8b

Therefore, the vector v = (6a, —8b, —1) is normal to the tangent plane at (a, b). Since we wantn = (3, 2, 2) to be normal
to the plane, the vectors v and n must be parallel. That is, the following must hold:

6a -8 1
3 2 2
which implies that a = —% and b = %. We compute the z-coordinate of the point:

1\2 1\? 1
=3.|-= — 4] — = —
) ( 4) (8) 8
The point on the graph at which the vector n = (3, 2, 2) is normal to the tangent plane is (—%, 3 %)
13. Findthe linearization L(x, y) of f(x, y) = x2y3at (a, b) = (2, 1). Useittoestimate f(2.01, 1.02) and £(1.97, 1.01)
and compare with values obtained using a calculator.

SOLUTION
(a) We compute the value of the function and its partial derivatives at (a, b) = (2, 1):

flx,y) =x%y8 f@1n=4
frey =202 = f2,1)=4
fy(x, y) = 3x%)? fr2.1) =12

The linear approximation is therefore
Lx,y)=f2 D+ fx2Dx-2+ /2, D -1
L(x,y) =44+4(x —2)+12(y — 1) = =16 + 4x + 12y
(b) Forh = x —2and k = y — 1 we have the following form of the linear approximation at (a, b) = (2, 1):
Lx,y) = f2, 1) + fc 2 Dh+ fy(2, Dk = 4+ 4h + 12k
To approximate f(2.01, 1.02) we set h = 2.01 — 2 = 0.01, k = 1.02 — 1 = 0.02 to obtain
L(2.01,1.02) =4+4-0.01+12-0.02 =4.28
The actual value is
£(2.01,1.02) = 2.012 . 1.02% = 4.2874
To approximate f(1.97,1.01) weseth =1.97 — 2 = —0.03, k = 1.01 — 1 = 0.01 to obtain
L(197,101) =4+4-(-0.03) +12.0.01 = 4.
The actual value is

£(1.97,1.01) = 1.97% - 1.01° = 3.998.

15. Let f(x, y) = x3y~4. Use Eq. (4) to estimate the change
Af = £(2.03,09) — f2.1)

soLUTION \We compute the function and its partial derivatives at (a, b) = (2, 1):

e, y) =x3y™ f2,1) =8
e =3a%"" =5 ARD=12
fy(x,y) = —4x3y~° fy(2,1) = —32

Also, Ax =2.03—-2=0.03and Ay = 0.9 — 1 = —0.1. Therefore,
Af = f(2.03,0.9) — f2, 1) = fx(2,)Ax + fyAy =12.0.034 (-32) - (-0.1) = 3.56
Af ~ 3.56
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17. Use the linear approximation of f(x,y) = ex2+>’ at (0, 0) to estimate f(0.01, —0.02). Compare with the value
obtained using a calculator.

SOLUTION The linear approximation of f at the point (0, 0) is
fh, k)~ f(0,0) + fx (0,00 + fy(0, 0)k 1)

We first must compute f and its partial derivative at the point (0, 0). Using the Chain Rule we obtain

fly) =+ F0.00=e =1

fey) =20 o £(0,00=2-0-2=0

fyly) = £50.0=e =1
We substitute these values and 2 = 0.01, k = —0.02 in (1) to obtain

f(0.01,-0.02) ~1+0-0.01+1-(-0.02) =0.98

The actual value is £(0.01, —0.02) = ¢0-017~0.02 ~, 0 9803,
19. Find the linearization of f(x, y,z) = z./x + y at (8,4, 5).
SOLUTION The linear approximation of f at the point (8, 4, 5) is:
fxy, )~ f(8,4,5 + fx(8,4,5(x —8) + f,(8,4,5(y —4) + fz(8,4,5)(z — 5)

We compute the values of f and its partial derivatives at (8, 4, 5):

flx,y.2) =z/x+, f(8,4,5) =512 = 103
z 5 5
X2 = 50—, 8,45 =——=—_
fx(x,y,2) Zm Sx( ) 2@ 4@
z 5 5
(X, ,2) = 57—, 8,45 =——=—_
oD =275 HEAD =08 T wa
f(0, 9,2 = /x +, f2(8,4,5) =12 = 443
Substituting these values we obtain the linearization:
5 5
3,2 ~10V3+ —(x -8+ —(y -4 +4/3z—5
f(x,5.2) 4\[3( ) 4\/§(y ) (z—5)
5 5
= —(x—8+ —(—4+4/32-15V3
4J§(x ) 4J§(y ) ¢

21. Estimate (2.1, 3.8) assuming that
f(2,4) =5, fx(2,4) =0.3, fr@2,4=-02
soLUTION We use the linear approximation of f at the point (2, 4), which is
fRAhA+k)~ f2,4)+ fx (2, Hh+ (2, Dk
Substituting the given values and z = 0.1, k = —0.2 we obtain the following approximation:

f(2.1,38)~5+03-0.1+4+0.2-0.2=5.07.

In Exercises 23-28, use the linear approximation to estimate the value. Compare with the value given by a calculator.

23. (2.01)3(1.02)2

SOLUTION The number (2.01)3(1.02)2 is a value of the function f(x, y) = x3y2. We use the li(8, near approximation
at (2, 1), which is

fC+h1+k)~ f2, 1)+ fx@2,Dh+ fy(2, Dk o)
We compute the value of the function and its partial derivatives at (2, 1):
fa,y) = x3y? f.1=8
Loy =322 = f@21)=12
fy@y) =2x3y f3(2,1) =16
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Substituting these values and # = 0.01, k = 0.02 in (1) gives the approximation
(2.01)3(1.02)> ~ 8 +12-0.01 + 16 - 0.02 = 8.44

The value given by a calculator is 8.4487. The error is 0.0087 and the percentage error is

0.0087 - 100
Percentage error ¥ —————— = 0.103%
8.4487

25. /3.012 4 3.992

soLuTIoN This is a value of the function f(x, y) = v/x2 + y2. We use the linear approximation at the point (3, 4),
which is

f@+h4+kb)~ f3, 4+ @B, Hh+ f,3, bk (1)

Using the Chain Rule gives the following partial derivatives:

fx,y) =/x2+y2 f(3.,4) =5

2x X 3
fr(x, ) = = = fx@BdH=c
' 2/x2 42 x24)2 ' 5
2y y 4
fy(x, y) = = HBH =
7 22 +2  Jx24 2 Y 5

Substituting these values and 2 = 0.01, k = —0.01 in (1) gives the following approximation:

3 4
V3.012 43992 ~ 5 + c 0.01 + z (—0.01) = 4.998

The value given by a calculator is v/3.012 + 3.992 ~ 4.99802. The error is 0.00002 and the percentage error is at most

0.00002 - 100
N — = 9
Percentage error 4.99302 0.0004002%

27. 4/(1.9)(2.02)(4.05)
soLUTION \We use the linear approximation of the function f(x, y, z) = /xyz at the point (2, 2, 4), which is
fRHR2+k4+D~ 2,2, + fx(2,2,Hh+ 12,2, Dk + f,(2,2,4)] )

We compute the values of the function and its partial derivatives at (2, 2, 4):

[y, 2) = xyz f2,2,4) =4
fx(x,y,z)zzj%zé % = f(2,2,4)=1
frx,y, 0= 2\;—)% = % xy—z fr2.2.4=1
fa(x.y.2) = 25)% = % % £(2,2,4) = %

Substituting these values and # = —0.1, k = 0.02, / = 0.05 in (1) gives the following approximation:

1
V(1.9)(2.02)(4.05) =4 +1-(=0.1) +1-0.02 + 5(0.05) =3.945
The value given by a calculator is:

v/ (1.9)(2.02)(4.05) ~ 3.9426

29. Find an equation of the tangent plane to z = f(x, y) at P = (1, 2, 10) assuming that
f(@1,2) =10, f(1.1,2.01) = 10.3, f(1.04,2.1) =9.7
SOLUTION The equation of the tangent plane at the point (1, 2) is

=LY+ QD& -D+ 11,2y -2
z=10+ fx1,D(x -+ /LA, D —2) @
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Since the values of the partial derivatives at (1, 2) are not given, we approximate them as follows:
fA1,2)-51,2)  f(11,201)-f(1,2)

L2 01 0.1 3
f@2D) - fL2)  fA042D) - fLD)
Had.2 0.1 - 0.1 =3

Substituting in (1) gives the following approximation to the equation of the tangent plane:
z=10+3(x—-1)—-3(y -2

Thatis, z = 3x — 3y + 13.

In Exercises 31-34, let I = W/H2 denote the BMI described in Example 5.

31. A boy has weight W = 34 kg and height H = 1.3 m. Use the linear approximation to estimate the change in 7 if
(W, H) changes to (36, 1.32).

SOLUTION Let AT = (36, 1.32) — 1(34, 1.3) denote the change in I. Using the linear approximation of 7 at the point
(34, 1.3) we have

ol ol
134+ h,1.3+k)—1(34,1.3) ~ —(34,1.3)h + —(34,1.3)k
(34 + + k) ( ) 3W( ) +3H( )
For h = 2, k = 0.02 we obtain
a7 al
Al ~ —(34,1.3)-2+ —(34,1.3) - 0.02 1
8W( ) +8H( ) €y

We compute the partial derivatives in (1):

a9 w1

oW~ 9w H2 ~ H2

ol o, 3. —2W ol

— =W—H *“=W- - (=2H %)= —— —(34,1.3) = —30.9513
9H OH ( ) H3 = BH( »1.3)

Substituting the partial derivatives in (1) gives the following estimation of AI:

al
——(34,1.3) = 0.5917
ow

Al ~0.5917 - 2 — 30.9513 - 0.02 = 0.5644

33. (a) Showthat AT ~Qif AH/AW ~ H/2W.

(b) Suppose that (W, H) = (25, 1.1). What increase in H will leave I (approximately) constant if W is increased by
1 kg?

SOLUTION

(a) The linear approximation implies that
al al
Al ~ —AW + —AH
ow oH
Hence, AT =~ 0 if
al al

— AW+ —AH=0 1
oW + oH @)

We compute the partial derivatives of I = %:

a o (W) 1
ow — aw \H2)  H2

I 5 3 —2W
— =W—(H %) =—-2WH 3= ——
aH aH H3
We substitute the partial derivatives in (1) to obtain
1 2w
— AW - —AH=0
H? H3
Hence,
1 2w
— AW = AH
H? H3
or

AH 1 H3 H

AW T HZ 2W 2w
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e AH H
(b) In part (a) we showed that if AW = 7w

H =11, AW =1, and solve for AH. This gives
AH 11

— = AH ~0.022 meters.

1 50
That is, an increase of 0.022 meters in H will leave I approximately constant.
35. Acylinder of radius » and height & has volume V = rr2h.
(a) Use the linear approximation to show that

AV 2Ar Ak
v o r h

(b) Estimate the percentage increase in V if r and & are each increased by 2%.

= then I remains approximately constant. We thus substitute W = 25,

(c) The volume of a certain cylinder V is determined by measuring » and 4. Which will lead to a greater errorin V: a

1% error in r or a 1% error in h?

SOLUTION
(a) The linear approximation is

AV ~ V. Ar + Vi, Ah

We compute the partial derivatives of V = 7rlh:

]
V, = Th—r2 = 2hr
or

Substituting in (1) gives
AV ~ 27hr Ar 4+ wr? Ah

We divide by V = 7r2h to obtain

AV 2w hr Ar N 7r2 Ah B 2w hr Ar n xr2Ah _ 2Ar

v % % 7r2h 7r2h
That is,

% r h

AV _2Ar A
~—+

(b) The percentage increase in V is, by part (a),

AV A Ah
27 100~ 22" 100 + 22 . 100
\% r h

We are given that % -100 = 2 and % - 100 = 2, hence the percentage increase in V is

AV
7-100:2-2—{—2:6%

(c) The percentage error in V is

AV A Ah
27 100=22" 100+ 22 100
\% r h

A 1% error in r implies that % -100 = 1. Assuming that there is no error in &, we get

A
7‘/-100:2»14—0:2%

A 1% in h implies that ATh - 100 = 1. Assuming that there is no error in r, we get

A
TV-100=0+1=1%

We conclude that a 1% error in r leads to a greater error in V than a 1% error in 4.

r

Ah

h

@
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37. The monthly payment for a home loan is given by a function f (P, r, N), where P is the principal (initial size of the
loan), r the interest rate, and NV is the length of the loan in months. Interest rates are expressed as a decimal: A 6% interest
rate is denoted by r = 0.06. If P = $100,000, r = 0.06, and N = 240 (a 20-year loan), then the monthly payment is
£(100,000, 0.06, 240) = 716.43. Furthermore, at these values, we have

of = 0.0071, o = 5769, o = —1.5467
oP or N

Estimate:

(a) The change in monthly payment per $1000 increase in loan principal.

(b) The change in monthly payment if the interest rate increases to r = 6.5% and r = 7%.
(c) The change in monthly payment if the length of the loan increases to 24 years.

SOLUTION
(a) The linear approximationto f(P,r, N) is

of af af
A~ AP+ A4 Y AN
ey R PR

We are given that 24 = 0.0071, % = 5769, 2 — —1.5467, and AP = 1000. Assuming that Ar = 0 and AN = 0,
we get

Af =~ 0.0071-1000 =7.1

The change in monthly payment per thousand dollar increase in loan principal is $7.1.
(b) By the given data, we have

Af ~ 0.0071AP + 5769Ar — 1.5467TAN 1)

The interest rate 6.5% corresponds to » = 0.065, and the interest rate 7% corresponds to r = 0.07. In the first case
Ar = 0.065 — 0.06 = 0.005 and in the second case Ar = 0.07 — 0.06 = 0.01. Substituting in (1), assuming that
AP =0and AN =0, gives

Af =5769-0.005 = $28.845
Af =5769-0.01 = $57.69
(c) We substitute AN = (24 — 20) - 12 = 48 months and Ar = AN = 0 in (1) to obtain
Af ~ —1.5467 - 48 = —74.2416
The monthly payment will be reduced by $74.2416.

39. The volume V of a right-circular cylinder is computed using the values 3.5 m for diameter and 6.2 m for height. Use
the linear approximation to estimate the maximum error in V if each of these values has a possible error of at most 5%.
Recall that V = 7r2h.

soLUTION We denote by d and & the diameter and height of the cylinder, respectively. By the Formula for the Volume
of a Cylinder we have

The linear approximation is

av A%
AV~ —Ad+ —Ah 1
ad * oh @)

We compute the partial derivatives at (d, h) = (3.5, 6.2):

aV T T aV
—(d,h)=—h-2d = —hd — (3.5, 6.2) ~ 34.086
Bd( ) 4 2 N Bd( )

A% b 2 A%

—(d,h) = —d —(3.5,6.2) =9.621
Bh( ) 4 ah( )

Substituting these derivatives in (1) gives

AV ~ 34.086Ad + 9.621Ah )
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We are given that the errors in the measurements of  and 4 are at most 5%. Hence,

Ad
A4 005 Ad = 0.175
35 =

%’ —005 = Ah=031

Substituting in (2) we obtain
AV =~ 34.086 - 0.175 + 9.621 - 0.31 ~ 8.948

The error in V is approximately 8.948 meters. The percentage error is at most

AV -100  8.948-100

- S = 15%
v T .352.6.2

Further Insights and Challenges

41. This exercise shows directly (without using Theorem 1) that the function f(x, y) = 5x + 4y? from Example 1 is
locally linear at (a, b) = (2, 1).

(a) Show that f(x, y) = L(x, y) + e(x, y) With e(x, y) = 4(y — 1)°.

(b) Show that

0< <4y—1
e T

(c) Verify that f(x, y) is locally linear.
soLuTION According to Example 1,
L(x,y) =—4+5x +8y
(a) We compute the difference:
F(x,y) = L(x,y) = (5x +4y%) — (=4 + 5x + 8y)
=4y2 — 8y +4=4(y - 1)?
Therefore, f(x,y) = L(x, y) + 4(y — 1)2.
(b) For (x,y) # (2, 1), we consider
e(x.) A1
VE =22+ -12  Jr-22+(y-1)72

The following inequality holds

—_1)2 _1\2
4(y — 1) < 4(y — 1) — 4y — 1|
Va-22+06-12 " Jiy-1?

because we have made the denominator smaller.
(c) We have

S, y)=Lx,y) +elx,y)
where

CY <4y

TVe =22+ (-2
We have lim L 4]y — 1| = 0, and therefore

(x,»)—>(2,1)

lim e(x,y)=0
(x,y)—>(2,1)

by the Squeeze Theorem. This proves that f (x, y) is locally linear at (2, 1).

43. Differentiability Implies Continuity Use the definition of differentiability to prove that if f is differentiable at
(a, b), then f is continuous at (a, b).

SOLUTION Suppose that f is differentiable at (a, b), then we know f is locally linear at (a, ), that is

fl,y)=Lx,y) +elx,y)
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where e(x, y) satisfies

. e(x,y) .
lim = lim
@n=@b) J(x —a)2 4+ (y—b)2  @»=>@b)

E(x,y)=0

and

L(x,y) = f(a.b) + fx(a,b)(x —a) + fy(a,b)(y — b)

We would like to show lim, yy_, .5y f(x,¥) = f(a, b), then f would be continuous at (a, b). Consider the following
computation:

lim  fx,y)= lim L(x,y) +e(x,y)
(x,y)—(a,b) (x,y)—(a,b)

= lim L, y) 4+ E@, )y (x —a)2+ (y — b)?
(x,y)—(a,b) \/

= lim f(a,b)+ fx(a,b)(x —a) + fy(a,b)(y = b) + E(x, y)/(x —a)2+ (y —b)?
(x,y)—(a,b)

= f(a,b) +0+0+0= f(a,b)
Therefore we have shown that if f is differentiable at (a, b) then f is continuous at (a, b).

45. Assumptions Matter Define g(x, y) = 2xy(x + y)/(x2 + y2) for (x,y) # 0and g(0,0) = 0. In this exercise,
we show that g (x, y) is continuous at (0, 0) and that g, (0, 0) and gy (0, 0) exist, but g(x, y) is not differentiable at (0, 0).
(a) Show using polar coordinates that g(x, y) is continuous at (0, 0).

(b) Use the limit definitions to show that g, (0, 0) and gy (0, 0) exist and that both are equal to zero.

(c) Show that the linearization of g(x, y) at (0, 0) is L(x, y) = 0.

= 0. Then observe that this is not the

h,h
(d) Show that if g(x, y) were locally linear at (0, 0), we would have hlimo 8¢ Y )
=

case because g(h, h) = 2h. This shows that g(x, y) is not locally linear at (0, 0) and, hence, not differentiable at (0, 0).

SOLUTION

(@) Wewould like toshow lim(, ) (0,0) 8(x, ¥) = g(0, 0). Consider the following, using polar coordinates, x = r cos¢
and y = rsiné:

2xy(x +y) lim 2r2c0s0sinO(rcosO + rsind)
@)=00) x2+y2  (n6)—(0.0) r2cos26 +r2sin 6
- 2r3c0s 0 sinH(cos O + sin )
T (r,6)—(0,0) r2
= lim 2r cosésinf(cosd +sind) =0 = g(0, 0)
(r,6)—(0,0)
Therefore g(x, y) is continuous at (0, 0).
(b) Taking partial derivatives we have:
v 2y2(y = x)? v 22(x — y)?
X, V)= —F——55, X,V = ———5
STy YT a2

But we need to use limit definitions for the partial derivatives. Consider the following:

. g(h,0)—g(0,0)

0,0) = lim >¥——-—">"——~

8x(0,0) h|—>0 7

= lim 1(0—0):0
h—0h

_ i 8(0.h) —¢(0,0)

8.0 = hITO h

= lim 1(O—O) =0
h—0h

Thus both partial derivatives exist and gx (0, 0) = 0 and gy (0, 0) = 0.
(c) We know that the linearization of g will be:

g(x,y) ~ g(0,0) + gx(0,0)(x — 0) + g4(0,0)(y — 0)
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We are given that g(0, 0) = 0. In part (b) we know g, (0,0) = 0 and g, (0, 0) = 0. Substituting in these values in the
linearization we have:
glx,y)~04+040=0

(d) We know if g were locally linear at (0, 0), we would have:

h,h
tim 8% _ g
h—0 h
However, we know:
2h2(2h) g(h,h)  2h
h,h) = = 2h, =—=2
g =2 I h

This is a contradiction, g(x, y) is not locally linear at (0, 0) and hence, is not differentiable at (0, 0).

14.5 The Gradient and Directional Derivatives (LT Section 15.5)

Preliminary Questions
1. Which of the following is a possible value of the gradient V f of a function f (x, y) of two variables?
(@ 5 (b) 3.4) (c) (3.4,5)

SsOoLUTION The gradient of f(x, y) is a vector with two components, hence the possible value of the gradient V f =
af Af\;

(W 8) is (b).
2. True or false? A differentiable function increases at the rate ||V fp|| in the direction of V fp.

SOLUTION The statement is true. The value ||V fp|| is the rate of increase of f in the direction V fp.
3. Describe the two main geometric properties of the gradient V f.

SOLUTION The gradient of f points in the direction of maximum rate of increase of f and is normal to the level curve
(or surface) of f.

4. You are standing at a point where the temperature gradient vector is pointing in the northeast (NE) direction. In which
direction(s) should you walk to avoid a change in temperature?

(a) NE (b) NW (c) SE (d) sw
SoLUTION The rate of change of the temperature T at a point P in the direction of a unit vector u, is the directional
derivative Dy T (P), which is given by the formula

DyT(P) =V fpllcos6

To avoid a change in temperature, we must choose the direction u so that Dy T (P) = 0, that is, cosf = 0,50 6 = % or

0= 37” Since the gradient at P is pointing NE, we should walk NW or SE to avoid a change in temperature. Thus, the
answer is (b) and (c).

5. What is the rate of change of f(x, y) at (0, 0) in the direction making an angle of 45° with the x-axis if V (0, 0) =
(2,4)?

soLUTION By the formula for directional derivatives, and using the unit vector (1/ﬁ, 1/ﬁ), we get (2,4) -

(1/v/2,1/4/2) = 6/4/2 = 3V2.

Exercises
1. Let f(x,y) = xy?and c(r) = (312, 19).
(a) Calculate V £ and ¢/(¢).

. d
(b) Use the Chain Rule for Paths to evaluate Ef(c(t)) atr=1andr = —1.
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SOLUTION

(a) We compute the partial derivatives of f(x, y) = xy2:

a a
‘—f = 2, —f = 2xy
ax dy
The gradient vector is thus
V= 2xy)

Also,

(b) Using the Chain Rule gives

4a. _d (1o 6\ _d(Lls)_,7
dtf c®) = dt <2t ! ) T dr <2t ) =4

Substituting x = 372 and y = r%, we obtain

d 1
Tfem) =i 1+2. 5352 =47

At the points =1 and ¢ = —1, we get

4 41— & 4 (1) =
o (f(C(t)))t =4-1"=4 - (f(C(t)))t =4.-(-D'=-4

3. Figure 14 shows the level curves of a function f(x, y) and a path c(z), traversed in the direction indicated. State
whether the derivative = f(c(r)) is positive, negative, or zero at points A-D.

y
8
4 /D c)\ 20
_10 B

0
0 A 10

20

30
-4

X
-4 0 4 8
FIGURE 14

SOLUTION At points A and D, the path is (temporarily) tangent to one of the contour lines, which means that along the

path c(¢) the function f(x, y) is (temporarily) constant, and so the derivative %f(c(t)) is zero. At point B, the path is
moving from a higher contour (of —10) to a lower one (of —20), so the derivative is negative. At the point C, where the
path moves from the contour of —10 towards the contour of value 0, the derivative is positive.

In Exercises 5-8, calculate the gradient.

5. f(x,y) = cos(x? + y)
soLUTION We find the partial derivatives using the Chain Rule:

%:_Sin(x2+y>%(x2+y):_2xsin(x2+y)

% = —sin (x2—|—y> % <x2—|—y> = —sin <x2 —I—y)
The gradient vector is thus

Vf= <% %> = <—2xsin <x2 +y> , —sin <x2 +y)> = —sin <x2 +y) (2x,1)
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7. h(x,y,2) = xyz~3

soLUTION \We compute the partial derivatives of 4(x, y, z) = xyz*?’, obtaining

oh ah ah
— =y 3, —=x3 = =xy. (—32*4) = 3xyz 4
0x ay 9z

The gradient vector is thus

oh 9h oh 3 s 4
vhp= (28 o o =( =3 xz73, _3xyz >
<3x oy 32> vz~ xz Xyz

. . d
In Exercises 9-20, use the Chain Rule to calculate Ef(c(t)).

9. f(x,y)=3x -7y, c()=(cost,sint), t=0

soLUTION By the Chain Rule for paths, we have

d
Ef (©®) =V fey - ¢ @) (1)
We compute the gradient and the derivative ¢’ (¢):

Vf= <% ﬁ> =(3,-7), c/(t)=(—sint,cost)
dx dJy

We determine these vectors at 1 = 0:
¢/(0) = (—sin0, cos0) = (0, 1)
and since the gradient is a constant vector, we have
Ve = Va0 =8 -7

Substituting these vectors in (1) gives

4rean| =@-n-0y=0-7=-7
dr -0

11. f(x,y) =x2 —3xy, c(t) = (cost,sint), t=0

SOLUTION By the Chain Rule For Paths we have

d /
Ef €®) =V [ @) 1)

We compute the gradient and ¢’ (z):

(AN o gy
Vf_<ax,ay>_(2x 3y, —3x)

c/(1) = (—sint, cost)
At the point r = 0 we have
¢(0) = (cos0,sin0) = (1,0)
¢/(0) = (—sin0, cos0) = (0, 1)

Vf‘ =Vf(1’0)=(2~1—3~0,—3~1)=(2,—3)
c(0)

Substituting in (1) we obtain

=(2,-3)-(0,1) = -3

t=0

d ct
Ef(())
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13. f(x,y) =sin(xy), c@) = (%, ¢%), 1=0

sOoLUTION By the Chain Rule for Paths we have
d . ,
Zf €@®)=Vfee-c@®)

We compute the gradient and ¢’(¢):

5r 8y> = (ycos(xy), x Cos(xy))

v (2.2
c(r) = (262’, Se3t>
At the point 7 = 0 we have
¢ = (% %) = . 1)
¢ =(20.3%) = (2.3)
V fe0) = Vfg,1 = (cosl, cosl)

Substituting the vectors in (1) we get

= (cos1,cosl)-(2,3) =5cosl
t=0

d
Zf (c@®))

15. f(x,y)=x—xy, c@t) =2 t2—4), t=4

soLuTioN \We compute the gradient and ¢’ (¢):

_ (3
vf_<8x’8y

> ={1-y,—x
c(1) = (2,2t — 4)
At the point 7 = 4 we have
o) = (42,42~ 4.4) = 16,0
‘@ =(2-42-4-4) =84
V fey = V fae,0) = (1 -0, —16) = (1, —16)

We now use the Chain Rule for Paths to compute the following derivative:

d
If () ’ = Vfewy ¢4 =(1,-16) - (8,4) =8 — 64 = —56
! =4

17. f(,y)=Ix+Iny, c@t) = (cost,1?), t=1%
SoLUTION We compute the gradient and ¢/ (¢):

of of

{4

c/(r) = (—sint, 2t)

v =

At the point r = 7 we have

(=t (-5
Vi) = Vf(g,%) - <ﬁ 7176>

(LT SECTION 15.5)

31

)
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Using the Chain Rule for Paths we obtain the following derivative:

d ST 16 V2 7 _ 8 _

I

19. g(x,y,2) =xyz L, c@)=(,1,1%), 1=1

SOLUTION By the Chain Rule for Paths we have

d
—78(C0) = Veeq) - @) @)

We compute the gradient and ¢/ (¢):

()= 1,2)
At the point r = 1 we have
c(l) = (e, 1,1)
/(1) = (e, 1,2)
Vee@) = V81,1 = (1, e, —e)

Substituting the vectors in (1) gives the following derivative:

d
—g (c()) =(l,e,—e)-(¢,1,2) =e+e—2¢=0
dt t=1

In Exercises 21-30, calculate the directional derivative in the direction of v at the given point. Remember to normalize
the direction vector or use Eq. (4).

21 f(r,y)=x24y3 v=(4,3), P=(12

soLUTION W first normalize the direction vector v:

e v _ 43 <f §>
vl /42132 \5'5
We compute the gradient of f(x, y) = x2 + y3 at the given point;
af aof 2
v = —_— —_— = v =
f <ax, ay> <2x, 3y > = Va2 =212

Using the Theorem on Evaluating Directional Derivatives, we get

4 3 8 36 44
Dyf(1,2) =V fua2-u=(212) < >

S =242 =88
55 +

23 fxr,y)=x%% v=i+j, P=(}3)

soLUTION We normalize v to obtain a unit vector u in the direction of v:

o= =T ivp=tiv
vl V2 V22
We compute the gradient of f(x, y) = x2y3 at the point P:
[N (508 5,22 L3 L2\ g3\ gL 3
Vf_<ax,8y>_<2xy,3xy) = Vf(%’s)_ 2.5-3%3. 53 =(0.7) =0+ ]

The directional derivative in the direction v is thus

o (52) -1 v (o 20 (G ) -
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25. f(x,y)=tan"txy), v=(L1), P=(@3.4
soLUTION We first normalize v to obtain a unit vector u in the direction v:

\% 1
u=—=—(1,1)
vl V2
We compute the gradient of f(x, y) = tan_l(xy) at the point P = (3, 4):
af of y X 1
s~ Bl )
dx’ dy 14+ (xy)? 14 (xy) 1+4xcy
1 1
\Y% =————(4,3)=—(4,3
f3.4 1+32.42< ) 145< )

Therefore, the directional derivative in the direction v is

1 1 1 7 72
Duf(3, 4=V U=-— (43 —1,1)=——@443)=——=——
u/ Jaa U= 14 V2 14572 1452 290
27. fx,y) =2 +y2), v=3i—2j, P=(1,0)
soLUTION We normalize v to obtain a unit vector u in the direction v:
Y 1 1
( i)] /3 )

vl /32 4 (_2)2

We compute the gradient of f(x, y) = In (x2 + y2> at the point P = (1, 0):

Vf=<% y>=< 2x 2y >= 2 (x, y)
ax’ dy x2 4327 x2 432[ x24y2

Viwo = (1,0) = (2,0) = 2i

2
12 +02
The directional derivative in the direction v is thus

1 6
Dyf(1,00=V U=2-——@Bi—2j) = —
uf(l,0) fa,o-u=2i m(l i) Ve

29. g(x,y,2)=xe Y%, v=(1,1,1), P=(12,0)
soLUTION We first compute a unit vector u in the direction v:

v 1,1,1) 1
SR i e 1,1,1)

U= —= :7(
Vil V12412412 V3

We find the gradient of f(x, y, z) = xe Y% at the point P = (1, 2, 0):
af of aof

V= <£ ay’ E> = [e77%, —xze™ %, —xye %) = e (1 —xz, —xy)
V120 = (1,0,-2) = (1,0, -2)

The directional derivative in the direction v is thus
1 1

1
Dyf(1,2,00=V -u=(1,0,-2)- —(1,1,1) = 1+40-2)=——
uf( ) Jf1,2,00-u=( ) \@( ) ﬁ( + ) Ne

31. Find the directional derivative of f(x, y) = x2 4 4y2 at P = (3, 2) in the direction pointing to the origin.

319

-
SOLUTION The direction vector isv =P O= (—3, —2). A unit vector u in the direction v is obtained by normalizing v.

That is,
u= 2 3.2 - 1 (3,2
vl /32422 V13

We compute the gradient of £ (x, y) = x2 + 4y?2 at the point P = (3, 2):

)

vf:<7 —y>:(2x,8y) = V@2 =16.16)
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The directional derivative is thus

-1 -50
Dyf@3,2)=V -u=1(6,16) - — (3,2) = —
uf@3,2) f@,2)-u={ >«/E( ) e

33. A bug located at (3, 9, 4) begins walking in a straight line toward (5, 7, 3). At what rate is the bug’s temperature
changing if the temperature is T'(x, y, z) = xe¥~%? Units are in meters and degrees Celsius.

SOLUTION The bug is walking in a straight line from the point P = (3, 9, 4) towards Q = (5, 7, 3), hence the rate of
change in the temperature is the directional derivative in the direction of v = P_>Q We first normalize v to obtain

Ve PO=(5-37-9.3—4)= (2. -2, —1)
v @2-2-1 1

U= — =2 = (2, -2,-1)
VI~ Var4+1 3

We compute the gradient of 7'(x, y, z) = xe¥ "% at P = (3,9, 4):

<8T aT 8T>

VT =(—, —, —
dx dy 0z

= <eyfz, xed 7%, —xeyfz> =’ (1, x, —x)

VT4 = *(1,3-3) =¢°(1,3,-3)
The rate of change of the bug’s temperature at the starting point P is the directional derivative

1 5
Duf(P)=VT3g4 U=e (1,3 -3)- s2-2-1)= —% ~ —49.47

The answer is —49.47 degrees Celsius per meter.

35. Suppose that V fp = (2, —4,4). Is f increasing or decreasing at P in the directionv = (2, 1, 3)?

soLUTION \We compute the derivative of f at P with respect to v:
Dyf(P)=Vfp-v=(2,-4,4)-(2,1,3)=4-4+412=12>0

Since the derivative is positive, f is increasing at P in the direction of v.

37. Let f(x,y,z) = sin(xy +z) and P = (0, —1, 7). Calculate Dy f (P), where u is a unit vector making an angle
6 = 30° with V fp.

soLUTION The directional derivative Dy f(P) is the following dot product:
Duf(P)=Vfp-u

Since u is a unit vector making an angle & = 30° with V fp, we have by the properties of the dot product

. 3
Dyf(P)=1Vfpll-lullcos30 =7||prll @
We now must find the gradient at P and its length:
af of of
Vi={3p Frileed (ycos(xy + z), x CoS(xy + z), COS(xy + 2)) = €OS(xy + z) (¥, x, 1)

Vf 017 =087 (~1,0,1) = —1(~1,0,1) = (1,0, -1)

Hence,

IV £ 1.0l =112 1024 (12 =2

Substituting in (1) we get

3
Dyuf(P) = gfz:

o5

39. Find a vector normal to the surface x2 + y2 — z2 =6at P = (3, 1, 2).
soLUTION The gradient V fp is normal to the level curve £ (x, y, z) = x2 + y2 — z2 = 6 at P. We compute this vector:

fa(x,y,2) =2x
frx,y,2)=2y = Vfp=Vfg12 =62 -4)
fz(x,y,2) =2z

The vector (6, 2, —4) is normal to the surface x2 + y2 —z2=6atP.
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41. Find the two points on the ellipsoid

N

X
4
where the tangent plane is normal tov = (1, 1, —2).

2
+%+22=1

2 2
SOLUTION The gradient V fp is normal to the level surface f(x, y, z) = il + R +z2=1.1fv= (11, —2)isalso

normal, then V fp and v are parallel, that is, V fp = kv for some constant k. This yields the equation
2
VIp= (5. 2 = k(L 1,-2)

Thus x = 2k, y = 9k/2, and z = —k. To determine k, substitute in the equation of the ellipsoid:

2 2 2 2
2k 9k/2
P o @ 9k2)

X 2
il k=1
4 9 4 9 +h

This yields k? + 3k% + k? = 1 or k = £2/+/17. The two points are

9 4 9 2
s Ve & =2k,*k,—k =4+ _—, —, —
(oo 32 = (@ 5k =0 (ﬁ Vit m)

In Exercises 42-45, find an equation of the tangent plane to the surface at the given point.
43. xz+2x%y +y2:3 =11, P=(2.1,1)
SOLUTION The equation of the tangent plane at P is
Vfp-(x—2,y—1,z—-1)=0 1)
We compute the gradient of f(x, v, z) = xz 4+ 2x2y + y2z3 at the point P = (2, 1, 1):

Vf= <% % %> = (z +4xy, 2x2 + 2y x + 3y212>
At the point P we have
Vip =9 10,5)
Substituting in (1) we obtain the following equation of the tangent plane:
(9,10,5) - (x —2,y—1,z—-1)=0
9x —2)+10(y — 1) +5(z—-1) =0
or

9x + 10y + 5z = 33
45. In[1+4x2 +9y41 - 0122 =0, P =(3,1,6.1876)
SOLUTION The equation of the tangent plane at P is
Vip-(x—3,y—1z—6.1876) =0 1)
We compute the gradient of £ (x, v, z) = In(1 + 4x2 + 9y*) — 0.1z2 at the point P:

<8f af 3f>

8x 36y°3
= , ,—0.2z
1+ 4x2 +9y4" 1+ 4x2 4 9y4

Vf=

ax’ 3y’ oz
At the point P = (3, 1, 6.1876) we have

Vip= <$ % —1.2375> = (0.5217,0.7826, —1.2375)
We substitute in (1) to obtain the following equation of the tangent plane:

0.5217(x — 3) +0.7826(y — 1) — 1.2375(z — 6.1876) =0
or

0.5217x 4 0.7826y — 1.2375z = —5.309
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47. TH'S  Use acomputer algebra system to produce a contour plot of £ (x, y) = x2 — 3xy + y — y? together with its
gradient vector field on the domain [—4, 4] x [—4, 4].

SOLUTION

49. Find a function f(x, y, z) suchthat Vf = (2x, 1, 2).
soLuTION The following equality must hold:

af daf o
vi= (2L 1,2
dx Jy 0z
Equating corresponding components gives
a
‘—f =2x
dx
4
ay
a
i _,
0z

One of the functions that satisfies these equalities is £ (x, v, z) = x2 + y + 2z.

51. Find a function f(x, y, z) suchthat V f = (z, 2y, x).

SOLUTION f(x,y,z) = xz + y2 is a good choice.

53. Show that there does not exist a function f(x, y) suchthat V f = <y2, x). Hint: Use Clairaut’s Theorem fyy = fyx.
SOLUTION Suppose that for some differentiable function f(x, y),

V= {fe fi) = (%)

Thatis, fr = y? and fy = x. Therefore,

d

9 ) 9 9
fxy:@f)f:@y =2y and fyx=

—fy=—x=1
8xfy 8xx

Since fyy and fyx are both continuous, they must be equal by Clairaut’s Theorem. Since fyy # fyx we conclude that
such a function f does not exist.

55. Use Eq. (8) to estimate
Af = f(3.53,8.98) — f(3.5,9)

assuming that V f(3 5 9y = (2, —1).
SOLUTION By Eq. (8),

Af =~V fp-Av
The vector Av is the following vector:
Av = (3.53 — 3.5, 8.98 — 9) = (0.03, —0.02)
Hence,
Af ~#Vfas9) - AV =(2,-1)-(0.03, —0.02) = 0.08

57. Suppose, in the previous exercise, that a particle located at the point P = (2, 2, 8) travels toward the xy-plane in the
direction normal to the surface.

(a) Through which point Q on the xy-plane will the particle pass?

(b) Suppose the axes are calibrated in centimeters. Determine the path c(¢) of the particle if it travels at a constant speed
of 8 cm/s. How long will it take the particle to reach Q?



SECTION 145 | The Gradient and Directional Derivatives (LT SECTION 15.5) 383

SOLUTION

(a) The particle travels along the line through P = (2, 2, 8) in the direction (4, 2, —1). The vector parametrization of
this line is

rt) =(2,2,8)+1t{4,2,-1)=(2+4r,2+2t,8—1t) Q)
We must find the point where this line intersects the xy-plane. At this point the z-component is zero. Hence,
8—t=0 = =38
Substituting ¢ = 8 in (1) we obtain
r8)=(2+4-8,2+2-8,0) = (34,18,0)

The particle will pass through the point Q = (34, 18, 0) on the xy-plane.
(b) If v is a direction vector of the line P Q, so that ||v| = 8, the following parametrization of the line has constant
speed 8:

c(t) =(2,2,8) +1tv
(This has speed 8 because ||c/(r)|| = |v]| = 8). In the previous exercise, we found the unit vector n = \/% 4,2, -1),

therefore we use the direction vector v = 8n = J% (4,2, —1), obtaining the following parametrization of the line:

8 32 16 8t
ct)=1(2,2,8)+t-—(4,2,-1)=(2+ —t,2+ —1,8 — —
=1 > V21 ( ) < ~/21 V21 \/21>

To find the time needed for the particle to reach Q if it travels along c(z), we first compute the distance P Q:

PO = \/(34—2)2 +(18—2)2 + (0 —8)2 = /1344 = 821
The time needed is thus

T:%:L‘gﬁ:ﬁm%m

59, & Suppose that the intersection of two surfaces F(x, y,z) = 0and G(x, y,z) =0isacurve C,and let P be a
point on C. Explain why the vector v = VFp x VG p is a direction vector for the tangent line to C at P.

SOLUTION The gradient V Fp is orthogonal to all the curves in the level surface F(x, y, z) = 0 passing through P.
Similarly, VG p is orthogonal to all the curves in the level surface G(x, y, z) = 0 passing through P. Therefore, both
VFp and VG p are orthogonal to the intersection curve C at P, hence the cross product VFp x VG p is parallel to the
tangent lineto C at P.

61. Let C be the curve obtained by intersecting the two surfaces X3+ 2xy +yz = 7 and 3x2 — yz = 1. Find the
parametric equations of the tangent lineto C at P = (1, 2, 1).

SOLUTION The parametric equations of the tangent linetoC at P = (1,2, 1) are
x=1+at, y=2+bt, z=1+4ct Q)
where v = (a, b, ¢} is a direction vector for the line. By Exercise 59, v may be chosen as the cross product:
V=VFp xVGp @

where F(x,y,z) = X3+ 2xy +yzand G(x,y,2) = 32 — yz. We compute the gradient vectors:

Fy(x,y,2) = 3x% +2y Fe(1,2,1) =7
Fy(,y,)=2x+z = F1,21)=3 = VFp=(132)
F(x,y,2) =y F,(1,2,1)=2

Gy(x,y,z) =6x Gx(1,2,1)=6

Gy(x,y,0)=—-2 = Gy1,21)=-1 = VGp=1(6-1,-2)

G;(x,y,2) =~y G;(1,2,1)=-2
Hence,
i j k
v=(7,3,2) x(6,-1,-2)=| 7 3 2 = —4i + 26j — 25k = (—4, 26, —25)

6 -1 -2
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Therefore, v = (a, b, ¢) = (—4, 26, —25), so we obtain
a=—-4, b=26, c¢=-25.
Substituting in (1) gives the following parametric equations of the tangent line:
x=1—4t, y=2426r, z=1-25.

63. Prove the Chain Rule for Gradients (Theorem 1).
soLUTION \We must show that if F(¢) is a differentiable function of r and f (x, y, z) is differentiable, then

VFE(f(x,y,20)=F (fx,y, ) Vf

Using the Chain Rule for partial derivatives we get

VFE (f(x,y,2) —< F(f(x,y,2), F(f(x y.2), F(f(x ¥, z))>

dF 9f dF of dF 9f\ dF [3f of 3f
<dr ax’ dr ay dr az> <

= -, =, = )=F VF
dt \ox’ 3y’ 8z> (f&x.y.2)

Further Insights and Challenges

65. Let u be a unit vector. Show that the directional derivative Dy f is equal to the component of V f along u.

SOLUTION The component of V f along u is V f - u. By the Theorem on Evaluating Directional Derivatives, Dy f =
V f - u, which is the component of V f along u.

67. Use the definition of differentiability to show that if f(x, y) is differentiable at (0, 0) and
f(0,0) = £x(0,0) = f4(0,0) =0

then
. Sy
lim =0
(x, ))—>(00) Vx2 +y2 @
soLuTioN  If f(x, y) is differentiable at (0, 0), then there exists a function e (x, y) satisfying lim(, yy_, 0,0) €(x, y) =0
such that
F,y) = Lx, y) +€(x, y)y/x2 + y2 @

Since f(0, 0) = 0, the linear function L(x, y) is
L(x,y) = f(0,0) + fx(0,0)x + fy(0,0)y = fx(0,0)x + f,,(0,0)y
Substituting in (1) gives
f@, ) = f2(0,0)0x + fy(0,0)y + €(x, y)y/x2 + y?
Therefore,

lim flx,y) — fx(0,0x — £,,(0,0)y lim
(x,)—(0,0) e G 00

69. Prove thatif f(x, y) is differentiable and V f(, yy = 0 for all (x, y), then f is constant.

e(x,y)=0

SOLUTION  Since V f = (fx, fy) = (0,0) forall (x, y), we have

fx(x’y):fy(x’y)ZOfora" (xsy) (1)

Let Qg = (xg, yo) be a fixed point and let P = (x1, y1) be any other point. Let c(z) = (x(¢), y(¢)) be a parametric
equation of the line joining Qg and P, with P = c¢(#1) and Qg = c(#p). We define the following function:

F@) = f(x@),y®)
F(¢) is defined for all #, since f(x, y) is defined for all (x, y). By the Chain Rule we have
F'(t) = fr (x(0), y(t)) +fy (x(®), y(t)) -

Combining with (1) we get F'(¢) = 0 for all z. We conclude that F(¢) = const. That is, f is constant on the line c(z). In
particular, f(P) = f(Qg). Since P is any point, it follows that f(x, y) is a constant function.
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In Exercises 71-73, a path c(r) = (x(¢), y(¢)) follows the gradient of a function f(x, y) if the tangent vector ¢’(¢) points
in the direction of V f for all ¢. In other words, ¢’(t) = k(t)V fe() for some positive function k(z). Note that in this case,
c(r) crosses each level curve of f(x, y) at a right angle.

71. Show that if the path c(z) = (x(¢), y(¢)) follows the gradient of f(x, y), then

¥ (1) _fy

X fr

soLUTION Since c(¢) follows the gradient of f(x, y), we have
¢'(t) = k(DY fowy = k() (fx €(0) . fy (1))
which implies that
X)) = k@) fe (@) and Y1) = k() fy (1)
Hence,

Y0 _ k@ fy @) _ fy @)
x'(@) k@ fc (@)  fx (@)

or in short notation,

Y@ _ fy
X' fx

73. £A5S  Find the curve y = g(x) passing through (0, 1) that crosses each level curve of £(x, y) = ysinx at a right
angle. If you have a computer algebra system, graph y = g(x) together with the level curves of f.

SOLUTION Using fy = ycosx, fy = sinx, and y(0) = 1, we get

d tan
L2 5 0=t
dx y

We solve the differential equation using separation of variables:

ydy =tanx dx
/ydyz/tanxdx

1

5y2:—ln|cosx|+k

yz = —2In|cosx|+k=—In (coszx) +k

y =+,/—In(cos?x) + k

Since y(0) = 1 > 0, the appropriate sign is the positive sign. That is,

v = /= In(cos? x) + k )

We find the constant & by substituting x = 0, y = 1 and solve for k. This gives

1=/—In(cos20) +k=+—In1+k =k

Hence,

Substituting in (2) gives the following solution:

y =4/1—In(cos?x) @

The following figure shows the graph of the curve (3) together with some level curves of f.
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ysinx=c
c=0.15

J” J; wl—IQ (cos?x)

14.6 The Chain Rule (LT Section 15.6)

Preliminary Questions
1. Let f(x,y) =xy,wherex =uvand y = u + v.
(a) What are the primary derivatives of f?
(b) What are the independent variables?
SOLUTION
(a) The primary derivatives of f are % and %
(b) The independent variables are u and v, on which x and y depend.

In Questions 2 and 3, suppose that f(u, v) = ue’,whereu =rsandv =r +s.

2. The composite function f(u, v) is equal to:
(@) rse’™* (b) re’ () rse'"s

SOLUTION The composite function f(u, v) is obtained by replacing « and v in the formula for f(u, v) by the corre-
sponding functions u = rs and v = r + 5. This gives

Futr, s), v, 5)) = u(r, $)eV8) — pgelts

Answer (a) is the correct answer.
3. What is the value of f(u, v) at (r, s) = (1, 1)?

SOLUTION We compute u = rs and v = r + s at the point (r, s) = (1, 1):
ul,)=1-1=1; v1L,1)=1+1=2

Substituting in f(u, v) = ue?, we get

.f(uav) :1'62262.
(r,5)=(1,1)

4. According to the Chain Rule, af/dr is equal to (choose the correct answer):

of ox  df ox af ox  df dy af or  9f 0s
a) —— + —— by —— 4+ —— C) —— + ——
()3x8r+8x85 ()8x3r+3y8r ()8r8x+8s8x

SOLUTION For a function f(x, y) where x = x(r, s) and y = y(r, s), the Chain Rule states that the partial derivative

% is as given in (b). That is,

af dx n af dy
dx ar  dy or

5. Suppose that x, y, z are functions of the independent variables u, v, w. Which of the following terms appear in the
Chain Rule expression for af/0w?
af a
@ L%

af dw
dv dv

af 0z
Jw dx

b szaw

(c
SOLUTION By the Chain Rule, the derivative % is

af _af ox n af dy n af 9z
dw  dx dw dy dw 9z dw

Therefore (c) is the only correct answer.
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6. With notation as in the previous question, does d.x/dv appear in the Chain Rule expression for 8f/0u?

soLUTION The Chain Rule expression for % is

af _af ox af dy | df 0z
du  dxdu  dydu 9z du

The derivative S—f} does not appear in differentiating f with respect to the independent variable u.

Exercises
1. Let f(x,y,2) =x2y3 + % and x = 52, y = 512, and z = 51

. - af af o
(a) Calculate the primary derivatives —f, —f, —f.
ox dy 0z
dx dy 0
(b) Calculate —, &2 22,
ds ds 0s
a . .
(c) Compute 3—f using the Chain Rule:
N

of _dfdx  dfdy of 9z

ds  dx ds @ ds | 0z s
Express the answer in terms of the independent variables s, ¢.
SOLUTION

(a) The primary derivatives of f(x, y, z) = x2y3 + 7% are

d d d
l — 2xy3, l — 3)62),27 l — 423
9x dy 0z
(b) The partial derivatives of x, y, and z with respect to s are
a d d
x=25 —yztz, —Z=2st

s T Os ds

(c) We use the Chain Rule and the partial derivatives computed in parts (a) and (b) to find the following derivative:

a af d af d af o
of _9f9x  of oy 90z

= L = 2xy® 25 + 3x2y%1% 4+ 423 - 251 = 4xy3s + 3x%y %% + 873t
35 ox s T oy ds 37 35 Xy s+ 3xTy° T + 4z s xy°s + 3x°y“t° 4+ 8z°s

To express the answer in terms of the independent variables s, t we substitute x = 52, y= st2, z = s%1. This gives

b 2 2
a—f = 4sz(st2)3s + 3(S2) (stz) 2+ 8(szt)3st = 45516 1 356/6 1 85714 — 755/6 1 85714,
s

In Exercises 3-10, use the Chain Rule to calculate the partial derivatives. Express the answer in terms of the independent
variables.

5 Of of
" 9s’ or
soLuTION We perform the following steps:

Cfy, ) =xy+28 x =52 y=2rs,z=r?

Step 1. Compute the primary derivatives. The primary derivatives of £ (x, y, z) = xy + z2 are

af af af
_— = y’ — =X, _— = ZZ
dx ay 0z

Step 2. Apply the Chain Rule. By the Chain Rule,

a af d af o af d
o _of ox  of oy Of 9z )
as dx ds dy ds dz Os

a ) d a d ) ad
of _of 9x  9f 9y  of bz @
or d0x odr dy or dz Or

We compute the partial derivatives of x, y, z with respect to s and r:

0 ad 0z
Zoos, oo Zoo
as as as

a d 0
Zoo Doa, oo
ar ar ar
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Substituting these derivatives and the primary derivatives computed in step 1 in (1) and (2), we get

of
a'—f =y-2s+x-2r+2z7-0=2ys + 2xr
N
of
3 =y-0+x-25+27-2r =2xs +4zr
-
Step 3. Express the answer in terms of r and s. We substitute x = 52, y=2rs,and z = r2in % and ‘;—{ in step 2, to
obtain
a
a—f = 2rs 25 + 5% - 2r = 4rs? + 2rs% = 6rs2.
N
d
a—f :2s2 -s—l—4r2 -r :253—|—4r3.
-

dg 0
. —g, —g; g(x,y)=cos(x —y),x =3u —5v,y =—T7u+15v
du ov
soLUTION \We use the following steps:
Step 1. Compute the primary derivatives. The primary derivatives of g(x, y) = cos(x — y) are:

a . a .
28 = —sin(x — y), % =sin(x —y)
ax dy

Step 2. Apply the Chain Rule. By the Chain Rule,

ag dg dx  dg dy . ax . ay
= ==—4 == =—sin(x —y)— +sin(x — y)—
ou  Ix du + ady du =) du Fsint =) ou
dg dgodx  0dg dy . ox . ay
= ==—4+ == =—sin(x —y)— +sin(x — y)—
av dx dv + dy dv =) av +sinGx y)av

We compute the partial derivatives of x, y with respect to « and v:

0

ox _ 3, al — _§
ou ov
B, w
ou Jdv

substituting in the expressions above we have:

g—g = —sin(x — y)(3) + sin(x — y)(=7) = —=10sin(x — y)
u
g—i = —sin(x — y)(—5) +sin(x — y)(15) = 20sin(x — y)

Step 3. Express the answer in terms of « and v. We substitute x = 3u —5v and y = —7u + 15v in dg/du and dg/dv
found in step 2. This gives:
g .
— = —10sin(10u — 20v)
ou

3
%8 — 20sin(10u — 20v)
dv

F
7. — Fu,v) ="t u=x2v =Xy
ay

soLUTION \We use the following steps:

Step 1. Compute the primary derivatives. The primary derivatives of F (i, v) = e* T are
y — eu+v, % — eu+v
ou v

Step 2. Apply the Chain Rule. By the Chain Rule,

oF  0Fou 0F ov utv U + utv 0V uty [Ou | dv
— =—— 4+ ——=€"""— 4" — = — 4+ —
ay ou dy  dv dy dy dy ay  dy
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We compute the partial derivatives of « and v with respect to y:

ou _ v _
dy o ay o
We substitute to obtain
oF
- xeu-i-v (1)
dy

Step 3. Express the answer in terms of x and y. We substitute # = x2, v = xy in (1) and (2), obtaining

oF 2
— — xer +xy.
dy

oh X
9. —h(x,y) =2, x =t1tr, y = t2t
o (x, ») yx 12,y =111

soLUTION We use the following steps:
Step 1. Compute the primary derivatives. The primary derivatives of 4(x, y) = < are

oh 1 dh _ x

ax y oy )2
Step 2. Apply the Chain Rule. By the Chain Rule,
dh _ dh 0x | 0h dy 1 0x x Jy

Oty Ox oty 0y dp  yoty  y20fp

We compute the partial derivatives of x and y with respect to :

ox dy 2
=N, - =1
ato ot
Hence,
doh 21 X 9
- = = _ 71‘1
iy 2

Step 3. Express the answer in terms of ¢4 and #o. We substitute x = 115, y = tftz in 55 computed in step 2, to obtain

oh _ n npeif 11

i i (,12@2 nty 1t

Remark: Notice that h(x(tl,tz),y(tl, t2))= h(ty, tp) = % = % h(t1, tp) is independent of ¢, hence g—g = 0 (as
112

obtained in our computations).

In Exercises 11-16, use the Chain Rule to evaluate the partial derivative at the point specified.

11. af/du and af/dv at (u, v) = (—1, —1), where f(x,y,z) = x3 + yz2, x =ul + v, y = u + v%, z = uv.
SOLUTION The primary derivatives of f(x, y, z) = x°3 + yz2 are

d a d
l=3x2, lzzz, —f:2yz
0x dy 9z

By the Chain Rule we have

Af _df dx af dy  8f 8z _, p0x | 0y 3z
of _ofox  9f dy 92 _420% 20y

= — = 2yz— 1
du  oxdu ' dyodu 9z 0u ou T8 T @
of dfodox odf dy of oz 20X 20y 9z
L T 3?2 2 oy 2
dv - axav Cayaw Tazav v T a0 T &)

We compute the partial derivatives of x, y, and z with respect to u and v:
ad a d
X g, g B2
ou ou du
ad d a
T, Do, Eoy

v v v
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Substituting in (1) and (2) we get

d

—f =6x%u +272 + 2yzv

ou

oF

a—f =3x% + 2vz% + 2yzu
v

We determine (x, y, z) for (u, v) = (-1, —1):

x=(-12-1=0, y=-1+(-12=0, z=(-1)-(-1)=1.

Finally, we substitute (x, y, z) = (0,0, 1) and (u, v) = (-1, —1) in (3), (4) to obtain the following derivatives:

9
o =6-0%.(-1)+1242.0-1-(-1) =1

| u,0)=(~1,-1)

o =3.02+2-(-1)-1242.0-1- (1) = -2
0 |w,0)=(-1,-1)

13. d9g/d6 at (r,0) = (Zf, %) where g(x,y) =1/(x + yz), x =rsinf,y =rcoso.

1 .
x+y2”

soLuTiOoN We compute the primary derivatives of g(x, y) =
g 1 g 2y
I M A R e
By the Chain Rule we have

dg 0gox  dgdy 1 ax 2y y 1 <8x By)

2 — 2 2 - _ _ _ A it 2
90 0x00 9y 0 (132200  (x4,2200 (x1y22 \00 a6

We find the partial derivatives g—g, g—y:

ax ay .
— =rcosf, — = —rsind
a0 a0

Hence,

0 .
2 _ —%(cos@ — 2ysing)
0 ty?)

®

(4)

@

At the point (r, 0) = (2v/2, ), we have x = 24/2sin = 2and y = 2v/2cos - = 2. Substituting (r, ) = (2v/2, %)

and (x, y) = (2, 2) in (1) gives the following derivative:

T s
cos — —4sin— ) =
7 4ng)

ag
90

—2y2 (
e 5

B -2 ( 1 4 ) 1
r=(2v2.5)  @+22)7

18 \v2 V2

15. dg/du at (u, v) = (0, 1), where g(x, y) = x2 — y2, x = e cosv, y = ¢! sinv.

SOLUTION The primary derivatives of g(x, y) = x2 — y2 are

d d
%8 _ox, 2B _
ax ay
By the Chain Rule we have
dg dg dx  0dg Oy ox ay

Bu_ax.3u+8y.8u xau yau

We find 2% and 22
ou u

Substituting in (1) gives

a . .
a—g = 2xe" cosv — 2ye” sinv = 2" (x cosv — ysinv)
u

@)

O]



SECTION 14.6 | The Chain Rule (LT SECTION 15.6) 391

We determine (x, y) for (u, v) = (0, 1):

x:eocoslzcosl, y:eosinlzsinl

Finally, we substitute (u, v) = (0, 1) and (x, y) = (cos1, sin 1) in (2) and use the identity cos? a — sin® o = cos 2, to
obtain the following derivative:

0 .
2 =2e0<coszl—sm21>=2-c052-1=2c052
3t |(u,v)=(0,1)

17. Jessica and Matthew are running toward the point P along the straight paths that make a fixed angle of 6 (Figure
3). Suppose that Matthew runs with velocity v, m/s and Jessica with velocity v, m/s. Let f(x, y) be the distance from
Matthew to Jessica when Matthew is x meters from P and Jessica is y meters from P.

(a) Show that f(x, y) = v/x2 + y2 — 2xy cosé.

(b) Assume that & = 7r/3. Use the Chain Rule to determine the rate at which the distance between Matthew and Jessica
is changing when x = 30, y = 20, v, = 4 m/s, and v, = 3 m/s.

FIGURE 3

SOLUTION

(a) This is a simple application of the Law of Cosines. Connect points A and B in the diagram to form a line segment
that we will call f. Then, the Law of Cosines says that f2 =x2+ y2 — 2xy cos 6. By taking square roots, we find that
f=+v/x2+y2 —2xycosé.

(b) Using the chain rule,

df _3f dx _df dy

dt  axdt ' dydt
S0 we get

ﬁ _ (x —ycost)dx/dt (y —xcos@)dy/dt
dt  /x24y2_2xycos® /x2+ y2 — 2xycost

and using x = 30, y = 20, and dx/dt = 4, dy/dt = 3, we get

df 180 —170cosé
dt ~ /1300 — 1200 cos

19. Letu = u(x, y), and let (r, 8) be polar coordinates. Verify the relation

AL =u§+ri2u§
Hint: Compute the right-hand side by expressing ug and u,- in terms of u, and u.
SOLUTION By the Chain Rule we have
Uup = uxxg + uyyp (1)
Up = UxXr + UyYy 2
Since x = r cos6 and y = r sin 8, the partial derivatives of x and y with respect to r and 6 are
xg = —rsing, yg =rcoséd
xp =C0s6, y,=sind
Substituting in (1) and (2) gives
ug = (—rsin)uy + (r cosuy ?3)

ur = (COSO)ux + (SinO)uy 4)
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We now solve these equations for u, and uy in terms of ug and u,. Multiplying (3) by (—sin#) and (4) by r cos 6 and
adding the resulting equations gives

(—sin@)ug = (rsin? O)uy — (rcosdsinO)uy
+ rcosfuy = (rcos? 0)uy + (rcoso sinO)uy

(rcos@)u, — (SinQug = ruy
or

sin@
uy = (CosO)u, —

ug (®)
Similarly, we multiply (3) by cos 6 and (4) by r sin 6 and add the resulting equations. We get

(cosO)ug = (—r sin@ cosO)uy + (r cos? 9) uy

+  rsinfu, = (rsind cos)ux + (rsin® Ouy

(cosOug + (rsinOuy =ruy

or

. cos o
uy = (SinO)u, + ug (6)

We now use (5) and (6) to compute || Vu 12 in terms of u, and ug. We get
0 \? . cosf \?
ug | +{(SNO)u, + up
r

2 o 2cosfsing sing .9 o 2sinfcoso cos?6 ,
= (Cos 9)14,—7 rig 5 u9+(sm 9)u,+7uru9+ 7 Ug
r r r r

Sin
IVul® = u? +u? = ((cos@)u, -

. 1 /. 1
= (0052 6 + sin? 9) uf + = <S|n26 + cos? 9) ug = uf + uj
r r
That is,

1
1Vull? = uf + —uf

21. Letx = s+t and y = s — t. Show that for any differentiable function f(x, y),

ar\? (af\* _ofof
(5) -(5) -5

SOLUTION By the Chain Rule we have

d af a af a a a a d
lzli llzl.1+l.1=l+l
as dx ds  dy ds ox ay dx  dy
d af a af a a a d d
of _ofdx  ofoy _of 4 of o\ OF Of
ot dx dt  dy ot ox ay dx  dy

Hence, using the algebraic identity (a + b)(a — b) = a® — b2, we get
of af _ (3 L OF\ (3 A\ _(3\*_ (3
ds 9t \dx  dy ax 9y/)  \ox ay )’
23. Suppose that z is defined implicitly as a function of x and y by the equation F(x, y, z) = xz2 + y2z +xy—1=0.

(a) Calculate Fy, Fy, F;.

ad ad
(b) Use Eq. (7) to calculate % and 25
ox dy

SOLUTION
(a) The partial derivatives of F are

Fx=zz+y, Fy =2yz +x, Fz=2xz+y2
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(b) By Eq. (7) we have

0z Fe 4y

ax  F,  2xz+)2

b B ovia
y  F, 2xz+y2

In Exercises 25-30, calculate the partial derivative using implicit differentiation.
a
25, aj X2y +y27 4 222 = 10
X

SOLUTION For F(x, y, z) = x2y + y?z + xz% = 10 we have

d F
e @
ox F,
We compute the partial derivatives of F:
F, =2xy +z2, F, = y2 + 2xz
Substituting in (1) gives the following derivative:
9z 2xy+ 72
ax  2xz+ y2
0z X .
27, —, &Y +sin(xz) +y=0
dy
soLUuTION We use Eq. (7):
90z F
= @)
dy Fy
The partial derivatives of F(x, y, z) = ¢* + sin(xz) + y are
Fy=xe™” +1, F, =xcos(xz)
Substituting in (1), we get
9z xe®y +1
dy - X C0S(xz)
ow 1 1
29, —, + =lat(x,y,w)=(11,1
ay ' wl+x2  wl4y? (6, w) = )
soLuTION Using the formula obtained by implicit differentiation (Eqg. (7)), we have
a F.
e @
y Fy

We find the partial derivatives of F(x, y, w) = ﬁ + w%ﬂz -1

7 2y F —2w 2w
e — Y w = -
(w2 + y2)? W2 +x2° w2+ y2)°
We substitute in (1) to obtain
—2y
—=) 2 2

dw (w24y2)? y(w? + x?) —y(w? 4 x?)

By =2 2 = 2 2= 2 2

W e e (w0 )

31. Letr = (x, y, z) and er = r/|r||. Show that if a function f(x, y, z) = F(r) depends only on the distance from the
origin r = ||r|| = v/x2 + y2 + 72, then
Vf=F(rer [9]

soLUTION The gradient of f is the following vector:

Vf=

af of of
<3x’ ay’ 81>
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We must express this vector in terms of r and r. Using the Chain Rule, we have

0 a 2

A o S S o
ax ox 2x2 +y2 4+ 22 r
a ad 2

L POV =P ) e = F ()
dy dy 2v/x2 4 y2 4+ 72 r
a a 2

Y P Py~ = P
0z 0z 2vx2 4 y2 4 72

Hence,
F'(r)

(x.3,2) = F'(N— = F'(rer

gt wrenY mrenZ\
vi= (POl Fol Fnd)= iri

r

1
33. Use Eq. (9) to compute V ( >

1
soLuTIoN To compute V(1) using Eq. (9), we let F(r) = =
r

F'(r)= —iz
,
We obtain
\V/ (E) =F'(rer = _i L = _ir
r r2 il rd

35. Figure 4 shows the graph of the equation
Fx.y.2)=x’+y?>—z2—12x—8;—-4=0

(a) Use the quadratic formula to solve for z as a function of x and y. This gives two formulas, depending on the choice
of sign.

(b) Which formula defines the portion of the surface satisfying z > —4? Which formula defines the portion satisfying
7 < 47

(c) Calculate 3z/9x using the formulaz = f(x, y) (for both choices of sign) and again via implicit differentiation. Verify
that the two answers agree.

FIGURE 4 Graphof x2 4 y2 — 72 —12x — 8z — 4 =

SOLUTION
(a) We rewrite F(x, y, z) = 0 as a quadratic equation in the variable z:

z2+81+<4+12x—x2—y2) =0
We solve for z. The discriminant is
g2 —4<4+12x—x2 —yz) =4x2+4y2—48x—|—48=4<x2—|—y2 —12x+12)

Hence,

—84 /4 (x24+y2 —12x +12
21,2 = \/ ( > )=—4:|:\/x2+y2—12x+12

We obtain two functions:

z:—4+\/x2+y2—12x+12, z:—4—\/x2+y2—12x—|—12
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(b) The formula with the positive root defines the portion of the surface satisfying z > —4, and the formula with the
negative root defines the portion satisfying z < —4.

(c) Differentiating z = —4 + /x2 + y2 — 12x + 12 with respect to x, using the Chain Rule, gives

0z 2x — 12 x—6

9 _ = )
Ox  2/x24y2 —12x+12  Jx24+y2—12x+12
Alternatively, using the formula for g—fc obtained by implicit differentiation gives
a F
= @
X F,

We find the partial derivatives of F(x, y, z) = x2 4 y2 —z22 - 12x— 87— 4
Fy=2x—12, F,=-27—8
Substituting in (2) gives
9z 2x—12  x-6

ax 278 744

This result is the same as the result in (1), since z = —4 + /x2 + y2 — 12x + 12 implies that

\/x2+y2—12x+12:z+4

Forz = —4 — \/x2 + y2 — 12x + 12, differentiating with respect to x gives
0z 2x — 12 x—6 x—6

ax  2/x21y2 12x+12 —Jalty2_l2xt12 244

which is equal to —IF,—f computed above.

37. The pressure P, volume V, and temperature 7 of a van der Waals gas with n molecules (r constant) are related by
the equation

P\ v - by = kT

where a, b, and R are constant. Calculate 9 P /3T and dV /3 P.

SOLUTION Let F' be the following function:

anz
F(P,V,T) = P+W (V —nb) —nRT
By Eq. (7),
oF oF
or _ _ar WV _ 5P )
- 9F” - JF
oT 7 aP &

We compute the partial derivatives of F:

aF

— =V —nb
P
oF
— = —nR
aT
oF 2.3 an® 2an®h  an?
WZ—ZH”V (V—nb)-l—(P-f'Vz =P+W_W
Substituting in (1) gives
P —-nR  nR
T  V—nb V—nb
v V —nb nbv3 —v4

aP _p+ Za‘;l;b _ aVLZZ ~ PV342an3bh — an?v
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39. Show thatif f(x) is differentiable and ¢ # 0 is a constant, then u(x, 1) = f(x — ct) satisfies the so-called advection
equation

] ad
du
dt 0x

SOLUTION Fors = x — ct, we have u(x, t) = f(s). We use the Chain Rule to compute 5 3” and a“:

d B
== 5 =16) (=0 = = 6) )
3 3 ,
S == ©)1=f© )
X 0x
Equalities (1) and (2) imply that:
8u Bu u u
—=—¢c— o —+c—=0
ar 8x ot 0x

Further Insights and Challenges

In Exercises 40-43, a function f(x, y, z) is called homogeneous of degree n if f(Ax, Ay, Az) = A" f(x, y, z) for all
reR.

41. Prove that if f(x, v, z) is homogeneous of degree n, then f, (x, v, z) is homogeneous of degree n — 1. Hint: Either
use the limit definition or apply the Chain Rule to f(Ax, Ay, Az).

soLUuTION We are given that f(Ax, Ay, Az) = A" f(x,y,z) for all A, and we must show that f,(Ax, Ay, Az) =
A1 £ (x, y, z). We use the limit definition of fy. Since for all % 0, Ak — 0 if and only if &# — 0, we get

 fOx AL Ay, AZ) — FOX, Y, A f(x h), Ay, A7) — fx, Ay, A
FoGox, Ay, hz) = lim fOx + v, Az) — f(Ax, Ay, Az) — lim fO(x+h), Ay, Az) — f(Ax, Ay, Az)
h—0 ) h—0 h

i M@ ARy =Xy M T Gy ) = Gy 2)
N Mh N h

:)\n_l ||m f(x+h7y7z)_f(xvy7z)
h—0 h

="y, 2)

Alternatively, we prove this property using the Chain Rule. We use the Chain Rule to differentiate the following equality
with respect to x:

FOx, Ay, 22) = A" f(x, y, 2)

We get

= )‘n.fx(xﬁ y,Z)

F 2300 - S g 0w D92 iy D

Since a(xy) agxxz) =0and % = A, we obtain for A # 0,
AfeOux, Ay, 22) = A" fr(x,v,2) OF  fr(ha, Ay, A2) = A" fe(x, v, 2)
43. Verify Eq. (11) for the functions in Exercise 40.

SOLUTION Eq. (11) states that if f is homogeneous of degree n, then

3f af of
Yox oy T =

@ f(x,y,2)= x2y + xyz. f is homogeneous of degree n = 3. The partial derivatives of f are

0 a 0
o = 2xy +yz, —f=x2+xz, o =Xy
ox ay 9z
Hence,
a : aof
% + gTj + Z% = x(2xy + y2) + y(x? 4+ x2) + zxy = 3x2%y 4+ 3xyz = 3(x%y + xyz) = 3/ (x, y,2)
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(b) f(x,y,z) =3x+ 2y —8z. f is homogeneous of degree n = 1. We have

a d d
Y 3ty 24z (-8 =32y B =1 f(r,7,0)
dx ay 9z

(© f(x,y,z)=1In (%) f is homogeneous of degree n = 0. The partial derivatives of f are

of = 1 af = 1 af —23%y 2
Bx_%_x’ 8y_z—y_y’ 3z xyz=2 2
Hence,
a a a 1 1 2
xl+yl+zl =x-—+4y - —+z-|—-)=0=0-f(x.y.2
ox ay 0z X y b4
(d) f(x,y,z) =z f ishomogeneous of degree n = 4. We have
Gl b b
xi+yl+zl =x-0+y 042423 =4z =4f(x,y,2)
ox dy 9z
45. Letr = /x? 4 ... +xZ and let g(r) be a function of r. Prove the formulas
ag X 82g_xl-2 +r2—xl.2
axi - r 8rs ax[z - r2 8rr r3 8r
SOLUTION By the Chain Rule, we have
g , . or 2x; X;
T=g(r)f=gr'—=gr*
Xi Xi 2/xf+~--+x,% r
We differentiate ;% with respect to x;. Using the Product Rule we get
82g ] X; 0 /X
78)61'2 = Tm(gr) T +gr87xi (7)
We use the Chain Rule to compute aixi(g,):
or 2x; X;

i( — i(
x; gr) = ar gr)

gzgrr'—:grr'T
! 2‘/x%+~--+x5

We compute a% - (%) using the Quotient Rule and the Chain Rule:

LI Lr—viogg _rex o

ax; r r2 r2 r3
Substituting (2) and (3) in (1), we obtain

azg _ X; Xi+ rz—)ciz_xi2 +r2—xi2

axiz = &rr P ’ 8r I‘3 - r2 8rr r3 8r

397

)

@

©)

In Exercises 47-51, the Laplace operator is defined by Af = fix + fyy. A function f(x, y) satisfying the Laplace

equation Af = 0 is called harmonic. A function f (x, y) is called radial if f(x, y) = g(r), where r = v/x2 + y2.

47. Use Eq. (12) to prove that in polar coordinates (r, 0),
1 1
Af = frr + 7f99 + = Jfr
r r

SOLUTION The polar coordinates are x = r cos6, y = rsin . Hence,

9 . 9 9 ] .
%:—rsm@, %:mose, al=cose, al=sm9,
r r
92x 82y 92x 82y
— = —rcosf, —= = —rsind, =—=0
962 902 ar2 92
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By Eq. (12) we have

2 2 2 2

0x ay ax ay 9°x %y

= —= 2 =)= —+ =
f99 fxx(89> +f”<89) + fxy<89><89)+fx892 +.f) 892

= frx (r2 sin2 9) + fyy (r2 cos? 9) - <2r2 sin 0 cos 6) Sfxy — (rcos@) fy — (rsiné) fy

2 2 2 2
ox ay dx ay d°x 0%y
frr:fxx<5> +fyy<§> +2fxy (5) (3r>+fx8?+fy87

and
= fix <c052 0) + fyy (sin2 9) + (2cos@sinb) fry

d d .
fr= fxg + fyg = fx(c0s0) + f,(sin6)

We now compute the right-hand side of the equality we need to prove. Using (1), (2), and (3), we obtain

frr + rizfgg + %f, = fax (c052 9) + fyy (sin2 6) +(2c0s0sinb) fry + frx (sin29>

cos o sin@ cos o sin@
+ fyT

+fyy (cos2 9) — (2sin0 cos9) fry — fo — Tfy + fx p

= frx (cos2 6 + sin? 9) + fyy (sin29 + cos? 0)
= fax + fyy =Af

We thus showed that

1 1
Af = frr + 7.f(90 + *fr
r r

49. Verify that f(x, y) = x and f(x, y) = y are harmonic using both the rectangular and polar expressions for Af.

soLuTION We must show that Af = 0.
(a) Using the rectangular expression for Af:

Af = fxx + fyy

@

O]
®)

For f(x,y) = x we have fy =1, fy =0, hence, fyy =0, fyy = 0. Therefore Af = fyx + fyy =040 =0. For

f(x,y) =ywehave f, =1, fy =0, hence, fyx =0, fyy =0,and again, Af = fyx + fyy =0+0=0.
(b) Using the polar expression for Af,

1 1
Af = frr + 7f00 +—fr
r r
Since x = r cosH, we have f(r,0) = x = r cosd. Hence,
fr=co0s6, fg=—-rsind, f,=0, fgg=—rcosé
We now show that Af = 0:
1 1 1 1
Af = frr+ 5 foo + - fr =0+ = - (—rcosf) + —cos =0
r r r r
Similarly, since y = rsin6, we have f(r,0) = y = rsin6. Hence,
fr=sin0, fyg=rcosh, frr=0, fagg=—rsind
Substituting in (1) gives

1 . 1 .
Af:O+—2(—rS|n0)+fsm6:O
r r

51. Use the Product Rule to show that

1 10 Gl
Srr+=fr=r 1 <7l>
r ar ar

@

Use this formula to show that if f is a radial harmonic function, then rf,, = C for some constant C. Conclude that

f(x,y) = ClInr+ b for some constant b.
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soLuTION We show that f,, + %fr = r*1% (r%) We use the Product Rule to compute the following derivative:

a (of\ _, of d (of\ _af | 9%f 3 1
5(”5)—1'54-7'5(5)—E‘Fra?—fr'krfrr—r(frr"‘;fr)

Hence,

Lo 12 (2
frr+;fr =TT <r8r> @

Now, suppose that f (x, y) isaradial harmonic function. Since f isradial, f (x, y) = g(r), therefore fyg = 0. Substituting
in the polar expressions for Af gives

1 1 . 1
Af = frr + 7.f00 +-fr=frir+-fr=0
r r r
Combining with (1), we get

yielding

We now integrate the two sides to obtain

/_frdr:/Edr or f(r)y=Clnr+b.
r

14.7 Optimization in Several Variables (LT Section 15.7)

Preliminary Questions
1. The functions £ (x, y) = x2 4+ y2 and g(x, y) = x2 — y2 both have a critical point at (0, 0). How is the behavior of
the two functions at the critical point different?

SOLUTION Let f(x, y) = x2 + y2 and g(x, y) = x2 — y2. In the domain R2, the partial derivatives of 7 and g are

fr=2x, fix=2, fy=2y, fyy:27 fxy:O
gx =2x, gxx =2, gy=—2y7 gyy:_zv gxy=0

Therefore, fx = fy = 0at (0,0) and gx = gy = 0 at (0, 0). That is, the two functions have one critical point, which
is the origin. Since the discriminant of f is D = 4 > 0, fxx > 0, and the discriminant of g is D = —4 < 0, f has
a local minimum (which is also a global minimum) at the origin, whereas g has a saddle point there. Moreover, since

lim g0, y) = —ocand lim g(x,0) = oo, g does not have global extrema on the plane. Similarly, f does not have a
y—>00 xX—=>00

global maximum but does have a global minimum, which is f(0, 0) = 0.

2. ldentify the points indicated in the contour maps as local minima, local maxima, saddle points, or neither (Figure 15).

3
1
3
Y 0 -1 -3 oo L3
Q 14 -1 20 T
1 -6 6
3 2 2
0 0 0
FIGURE 15

soLUTION If f(P) is a local minimum or maximum, then the nearby level curves are closed curves encircling P. In
Figure (C), f increases in all directions emanating from P and decreases in all directions emanating from Q. Hence, f
has a local minimum at P and local maximum at Q.
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In Figure (A), the level curves through the point R consist of two intersecting lines that divide the neighborhood near R
into four regions. f is decreasing in some directions and increasing in other directions. Therefore, R is a saddle point.

Figure (A)

Point S in Figure (B) is neither a local extremum nor a saddle point of f.

Figure (B)

3. Let f(x, y) be a continuous function on a domain D in R2. Determine which of the following statements are true:
(a) If Dis closed and bounded, then f takes on a maximum value on D.
(b) If D is neither closed nor bounded, then f does not take on a maximum value of D.
(¢) f(x,y) need not have a maximum value on the domain D definedby 0 <x <1,0<y < 1.
(d) A continuous function takes on neither a minimum nor a maximum value on the open quadrant

{(x,y) :x >0,y >0}

SOLUTION
(a) This statement is true. It follows by the Theorem on Existence of Global Extrema.

(b) The statement is false. Consider the constant function f (x, y) = 2 in the following domain:

y

D={(x,y):0<x=<1,0<y<o0}

Obviously f is continuous and D is neither closed nor bounded. However, f takes on a maximum value (which is 2)
onD.
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(c) The domain D = {(x, y) : 0 < x, y < 1} is the following rectangle:

y

D={(kx,y):0<x,y<1}

D is closed and bounded, hence f takes on a maximum value on D. Thus the statement is false.
(d) The statement is false. The constant function f(x, y) = ¢ takes on minimum and maximum values on the open
quadrant.

Exercises

1. Let P = (a, b) be acritical point of f(x,y) = x2 4 y4 — 4xy.
(a) First use fy(x,y) = 0 to show that @ = 2b. Then use fy(x,y) = O to show that P = (0,0), (2+/2, v/2), or
(=22, —V/2).
(b) Referring to Figure 16, determine the local minima and saddle points of f (x, y) and find the absolute minimum value
of f(x,y).

FIGURE 16

SOLUTION
(a) We find the partial derivatives:

d
Sxlx,y) = PP (x2+y4—4xy) =2x —4y
x

_ 0 /2, 4 _ 4.3
fy(x,y)—@<x +y —4xy>_4y —4x

Since P = (a, b) is a critical point, fx(a, b) = 0. That s,

20 —4b=0 = a=2b
Also fy(a, b) =0, hence,

4% —4a=0 = a=0b

We obtain the following equations for the critical points (a, b):

a=2b
a=>h3
Equating the two equations, we get
2b=b°
b1 =0
BP-2b=b%2-2)=0 = {by=+2
b3 =—2

Since a = 2b, we have a; = 0, ap = 2+/2, a3 = —2+/2. The critical points are thus
Pr=(0,0, P= (2«/2 ﬁ) Py = <_2ﬁ, _ﬁ>
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(b) Referring to Figure 14, we see that P; = (0, 0) is a saddle point and P, = (Zﬂ, ﬁ) P3 = <—2f, —ﬁ) are
local minima. The absolute minimum value of f is —4.

3. Find the critical points of
fay) =8yt +x2 +xy —3y2 —)®

Use the contour map in Figure 18 to determine their nature (local minimum, local maximum, or saddle point).

FIGURE 18 Contour map of f(x,y) = 8y* + x2 4+ xy — 3y%2 — y3.

SOLUTION The critical points are the solutions of f, =0and f, = 0. That is,
fxx,y)=2x+y=0
fy(x,y) =32y +x —6y —3y2 =0
The first equation gives y = —2x. We substitute in the second equation and solve for x. This gives
32(—2x)% 4+ x —6(—2x) —3(—2x)% =0
—256x3 4+ 13x — 12x2 =0
—x(256x2 4+ 12x —13) =0

Hence x = 0 or 256x2 + 12x — 13 = 0. Solving the quadratic,

—12i\/122—4-256-(—13)__12i116 LBt
512 EY YT 4

X1,2 =

Substituting in y = —2x gives the y-coordinates of the critical points. The critical points are thus

13 13 11
0o, (B-8). (L)
We now use the contour map to determine the type of each critical point. The level curves through (0, 0) consist of two

intersecting lines that divide the neighborhood near (0, 0) into four regions. The function is decreasing in the y direction
13 _ 13

and increasing in the x-direction. Therefore, (0, 0) is a saddle point. The level curves near the critical points (m, —§>
and (— %, %) are closed curves encircling the points, hence these are local minima or maxima. The graph shows that both
(g, —%) and (—%, %) are local minima.

5. Let f(x,y) = y2x - yx2 + xy.
(a) Show that the critical points (x, y) satisfy the equations

y(y—2x+1) =0, x2y—-x+1)=0

(b) Show that f has three critical points where x = 0 or y = 0 (or both) and one critical point where x and y are nonzero.
(c) Use the Second Derivative Test to determine the nature of the critical points.

SOLUTION
(&) The critical points are the solutions of the two equations fy (x, y) = 0and fy(x, y) = 0. That is,

fx(x,y)=y2—2yx—|—y=0 yy—2x+1)=0
=
Fyle,y) =2yx —x? +x =0 Xy —x+1)=0
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(b) We find the critical points by solving the equations obtained in part (a):
yy—2x+1)=0 1)
x@2y—-x+1)=0 2)
Equation (1) implies that y = 0 or y = 2x — 1. Substituting y = 0 in (2) and solving for x gives
xX(—x+1)=0 = x=0 o x=1
We obtain the solutions (0, 0) and (1, 0). We now substitute y = 2x — 1 in (2) and solve for x. We get
x(dx —2—-x4+1)=0

1
xBx—-1)=0 = x=0 or x=§

We compute the y-coordinate, using y = 2x — 1:

We obtain the solutions (0, —1) and (% —%) To summarize, the critical points are (0, 0), (1, 0), (0, —1), and (% —%)

Three of the critical points have at least one zero coordinate, and one has two nonzero coordinates.
(c) We compute the second-order partial derivatives:

0

frx(x,y) = ET(y2 —2yx+y)=-2y
X
3 2

Syy(x,y) = 5(2)’)6 —x“4x)=2x

fry(x, y) = %(y2 —2yx+y)=2y—-2x+1
The discriminant is
D(x,y) = fax fyy — fxzy =-2y-2x — 2y —2x + 1)2 = —4xy — 2y — 2x + 1)2
We now apply the Second Derivative Test. We first compute the discriminants at the critical points:
D@0,0)=-1<0
D(1,0)=-1<0
DO0,-1)=-1<0

101 1/ 1 2 2 2 1
D(Z,-Z)=-4-2(-2)-(-2-2+1) ==

<3’ 3) 3( 3) (3 3+> 370

101 1\ 2
fxx(g,—§>=—2'<—§>=§>o

The Second Derivative Test implies that the points (0, 0), (1, 0), and (0, —1) are saddle points, and f (% —%) is a local
minimum.

In Exercises 7-23, find the critical points of the function. Then use the Second Derivative Test to determine whether they
are local minima, local maxima, or saddle points (or state that the test fails).

7. fa.y)=x2+y2—xy+x
SOLUTION

Step 1. Find the critical points. We set the first-order partial derivatives of f(x, y) = x2 4+ y2 — xy + x equal to zero
and solve:

ey =2x—y+1=0 ()
fyx,y) =2y —x=0 2
Equation (2) implies that x = 2y. Substituting in (1) and solving for y gives
1
2.2y—y+1=0 = 3y=-1 = y=-3

The corresponding value of x isx = 2 - (—%) = —%. The critical point is (—% —%)
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Step 2. Compute the Discriminant. We find the second-order partials:
fex(, ) =2, fry(e,y) =2, foylx,y)=-1
The discriminant is
D(x.y) = fuxfyy — f5 =22 (-1)? =3

Step 3. Applying the Second Derivative Test. We have

2 1 2 1
D(—g,—§>=3>0 and f“(—g,—§>=2>0

The Second Derivative Test implies that f (—% —%) is a local minimum.

9. f(x,y) = X3+ 2xy — 2y2 — 10x
SOLUTION

Step 1. Find the critical points. We set the first-order partial derivatives of f(x, y) = x4 2xy — 2y2 — 10x equal to
zero and solve:

felx,y) =3x24+2y—10=0 1)
fy(x,y)=2x—-4y=0 )
Equation (2) implies that x = 2. We substitute in (1) and solve for y. This gives
3-(2y)2+2y—-10=0
12y2 +2y—-10=0
6y°+y—5=0

-1+/I-4.6-(-5) -1+11
12 12

We find the x-coordinates using x = 2y:

[e2 0]

12 = yi=-1 and y;=

x1=2-(-1)=-2, xp=2-

ol o
w| o,

The critical points are thus (—2, —1) and (% %)
Step 2. Compute the Discriminant. We find the second-order partials:
fex(x,y) =6x,  fiy(x,y) = -4, frylx,y) =2
The discriminant is
D(x.y) = faxfyy — f3 =6x-(—4) — 2% = —24x — 4
Step 3. Apply the Second Derivative Test. We have
D(=2,—1) = —24.(=2) — 4 = 44 > 0,
frx(=2,-1)=6-(-2)=-12<0

(2.3 =242 a—_aa-0
36 3

We conclude that f(—2, —1) is a local maximum and (% %) is a saddle point.
11. f(x,y) = 4x — 3x3 — 2xy?

SOLUTION

Step 1. Find the critical points. We set the first-order derivatives of f(x, y) = 4x — 3x3 — 2xy? equal to zero and solve:
fele, ) =4—0? =22 =0 (1)
fy(x.y) = —4xy =0 @

Equation (2) implies that x = 0 or y = 0. If x = 0, then equation (1) gives

4—2y2=0 = y2=2 = y=ﬁ, y=—\/§
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If y = 0, then equation (1) gives
2

4-9x2=0 = 9%l=4 = X==, x=-—

The critical points are therefore
2 2
(0.v2). (0.-v2). (5, 0) , (—5, 0>
Step 2. Compute the discriminant. The second-order partials are
Sax (e, y) = =18x,  fyy(x,y) = —4x, fxy =4y
The discriminant is thus
D(x,y) = fux fyy = F3 = —18x - (—4x) — (=4y)? = 7222 — 16y°

Step 3. Apply the Second Derivative Test. We have

o

)

)=
>=7z.g=32>0,
)

(

The Second Derivative Test implies that the points (0, i«/?) are the saddle points, f <% 0) is a local maximum, and
f (—% 0) is a local minimum.
13, f(x,y) =x* 44 —axy

SOLUTION
Step 1. Find the critical points. We set the first-order derivatives of £(x, y) = x* + y* — 4xy equal to zero and solve:

felr, ) =42 =4y =0, fy(x, ) =4 —4r =0 @)

Equation (1) implies that y = x3. Substituting in (2) and solving for x, we obtain
(x3)3—x:x9—x:x(x8—l):0 = x=0, x=1, x=-1
The corresponding y coordinates are
y=0=0, y=13=1, y=(-1%=-1
The critical points are therefore
0,00, (1,1, (-1,-1
Step 2. Compute the discriminant. We find the second-order partials:
frrCe, ) =120%, fyy (e, ) =127, fuy(x, ) = —4
The discriminant is thus
D(x.y) = fox fyy — f2 = 1207 - 12y% — (-4)% = 144x%y — 16

Step 3. Apply the Second Derivative Test. We have

D(0,0)=-16 <0

D(1,1)=144-16 =128 >0, fxx(1,1)=12>0

D(-1,-1)=144-16 =128 > 0, fyx(-1,-1)=12>0

We conclude that (0, 0) is a saddle point, whereas f(1, 1) and f(—1, —1) are local minima.
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15, f(x,y) = xye ¥

SOLUTION

Step 1. Find the critical points. We compute the partial derivatives of f(x, y) = xye—xz—yz, using the Product Rule and
the Chain Rule:

frx,y,2) =y (l LX) + xe X% (—2x)) = ye_xz_y2 (1 - sz)
fHrx,y,0)=x (l Xt + ye_xz_y2 . (—2y)> = ye ¥ (1 - 2y2)
We set the partial derivatives equal to zero and solve to find the critical points. This gives
yefxzfyz (1 - 2x2) =0

xex (1 - 2y2) =0

Since e_xz_—"2 # 0, the first equation gives y = 0 or 1 — 2x2 = 0, that is, y=0x= 73 x = } We substitute
each of these values in the second equation and solve to obtain

y=0: xe X =0 = x=0

1 1 1.2 1
= — —e 3V (1-2y2)=0 = 1-2y2=0 = P
V2 V2 ( y) Y YEE/
1 1 1.2 1
x=———: —— 27V (1-2y2)=0 = 1-2y2=0 = y=+4—
V2o V2 (1-27) g RV

We obtain the following critical points: (0, 0),

(1 1) (1_1) <_1 l) <_l_l>
v2' V) \V2' J2)° 2'V2)’ V2' V2
Step 2. Compute the second-order partials.

fex(x,y) = yi (e_xz_yz (l — 2x2)) =y (e_xz_yz(—Zx) (1 — 2x2) + e_xz_yz(—4x))

ox
— _2xyex (3 2x )

Fry(x.y) = x% (e —x?—y? (1 - 2y2>> ( 2=y oy (1 - 2y2> ¥ e—x2—>'2(—4y))
= —2yxe*'" ( 2?)

Fey (e, y) = %f (1 — 2 ) aay (ye_x -y ) = (1- 2x2) (1 Ly ye_xz_yz(—Zy))

— Y (1 - 2x2) (1 - 2y2)

The discriminant is
D(x.y) = foxfyy = f3

Step 3. Apply the Second Derivative Test. We construct the following table:

Critical Point  fex  fyy fry D Type
(0,0) 0 0 1 -1 D < 0, saddle point
(A i) -2 -2 090 4 D=0, fix <O0local maximum
V2 2 e e 2 v Jxx
(ﬁ’ %) 2z 9 % D >0, fux > Olocal minimum
( % %) 2 2 0 ;iz D > 0, frx > 0 local minimum
( % %) -2 -2 9 ;iz D > 0, fix < 0 local maximum
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17. f(x,y) =sin(x +y) — cosx
SOLUTION
Step 1. Find the critical points. We set the first-order derivatives of f(x, y) = sin(x + y) — cos x equal to zero and solve:
fe(x,y) =cos(x +y)+sinx =0
fy(x,y) =cos(x +y) =0
First consider the second equation, cos(x + y) = 0 this is when

2k + 1) 2k + L)z
= - —> y =
2 2
Then setting the two equations equal to one another we gain sin x = 0 which are the values:

— x where k is an integer

x =0, +m, £27, - - - = £k where k is an integer.

Thus we have:

2 1 .
x=kmrandy = % where n, k are integers

Step 2. Compute the discriminant. We find the second-order partial derivatives:
frx(x,y) = —sin(x +y) +cosx, fyy(x,y) = —sin(x +y), fry(x,y)=—sin(x+y)
The discriminant is:
D(x,y) = frx fyy — F3 = (=sin(x + ) + Cosx)(—sin(x + y)) — sin(x + y) = —cos(x) sin(x + y)

Step 3. Apply the Second Derivative Test. We have

4n+3
41, ify=2tC
2
D =
1 dn +1
1 = .
Y 2

. 4 1 . .
Therefore, the points <kn, n 7'r> are saddle points since D < 0.

. . 4n+ 3 .
Since D > 0 for the points (kn, "t 71), we need to examine fyx. The results show:

frx > Qifkisevenand fyy < Oifkisodd
Thus:

4 3
(kn, n2+ n) are local minima if & is even

while

(kn, #n) are local maxima if k is odd

19. f(x,y)=Inx+2Iny —x —4y
SOLUTION
Step 1. Find the critical points. We set the first-order partials of f(x, y) = Inx +2Iny — x — 4y equal to zero and solve:
1 2
e, y)==--1=0, fyx,y)=--4=0
X y
The first equation gives x = 1, and the second equation gives y = % We obtain the critical point (1, %) Notice that fy
and fy do notexist if x = 0 or y = 0, respectively, but these are not critical points since they are not in the domain of f.
The critical point is thus (1, % .
Step 2. Compute the discriminant. We find the second-order partials:

1 2
fxx(x»Y)=—x7’ fyy(x’)’)z—yjs fxy(xgy)zo

The discriminant is

2
D(x,y) = fxxfyy - fxzy = W
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Step 3. Apply the Second Derivative Test. We have

1 2 1 1
D(1,2>:12 12:8>O, fxx(l,§>:—1—2:—1<0
(3)

We conclude that f (1, %) is a local maximum.

21, f(x,y)=x —y2 —In(x +y)
SOLUTION

Step 1. Find the critical points. We set the partial derivatives of f(x, y) = x — y%2 — In(x + y) equal to zero and solve.

1
=0
x+y

1
frle,y)=1- Tty =0, fylx,y)=-2y—

The first equation implies that - = 1. Substituting in the second equation gives

1
—2y—-1=0 = 2y=-1 = y==3
We substitute y = —% in the first equation and solve for x:
1 1 3
1- =0 = x—=-=1 = X = —
X — % 2 2

We obtain the critical point (% —%) Notice that although f; and f do not exist where x + y = 0, these are not critical
points since f is not defined at these points.
Step 2. Compute the discriminant. We compute the second-order partial derivatives:

b 1 1
fxx(X,)’):*<1_ )

0x xX+y - (x+y)2
b 1 1
z(x,)=*(—2— >=—2+7

Jyy(x,y 3y YTy .

ad 1 1
) =—[1- =
fxy(x Y) 3y< x—l—y) (x+y)2
The discriminant is
D) = fuafy = Sy =y (24— ) - g =
TR I )2 G+02) Gt G+

Step 3. Apply the Second Derivative Test. We have

3 1 -2
D(27_2>=<2=—2<0

NIlw

N
N—

We conclude that (% —%) is a saddle point.

23. f(x.y) = (x + 3y’
SOLUTION

Step 1. Find the critical points. We compute the partial derivatives of f(x, y) = (x + 3y)ey*x2, using the Product Rule
and the Chain Rule:

Fe@y) =1-7F 4 (x +3y)e ™ L (—2x0) = & (1-2:% - 6xy)
2 2 2
fyGe,y) =377 + (x +3y)e’ ™ - 1=e""" @+ x+3y)
We set the partial derivatives equal to zero and solve to find the critical points:
I’ (1 . 6xy) -0

B4 x43y)=0
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Since e¥—*° # 0, we obtain the following equations:
1—2x2 - 6xy =0
3+x+3y=0
The second equation gives x = —3(1 + y). We substitute for x in the first equation and solve for y:
1-2-91+y)2+181+y)y=0

1—18<1+2y+y2)+18<y+y2>:0

17 17 1
17-18y=0 = y=-—-, x:_3<1_f>:_,

The critical point is (—%, _%)_
Step 2. Compute the second-order partials.

d
fex(x,y) = ETfX =y (—2x) <1 - ny) + ey_xz(—4x —6y) = 2eV ¥ (2x3 + 6x2y — 3x — 3y>
x

d
—fy= e>’*x2(3 +x +3y) +ey*x2 .3 = ey*x2(6+x + 3y)

fyy(x, )’) = 8_)7

ad )
foy(x, y) = a—fv = ey_xz(—Zx)(3 +x+3y)+ = (1 —Bxy — 2x% — Gx)
A
The discriminant is
D(x,y) = fxx fyy — fxzy
Step 3. Apply the Second Derivative Test. We obtain the following table:

Critical Point ~ fyx  fyy  fxy D Type
(-3 -1%) 24 113 038 257 D >0, fu > 0, local minimum

25. Prove that the function f(x, y) = %x3 + %y?’/z — xy satisfies f(x,y) >0forx >0andy > 0.

(a) First, verify that the set of critical points of f is the parabola y = x2 and that the Second Derivative Test fails for
these points.

(b) Show that for fixed b, the function g(x) = f(x, b) is concave up for x > 0 with a critical point at x = »l/2,

(c) Conclude that f(a,b) > f(bY2, by =0foralla, b > 0.

SOLUTION
(a) To find the critical points, we need the first-order partial derivatives, set them equal to zero and solve:

b,y =22 —y=0, fyx,y)=y"?-x=0
This gives us:
y=x

as the solution set for the critical points.
Now to compute the discriminant, we need the second-order partials

1 _
fee ) =20 fryGen =2y fry(ey) = -1
Thus the discriminant is

D(x,y):%—l

<

Since y = x? is the solution set for the critical points we see:
Dx,y)=1-1=0

Therefore the Second Derivative Test is inconclusive and fails us.
(b) If we fix a value b and consider g(x) = f(x,b) = %x?’ + %b3/2 — bx to find the concavity, we see

g =x2-b, ¢'x)=2x

Then certainly, for x > 0, this function is concave up. The critical point will occur at the point when x2 — » = 0 or
x = b1/2,
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(c) Now, since for fixed b, we know that g(x) = f(x, b) is concave up if x > 0, and the critical point is x = b1/2.
Therefore

fla,b) > fBY2% by =0forallb >0

27. CHS  Use a computer algebra system to find a numerical approximation to the critical point of

2 2
FO) =A—x+xDer +1—y+yHe’
Apply the Second Derivative Test to confirm that it corresponds to a local minimum as in Figure 20.

z

y
FIGURE 20 Plotof £(x,y) = (1 — x +x2)e¥” + (1 — y + y2)e*.

SOLUTION The critical points are the solutions of fy (x, y) = 0and fy(x, y) = 0. We compute the partial derivatives:
felr, ) = (14200 + (1- y+52) & 2
fy(x,y) = (1 —-x+ xz) & 2y + (—1+2y)e*
Hence, the critical points are the solutions of the following equations:
(2x — 1)e¥” + 2x (1 v+ y2) & =0
@y —De* +2y (1-x+x2) " =0
Using a CAS we obtain the following solution: x = y = 0.27788, which from the figure is a local minimum.

& In Exercises 29-32, determine the global extreme values of the function on the given set without using calculus.

29. f(x,y)=x+y, 0=<x=<1 0=<y=<l1

SOLUTION The sum x + y is maximum when x = 1 and y = 1, and it is minimum when x = 0 and y = 0. Therefore,
the global maximum of f on the given setis f(1,1) =1+ 1 = 2 and the global minimum is £(0,0) =0+0=0.

3L f, ) =G2+y2+1)7L 0<x<3 0<y<5

SOLUTION f(x,y) = is maximum when x2 and y2 are minimum, that is, when x = y = 0. f is minimum

1
x2+y2+1
when x2 and y2 are maximum, that is, when x = 3 and y = 5. Therefore, the global maximum of f on the given set is

£(0,0) = (02 +02 + 1)~ = 1, and the global minimum is f(3,5) = (32 + 52 + 1) * = *.

33. Assumptions Matter Show that f(x, y) = xy does not have a global minimum or a global maximum on the
domain

D={(x,y):0<x<10<y<1}

Explain why this does not contradict Theorem 3.

soLUTION The largest and smallest values of f on the closed square 0 < x,y < lare f(1,1) = land f(0,0) = 0.
However, on the open square 0 < x, y < 1, f can never attain these maximum and minimum values, since the boundary
(and in particular the points (1, 1) and (—1, —1)) are not included in the domain. This does not contradict Theorem 3
since the domain is open.
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35. Find the maximum of
f,y) =x+y—x2—3y%—xy

on the square, 0 < x < 2,0 <y < 2 (Figure 21).

(a) First, locate the critical point of f in the square, and evaluate f at this point.

(b) On the bottom edge of the square, y = 0 and f(x, 0) = x — x2. Find the extreme values of 7 on the bottom edge.
(c) Find the extreme values of f on the remaining edges.

(d) Find the largest among the values computed in (a), (b), and (c).

f(x,2) =-2-x—x?

Edgey=2
|

Edgex=0 — — Edgex =2
fO,y)=y-y? fy)=-2-y-y
X

| 2
Edgey=0
f(x,0) =x - x?

FIGURE 21 The function f(x,y) =x+y — x2— y2 — xy on the boundary segments of the square
O<x=<20=<y<?2

SOLUTION
(a) To find the critical points, we look at the first-order partial derivatives set equal to zero and solve:

S, ) =1-2x -y =0, fy(x,y):1—2y—x=0

Thisgives y = 1 — 2x and x = 1 — 2y, solving simultaneously we see y = 1/3 and x = 1/3. The critical point is
(1/3, 1/3), subsequently, f(1/3,1/3) =1/3.
(b) To find the extreme points of f(x, 0) = x — x2 we take the first derivative and set it equal to zero and solve:

ffx,00=1-2x=0—x=1/2
Thus the extreme value on the bottom edge of the square is
£(1/2,0) = 1/4

(c) Now to find the extreme values on the other edges of the square.
First, letususe x = 0: f(0,y) =y — y2. Taking the first derivative and setting equal to 0 gives us:

F0,y)=1-2y=0,—-y=1/2

Therefore, the extreme value along x = 0is (0, 1/2) = 1/4.
Next, let us use y = 2: f(x, 2) = —x2 — x — 2. Take the first derivative and setting equal to O gives us:

f’(X,Z):—Zx—l:Q_)x:_l/z

Therefore, the extreme value along y = 2is f(-1/2,2) = —7/4.
Finally, let us use x = 2: £(2,y) = —2 — y — y2. Take the first derivative and setting equal to O gives us:

ff2y=-1-2y=0,-y=-1/2

Therefore, the extreme value along x = 2is (2, —1/2) = —7/4.
(d) Out of all the values we computed in parts (a), (b), and (c), 1/3 is the largest. This value occurs at the point (1/3, 1/3).

@ In Exercises 37-43, determine the global extreme values of the function on the given domain.

37. fxr,y)=x%-2y, 0<x<1 O0=<y=<1

SsoLUTION We use the following steps.
Step 1. Find the critical points. We set the first derivative equal to zero and solve:

fele,y) =32 =0, fy(x,y)=-2

The two equations have no solutions, hence there are no critical points.
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Step 2. Check the boundary. The extreme values occur either at the critical points or at a point on the boundary of the
domain. Since there are no critical points, the extreme values occur at boundary points. We consider each edge of the
square 0 < x, y < 1 separately.

The segment O A: On this segment y = 0,0 < x < 1, and f takes the values f(x,0) = x3. The minimum value is
£(0,0) = 0 and the maximum value is f(1,0) = 1.

y

€01 B 1)

D (0,0) A(1,0)

The segment AB: On this segmentx = 1,0 < y < 1, and f takes the values (1, y) = 1 — 2y. The minimum value
is f(1,1) =1—2-1= —1and the maximum value is f(1,0) =1—-2-0=1.

The segment BC:: On this segment y = 1,0 < x < 1, and f takes the values f(x, 1) = x3 — 2. The minimum value
is £(0,1) = 0% — 2 = —2 and the maximum value is f(1,1) =13 —2 = —1.

The segment OC: On this segment x = 0,0 < y < 1, and f takes the values £(0, y) = —2y. The minimum value is
f(0,1) = —-2-1= —2and the maximum value is f(0,0) = —2-0=0.

Step 3. Conclusions. The values obtained in the previous steps are
f0,00=0 f1,0=1 fQDH=-1 fO1H=-2

The smallest value is f(0, 1) = —2 and it is the global minimum of f on the square. The global maximum is the largest
value f(1,0) = 1.

39. fx,y)=x%+2y?, 0<x<1, O0<y<1

SOLUTION The sum x2 + 2y2 is maximum at the point (1, 1), where x2 and y2 are maximum. It is minimum if
x =y =0, that is, at the point (0, 0). Hence,

Global maximum = f(1,1) = 1242.12 =3
Global minimum = £(0,0) = 0% +2-0%2 =0
41. f(x,y)=x3+y3—3xy, O0<x=<1 0=<y=<1

soLUTION \We use the following steps.
Step 1. Examine the critical points in the interior of the domain. We set the partial derivatives equal to zero and solve:

fr(x,y) = 32 —3y=0
fre, ) =3y =3x =0

The first equation gives y = x2. We substitute in the second equation and solve for x:
2
3(x?)" —3r =0
3x4—3x=3x(x3—l)=0 = x=0, y=02=0

or x=1, y=12=1

The critical points (0, 0) and (1, 1) are not in the interior of the domain.
Step 2. Find the extreme values on the boundary. We consider each part of the boundary separately.

y

D(0, 1) C(L,1)

X
A0, 0) B(1,0)
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The edge AB: On thisedge, y = 0,0 < x < 1, and f(x, 0) = x3. The maximum value is obtained at x = 1 and the
minimum value is obtained at x = 0. The corresponding extreme points are (1, 0) and (0, 0).

Theedge BC: Onthisedgex = 1,0 < y < 1,and (1, y) = y3 — 3y + 1. The critical points are diy <y3 —3y+ 1) =

3y2 — 3 =0, thatis, y = £1. The point in the given domain is y = 1. The candidates for extreme values are thus
y = 1and y = 0, giving the points (1, 1) and (1, 0).

The edge DC: Onthisedge y = 1,0 < x < 1, and f(x,1) = x3 — 3x + 1. Replacing the values of x and y in the
previous solutions we get the points (1, 1) and (0, 1).

The edge AD: Onthisedge x = 0,0 < y < 1, and £(0, y) = y°. Replacing the values of x and y obtained for the
edge AB, we get (0, 1) and (0, 0).

By Theorem 3, the extreme values occur either at a critical point in the interior of the square or at a point on the boundary
of the square. Since there are no critical points in the interior of the square, the candidates for extreme values are the
following points:

0,0), (1,0), (1,1), (0,1)
We compute f(x, y) = x3 + y3 — 3xy at these points:
f0,00=034+0>-3.0=0
f1,0=1+02-3.1.0=1
fL=13+13-3.1.1=-1
fO0,1)=03+13-3.0-1=1

We conclude that in the given domain, the global maximum is f(1,0) = f(0,1) = 1 and the global minimum is
f(1,1)=-1

2_.2
43, f(x,y) = (By? —x%)e X7 32432 <2
soLUTION We use the following steps.

Step 1. Examine the critical points. We compute the partial derivatives of f(x,y) = (4y2 — x2> e—xz—yz, set them
equal to zero and solve. This gives

felx,y) = —oxe )’ + (4y2 — x2> X2y (—=2x) = —oxe ) (1 +4y2 — x2> =0
fyle,y) = Bye Y 4 (4}}2 - x2> e (22y) = —2pe Y’ (—4 +4y? x2> =0
Since e—¥°—* # 0, the first equation gives x = 0 or =1+ 4y2. Substituting x = 0 in the second equation gives
2y’ (-4+4?) =0,
Since e‘y2 # 0, we get
2\ _ _ _ _ _
y(-1493) =30 =D+ =0 = y=0 y=1 y=-1
We obtain the three points (0, 0), (0, —1), (0, 1). We now substitute ¥ =1+ 4y2 in the second equation and solve for y:
—Zye_l_Sy2 (—4 +4y? —1— 4y2) =0
2y 15 (CB—0 = y=0
The corresponding values of x are obtained from
P=144.0°=1 = x==1
We obtain the solutions (1, 0) and (—1, 0). We conclude that the critical points are

0,0), (0,-1), (0,1, (1,0), and (-1,0).

All of these points are in the interior x2 4+ y2 < 2 of the given disk.
Step 2. Check the boundary. The boundary is the circle x2 4+ y2 = 2. On this set y2 = 2 — x2, hence the function 7 (x, y)
takes the values

Sy a2 =gx) = (4 (2 — xz) - xz) e = (—5x2 + 8) e 2

That is, g(x) = —5¢~2x2 + 8¢~2. We determine the interval of x. Since x2 + y2 = 2, we have 0 < x2 < 2 or
V2 <x <42
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8e~?

’ * X
/—1.265 1.265\
‘ ‘

We thus must find the extreme values of g(x) = —5e=2x2 4 8¢=2 on the interval —/2 < x < /2. With the aid of the
graph of g(x), we conclude that the maximum value is g(0) = 8¢~2 and the minimum value is

2
g (—ﬁ) — (ﬁ) - —5e—2(if2) +8c2= 1072 4+8e 2= —2e72~ —0.271
We conclude that the points on the boundary with largest and smallest values of f are
7 (o, iﬁ) —82~1083, f (ifz, o) = 22~ 0271

Step 3. Conclusions. The extreme values either occur at the critical points or at the points on the boundary, found in step
2. We compare the values of f at these points:

x

£(0,0)=0
£(0,—-1) =4e 1~ 1.472

£(0,1) =4e 1~ 1.472

f(1,0) = —e 1~ —0.368
f(~1,0) = —e~1 ~ —0.368

f (o, ifz) ~ 1.083
f (iﬁ, o) ~ 0271

We conclude that the global minimum is f(1,0) = f(—1,0) = —0.368 and the global maximum is f(0, —1) =
£(0,1) = 1.472.

45. Find the maximum volume of the largest box of the type shown in Figure 22, with one corner at the origin and the
opposite corner at a point P = (x, y, z) on the paraboloid

withx,y,z>0

FIGURE 22

SOLUTION To maximize the volume of a rectangular box, start with the relation V = xyz and using the paraboloid
equation we see

Therefore we will consider

V. y) 13 1 3
X,y)=xy——x"y——x
y y 2 y 9 y
First to find the critical points, we take the first-order partial derivatives and set them equal to zero, and solve:

3 1 1 1
Vilx,y) =y — szy - 5)’3, Vy(x,y) =x — sz — §xy2
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Using the equation V), = 0 we see

1 1 3 3
x—1x3—§xy2=0 = x=0, y2=3—2x2 = y= S—sz

(Note here, we can ignore the value x = 0, since it produces a box having zero volume.)
Using this relation in the first equation, V, = 0, we see:

[3 3,/ 3 1 3 ,)\%?
22 22 22 Z g 22 _
3 4x 4x 3 4x 9(3 4x) 0
3 3 1 3
—Zx2 —72—7 —72 =
3 4x |:1 4x 9<3 4x>] 0

Factoring we see:

and thus
32 2
3_ZX =0 = x*=4 = x=%£2
or
3 1 1 2 2
—S2 oS4 2x%=0 =5 S-2¥%=0 = x=+1

4 3 12 3 3

Since the governing equation f (x, y) is a paraboloid, that is symmetric about the z-axis, we need only consider the point
whenx =2o0rx = 1.

Therefore, since y = /3 — %xz andz =1— %xz - %yz, we have, if x = 2

3 11
_fa—2.4=0 —1—-.4-2.0=0
y 4 =z 2 %79

This will give a box having zero volume - not a maximum volume at all.
; 3 1 1
Usingx = 1,and y = /3 — 3x2,z =1 — 722 — 52, we have

3 3 1 -, 19 1
= 3—727, :1—71 —_—— = = =
Y \/74 2 - 4 9472
Therefore, the box having maximum volume has dimensions, x = 1, y = 3/2, and z = 1/2 and maximum value for the

volume:

Al w

1_
> =

<
Il
=
<
~N
Il
N
N

47. Show that the sum of the squares of the distances from a point P = (c, d) to n fixed points (ay, by), .. .,(an, by) is
minimized when c is the average of the x-coordinates a; and d is the average of the y-coordinates b; .

SOLUTION First we must form the sum of the squares of the distances from a point P (c, d) to n fixed points. For instance,
the square of the distance from (c, d) to (aq, b1) would be:

(c —a1)? + (d — by)?

using this pattern, the sum in question would be

S=Y lc—a)®+d—b)?
i=1

Using the methods discussed in this section of the text, we want to minimize the sum S. We will examine the first-order
partial derivatives with respect to ¢ and d and set them equal to zero and solve:

n n
SC=ZZ(c—a,~)=O, Sd=22(d—bi)=0
i=1 i=1

Consider first the following:
n n n n
ZZ(c—ai)zo = Z(c—ai)zo = Zc—Zai=0
i=1 i=1 i=1 i=1
Therefore

n n n 1 n
Zc:Zai = n~c:Zai = c:;Zai
i=1 i=1

i=1 i=1
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Similarly we can examine S; = 0 to see

n n n n
Y 2d—-b)=0 = Y (d-b)=0 = Y d-) b=0
i=1 i=1 i=1 i=1

and

n n n 1 n
Ya=Yn = md=Yn = d=33
i=1 i=1 i=1 i=1
Therefore, the sum is minimized when ¢ is the average of the x-coordinates a; and d is the average of the y-coordinates b;.

49, & Consider a rectangular box B that has a bottom and sides but no top and has minimal surface area among all
boxes with fixed volume V.

(a) Do you think B is a cube as in the solution to Exercise 48? If not, how would its shape differ from a cube?
(b) Find the dimensions of B and compare with your response to (a).
SOLUTION

(a) Each of the variables x and y is the length of a side of three faces (for example, x is the length of the front, back, and
bottom sides), whereas z is the length of a side of four faces.

Therefore, the variables x, y, and z do not have equal influence on the surface area. We expect that in the box B with
minimal surface area, z is smaller than &/V, which is the side of a cube with volume V (also we would expect x = y).

(b) We must find the dimensions of the box B, with fixed volume V and with smallest possible surface area, when the
top is not included.

Step 1. Find a function to be minimized. The surface area of the box with sides lengths x, y, z when the top is not included
is

S =2xz+2yz +xy 1)

To express the surface in terms of x and y only, we use the formula for the volume of the box, V = xyz, giving z = v

Xy )
We substitute in (1) to obtain

Vv \4 2V 2V
S=2x-—+2y- —+xy=—+ —+xy
Xy xy y X
That is,
2v. 2V
S§=—+—+
y

Step 2. Determine the domain. The variables x, y denote lengths, hence they must be nonnegative. Moreover, S is not
defined for x = 0 or y = 0. Since there are no other limitations on the variables, the domain is

D={x,y):x>0,y>0}

We must find the minimum value of S on D. Because this domain is neither closed nor bounded, we are not sure that a
minimum value exists. However, it can be proved (in like manner as in Exercise 48) that S does have a minimum value
on D. This value occurs at a critical point in D, hence we set the partial derivatives equal to zero and solve. This gives

2V
e, ) =-"5 +y=0
X

2V
Sy(x,y) = -t =0
y
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The first equation gives y = %/ Substituting in the second equation yields

2V x4 x3
x—4v2:x—2V:x<1—2V>:0
P

The solutions are x = 0 and x = (2V)1/3. The solution x = 0 is not included in D, so the only solution is x = (2V)/3.

We find the value of y using y = 2%

x2"
2V

T @R T @v)?

y

We conclude that the critical point, which is the point where the minimum value of S in D occurs, is ((2 13 2 V)1/3).

We find the corresponding value of z using z = % We get

4 4 vis o ry\Y3
<= 2V)H32y)1/3 T 023y23 T 273 T (Z)
We conclude that the sizes of the box with minimum surface area are

width: x = 2V)1/3;
length: y = (2V)1/3;

1/3
height: = = (¥ ) o
We see that z is smaller than x and y as predicted.

51. The power (in microwatts) of a laser is measured as a function of current (in milliamps). Find the linear least-squares
fit (Exercise 50) for the data points.

Current (mA) 1.0 11 1.2 13 1.4 15
Laser power (uW) | 0.52 | 0.56 | 0.82 | 0.78 | 1.23 | 1.50

SOLUTION By Exercise 50, the coefficients of the linear least-square fit f (x) = mx + b are determined by the following
equations:

n n
IR b
j=1 j=1
n n n
mZxJ2~+bej=ij-yj 1
j=1 j=1 j=1

In our case there are n = 6 data points:

(x1, y1) = (1,0.52), (x2, y2) = (1.1, 0.56),
(x3, y3) = (1.2,0.82), (x4, y4) = (1.3,0.78),
(x5, y5) = (1.4,1.23), (xg, vg) = (1.5, 1.50).

We compute the sums in (1):

6
ij =14114+124134+14+15=75
Jj=1

6
> y;=052+056+082+0.78 +1.23 + 1.50 = 5.41
j=1

6
ijz. =12411241224+1324+14%21152-955
j=1
6

Z xj-y;j=1.052+11-056+12-082+13-0.78+14-1.23+1.5-1.50=7.106
j=1
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Substituting in (1) gives the following equations:

7.5m + 6b = 5.41
9.55m + 7.5b = 7.106 @

We multiply the first equation by 9.55 and the second by (—7.5), then add the resulting equations. This gives

71.625m + 57.3b = 51.6655
+ —71.625m —56.25b = —53.295 _, p, _ 15519

1.056 = —1.6295

We now substitute » = —1.5519 in the first equation in (2) and solve for m:

7.5m + 6. (—1.5519)=5.41
7.5m=14.7214

= m=19629

The linear least squares fit f(x) = mx + b is thus

f(x) = 1.9629x — 1.5519.

Further Insights and Challenges

53. In this exercise, we prove that for all x, y > 0:

1 1
—x% + EXﬂ > xy

where « > 1 and 8 > 1 are numbers such that a 14 571 = 1. To do this, we prove that the function
fay) =a % 4+ g7 —xy

satisfies f(x, y) > Oforall x, y > 0.

(a) Show that the set of critical points of f(x, y) is the curve y = x®~1 (Figure 26). Note that this curve can also be
described as x = yﬂ_l. What is the value of f(x, y) at points on this curve?

(b) \erify that the Second Derivative Test fails. Show, however, that for fixed » > 0, the function g(x) = f(x, b) is
concave up with a critical point at x = A1,

(c) Conclude that forall x > 0, f(x,b) > f(bP~1 b) = 0.

y=x*"1

(b*,b)
inc inc

Critical points of f(x, y)
X

FIGURE 26 The critical points of f(x, y) = P ﬁ_lyﬁ — xy formacurve y = x*~1,

soLuTION \We define the following function:
1 1
Foy) = =x"+ 2yF —xy
o B

Notice that f(0,0) = 0.

a) Determine the critical points for f(x,y) = f(x,y) = a 1x% + ﬁ’l B — xy. First, take the first-order partial
p y y y y p

derivatives and set them equal to zero to solve:

fxza—l.axﬂl—l_yzxa—l_yzo’ fyzﬂ_lﬂyﬂ_l_xzyﬂ_l_xzo
This means that y = x*~1 and simultaneously x = y#—1. Note here that we are guaranteed that the set of points satisfying

both equations is nonempty because 1/a + 1/8 = 1.
Now to compute the value of f(x, y) at these points:

fay) =f, Y=o g7l —xx@ 7t = (1 - 1) S %xaﬂiﬁ
o
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But remember that 1 + 8~1 = 1 so we can say
1 1
—+-=1 pBt+a=af
a B

Using these relations we see:

1 1 1 1
o,y = fl,x*h = (7 - 1) X SxPB = _Z e 2y =
fx,n=rf " 5 5 5
or similarly,
1 1 1 1
fa = foP Ly = 2y by <* N 1) e
o B o o

(b) Now computing the second-order partial derivatives we get
fao=@=Dx"2 fiy=@B-1"2  fiy=-1
Therefore we can write the discriminant (while using the relations about « and 8 above):
D= fuxfyy = fo=(@—D(B-Dx2yf2 1= x*"2)F2 1

a—1

Evaluating this expression at the critical points when y = x we see

D(x, xo{—l) _ xa—Z(xa—l)ﬂ—Z 1= xa—Zxaﬁ—ﬁ—ZOH-Z 1= xa—2+aﬁ—ﬂ—2a+2 1= XO —_1=0

Thus the Second Derivative Test is inconclusive and fails.
Instead, if we fix b > 0, consider the function

g(x) = f(x,b) = Loy Lpp_py
a B
Therefore, taking the first derivative and setting it equal to zero to solve, we see
d@)=x*1-b=0 = b=x*1
In order to solve this for x, note here that (« — 1)(8 — 1) = 1 so then a—il =pB—1and
b=x*"1 = x=pl/eD o _pf-1
Since
g’ =(a—1x"2 ax1

then g”(x) > 0 for all x. Therefore, g(x) is concave up with critical point x = b1
(c) From our work in part (b), we can conclude, for all x > 0, then

faby = fFePLp) =0

14.8 Lagrange Multipliers: Optimizing with a Constraint (LT Section 15.8)

Preliminary Questions

1. Suppose that the maximum of f(x, y) subject to the constraint g(x, y) = 0 occurs at a point P = (a, b) such that
V fp # 0. Which of the following statements is true?

(@) Vfp istangentto g(x,y) =0at P.
(b) V fp isorthogonal to g(x, y) = 0at P.

SOLUTION

(a) Since the maximum of f subject to the constraint occurs at P, it follows by Theorem 1 that V fp and Vgp are
parallel vectors. The gradient Vgp is orthogonal to g(x, y) = 0 at P, hence V fp is also orthogonal to this curve at P.
We conclude that statement (b) is false (yet the statement can be true if V fp = (0, 0)).

(b) This statement is true by the reasoning given in the previous part.
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2. Figure 9 shows a constraint g(x, y) = 0 and the level curves of a function f. In each case, determine whether f has
a local minimum, a local maximum, or neither at the labeled point.

\%i 1 Vi
4
3
A i B
gx,y)=0 gx,y) =0
FIGURE 9

soLuTION Thelevel curve f(x, y) = 2istangent to the constraint curve at the point A. Aclose level curve that intersects
the constraint curve is f(x, y) = 1, hence we may assume that f has a local maximum 2 under the constraint at A. The
level curve f(x, y) = 3 istangent to the constraint curve. However, in approaching B under the constraint, from one side
[ isincreasing and from the other side f is decreasing. Therefore, f(B) is neither local minimum nor local maximum of
f under the constraint.

3. On the contour map in Figure 10:
(a) Identify the points where V f = AV g for some scalar A.
(b) Identify the minimum and maximum values of f(x, y) subjectto g(x, y) = 0.

y
—-6-2|2 6

/g(x,y)zo
AN

]

6 2-2-6

Contour plot of f(x, y)
(contour interval 2)

FIGURE 10 Contour map of f(x, y); contour interval 2.

SOLUTION

(a) The gradient Vg is orthogonal to the constraint curve g(x, y) = 0, and V f is orthogonal to the level curves of f.
These two vectors are parallel at the points where the level curve of f is tangent to the constraint curve. These are the
points A, B, C, D, E in the figure:

6
Vi VG, gx,y)=0

6 2-2 -6

(b) The minimum and maximum occur where the level curve of f is tangent to the constraint curve. The level curves
tangent to the constraint curve are

fA)=-4, f(O)=2 [fB)=6 [f(D)=-4 [f(E)=4

Therefore the global minimum of f under the constraint is —4 and the global maximum is 6.

Exercises
In this exercise set, use the method of Lagrange multipliers unless otherwise stated.

1. Find the extreme values of the function £(x, y) = 2x + 4y subject to the constraint g(x, y) = x2 + y2 — 5 = 0.
(a) Show that the Lagrange equation V f = AVg gives Ax = 1 and Ay = 2.
(b) Show that these equations imply A # 0 and y = 2x.



SECTION 14.8 | Lagrange Multipliers: Optimizing with a Constraint (LT SECTION 15.8) 421

(c) Use the constraint equation to determine the possible critical points (x, y).
(d) Evaluate f(x, y) at the critical points and determine the minimum and maximum values.

SOLUTION
(a) The Lagrange equations are determined by the equality V f = AVg. We find them:

vfz(fx’f:\?>=<2v4)s Vg=<gx’gy)=(23ﬁ2y>
Hence,
(2,4) = A (2x, 2y)

or

A(2x) =2 =1

=

A2y) =14 Ay =2

(b) The Lagrange equations in part (a) imply that & # 0. The first equation implies that x = % and the second equation

gives y = % Therefore y = 2x.
(c) We substitute y = 2x in the constraint equation x2 + y2 — 5 = 0 and solve for x and y. This gives

24+ (@202 -5=0
5x2 =5
?=1 = x1=-1, xp2=1
Since y = 2x, we have y; = 2x1 = —2, yp = 2xp = 2. The critical points are thus
(-1,-2) and (1,2).

Extreme values can also occur at the points where Vg = (2x, 2y) = (0, 0). However, (0, 0) is not on the constraint.
(d) We evaluate f(x, y) = 2x + 4y at the critical points, obtaining

f(=1,-2)=2.-(-1)+4-(-2)=-10
f(1,2)=2-14+4.2=10

Since f is continuous and the graph of ¢ = 0 is closed and bounded, global minimum and maximum points exist. So
according to Theorem 1, we conclude that the maximum of f(x, y) on the constraint is 10 and the minimum is —10.

3. Apply the method of Lagrange multipliers to the function f(x, y) = (x2 4+ 1)y subject to the constraint x2 + y2 =5.
Hint: First show that y = 0; then treat the cases x = 0 and x # 0 separately.

soLuTION We first write out the Lagrange Equations. We have V f = (ny, x2 4+ 1> and Vg = (2x, 2y). Hence, the
Lagrange Condition for Vg # 0 is

Vf=1Vg
<2xy, X2y 1> — (2%, 2y)
We obtain the following equations:
2xy = A(2x) 2x(y—2) =0
) = ) (@)
x4+ 1=xr2y) x“4+1=2xry

The second equation implies that y # 0, since there is no real value of x such that x2 +1 = 0. Likewise, A # 0. The
solutions of the first equation are x = 0and y = A.

Case 1: x = 0. Substituting x = 0 in the second equation gives 2oy = 1, 0r y = % We substitute x = 0, y =
(recall that A # 0) in the constraint to obtain

L
2%

@4+t 5 o w2=1 o ozt .t
m2 - ©5 S TJ20 25
The corresponding values of y are
1 1
y = V5 and y= =5

E e

N
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We obtain the critical points:
(0, «/5) and (O, —fo)
Case 2: x # 0. Then the first equation in (1) implies y = A. Substituting in the second equation gives
1= = ¥=22-1
We now substitute y = A and x2 = 242 — 1 in the constraint x2 + y2 = 5 to obtain
22 -1+12=5
32=6
V=2 = a=%V2
The solution (x, y) are thus

V2 y=V2, x=+J22-1=+3
}\:—\/E; y:—\/é, x:i\/ﬁzzl:«/g

We obtain the critical points:
(a0). (8. (@) (oD
We conclude that the critical points are
(0.v8). (0.-vB). (Va.v2). (-v3.v2). (V3.-v2). (-v3.-v2).
We now calculate f(x, y) = (x2 + 1) y at the critical points:

£(0,v8) = VB~ 224
£ (0.-vB) = VB~ 224
f(V3.V2) = f (~V3,v2) =42~ 5.66
£ (V3. —v2) = 1 (—3,—V2) = ~4V2 ~ ~5.66

Since the constraint gives a closed and bounded curve, f achieves a minimum and a maximum under it. We conclude
that the maximum of f(x, y) on the constraint is 44/2 and the minimum is —4+/2.

In Exercises 4-13, find the minimum and maximum values of the function subject to the given constraint.

5. f(x,y)=x2+y2 2x+3y=6

soLUTION \We find the extreme values of f(x, y) = X2+ y2 under the constraint g(x, y) =2x +3y — 6 =0.

Step 1. Write out the Lagrange Equations. The gradients of f and g are V f = (2x, 2y) and Vg = (2, 3). The Lagrange
Condition is

Vf=AVg
(2x,2y) = 1 (2,3)

We obtain the following equations:

Step 2. Solve for A in terms of x and y. Notice that if x = 0, then the first equation gives A = 0, therefore by the second
equation also y = 0. The point (0, 0) does not satisfy the constraint. Similarly, if y = 0 also x = 0. We therefore may
assume that x # 0 and y # 0 and obtain by the two equations:

A and A 2
=X = =Y.
3y
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Step 3. Solve for x and y using the constraint. Equating the two expressions for A gives

2 3
x—3y = y—2x

We substitute y = %x in the constraint 2x 4+ 3y = 6 and solve for x and y:

3
2x+3-§x:6

12 3 12 18

13x = 12 _e 32 18
3 AT U BT T

; . ; 12 18
We obtain the critical point (ﬁ ﬁ)

Step 4. Calculate f at the critical point. We evaluate f(x, y) = X2+ y2 at the critical point:

12 18 12\? [18\% 468
1313 13 13 169
Rewriting the constraint as y = —%x + 2, we see that as |x| — oo then so does |y|, and hence x2 + y? is increasing

without bound on the constraint as |x| — oco. We conclude that the value 468/169 is the minimum value of f under the
constraint, rather than the maximum value.

7. f(x,y) =xy, 4x2 + 9y2 =32
soLuTIiON We find the extreme values of f(x, y) = xy under the constraint g(x, y) = 4x2 + 9y2 —-32=0.

Step 1. Write out the Lagrange Equation. The gradient vectorsare V f = (y, x) and Vg = (8x, 18y), hence the Lagrange
Condition is

Vf =2aVg
(y,x) = A (8x,18y)
We obtain the following equations:
y = A(8x)
x = 1(18y)

Step 2. Solve for A interms of x and y. If x = 0, then the Lagrange equations also imply that y = 0 and vice versa. Since
the point (0, 0) does not satisfy the equation of the constraint, we may assume that x # 0 and y # 0. The two equations
give

y X
A==— and A= -—
8x 18y
Step 3. Solve for x and y using the constraint. We equate the two expressions for A to obtain
y _ X 2 2 2
—=-— = 18y =38 = =4=
8x 18y yoEe y==3

We now substitute y = :l:%x in the equation of the constraint and solve for x and y:
2 2
4x2 4+9. (:I:gx) =32

42
4x2+9~%:32

We find y by the relation y = :I:%x:
4 2 4 2 4 2 4
3 Y . . .

We obtain the following critical points:

(2a) (23) (3) ()

Extreme values can also occur at the point where Vg = (8x, 18y) = (0, 0), that is, at the point (0, 0). However, the point
does not lie on the constraint.

I
|
|
T
N
o
I
|
~<
I
|
N
I
|
~
I
|
|
N
I
!
|

2
y=3(-2=-
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Step 4. Calculate f at the critical points. We evaluate f(x, y) = xy at the critical points:
4 4 8
2. —— | = 2 ) ==
r(-2-3)=r(23)=3
4 4 8
—2 _ )= 2 ) =__
(25)=r(2=5)-

Since f is continuous and the constraint is a closed and bounded set in R? (an ellipse), f attains global extrema on the
constraint. We conclude that % is the maximum value and —% is the minimum value.

9. fr,=x2+y%  xt4yt=1
soLuTioN W find the extreme values of f(x, y) = X2+ y2 under the constraint g(x, y) = x4 + y* — 1 =0.

Step 1. Write out the Lagrange Equations. We have V f = (2x, 2y)and Vg = <4x3, 4y3>, hence the Lagrange Condition
V f = AVg gives
(2x,2y) = A <4x3, 4y3>
or
2x =\ <4x3> ¥ = 23x3
= ; )
2y =1 <4y3> y=2xy

Step 2. Solve for A in terms of x and y. We first assume that x #~ 0 and y # 0. Then the Lagrange equations give

Step 3. Solve for x and y using the constraint. Equating the two expressions for A gives

1 1
— =5 = y2=x2 = y==4x

We now substitute y = =x in the equation of the constraint x* + y* = 1 and solve for x and y:

A Ent=1
xat=1

s 1 1 1

X —E = X—721/4, X——721/4

The corresponding values of y are obtained by the relation y = £x. The critical points are thus

1 1 1 1 1 1 1 1 ’
i) \am—qam) \“aman) \“am s @

We examine the case x = 0 or y = 0. Notice that the point (0, 0) does not satisfy the equation of the constraint, hence
either x = 0 or y = 0 can hold, but not both at the same time.

Case 1: x = 0. Substituting x = 0 in the constraint x* 4+ y* = 1 gives y = #1. We thus obtain the critical points
0,-1), (0,1 @)
Case 2: y = 0. We may interchange x and y in the discussion in case 1, and obtain the critical points:
(=10, 10 (4)

Combining (2), (3), and (4) we conclude that the critical points are

(11 (1 1 (11
A= W,m , Apx= W’_W , Az= _W7W s
1 1
M=\—smz—m ) A45=0-D. A=01D. A7=(-10. Ag=(10)

The point where Vg = <4x3, 4y3> = (0, 0), that is, (0, 0), does not lie on the constraint.
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Step 4. Compute f at the critical points. We evaluate f(x, y) = x2 + y2 at the critical points:

1\? LN _ 2 5
F(A1) = f(A2) = f(Ag) = f(A4) = (W) + (W) =512 =V?
f(A5) = f(46) = f(A7) = [(Ag) =1

The constraint x* 4 y* = 1 is a closed and bounded set in R? and f s continuous on this set, hence f has global extrema
on the constraint. We conclude that +/2 is the maximum value and 1 is the minimum value.
11. f(x,y,2) =3x + 2y + 4z, x2 +2y2 +6z2=1
soLuTioN We find the extreme values of f(x, y,z) = 3x + 2y + 4z under the constraint g(x, y, z) = x2 + 2y% +
622 —1=0.
Step 1. Write out the Lagrange Equations. The gradient vectors are V f = (3,2,4) and Vg = (2x, 4y, 12z), therefore
the Lagrange Condition V f = AVg is:

(3,2,4) = A (2x, 4y, 122)

The Lagrange equations are, thus:

3

3 =A(2x) 3 = AX
1

2=74y) = 3 =1y
1

4 =x1(12z2) 3 = Az

Step 2. Solve for A in terms of x, y, and z. The Lagrange equations imply that x # 0, y # 0, and z # 0. Solving for A
we get

A= 3 A= ! A= !
T T2y’ T3z
Step 3. Solve for x, y, and z using the constraint. Equating the expressions for A gives
3 1 1 N 9 3
2y 32 T YT RR

Substituting x = %z and y = %z in the equation of the constraint x2 + 2y2 4 6z2 = 1 and solving for z we get

9 \? 3\,
- 2| = 6z =1
<2Z> + <ZZ> + 6z

123 2 2
722 — =

1 = z1= 4 -
4 Y= 23t T T s
Using the relations x = %z, y= %z we get
9 2 9 3 2 3 2
XM=z = —F—, = e = Y, 1 = —
Y52 s Vil T2 Am Vi T Ui
9 -2 9 3 -2 3 2
X == — = ——, == = =, 70 = ————
2 J123 23 2 2 Jiz3 123 123

We obtain the following critical points:

9 3 2 9 3 2
= , , and =|- , — , —
n («/123 V123 «/123> P2 ( V123’ Vi ~/123)
Critical points are also the points on the constraint where Vg = 0. However, Vg = (2x, 4y, 12z) = (0, 0, 0) only at the
origin, and this point does not lie on the constraint.
Step 4. Computing f at the critical points. We evaluate f(x, y, z) = 3x + 2y + 4z at the critical points:

P LA B S S [
PO=" s i3 Jim vim V3 o

F(pa) = 27 6 8 4 41 3.7
PO="13 /i3 Jiz  Jis V3 '
Since f is continuous and the constraint is closed and bounded in R3, f has global extrema under the constraint. We
conclude that the minimum value of f under the constraint is about —3.7 and the maximum value is about 3.7.
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13. f(x,y,2) =xy+3xz+2yz, 5x+9y+2z=10

soLuTION We show that f(x, y, z) = xy + 3xz + 2yz does not have minimum and maximum values subject to the
constraint g(x, y, z) = 5x + 9y + z — 10 = 0. First notice that the curve c1 : (x, x, 10 — 14x) lies on the surface of the
constraint since it satisfies the equation of the constraint. On ¢ we have,

fx,y,2) = f(x,x,10 — 14x) = X2+ 3x(10 — 14x) 4+ 2x(10 — 14x) = —69x2 4 50x
Since ximoo <—69x2 + 50x> = —oo, f does not have minimum value on the constraint. Notice that the curve ¢, :
(x, —x, 10 4 4x) also lies on the surface of the constraint. The values of f on ¢, are
. y.2) = f(x, —x, 10 + 4x) = —x? + 3x(10 + 4x) — 2x(10 + 4x) = 3x2 + 10x
The limit ximoo(sz + 10x) = oo implies that f does not have a maximum value subject to the constraint.

15. Find the point (a, b) on the graph of y = ¢* where the value ab is as small as possible.

soLUTION We must find the point where f(x, y) = xy has a minimum value subject to the constraint g(x, y) =
e* —y=0.

Step 1. Write out the Lagrange Equations. Since Vf = (y, x) and Vg = (e", —1), the Lagrange Condition Vf = AVg
is

(v, x) =xr(e*, —1)

The Lagrange equations are thus

Step 2. Solve for A in terms of x and y. The Lagrange equations imply that

X

A=ye * and A= —x

Step 3. Solve for x and y using the constraint. We equate the two expressions for A to obtain

ye ¥=—x = y=-—xe

x
We now substitute y = —xe* in the equation of the constraint and solve for x:
X — (—xe) =0
e“(1+x)=0
Since e* # 0 for all x, we have x = —1. The corresponding value of y is determined by the relation y = —xe*. That is,
y=—(Dhet=et
We obtain the critical point
(-Leh
Step 4. Calculate f at the critical point. We evaluate f(x, y) = xy at the critical point.
fLeh =D et=—et

We conclude (see Remark) that the minimum value of xy on the graph of y = ¢* is —e™1, and it is obtained for x = —1
and y = e L.

Remark: Since the constraint is not bounded, we need to justify the existence of a minimum value. The values
f(x,y) = xyonthe constraint y = ¢* are f(x, e*) = h(x) = xe*. Since h(x) > 0 for x > 0, the minimum value (if it
exists) occurs at a point x < 0. Since

. . X . 1 .
lim x¢f = lim — = Ilim = lim —e' =0,
X——00 x—>—00e ™t x—>—00—et x—>-—00

then for x < some negative number —R, we have | f(x) — 0] < 0.1, say. Thus, on the bounded region —R < x <0, f
has a minimum value of —e~1 ~ —0.37, and this is thus a global minimum (for all x).

17. The surface area of a right-circular cone of radius r and height &2 is § = rv/r2 4+ h2, and its volume is V = %nrzh.
(a) Determine the ratio 2/r for the cone with given surface area S and maximum volume V.

(b) What is the ratio z/r for a cone with given volume V and minimum surface area S?

(c) Does a cone with given volume V and maximum surface area exist?
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SOLUTION

(a) Let Sp denote a given surface area. We must find the ratio % for which the function V(r, h) = %rrrzh has maximum
value under the constraint S(r, 1) = 7rv/r2 + h2 = wy/r% + h2r2 = .
Step 1. Write out the Lagrange Equation. We have

2rh 12 2r3 + h2r hr?
VWV=n{—1, — and VS=anx ,
3 3 \/r4+h2r2 \/}"4 +h2r2

The Lagrange Condition VV = AV S gives the following equations:

2rh 23+ h%r 2h _ 2P+ 0*
3 /r4+h2r2 3 /}’4+/’12i’2
r2 hr? 1 h

7=7)\_ = - =

—_—
3 Jrh 22 3 A 22

Step 2. Solve for A in terms of r and 4. These equations yield two expressions for A that must be equal:

2hrd+ K22 1
= yrotart :E\/r“—f—hzrz

T3 224 p2

Step 3. Solve for r and 4 using the constraint. We have

Zh\/r4+h2r2_i\/m
7z 2 — 3 r* + hér

3 22442
1 1
2h—— ==
2r2+h2  h

h
2h2=272+h2 = h2=2r2 = 7_—«/5
r

We substitute #2 = 2r2 in the constraint 7rv/r2 + h? = So and solve for r. This gives

arvre 4 2r2 = 5

wrv3re = 8p
S 25
«/§nr2=So = r2=—0, n2 =2r2 = 20
J3r J3r
2 2 2
Extreme values can occur also at points on the constraint where V.S = ( -2Lthor____hr = (0, 0, that is, at
P <\/r4+h2r2 \/r4+h2r2 ( )

(r, h) = (0, h), h # 0. However, since the radius of the cone is positive (r > 0), these points are irrelevant. We conclude
that for the cone with surface area So and maximum volume, the following holds:

h 28, N

h_ vz = |20 _ | S

r 37 37
[ 2 [ 1

h= |—=06, r=_|—=043
V37 V37

(b) We now must find the ratio % that minimizes the function S(r, h) = wr+/r2 + h2 under the constraint

For the surface area Sy = 1 we get

1
V(r, h) = 5mzh =V

Using the gradients computed in part (a), the Lagrange Condition VS = AVV gives the following equations:

2% + 0P 2rh 22 +0% 2
V4 4+ h2r2 3 N /14 + h2p2 ~ 73
hr? r2 h A

P ———
Sz 3 At 3
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These equations give

A1 224k h
3 2h A p22 AL 22

sl k.
We simplify and solve for 7

2,2 2
T,
2h
2r2 + h? = 2n?
h
2= = -=V2

- =
We conclude that the ratio % for a cone with a given volume and minimal surface area is

L

- =
(c) The constant V = 1 gives %nrzh =lorh= % As r — oo, we have h — 0, therefore

lim Str,h) = lim arvr2 +h? =00
r— 00 F—> 00
h—0 h—0

That is, S does not have maximum value on the constraint, hence there is no cone of volume 1 and maximal surface area.

19. Find the point on the ellipse

x? —I—Gy2 +3xy =40

Thy
R

FIGURE 13 Graph of x2 + 6y2 + 3xy = 40

with largest x-coordinate (Figure 13).

sOLUTION \We need to maximize f(x, y) = x subject to the constraint

glx,y) = x%+ 6y2 +3xy =40

Step 1. Write out the Lagrange Equations. The gradient vectors are V f = (1, 0) and Vg = (2x + 3y, 12y + 3x), hence
the Lagrange Condition V f = AVg gives:

(1,0) = A (2x 4+ 3y, 12y + 3x)
or
1=x2x+3y), 0=x1(12y + 3x)
this yields
x =—4y
Step 2. Solve for x and y using the constraint.
x2 +6y2 4+ 3xy = (—4y)%2 + 6y2 + 3(—4y)y = (16 + 6 — 12)y% = 10y = 40

soy =12 If y =2thenx = —8 and if y = —2 then x = 8. The extreme points are (—8, 2) and (8, —2). We conclude
that the point with largest x-coordinate is P = (8, —2).

21. Find the point (xg, yg) on the line 4x + 9y = 12 that is closest to the origin.

SOLUTION Since we are minimizing distance, we can minimize the square of the distance function without loss of
generality:

fEN=0—-0%2+@y-02=x2+)>2

subject to the constraint g(x, y) = 4x + 9y — 12.
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Step 1. Write out the Lagrange Equations. The gradient vectorsare V f = (2x, 2y) and Vg = (4, 9), hence the Lagrange
Condition V f = AVg gives
(2x,2y) =1 (4,9)
or
2x=4\r = x=21, 2y=9

Step 2. Solve for A in terms of x and y. The 