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May 18, 2011

10 INFINITE SERIES

10.1 Sequences (LT Section 11.1)

Preliminary Questions
1. What is a4 for the sequence an = n2 − n?

solution Substituting n = 4 in the expression for an gives

a4 = 42 − 4 = 12.

2. Which of the following sequences converge to zero?

(a)
n2

n2 + 1
(b) 2n (c)

(−1

2

)n

solution

(a) This sequence does not converge to zero:

lim
n→∞

n2

n2 + 1
= lim

x→∞
x2

x2 + 1
= lim

x→∞
1

1 + 1
x2

= 1

1 + 0
= 1.

(b) This sequence does not converge to zero: this is a geometric sequence with r = 2 > 1; hence, the sequence diverges
to ∞.

(c) Recall that if |an| converges to 0, then an must also converge to zero. Here,∣∣∣∣
(

−1

2

)n∣∣∣∣ =
(

1

2

)n

,

which is a geometric sequence with 0 < r < 1; hence, ( 1
2 )n converges to zero. It therefore follows that (− 1

2 )n converges
to zero.

3. Let an be the nth decimal approximation to
√

2. That is, a1 = 1, a2 = 1.4, a3 = 1.41, etc. What is lim
n→∞ an?

solution lim
n→∞ an = √

2.

4. Which of the following sequences is defined recursively?

(a) an = √
4 + n (b) bn = √

4 + bn−1

solution

(a) an can be computed directly, since it depends on n only and not on preceding terms. Therefore an is defined explicitly
and not recursively.

(b) bn is computed in terms of the preceding term bn−1, hence the sequence {bn} is defined recursively.

5. Theorem 5 says that every convergent sequence is bounded. Determine if the following statements are true or false
and if false, give a counterexample.

(a) If {an} is bounded, then it converges.

(b) If {an} is not bounded, then it diverges.

(c) If {an} diverges, then it is not bounded.

solution

(a) This statement is false. The sequence an = cos πn is bounded since −1 ≤ cos πn ≤ 1 for all n, but it does not
converge: since an = cos nπ = (−1)n, the terms assume the two values 1 and −1 alternately, hence they do not approach
one value.

(b) By Theorem 5, a converging sequence must be bounded. Therefore, if a sequence is not bounded, it certainly does
not converge.

(c) The statement is false. The sequence an = (−1)n is bounded, but it does not approach one limit.

1
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Exercises
1. Match each sequence with its general term:

a1, a2, a3, a4, . . . General term

(a) 1
2 , 2

3 , 3
4 , 4

5 , . . . (i) cos πn

(b) −1, 1, −1, 1, . . . (ii)
n!
2n

(c) 1, −1, 1, −1, . . . (iii) (−1)n+1

(d) 1
2 , 2

4 , 6
8 , 24

16 . . . (iv)
n

n + 1

solution
(a) The numerator of each term is the same as the index of the term, and the denominator is one more than the numerator;
hence an = n

n+1 , n = 1, 2, 3, . . . .

(b) The terms of this sequence are alternating between −1 and 1 so that the positive terms are in the even places. Since
cos πn = 1 for even n and cos πn = −1 for odd n, we have an = cos πn, n = 1, 2, . . . .

(c) The terms an are 1 for odd n and −1 for even n. Hence, an = (−1)n+1, n = 1, 2, . . .

(d) The numerator of each term is n!, and the denominator is 2n; hence, an = n!
2n , n = 1, 2, 3, . . . .

Let an = 1

2n − 1
for n = 1, 2, 3, . . . . Write out the first three terms of the following sequences.

(a) bn = an+1 (b) cn = an+3

(c) dn = a2
n (d) en = 2an − an+1

In Exercises 3–12, calculate the first four terms of the sequence, starting with n = 1.

3. cn = 3n

n!
solution Setting n = 1, 2, 3, 4 in the formula for cn gives

c1 = 31

1! = 3

1
= 3, c2 = 32

2! = 9

2
,

c3 = 33

3! = 27

6
= 9

2
, c4 = 34

4! = 81

24
= 27

8
.

bn = (2n − 1)!
n!

5. a1 = 2, an+1 = 2a2
n − 3

solution For n = 1, 2, 3 we have:

a2 = a1+1 = 2a2
1 − 3 = 2 · 4 − 3 = 5;

a3 = a2+1 = 2a2
2 − 3 = 2 · 25 − 3 = 47;

a4 = a3+1 = 2a2
3 − 3 = 2 · 2209 − 3 = 4415.

The first four terms of {an} are 2, 5, 47, 4415.

b1 = 1, bn = bn−1 + 1

bn−1

7. bn = 5 + cos πn

solution For n = 1, 2, 3, 4 we have

b1 = 5 + cos π = 4;
b2 = 5 + cos 2π = 6;
b3 = 5 + cos 3π = 4;
b4 = 5 + cos 4π = 6.

The first four terms of {bn} are 4, 6, 4, 6.

cn = (−1)2n+19. cn = 1 + 1

2
+ 1

3
+ · · · + 1

n

solution

c1 = 1;

c2 = 1 + 1

2
= 3

2
;

c3 = 1 + 1

2
+ 1

3
= 3

2
+ 1

3
= 11

6
;

c4 = 1 + 1

2
+ 1

3
+ 1

4
= 11

6
+ 1

4
= 25

12
.
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an = n + (n + 1) + (n + 2) + · · · + (2n)
11. b1 = 2, b2 = 3, bn = 2bn−1 + bn−2

solution We need to find b3 and b4. Setting n = 3 and n = 4 and using the given values for b1 and b2 we obtain:

b3 = 2b3−1 + b3−2 = 2b2 + b1 = 2 · 3 + 2 = 8;
b4 = 2b4−1 + b4−2 = 2b3 + b2 = 2 · 8 + 3 = 19.

The first four terms of the sequence {bn} are 2, 3, 8, 19.

cn = n-place decimal approximation to e
13. Find a formula for the nth term of each sequence.

(a)
1

1
,
−1

8
,

1

27
, . . . (b)

2

6
,

3

7
,

4

8
, . . .

solution
(a) The denominators are the third powers of the positive integers starting with n = 1. Also, the sign of the terms is
alternating with the sign of the first term being positive. Thus,

a1 = 1

13
= (−1)1+1

13
; a2 = − 1

23
= (−1)2+1

23
; a3 = 1

33
= (−1)3+1

33
.

This rule leads to the following formula for the nth term:

an = (−1)n+1

n3
.

(b) Assuming a starting index of n = 1, we see that each numerator is one more than the index and the denominator is
four more than the numerator. Thus, the general term an is

an = n + 1

n + 5
.

Suppose that lim
n→∞ an = 4 and lim

n→∞ bn = 7. Determine:

(a) lim
n→∞(an + bn) (b) lim

n→∞ a3
n

(c) lim
n→∞ cos(πbn) (d) lim

n→∞(a2
n − 2anbn)

In Exercises 15–26, use Theorem 1 to determine the limit of the sequence or state that the sequence diverges.

15. an = 12

solution We have an = f (n) where f (x) = 12; thus,

lim
n→∞ an = lim

x→∞ f (x) = lim
x→∞ 12 = 12.

an = 20 − 4

n2

17. bn = 5n − 1

12n + 9

solution We have bn = f (n) where f (x) = 5x − 1

12x + 9
; thus,

lim
n→∞

5n − 1

12n + 9
= lim

x→∞
5x − 1

12x + 9
= 5

12
.

an = 4 + n − 3n2

4n2 + 1

19. cn = −2−n

solution We have cn = f (n) where f (x) = −2−x ; thus,

lim
n→∞

(−2−n
) = lim

x→∞ −2−x = lim
x→∞ − 1

2x
= 0.

zn =
(

1

3

)n
21. cn = 9n

solution We have cn = f (n) where f (x) = 9x ; thus,

lim
n→∞ 9n = lim

x→∞ 9x = ∞

Thus, the sequence 9n diverges.

zn = 10−1/n23. an = n√
n2 + 1

solution We have an = f (n) where f (x) = x√
x2 + 1

; thus,

lim
n→∞

n√
n2 + 1

= lim
x→∞

x√
x2 + 1

= lim
x→∞

x
x√

x2+1
x

= lim
x→∞

1√
x2+1
x2

= lim
x→∞

1√
1 + 1

x2

= 1√
1 + 0

= 1.
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an = n√
n3 + 1

25. an = ln

(
12n + 2

−9 + 4n

)

solution We have an = f (n) where f (x) = ln

(
12x + 2

−9 + 4x

)
; thus,

lim
n→∞ ln

(
12n + 2

−9 + 4n

)
= lim

x→∞ ln

(
12x + 2

−9 + 4x

)
= ln lim

x→∞

(
12x + 2

−9 + 4x

)
= ln 3

rn = ln n − ln(n2 + 1)
In Exercises 27–30, use Theorem 4 to determine the limit of the sequence.

27. an =
√

4 + 1

n

solution We have

lim
n→∞ 4 + 1

n
= lim

x→∞ 4 + 1

x
= 4

Since
√

x is a continuous function for x > 0, Theorem 4 tells us that

lim
n→∞

√
4 + 1

n
=

√
lim

n→∞ 4 + 1

n
= √

4 = 2

an = e4n/(3n+9)29. an = cos−1

(
n3

2n3 + 1

)

solution We have

lim
n→∞

n3

2n3 + 1
= 1

2

Since cos−1(x) is continuous for all x, Theorem 4 tells us that

lim
n→∞ cos−1

(
n3

2n3 + 1

)
= cos−1

(
lim

n→∞
n3

2n3 + 1

)
= cos−1(1/2) = π

3

an = tan−1(e−n)
31. Let an = n

n + 1
. Find a number M such that:

(a) |an − 1| ≤ 0.001 for n ≥ M .
(b) |an − 1| ≤ 0.00001 for n ≥ M .
Then use the limit definition to prove that lim

n→∞ an = 1.

solution
(a) We have

|an − 1| =
∣∣∣∣ n

n + 1
− 1

∣∣∣∣ =
∣∣∣∣n − (n + 1)

n + 1

∣∣∣∣ =
∣∣∣∣ −1

n + 1

∣∣∣∣ = 1

n + 1
.

Therefore |an − 1| ≤ 0.001 provided 1
n+1 ≤ 0.001, that is, n ≥ 999. It follows that we can take M = 999.

(b) By part (a), |an − 1| ≤ 0.00001 provided 1
n+1 ≤ 0.00001, that is, n ≥ 99999. It follows that we can take M = 99999.

We now prove formally that lim
n→∞ an = 1. Using part (a), we know that

|an − 1| = 1

n + 1
< ε,

provided n > 1
ε − 1. Thus, Let ε > 0 and take M = 1

ε − 1. Then, for n > M , we have

|an − 1| = 1

n + 1
<

1

M + 1
= ε.

Let bn = ( 1
3

)n.

(a) Find a value of M such that |bn| ≤ 10−5 for n ≥ M .

(b) Use the limit definition to prove that lim
n→∞ bn = 0.

33. Use the limit definition to prove that lim
n→∞ n−2 = 0.

solution We see that

|n−2 − 0| =
∣∣∣∣ 1

n2

∣∣∣∣ = 1

n2
< ε

provided

n >
1√
ε
.
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Thus, let ε > 0 and take M = 1√
ε

. Then, for n > M , we have

|n−2 − 0| =
∣∣∣∣ 1

n2

∣∣∣∣ = 1

n2
<

1

M2
= ε.

Use the limit definition to prove that lim
n→∞

n

n + n−1
= 1.

In Exercises 35–62, use the appropriate limit laws and theorems to determine the limit of the sequence or show that it
diverges.

35. an = 10 +
(

−1

9

)n

solution By the Limit Laws for Sequences we have:

lim
n→∞

(
10 +

(
−1

9

)n)
= lim

n→∞ 10 + lim
n→∞

(
−1

9

)n

= 10 + lim
n→∞

(
−1

9

)n

.

Now,

−
(

1

9

)n

≤
(

−1

9

)n

≤
(

1

9

)n

.

Because

lim
n→∞

(
1

9

)n

= 0,

by the Limit Laws for Sequences,

lim
n→∞ −

(
1

9

)n

= − lim
n→∞

(
1

9

)n

= 0.

Thus, we have

lim
n→∞

(
−1

9

)n

= 0,

and

lim
n→∞

(
10 +

(
−1

9

)n)
= 10 + 0 = 10.

dn = √
n + 3 − √

n
37. cn = 1.01n

solution Since cn = f (n) where f (x) = 1.01x , we have

lim
n→∞ 1.01n = lim

x→∞ 1.01x = ∞
so that the sequence diverges.

bn = e1−n239. an = 21/n

solution Because 2x is a continuous function,

lim
n→∞ 21/n = lim

x→∞ 21/x = 2limx→∞(1/x) = 20 = 1.

bn = n1/n41. cn = 9n

n!
solution For n ≥ 9, write

cn = 9n

n! = 9

1
· 9

2
· · · 9

9︸ ︷︷ ︸
call this C

· 9

10
· 9

11
· · · 9

n − 1
· 9

n︸ ︷︷ ︸
Each factor is less than 1

Then clearly

0 ≤ 9n

n! ≤ C
9

n

since each factor after the first nine is < 1. The squeeze theorem tells us that

lim
n→∞ 0 ≤ lim

n→∞
9n

n! ≤ lim
n→∞ C

9

n
= C lim

n→∞
9

n
= C · 0 = 0

so that limn→∞ cn = 0 as well.
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an = 82n

n!
43. an = 3n2 + n + 2

2n2 − 3
solution

lim
n→∞

3n2 + n + 2

2n2 − 3
= lim

x→∞
3x2 + x + 2

2x2 − 3
= 3

2
.

an =
√

n√
n + 4

45. an = cos n

n

solution Since −1 ≤ cos n ≤ 1 the following holds:

− 1

n
≤ cos n

n
≤ 1

n
.

We now apply the Squeeze Theorem for Sequences and the limits

lim
n→∞ − 1

n
= lim

n→∞
1

n
= 0

to conclude that lim
n→∞

cos n
n = 0.

cn = (−1)n√
n

47. dn = ln 5n − ln n!
solution Note that

dn = ln
5n

n!
so that

edn = 5n

n! so lim
n→∞ edn = lim

n→∞
5n

n! = 0

by the method of Exercise 41. If dn converged, we could, since f (x) = ex is continuous, then write

lim
n→∞ edn = elimn→∞ dn = 0

which is impossible. Thus {dn} diverges.

dn = ln(n2 + 4) − ln(n2 − 1)49. an =
(

2 + 4

n2

)1/3

solution Let an =
(

2 + 4
n2

)1/3
. Taking the natural logarithm of both sides of this expression yields

ln an = ln

(
2 + 4

n2

)1/3
= 1

3
ln

(
2 + 4

n2

)
.

Thus,

lim
n→∞ ln an = lim

n→∞
1

3
ln

(
2 + 4

n2

)1/3
= 1

3
lim

x→∞ ln

(
2 + 4

x2

)
= 1

3
ln

(
lim

x→∞

(
2 + 4

x2

))

= 1

3
ln (2 + 0) = 1

3
ln 2 = ln 21/3.

Because f (x) = ex is a continuous function, it follows that

lim
n→∞ an = lim

n→∞ eln an = elimn→∞(ln an) = eln 21/3 = 21/3.

bn = tan−1
(

1 − 2

n

)
51. cn = ln

(
2n + 1

3n + 4

)
solution Because f (x) = ln x is a continuous function, it follows that

lim
n→∞ cn = lim

x→∞ ln

(
2x + 1

3x + 4

)
= ln

(
lim

x→∞
2x + 1

3x + 4

)
= ln

2

3
.

cn = n

n + n1/n
53. yn = en

2n

solution en

2n = (
e
2

)n and e
2 > 1. By the Limit of Geometric Sequences,we conclude that limn→∞

(
e
2

)n = ∞. Thus,
the given sequence diverges.
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an = n

2n
55. yn = en + (−3)n

5n

solution

lim
n→∞

en + (−3)n

5n
= lim

n→∞
( e

5

)n + lim
n→∞

(−3

5

)n

assuming both limits on the right-hand side exist. But by the Limit of Geometric Sequences, since

−1 <
−3

5
< 0 <

e

5
< 1

both limits on the right-hand side are 0, so that yn converges to 0.

bn = (−1)nn3 + 2−n

3n3 + 4−n

57. an = n sin
π

n

solution By the Theorem on Sequences Defined by a Function, we have

lim
n→∞ n sin

π

n
= lim

x→∞ x sin
π

x
.

Now,

lim
x→∞ x sin

π

x
= lim

x→∞
sin π

x
1
x

= lim
x→∞

(
cos π

x

) (− π
x2

)
− 1

x2

= lim
x→∞

(
π cos

π

x

)

= π lim
x→∞ cos

π

x
= π cos 0 = π · 1 = π.

Thus,

lim
n→∞ n sin

π

n
= π.

bn = n!
πn

59. bn = 3 − 4n

2 + 7 · 4n

solution Divide the numerator and denominator by 4n to obtain

an = 3 − 4n

2 + 7 · 4n
=

3
4n − 4n

4n

2
4n + 7·4n

4n

=
3
4n − 1
2
4n + 7

.

Thus,

lim
n→∞ an = lim

x→∞
3

4x − 1
2

4x + 7
=

limx→∞
(

3
4x − 1

)
limx→∞

(
2

4x + 7
) = 3 limx→∞ 1

4x − limx→∞ 1

2 limx→∞ 1
4x − limx→∞ 7

= 3 · 0 − 1

2 · 0 + 7
= −1

7
.

an = 3 − 4n

2 + 7 · 3n

61. an =
(

1 + 1

n

)n

solution Taking the natural logarithm of both sides of this expression yields

ln an = ln

(
1 + 1

n

)n

= n ln

(
1 + 1

n

)
=

ln
(

1 + 1
n

)
1
n

.

Thus,

lim
n→∞ (ln an) = lim

x→∞
ln

(
1 + 1

x

)
1
x

= lim
x→∞

d
dx

(
ln

(
1 + 1

x

))
d
dx

(
1
x

) = lim
x→∞

1
1+ 1

x

·
(
− 1

x2

)
− 1

x2

= lim
x→∞

1

1 + 1
x

= 1

1 + 0
= 1.

Because f (x) = ex is a continuous function, it follows that

lim
n→∞ an = lim

n→∞ eln an = elimn→∞(ln an) = e1 = e.

an =
(

1 + 1

n2

)n
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In Exercises 63–66, find the limit of the sequence using L’Hôpital’s Rule.

63. an = (ln n)2

n

solution

lim
n→∞

(ln n)2

n
= lim

x→∞
(ln x)2

x
= lim

x→∞
d
dx

(ln x)2

d
dx

x
= lim

x→∞
2 ln x

x

1
= lim

x→∞
2 ln x

x

= lim
x→∞

d
dx

2 ln x

d
dx

x
= lim

x→∞
2
x

1
= lim

x→∞
2

x
= 0

bn = √
n ln

(
1 + 1

n

)65. cn = n
(√

n2 + 1 − n
)

solution

lim
n→∞ n

(√
n2 + 1 − n

)
= lim

x→∞ x
(√

x2 + 1 − x
)

= lim
x→∞

x
(√

x2 + 1 − x
) (√

x2 + 1 + x
)

√
x2 + 1 + x

= lim
x→∞

x√
x2 + 1 + x

= lim
x→∞

d
dx

x

d
dx

√
x2 + 1 + x

= lim
x→∞

1

1 + x√
x2+1

= lim
x→∞

1

1 +
√

x2

x2+1

= lim
x→∞

1

1 +
√

1
1+(1/x2)

= 1

2

dn = n2( 3
√

n3 + 1 − n
)In Exercises 67–70, use the Squeeze Theorem to evaluate lim

n→∞ an by verifying the given inequality.

67. an = 1√
n4 + n8

,
1√
2n4

≤ an ≤ 1√
2n2

solution For all n > 1 we have n4 < n8, so the quotient 1√
n4+n8

is smaller than 1√
n4+n4

and larger than 1√
n8+n8

.

That is,

an <
1√

n4 + n4
= 1√

n4 · 2
= 1√

2n2
; and

an >
1√

n8 + n8
= 1√

2n8
= 1√

2n4
.

Now, since lim
n→∞

1√
2n4

= lim
n→∞

1√
2n2

= 0, the Squeeze Theorem for Sequences implies that lim
n→∞ an = 0.

cn = 1√
n2 + 1

+ 1√
n2 + 2

+ · · · + 1√
n2 + n

,

n√
n2 + n

≤ cn ≤ n√
n2 + 1

69. an = (2n + 3n)1/n, 3 ≤ an ≤ (2 · 3n)1/n = 21/n · 3

solution Clearly 2n + 3n ≥ 3n for all n ≥ 1. Therefore:

(2n + 3n)
1/n ≥ (3n)

1/n = 3.

Also 2n + 3n ≤ 3n + 3n = 2 · 3n, so

(2n + 3n)
1/n ≤ (2 · 3n)

1/n = 21/n · 3.

Thus,

3 ≤ (2n + 3n)
1/n ≤ 21/n · 3.

Because

lim
n→∞ 21/n · 3 = 3 lim

n→∞ 21/n = 3 · 1 = 3

and limn→∞ 3 = 3, the Squeeze Theorem for Sequences guarantees

lim
n→∞ (2n + 3n)

1/n = 3.

an = (n + 10n)1/n, 10 ≤ an ≤ (2 · 10n)1/n71. Which of the following statements is equivalent to the assertion lim
n→∞ an = L? Explain.

(a) For every ε > 0, the interval (L − ε, L + ε) contains at least one element of the sequence {an}.
(b) For every ε > 0, the interval (L − ε, L + ε) contains all but at most finitely many elements of the sequence {an}.
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solution Statement (b) is equivalent to Definition 1 of the limit, since the assertion “|an − L| < ε for all n > M”
means that L − ε < an < L + ε for all n > M; that is, the interval (L − ε, L + ε) contains all the elements an except
(maybe) the finite number of elements a1, a2, . . . , aM .

Statement (a) is not equivalent to the assertion lim
n→∞ an = L. We show this, by considering the following sequence:

an =

⎧⎪⎪⎨
⎪⎪⎩

1

n
for odd n

1 + 1

n
for even n

Clearly for every ε > 0, the interval (−ε, ε) = (L − ε, L + ε) for L = 0 contains at least one element of {an}, but the
sequence diverges (rather than converges to L = 0). Since the terms in the odd places converge to 0 and the terms in the
even places converge to 1. Hence, an does not approach one limit.

Show that an = 1

2n + 1
is decreasing.73. Show that an = 3n2

n2 + 2
is increasing. Find an upper bound.

solution Let f (x) = 3x2

x2+2
. Then

f ′(x) = 6x(x2 + 2) − 3x2 · 2x

(x2 + 2)
2

= 12x

(x2 + 2)
2
.

f ′(x) > 0 for x > 0, hence f is increasing on this interval. It follows that an = f (n) is also increasing. We now show
that M = 3 is an upper bound for an, by writing:

an = 3n2

n2 + 2
≤ 3n2 + 6

n2 + 2
= 3(n2 + 2)

n2 + 2
= 3.

That is, an ≤ 3 for all n.

Show that an = 3√
n + 1 − n is decreasing.

75. Give an example of a divergent sequence {an} such that lim
n→∞ |an| converges.

solution Let an = (−1)n. The sequence {an} diverges because the terms alternate between +1 and −1; however, the
sequence {|an|} converges because it is a constant sequence, all of whose terms are equal to 1.

Give an example of divergent sequences {an} and {bn} such that {an + bn} converges.
77. Using the limit definition, prove that if {an} converges and {bn} diverges, then {an + bn} diverges.

solution We will prove this result by contradiction. Suppose limn→∞ an = L1 and that {an + bn} converges to a
limit L2. Now, let ε > 0. Because {an} converges to L1 and {an + bn} converges to L2, it follows that there exist numbers
M1 and M2 such that:

|an − L1| <
ε

2
for all n > M1,

| (an + bn) − L2| <
ε

2
for all n > M2.

Thus, for n > M = max{M1, M2},

|an − L1| <
ε

2
and | (an + bn) − L2| <

ε

2
.

By the triangle inequality,

|bn − (L2 − L1)| = |an + bn − an − (L2 − L1)| = |(−an + L1) + (an + bn − L2)|
≤ |L1 − an| + |an + bn − L2|.

Thus, for n > M ,

|bn − (L2 − L1) | <
ε

2
+ ε

2
= ε;

that is, {bn} converges to L2 − L1, in contradiction to the given data. Thus, {an + bn} must diverge.

Use the limit definition to prove that if {an} is a convergent sequence of integers with limit L, then there exists a
number M such that an = L for all n ≥ M .

79. Theorem 1 states that if lim
x→∞ f (x) = L, then the sequence an = f (n) converges and lim

n→∞ an = L. Show that the

converse is false. In other words, find a function f (x) such that an = f (n) converges but lim
x→∞ f (x) does not exist.

solution Let f (x) = sin πx and an = sin πn. Then an = f (n). Since sin πx is oscillating between −1 and 1 the
limit lim

x→∞ f (x) does not exist. However, the sequence {an} is the constant sequence in which an = sin πn = 0 for all n,

hence it converges to zero.
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Use the limit definition to prove that the limit does not change if a finite number of terms are added or removed
from a convergent sequence.

81. Let bn = an+1. Use the limit definition to prove that if {an} converges, then {bn} also converges and lim
n→∞ an =

lim
n→∞ bn.

solution Suppose {an} converges to L. Let bn = an+1, and let ε > 0. Because {an} converges to L, there exists an
M ′ such that |an − L| < ε for n > M ′. Now, let M = M ′ − 1. Then, whenever n > M , n + 1 > M + 1 = M ′. Thus,
for n > M ,

|bn − L| = |an+1 − L| < ε.

Hence, {bn} converges to L.

Let {an} be a sequence such that lim
n→∞ |an| exists and is nonzero. Show that lim

n→∞ an exists if and only if there

exists an integer M such that the sign of an does not change for n > M .
83. Proceed as in Example 12 to show that the sequence

√
3,

√
3
√

3,

√
3

√
3
√

3, . . . is increasing and bounded above by
M = 3. Then prove that the limit exists and find its value.

solution This sequence is defined recursively by the formula:

an+1 = √
3an, a1 = √

3.

Consider the following inequalities:

a2 = √
3a1 =

√
3
√

3 >
√

3 = a1 ⇒ a2 > a1;
a3 = √

3a2 >
√

3a1 = a2 ⇒ a3 > a2;
a4 = √

3a3 >
√

3a2 = a3 ⇒ a4 > a3.

In general, if we assume that ak > ak−1, then

ak+1 = √
3ak >

√
3ak−1 = ak.

Hence, by mathematical induction, an+1 > an for all n; that is, the sequence {an} is increasing.
Because an+1 = √

3an, it follows that an ≥ 0 for all n. Now, a1 = √
3 < 3. If ak ≤ 3, then

ak+1 = √
3ak ≤ √

3 · 3 = 3.

Thus, by mathematical induction, an ≤ 3 for all n.
Since {an} is increasing and bounded, it follows by the Theorem on Bounded Monotonic Sequences that this sequence

is converging. Denote the limit by L = limn→∞ an. Using Exercise 81, it follows that

L = lim
n→∞ an+1 = lim

n→∞
√

3an =
√

3 lim
n→∞ an = √

3L.

Thus, L2 = 3L, so L = 0 or L = 3. Because the sequence is increasing, we have an ≥ a1 = √
3 for all n. Hence, the

limit also satisfies L ≥ √
3. We conclude that the appropriate solution is L = 3; that is, lim

n→∞ an = 3.

Let {an} be the sequence defined recursively by

a0 = 0, an+1 = √
2 + an

Thus, a1 = √
2, a2 =

√
2 + √

2, a3 =
√

2 +
√

2 + √
2, . . . .

(a) Show that if an < 2, then an+1 < 2. Conclude by induction that an < 2 for all n.

(b) Show that if an < 2, then an ≤ an+1. Conclude by induction that {an} is increasing.

(c) Use (a) and (b) to conclude that L = lim
n→∞ an exists. Then compute L by showing that L = √

2 + L.

Further Insights and Challenges
85. Show that lim

n→∞
n
√

n! = ∞. Hint: Verify that n! ≥ (n/2)n/2 by observing that half of the factors of n! are greater

than or equal to n/2.

solution We show that n! ≥ (
n
2

)n/2. For n ≥ 4 even, we have:

n! = 1 · · · · · n

2︸ ︷︷ ︸
n
2 factors

·
(n

2
+ 1

)
· · · · · n︸ ︷︷ ︸

n
2 factors

≥
(n

2
+ 1

)
· · · · · n︸ ︷︷ ︸

n
2 factors

.

Since each one of the n
2 factors is greater than n

2 , we have:

n! ≥
(n

2
+ 1

)
· · · · · n︸ ︷︷ ︸

n
2 factors

≥ n

2
· · · · · n

2︸ ︷︷ ︸
n
2 factors

=
(n

2

)n/2
.

For n ≥ 3 odd, we have:

n! = 1 · · · · · n − 1

2︸ ︷︷ ︸
n−1

2 factors

· n + 1

2
· · · · · n︸ ︷︷ ︸

n+1
2 factors

≥ n + 1

2
· · · · · n︸ ︷︷ ︸

n+1
2 factors

.
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Since each one of the n+1
2 factors is greater than n

2 , we have:

n! ≥ n + 1

2
· · · · · n︸ ︷︷ ︸

n+1
2 factors

≥ n

2
· · · · · n

2︸ ︷︷ ︸
n+1

2 factors

=
(n

2

)(n+1)/2 =
(n

2

)n/2
√

n

2
≥

(n

2

)n/2
.

In either case we have n! ≥ (
n
2

)n/2. Thus,

n
√

n! ≥
√

n

2
.

Since lim
n→∞

√
n
2 = ∞, it follows that lim

n→∞
n
√

n! = ∞. Thus, the sequence an = n
√

n! diverges.

Let bn =
n
√

n!
n

.

(a) Show that ln bn = 1

n

n∑
k=1

ln
k

n
.

(b) Show that ln bn converges to
∫ 1

0
ln x dx, and conclude that bn → e−1.

87. Given positive numbers a1 < b1, define two sequences recursively by

an+1 = √
anbn, bn+1 = an + bn

2

(a) Show that an ≤ bn for all n (Figure 13).
(b) Show that {an} is increasing and {bn} is decreasing.

(c) Show that bn+1 − an+1 ≤ bn − an

2
.

(d) Prove that both {an} and {bn} converge and have the same limit. This limit, denoted AGM(a1, b1), is called the
arithmetic-geometric mean of a1 and b1.
(e) Estimate AGM(1,

√
2) to three decimal places.

x
an an+1 bn+1 bn

Geometric
mean

AGM(a1, b1)

Arithmetic
mean

FIGURE 13

solution
(a) Examine the following:

bn+1 − an+1 = an + bn

2
− √

anbn = an + bn − 2
√

anbn

2
=

(√
an

)2 − 2
√

an
√

bn + (√
bn

)2

2

=
(√

an − √
bn

)2

2
≥ 0.

We conclude that bn+1 ≥ an+1 for all n > 1. By the given information b1 > a1; hence, bn ≥ an for all n.
(b) By part (a), bn ≥ an for all n, so

an+1 = √
anbn ≥ √

an · an =
√

a2
n = an

for all n. Hence, the sequence {an} is increasing. Moreover, since an ≤ bn for all n,

bn+1 = an + bn

2
≤ bn + bn

2
= 2bn

2
= bn

for all n; that is, the sequence {bn} is decreasing.
(c) Since {an} is increasing, an+1 ≥ an. Thus,

bn+1 − an+1 ≤ bn+1 − an = an + bn

2
− an = an + bn − 2an

2
= bn − an

2
.

Now, by part (a), an ≤ bn for all n. By part (b), {bn} is decreasing. Hence bn ≤ b1 for all n. Combining the two inequalities
we conclude that an ≤ b1 for all n. That is, the sequence {an} is increasing and bounded (0 ≤ an ≤ b1). By the Theorem
on Bounded Monotonic Sequences we conclude that {an} converges. Similarly, since {an} is increasing, an ≥ a1 for all
n. We combine this inequality with bn ≥ an to conclude that bn ≥ a1 for all n. Thus, {bn} is decreasing and bounded
(a1 ≤ bn ≤ b1); hence this sequence converges.

To show that {an} and {bn} converge to the same limit, note that

bn − an ≤ bn−1 − an−1

2
≤ bn−2 − an−2

22
≤ · · · ≤ b1 − a1

2n−1
.

Thus,

lim
n→∞(bn − an) = (b1 − a1) lim

n→∞
1

2n−1
= 0.
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(d) We have

an+1 = √
anbn, a1 = 1; bn+1 = an + bn

2
, b1 = √

2

Computing the values of an and bn until the first three decimal digits are equal in successive terms, we obtain:

a2 = √
a1b1 =

√
1 · √

2 = 1.1892

b2 = a1 + b1

2
= 1 + √

2

2
= 1.2071

a3 = √
a2b2 = √

1.1892 · 1.2071 = 1.1981

b3 = a2 + b2

2
= 1.1892 · 1.2071

2
= 1.1981

a4 = √
a3b3 = 1.1981

b4 = a3 + b3

2
= 1.1981

Thus,

AGM
(

1,
√

2
)

≈ 1.198.

Let cn = 1

n
+ 1

n + 1
+ 1

n + 2
+ · · · + 1

2n
.

(a) Calculate c1, c2, c3, c4.

(b) Use a comparison of rectangles with the area under y = x−1 over the interval [n, 2n] to prove that∫ 2n

n

dx

x
+ 1

2n
≤ cn ≤

∫ 2n

n

dx

x
+ 1

n

(c) Use the Squeeze Theorem to determine lim
n→∞ cn.

89. Let an = Hn − ln n, where Hn is the nth harmonic number

Hn = 1 + 1

2
+ 1

3
+ · · · + 1

n

(a) Show that an ≥ 0 for n ≥ 1. Hint: Show that Hn ≥
∫ n+1

1

dx

x
.

(b) Show that {an} is decreasing by interpreting an − an+1 as an area.
(c) Prove that lim

n→∞ an exists.

This limit, denoted γ , is known as Euler’s Constant. It appears in many areas of mathematics, including analysis and
number theory, and has been calculated to more than 100 million decimal places, but it is still not known whether γ is an
irrational number. The first 10 digits are γ ≈ 0.5772156649.

solution

(a) Since the function y = 1
x is decreasing, the left endpoint approximation to the integral

∫ n+1
1

dx
x is greater than this

integral; that is,

1 · 1 + 1

2
· 1 + 1

3
· 1 + · · · + 1

n
· 1 ≥

∫ n+1

1

dx

x

or

Hn ≥
∫ n+1

1

dx

x
.

1

1

y

x
2 3 n n + 1

1/n

1
2 1

3

Moreover, since the function y = 1
x is positive for x > 0, we have:∫ n+1

1

dx

x
≥

∫ n

1

dx

x
.

Thus,

Hn ≥
∫ n

1

dx

x
= ln x

∣∣∣n
1

= ln n − ln 1 = ln n,
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and

an = Hn − ln n ≥ 0 for all n ≥ 1.

(b) To show that {an} is decreasing, we consider the difference an − an+1:

an − an+1 = Hn − ln n − (
Hn+1 − ln(n + 1)

) = Hn − Hn+1 + ln(n + 1) − ln n

= 1 + 1

2
+ · · · + 1

n
−

(
1 + 1

2
+ · · · + 1

n
+ 1

n + 1

)
+ ln(n + 1) − ln n

= − 1

n + 1
+ ln(n + 1) − ln n.

Now, ln(n + 1) − ln n = ∫ n+1
n

dx
x , whereas 1

n+1 is the right endpoint approximation to the integral
∫ n+1
n

dx
x . Recalling

y = 1
x is decreasing, it follows that ∫ n+1

n

dx

x
≥ 1

n + 1

y

x
n n + 1

y = 1
x

1
n + 1

so

an − an+1 ≥ 0.

(c) By parts (a) and (b), {an} is decreasing and 0 is a lower bound for this sequence. Hence 0 ≤ an ≤ a1 for all n. A
monotonic and bounded sequence is convergent, so limn→∞ an exists.

10.2 Summing an Infinite Series (LT Section 11.2)

Preliminary Questions
1. What role do partial sums play in defining the sum of an infinite series?

solution The sum of an infinite series is defined as the limit of the sequence of partial sums. If the limit of this sequence
does not exist, the series is said to diverge.

2. What is the sum of the following infinite series?

1

4
+ 1

8
+ 1

16
+ 1

32
+ 1

64
+ · · ·

solution This is a geometric series with c = 1
4 and r = 1

2 . The sum of the series is therefore

1
4

1 − 1
2

=
1
4
1
2

= 1

2
.

3. What happens if you apply the formula for the sum of a geometric series to the following series? Is the formula valid?

1 + 3 + 32 + 33 + 34 + · · ·
solution This is a geometric series with c = 1 and r = 3. Applying the formula for the sum of a geometric series
then gives

∞∑
n=0

3n = 1

1 − 3
= −1

2
.

Clearly, this is not valid: a series with all positive terms cannot have a negative sum. The formula is not valid in this case
because a geometric series with r = 3 diverges.
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4. Arvind asserts that
∞∑

n=1

1

n2
= 0 because

1

n2
tends to zero. Is this valid reasoning?

solution Arvind’s reasoning is not valid. Though the terms in the series do tend to zero, the general term in the
sequence of partial sums,

Sn = 1 + 1

22
+ 1

32
+ · · · + 1

n2
,

is clearly larger than 1. The sum of the series therefore cannot be zero.

5. Colleen claims that
∞∑

n=1

1√
n

converges because

lim
n→∞

1√
n

= 0

Is this valid reasoning?

solution Colleen’s reasoning is not valid. Although the general term of a convergent series must tend to zero, a series

whose general term tends to zero need not converge. In the case of
∞∑

n=1

1√
n

, the series diverges even though its general

term tends to zero.

6. Find an N such that SN > 25 for the series
∞∑

n=1

2.

solution The N th partial sum of the series is:

SN =
N∑

n=1

2 = 2 + · · · + 2︸ ︷︷ ︸
N

= 2N.

7. Does there exist an N such that SN > 25 for the series
∞∑

n=1

2−n? Explain.

solution The series
∞∑

n=1

2−n is a convergent geometric series with the common ratio r = 1

2
. The sum of the series is:

S =
1
2

1 − 1
2

= 1.

Notice that the sequence of partial sums {SN } is increasing and converges to 1; therefore SN ≤ 1 for all N . Thus, there
does not exist an N such that SN > 25.

8. Give an example of a divergent infinite series whose general term tends to zero.

solution Consider the series
∞∑

n=1

1

n
9
10

. The general term tends to zero, since lim
n→∞

1

n
9
10

= 0. However, the N th partial

sum satisfies the following inequality:

SN = 1

1
9

10

+ 1

2
9

10

+ · · · + 1

N
9
10

≥ N

N
9

10

= N1− 9
10 = N

1
10 .

That is, SN ≥ N
1
10 for all N . Since lim

N→∞N
1

10 = ∞, the sequence of partial sums Sn diverges; hence, the series
∞∑

n=1

1

n
9
10

diverges.

Exercises
1. Find a formula for the general term an (not the partial sum) of the infinite series.

(a)
1

3
+ 1

9
+ 1

27
+ 1

81
+ · · · (b)

1

1
+ 5

2
+ 25

4
+ 125

8
+ · · ·

(c)
1

1
− 22

2 · 1
+ 33

3 · 2 · 1
− 44

4 · 3 · 2 · 1
+ · · ·

(d)
2

12 + 1
+ 1

22 + 1
+ 2

32 + 1
+ 1

42 + 1
+ · · ·

solution
(a) The denominators of the terms are powers of 3, starting with the first power. Hence, the general term is:

an = 1

3n
.
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(b) The numerators are powers of 5, and the denominators are the same powers of 2. The first term is a1 = 1 so,

an =
(

5

2

)n−1
.

(c) The general term of this series is,

an = (−1)n+1 nn

n! .

(d) Notice that the numerators of an equal 2 for odd values of n and 1 for even values of n. Thus,

an =

⎧⎪⎪⎨
⎪⎪⎩

2

n2 + 1
odd n

1

n2 + 1
even n

The formula can also be rewritten as follows:

an = 1 + (−1)n+1+1
2

n2 + 1
.

Write in summation notation:

(a) 1 + 1

4
+ 1

9
+ 1

16
+ · · · (b)

1

9
+ 1

16
+ 1

25
+ 1

36
+ · · ·

(c) 1 − 1

3
+ 1

5
− 1

7
+ · · ·

(d)
125

9
+ 625

16
+ 3125

25
+ 15,625

36
+ · · ·

In Exercises 3–6, compute the partial sums S2, S4, and S6.

3. 1 + 1

22
+ 1

32
+ 1

42
+ · · ·

solution

S2 = 1 + 1

22
= 5

4
;

S4 = 1 + 1

22
+ 1

32
+ 1

42
= 205

144
;

S6 = 1 + 1

22
+ 1

32
+ 1

42
+ 1

52
+ 1

62
= 5369

3600
.

∞∑
k=1

(−1)kk−1
5.

1

1 · 2
+ 1

2 · 3
+ 1

3 · 4
+ · · ·

solution

S2 = 1

1 · 2
+ 1

2 · 3
= 1

2
+ 1

6
= 4

6
= 2

3
;

S4 = S2 + a3 + a4 = 2

3
+ 1

3 · 4
+ 1

4 · 5
= 2

3
+ 1

12
+ 1

20
= 4

5
;

S6 = S4 + a5 + a6 = 4

5
+ 1

5 · 6
+ 1

6 · 7
= 4

5
+ 1

30
+ 1

42
= 6

7
.

∞∑
j=1

1

j !
7. The series S = 1 + ( 1

5

) + ( 1
5

)2 + ( 1
5

)3 + · · · converges to 5
4 . Calculate SN for N = 1, 2, . . . until you find an SN

that approximates 5
4 with an error less than 0.0001.

solution

S1 = 1

S2 = 1 + 1

5
= 6

5
= 1.2

S3 = 1 + 1

5
+ 1

25
= 31

25
= 1.24

S3 = 1 + 1

5
+ 1

25
+ 1

125
= 156

125
= 1.248

S4 = 1 + 1

5
+ 1

25
+ 1

125
+ 1

625
= 781

625
= 1.2496

S5 = 1 + 1

5
+ 1

25
+ 1

125
+ 1

625
+ 1

3125
= 3906

3125
= 1.24992

Note that

1.25 − S5 = 1.25 − 1.24992 = 0.00008 < 0.0001
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The series S = 1

0! − 1

1! + 1

2! − 1

3! + · · · is known to converge to e−1 (recall that 0! = 1). Calculate SN for

N = 1, 2, . . . until you find an SN that approximates e−1 with an error less than 0.001.

In Exercises 9 and 10, use a computer algebra system to compute S10, S100, S500, and S1000 for the series. Do these
values suggest convergence to the given value?

9.

π − 3

4
= 1

2 · 3 · 4
− 1

4 · 5 · 6
+ 1

6 · 7 · 8
− 1

8 · 9 · 10
+ · · ·

solution Write

an = (−1)n+1

2n · (2n + 1) · (2n + 2)

Then

SN =
N∑

i=1

an

Computing, we find

π − 3

4
≈ 0.0353981635

S10 ≈ 0.03535167962

S100 ≈ 0.03539810274

S500 ≈ 0.03539816290

S1000 ≈ 0.03539816334

It appears that SN → π−3
4 .

π4

90
= 1 + 1

24
+ 1

34
+ 1

44
+ · · ·

11. Calculate S3, S4, and S5 and then find the sum of the telescoping series

S =
∞∑

n=1

(
1

n + 1
− 1

n + 2

)

solution

S3 =
(

1

2
− 1

3

)
+

(
1

3
− 1

4

)
+

(
1

4
− 1

5

)
= 1

2
− 1

5
= 3

10
;

S4 = S3 +
(

1

5
− 1

6

)
= 1

2
− 1

6
= 1

3
;

S5 = S4 +
(

1

6
− 1

7

)
= 1

2
− 1

7
= 5

14
.

The general term in the sequence of partial sums is

SN =
(

1

2
− 1

3

)
+

(
1

3
− 1

4

)
+

(
1

4
− 1

5

)
+ · · · +

(
1

N + 1
− 1

N + 2

)
= 1

2
− 1

N + 2
;

thus,

S = lim
N→∞ SN = lim

N→∞

(
1

2
− 1

N + 2

)
= 1

2
.

The sum of the telescoping series is therefore 1
2 .

Write
∞∑

n=3

1

n(n − 1)
as a telescoping series and find its sum.

13. Calculate S3, S4, and S5 and then find the sum S =
∞∑

n=1

1

4n2 − 1
using the identity

1

4n2 − 1
= 1

2

(
1

2n − 1
− 1

2n + 1

)
solution

S3 = 1

2

(
1

1
− 1

3

)
+ 1

2

(
1

3
− 1

5

)
+ 1

2

(
1

5
− 1

7

)
= 1

2

(
1 − 1

7

)
= 3

7
;

S4 = S3 + 1

2

(
1

7
− 1

9

)
= 1

2

(
1 − 1

9

)
= 4

9
;

S5 = S4 + 1

2

(
1

9
− 1

11

)
= 1

2

(
1 − 1

11

)
= 5

11
.
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The general term in the sequence of partial sums is

SN = 1

2

(
1

1
− 1

3

)
+ 1

2

(
1

3
− 1

5

)
+ 1

2

(
1

5
− 1

7

)
+ · · · + 1

2

(
1

2N − 1
− 1

2N + 1

)
= 1

2

(
1 − 1

2N + 1

)
;

thus,

S = lim
N→∞ SN = lim

N→∞
1

2

(
1 − 1

2N + 1

)
= 1

2
.

Use partial fractions to rewrite
∞∑

n=1

1

n(n + 3)
as a telescoping series and find its sum.

15. Find the sum of
1

1 · 3
+ 1

3 · 5
+ 1

5 · 7
+ · · · .

solution We may write this sum as
∞∑

n=1

1

(2n − 1)(2n + 1)
=

∞∑
n=1

1

2

(
1

2n − 1
− 1

2n + 1

)
.

The general term in the sequence of partial sums is

SN = 1

2

(
1

1
− 1

3

)
+ 1

2

(
1

3
− 1

5

)
+ 1

2

(
1

5
− 1

7

)
+ · · · + 1

2

(
1

2N − 1
− 1

2N + 1

)
= 1

2

(
1 − 1

2N + 1

)
;

thus,

lim
N→∞ SN = lim

N→∞
1

2

(
1 − 1

2N + 1

)
= 1

2
,

and
∞∑

n=1

1

(2n − 1)(2n + 1)
= 1

2
.

Find a formula for the partial sum SN of
∞∑

n=1

(−1)n−1 and show that the series diverges.
In Exercises 17–22, use Theorem 3 to prove that the following series diverge.

17.
∞∑

n=1

n

10n + 12

solution The general term,
n

10n + 12
, has limit

lim
n→∞

n

10n + 12
= lim

n→∞
1

10 + (12/n)
= 1

10

Since the general term does not tend to zero, the series diverges.

∞∑
n=1

n√
n2 + 1

19.
0

1
− 1

2
+ 2

3
− 3

4
+ · · ·

solution The general term an = (−1)n−1 n−1
n does not tend to zero. In fact, because limn→∞ n−1

n = 1, limn→∞ an

does not exist. By Theorem 3, we conclude that the given series diverges.

∞∑
n=1

(−1)nn2
21. cos

1

2
+ cos

1

3
+ cos

1

4
+ · · ·

solution The general term an = cos 1
n+1 tends to 1, not zero. By Theorem 3, we conclude that the given series

diverges.

∞∑
n=0

(√
4n2 + 1 − n

)In Exercises 23–36, use the formula for the sum of a geometric series to find the sum or state that the series diverges.

23.
1

1
+ 1

8
+ 1

82
+ · · ·

solution This is a geometric series with c = 1 and r = 1
8 , so its sum is

1

1 − 1
8

= 1

7/8
= 8

7

43

53
+ 44

54
+ 45

55 + · · ·25.
∞∑

n=3

(
3

11

)−n

solution Rewrite this series as
∞∑

n=3

(
11

3

)n

This is a geometric series with r = 11

3
> 1, so it is divergent.
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∞∑
n=2

7 · (−3)n

5n

27.
∞∑

n=−4

(
−4

9

)n

solution This is a geometric series with c = 1 and r = −4

9
, starting at n = −4. Its sum is thus

cr−4

1 − r
= c

r4 − r5
= 1

44

94 + 45

95

= 95

9 · 44 + 45
= 59,049

3328

∞∑
n=0

(π

e

)n29.
∞∑

n=1

e−n

solution Rewrite the series as

∞∑
n=1

(
1

e

)n

to recognize it as a geometric series with c = 1
e and r = 1

e . Thus,

∞∑
n=1

e−n =
1
e

1 − 1
e

= 1

e − 1
.

∞∑
n=2

e3−2n31.
∞∑

n=0

8 + 2n

5n

solution Rewrite the series as

∞∑
n=0

8

5n
+

∞∑
n=0

2n

5n
=

∞∑
n=0

8 ·
(

1

5

)n

+
∞∑

n=0

(
2

5

)n

,

which is a sum of two geometric series. The first series has c = 8
(

1
5

)0 = 8 and r = 1
5 ; the second has c =

(
2
5

)0 = 1

and r = 2
5 . Thus,

∞∑
n=0

8 ·
(

1

5

)n

= 8

1 − 1
5

= 8
4
5

= 10,

∞∑
n=0

(
2

5

)n

= 1

1 − 2
5

= 1
3
5

= 5

3
,

and

∞∑
n=0

8 + 2n

5n
= 10 + 5

3
= 35

3
.

∞∑
n=0

3(−2)n − 5n

8n

33. 5 − 5

4
+ 5

42
− 5

43
+ · · ·

solution This is a geometric series with c = 5 and r = − 1
4 . Thus,

∞∑
n=0

5 ·
(

−1

4

)n

= 5

1 −
(
− 1

4

) = 5

1 + 1
4

= 5
5
4

= 4.

23

7
+ 24

72
+ 25

73
+ 26

74
+ · · ·

35.
7

8
− 49

64
+ 343

512
− 2401

4096
+ · · ·

solution This is a geometric series with c = 7
8 and r = − 7

8 . Thus,

∞∑
n=0

7

8
·
(

−7

8

)n

=
7
8

1 −
(
− 7

8

) =
7
8
15
8

= 7

15
.
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25

9
+ 5

3
+ 1 + 3

5
+ 9

25
+ 27

125
+ · · ·

37. Which of the following are not geometric series?

(a)
∞∑

n=0

7n

29n
(b)

∞∑
n=3

1

n4

(c)
∞∑

n=0

n2

2n
(d)

∞∑
n=5

π−n

solution

(a)
∞∑

n=0

7n

29n =
∞∑

n=0

(
7

29

)n

: this is a geometric series with common ratio r = 7

29
.

(b) The ratio between two successive terms is

an+1

an
=

1
(n+1)4

1
n4

= n4

(n + 1)4
=

(
n

n + 1

)4
.

This ratio is not constant since it depends on n. Hence, the series
∞∑

n=3

1

n4
is not a geometric series.

(c) The ratio between two successive terms is

an+1

an
=

(n+1)2

2n+1

n2

2n

= (n + 1)2

n2
· 2n

2n+1
=

(
1 + 1

n

)2
· 1

2
.

This ratio is not constant since it depends on n. Hence, the series
∞∑

n=0

n2

2n
is not a geometric series.

(d)
∞∑

n=5

π−n =
∞∑

n=5

(
1

π

)n

: this is a geometric series with common ratio r = 1

π
.

Use the method of Example 8 to show that
∞∑

k=1

1

k1/3
diverges.

39. Prove that if
∞∑

n=1

an converges and
∞∑

n=1

bn diverges, then
∞∑

n=1

(an + bn) diverges. Hint: If not, derive a contradiction

by writing

∞∑
n=1

bn =
∞∑

n=1

(an + bn) −
∞∑

n=1

an

solution Suppose to the contrary that
∑∞

n=1 an converges,
∑∞

n=1 bn diverges, but
∑∞

n=1(an + bn) converges. Then
by the Linearity of Infinite Series, we have

∞∑
n=1

bn =
∞∑

n=1

(an + bn) −
∞∑

n=1

an

so that
∑∞

n=1 bn converges, a contradiction.

Prove the divergence of
∞∑

n=0

9n + 2n

5n
.

41. Give a counterexample to show that each of the following statements is false.

(a) If the general term an tends to zero, then
∞∑

n=1

an = 0.

(b) The N th partial sum of the infinite series defined by {an} is aN .

(c) If an tends to zero, then
∞∑

n=1

an converges.

(d) If an tends to L, then
∞∑

n=1

an = L.

solution

(a) Let an = 2−n. Then limn→∞ an = 0, but an is a geometric series with c = 20 = 1 and r = 1/2, so its sum is
1

1 − (1/2)
= 2.

(b) Let an = 1. Then the nth partial sum is a1 + a2 + · · · + an = n while an = 1.
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(c) Let an = 1√
n

. An example in the text shows that while an tends to zero, the sum
∑∞

n=1
an does not converge.

(d) Let an = 1. Then clearly an tends to L = 1, while the series
∑∞

n=1 an obviously diverges.

Suppose that S =
∞∑

n=1

an is an infinite series with partial sum SN = 5 − 2

N2
.

(a) What are the values of
10∑

n=1

an and
16∑

n=5

an?

(b) What is the value of a3?

(c) Find a general formula for an.

(d) Find the sum
∞∑

n=1

an.

43. Compute the total area of the (infinitely many) triangles in Figure 4.

1
8

1
4

1
2

1
16

1
2

y

x
1

FIGURE 4

solution The area of a triangle with base B and height H is A = 1
2BH . Because all of the triangles in Figure 4 have

height 1
2 , the area of each triangle equals one-quarter of the base. Now, for n ≥ 0, the nth triangle has a base which

extends from x = 1
2n+1 to x = 1

2n . Thus,

B = 1

2n
− 1

2n+1
= 1

2n+1
and A = 1

4
B = 1

2n+3
.

The total area of the triangles is then given by the geometric series

∞∑
n=0

1

2n+3
=

∞∑
n=0

1

8

(
1

2

)n

=
1
8

1 − 1
2

= 1

4
.

The winner of a lottery receives m dollars at the end of each year for N years. The present value (PV) of this prize

in today’s dollars is PV =
N∑

i=1

m(1 + r)−i , where r is the interest rate. Calculate PV if m = $50,000, r = 0.06, and

N = 20. What is PV if N = ∞?

45. Find the total length of the infinite zigzag path in Figure 5 (each zag occurs at an angle of π
4 ).

1

π /4 π /4

FIGURE 5

solution Because the angle at the lower left in Figure 5 has measure π
4 and each zag in the path occurs at an angle of

π
4 , every triangle in the figure is an isosceles right triangle. Accordingly, the length of each new segment in the path is
1√
2

times the length of the previous segment. Since the first segment has length 1, the total length of the path is

∞∑
n=0

(
1√
2

)n

= 1

1 − 1√
2

=
√

2√
2 − 1

= 2 + √
2.

Evaluate
∞∑

n=1

1

n(n + 1)(n + 2)
. Hint: Find constants A, B, and C such that

1

n(n + 1)(n + 2)
= A

n
+ B

n + 1
+ C

n + 2

47. Show that if a is a positive integer, then

∞∑
n=1

1

n(n + a)
= 1

a

(
1 + 1

2
+ · · · + 1

a

)

solution By partial fraction decomposition

1

n (n + a)
= A

n
+ B

n + a
;

clearing the denominators gives

1 = A(n + a) + Bn.

Setting n = 0 then yields A = 1
a , while setting n = −a yields B = − 1

a . Thus,

1

n (n + a)
=

1
a

n
−

1
a

n + a
= 1

a

(
1

n
− 1

n + a

)
,
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and

∞∑
n=1

1

n(n + a)
=

∞∑
n=1

1

a

(
1

n
− 1

n + a

)
.

For N > a, the N th partial sum is

SN = 1

a

(
1 + 1

2
+ 1

3
+ · · · + 1

a

)
− 1

a

(
1

N + 1
+ 1

N + 2
+ 1

N + 3
+ · · · + 1

N + a

)
.

Thus,

∞∑
n=1

1

n(n + a)
= lim

N→∞ SN = 1

a

(
1 + 1

2
+ 1

3
+ · · · + 1

a

)
.

A ball dropped from a height of 10 ft begins to bounce. Each time it strikes the ground, it returns to two-thirds of
its previous height. What is the total distance traveled by the ball if it bounces infinitely many times?

49. Let {bn} be a sequence and let an = bn − bn−1. Show that
∞∑

n=1

an converges if and only if lim
n→∞ bn exists.

solution Let an = bn − bn−1. The general term in the sequence of partial sums for the series
∞∑

n=1

an is then

SN = (b1 − b0) + (b2 − b1) + (b3 − b2) + · · · + (bN − bN−1) = bN − b0.

Now, if lim
N→∞ bN exists, then so does lim

N→∞ SN and
∞∑

n=1

an converges. On the other hand, if
∞∑

n=1

an converges, then

lim
N→∞ SN exists, which implies that lim

N→∞ bN also exists. Thus,
∞∑

n=1

an converges if and only if lim
n→∞ bn exists.

Assumptions Matter Show, by giving counterexamples, that the assertions of Theorem 1 are not valid if the

series
∞∑

n=0

an and
∞∑

n=0

bn are not convergent.

Further Insights and Challenges
Exercises 51–53 use the formula

1 + r + r2 + · · · + rN−1 = 1 − rN

1 − r
7

51. Professor GeorgeAndrews of Pennsylvania State University observed that we can use Eq. (7) to calculate the derivative
of f (x) = xN (for N ≥ 0). Assume that a 
= 0 and let x = ra. Show that

f ′(a) = lim
x→a

xN − aN

x − a
= aN−1 lim

r→1

rN − 1

r − 1

and evaluate the limit.

solution According to the definition of derivative of f (x) at x = a

f ′ (a) = lim
x→a

xN − aN

x − a
.

Now, let x = ra. Then x → a if and only if r → 1, and

f ′ (a) = lim
x→a

xN − aN

x − a
= lim

r→1

(ra)N − aN

ra − a
= lim

r→1

aN
(
rN − 1

)
a (r − 1)

= aN−1 lim
r→1

rN − 1

r − 1
.

By Eq. (7) for a geometric sum,

1 − rN

1 − r
= rN − 1

r − 1
= 1 + r + r2 + · · · + rN−1,

so

lim
r→1

rN − 1

r − 1
= lim

r→1

(
1 + r + r2 + · · · + rN−1

)
= 1 + 1 + 12 + · · · + 1N−1 = N.

Therefore, f ′ (a) = aN−1 · N = NaN−1

Pierre de Fermat used geometric series to compute the area under the graph of f (x) = xN over [0, A]. For
0 < r < 1, let F(r) be the sum of the areas of the infinitely many right-endpoint rectangles with endpoints Arn, as
in Figure 6. As r tends to 1, the rectangles become narrower and F(r) tends to the area under the graph.

(a) Show that F(r) = AN+1 1 − r

1 − rN+1
.

(b) Use Eq. (7) to evaluate
∫ A

0
xN dx = lim

r→1
F(r).

53. Verify the Gregory–Leibniz formula as follows.

(a) Set r = −x2 in Eq. (7) and rearrange to show that

1

1 + x2
= 1 − x2 + x4 − · · · + (−1)N−1x2N−2 + (−1)Nx2N

1 + x2
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(b) Show, by integrating over [0, 1], that

π

4
= 1 − 1

3
+ 1

5
− 1

7
+ · · · + (−1)N−1

2N − 1
+ (−1)N

∫ 1

0

x2N dx

1 + x2

(c) Use the Comparison Theorem for integrals to prove that

0 ≤
∫ 1

0

x2N dx

1 + x2
≤ 1

2N + 1

Hint: Observe that the integrand is ≤ x2N .
(d) Prove that

π

4
= 1 − 1

3
+ 1

5
− 1

7
+ 1

9
− · · ·

Hint: Use (b) and (c) to show that the partial sums SN of satisfy
∣∣SN − π

4

∣∣ ≤ 1
2N+1 , and thereby conclude that

lim
N→∞ SN = π

4 .

solution

(a) Start with Eq. (7), and substitute −x2 for r:

1 + r + r2 + · · · + rN−1 = 1 − rN

1 − r

1 − x2 + x4 + · · · + (−1)N−1x2N−2 = 1 − (−1)Nx2N

1 − (−x2)

1 − x2 + x4 + · · · + (−1)N−1x2N−2 = 1

1 + x2
− (−1)Nx2N

1 + x2

1

1 + x2
= 1 − x2 + x4 + · · · + (−1)N−1x2N−2 + (−1)Nx2N

1 + x2

(b) The integrals of both sides must be equal. Now,∫ 1

0

1

1 + x2
dx = tan−1 x

∣∣∣∣1
0

= tan−1 1 − tan−1 0 = π

4

while ∫ 1

0

(
1 − x2 + x4 + · · · + (−1)N−1x2N−2 + (−1)Nx2N

1 + x2

)
dx

=
(

x − 1

3
x3 + 1

5
x5 + · · · + (−1)N−1 1

2N − 1
x2N−1

)
+ (−1)N

∫ 1

0

x2N dx

1 + x2

= 1 − 1

3
+ 1

5
+ · · · + (−1)N−1 1

2N − 1
+ (−1)N

∫ 1

0

x2N dx

1 + x2

(c) Note that for x ∈ [0, 1], we have 1 + x2 ≥ 1, so that

0 ≤ x2N

1 + x2
≤ x2N

By the Comparison Theorem for integrals, we then see that

0 ≤
∫ 1

0

x2N dx

1 + x2
≤

∫ 1

0
x2N dx = 1

2N + 1
x2N+1

∣∣∣∣1
0

= 1

2N + 1

(d) Write

an = (−1)n
1

2n − 1
, n ≥ 1

and let SN be the partial sums. Then

∣∣∣SN − π

4

∣∣∣ =
∣∣∣∣∣(−1)N

∫ 1

0

x2N dx

1 + x2

∣∣∣∣∣ =
∫ 1

0

x2N dx

1 + x2
≤ 1

2N + 1
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Thus limN→∞ SN = π

4
so that

π

4
= 1 − 1

3
+ 1

5
− 1

7
+ 1

9
− . . .

Cantor’s Disappearing Table (following Larry Knop of Hamilton College) Take a table of length L (Figure
7). At stage 1, remove the section of length L/4 centered at the midpoint. Two sections remain, each with length less
than L/2. At stage 2, remove sections of length L/42 from each of these two sections (this stage removes L/8 of the
table). Now four sections remain, each of length less than L/4. At stage 3, remove the four central sections of length
L/43, etc.

(a) Show that at the N th stage, each remaining section has length less than L/2N and that the total amount of table
removed is

L

(
1

4
+ 1

8
+ 1

16
+ · · · + 1

2N+1

)

(b) Show that in the limit as N → ∞, precisely one-half of the table remains.

This result is curious, because there are no nonzero intervals of table left (at each stage, the remaining sections have
a length less than L/2N ). So the table has “disappeared.” However, we can place any object longer than L/4 on the
table. It will not fall through because it will not fit through any of the removed sections.

55. The Koch snowflake (described in 1904 by Swedish mathematician Helge von Koch) is an infinitely jagged “fractal”
curve obtained as a limit of polygonal curves (it is continuous but has no tangent line at any point). Begin with an
equilateral triangle (stage 0) and produce stage 1 by replacing each edge with four edges of one-third the length, arranged
as in Figure 8. Continue the process: At the nth stage, replace each edge with four edges of one-third the length.

(a) Show that the perimeter Pn of the polygon at the nth stage satisfies Pn = 4
3Pn−1. Prove that lim

n→∞ Pn = ∞. The

snowflake has infinite length.
(b) Let A0 be the area of the original equilateral triangle. Show that (3)4n−1 new triangles are added at the nth stage,
each with area A0/9n (for n ≥ 1). Show that the total area of the Koch snowflake is 8

5A0.

Stage 1 Stage 3Stage 2

FIGURE 8

solution
(a) Each edge of the polygon at the (n − 1)st stage is replaced by four edges of one-third the length; hence the perimeter
of the polygon at the nth stage is 4

3 times the perimeter of the polygon at the (n − 1)th stage. That is, Pn = 4
3Pn−1. Thus,

P1 = 4

3
P0; P2 = 4

3
P1 =

(
4

3

)2
P0, P3 = 4

3
P2 =

(
4

3

)3
P0,

and, in general, Pn = ( 4
3

)n
P0. As n → ∞, it follows that

lim
n→∞ Pn = P0 lim

n→∞

(
4

3

)n

= ∞.

(b) When each edge is replaced by four edges of one-third the length, one new triangle is created. At the (n − 1)st stage,
there are 3 · 4n−1 edges in the snowflake, so 3 · 4n−1 new triangles are generated at the nth stage. Because the area of an
equilateral triangle is proportional to the square of its side length and the side length for each new triangle is one-third
the side length of triangles from the previous stage, it follows that the area of the triangles added at each stage is reduced
by a factor of 1

9 from the area of the triangles added at the previous stage. Thus, each triangle added at the nth stage has
an area of A0/9n. This means that the nth stage contributes

3 · 4n−1 · A0

9n
= 3

4
A0

(
4

9

)n

to the area of the snowflake. The total area is therefore

A = A0 + 3

4
A0

∞∑
n=1

(
4

9

)n

= A0 + 3

4
A0

4
9

1 − 4
9

= A0 + 3

4
A0 · 4

5
= 8

5
A0.

10.3 Convergence of Series with Positive Terms (LT Section 11.3)

Preliminary Questions

1. Let S =
∞∑

n=1

an. If the partial sums SN are increasing, then (choose the correct conclusion):

(a) {an} is an increasing sequence.
(b) {an} is a positive sequence.

solution The correct response is (b). Recall that SN = a1 + a2 + a3 + · · · + aN ; thus, SN − SN−1 = aN . If SN is
increasing, then SN − SN−1 ≥ 0. It then follows that aN ≥ 0; that is, {an} is a positive sequence.

2. What are the hypotheses of the Integral Test?

solution The hypotheses for the Integral Test are: A function f (x) such that an = f (n) must be positive, decreasing,
and continuous for x ≥ 1.
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3. Which test would you use to determine whether
∞∑

n=1

n−3.2 converges?

solution Because n−3.2 = 1
n3.2 , we see that the indicated series is a p-series with p = 3.2 > 1. Therefore, the series

converges.

4. Which test would you use to determine whether
∞∑

n=1

1

2n + √
n

converges?

solution Because

1

2n + √
n

<
1

2n
=

(
1

2

)n

,

and

∞∑
n=1

(
1

2

)n

is a convergent geometric series, the comparison test would be an appropriate choice to establish that the given series
converges.

5. Ralph hopes to investigate the convergence of
∞∑

n=1

e−n

n
by comparing it with

∞∑
n=1

1

n
. Is Ralph on the right track?

solution No, Ralph is not on the right track. For n ≥ 1,

e−n

n
<

1

n
;

however,
∞∑

n=1

1

n
is a divergent series. The Comparison Test therefore does not allow us to draw a conclusion about the

convergence or divergence of the series
∞∑

n=1

e−n

n
.

Exercises
In Exercises 1–14, use the Integral Test to determine whether the infinite series is convergent.

1.
∞∑

n=1

1

n4

solution Let f (x) = 1

x4
. This function is continuous, positive and decreasing on the interval x ≥ 1, so the Integral

Test applies. Moreover, ∫ ∞
1

dx

x4
= lim

R→∞

∫ R

1
x−4 dx = −1

3
lim

R→∞

(
1

R3
− 1

)
= 1

3
.

The integral converges; hence, the series
∞∑

n=1

1

n4
also converges.

∞∑
n=1

1

n + 3

3.
∞∑

n=1

n−1/3

solution Let f (x) = x− 1
3 = 1

3√x
. This function is continuous, positive and decreasing on the interval x ≥ 1, so the

Integral Test applies. Moreover,∫ ∞
1

x−1/3 dx = lim
R→∞

∫ R

1
x−1/3 dx = 3

2
lim

R→∞
(
R2/3 − 1

)
= ∞.

The integral diverges; hence, the series
∞∑

n=1

n−1/3 also diverges.

∞∑
n=5

1√
n − 4
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5.
∞∑

n=25

n2

(n3 + 9)5/2

solution Let f (x) = x2(
x3 + 9

)5/2
. This function is positive and continuous for x ≥ 25. Moreover, because

f ′(x) = 2x(x3 + 9)
5/2 − x2 · 5

2 (x3 + 9)
3/2 · 3x2

(x3 + 9)
5 = x(36 − 11x3)

2(x3 + 9)
7/2

,

we see that f ′(x) < 0 for x ≥ 25, so f is decreasing on the interval x ≥ 25. The Integral Test therefore applies. To
evaluate the improper integral, we use the substitution u = x3 + 9, du = 3x2dx. We then find∫ ∞

25

x2

(x3 + 9)5/2
dx = lim

R→∞

∫ R

25

x2

(x3 + 9)5/2
dx = 1

3
lim

R→∞

∫ R3+9

15634

du

u5/2

= −2

9
lim

R→∞

(
1

(R3 + 9)3/2
− 1

156343/2

)
= 2

9 · 156343/2
.

The integral converges; hence, the series
∞∑

n=25

n2(
n3 + 9

)5/2
also converges.

∞∑
n=1

n

(n2 + 1)3/5

7.
∞∑

n=1

1

n2 + 1

solution Let f (x) = 1

x2 + 1
. This function is positive, decreasing and continuous on the interval x ≥ 1, hence the

Integral Test applies. Moreover,∫ ∞
1

dx

x2 + 1
= lim

R→∞

∫ R

1

dx

x2 + 1
= lim

R→∞
(

tan−1 R − π

4

)
= π

2
− π

4
= π

4
.

The integral converges; hence, the series
∞∑

n=1

1

n2 + 1
also converges.

∞∑
n=4

1

n2 − 1

9.
∞∑

n=1

1

n(n + 1)

solution Let f (x) = 1

x(x + 1)
. This function is positive, continuous and decreasing on the interval x ≥ 1, so the

Integral Test applies. We compute the improper integral using partial fractions:∫ ∞
1

dx

x(x + 1)
= lim

R→∞

∫ R

1

(
1

x
− 1

x + 1

)
dx = lim

R→∞ ln
x

x + 1

∣∣∣∣R
1

= lim
R→∞

(
ln

R

R + 1
− ln

1

2

)
= ln 1 − ln

1

2
= ln 2.

The integral converges; hence, the series
∞∑

n=1

1

n(n + 1)
converges.

∞∑
n=1

ne−n211.
∞∑

n=2

1

n(ln n)2

solution Let f (x) = 1

x(ln x)2
. This function is positive and continuous for x ≥ 2. Moreover,

f ′(x) = − 1

x2(ln x)4

(
1 · (ln x)2 + x · 2 (ln x) · 1

x

)
= − 1

x2(ln x)4

(
(ln x)2 + 2 ln x

)
.

Since ln x > 0 for x > 1, f ′(x) is negative for x > 1; hence, f is decreasing for x ≥ 2. To compute the improper integral,

we make the substitution u = ln x, du = 1

x
dx. We obtain:

∫ ∞
2

1

x(ln x)2
dx = lim

R→∞

∫ R

2

1

x(ln x)2
dx = lim

R→∞

∫ ln R

ln 2

du

u2

= − lim
R→∞

(
1

ln R
− 1

ln 2

)
= 1

ln 2
.

The integral converges; hence, the series
∞∑

n=2

1

n(ln n)2
also converges.
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∞∑
n=1

ln n

n2

13.
∞∑

n=1

1

2ln n

solution Note that

2ln n = (eln 2)ln n = (eln n)ln 2 = nln 2.

Thus,

∞∑
n=1

1

2ln n
=

∞∑
n=1

1

nln 2
.

Now, let f (x) = 1

xln 2
. This function is positive, continuous and decreasing on the interval x ≥ 1; therefore, the Integral

Test applies. Moreover, ∫ ∞
1

dx

xln 2
= lim

R→∞

∫ R

1

dx

xln 2
= 1

1 − ln 2
lim

R→∞(R1−ln 2 − 1) = ∞,

because 1 − ln 2 > 0. The integral diverges; hence, the series
∞∑

n=1

1

2ln n
also diverges.

∞∑
n=1

1

3ln n

15. Show that
∞∑

n=1

1

n3 + 8n
converges by using the Comparison Test with

∞∑
n=1

n−3.

solution We compare the series with the p-series
∞∑

n=1

n−3. For n ≥ 1,

1

n3 + 8n
≤ 1

n3
.

Since
∞∑

n=1

1

n3
converges (it is a p-series with p = 3 > 1), the series

∞∑
n=1

1

n3 + 8n
also converges by the Comparison Test.

Show that
∞∑

n=2

1√
n2 − 3

diverges by comparing with
∞∑

n=2

n−1.
17. Let S =

∞∑
n=1

1

n + √
n

. Verify that for n ≥ 1,

1

n + √
n

≤ 1

n
,

1

n + √
n

≤ 1√
n

Can either inequality be used to show that S diverges? Show that
1

n + √
n

≥ 1

2n
and conclude that S diverges.

solution For n ≥ 1, n + √
n ≥ n and n + √

n ≥ √
n. Taking the reciprocal of each of these inequalities yields

1

n + √
n

≤ 1

n
and

1

n + √
n

≤ 1√
n

.

These inequalities indicate that the series
∞∑

n=1

1

n + √
n

is smaller than both
∞∑

n=1

1

n
and

∞∑
n=1

1√
n

; however,
∞∑

n=1

1

n
and

∞∑
n=1

1√
n

both diverge so neither inequality allows us to show that S diverges.

On the other hand, for n ≥ 1, n ≥ √
n, so 2n ≥ n + √

n and

1

n + √
n

≥ 1

2n
.

The series
∞∑

n=1

1

2n
= 2

∞∑
n=1

1

n
diverges, since the harmonic series diverges. The Comparison Test then lets us conclude

that the larger series
∞∑

n=1

1

n + √
n

also diverges.

Which of the following inequalities can be used to study the convergence of
∞∑

n=2

1

n2 + √
n

? Explain.

1

n2 + √
n

≤ 1√
n

,
1

n2 + √
n

≤ 1

n2
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In Exercises 19–30, use the Comparison Test to determine whether the infinite series is convergent.

19.
∞∑

n=1

1

n2n

solution We compare with the geometric series
∞∑

n=1

(
1

2

)n

. For n ≥ 1,

1

n2n
≤ 1

2n
=

(
1

2

)n

.

Since
∞∑

n=1

(
1

2

)n

converges (it is a geometric series with r = 1
2 ), we conclude by the Comparison Test that

∞∑
n=1

1

n2n
also

converges.

∞∑
n=1

n3

n5 + 4n + 1

21.
∞∑

n=1

1

n1/3 + 2n

solution For n ≥ 1,

1

n1/3 + 2n
≤ 1

2n

The series
∑∞

n=1
1

2n
is a geometric series with r = 1

2
, so it converges. By the Comparison test, so does

∞∑
n=1

1

n1/3 + 2n
.

∞∑
n=1

1√
n3 + 2n − 1

23.
∞∑

m=1

4

m! + 4m

solution For m ≥ 1,

4

m! + 4m
≤ 4

4m
=

(
1

4

)m−1
.

The series
∞∑

m=1

(
1

4

)m−1
is a geometric series with r = 1

4
, so it converges. By the Comparison Test we can therefore

conclude that the series
∞∑

m=1

4

m! + 4m
also converges.

∞∑
n=4

√
n

n − 3

25.
∞∑

k=1

sin2 k

k2

solution For k ≥ 1, 0 ≤ sin2 k ≤ 1, so

0 ≤ sin2 k

k2
≤ 1

k2
.

The series
∞∑

k=1

1

k2
is a p-series with p = 2 > 1, so it converges. By the Comparison Test we can therefore conclude that

the series
∞∑

k=1

sin2k

k2
also converges.

∞∑
k=2

k1/3

k5/4 − k

27.
∞∑

n=1

2

3n + 3−n

solution Since 3−n > 0 for all n,

2

3n + 3−n
≤ 2

3n
= 2

(
1

3

)n

.

The series
∞∑

n=1

2

(
1

3

)n

is a geometric series with r = 1

3
, so it converges. By the Comparison Theorem we can therefore

conclude that the series
∞∑

n=1

2

3n + 3−n
also converges.
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∞∑
k=1

2−k229.
∞∑

n=1

1

(n + 1)!
solution Note that for n ≥ 2,

(n + 1)! = 1 · 2 · 3 · · · n · (n + 1)︸ ︷︷ ︸
n factors

≤ 2n

so that
∞∑

n=1

1

(n + 1)! = 1 +
∞∑

n=2

1

(n + 1)! ≤ 1 +
∞∑

n=2

1

2n

But
∑∞

n=2
1

2n
is a geometric series with ratio r = 1

2
, so it converges. By the comparison test,

∞∑
n=1

1

(n + 1)! converges as

well.

∞∑
n=1

n!
n3

Exercise 31–36: For all a > 0 and b > 1, the inequalities

ln n ≤ na, na < bn

are true for n sufficiently large (this can be proved using L’Hopital’s Rule). Use this, together with the Comparison
Theorem, to determine whether the series converges or diverges.

31.
∞∑

n=1

ln n

n3

solution For n sufficiently large (say n = k, although in this case n = 1 suffices), we have ln n ≤ n, so that

∞∑
n=k

ln n

n3
≤

∞∑
n=k

n

n3
=

∞∑
n=k

1

n2

This is a p-series with p = 2 > 1, so it converges. Thus
∑∞

n=k
ln n
n3 also converges; adding back in the finite number of

terms for 1 ≤ n ≤ k does not affect this result.

∞∑
m=2

1

ln m

33.
∞∑

n=1

(ln n)100

n1.1

solution Choose N so that ln n ≤ n0.0005 for n ≥ N . Then also for n > N , (ln n)100 ≤ (n0.0005)100 = n0.05. Then

∞∑
n=N

(ln n)100

n1.1
≤

∞∑
n=N

n0.05

n1.1
=

∞∑
n=N

1

n1.05

But
∞∑

n=N

1

n1.05
is a p-series with p = 1.05 > 1, so is convergent. It follows that

∑∞
n=N

(ln n)100
n1.1 is also convergent;

adding back in the finite number of terms for n = 1, 2, . . . , N − 1 shows that
∞∑

n=1

(ln n)100

n1.1
converges as well.

∞∑
n=1

1

(ln n)10

35.
∞∑

n=1

n

3n

solution Choose N such that n ≤ 2n for n ≥ N . Then

∞∑
n=N

n

3n
≤

∞∑
n=N

(
2

3

)n

The latter sum is a geometric series with r = 2

3
< 1, so it converges. Thus the series on the left converges as well. Adding

back in the finite number of terms for n < N shows that
∞∑

n=1

n

3n
converges.

∞∑
n=1

n5

2n

37. Show that
∞∑

n=1

sin
1

n2
converges. Hint: Use the inequality sin x ≤ x for x ≥ 0.

solution For n ≥ 1,

0 ≤ 1

n2
≤ 1 < π;
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therefore, sin 1
n2 > 0 for n ≥ 1. Moreover, for n ≥ 1,

sin
1

n2
≤ 1

n2
.

The series
∞∑

n=1

1

n2
is a p-series with p = 2 > 1, so it converges. By the Comparison Test we can therefore conclude that

the series
∞∑

n=1

sin
1

n2
also converges.

Does
∞∑

n=2

sin(1/n)

ln n
converge?

In Exercises 39–48, use the Limit Comparison Test to prove convergence or divergence of the infinite series.

39.
∞∑

n=2

n2

n4 − 1

solution Let an = n2

n4 − 1
. For large n,

n2

n4 − 1
≈ n2

n4
= 1

n2
, so we apply the Limit Comparison Test with bn = 1

n2
.

We find

L = lim
n→∞

an

bn
= lim

n→∞

n2

n4−1
1
n2

= lim
n→∞

n4

n4 − 1
= 1.

The series
∞∑

n=1

1

n2
is a p-series with p = 2 > 1, so it converges; hence,

∞∑
n=2

1

n2
also converges. Because L exists, by the

Limit Comparison Test we can conclude that the series
∞∑

n=2

n2

n4 − 1
converges.

∞∑
n=2

1

n2 − √
n

41.
∞∑

n=2

n√
n3 + 1

solution Let an = n√
n3 + 1

. For large n,
n√

n3 + 1
≈ n√

n3
= 1√

n
, so we apply the Limit Comparison test with

bn = 1√
n

. We find

L = lim
n→∞

an

bn
= lim

n→∞

n√
n3+1
1√
n

= lim
n→∞

√
n3√

n3 + 1
= 1.

The series
∞∑

n=1

1√
n

is a p-series with p = 1
2 < 1, so it diverges; hence,

∞∑
n=2

1√
n

also diverges. Because L > 0, by the

Limit Comparison Test we can conclude that the series
∞∑

n=2

n√
n3 + 1

diverges.

∞∑
n=2

n3√
n7 + 2n2 + 1

43.
∞∑

n=3

3n + 5

n(n − 1)(n − 2)

solution Let an = 3n + 5

n(n − 1)(n − 2)
. For large n,

3n + 5

n(n − 1)(n − 2)
≈ 3n

n3
= 3

n2
, so we apply the Limit Comparison

Test with bn = 1

n2
. We find

L = lim
n→∞

an

bn
= lim

n→∞

3n+5
n(n+1)(n+2)

1
n2

= lim
n→∞

3n3 + 5n2

n(n + 1)(n + 2)
= 3.

The series
∞∑

n=1

1

n2
is a p-series with p = 2 > 1, so it converges; hence, the series

∞∑
n=3

1

n2
also converges. Because L

exists, by the Limit Comparison Test we can conclude that the series
∞∑

n=3

3n + 5

n(n − 1)(n − 2)
converges.
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∞∑
n=1

en + n

e2n − n2

45.
∞∑

n=1

1√
n + ln n

solution Let

an = 1√
n + ln n

For large n,
√

n + ln n ≈ √
n, so apply the Comparison Test with bn = 1√

n
. We find

L = lim
n→∞

an

bn
= lim

n→∞
1√

n + ln n
·
√

n

1
= lim

n→∞
1

1 + ln n√
n

= 1

The series
∞∑

n=1

1√
n

is a p-series with p = 1

2
< 1, so it diverges. Because L exists, the Limit Comparison Test tells us the

the original series also diverges.

∞∑
n=1

ln(n + 4)

n5/2

47.
∞∑

n=1

(
1 − cos

1

n

)
Hint: Compare with

∞∑
n=1

n−2.

solution Let an = 1 − cos
1

n
, and apply the Limit Comparison Test with bn = 1

n2
. We find

L = lim
n→∞

an

bn
= lim

n→∞
1 − cos 1

n
1
n2

= lim
x→∞

1 − cos 1
x

1
x2

= lim
x→∞

− 1
x2 sin 1

x

− 2
x3

= 1

2
lim

x→∞
sin 1

x
1
x

.

As x → ∞, u = 1
x → 0, so

L = 1

2
lim

x→∞
sin 1

x
1
x

= 1

2
lim
u→0

sin u

u
= 1

2
.

The series
∞∑

n=1

1

n2
is a p-series with p = 2 > 1, so it converges. Because L exists, by the Limit Comparison Test we can

conclude that the series
∞∑

n=1

(
1 − cos

1

n

)
also converges.

∞∑
n=1

(1 − 2−1/n) Hint: Compare with the harmonic series.
In Exercises 49–74, determine convergence or divergence using any method covered so far.

49.
∞∑

n=4

1

n2 − 9

solution Apply the Limit Comparison Test with an = 1

n2 − 9
and bn = 1

n2
:

L = lim
n→∞

an

bn
= lim

n→∞

1
n2−9

1
n2

= lim
n→∞

n2

n2 − 9
= 1.

Since the p-series
∞∑

n=1

1

n2
converges, the series

∞∑
n=4

1

n2
also converges. Because L exists, by the Limit Comparison Test

we can conclude that the series
∞∑

n=4

1

n2 − 9
converges.

∞∑
n=1

cos2 n

n2

51.
∞∑

n=1

√
n

4n + 9

solution Apply the Limit Comparison Test with an =
√

n

4n + 9
and bn = 1√

n
:

L = lim
n→∞

an

bn
= lim

n→∞

√
n

4n+9
1√
n

= lim
n→∞

n

4n + 9
= 1

4
.

The series
∞∑

n=1

1√
n

is a divergent p-series. Because L > 0, by the Limit Comparison Test we can conclude that the series

∞∑
n=1

√
n

4n + 9
also diverges.
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∞∑
n=1

n − cos n

n3

53.
∞∑

n=1

n2 − n

n5 + n

solution First rewrite an = n2 − n

n5 + n
= n (n − 1)

n
(
n4 + 1

) = n − 1

n4 + 1
and observe

n − 1

n4 + 1
<

n

n4
= 1

n3

for n ≥ 1. The series
∞∑

n=1

1

n3
is a convergent p-series, so by the Comparison Test we can conclude that the series

∞∑
n=1

n2 − n

n5 + n
also converges.

∞∑
n=1

1

n2 + sin n

55.
∞∑

n=5

(4/5)−n

solution

∞∑
n=5

(
4

5

)−n

=
∞∑

n=5

(
5

4

)n

which is a geometric series starting at n = 5 with ratio r = 5

4
> 1. Thus the series diverges.

∞∑
n=1

1

3n2

57.
∞∑

n=2

1

n3/2 ln n

solution For n ≥ 3, ln n > 1, so n3/2 ln n > n3/2 and

1

n3/2 ln n
<

1

n3/2
.

The series
∞∑

n=1

1

n3/2
is a convergent p-series, so the series

∞∑
n=3

1

n3/2
also converges. By the Comparison Test we can

therefore conclude that the series
∞∑

n=3

1

n3/2 ln n
converges. Hence, the series

∞∑
n=2

1

n3/2 ln n
also converges.

∞∑
n=2

(ln n)12

n9/8

59.
∞∑

k=1

41/k

solution

lim
k→∞ ak = lim

k→∞ 41/k = 40 = 1 
= 0;

therefore, the series
∞∑

k=1

41/k diverges by the Divergence Test.

∞∑
n=1

4n

5n − 2n

61.
∞∑

n=2

1

(ln n)4

solution By the comment preceding Exercise 31, we can choose N so that for n ≥ N , we have ln n < n1/8, so that

(ln n)4 < n1/2. Then

∞∑
n=N

1

(ln n)4
>

∞∑
n=N

1

n1/2

which is a divergent p-series. Thus the series on the left diverges as well, and adding back in the finite number of terms

for n < N does not affect the result. Thus
∞∑

n=2

1

(ln n)4
diverges.
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∞∑
n=1

2n

3n − n

63.
∞∑

n=1

1

n ln n − n

solution For n ≥ 2, n ln n − n ≤ n ln n; therefore,

1

n ln n − n
≥ 1

n ln n
.

Now, let f (x) = 1

x ln x
. For x ≥ 2, this function is continuous, positive and decreasing, so the Integral Test applies. Using

the substitution u = ln x, du = 1
x dx, we find∫ ∞

2

dx

x ln x
= lim

R→∞

∫ R

2

dx

x ln x
= lim

R→∞

∫ ln R

ln 2

du

u
= lim

R→∞ (ln(ln R) − ln(ln 2)) = ∞.

The integral diverges; hence, the series
∞∑

n=2

1

n ln n
also diverges. By the Comparison Test we can therefore conclude that

the series
∞∑

n=2

1

n ln n − n
diverges.

∞∑
n=1

1

n(ln n)2 − n

65.
∞∑

n=1

1

nn

solution For n ≥ 2, nn ≥ 2n; therefore,

1

nn
≤ 1

2n
=

(
1

2

)n

.

The series
∞∑

n=1

(
1

2

)n

is a convergent geometric series, so
∞∑

n=2

(
1

2

)n

also converges. By the Comparison Test we can

therefore conclude that the series
∞∑

n=2

1

nn
converges. Hence, the series

∞∑
n=1

1

nn
converges.

∞∑
n=1

n2 − 4n3/2

n3

67.
∞∑

n=1

1 + (−1)n

n

solution Let

an = 1 + (−1)n

n

Then

an =
{

0 n odd
2

2k
= 1

k
n = 2k even

Therefore, {an} consists of 0s in the odd places and the harmonic series in the even places, so
∑∞

i=1 an is just the sum of
the harmonic series, which diverges. Thus

∑∞
i=1 an diverges as well.

∞∑
n=1

2 + (−1)n

n3/2

69.
∞∑

n=1

sin
1

n

solution Apply the Limit Comparison Test with an = sin
1

n
and bn = 1

n
:

L = lim
n→∞

sin 1
n

1
n

= lim
u→0

sin u

u
= 1,

where u = 1
n . The harmonic series diverges. Because L > 0, by the Limit Comparison Test we can conclude that the

series
∞∑

n=1

sin
1

n
also diverges.

∞∑
n=1

sin(1/n)√
n

71.
∞∑

n=1

2n + 1

4n

solution For n ≥ 3, 2n + 1 < 2n, so

2n + 1

4n
<

2n

4n
=

(
1

2

)n

.
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The series
∞∑

n=1

(
1

2

)n

is a convergent geometric series, so
∞∑

n=3

(
1

2

)n

also converges. By the Comparison Test we can

therefore conclude that the series
∞∑

n=3

2n + 1

4n
converges. Finally, the series

∞∑
n=1

2n + 1

4n
converges.

∞∑
n=3

1

e
√

n

73.
∞∑

n=4

ln n

n2 − 3n

solution By the comment preceding Exercise 31, we can choose N ≥ 4 so that for n ≥ N , ln n < n1/2. Then

∞∑
n=N

ln n

n2 − 3n
≤

∞∑
n=N

n1/2

n2 − 3n
=

∞∑
n=N

1

n3/2 − 3n1/2

To evaluate convergence of the latter series, let an = 1

n3/2 − 3n1/2
and bn = 1

n3/2
, and apply the Limit Comparison

Test:

L = lim
n→∞

an

bn
= lim

n→∞
1

n3/2 − 3n1/2
· n3/2 = lim

n→∞
1

1 − 3n−1
= 0

Thus
∑

an converges if
∑

bn does. But
∑

bn is a convergent p-series. Thus
∑

an converges and, by the comparison
test, so does the original series. Adding back in the finite number of terms for n < N does not affect convergence.

∞∑
n=1

1

3ln n

75.
∞∑

n=2

1

n1/2 ln n

solution By the comment preceding Exercise 31, we can choose N ≥ 2 so that for n ≥ N , ln n < n1/4. Then

∞∑
n=N

1

n1/2 ln n
>

∞∑
n=N

1

n3/4

which is a divergent p-series. Thus the original series diverges as well - as usual, adding back in the finite number of
terms for n < N does not affect convergence.

∞∑
n=1

1

n3/2 − ln4 n

77.
∞∑

n=1

4n2 + 15n

3n4 − 5n2 − 17

solution Apply the Limit Comparison Test with

an = 4n2 + 15n

3n4 − 5n2 − 17
, bn = 4n2

3n4
= 4

3n2

We have

L = lim
n→∞

an

bn
= lim

n→∞
4n2 + 15n

3n4 − 5n2 − 17
· 3n2

4
= lim

n→∞
12n4 + 45n3

12n4 − 20n2 − 68
= lim

n→∞
12 + 45/n

12 − 20/n2 − 68/n4
= 1

Now,
∑∞

n=1 bn is a p-series with p = 2 > 1, so converges. Since L = 1, we see that
∞∑

n=1

4n2 + 15n

3n4 − 5n2 − 17
converges as

well.

∞∑
n=1

n

4−n + 5−n

79. For which a does
∞∑

n=2

1

n(ln n)a
converge?

solution First consider the case a > 0 but a 
= 1. Let f (x) = 1

x(ln x)a
. This function is continuous, positive and

decreasing for x ≥ 2, so the Integral Test applies. Now,∫ ∞
2

dx

x(ln x)a
= lim

R→∞

∫ R

2

dx

x(ln x)a
= lim

R→∞

∫ ln R

ln 2

du

ua
= 1

1 − a
lim

R→∞

(
1

(ln R)a−1
− 1

(ln 2)a−1

)
.

Because

lim
R→∞

1

(ln R)a−1
=

{
∞, 0 < a < 1

0, a > 1
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we conclude the integral diverges when 0 < a < 1 and converges when a > 1. Therefore

∞∑
n=2

1

n(ln n)a
converges for a > 1 and diverges for 0 < a < 1.

Next, consider the case a = 1. The series becomes
∞∑

n=2

1

n ln n
. Let f (x) = 1

x ln x
. For x ≥ 2, this function is continuous,

positive and decreasing, so the Integral Test applies. Using the substitution u = ln x, du = 1
x dx, we find

∫ ∞
2

dx

x ln x
= lim

R→∞

∫ R

2

dx

x ln x
= lim

R→∞

∫ ln R

ln 2

du

u
= lim

R→∞ (ln(ln R) − ln(ln 2)) = ∞.

The integral diverges; hence, the series also diverges.

Finally, consider the case a < 0. Let b = −a > 0 so the series becomes
∞∑

n=2

(ln n)b

n
. Since ln n > 1 for all n ≥ 3, it

follows that

(ln n)b > 1 so
(ln n)b

n
>

1

n
.

The series
∞∑

n=3

1

n
diverges, so by the Comparison Test we can conclude that

∞∑
n=3

(ln n)b

n
also diverges. Consequently,

∞∑
n=2

(ln n)b

n
diverges. Thus,

∞∑
n=2

1

n(ln n)a
diverges for a < 0.

To summarize:

∞∑
n=2

1

n(ln n)a
converges if a > 1 and diverges if a ≤ 1.

For which a does
∞∑

n=2

1

na ln n
converge?

Approximating Infinite Sums In Exercises 81–83, let an = f (n), where f (x) is a continuous, decreasing function such
that f (x) ≥ 0 and

∫ ∞
1 f (x) dx converges.

81. Show that ∫ ∞
1

f (x) dx ≤
∞∑

n=1

an ≤ a1 +
∫ ∞

1
f (x) dx 3

solution From the proof of the Integral Test, we know that

a2 + a3 + a4 + · · · + aN ≤
∫ N

1
f (x) dx ≤

∫ ∞
1

f (x) dx;

that is,

SN − a1 ≤
∫ ∞

1
f (x) dx or SN ≤ a1 +

∫ ∞
1

f (x) dx.

Also from the proof of the Integral test, we know that∫ N

1
f (x) dx ≤ a1 + a2 + a3 + · · · + aN−1 = SN − aN ≤ SN .

Thus, ∫ N

1
f (x) dx ≤ SN ≤ a1 +

∫ ∞
1

f (x) dx.

Taking the limit as N → ∞ yields Eq. (3), as desired.

Using Eq. (3), show that

5 ≤
∞∑

n=1

1

n1.2
≤ 6

Thi i l l U l b if h S 5 f N 43 128 d S
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83. Let S =
∞∑

n=1

an. Arguing as in Exercise 81, show that

M∑
n=1

an +
∫ ∞
M+1

f (x) dx ≤ S ≤
M+1∑
n=1

an +
∫ ∞
M+1

f (x) dx 4

Conclude that

0 ≤ S −
⎛
⎝ M∑

n=1

an +
∫ ∞
M+1

f (x) dx

⎞
⎠ ≤ aM+1 5

This provides a method for approximating S with an error of at most aM+1.

solution Following the proof of the Integral Test and the argument in Exercise 81, but starting with n = M + 1 rather
than n = 1, we obtain

∫ ∞
M+1

f (x) dx ≤
∞∑

n=M+1

an ≤ aM+1 +
∫ ∞
M+1

f (x) dx.

Adding
M∑

n=1

an to each part of this inequality yields

M∑
n=1

an +
∫ ∞
M+1

f (x) dx ≤
∞∑

n=1

an = S ≤
M+1∑
n=1

an +
∫ ∞
M+1

f (x) dx.

Subtracting
M∑

n=1

an +
∫ ∞
M+1

f (x) dx from each part of this last inequality then gives us

0 ≤ S −
⎛
⎝ M∑

n=1

an +
∫ ∞
M+1

f (x) dx

⎞
⎠ ≤ aM+1.

Use Eq. (4) with M = 43,129 to prove that

5.5915810 ≤
∞∑

n=1

1

n1.2
≤ 5.5915839

85. Apply Eq. (4) with M = 40,000 to show that

1.644934066 ≤
∞∑

n=1

1

n2
≤ 1.644934068

Is this consistent with Euler’s result, according to which this infinite series has sum π2/6?

solution Using Eq. (4) with f (x) = 1

x2
, an = 1

n2
and M = 40,000, we find

S40,000 +
∫ ∞

40,001

dx

x2
≤

∞∑
n=1

1

n2
≤ S40,001 +

∫ ∞
40,001

dx

x2
.

Now,

S40,000 = 1.6449090672;

S40,001 = S40,000 + 1

40,001
= 1.6449090678;

and ∫ ∞
40,001

dx

x2
= lim

R→∞

∫ R

40,001

dx

x2
= − lim

R→∞

(
1

R
− 1

40,001

)
= 1

40,001
= 0.0000249994.

Thus,

1.6449090672 + 0.0000249994 ≤
∞∑

n=1

1

n2
≤ 1.6449090678 + 0.0000249994,
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or

1.6449340665 ≤
∞∑

n=1

1

n2
≤ 1.6449340672.

Since
π2

6
≈ 1.6449340668, our approximation is consistent with Euler’s result.

Using a CAS and Eq. (5), determine the value of
∞∑

n=1

n−6 to within an error less than 10−4. Check that your

result is consistent with that of Euler, who proved that the sum is equal to π6/945.

87. Using a CAS and Eq. (5), determine the value of
∞∑

n=1

n−5 to within an error less than 10−4.

solution Using Eq. (5) with f (x) = x−5 and an = n−5, we have

0 ≤
∞∑

n=1

n−5 −
⎛
⎝M+1∑

n=1

n−5 +
∫ ∞
M+1

x−5 dx

⎞
⎠ ≤ (M + 1)−5.

To guarantee an error less than 10−4, we need (M + 1)−5 ≤ 10−4. This yields M ≥ 104/5 − 1 ≈ 5.3, so we choose
M = 6. Now,

7∑
n=1

n−5 = 1.0368498887,

and ∫ ∞
7

x−5 dx = lim
R→∞

∫ R

7
x−5 dx = −1

4
lim

R→∞
(
R−4 − 7−4

)
= 1

4 · 74
= 0.0001041233.

Thus,

∞∑
n=1

n−5 ≈
7∑

n=1

n−5 +
∫ ∞

7
x−5 dx = 1.0368498887 + 0.0001041233 = 1.0369540120.

How far can a stack of identical books (of mass m and unit length) extend without tipping over? The stack will
not tip over if the (n + 1)st book is placed at the bottom of the stack with its right edge located at the center of mass
of the first n books (Figure 5). Let cn be the center of mass of the first n books, measured along the x-axis, where we
take the positive x-axis to the left of the origin as in Figure 6. Recall that if an object of mass m1 has center of mass
at x1 and a second object of m2 has center of mass x2, then the center of mass of the system has x-coordinate

m1x1 + m2x2

m1 + m2

(a) Show that if the (n + 1)st book is placed with its right edge at cn, then its center of mass is located at cn + 1
2 .

(b) Consider the first n books as a single object of mass nm with center of mass at cn and the (n + 1)st book as a second

object of mass m. Show that if the (n + 1)st book is placed with its right edge at cn, then cn+1 = cn + 1

2(n + 1)
.

(c) Prove that lim
n→∞ cn = ∞. Thus, by using enough books, the stack can be extended as far as desired without

tipping over.

89. The following argument proves the divergence of the harmonic series S =
∞∑

n=1

1/n without using the Integral Test.

Let

S1 = 1 + 1

3
+ 1

5
+ · · · , S2 = 1

2
+ 1

4
+ 1

6
+ · · ·

Show that if S converges, then

(a) S1 and S2 also converge and S = S1 + S2.

(b) S1 > S2 and S2 = 1
2S.

Observe that (b) contradicts (a), and conclude that S diverges.

solution Assume throughout that S converges; we will derive a contradiction. Write

an = 1

n
, bn = 1

2n − 1
, cn = 1

2n

for the nth terms in the series S, S1, and S2. Since 2n − 1 ≥ n for n ≥ 1, we have bn < an. Since S = ∑
an converges,

so does S1 = ∑
bn by the Comparison Test. Also, cn = 1

2
an, so again by the Comparison Test, the convergence of S

implies the convergence of S2 = ∑
cn. Now, define two sequences

b′
n =

{
b(n+1)/2 n odd

0 n even

c′
n =

{
0 n odd

cn/2 n even

That is, b′
n and c′

n look like bn and cn, but have zeros inserted in the “missing” places compared to an. Then an = b′
n + c′

n;
also S1 = ∑

bn = ∑
b′
n and S2 = ∑

cn = ∑
c′
n. Finally, since S, S1, and S2 all converge, we have

S =
∞∑

n=1

an =
∞∑

n=1

(b′
n + c′

n) =
∞∑

n=1

b′
n +

∞∑
n=1

c′
n =

∞∑
n=1

bn +
∞∑

n=1

cn = S1 + S2
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Now, bn > cn for every n, so that S1 > S2. Also, we showed above that cn = 1

2
an, so that 2S2 = S. Putting all this

together gives

S = S1 + S2 > S2 + S2 = 2S2 = S

so that S > S, a contradiction. Thus S must diverge.

Further Insights and Challenges

Let S =
∞∑

n=2

an, where an = (ln(ln n))− ln n.

(a) Show, by taking logarithms, that an = n− ln(ln(ln n)).

(b) Show that ln(ln(ln n)) ≥ 2 if n > C, where C = eee2
.

(c) Show that S converges.

91. Kummer’s Acceleration Method Suppose we wish to approximate S =
∞∑

n=1

1/n2. There is a similar telescoping

series whose value can be computed exactly (Example 1 in Section 10.2):

∞∑
n=1

1

n(n + 1)
= 1

(a) Verify that

S =
∞∑

n=1

1

n(n + 1)
+

∞∑
n=1

(
1

n2
− 1

n(n + 1)

)

Thus for M large,

S ≈ 1 +
M∑

n=1

1

n2(n + 1)
6

(b) Explain what has been gained. Why is Eq. (6) a better approximation to S than is
M∑

n=1

1/n2?

(c) Compute

1000∑
n=1

1

n2
, 1 +

100∑
n=1

1

n2(n + 1)

Which is a better approximation to S, whose exact value is π2/6?

solution

(a) Because the series
∞∑

n=1

1

n2
and

∞∑
n=1

1

n(n + 1)
both converge,

∞∑
n=1

1

n(n + 1)
+

∞∑
n=1

(
1

n2
− 1

n(n + 1)

)
=

∞∑
n=1

1

n(n + 1)
+

∞∑
n=1

1

n2
−

∞∑
n=1

1

n(n + 1)
=

∞∑
n=1

1

n2
= S.

Now,

1

n2
− 1

n(n + 1)
= n + 1

n2(n + 1)
− n

n2(n + 1)
= 1

n2(n + 1)
,

so, for M large,

S ≈ 1 +
M∑

n=1

1

n2(n + 1)
.

(b) The series
∑∞

n=1
1

n2(n+1)
converges more rapidly than

∞∑
n=1

1

n2
since the degree of n in the denominator is larger.

(c) Using a computer algebra system, we find

1000∑
n=1

1

n2
= 1.6439345667 and 1 +

100∑
n=1

1

n2(n + 1)
= 1.6448848903.

The second sum is more accurate because it is closer to the exact solution
π2

6
≈ 1.6449340668.

The series S =
∞∑

k=1

k−3 has been computed to more than 100 million digits. The first 30 digits are

S = 1.202056903159594285399738161511
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10.4 Absolute and Conditional Convergence (LT Section 11.4)

Preliminary Questions
1. Give an example of a series such that

∑
an converges but

∑
|an| diverges.

solution The series
∑

(−1)n

3√n
converges by the Leibniz Test, but the positive series

∑ 1
3√n

is a divergent p-series.

2. Which of the following statements is equivalent to Theorem 1?

(a) If
∞∑

n=0

|an| diverges, then
∞∑

n=0

an also diverges.

(b) If
∞∑

n=0

an diverges, then
∞∑

n=0

|an| also diverges.

(c) If
∞∑

n=0

an converges, then
∞∑

n=0

|an| also converges.

solution The correct answer is (b): If
∞∑

n=0

an diverges, then
∞∑

n=0

|an| also diverges. Take an = (−1)n 1
n to see that

statements (a) and (c) are not true in general.

3. Lathika argues that
∞∑

n=1

(−1)n
√

n is an alternating series and therefore converges. Is Lathika right?

solution No. Although
∞∑

n=1

(−1)n
√

n is an alternating series, the terms an = √
n do not form a decreasing sequence

that tends to zero. In fact, an = √
n is an increasing sequence that tends to ∞, so

∞∑
n=1

(−1)n
√

n diverges by the Divergence

Test.

4. Suppose that an is positive, decreasing, and tends to 0, and let S =
∞∑

n=1

(−1)n−1an. What can we say about |S − S100|

if a101 = 10−3? Is S larger or smaller than S100?

solution From the text, we know that |S − S100| < a101 = 10−3.Also, the Leibniz test tells us that S2N < S < S2N+1
for any N ≥ 1, so that S100 < S.

Exercises
1. Show that

∞∑
n=0

(−1)n

2n

converges absolutely.

solution The positive series
∞∑

n=0

1

2n
is a geometric series with r = 1

2
. Thus, the positive series converges, and the

given series converges absolutely.

Show that the following series converges conditionally:

∞∑
n=1

(−1)n−1 1

n2/3
= 1

12/3
− 1

22/3
+ 1

32/3
− 1

42/3
+ · · ·

In Exercises 3–10, determine whether the series converges absolutely, conditionally, or not at all.

3.
∞∑

n=1

(−1)n−1

n1/3

solution The sequence an = 1
n1/3 is positive, decreasing, and tends to zero; hence, the series

∞∑
n=1

(−1)n−1

n1/3
converges

by the Leibniz Test. However, the positive series
∞∑

n=1

1

n1/3
is a divergent p-series, so the original series converges

conditionally.

∞∑
n=1

(−1)n n4

n3 + 1
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5.
∞∑

n=0

(−1)n−1

(1.1)n

solution The positive series
∞∑

n=0

(
1

1.1

)n

is a convergent geometric series; thus, the original series converges abso-

lutely.

∞∑
n=1

sin( πn
4 )

n2

7.
∞∑

n=2

(−1)n

n ln n

solution Let an = 1
n ln n

. Then an forms a decreasing sequence (note that n and ln n are both increasing functions of

n) that tends to zero; hence, the series
∞∑

n=2

(−1)n

n ln n
converges by the Leibniz Test. However, the positive series

∞∑
n=2

1

n ln n

diverges, so the original series converges conditionally.

∞∑
n=1

(−1)n

1 + 1
n

9.
∞∑

n=2

cos nπ

(ln n)2

solution Since cos nπ alternates between +1 and −1,

∞∑
n=2

cos nπ

(lnn)2
=

∞∑
n=2

(−1)n

(lnn)2

This is an alternating series whose general term decreases to zero, so it converges. The associated positive series,

∞∑
n=2

1

(ln n)2

is a divergent series, so the original series converges conditionally.

∞∑
n=1

cos n

2n

11. Let S =
∞∑

n=1

(−1)n+1 1

n3
.

(a) Calculate Sn for 1 ≤ n ≤ 10.

(b) Use Eq. (2) to show that 0.9 ≤ S ≤ 0.902.

solution

(a)

S1 = 1 S6 = S5 − 1

63
= 0.899782407

S2 = 1 − 1

23
= 7

8
= 0.875 S7 = S6 + 1

73
= 0.902697859

S3 = S2 + 1

33
= 0.912037037 S8 = S7 − 1

83
= 0.900744734

S4 = S3 − 1

43
= 0.896412037 S9 = S8 + 1

93
= 0.902116476

S5 = S4 + 1

53
= 0.904412037 S10 = S9 − 1

103
= 0.901116476

(b) By Eq. (2),

|S10 − S| ≤ a11 = 1

113
,

so

S10 − 1

113
≤ S ≤ S10 + 1

113
,

or

0.900365161 ≤ S ≤ 0.901867791.
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Use Eq. (2) to approximate

∞∑
n=1

(−1)n+1

n!

to four decimal places.

13. Approximate
∞∑

n=1

(−1)n+1

n4
to three decimal places.

solution Let S =
∞∑

n=1

(−1)n+1

n4
, so that an = 1

n4
. By Eq. (2),

|SN − S| ≤ aN+1 = 1

(N + 1)4
.

To guarantee accuracy to three decimal places, we must choose N so that

1

(N + 1)4
< 5 × 10−4 or N >

4√
2000 − 1 ≈ 5.7.

The smallest value that satisfies the required inequality is then N = 6. Thus,

S ≈ S6 = 1 − 1

24
+ 1

34
− 1

44
+ 1

54
− 1

64
= 0.946767824.

Let

S =
∞∑

n=1

(−1)n−1 n

n2 + 1

Use a computer algebra system to calculate and plot the partial sums Sn for 1 ≤ n ≤ 100. Observe that the partial
sums zigzag above and below the limit.

In Exercises 15 and 16, find a value of N such that SN approximates the series with an error of at most 10−5. If you have
a CAS, compute this value of SN .

15.
∞∑

n=1

(−1)n+1

n(n + 2)(n + 3)

solution Let S =
∞∑

n=1

(−1)n+1

n (n + 2) (n + 3)
, so that an = 1

n (n + 2) (n + 3)
. By Eq. (2),

|SN − S| ≤ aN+1 = 1

(N + 1)(N + 3)(N + 4)
.

We must choose N so that

1

(N + 1)(N + 3)(N + 4)
≤ 10−5 or (N + 1)(N + 3)(N + 4) ≥ 105.

For N = 43, the product on the left hand side is 95,128, while for N = 44 the product is 101,520; hence, the smallest
value of N which satisfies the required inequality is N = 44. Thus,

S ≈ S44 =
44∑

n=1

(−1)n+1

n(n + 2)(n + 3)
= 0.0656746.

∞∑
n=1

(−1)n+1 ln n

n!
In Exercises 17–32, determine convergence or divergence by any method.

17.
∞∑

n=0

7−n

solution This is a (positive) geometric series with r = 1

7
< 1, so it converges.

∞∑
n=1

1

n7.5

19.
∞∑

n=1

1

5n − 3n

solution Use the Limit Comparison Test with
1

5n
:

L = lim
n→∞

1/(5n − 3n)

1/5n
= lim

n→∞
5n

5n − 3n
= lim

n→∞
1

1 − (3/5)n
= 1

But
∑∞

n=1
1

5n
is a convergent geometric series. Since L = 1, the Limit Comparison Test tells us that the original series

converges as well.

∞∑
n=2

n

n2 − n
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21.
∞∑

n=1

1

3n4 + 12n

solution Use the Limit Comparison Test with
1

3n4
:

L = lim
n→∞

(1/(3n4 + 12n)

1/3n4
= lim

n→∞
3n4

3n4 + 12n
= lim

n→∞
1

1 + 4n−3
= 1

But
∑∞

n=1
1

3n4
= 1

3
∑∞

n=1
1
n4 is a convergent p-series. Since L = 1, the Limit Comparison Test tells us that the original

series converges as well.

∞∑
n=1

(−1)n√
n2 + 1

23.
∞∑

n=1

1√
n2 + 1

solution Apply the Limit Comparison Test and compare the series with the divergent harmonic series:

L = lim
n→∞

1√
n2+1
1
n

= lim
n→∞

n√
n2 + 1

= 1.

Because L > 0, we conclude that the series
∞∑

n=1

1√
n2 + 1

diverges.

∞∑
n=0

(−1)nn√
n2 + 1

25.
∞∑

n=1

3n + (−2)n

5n

solution The series

∞∑
n=1

3n

5n
=

∞∑
n=1

(
3

5

)n

is a convergent geometric series, as is the series

∞∑
n=1

(−1)n 2n

5n
=

∞∑
n=1

(
−2

5

)n

.

Hence,

∞∑
n=1

3n + (−1)n2n

5n
=

∞∑
n=1

(
3

5

)n

+
∞∑

n=1

(
−2

5

)n

also converges.

∞∑
n=1

(−1)n+1

(2n + 1)!
27.

∞∑
n=1

(−1)nn2e−n3/3

solution Consider the associated positive series
∞∑

n=1

n2e−n3/3. This series can be seen to converge by the Integral

Test: ∫ ∞
1

x2e−x3/3 dx = lim
R→∞

∫ R

1
x2e−x3/3 dx = − lim

R→∞ e−x3/3∣∣R
1 = e−1/3 + lim

R→∞ e−R3/3 = e−1/3.

The integral converges, so the original series converges absolutely.

∞∑
n=1

ne−n3/329.
∞∑

n=2

(−1)n

n1/2(ln n)2

solution This is an alternating series with an = 1

n1/2(ln n)2
. Because an is a decreasing sequence which converges

to zero, the series
∞∑

n=2

(−1)n

n1/2(ln n)2
converges by the Leibniz Test. (Note that the series converges only conditionally, not

absolutely; the associated positive series is eventually greater than
1

n3/4
, which is a divergent p-series).
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∞∑
n=2

1

n(ln n)1/4

31.
∞∑

n=1

ln n

n1.05

solution Choose N so that for n ≥ N we have ln n ≤ n0.01. Then

∞∑
n=N

ln n

n1.05
≤

∞∑
n=N

n0.01

n1.05
=

∞∑
n=N

1

n1.04

This is a convergent p-series, so by the Comparison Test, the original series converges as well.

∞∑
n=2

1

(ln n)2

33. Show that

S = 1

2
− 1

2
+ 1

3
− 1

3
+ 1

4
− 1

4
+ · · ·

converges by computing the partial sums. Does it converge absolutely?

solution The sequence of partial sums is

S1 = 1

2

S2 = S1 − 1

2
= 0

S3 = S2 + 1

3
= 1

3

S4 = S3 − 1

3
= 0

and, in general,

SN =
⎧⎨
⎩

1

N
, for odd N

0, for even N

Thus, lim
N→∞ SN = 0, and the series converges to 0. The positive series is

1

2
+ 1

2
+ 1

3
+ 1

3
+ 1

4
+ 1

4
+ · · · = 2

∞∑
n=2

1

n
;

which diverges. Therefore, the original series converges conditionally, not absolutely.

The Leibniz Test cannot be applied to

1

2
− 1

3
+ 1

22
− 1

32
+ 1

23
− 1

33
+ · · ·

Why not? Show that it converges by another method.

35. Assumptions Matter Show by counterexample that the Leibniz Test does not remain true if the sequence
an tends to zero but is not assumed nonincreasing. Hint: Consider

R = 1

2
− 1

4
+ 1

3
− 1

8
+ 1

4
− 1

16
+ · · · +

(
1

n
− 1

2n

)
+ · · ·

solution Let

R = 1

2
− 1

4
+ 1

3
− 1

8
+ 1

4
− 1

16
+ · · · +

(
1

n + 1
− 1

2n+1

)
+ · · ·

This is an alternating series with

an =

⎧⎪⎪⎨
⎪⎪⎩

1

k + 1
, n = 2k − 1

1

2k+1
, n = 2k

Note that an → 0 as n → ∞, but the sequence {an} is not decreasing. We will now establish that R diverges.
For sake of contradiction, suppose that R converges. The geometric series

∞∑
n=1

1

2n+1



May 18, 2011

S E C T I O N 10.4 Absolute and Conditional Convergence (LT SECTION 11.4) 43

converges, so the sum of R and this geometric series must also converge; however,

R +
∞∑

n=1

1

2n+1
=

∞∑
n=2

1

n
,

which diverges because the harmonic series diverges. Thus, the series R must diverge.

Determine whether the following series converges conditionally:

1 − 1

3
+ 1

2
− 1

5
+ 1

3
− 1

7
+ 1

4
− 1

9
+ 1

5
− 1

11
+ · · ·

37. Prove that if
∑

an converges absolutely, then
∑

a2
n also converges. Then give an example where

∑
an is only

conditionally convergent and
∑

a2
n diverges.

solution Suppose the series
∑

an converges absolutely. Because
∑

|an| converges, we know that

lim
n→∞ |an| = 0.

Therefore, there exists a positive integer N such that |an| < 1 for all n ≥ N . It then follows that for n ≥ N ,

0 ≤ a2
n = |an|2 = |an| · |an| < |an| · 1 = |an|.

By the Comparison Test we can then conclude that
∑

a2
n also converges.

Consider the series
∞∑

n=1

(−1)n√
n

. This series converges by the Leibniz Test, but the corresponding positive series is a

divergent p-series; that is,
∞∑

n=1

(−1)n√
n

is conditionally convergent. Now,
∞∑

n=1

a2
n is the divergent harmonic series

∞∑
n=1

1

n
.

Thus,
∑

a2
n need not converge if

∑
an is only conditionally convergent.

Further Insights and Challenges

Prove the following variant of the Leibniz Test: If {an} is a positive, decreasing sequence with lim
n→∞ an = 0, then

the series

a1 + a2 − 2a3 + a4 + a5 − 2a6 + · · ·
converges. Hint: Show that S3N is increasing and bounded by a1 + a2, and continue as in the proof of the Leibniz
Test.

39. Use Exercise 38 to show that the following series converges:

S = 1

ln 2
+ 1

ln 3
− 2

ln 4
+ 1

ln 5
+ 1

ln 6
− 2

ln 7
+ · · ·

solution The given series has the structure of the generic series from Exercise 38 with an = 1
ln(n+1)

. Because an is
a positive, decreasing sequence with lim

n→∞ an = 0, we can conclude from Exercise 38 that the given series converges.

Prove the conditional convergence of

R = 1 + 1

2
+ 1

3
− 3

4
+ 1

5
+ 1

6
+ 1

7
− 3

8
+ · · ·

41. Show that the following series diverges:

S = 1 + 1

2
+ 1

3
− 2

4
+ 1

5
+ 1

6
+ 1

7
− 2

8
+ · · ·

Hint: Use the result of Exercise 40 to write S as the sum of a convergent series and a divergent series.

solution Let

R = 1 + 1

2
+ 1

3
− 3

4
+ 1

5
+ 1

6
+ 1

7
− 3

8
+ · · ·

and

S = 1 + 1

2
+ 1

3
− 2

4
+ 1

5
+ 1

6
+ 1

7
− 2

8
+ · · ·

For sake of contradiction, suppose the series S converges. From Exercise 40, we know that the series R converges. Thus,
the series S − R must converge; however,

S − R = 1

4
+ 1

8
+ 1

12
+ · · · = 1

4

∞∑
k=1

1

k
,

which diverges because the harmonic series diverges. Thus, the series S must diverge.

Prove that

∞∑
n=1

(−1)n+1 (ln n)a

n

converges for all exponents a. Hint: Show that f (x) = (ln x)a/x is decreasing for x sufficiently large.

43. We say that {bn} is a rearrangement of {an} if {bn} has the same terms as {an} but occurring in a different order. Show

that if {bn} is a rearrangement of {an} and S =
∞∑

n=1

an converges absolutely, then T =
∞∑

n=1

bn also converges absolutely.

(This result does not hold if S is only conditionally convergent.) Hint: Prove that the partial sums
N∑

n=1

|bn| are bounded.

It can be shown further that S = T .
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solution Suppose the series S =
∞∑

n=1

an converges absolutely and denote the corresponding positive series by

S+ =
∞∑

n=1

|an|.

Further, let TN =
N∑

n=1

|bn| denote the N th partial sum of the series
∞∑

n=1

|bn|. Because {bn} is a rearrangement of {an}, we

know that

0 ≤ TN ≤
∞∑

n=1

|an| = S+;

that is, the sequence {TN } is bounded. Moreover,

TN+1 =
N+1∑
n=1

|bn| = TN + |bN+1| ≥ TN ;

that is, {TN } is increasing. It follows that {TN } converges, so the series
∞∑

n=1

|bn| converges, which means the series
∞∑

n=1

bn

converges absolutely.

Assumptions Matter In 1829, Lejeune Dirichlet pointed out that the great French mathematician Augustin
Louis Cauchy made a mistake in a published paper by improperly assuming the Limit Comparison Test to be valid
for nonpositive series. Here are Dirichlet’s two series:

∞∑
n=1

(−1)n√
n

,

∞∑
n=1

(−1)n√
n

(
1 + (−1)n√

n

)

Explain how they provide a counterexample to the Limit Comparison Test when the series are not assumed to be
positive.

10.5 The Ratio and Root Tests (LT Section 11.5)

Preliminary Questions

1. In the Ratio Test, is ρ equal to lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ or lim
n→∞

∣∣∣∣ an

an+1

∣∣∣∣?
solution In the Ratio Test ρ is the limit lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣.
2. Is the Ratio Test conclusive for

∞∑
n=1

1

2n
? Is it conclusive for

∞∑
n=1

1

n
?

solution The general term of
∞∑

n=1

1

2n
is an = 1

2n
; thus,

∣∣∣∣an+1

an

∣∣∣∣ = 1

2n+1
· 2n

1
= 1

2
,

and

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1

2
< 1.

Consequently, the Ratio Test guarantees that the series
∞∑

n=1

1

2n
converges.

The general term of
∞∑

n=1

1

n
is an = 1

n
; thus,

∣∣∣∣an+1

an

∣∣∣∣ = 1

n + 1
· n

1
= n

n + 1
,

and

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

n

n + 1
= 1.

The Ratio Test is therefore inconclusive for the series
∞∑

n=1

1

n
.

3. Can the Ratio Test be used to show convergence if the series is only conditionally convergent?

solution No. The Ratio Test can only establish absolute convergence and divergence, not conditional convergence.
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Exercises
In Exercises 1–20, apply the Ratio Test to determine convergence or divergence, or state that the Ratio Test is inconclusive.

1.
∞∑

n=1

1

5n

solution With an = 1
5n ,∣∣∣∣an+1

an

∣∣∣∣ = 1

5n+1
· 5n

1
= 1

5
and ρ = lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1

5
< 1.

Therefore, the series
∞∑

n=1

1

5n
converges by the Ratio Test.

∞∑
n=1

(−1)n−1n

5n

3.
∞∑

n=1

1

nn

solution With an = 1
nn ,∣∣∣∣an+1

an

∣∣∣∣ = 1

(n + 1)n+1
· nn

1
= 1

n + 1

(
n

n + 1

)n

= 1

n + 1

(
1 + 1

n

)−n

,

and

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 0 · 1

e
= 0 < 1.

Therefore, the series
∞∑

n=1

1

nn
converges by the Ratio Test.

∞∑
n=0

3n + 2

5n3 + 1

5.
∞∑

n=1

n

n2 + 1

solution With an = n
n2+1

,∣∣∣∣an+1

an

∣∣∣∣ = n + 1

(n + 1)2 + 1
· n2 + 1

n
= n + 1

n
· n2 + 1

n2 + 2n + 2
,

and

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1 · 1 = 1.

Therefore, for the series
∞∑

n=1

n

n2 + 1
, the Ratio Test is inconclusive.

We can show that this series diverges by using the Limit Comparison Test and comparing with the divergent harmonic
series.

∞∑
n=1

2n

n

7.
∞∑

n=1

2n

n100

solution With an = 2n

n100 ,∣∣∣∣an+1

an

∣∣∣∣ = 2n+1

(n + 1)100
· n100

2n
= 2

(
n

n + 1

)100
and ρ = lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 2 · 1100 = 2 > 1.

Therefore, the series
∞∑

n=1

2n

n100
diverges by the Ratio Test.

∞∑
n=1

n3

3n2

9.
∞∑

n=1

10n

2n2

solution With an = 10n

2n2 ,

∣∣∣∣an+1

an

∣∣∣∣ = 10n+1

2(n+1)2 · 2n2

10n
= 10 · 1

22n+1
and ρ = lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 10 · 0 = 0 < 1.

Therefore, the series
∞∑

n=1

10n

2n2 converges by the Ratio Test.
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∞∑
n=1

en

n!
11.

∞∑
n=1

en

nn

solution With an = en

nn ,∣∣∣∣an+1

an

∣∣∣∣ = en+1

(n + 1)n+1
· nn

en
= e

n + 1

(
n

n + 1

)n

= e

n + 1

(
1 + 1

n

)−n

,

and

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 0 · 1

e
= 0 < 1.

Therefore, the series
∞∑

n=1

en

nn
converges by the Ratio Test.

∞∑
n=1

n40

n!
13.

∞∑
n=0

n!
6n

solution With an = n!
6n ,∣∣∣∣an+1

an

∣∣∣∣ = (n + 1)!
6n+1

· 6n

n! = n + 1

6
and ρ = lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣ = ∞ > 1.

Therefore, the series
∞∑

n=0

n!
6n

diverges by the Ratio Test.

∞∑
n=1

n!
n9

15.
∞∑

n=2

1

n ln n

solution With an = 1
n ln n

, ∣∣∣∣an+1

an

∣∣∣∣ = 1

(n + 1) ln(n + 1)
· n ln n

1
= n

n + 1

ln n

ln(n + 1)
,

and

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1 · lim
n→∞

ln n

ln(n + 1)
.

Now,

lim
n→∞

ln n

ln(n + 1)
= lim

x→∞
ln x

ln(x + 1)
= lim

x→∞
1/(x + 1)

1/x
= lim

x→∞
x

x + 1
= 1.

Thus, ρ = 1, and the Ratio Test is inconclusive for the series
∞∑

n=2

1

n ln n
.

Using the Integral Test, we can show that the series
∞∑

n=2

1

n ln n
diverges.

∞∑
n=1

1

(2n)!
17.

∞∑
n=1

n2

(2n + 1)!

solution With an = n2

(2n+1)! ,∣∣∣∣an+1

an

∣∣∣∣ = (n + 1)2

(2n + 3)! · (2n + 1)!
n2

=
(

n + 1

n

)2 1

(2n + 3)(2n + 2)
,

and

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 12 · 0 = 0 < 1.

Therefore, the series
∞∑

n=1

n2

(2n + 1)! converges by the Ratio Test.

∞∑
n=1

(n!)3

(3n)!
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19.
∞∑

n=2

1

2n + 1

solution With an = 1

2n + 1
,

∣∣∣∣an+1

an

∣∣∣∣ = 1

2n+1 + 1
· 2n + 1

1
= 1 + 2−n

2 + 2−n

and

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1

2
< 1

Therefore, the series
∞∑

n=2

1

2n + 1
converges by the Ratio Test.

∞∑
n=2

1

ln n

21. Show that
∞∑

n=1

nk 3−n converges for all exponents k.

solution With an = nk3−n, ∣∣∣∣an+1

an

∣∣∣∣ = (n + 1)k3−(n+1)

nk3−n
= 1

3

(
1 + 1

n

)k

,

and, for all k,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1

3
· 1 = 1

3
< 1.

Therefore, the series
∞∑

n=1

nk 3−n converges for all exponents k by the Ratio Test.

Show that
∞∑

n=1

n2xn converges if |x| < 1.
23. Show that

∞∑
n=1

2nxn converges if |x| < 1
2 .

solution With an = 2nxn,∣∣∣∣an+1

an

∣∣∣∣ = 2n+1|x|n+1

2n|x|n = 2|x| and ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 2|x|.

Therefore, ρ < 1 and the series
∞∑

n=1

2nxn converges by the Ratio Test provided |x| < 1
2 .

Show that
∞∑

n=1

rn

n! converges for all r .
25. Show that

∞∑
n=1

rn

n
converges if |r| < 1.

solution With an = rn

n ,∣∣∣∣an+1

an

∣∣∣∣ = |r|n+1

n + 1
· n

|r|n = |r| n

n + 1
and ρ = lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1 · |r| = |r|.

Therefore, by the Ratio Test, the series
∞∑

n=1

rn

n
converges provided |r| < 1.

Is there any value of k such that
∞∑

n=1

2n

nk
converges?

27. Show that
∞∑

n=1

n!
nn

converges. Hint: Use lim
n→∞

(
1 + 1

n

)n

= e.

solution With an = n!
nn , ∣∣∣∣an+1

an

∣∣∣∣ = (n + 1)!
(n + 1)n+1

· nn

n! =
(

n

n + 1

)n

=
(

1 + 1

n

)−n

,

and

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1

e
< 1.
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Therefore, the series
∞∑

n=1

n!
nn

converges by the Ratio Test.

In Exercises 28–33, assume that |an+1/an| converges to ρ = 1
3 . What can you say about the convergence of the given

series?

∞∑
n=1

nan
29.

∞∑
n=1

n3an

solution Let bn = n3an. Then

ρ = lim
n→∞

∣∣∣∣bn+1

bn

∣∣∣∣ = lim
n→∞

(
n + 1

n

)3 ∣∣∣∣an+1

an

∣∣∣∣ = 13 · 1

3
= 1

3
< 1.

Therefore, the series
∞∑

n=1

n3an converges by the Ratio Test.

∞∑
n=1

2nan
31.

∞∑
n=1

3nan

solution Let bn = 3nan. Then

ρ = lim
n→∞

∣∣∣∣bn+1

bn

∣∣∣∣ = lim
n→∞

3n+1

3n

∣∣∣∣an+1

an

∣∣∣∣ = 3 · 1

3
= 1.

Therefore, the Ratio Test is inconclusive for the series
∞∑

n=1

3nan.

∞∑
n=1

4nan
33.

∞∑
n=1

a2
n

solution Let bn = a2
n. Then

ρ = lim
n→∞

∣∣∣∣bn+1

bn

∣∣∣∣ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣2 =
(

1

3

)2
= 1

9
< 1.

Therefore, the series
∞∑

n=1

a2
n converges by the Ratio Test.

Assume that
∣∣an+1/an

∣∣ converges to ρ = 4. Does
∑∞

n=1 a−1
n converge (assume that an 
= 0 for all n)?35. Is the Ratio Test conclusive for the p-series

∞∑
n=1

1

np
?

solution With an = 1
np ,∣∣∣∣an+1

an

∣∣∣∣ = 1

(n + 1)p
· np

1
=

(
n

n + 1

)p

and ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1p = 1.

Therefore, the Ratio Test is inconclusive for the p-series
∞∑

n=1

1

np
.

In Exercises 36–41, use the Root Test to determine convergence or divergence (or state that the test is inconclusive).

∞∑
n=0

1

10n

37.
∞∑

n=1

1

nn

solution With an = 1
nn ,

n
√

an = n

√
1

nn
= 1

n
and lim

n→∞
n
√

an = 0 < 1.

Therefore, the series
∞∑

n=1

1

nn
converges by the Root Test.

∞∑
k=0

(
k

k + 10

)k
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39.
∞∑

k=0

(
k

3k + 1

)k

solution With ak =
(

k
3k+1

)k
,

k
√

ak = k

√(
k

3k + 1

)k

= k

3k + 1
and lim

k→∞
k
√

ak = 1

3
< 1.

Therefore, the series
∞∑

k=0

(
k

3k + 1

)k

converges by the Root Test.

∞∑
n=1

(
1 + 1

n

)−n41.
∞∑

n=4

(
1 + 1

n

)−n2

solution With ak = (
1 + 1

n

)−n2
,

n
√

an = n

√(
1 + 1

n

)−n2

=
(

1 + 1

n

)−n

and lim
n→∞

n
√

an = e−1 < 1.

Therefore, the series
∞∑

n=4

(
1 + 1

n

)−n2

converges by the Root Test.

Prove that
∞∑

n=1

2n2

n! diverges. Hint: Use 2n2 = (2n)n and n! ≤ nn.
In Exercises 43–56, determine convergence or divergence using any method covered in the text so far.

43.
∞∑

n=1

2n + 4n

7n

solution Because the series

∞∑
n=1

2n

7n
=

∞∑
n=1

(
2

7

)n

and
∞∑

n=1

4n

7n
=

∞∑
n=1

(
4

7

)n

are both convergent geometric series, it follows that

∞∑
n=1

2n + 4n

7n
=

∞∑
n=1

(
2

7

)n

+
∞∑

n=1

(
4

7

)n

also converges.

∞∑
n=1

n3

n!
45.

∞∑
n=1

n3

5n

solution The presence of the exponential term suggests applying the Ratio Test. With an = n3

5n ,∣∣∣∣an+1

an

∣∣∣∣ = (n + 1)3

5n+1
· 5n

n3
= 1

5

(
1 + 1

n

)3
and ρ = lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1

5
· 13 = 1

5
< 1.

Therefore, the series
∞∑

n=1

n3

5n
converges by the Ratio Test.

∞∑
n=2

1

n(ln n)3

47.
∞∑

n=2

1√
n3 − n2

solution This series is similar to a p-series; because

1√
n3 − n2

≈ 1√
n3

= 1

n3/2

for large n, we will apply the Limit Comparison Test comparing with the p-series with p = 3
2 . Now,

L = lim
n→∞

1√
n3−n2

1
n3/2

= lim
n→∞

√
n3

n3 − n2
= 1.

The p-series with p = 3
2 converges and L exists; therefore, the series

∞∑
n=2

1√
n3 − n2

also converges.
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∞∑
n=1

n2 + 4n

3n4 + 9

49.
∞∑

n=1

n−0.8

solution

∞∑
n=1

n−0.8 =
∞∑

n=1

1

n0.8

so that this is a divergent p-series.

∞∑
n=1

(0.8)−nn−0.851.
∞∑

n=1

4−2n+1

solution Observe
∞∑

n=1

4−2n+1 =
∞∑

n=1

4 · (4−2)n =
∞∑

n=1

4

(
1

16

)n

is a geometric series with r = 1
16 ; therefore, this series converges.

∞∑
n=1

(−1)n−1
√

n

53.
∞∑

n=1

sin
1

n2

solution Here, we will apply the Limit Comparison Test, comparing with the p-series with p = 2. Now,

L = lim
n→∞

sin 1
n2

1
n2

= lim
u→0

sin u

u
= 1,

where u = 1
n2 . The p-series with p = 2 converges and L exists; therefore, the series

∞∑
n=1

sin
1

n2
also converges.

∞∑
n=1

(−1)n cos
1

n

55.
∞∑

n=1

(−2)n√
n

solution Because

lim
n→∞

2n

√
n

= lim
x→∞

2x

√
x

= lim
x→∞

2x ln 2
1

2
√

x

= lim
x→∞ 2x+1√

x ln 2 = ∞ 
= 0,

the general term in the series
∞∑

n=1

(−2)n√
n

does not tend toward zero; therefore, the series diverges by the Divergence Test.

∞∑
n=1

(
n

n + 12

)n

Further Insights and Challenges

57. Proof of the Root Test Let S =
∞∑

n=0

an be a positive series, and assume that L = lim
n→∞

n
√

an exists.

(a) Show that S converges if L < 1. Hint: Choose R with L < R < 1 and show that an ≤ Rn for n sufficiently large.
Then compare with the geometric series

∑
Rn.

(b) Show that S diverges if L > 1.

solution Suppose lim
n→∞

n
√

an = L exists.

(a) If L < 1, let ε = 1 − L

2
. By the definition of a limit, there is a positive integer N such that

−ε ≤ n
√

an − L ≤ ε

for n ≥ N . From this, we conclude that

0 ≤ n
√

an ≤ L + ε

for n ≥ N . Now, let R = L + ε. Then

R = L + 1 − L

2
= L + 1

2
<

1 + 1

2
= 1,

and

0 ≤ n
√

an ≤ R or 0 ≤ an ≤ Rn
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for n ≥ N . Because 0 ≤ R < 1, the series
∞∑

n=N

Rn is a convergent geometric series, so the series
∞∑

n=N

an converges by

the Comparison Test. Therefore, the series
∞∑

n=0

an also converges.

(b) If L > 1, let ε = L − 1

2
. By the definition of a limit, there is a positive integer N such that

−ε ≤ n
√

an − L ≤ ε

for n ≥ N . From this, we conclude that

L − ε ≤ n
√

an

for n ≥ N . Now, let R = L − ε. Then

R = L − L − 1

2
= L + 1

2
>

1 + 1

2
= 1,

and

R ≤ n
√

an or Rn ≤ an

for n ≥ N . Because R > 1, the series
∞∑

n=N

Rn is a divergent geometric series, so the series
∞∑

n=N

an diverges by the

Comparison Test. Therefore, the series
∞∑

n=0

an also diverges.

Show that the Ratio Test does not apply, but verify convergence using the Comparison Test for the series

1

2
+ 1

32
+ 1

23
+ 1

34
+ 1

25 + · · ·

59. Let S =
∞∑

n=1

cnn!
nn

, where c is a constant.

(a) Prove that S converges absolutely if |c| < e and diverges if |c| > e.

(b) It is known that lim
n→∞

enn!
nn+1/2

= √
2π . Verify this numerically.

(c) Use the Limit Comparison Test to prove that S diverges for c = e.

solution

(a) With an = cnn!
nn , ∣∣∣∣an+1

an

∣∣∣∣ = |c|n+1(n + 1)!
(n + 1)n+1

· nn

|c|nn! = |c|
(

n

n + 1

)n

= |c|
(

1 + 1

n

)−n

,

and

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = |c|e−1.

Thus, by the Ratio Test, the series
∞∑

n=1

cnn!
nn

converges when |c|e−1 < 1, or when |c| < e. The series diverges when

|c| > e.
(b) The table below lists the value of enn!

nn+1/2 for several increasing values of n. Since
√

2π = 2.506628275, the numerical
evidence verifies that

lim
n→∞

enn!
nn+1/2

= √
2π.

n 100 1000 10000 100000

enn!
nn+1/2 2.508717995 2.506837169 2.506649163 2.506630363

(c) With c = e, the series S becomes
∞∑

n=1

enn!
nn

. Using the result from part (b),

L = lim
n→∞

enn!
nn√
n

= lim
n→∞

enn!
nn+1/2

= √
2π.

Because the series
∞∑

n=1

√
n diverges by the Divergence Test and L > 0, we conclude that

∞∑
n=1

enn!
nn

diverges by the Limit

Comparison Test.
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10.6 Power Series (LT Section 11.6)

Preliminary Questions
1. Suppose that

∑
anxn converges for x = 5. Must it also converge for x = 4? What about x = −3?

solution The power series
∑

anxn is centered at x = 0. Because the series converges for x = 5, the radius of
convergence must be at least 5 and the series converges absolutely at least for the interval |x| < 5. Both x = 4 and
x = −3 are inside this interval, so the series converges for x = 4 and for x = −3.

2. Suppose that
∑

an(x − 6)n converges for x = 10. At which of the points (a)–(d) must it also converge?

(a) x = 8 (b) x = 11 (c) x = 3 (d) x = 0

solution The given power series is centered at x = 6. Because the series converges for x = 10, the radius of
convergence must be at least |10 − 6| = 4 and the series converges absolutely at least for the interval |x − 6| < 4, or
2 < x < 10.

(a) x = 8 is inside the interval 2 < x < 10, so the series converges for x = 8.

(b) x = 11 is not inside the interval 2 < x < 10, so the series may or may not converge for x = 11.

(c) x = 3 is inside the interval 2 < x < 10, so the series converges for x = 2.

(d) x = 0 is not inside the interval 2 < x < 10, so the series may or may not converge for x = 0.

3. What is the radius of convergence of F(3x) if F(x) is a power series with radius of convergence R = 12?

solution If the power series F(x) has radius of convergence R = 12, then the power series F(3x) has radius of

convergence R = 12
3 = 4.

4. The power series F(x) =
∞∑

n=1

nxn has radius of convergence R = 1. What is the power series expansion of F ′(x)

and what is its radius of convergence?

solution We obtain the power series expansion for F ′(x) by differentiating the power series expansion for F(x)

term-by-term. Thus,

F ′(x) =
∞∑

n=1

n2xn−1.

The radius of convergence for this series is R = 1, the same as the radius of convergence for the series expansion for
F(x).

Exercises

1. Use the Ratio Test to determine the radius of convergence R of
∞∑

n=0

xn

2n
. Does it converge at the endpoints x = ±R?

solution With an = xn

2n ,

∣∣∣∣an+1

an

∣∣∣∣ = |x|n+1

2n+1
· 2n

|x|n = |x|
2

and ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = |x|
2

.

By the Ratio Test, the series converges when ρ = |x|
2 < 1, or |x| < 2, and diverges when ρ = |x|

2 > 1, or |x| > 2.

The radius of convergence is therefore R = 2. For x = −2, the left endpoint, the series becomes
∑∞

n=0(−1)n, which is

divergent. For x = 2, the right endpoint, the series becomes
∑∞

n=0 1, which is also divergent. Thus the series diverges at
both endpoints.

Use the Ratio Test to show that
∞∑

n=1

xn

√
n2n

has radius of convergence R = 2. Then determine whether it converges

at the endpoints R = ±2.

3. Show that the power series (a)–(c) have the same radius of convergence. Then show that (a) diverges at both endpoints,
(b) converges at one endpoint but diverges at the other, and (c) converges at both endpoints.

(a)
∞∑

n=1

xn

3n
(b)

∞∑
n=1

xn

n3n
(c)

∞∑
n=1

xn

n23n

solution

(a) With an = xn

3n ,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣x
n+1

3n+1
· 3n

xn

∣∣∣∣∣ = lim
n→∞

∣∣∣x
3

∣∣∣ =
∣∣∣x
3

∣∣∣
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Then ρ < 1 if |x| < 3, so that the radius of convergence is R = 3. For the endpoint x = 3, the series becomes

∞∑
n=1

3n

3n
=

∞∑
n=1

1,

which diverges by the Divergence Test. For the endpoint x = −3, the series becomes

∞∑
n=1

(−3)n

3n
=

∞∑
n=1

(−1)n,

which also diverges by the Divergence Test.

(b) With an = xn

n3n ,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ xn+1

(n + 1)3n+1
· n3n

xn

∣∣∣∣∣ = lim
n→∞

∣∣∣∣x3
(

n

n + 1

)∣∣∣∣ =
∣∣∣x
3

∣∣∣ .
Then ρ < 1 when |x| < 3, so that the radius of convergence is R = 3. For the endpoint x = 3, the series becomes

∞∑
n=1

3n

n3n
=

∞∑
n=1

1

n
,

which is the divergent harmonic series. For the endpoint x = −3, the series becomes

∞∑
n=1

(−3)n

n3n
=

∞∑
n=1

(−1)n

n
,

which converges by the Leibniz Test.

(c) With an = xn

n23n ,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ xn+1

(n + 1)23n+1
· n23n

xn

∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣x3
(

n

n + 1

)2
∣∣∣∣∣ =

∣∣∣x
3

∣∣∣
Then ρ < 1 when |x| < 3, so that the radius of convergence is R = 3. For the endpoint x = 3, the series becomes

∞∑
n=1

3n

n23n
=

∞∑
n=1

1

n2
,

which is a convergent p-series. For the endpoint x = −3, the series becomes

∞∑
n=1

(−3)n

n23n
=

∞∑
n=1

(−1)n

n2
,

which converges by the Leibniz Test.

Repeat Exercise 3 for the following series:

(a)
∞∑

n=1

(x − 5)n

9n
(b)

∞∑
n=1

(x − 5)n

n9n
(c)

∞∑
n=1

(x − 5)n

n29n

5. Show that
∞∑

n=0

nnxn diverges for all x 
= 0.

solution With an = nnxn, and assuming x 
= 0,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ (n + 1)n+1xn+1

nnxn

∣∣∣∣∣ = lim
n→∞

∣∣∣∣x
(

1 + 1

n

)n

(n + 1)

∣∣∣∣ = ∞

ρ < 1 only if x = 0, so that the radius of convergence is therefore R = 0. In other words, the power series converges
only for x = 0.

For which values of x does
∞∑

n=0

n!xn converge?
7. Use the Ratio Test to show that

∞∑
n=0

x2n

3n
has radius of convergence R = √

3.

solution With an = x2n

3n
,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣x
2(n+1)

3n+1
· 3n

x2n

∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣x
2

3

∣∣∣∣∣ =
∣∣∣∣∣x

2

3

∣∣∣∣∣
Then ρ < 1 when |x2| < 3, or x = √

3, so the radius of convergence is R = √
3.

Show that
∞∑

n=0

x3n+1

64n
has radius of convergence R = 4.
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In Exercises 9–34, find the interval of convergence.

9.
∞∑

n=0

nxn

solution With an = nxn,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ (n + 1)xn+1

nxn

∣∣∣∣∣ = lim
n→∞

∣∣∣∣x n + 1

n

∣∣∣∣ = |x|

Then ρ < 1 when |x| < 1, so that the radius of convergence is R = 1, and the series converges absolutely on the interval

|x| < 1, or −1 < x < 1. For the endpoint x = 1, the series becomes
∞∑

n=0

n, which diverges by the Divergence Test.

For the endpoint x = −1, the series becomes
∞∑

n=1

(−1)nn, which also diverges by the Divergence Test. Thus, the series

∞∑
n=0

nxn converges for −1 < x < 1 and diverges elsewhere.

∞∑
n=1

2n

n
xn11.

∞∑
n=1

(−1)n
x2n+1

2nn

solution With an = (−1)n
x2n+1

2nn
,

ρ = lim
n→∞

∣∣∣∣∣ x2(n+1)+1

2n+1(n + 1)
· 2nn

x2n+1

∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣x
2

2
· n

n + 1

∣∣∣∣∣ =
∣∣∣∣∣x

2

2

∣∣∣∣∣
Then ρ < 1 when |x| <

√
2, so the radius of convergence is R = √

2, and the series converges absolutely on the interval

−√
2 < x <

√
2. For the endpoint x = −√

2, the series becomes
∞∑

n=1

(−1)n
−√

2

n
=

∞∑
n=1

(−1)n+1
√

2

n
, which converges

by the Leibniz test. For the endpoint x = √
2, the series becomes

∞∑
n=1

(−1)n

√
2

n
which also converges by the Leibniz test.

Thus the series
∞∑

n=1

(−1)n
x2n+1

2nn
converges for −√

2 ≤ x ≤ √
2 and diverges elsewhere.

∞∑
n=0

(−1)n
n

4n
x2n13.

∞∑
n=4

xn

n5

solution With an = xn

n5 ,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ xn+1

(n + 1)5 · n5

xn

∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣x
(

n

n + 1

)5
∣∣∣∣∣ = |x|

Then ρ < 1 when |x| < 1, so the radius of convergence is R = 1, and the series converges absolutely on the interval

|x| < 1, or −1 < x < 1. For the endpoint x = 1, the series becomes
∞∑

n=1

1

n5 , which is a convergent p-series. For the

endpoint x = −1, the series becomes
∞∑

n=1

(−1)n

n5 , which converges by the Leibniz Test. Thus, the series
∞∑

n=4

xn

n5 converges

for −1 ≤ x ≤ 1 and diverges elsewhere.

∞∑
n=8

n7xn15.
∞∑

n=0

xn

(n!)2

solution With an = xn

(n!)2 ,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ xn+1

((n + 1)!)2
· (n!)2

xn

∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣x
(

1

n + 1

)2
∣∣∣∣∣ = 0

ρ < 1 for all x, so the radius of convergence is R = ∞, and the series converges absolutely for all x.

∞∑
n=0

8n

n! xn
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17.
∞∑

n=0

(2n)!
(n!)3

xn

solution With an = (2n)!xn

(n!)3 , and assuming x 
= 0,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ (2(n + 1))!xn+1

((n + 1)!)3
· (n!)3

(2n)!xn

∣∣∣∣∣ = lim
n→∞

∣∣∣∣x (2n + 2)(2n + 1)

(n + 1)3

∣∣∣∣
= lim

n→∞

∣∣∣∣∣x 4n2 + 6n + 2

n3 + 3n2 + 3n + 1

∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣x 4n−1 + 6n−1 + 2n−3

1 + 3n−1 + 3n−2 + n−3

∣∣∣∣∣ = 0

Then ρ < 1 for all x, so the radius of convergence is R = ∞, and the series converges absolutely for all x.

∞∑
n=0

4n

(2n + 1)!x
2n−119.

∞∑
n=0

(−1)nxn√
n2 + 1

solution With an = (−1)nxn√
n2+1

,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ (−1)n+1xn+1√
n2 + 2n + 2

·
√

n2 + 1

(−1)nxn

∣∣∣∣∣
= lim

n→∞

∣∣∣∣∣x
√

n2 + 1√
n2 + 2n + 2

∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣∣x
√

n2 + 1

n2 + 2n + 2

∣∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣∣x
√

1 + 1/n2

1 + 2/n + 2/n2

∣∣∣∣∣∣
= |x|

Then ρ < 1 when |x| < 1, so the radius of convergence is R = 1, and the series converges absolutely on the interval

−1 < x < 1. For the endpoint x = 1, the series becomes
∞∑

n=1

(−1)n√
n2 + 1

, which converges by the Leibniz Test. For the

endpoint x = −1, the series becomes
∞∑

n=1

1√
n2 + 1

, which diverges by the Limit Comparison Test comparing with the

divergent harmonic series. Thus, the series
∞∑

n=0

(−1)nxn√
n2 + 1

converges for −1 < x ≤ 1 and diverges elsewhere.

∞∑
n=0

xn

n4 + 2

21.
∞∑

n=15

x2n+1

3n + 1

solution With an = x2n+1

3n + 1
,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ x2n+3

3n + 4
· 3n + 1

x2n+1

∣∣∣∣∣ = lim
n→∞

∣∣∣∣x2 3n + 1

3n + 4

∣∣∣∣ = |x2|

Then ρ < 1 when |x2| < 1, so the radius of convergence is R = 1, and the series converges absolutely for −1 < x < 1.

For the endpoint x = 1, the series becomes
∞∑

n=15

1

3n + 1
, which diverges by the Limit Comparison Test comparing

with the divergent harmonic series. For the endpoint x = −1, the series becomes
∞∑

n=15

−1

3n + 1
, which also diverges by

the Limit Comparison Test comparing with the divergent harmonic series. Thus, the series
∞∑

n=15

x2n+1

3n + 1
converges for

−1 < x < 1 and diverges elsewhere.

∞∑
n=1

xn

n − 4 ln n

23.
∞∑

n=2

xn

ln n

solution With an = xn

ln n
,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ xn+1

ln(n + 1)
· ln n

xn

∣∣∣∣∣ = lim
n→∞

∣∣∣∣x ln(n + 1)

ln n

∣∣∣∣ = lim
n→∞

∣∣∣∣x 1/(n + 1)

1/n

∣∣∣∣ = lim
n→∞

∣∣∣∣x n

n + 1

∣∣∣∣ = |x|
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using L’Hôpital’s rule. Then ρ < 1 when |x| < 1, so the radius of convergence is 1, and the series converges absolutely

on the interval |x| < 1, or −1 < x < 1. For the endpoint x = 1, the series becomes
∞∑

n=2

1

ln n
. Because 1

ln n
> 1

n and

∞∑
n=2

1

n
is the divergent harmonic series, the endpoint series diverges by the Comparison Test. For the endpoint x = −1,

the series becomes
∞∑

n=2

(−1)n

ln n
, which converges by the Leibniz Test. Thus, the series

∞∑
n=2

xn

ln n
converges for −1 ≤ x < 1

and diverges elsewhere.

∞∑
n=2

x3n+2

ln n

25.
∞∑

n=1

n(x − 3)n

solution With an = n(x − 3)n,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ (n + 1)(x − 3)n+1

n(x − 3)n

∣∣∣∣∣ = lim
n→∞

∣∣∣∣(x − 3) · n + 1

n

∣∣∣∣ = |x − 3|

Then ρ < 1 when |x − 3| < 1, so the radius of convergence is 1, and the series converges absolutely on the interval

|x − 3| < 1, or 2 < x < 4. For the endpoint x = 4, the series becomes
∞∑

n=1

n, which diverges by the Divergence Test.

For the endpoint x = 2, the series becomes
∞∑

n=1

(−1)nn, which also diverges by the Divergence Test. Thus, the series

∞∑
n=1

n(x − 3)n converges for 2 < x < 4 and diverges elsewhere.

∞∑
n=1

(−5)n(x − 3)n

n2

27.
∞∑

n=1

(−1)nn5(x − 7)n

solution With an = (−1)nn5(x − 7)n,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ (−1)n+1(n + 1)5(x − 7)n+1

(−1)nn5(x − 7)n

∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣(x − 7) · (n + 1)5

n5

∣∣∣∣∣
= lim

n→∞

∣∣∣∣∣(x − 7) · n5 + . . .

n5

∣∣∣∣∣ = |x − 7|

Then ρ < 1 when |x − 7| < 1, so the radius of convergence is 1, and the series converges absolutely on the interval

|x − 7| < 1, or 6 < x < 8. For the endpoint x = 6, the series becomes
∞∑

n=1

(−1)2nn5 =
∞∑

n=1

n5, which diverges by the

Divergence Test. For the endpoint x = 8, the series becomes
∞∑

n=1

(−1)nn5, which also diverges by the Divergence Test.

Thus, the series
∞∑

n=1

(−1)nn5(x − 7)n converges for 6 < x < 8 and diverges elsewhere.

∞∑
n=0

27n(x − 1)3n+229.
∞∑

n=1

2n

3n
(x + 3)n

solution With an = 2n(x+3)n

3n
,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣2n+1(x + 3)n+1

3(n + 1)
· 3n

2n(x + 3)n

∣∣∣∣∣ = lim
n→∞

∣∣∣∣2(x + 3) · 3n

3n + 3

∣∣∣∣
= lim

n→∞

∣∣∣∣2(x + 3) · 1

1 + 1/n

∣∣∣∣ = |2(x + 3)|
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Then ρ < 1 when |2(x + 3)| < 1, so when |x + 3| < 1
2 . Thus the radius of convergence is 1

2 , and the series converges

absolutely on the interval |x + 3| < 1
2 , or − 7

2 < x < − 5
2 . For the endpoint x = − 5

2 , the series becomes
∞∑

n=1

1

3n
,

which diverges because it is a multiple of the divergent harmonic series. For the endpoint x = − 7
2 , the series becomes

∞∑
n=1

(−1)n

3n
, which converges by the Leibniz Test. Thus, the series

∞∑
n=1

2n

3n
(x + 3)n converges for − 7

2 ≤ x < − 5
2 and

diverges elsewhere.

∞∑
n=0

(x − 4)n

n!
31.

∞∑
n=0

(−5)n

n! (x + 10)n

solution With an = (−5)n

n! (x + 10)n,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ (−5)n+1(x + 10)n+1

(n + 1)! · n!
(−5)n(x + 10)n

∣∣∣∣∣ = lim
n→∞

∣∣∣∣5(x + 10)
1

n

∣∣∣∣ = 0

Thus ρ < 1 for all x, so the radius of convergence is infinite, and
∞∑

n=0

(−5)n

n! (x + 10)n converges for all x.

∞∑
n=10

n! (x + 5)n
33.

∞∑
n=12

en(x − 2)n

solution With an = en(x − 2)n,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣e
n+1(x − 2)n+1

en(x − 2)n

∣∣∣∣∣ = lim
n→∞ |e(x − 2)| = |e(x − 2)|

Thus ρ < 1 when |e(x − 2)| < 1, so when |x − 2| < e−1. Thus the radius of convergence is e−1, and the series converges
absolutely on the interval |x − 2| < e−1, or 2 − e−1 < x < 2 + e−1. For the endpoint x = 2 + e−1, the series becomes
∞∑

n=1

1, which diverges by the Divergence Test. For the endpoint x = 2 − e−1, the series becomes
∞∑

n=1

(−1)n, which also

diverges by the Divergence Test. Thus, the series
∞∑

n=12

en(x − 2)n converges for 2 − e−1 < x < 2 + e−1 and diverges

elsewhere.

∞∑
n=2

(x + 4)n

(n ln n)2

In Exercises 35–40, use Eq. (2) to expand the function in a power series with center c = 0 and determine the interval of
convergence.

35. f (x) = 1

1 − 3x

solution Substituting 3x for x in Eq. (2), we obtain

1

1 − 3x
=

∞∑
n=0

(3x)n =
∞∑

n=0

3nxn.

This series is valid for |3x| < 1, or |x| < 1
3 .

f (x) = 1

1 + 3x

37. f (x) = 1

3 − x

solution First write

1

3 − x
= 1

3
· 1

1 − x
3

.

Substituting x
3 for x in Eq. (2), we obtain

1

1 − x
3

=
∞∑

n=0

(x

3

)n =
∞∑

n=0

xn

3n
;

Thus,

1

3 − x
= 1

3

∞∑
n=0

xn

3n
=

∞∑
n=0

xn

3n+1
.

This series is valid for |x/3| < 1, or |x| < 3.
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f (x) = 1

4 + 3x

39. f (x) = 1

1 + x2

solution Substituting −x2 for x in Eq. (2), we obtain

1

1 + x2
=

∞∑
n=0

(−x2)n =
∞∑

n=0

(−1)nx2n

This series is valid for |x| < 1.

f (x) = 1

16 + 2x3

41. Use the equalities

1

1 − x
= 1

−3 − (x − 4)
= − 1

3

1 + (
x−4

3

)
to show that for |x − 4| < 3,

1

1 − x
=

∞∑
n=0

(−1)n+1 (x − 4)n

3n+1

solution Substituting − x−4
3 for x in Eq. (2), we obtain

1

1 +
(

x−4
3

) =
∞∑

n=0

(
−x − 4

3

)n

=
∞∑

n=0

(−1)n
(x − 4)n

3n
.

Thus,

1

1 − x
= −1

3

∞∑
n=0

(−1)n
(x − 4)n

3n
=

∞∑
n=0

(−1)n+1 (x − 4)n

3n+1
.

This series is valid for | − x−4
3 | < 1, or |x − 4| < 3.

Use the method of Exercise 41 to expand 1/(1 − x) in power series with centers c = 2 and c = −2. Determine
the interval of convergence.

43. Use the method of Exercise 41 to expand 1/(4 − x) in a power series with center c = 5. Determine the interval of
convergence.

solution First write

1

4 − x
= 1

−1 − (x − 5)
= − 1

1 + (x − 5)
.

Substituting −(x − 5) for x in Eq. (2), we obtain

1

1 + (x − 5)
=

∞∑
n=0

(−(x − 5))n =
∞∑

n=0

(−1)n(x − 5)n.

Thus,

1

4 − x
= −

∞∑
n=0

(−1)n(x − 5)n =
∞∑

n=0

(−1)n+1(x − 5)n.

This series is valid for | − (x − 5)| < 1, or |x − 5| < 1.

Find a power series that converges only for x in [2, 6).
45. Apply integration to the expansion

1

1 + x
=

∞∑
n=0

(−1)nxn = 1 − x + x2 − x3 + · · ·

to prove that for −1 < x < 1,

ln(1 + x) =
∞∑

n=1

(−1)n−1xn

n
= x − x2

2
+ x3

3
− x4

4
+ · · ·

solution To obtain the first expansion, substitute −x for x in Eq. (2):

1

1 + x
=

∞∑
n=0

(−x)n =
∞∑

n=0

(−1)nxn.

This expansion is valid for | − x| < 1, or −1 < x < 1.
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Upon integrating both sides of the above equation, we find

ln(1 + x) =
∫

dx

1 + x
=

∫ ⎛
⎝ ∞∑

n=0

(−1)nxn

⎞
⎠ dx.

Integrating the series term-by-term then yields

ln(1 + x) = C +
∞∑

n=0

(−1)n
xn+1

n + 1
.

To determine the constant C, set x = 0. Then 0 = ln(1 + 0) = C. Finally,

ln(1 + x) =
∞∑

n=0

(−1)n
xn+1

n + 1
=

∞∑
n=1

(−1)n−1 xn

n
.

Use the result of Exercise 45 to prove that

ln
3

2
= 1

2
− 1

2 · 22
+ 1

3 · 23
− 1

4 · 24
+ · · ·

Use your knowledge of alternating series to find an N such that the partial sum SN approximates ln 3
2 to within an

error of at most 10−3. Confirm using a calculator to compute both SN and ln 3
2 .

47. Let F(x) = (x + 1) ln(1 + x) − x.

(a) Apply integration to the result of Exercise 45 to prove that for −1 < x < 1,

F(x) =
∞∑

n=1

(−1)n+1 xn+1

n(n + 1)

(b) Evaluate at x = 1
2 to prove

3

2
ln

3

2
− 1

2
= 1

1 · 2 · 22
− 1

2 · 3 · 23
+ 1

3 · 4 · 24
− 1

4 · 5 · 25 + · · ·

(c) Use a calculator to verify that the partial sum S4 approximates the left-hand side with an error no greater than the
term a5 of the series.

solution

(a) Note that ∫
ln(x + 1) dx = (x + 1) ln(x + 1) − x + C

Then integrating both sides of the result of Exercise 45 gives

(x + 1) ln(x + 1) − x =
∫

ln(x + 1) dx =
∫ ∞∑

n=1

(−1)n−1xn

n
dx

For −1 < x < 1, which is the interval of convergence of the series in Exercise 45, therefore, we can integrate term by
term to get

(x + 1) ln(x + 1) − x =
∞∑

n=1

(−1)n−1

n

∫
xn dx =

∞∑
n=1

(−1)n−1

n
· xn+1

n + 1
+ C =

∞∑
n=1

(−1)n+1 xn+1

n(n + 1)
+ C

(noting that (−1)n−1 = (−1)n+1). To determine C, evaluate both sides at x = 0 to get

0 = ln 1 − 0 = 0 + C

so that C = 0 and we get finally

(x + 1) ln(x + 1) − x =
∞∑

n=1

(−1)n+1 xn+1

n(n + 1)

(b) Evaluating the result of part(a) at x = 1
2 gives

3

2
ln

3

2
− 1

2
=

∞∑
n=1

(−1)n+1 1

n(n + 1)2n+1

= 1

1 · 2 · 22
− 1

2 · 3 · 23
+ 1

3 · 4 · 24
− 1

4 · 5 · 25 + . . .
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(c)

S4 = 1

1 · 2 · 22
− 1

2 · 3 · 23
+ 1

3 · 4 · 24
− 1

4 · 5 · 25 = 0.1078125

a5 = 1

5 · 6 · 26
≈ 0.0005208

3

2
ln

3

2
− 1

2
≈ 0.10819766

and ∣∣∣∣S4 − 3

2
ln

3

2
− 1

2

∣∣∣∣ ≈ 0.0003852 < a5

Prove that for |x| < 1, ∫
dx

x4 + 1
= x − x5

5
+ x9

9
− · · ·

Use the first two terms to approximate
∫ 1/2

0 dx/(x4 + 1) numerically. Use the fact that you have an alternating series
to show that the error in this approximation is at most 0.00022.

49. Use the result of Example 7 to show that

F(x) = x2

1 · 2
− x4

3 · 4
+ x6

5 · 6
− x8

7 · 8
+ · · ·

is an antiderivative of f (x) = tan−1 x satisfying F(0) = 0. What is the radius of convergence of this power series?

solution For −1 < x < 1, which is the interval of convergence for the power series for arctangent, we can integrate
term-by-term, so integrate that power series to get

F(x) =
∫

tan−1 x dx =
∞∑

n=0

∫
(−1)nx2n+1

2n + 1
dx =

∞∑
n=0

(−1)n
x2n+2

(2n + 1)(2n + 2)

= x2

1 · 2
− x4

3 · 4
+ x6

5 · 6
− x8

7 · 8
+ · · · + C

If we assume F(0) = 0, then we have C = 0. The radius of convergence of this power series is the same as that of the
original power series, which is 1.

Verify that function F(x) = x tan−1 x − 1
2 log(x2 + 1) is an antiderivative of f (x) = tan−1 x satisfying

F(0) = 0. Then use the result of Exercise 49 with x = π
6 to show that

π

6
√

3
− 1

2
ln

4

3
= 1

1 · 2(3)
− 1

3 · 4(32)
+ 1

5 · 6(33)
− 1

7 · 8(34)
+ · · ·

Use a calculator to compare the value of the left-hand side with the partial sum S4 of the series on the right.

51. Evaluate
∞∑

n=1

n

2n
. Hint: Use differentiation to show that

(1 − x)−2 =
∞∑

n=1

nxn−1 (for |x| < 1)

solution Differentiate both sides of Eq. (2) to obtain

1

(1 − x)2
=

∞∑
n=1

nxn−1.

Setting x = 1
2 then yields

∞∑
n=1

n

2n−1
= 1(

1 − 1
2

)2
= 4.

Divide this equation by 2 to obtain

∞∑
n=1

n

2n
= 2.

Use the power series for (1 + x2)−1 and differentiation to prove that for |x| < 1,

2x

(x2 + 1)2
=

∞∑
n=1

(−1)n−1(2n)x2n−1

53. Show that the following series converges absolutely for |x| < 1 and compute its sum:

F(x) = 1 − x − x2 + x3 − x4 − x5 + x6 − x7 − x8 + · · ·
Hint: Write F(x) as a sum of three geometric series with common ratio x3.

solution Because the coefficients in the power series are all ±1, we find

r = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1.

The radius of convergence is therefore R = r−1 = 1, and the series converges absolutely for |x| < 1.
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By Exercise 43 of Section 10.4, any rearrangement of the terms of an absolutely convergent series yields another
absolutely convergent series with the same sum as the original series. Following the hint, we now rearrange the terms of
F(x) as the sum of three geometric series:

F(x) =
(

1 + x3 + x6 + · · ·
)

−
(
x + x4 + x7 + · · ·

)
−

(
x2 + x5 + x8 + · · ·

)

=
∞∑

n=0

(x3)n −
∞∑

n=0

x(x3)n −
∞∑

n=0

x2(x3)n = 1

1 − x3
− x

1 − x3
− x2

1 − x3
= 1 − x − x2

1 − x3
.

Show that for |x| < 1,

1 + 2x

1 + x + x2
= 1 + x − 2x2 + x3 + x4 − 2x5 + x6 + x7 − 2x8 + · · ·

Hint: Use the hint from Exercise 53.

55. Find all values of x such that
∞∑

n=1

xn2

n! converges.

solution With an = xn2

n! ,

∣∣∣∣an+1

an

∣∣∣∣ = |x|(n+1)2

(n + 1)! · n!
|x|n2 = |x|2n+1

n + 1
.

if |x| ≤ 1, then

lim
n→∞

|x|2n+1

n + 1
= 0,

and the series converges absolutely. On the other hand, if |x| > 1, then

lim
n→∞

|x|2n+1

n + 1
= ∞,

and the series diverges. Thus,
∞∑

n=1

xn2

n! converges for −1 ≤ x ≤ 1 and diverges elsewhere.

Find all values of x such that the following series converges:

F(x) = 1 + 3x + x2 + 27x3 + x4 + 243x5 + · · ·
57. Find a power series P(x) =

∞∑
n=0

anxn satisfying the differential equation y′ = −y with initial condition y(0) = 1.

Then use Theorem 1 of Section 5.8 to conclude that P(x) = e−x .

solution Let P(x) =
∞∑

n=0

anxn and note that P(0) = a0; thus, to satisfy the initial condition P(0) = 1, we must take

a0 = 1. Now,

P ′(x) =
∞∑

n=1

nanxn−1,

so

P ′(x) + P(x) =
∞∑

n=1

nanxn−1 +
∞∑

n=0

anxn =
∞∑

n=0

[
(n + 1)an+1 + an

]
xn.

In order for this series to be equal to zero, the coefficient of xn must be equal to zero for each n; thus

(n + 1)an+1 + an = 0 or an+1 = − an

n + 1
.

Starting from a0 = 1, we then calculate

a1 = −a0

1
= −1;

a2 = −a1

2
= 1

2
;

a3 = −a2

3
= −1

6
= − 1

3! ;

and, in general,

an = (−1)n
1

n! .
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Hence,

P(x) =
∞∑

n=0

(−1)n
xn

n! .

The solution to the initial value problem y′ = −y, y(0) = 1 is y = e−x . Because this solution is unique, it follows that

P(x) =
∞∑

n=0

(−1)n
xn

n! = e−x .

Let C(x) = 1 − x2

2! + x4

4! − x6

6! + · · · .

(a) Show that C(x) has an infinite radius of convergence.

(b) Prove that C(x) and f (x) = cos x are both solutions of y′′ = −y with initial conditions y(0) = 1, y′(0) = 0.
This initial value problem has a unique solution, so we have C(x) = cos x for all x.

59. Use the power series for y = ex to show that

1

e
= 1

2! − 1

3! + 1

4! − · · ·

Use your knowledge of alternating series to find an N such that the partial sum SN approximates e−1 to within an error
of at most 10−3. Confirm this using a calculator to compute both SN and e−1.

solution Recall that the series for ex is

∞∑
n=0

xn

n! = 1 + x + x2

2! + x3

3! + x4

4! + · · · .

Setting x = −1 yields

e−1 = 1 − 1 + 1

2! − 1

3! + 1

4! − + · · · = 1

2! − 1

3! + 1

4! − + · · · .

This is an alternating series with an = 1
(n+1)! . The error in approximating e−1 with the partial sum SN is therefore

bounded by

|SN − e−1| ≤ aN+1 = 1

(N + 2)! .

To make the error at most 10−3, we must choose N such that

1

(N + 2)! ≤ 10−3 or (N + 2)! ≥ 1000.

For N = 4, (N + 2)! = 6! = 720 < 1000, but for N = 5, (N + 2)! = 7! = 5040; hence, N = 5 is the smallest value
that satisfies the error bound. The corresponding approximation is

S5 = 1

2! − 1

3! + 1

4! − 1

5! + 1

6! = 0.368055555

Now, e−1 = 0.367879441, so

|S5 − e−1| = 1.761 × 10−4 < 10−3.

Let P(x) =
∑
n=0

anxn be a power series solution to y′ = 2xy with initial condition y(0) = 1.

(a) Show that the odd coefficients a2k+1 are all zero.

(b) Prove that a2k = a2k−2/k and use this result to determine the coefficients a2k .

61. Find a power series P(x) satisfying the differential equation

y′′ − xy′ + y = 0 9

with initial condition y(0) = 1, y′(0) = 0. What is the radius of convergence of the power series?

solution Let P(x) =
∞∑

n=0

anxn. Then

P ′(x) =
∞∑

n=1

nanxn−1 and P ′′(x) =
∞∑

n=2

n(n − 1)anxn−2.

Note that P(0) = a0 and P ′(0) = a1; in order to satisfy the initial conditions P(0) = 1, P ′(0) = 0, we must have a0 = 1
and a1 = 0. Now,

P ′′(x) − xP ′(x) + P(x) =
∞∑

n=2

n(n − 1)anxn−2 −
∞∑

n=1

nanxn +
∞∑

n=0

anxn

=
∞∑

n=0

(n + 2)(n + 1)an+2xn −
∞∑

n=1

nanxn +
∞∑

n=0

anxn

= 2a2 + a0 +
∞∑

n=1

[
(n + 2)(n + 1)an+2 − nan + an

]
xn.
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In order for this series to be equal to zero, the coefficient of xn must be equal to zero for each n; thus, 2a2 + a0 = 0 and
(n + 2)(n + 1)an+2 − (n − 1)an = 0, or

a2 = −1

2
a0 and an+2 = n − 1

(n + 2)(n + 1)
an.

Starting from a1 = 0, we calculate

a3 = 1 − 1

(3)(2)
a1 = 0;

a5 = 2

(5)(4)
a3 = 0;

a7 = 4

(7)(6)
a5 = 0;

and, in general, all of the odd coefficients are zero. As for the even coefficients, we have a0 = 1, a2 = − 1
2 ,

a4 = 1

(4)(3)
a2 = − 1

4! ;

a6 = 3

(6)(5)
a4 = − 3

6! ;

a8 = 5

(8)(7)
a6 = −15

8!
and so on. Thus,

P(x) = 1 − 1

2
x2 − 1

4!x
4 − 3

6!x
6 − 15

8! x8 − · · ·

To determine the radius of convergence, treat this as a series in the variable x2, and observe that

r = lim
k→∞

∣∣∣∣a2k+2

a2k

∣∣∣∣ = lim
k→∞

2k − 1

(2k + 2)(2k + 1)
= 0.

Thus, the radius of convergence is R = r−1 = ∞.

Find a power series satisfying Eq. (9) with initial condition y(0) = 0, y′(0) = 1.63. Prove that

J2(x) =
∞∑

k=0

(−1)k

22k+2 k! (k + 3)!x
2k+2

is a solution of the Bessel differential equation of order 2:

x2y′′ + xy′ + (x2 − 4)y = 0

solution Let J2(x) =
∞∑

k=0

(−1)k

22k+2 k! (k + 2)!x
2k+2. Then

J ′
2(x) =

∞∑
k=0

(−1)k(k + 1)

22k+1 k! (k + 2)!x
2k+1

J ′′
2 (x) =

∞∑
k=0

(−1)k(k + 1)(2k + 1)

22k+1 k! (k + 2)! x2k

and

x2J ′′
2 (x) + xJ ′

2(x) + (x2 − 4)J2(x) =
∞∑

k=0

(−1)k(k + 1)(2k + 1)

22k+1 k! (k + 2)! x2k+2 +
∞∑

k=0

(−1)k(k + 1)

22k+1 k! (k + 2)!x
2k+2

−
∞∑

k=0

(−1)k

22k+2 k! (k + 2)!x
2k+4 −

∞∑
k=0

(−1)k

22k k! (k + 2)!x
2k+2

=
∞∑

k=0

(−1)kk(k + 2)

22kk!(k + 2)! x2k+2 +
∞∑

k=1

(−1)k−1

22k (k − 1)! (k + 1)!x
2k+2

=
∞∑

k=1

(−1)k

22k(k − 1)!(k + 1)!x
2k+2 −

∞∑
k=1

(−1)k

22k(k − 1)!(k + 1)!x
2k+2 = 0.

Why is it impossible to expand f (x) = |x| as a power series that converges in an interval around x = 0?
Explain using Theorem 2.
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Further Insights and Challenges

65. Suppose that the coefficients of F(x) =
∞∑

n=0

anxn are periodic; that is, for some whole number M > 0, we have

aM+n = an. Prove that F(x) converges absolutely for |x| < 1 and that

F(x) = a0 + a1x + · · · + aM−1xM−1

1 − xM

Hint: Use the hint for Exercise 53.

solution Suppose the coefficients of F(x) are periodic, with aM+n = an for some whole number M and all n. The
F(x) can be written as the sum of M geometric series:

F(x) = a0

(
1 + xM + x2M + · · ·

)
+ a1

(
x + xM+1 + x2M+1 + · · ·

)
+

= a2

(
x2 + xM+2 + x2M+2 + · · ·

)
+ · · · + aM−1

(
xM−1 + x2M−1 + x3M−1 + · · ·

)

= a0

1 − xM
+ a1x

1 − xM
+ a2x2

1 − xM
+ · · · + aM−1xM−1

1 − xM
= a0 + a1x + a2x2 + · · · + aM−1xM−1

1 − xM
.

As each geometric series converges absolutely for |x| < 1, it follows that F(x) also converges absolutely for |x| < 1.

Continuity of Power Series Let F(x) =
∞∑

n=0

anxn be a power series with radius of convergence R > 0.

(a) Prove the inequality

|xn − yn| ≤ n|x − y|(|x|n−1 + |y|n−1)

Hint: xn − yn = (x − y)(xn−1 + xn−2y + · · · + yn−1).

(b) Choose R1 with 0 < R1 < R. Show that the infinite series M =
∞∑

n=0

2n|an|Rn
1 converges. Hint: Show that

n|an|Rn
1 < |an|xn for all n sufficiently large if R1 < x < R.

(c) Use Eq. (10) to show that if |x| < R1 and |y| < R1, then |F(x) − F(y)| ≤ M|x − y|.
(d) Prove that if |x| < R, then F(x) is continuous at x. Hint: Choose R1 such that |x| < R1 < R. Show that if
ε > 0 is given, then |F(x) − F(y)| ≤ ε for all y such that |x − y| < δ, where δ is any positive number that is less
than ε/M and R1 − |x| (see Figure 6).

10.7 Taylor Series (LT Section 11.7)

Preliminary Questions
1. Determine f (0) and f ′′′(0) for a function f (x) with Maclaurin series

T (x) = 3 + 2x + 12x2 + 5x3 + · · ·
solution The Maclaurin series for a function f has the form

f (0) + f ′ (0)

1! x + f ′′ (0)

2! x2 + f ′′′ (0)

3! x3 + · · ·

Matching this general expression with the given series, we find f (0) = 3 and
f ′′′(0)

3! = 5. From this latter equation, it

follows that f ′′′(0) = 30.

2. Determine f (−2) and f (4)(−2) for a function with Taylor series

T (x) = 3(x + 2) + (x + 2)2 − 4(x + 2)3 + 2(x + 2)4 + · · ·
solution The Taylor series for a function f centered at x = −2 has the form

f (−2) + f ′ (−2)

1! (x + 2) + f ′′ (−2)

2! (x + 2)2 + f ′′′ (−2)

3! (x + 2)3 + f (4)(−2)

4! (x + 2)4 + · · ·

Matching this general expression with the given series, we find f (−2) = 0 and
f (4)(−2)

4! = 2. From this latter equation,

it follows that f (4)(−2) = 48.

3. What is the easiest way to find the Maclaurin series for the function f (x) = sin(x2)?

solution The easiest way to find the Maclaurin series for sin
(
x2

)
is to substitute x2 for x in the Maclaurin series for

sin x.

4. Find the Taylor series for f (x) centered at c = 3 if f (3) = 4 and f ′(x) has a Taylor expansion

f ′(x) =
∞∑

n=1

(x − 3)n

n

solution Integrating the series for f ′(x) term-by-term gives

f (x) = C +
∞∑

n=1

(x − 3)n+1

n(n + 1)
.

Substituting x = 3 then yields

f (3) = C = 4;



May 18, 2011

S E C T I O N 10.7 Taylor Series (LT SECTION 11.7) 65

so

f (x) = 4 +
∞∑

n=1

(x − 3)n+1

n(n + 1)
.

5. Let T (x) be the Maclaurin series of f (x). Which of the following guarantees that f (2) = T (2)?

(a) T (x) converges for x = 2.
(b) The remainder Rk(2) approaches a limit as k → ∞.
(c) The remainder Rk(2) approaches zero as k → ∞.

solution The correct response is (c): f (2) = T (2) if and only if the remainder Rk(2) approaches zero as k → ∞.

Exercises
1. Write out the first four terms of the Maclaurin series of f (x) if

f (0) = 2, f ′(0) = 3, f ′′(0) = 4, f ′′′(0) = 12

solution The first four terms of the Maclaurin series of f (x) are

f (0) + f ′(0)x + f ′′(0)

2! x2 + f ′′′(0)

3! x3 = 2 + 3x + 4

2
x2 + 12

6
x3 = 2 + 3x + 2x2 + 2x3.

Write out the first four terms of the Taylor series of f (x) centered at c = 3 if

f (3) = 1, f ′(3) = 2, f ′′(3) = 12, f ′′′(3) = 3

In Exercises 3–18, find the Maclaurin series and find the interval on which the expansion is valid.

3. f (x) = 1

1 − 2x

solution Substituting 2x for x in the Maclaurin series for 1
1−x

gives

1

1 − 2x
=

∞∑
n=0

(2x)n =
∞∑

n=0

2nxn.

This series is valid for |2x| < 1, or |x| < 1
2 .

f (x) = x

1 − x4

5. f (x) = cos 3x

solution Substituting 3x for x in the Maclaurin series for cos x gives

cos 3x =
∞∑

n=0

(−1)n
(3x)2n

(2n)! =
∞∑

n=0

(−1)n
9nx2n

(2n)! .

This series is valid for all x.

f (x) = sin(2x)
7. f (x) = sin(x2)

solution Substituting x2 for x in the Maclaurin series for sin x gives

sin x2 =
∞∑

n=0

(−1)n
(x2)2n+1

(2n + 1)! =
∞∑

n=0

(−1)n
x4n+2

(2n + 1)! .

This series is valid for all x.

f (x) = e4x
9. f (x) = ln(1 − x2)

solution Substituting −x2 for x in the Maclaurin series for ln(1 + x) gives

ln(1 − x2) =
∞∑

n=1

(−1)n−1(−x2)n

n
=

∞∑
n=1

(−1)2n−1x2n

n
= −

∞∑
n=1

x2n

n
.

This series is valid for |x| < 1.

f (x) = (1 − x)−1/211. f (x) = tan−1(x2)

solution Substituting x2 for x in the Maclaurin series for tan−1 x gives

tan−1(x2) =
∞∑

n=0

(−1)n
(x2)2n+1

2n + 1
=

∞∑
n=0

(−1)n
x4n+2

2n + 1
.

This series is valid for |x| ≤ 1.
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f (x) = x2ex213. f (x) = ex−2

solution ex−2 = e−2ex ; thus,

ex−2 = e−2
∞∑

n=0

xn

n! =
∞∑

n=0

xn

e2n! .

This series is valid for all x.

f (x) = 1 − cos x

x

15. f (x) = ln(1 − 5x)

solution Substituting −5x for x in the Maclaurin series for ln(1 + x) gives

ln(1 − 5x) =
∞∑

n=1

(−1)n−1(−5x)n

n
=

∞∑
n=1

(−1)2n−15nxn

n
= −

∞∑
n=1

5nxn

n
.

This series is valid for |5x| < 1, or |x| < 1
5 , and for x = − 1

5 .

f (x) = (x2 + 2x)ex
17. f (x) = sinh x

solution Recall that

sinh x = 1

2
(ex − e−x).

Therefore,

sinh x = 1

2

⎛
⎝ ∞∑

n=0

xn

n! −
∞∑

n=0

(−x)n

n!

⎞
⎠ =

∞∑
n=0

xn

2(n!)
(
1 − (−1)n

)
.

Now,

1 − (−1)n =
{

0, n even

2, n odd

so

sinh x =
∞∑

k=0

2
x2k+1

2(2k + 1)! =
∞∑

k=0

x2k+1

(2k + 1)! .

This series is valid for all x.

f (x) = cosh xIn Exercises 19–28, find the terms through degree four of the Maclaurin series of f (x). Use multiplication and substitution
as necessary.

19. f (x) = ex sin x

solution Multiply the fourth-order Taylor Polynomials for ex and sin x:(
1 + x + x2

2
+ x3

6
+ x4

24

)(
x − x3

6

)

= x + x2 − x3

6
+ x3

2
− x4

6
+ x4

6
+ higher-order terms

= x + x2 + x3

3
+ higher-order terms.

The terms through degree four in the Maclaurin series for f (x) = ex sin x are therefore

x + x2 + x3

3
.

f (x) = ex ln(1 − x)21. f (x) = sin x

1 − x

solution Multiply the fourth order Taylor Polynomials for sin x and
1

1 − x
:

(
x − x3

6

)(
1 + x + x2 + x3 + x4

)

= x + x2 − x3

6
+ x3 + x4 − x4

6
+ higher-order terms

= x + x2 + 5x3

6
+ 5x4

6
+ higher-order terms.
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The terms through order four of the Maclaurin series for f (x) = sin x

1 − x
are therefore

x + x2 + 5x3

6
+ 5x4

6
.

f (x) = 1

1 + sin x

23. f (x) = (1 + x)1/4

solution The first five generalized binomial coefficients for a = 1
4 are

1,
1

4
,

1
4

(−3
4

)
2! = − 3

32
,

1
4

(−3
4

) (−7
4

)
3! = 7

128
,

1
4

(−3
4

) (−7
4

) (−11
4

)
4! = −77

2048

Therefore, the first four terms in the binomial series for (1 + x)1/4 are

1 + 1

4
x − 3

32
x2 + 7

128
x3 − 77

2048
x4

f (x) = (1 + x)−3/225. f (x) = ex tan−1 x

solution Using the Maclaurin series for ex and tan−1 x, we find

ex tan−1 x =
(

1 + x + x2

2
+ x3

6
+ · · ·

)(
x − x3

3
+ · · ·

)
= x + x2 − x3

3
+ x3

2
+ x4

6
− x4

3
+ · · ·

= x + x2 + 1

6
x3 − 1

6
x4 + · · · .

f (x) = sin (x3 − x)
27. f (x) = esin x

solution Substituting sin x for x in the Maclaurin series for ex and then using the Maclaurin series for sin x, we find

esin x = 1 + sin x + sin2 x

2
+ sin3 x

6
+ sin4 x

24
+ · · ·

= 1 +
(

x − x3

6
+ · · ·

)
+ 1

2

(
x − x3

6
+ · · ·

)2

+ 1

6
(x − · · · )3 + 1

24
(x − · · · )4

= 1 + x + 1

2
x2 − 1

6
x3 + 1

6
x3 − 1

6
x4 + 1

24
x4 + · · ·

= 1 + x + 1

2
x2 − 1

8
x4 + · · · .

f (x) = e(ex)In Exercises 29–38, find the Taylor series centered at c and find the interval on which the expansion is valid.

29. f (x) = 1

x
, c = 1

solution Write

1

x
= 1

1 + (x − 1)
,

and then substitute −(x − 1) for x in the Maclaurin series for 1
1−x

to obtain

1

x
=

∞∑
n=0

[−(x − 1)]n =
∞∑

n=0

(−1)n(x − 1)n.

This series is valid for |x − 1| < 1.

f (x) = e3x , c = −131. f (x) = 1

1 − x
, c = 5

solution Write

1

1 − x
= 1

−4 − (x − 5)
= −1

4
· 1

1 + x−5
4

.
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Substituting − x−5
4 for x in the Maclaurin series for 1

1−x
yields

1

1 + x−5
4

=
∞∑

n=0

(
−x − 5

4

)n

=
∞∑

n=0

(−1)n
(x − 5)n

4n
.

Thus,

1

1 − x
= −1

4

∞∑
n=0

(−1)n
(x − 5)n

4n
=

∞∑
n=0

(−1)n+1 (x − 5)n

4n+1
.

This series is valid for
∣∣∣ x−5

4

∣∣∣ < 1, or |x − 5| < 4.

f (x) = sin x, c = π

2

33. f (x) = x4 + 3x − 1, c = 2

solution To determine the Taylor series with center c = 2, we compute

f ′(x) = 4x3 + 3, f ′′(x) = 12x2, f ′′′(x) = 24x,

and f (4)(x) = 24. All derivatives of order five and higher are zero. Now,

f (2) = 21, f ′(2) = 35, f ′′(2) = 48, f ′′′(2) = 48,

and f (4)(2) = 24. Therefore, the Taylor series is

21 + 35(x − 2) + 48

2
(x − 2)2 + 48

6
(x − 2)3 + 24

24
(x − 2)4,

or

21 + 35(x − 2) + 24(x − 2)2 + 8(x − 2)3 + (x − 2)4.

f (x) = x4 + 3x − 1, c = 035. f (x) = 1

x2
, c = 4

solution We will first find the Taylor series for 1
x and then differentiate to obtain the series for 1

x2 . Write

1

x
= 1

4 + (x − 4)
= 1

4
· 1

1 + x−4
4

.

Now substitute − x−4
4 for x in the Maclaurin series for 1

1−x
to obtain

1

x
= 1

4

∞∑
n=

(
−x − 4

4

)n

=
∞∑

n=0

(−1)n
(x − 4)n

4n+1
.

Differentiating term-by-term yields

− 1

x2
=

∞∑
n=1

(−1)nn
(x − 4)n−1

4n+1
,

so that

1

x2
=

∞∑
n=1

(−1)n−1n
(x − 4)n−1

4n+1
=

∞∑
n=0

(−1)n(n + 1)
(x − 4)n

4n+2
.

This series is valid for
∣∣∣ x−4

4

∣∣∣ < 1, or |x − 4| < 4.

f (x) = √
x, c = 437. f (x) = 1

1 − x2
, c = 3

solution By partial fraction decomposition

1

1 − x2
=

1
2

1 − x
+

1
2

1 + x
,

so

1

1 − x2
=

1
2

−2 − (x − 3)
+

1
2

4 + (x − 3)
= −1

4
· 1

1 + x−3
2

+ 1

8
· 1

1 + x−3
4

.
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Substituting − x−3
2 for x in the Maclaurin series for 1

1−x
gives

1

1 + x−3
2

=
∞∑

n=0

(
−x − 3

2

)n

=
∞∑

n=0

(−1)n

2n
(x − 3)n,

while substituting − x−3
4 for x in the same series gives

1

1 + x−3
4

=
∞∑

n=0

(
−x − 3

4

)n

=
∞∑

n=0

(−1)n

4n
(x − 3)n.

Thus,

1

1 − x2
= −1

4

∞∑
n=0

(−1)n

2n
(x − 3)n + 1

8

∞∑
n=0

(−1)n

4n
(x − 3)n =

∞∑
n=0

(−1)n+1

2n+2
(x − 3)n +

∞∑
n=0

(−1)n

22n+3
(x − 3)n

=
∞∑

n=0

(
(−1)n+1

2n+2
+ (−1)n

22n+3

)
(x − 3)n =

∞∑
n=0

(−1)n+1(2n+1 − 1)

22n+3
(x − 3)n.

This series is valid for |x − 3| < 2.

f (x) = 1

3x − 2
, c = −1

39. Use the identity cos2 x = 1
2 (1 + cos 2x) to find the Maclaurin series for cos2 x.

solution The Maclaurin series for cos 2x is

∞∑
n=0

(−1)n
(2x)2n

(2n)! =
∞∑

n=0

(−1)n
22nx2n

(2n)!

so the Maclaurin series for cos2 x = 1
2 (1 + cos 2x) is

1 +
(

1 + ∑∞
n=1(−1)n 22nx2n

(2n)!
)

2
= 1 +

∞∑
n=1

(−1)n
22n−1x2n

(2n)!

Show that for |x| < 1,

tanh−1 x = x + x3

3
+ x5

5
+ · · ·

Hint: Recall that
d

dx
tanh−1 x = 1

1 − x2
.

41. Use the Maclaurin series for ln(1 + x) and ln(1 − x) to show that

1

2
ln

(
1 + x

1 − x

)
= x + x3

3
+ x5

5
+ · · ·

for |x| < 1. What can you conclude by comparing this result with that of Exercise 40?

solution Using the Maclaurin series for ln (1 + x) and ln (1 − x), we have for |x| < 1

ln(1 + x) − ln(1 − x) =
∞∑

n=1

(−1)n−1

n
xn −

∞∑
n=1

(−1)n−1

n
(−x)n

=
∞∑

n=1

(−1)n−1

n
xn +

∞∑
n=1

xn

n
=

∞∑
n=1

1 + (−1)n−1

n
xn.

Since 1 + (−1)n−1 = 0 for even n and 1 + (−1)n−1 = 2 for odd n,

ln (1 + x) − ln (1 − x) =
∞∑

k=0

2

2k + 1
x2k+1.

Thus,

1

2
ln

(
1 + x

1 − x

)
= 1

2
(ln(1 + x) − ln(1 − x)) = 1

2

∞∑
k=0

2

2k + 1
x2k+1 =

∞∑
k=0

x2k+1

2k + 1
.

Observe that this is the same series we found in Exercise 40; therefore,

1

2
ln

(
1 + x

1 − x

)
= tanh−1 x.
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Differentiate the Maclaurin series for
1

1 − x
twice to find the Maclaurin series of

1

(1 − x)3
.

43. Show, by integrating the Maclaurin series for f (x) = 1√
1 − x2

, that for |x| < 1,

sin−1 x = x +
∞∑

n=1

1 · 3 · 5 · · · (2n − 1)

2 · 4 · 6 · · · (2n)

x2n+1

2n + 1

solution From Example 10, we know that for |x| < 1

1√
1 − x2

=
∞∑

n=0

1 · 3 · 5 · · · (2n − 1)

2 · 4 · 6 · · · (2n)
x2n = 1 +

∞∑
n=1

1 · 3 · 5 · · · (2n − 1)

2 · 4 · 6 · · · (2n)
x2n,

so, for |x| < 1,

sin−1 x =
∫

dx√
1 − x2

= C + x +
∞∑

n=1

1 · 3 · 5 · · · (2n − 1)

2 · 4 · 6 · · · (2n)

x2n+1

2n + 1
.

Since sin−1 0 = 0, we find that C = 0. Thus,

sin−1 x = x +
∞∑

n=1

1 · 3 · 5 · · · (2n − 1)

2 · 4 · 6 · · · (2n)

x2n+1

2n + 1
.

Use the first five terms of the Maclaurin series in Exercise 43 to approximate sin−1 1
2 . Compare the result with

the calculator value.

45. How many terms of the Maclaurin series of f (x) = ln(1 + x) are needed to compute ln 1.2 to within an error of at
most 0.0001? Make the computation and compare the result with the calculator value.

solution Substitute x = 0.2 into the Maclaurin series for ln (1 + x) to obtain:

ln 1.2 =
∞∑

n=1

(−1)n−1 (0.2)n

n
=

∞∑
n=1

(−1)n−1 1

5nn
.

This is an alternating series with an = 1

n · 5n
. Using the error bound for alternating series

|ln 1.2 − SN | ≤ aN+1 = 1

(N + 1)5N+1
,

so we must choose N so that

1

(N + 1)5N+1
< 0.0001 or (N + 1)5N+1 > 10,000.

For N = 3, (N + 1)5N+1 = 4 · 54 = 2500 < 10, 000, and for N = 4, (N + 1)5N+1 = 5 · 55 = 15, 625 > 10, 000;
thus, the smallest acceptable value for N is N = 4. The corresponding approximation is:

S4 =
4∑

n=1

(−1)n−1

5n · n
= 1

5
− 1

52 · 2
+ 1

53 · 3
− 1

54 · 4
= 0.182266666.

Now, ln 1.2 = 0.182321556, so

|ln 1.2 − S4| = 5.489 × 10−5 < 0.0001.

Show that

π − π3

3! + π5

5! − π7

7! + · · ·

converges to zero. How many terms must be computed to get within 0.01 of zero?

47. Use the Maclaurin expansion for e−t2
to express the function F(x) = ∫ x

0 e−t2
dt as an alternating power series in x

(Figure 4).

(a) How many terms of the Maclaurin series are needed to approximate the integral for x = 1 to within an error of at
most 0.001?
(b) Carry out the computation and check your answer using a computer algebra system.

F(x)

T15(x)

1 2

y

x

FIGURE 4 The Maclaurin polynomial T15(x) for F(t) =
∫ x

0
e−t2

dt.
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solution Substituting −t2 for t in the Maclaurin series for et yields

e−t2 =
∞∑

n=0

(−t2)n

n! =
∞∑

n=0

(−1)n
t2n

n! ;

thus,

∫ x

0
e−t2

dt =
∞∑

n=0

(−1)n
x2n+1

n!(2n + 1)
.

(a) For x = 1,

∫ 1

0
e−t2

dt =
∞∑

n=0

(−1)n
1

n!(2n + 1)
.

This is an alternating series with an = 1
n!(2n+1)

; therefore, the error incurred by using SN to approximate the value of
the definite integral is bounded by∣∣∣∣∣

∫ 1

0
e−t2

dt − SN

∣∣∣∣∣ ≤ aN+1 = 1

(N + 1)!(2N + 3)
.

To guarantee the error is at most 0.001, we must choose N so that

1

(N + 1)!(2N + 3)
< 0.001 or (N + 1)!(2N + 3) > 1000.

For N = 3, (N + 1)!(2N + 3) = 4! · 9 = 216 < 1000 and for N = 4, (N + 1)!(2N + 3) = 5! · 11 = 1320 > 1000;
thus, the smallest acceptable value for N is N = 4. The corresponding approximation is

S4 =
4∑

n=0

(−1)n

n!(2n + 1)
= 1 − 1

3
+ 1

2! · 5
− 1

3! · 7
+ 1

4! · 9
= 0.747486772.

(b) Using a computer algebra system, we find∫ 1

0
e−t2

dt = 0.746824133;

therefore ∣∣∣∣∣
∫ 1

0
e−t2

dt − S4

∣∣∣∣∣ = 6.626 × 10−4 < 10−3.

Let F(x) =
∫ x

0

sin t dt

t
. Show that

F(x) = x − x3

3 · 3! + x5

5 · 5! − x7

7 · 7! + · · ·

Evaluate F(1) to three decimal places.

In Exercises 49–52, express the definite integral as an infinite series and find its value to within an error of at most 10−4.

49.
∫ 1

0
cos(x2) dx

solution Substituting x2 for x in the Maclaurin series for cos x yields

cos(x2) =
∞∑

n=0

(−1)n
(x2)2n

(2n)! =
∞∑

n=0

(−1)n
x4n

(2n)! ;

therefore,

∫ 1

0
cos(x2) dx =

∞∑
n=0

(−1)n
x4n+1

(2n)!(4n + 1)

∣∣∣∣∣
1

0

=
∞∑

n=0

(−1)n

(2n)!(4n + 1)
.

This is an alternating series with an = 1
(2n)!(4n+1)

; therefore, the error incurred by using SN to approximate the value of
the definite integral is bounded by∣∣∣∣∣

∫ 1

0
cos(x2) dx − SN

∣∣∣∣∣ ≤ aN+1 = 1

(2N + 2)!(4N + 5)
.
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To guarantee the error is at most 0.0001, we must choose N so that

1

(2N + 2)!(4N + 5)
< 0.0001 or (2N + 2)!(4N + 5) > 10,000.

For N = 2, (2N + 2)!(4N + 5) = 6! · 13 = 9360 < 10,000 and for N = 3, (2N + 2)!(4N + 5) = 8! · 17 = 685,440 >

10,000; thus, the smallest acceptable value for N is N = 3. The corresponding approximation is

S3 =
3∑

n=0

(−1)n

(2n)!(4n + 1)
= 1 − 1

5 · 2! + 1

9 · 4! − 1

13 · 6! = 0.904522792.

∫ 1

0
tan−1(x2) dx

51.
∫ 1

0
e−x3

dx

solution Substituting −x3 for x in the Maclaurin series for ex yields

e−x3 =
∞∑

n=0

(−x3)n

n! =
∞∑

n=0

(−1)n
x3n

n! ;

therefore,

∫ 1

0
e−x3

dx =
∞∑

n=0

(−1)n
x3n+1

n!(3n + 1)

∣∣∣∣∣
1

0

=
∞∑

n=0

(−1)n

n!(3n + 1)
.

This is an alternating series with an = 1
n!(3n+1)

; therefore, the error incurred by using SN to approximate the value of
the definite integral is bounded by∣∣∣∣∣

∫ 1

0
e−x3

dx − SN

∣∣∣∣∣ ≤ aN+1 = 1

(N + 1)!(3N + 4)
.

To guarantee the error is at most 0.0001, we must choose N so that

1

(N + 1)!(3N + 4)
< 0.0001 or (N + 1)!(3N + 4) > 10,000.

For N = 4, (N + 1)!(3N + 4) = 5! · 16 = 1920 < 10,000 and for N = 5, (N + 1)!(3N + 4) = 6! · 19 = 13,680 >

10,000; thus, the smallest acceptable value for N is N = 5. The corresponding approximation is

S5 =
5∑

n=0

(−1)n

n!(3n + 1)
= 0.807446200.

∫ 1

0

dx√
x4 + 1

In Exercises 53–56, express the integral as an infinite series.

53.
∫ x

0

1 − cos(t)

t
dt , for all x

solution The Maclaurin series for cos t is

cos t =
∞∑

n=0

(−1)n
t2n

(2n)! = 1 +
∞∑

n=1

(−1)n
t2n

(2n)! ,

so

1 − cos t = −
∞∑

n=1

(−1)n
t2n

(2n)! =
∞∑

n=1

(−1)n+1 t2n

(2n)! ,

and

1 − cos t

t
= 1

t

∞∑
n=1

(−1)n+1 t2n

(2n)! =
∞∑

n=1

(−1)n+1 t2n−1

(2n)! .

Thus,

∫ x

0

1 − cos(t)

t
dt =

∞∑
n=1

(−1)n+1 t2n

(2n)!2n

∣∣∣∣∣
x

0

=
∞∑

n=1

(−1)n+1 x2n

(2n)!2n
.
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∫ x

0

t − sin t

t
dt , for all x

55.
∫ x

0
ln(1 + t2) dt , for |x| < 1

solution Substituting t2 for t in the Maclaurin series for ln(1 + t) yields

ln(1 + t2) =
∞∑

n=1

(−1)n−1 (t2)n

n
=

∞∑
n=1

(−1)n
t2n

n
.

Thus, ∫ x

0
ln(1 + t2) dt =

∞∑
n=1

(−1)n
t2n+1

n(2n + 1)

∣∣∣∣∣
x

0

=
∞∑

n=1

(−1)n
x2n+1

n(2n + 1)
.

∫ x

0

dt√
1 − t4

, for |x| < 157. Which function has Maclaurin series
∞∑

n=0

(−1)n2nxn?

solution We recognize that

∞∑
n=0

(−1)n2nxn =
∞∑

n=0

(−2x)n

is the Maclaurin series for 1
1−x

with x replaced by −2x. Therefore,

∞∑
n=0

(−1)n2nxn = 1

1 − (−2x)
= 1

1 + 2x
.

Which function has Maclaurin series

∞∑
k=0

(−1)k

3k+1
(x − 3)k?

For which values of x is the expansion valid?

In Exercises 59–62, use Theorem 2 to prove that the f (x) is represented by its Maclaurin series on the interval I .

59. f (x) = sin
(
x
2

) + cos
(
x
3

)
,

solution All derivatives of f (x) consist of sin or cos applied to each of x/2 and x/3 and added together, so each

summand is bounded by 1. Thus
∣∣∣f (n)(x)

∣∣∣ ≤ 2 for all n and x. By Theorem 2, f (x) is represented by its Taylor series for
every x.

f (x) = e−x ,
61. f (x) = sinh x,

solution By definition, sinh x = 1
2 (ex − e−x), so if both ex and e−x are represented by their Taylor series centered

at c, then so is sinh x. But the previous exercise shows that e−x is so represented, and the text shows that ex is.

f (x) = (1 + x)100In Exercises 63–66, find the functions with the following Maclaurin series (refer to Table 1 on page 599).

63. 1 + x3 + x6

2! + x9

3! + x12

4! + · · ·
solution We recognize

1 + x3 + x6

2! + x9

3! + x12

4! + · · · =
∞∑

n=0

x3n

n! =
∞∑

n=0

(x3)n

n!

as the Maclaurin series for ex with x replaced by x3. Therefore,

1 + x3 + x6

2! + x9

3! + x12

4! + · · · = ex3
.

1 − 4x + 42x2 − 43x3 + 44x4 − 45x5 + · · ·65. 1 − 53x3

3! + 55x5

5! − 57x7

7! + · · ·
solution Note

1 − 53x3

3! + 55x5

5! − 57x7

7! + · · · = 1 − 5x +
(

5x − 53x3

3! + 55x5

5! − 57x7

7! + · · ·
)

= 1 − 5x +
∞∑

n=0

(−1)n
(5x)2n+1

(2n + 1)! .

The series is the Maclaurin series for sin x with x replaced by 5x, so

1 − 53x3

3! + 55x5

5! − 57x7

7! + · · · = 1 − 5x + sin(5x).
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x4 − x12

3
+ x20

5
− x28

7
+ · · ·

In Exercises 67 and 68, let

f (x) = 1

(1 − x)(1 − 2x)

67. Find the Maclaurin series of f (x) using the identity

f (x) = 2

1 − 2x
− 1

1 − x

solution Substituting 2x for x in the Maclaurin series for
1

1 − x
gives

1

1 − 2x
=

∞∑
n=0

(2x)n =
∞∑

n=0

2nxn

which is valid for |2x| < 1, or |x| < 1
2 . Because the Maclaurin series for

1

1 − x
is valid for |x| < 1, the two series

together are valid for |x| < 1
2 . Thus, for |x| < 1

2 ,

1

(1 − 2x)(1 − x)
= 2

1 − 2x
− 1

1 − x
= 2

∞∑
n=0

2nxn −
∞∑

n=0

xn

=
∞∑

n=0

2n+1xn −
∞∑

n=0

xn =
∞∑

n=0

(
2n+1 − 1

)
xn.

Find the Taylor series for f (x) at c = 2. Hint: Rewrite the identity of Exercise 67 as

f (x) = 2

−3 − 2(x − 2)
− 1

−1 − (x − 2)

69. When a voltage V is applied to a series circuit consisting of a resistor R and an inductor L, the current at time t is

I (t) =
(

V

R

) (
1 − e−Rt/L

)

Expand I (t) in a Maclaurin series. Show that I (t) ≈ V t

L
for small t .

solution Substituting −Rt
L

for t in the Maclaurin series for et gives

e−Rt/L =
∞∑

n=0

(
−Rt

L

)n

n! =
∞∑

n=0

(−1)n

n!
(

R

L

)n

tn = 1 +
∞∑

n=1

(−1)n

n!
(

R

L

)n

tn

Thus,

1 − e−Rt/L = 1 −
⎛
⎝1 +

∞∑
n=1

(−1)n

n!
(

R

L

)n

tn

⎞
⎠ =

∞∑
n=1

(−1)n+1

n!
(

Rt

L

)n

,

and

I (t) = V

R

∞∑
n=1

(−1)n+1

n!
(

Rt

L

)n

= V t

L
+ V

R

∞∑
n=2

(−1)n+1

n!
(

Rt

L

)n

.

If t is small, then we can approximate I (t) by the first (linear) term, and ignore terms with higher powers of t ; then we
find

V (t) ≈ V t

L
.

Use the result of Exercise 69 and your knowledge of alternating series to show that

V t

L

(
1 − R

2L
t

)
≤ I (t) ≤ V t

L
(for all t)

71. Find the Maclaurin series for f (x) = cos(x3) and use it to determine f (6)(0).

solution The Maclaurin series for cos x is

cos x =
∞∑

n=0

(−1)n
x2n

(2n)!

Substituting x3 for x gives

cos(x3) =
∞∑

n=0

(−1)n
x6n

(2n)!
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Now, the coefficient of x6 in this series is

− 1

2! = −1

2
= f (6)(0)

6!
so

f (6)(0) = −6!
2

= −360

Find f (7)(0) and f (8)(0) for f (x) = tan−1 x using the Maclaurin series.73. Use substitution to find the first three terms of the Maclaurin series for f (x) = ex20
. How does the result

show that f (k)(0) = 0 for 1 ≤ k ≤ 19?

solution Substituting x20 for x in the Maclaurin series for ex yields

ex20 =
∞∑

n=0

(x20)n

n! =
∞∑

n=0

x20n

n! ;

the first three terms in the series are then

1 + x20 + 1

2
x40.

Recall that the coefficient of xk in the Maclaurin series for f is f (k)(0)
k! . For 1 ≤ k ≤ 19, the coefficient of xk in the

Maclaurin series for f (x) = ex20
is zero; it therefore follows that

f (k)(0)

k! = 0 or f (k)(0) = 0

for 1 ≤ k ≤ 19.

Use the binomial series to find f (8)(0) for f (x) =
√

1 − x2.
75. Does the Maclaurin series for f (x) = (1 + x)3/4 converge to f (x) at x = 2? Give numerical evidence to support
your answer.

solution The Taylor series for f (x) = (1 + x)3/4 converges to f (x) for |x| < 1; because x = 2 is not contained on
this interval, the series does not converge to f (x) at x = 2. The graph below displays

SN =
N∑

n=0

( 3
4
n

)
2n

for 0 ≤ N ≤ 14. The divergent nature of the sequence of partial sums is clear.

0
2 14106 8 124

5

10

15

−20

−15

−10

−5

SN

N

Explain the steps required to verify that the Maclaurin series for f (x) = ex converges to f (x) for all x.
77. Let f (x) = √

1 + x.

(a) Use a graphing calculator to compare the graph of f with the graphs of the first five Taylor polynomials for f . What
do they suggest about the interval of convergence of the Taylor series?

(b) Investigate numerically whether or not the Taylor expansion for f is valid for x = 1 and x = −1.

solution

(a) The five first terms of the Binomial series with a = 1
2 are

√
1 + x = 1 + 1

2
x +

1
2

(
1
2 − 1

)
2! x2 +

1
2

(
1
2 − 1

) (
1
2 − 2

)
3! x3 +

1
2

(
1
2 − 1

) (
1
2 − 2

) (
1
2 − 3

)
4! x4 + · · ·

= 1 + 1

2
x − 1

8
x2 + 9

4
x3 − 45

2
x4 + · · ·
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Therefore, the first five Taylor polynomials are

T0(x) = 1;

T1(x) = 1 + 1

2
x;

T2(x) = 1 + 1

2
x − 1

8
x2;

T3(x) = 1 + 1

2
x − 1

8
x2 + 1

8
x3;

T4(x) = 1 + 1

2
x − 1

8
x2 + 1

8
x3 − 5

128
x4.

The figure displays the graphs of these Taylor polynomials, along with the graph of the function f (x) = √
1 + x, which

is shown in red.

–1 0.5 0.5 1

1.5

1

1.5

The graphs suggest that the interval of convergence for the Taylor series is −1 < x < 1.

(b) Using a computer algebra system to calculate SN =
N∑

n=0

( 1
2
n

)
xn for x = 1 we find

S10 = 1.409931183, S100 = 1.414073048, S1000 = 1.414209104,

which appears to be converging to
√

2 as expected. At x = −1 we calculate SN =
N∑

n=0

( 1
2
n

)
· (−1)n, and find

S10 = 0.176197052, S100 = 0.056348479, S1000 = 0.017839011,

which appears to be converging to zero, though slowly.

Use the first five terms of the Maclaurin series for the elliptic function E(k) to estimate the period T of a 1-meter
pendulum released at an angle θ = π

4 (see Example 11).

79. Use Example 11 and the approximation sin x ≈ x to show that the period T of a pendulum released at an angle θ has
the following second-order approximation:

T ≈ 2π

√
L

g

(
1 + θ2

16

)

solution The period T of a pendulum of length L released from an angle θ is

T = 4

√
L

g
E(k),

where g ≈ 9.8 m/s2 is the acceleration due to gravity, E(k) is the elliptic function of the first kind and k = sin θ
2 . From

Example 11, we know that

E(k) = π

2

∞∑
n=0

(
1 · 3 · 5 · · · (2n − 1)

2 · 4 · 6 · · · (2n)

)2
k2n.

Using the approximation sin x ≈ x, we have

k = sin
θ

2
≈ θ

2
;

moreover, using the first two terms of the series for E(k), we find

E(k) ≈ π

2

[
1 +

(
1

2

)2 (
θ

2

)2
]

= π

2

(
1 + θ2

16

)
.
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Therefore,

T = 4

√
L

g
E(k) ≈ 2π

√
L

g

(
1 + θ2

16

)
.

In Exercises 80–83, find the Maclaurin series of the function and use it to calculate the limit.

lim
x→0

cos x − 1 + x2

2

x4

81. lim
x→0

sin x − x + x3

6
x5

solution Using the Maclaurin series for sin x, we find

sin x =
∞∑

n=0

(−1)n
x2n+1

(2n + 1)! = x − x3

6
+ x5

120
+

∞∑
n=3

(−1)n
x2n+1

(2n + 1)! .

Thus,

sin x − x + x3

6
= x5

120
+

∞∑
n=3

(−1)n
x2n+1

(2n + 1)!

and

sin x − x + x3

6
x5 = 1

120
+

∞∑
n=3

(−1)n
x2n−4

(2n + 1)!

Note that the radius of convergence for this series is infinite, and recall from the previous section that a convergent power
series is continuous within its radius of convergence. Thus to calculate the limit of this power series as x → 0 it suffices
to evaluate it at x = 0:

lim
x→0

sin x − x + x3

6
x5 = lim

x→0

⎛
⎝ 1

120
+

∞∑
n=3

(−1)n
x2n−4

(2n + 1)!

⎞
⎠ = 1

120
+ 0 = 1

120

lim
x→0

tan−1 x − x cos x − 1
6x3

x5

83. lim
x→0

(
sin(x2)

x4
− cos x

x2

)

solution We start with

sin x =
∞∑

n=0

(−1)n
x2n+1

(2n + 1)! cos x =
∞∑

n=0

(−1)n
x2n

(2n)!

so that

sin(x2)

x4
=

∞∑
n=0

(−1)n
x4n+2

(2n + 1)!x4
=

∞∑
n=0

(−1)n
x4n−2

(2n + 1)!

cos x

x2
=

∞∑
n=0

(−1)n
x2n−2

(2n)!

Expanding the first few terms gives

sin(x2)

x4
= 1

x2
−

∞∑
n=1

(−1)n
x4n−2

(2n + 1)!

cos x

x2
= 1

x2
− 1

2
+

∞∑
n=2

(−1)n
x2n−2

(2n)!

so that

sin(x2)

x4
− cos x

x2
= 1

2
−

∞∑
n=1

(−1)n
x4n−2

(2n + 1)! −
∞∑

n=2

(−1)n
x2n−2

(2n)!

Note that all terms under the summation signs have positive powers of x. Now, the radius of convergence of the series
for both sin and cos is infinite, so the radius of convergence of this series is infinite. Recall from the previous section that
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a convergent power series is continuous within its radius of convergence. Thus to calculate the limit of this power series
as x → 0 it suffices to evaluate it at x = 0:

lim
x→0

(
sin(x2)

x4
− cos x

x2

)
= lim

x→0

⎛
⎝1

2
−

∞∑
n=1

(−1)n
x4n−2

(2n + 1)! −
∞∑

n=2

(−1)n
x2n−2

(2n)!

⎞
⎠ = 1

2
+ 0 = 1

2

Further Insights and Challenges

In this exercise we show that the Maclaurin expansion of f (x) = ln(1 + x) is valid for x = 1.

(a) Show that for all x 
= −1,

1

1 + x
=

N∑
n=0

(−1)nxn + (−1)N+1xN+1

1 + x

(b) Integrate from 0 to 1 to obtain

ln 2 =
N∑

n=1

(−1)n−1

n
+ (−1)N+1

∫ 1

0

xN+1 dx

1 + x

(c) Verify that the integral on the right tends to zero as N → ∞ by showing that it is smaller than
∫ 1

0 xN+1dx.

(d) Prove the formula

ln 2 = 1 − 1

2
+ 1

3
− 1

4
+ · · ·

85. Let g(t) = 1

1 + t2
− t

1 + t2
.

(a) Show that
∫ 1

0
g(t) dt = π

4
− 1

2
ln 2.

(b) Show that g(t) = 1 − t − t2 + t3 − t4 − t5 + · · · .
(c) Evaluate S = 1 − 1

2 − 1
3 + 1

4 − 1
5 − 1

6 + · · · .

solution
(a) ∫ 1

0
g(t) dt =

(
tan−1 t − 1

2
ln(t2 + 1)

) ∣∣∣∣1
0

= tan−1 1 − 1

2
ln 2 = π

4
− 1

2
ln 2

(b) Start with the Taylor series for 1
1+t

:

1

1 + t
=

∞∑
n=0

(−1)ntn

and substitute t2 for t to get

1

1 + t2
=

∞∑
n=0

(−1)nt2n = 1 − t2 + t4 − t6 + . . .

so that

t

1 + t2
=

∞∑
n=0

(−1)nt2n+1 = t − t3 + t5 − t7 + . . .

Finally,

g(t) = 1

1 + t2
− t

1 + t2
= 1 − t − t2 + t3 + t4 − t5 − t6 + t7 + . . .

(c) We have∫
g(t) dt =

∫
(1 − t − t2 + t3 + t4 − t5 − . . . ) dt = t − 1

2
t2 − 1

3
t3 + 1

4
t4 + 1

5
t5 − 1

6
t6 − · · · + C

The radius of convergence of the series for g(t) is 1, so the radius of convergence of this series is also 1. However, this
series converges at the right endpoint, t = 1, since(

1 − 1

2

)
−

(
1

3
− 1

4

)
+

(
1

5
− 1

6

)
− . . .

is an alternating series with general term decreasing to zero. Thus by part (a),

1 − 1

2
− 1

3
+ 1

4
+ 1

5
− 1

6
− · · · = π

4
− 1

2
ln 2

In Exercises 86 and 87, we investigate the convergence of the binomial series

Ta(x) =
∞∑

n=0

(
a

n

)
xn

Prove that Ta(x) has radius of convergence R = 1 if a is not a whole number. What is the radius of convergence
if a is a whole number?

87. By Exercise 86, Ta(x) converges for |x| < 1, but we do not yet know whether Ta(x) = (1 + x)a .

(a) Verify the identity

a

(
a

n

)
= n

(
a

n

)
+ (n + 1)

(
a

n + 1

)
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(b) Use (a) to show that y = Ta(x) satisfies the differential equation (1 + x)y′ = ay with initial condition y(0) = 1.

(c) Prove that Ta(x) = (1 + x)a for |x| < 1 by showing that the derivative of the ratio
Ta(x)

(1 + x)a
is zero.

solution

(a)

n

(
a

n

)
+ (n + 1)

(
a

n + 1

)
= n · a (a − 1) · · · (a − n + 1)

n! + (n + 1) · a (a − 1) · · · (a − n + 1) (a − n)

(n + 1)!

= a (a − 1) · · · (a − n + 1)

(n − 1)! + a (a − 1) · · · (a − n + 1) (a − n)

n!

= a (a − 1) · · · (a − n + 1) (n + (a − n))

n! = a ·
(

a

n

)

(b) Differentiating Ta(x) term-by-term yields

T ′
a(x) =

∞∑
n=1

n

(
a

n

)
xn−1.

Thus,

(1 + x)T ′
a(x) =

∞∑
n=1

n

(
a

n

)
xn−1 +

∞∑
n=1

n

(
a

n

)
xn =

∞∑
n=0

(n + 1)

(
a

n + 1

)
xn +

∞∑
n=0

n

(
a

n

)
xn

=
∞∑

n=0

[
(n + 1)

(
a

n + 1

)
+ n

(
a

n

)]
xn = a

∞∑
n=0

(
a

n

)
xn = aTa(x).

Moreover,

Ta(0) =
(

a

0

)
= 1.

(c)

d

dx

(
Ta(x)

(1 + x)a

)
= (1 + x)aT ′

a(x) − a(1 + x)a−1Ta(x)

(1 + x)2a
= (1 + x)T ′

a(x) − aTa(x)

(1 + x)a+1
= 0.

Thus,

Ta(x)

(1 + x)a
= C,

for some constant C. For x = 0,

Ta(0)

(1 + 0)a
= 1

1
= 1, so C = 1.

Finally, Ta(x) = (1 + x)a .

The function G(k) = ∫ π/2
0

√
1 − k2 sin2 t dt is called an elliptic function of the second kind. Prove that for

|k| < 1,

G(k) = π

2
− π

2

∞∑
n=1

(
1 · 3 · · · (2n − 1)

2 · · · 4 · (2n)

)2 k2n

2n − 1

89. Assume that a < b and let L be the arc length (circumference) of the ellipse
(
x
a

)2 + ( y
b

)2 = 1 shown in Figure 5.

There is no explicit formula for L, but it is known that L = 4bG(k), with G(k) as in Exercise 88 and k =
√

1 − a2/b2.
Use the first three terms of the expansion of Exercise 88 to estimate L when a = 4 and b = 5.

a

b

y

x

FIGURE 5 The ellipse
(x

a

)2 +
(y

b

)2 = 1.
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solution With a = 4 and b = 5,

k =
√

1 − 42

52
= 3

5
,

and the arc length of the ellipse
(x

4

)2 +
(y

5

)2 = 1 is

L = 20G

(
3

5

)
= 20

⎛
⎜⎝π

2
− π

2

∞∑
n=1

(
1 · 3 · · · (2n − 1)

2 · 4 · · · (2n)

)2
(

3
5

)2n

2n − 1

⎞
⎟⎠ .

Using the first three terms in the series for G(k) gives

L ≈ 10π − 10π

((
1

2

)2
· (3/5)2

1
+

(
1 · 3

2 · 4

)2
· (3/5)4

3

)
= 10π

(
1 − 9

100
− 243

40,000

)
= 36,157π

4000
≈ 28.398.

Use Exercise 88 to prove that if a < b and a/b is near 1 (a nearly circular ellipse), then

L ≈ π

2

(
3b + a2

b

)
Hint: Use the first two terms of the series for G(k).

91. Irrationality of e Prove that e is an irrational number using the following argument by contradiction. Suppose that
e = M/N , where M, N are nonzero integers.

(a) Show that M! e−1 is a whole number.

(b) Use the power series for ex at x = −1 to show that there is an integer B such that M! e−1 equals

B + (−1)M+1
(

1

M + 1
− 1

(M + 1)(M + 2)
+ · · ·

)

(c) Use your knowledge of alternating series with decreasing terms to conclude that 0 < |M! e−1 − B| < 1 and observe
that this contradicts (a). Hence, e is not equal to M/N .

solution Suppose that e = M/N , where M, N are nonzero integers.

(a) With e = M/N ,

M!e−1 = M! N
M

= (M − 1)!N,

which is a whole number.

(b) Substituting x = −1 into the Maclaurin series for ex and multiplying the resulting series by M! yields

M!e−1 = M!
(

1 − 1 + 1

2! − 1

3! + · · · + (−1)k

k! + · · ·
)

.

For all k ≤ M ,
M!
k! is a whole number, so

M!
(

1 − 1 + 1

2! − 1

3! + · · · + (−1)k

M!

)

is an integer. Denote this integer by B. Thus,

M! e−1 = B + M!
(

(−1)M+1

(M + 1)! + (−1)M+2

(M + 2)! + · · ·
)

= B + (−1)M+1
(

1

M + 1
− 1

(M + 1)(M + 2)
+ · · ·

)
.

(c) The series for M! e−1 obtained in part (b) is an alternating series with an = M!
n! . Using the error bound for an

alternating series and noting that B = SM , we have

∣∣∣M! e−1 − B

∣∣∣ ≤ aM+1 = 1

M + 1
< 1.

This inequality implies that M! e−1 − B is not a whole number; however, B is a whole number so M! e−1 cannot be a
whole number. We get a contradiction to the result in part (a), which proves that the original assumption that e is a rational
number is false.

Use the result of Exercise 73 in Section 4.5 to show that the Maclaurin series of the function

f (x) =
{

e−1/x2
for x 
= 0

0 for x = 0
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1. Let an = n − 3

n! and bn = an+3. Calculate the first three terms in each sequence.

(a) a2
n (b) bn

(c) anbn (d) 2an+1 − 3an

solution
(a)

a2
1 =

(
1 − 3

1!
)2

= (−2)2 = 4;

a2
2 =

(
2 − 3

2!
)2

=
(

−1

2

)2
= 1

4
;

a2
3 =

(
3 − 3

3!
)2

= 0.

(b)

b1 = a4 = 4 − 3

4! = 1

24
;

b2 = a5 = 5 − 3

5! = 1

60
;

b3 = a6 = 6 − 3

6! = 1

240
.

(c) Using the formula for an and the values in (b) we obtain:

a1b1 = 1 − 3

1! · 1

24
= − 1

12
;

a2b2 = 2 − 3

2! · 1

60
= − 1

120
;

a3b3 = 3 − 3

3! · 1

240
= 0.

(d)

2a2 − 3a1 = 2

(
−1

2

)
− 3(−2) = 5;

2a3 − 3a2 = 2 · 0 − 3

(
−1

2

)
= 3

2
;

2a4 − 3a3 = 2 · 1

24
− 3 · 0 = 1

12
.

Prove that lim
n→∞

2n − 1

3n + 2
= 2

3
using the limit definition.

In Exercises 3–8, compute the limit (or state that it does not exist) assuming that lim
n→∞ an = 2.

3. lim
n→∞(5an − 2a2

n)

solution

lim
n→∞

(
5an − 2a2

n

)
= 5 lim

n→∞ an − 2 lim
n→∞ a2

n = 5 lim
n→∞ an − 2

(
lim

n→∞ an

)2 = 5 · 2 − 2 · 22 = 2.

lim
n→∞

1

an

5. lim
n→∞ ean

solution The function f (x) = ex is continuous, hence:

lim
n→∞ ean = elimn→∞ an = e2.

lim
n→∞ cos(πan)

7. lim
n→∞(−1)nan

solution Because lim
n→∞ an 
= 0, it follows that lim

n→∞(−1)nan does not exist.
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lim
n→∞

an + n

an + n2

In Exercises 9–22, determine the limit of the sequence or show that the sequence diverges.

9. an = √
n + 5 − √

n + 2

solution First rewrite an as follows:

an =
(√

n + 5 − √
n + 2

) (√
n + 5 + √

n + 2
)

√
n + 5 + √

n + 2
= (n + 5) − (n + 2)√

n + 5 + √
n + 2

= 3√
n + 5 + √

n + 2
.

Thus,

lim
n→∞ an = lim

n→∞
3√

n + 5 + √
n + 2

= 0.

an = 3n3 − n

1 − 2n3

11. an = 21/n2

solution The function f (x) = 2x is continuous, so

lim
n→∞ an = lim

n→∞ 21/n2 = 2limn→∞(1/n2) = 20 = 1.

an = 10n

n!
13. bm = 1 + (−1)m

solution Because 1 + (−1)m is equal to 0 for m odd and is equal to 2 for m even, the sequence {bm} does not approach
one limit; hence this sequence diverges.

bm = 1 + (−1)m

m

15. bn = tan−1
(

n + 2

n + 5

)

solution The function tan−1x is continuous, so

lim
n→∞ bn = lim

n→∞ tan−1
(

n + 2

n + 5

)
= tan−1

(
lim

n→∞
n + 2

n + 5

)
= tan−1 1 = π

4
.

an = 100n

n! − 3 + πn

5n

17. bn =
√

n2 + n −
√

n2 + 1

solution Rewrite bn as

bn =
(√

n2 + n −
√

n2 + 1
) (√

n2 + n +
√

n2 + 1
)

√
n2 + n +

√
n2 + 1

=
(
n2 + n

)
−

(
n2 + 1

)
√

n2 + n +
√

n2 + 1
= n − 1√

n2 + n +
√

n2 + 1
.

Then

lim
n→∞ bn = lim

n→∞
n
n − 1

n√
n2

n2 + n
n2 +

√
n2

n2 + 1
n2

= lim
n→∞

1 − 1
n√

1 + 1
n +

√
1 + 1

n2

= 1 − 0√
1 + 0 + √

1 + 0
= 1

2
.

cn =
√

n2 + n −
√

n2 − n19. bm =
(

1 + 1

m

)3m

solution lim
m→∞ bm = lim

m→∞

(
1 + 1

m

)m

= e.

cn =
(

1 + 3

n

)n
21. bn = n

(
ln(n + 1) − ln n

)
solution Write

bn = n ln

(
n + 1

n

)
=

ln
(

1 + 1
n

)
1
n

.

Using L’Hôpital’s Rule, we find

lim
n→∞ bn = lim

n→∞
ln

(
1 + 1

n

)
1
n

= lim
x→∞

ln
(

1 + 1
x

)
1
x

= lim
x→∞

(
1 + 1

x

)−1 ·
(
− 1

x2

)
− 1

x2

= lim
x→∞

(
1 + 1

x

)−1
= 1.

cn = ln(n2 + 1)

ln(n3 + 1)
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23. Use the Squeeze Theorem to show that lim
n→∞

arctan(n2)√
n

= 0.

solution For all x,

−π

2
< arctan x <

π

2
,

so

−π/2√
n

<
arctan(n2)√

n
<

π/2√
n

,

for all n. Because

lim
n→∞

(
−π/2√

n

)
= lim

n→∞
π/2√

n
= 0,

it follows by the Squeeze Theorem that

lim
n→∞

arctan(n2)√
n

= 0.

Give an example of a divergent sequence {an} such that {sin an} is convergent.25. Calculate lim
n→∞

an+1

an
, where an = 1

2
3n − 1

3
2n.

solution Because

1

2
3n − 1

3
2n ≥ 1

2
3n − 1

3
3n = 3n

6

and

lim
n→∞

3n

6
= ∞,

we conclude that limn→∞ an = ∞, so L’Hôpital’s rule may be used:

lim
n→∞

an+1

an
= lim

n→∞
1
2 3n+1 − 1

3 2n+1

1
2 3n − 1

3 2n
= lim

n→∞
3n+2 − 2n+2

3n+1 − 2n+1
= lim

n→∞
3 − 2

(
2
3

)n+1

1 −
(

2
3

)n+1
= 3 − 0

1 − 0
= 3.

Define an+1 = √
an + 6 with a1 = 2.

(a) Compute an for n = 2, 3, 4, 5.

(b) Show that {an} is increasing and is bounded by 3.

(c) Prove that lim
n→∞ an exists and find its value.

27. Calculate the partial sums S4 and S7 of the series
∞∑

n=1

n − 2

n2 + 2n
.

solution

S4 = −1

3
+ 0 + 1

15
+ 2

24
= − 11

60
= −0.183333;

S7 = −1

3
+ 0 + 1

15
+ 2

24
+ 3

35
+ 4

48
+ 5

63
= 287

4410
= 0.065079.

Find the sum 1 − 1

4
+ 1

42
− 1

43
+ · · · .

29. Find the sum
4

9
+ 8

27
+ 16

81
+ 32

243
+ · · · .

solution This is a geometric series with common ratio r = 2
3 . Therefore,

4

9
+ 8

27
+ 16

81
+ 32

243
+ · · · =

4
9

1 − 2
3

= 4

3
.

Find the sum
∞∑

n=2

(
2

e

)n

.
31. Find the sum

∞∑
n=−1

2n+3

3n
.

solution Note

∞∑
n=−1

2n+3

3n
= 23

∞∑
n=−1

2n

3n
= 8

∞∑
n=−1

(
2

3

)n

;

therefore,

∞∑
n=−1

2n+3

3n
= 8 · 3

2
· 1

1 − 2
3

= 36.
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Show that
∞∑

n=1

(
b − tan−1 n2) diverges if b 
= π

2
.

33. Give an example of divergent series
∞∑

n=1

an and
∞∑

n=1

bn such that
∞∑

n=1

(an + bn) = 1.

solution Let an =
(

1
2

)n + 1, bn = −1. The corresponding series diverge by the Divergence Test; however,

∞∑
n=1

(an + bn) =
∞∑

n=1

(
1

2

)n

=
1
2

1 − 1
2

= 1.

Let S =
∞∑

n=1

(
1

n
− 1

n + 2

)
. Compute SN for N = 1, 2, 3, 4. Find S by showing that

SN = 3

2
− 1

N + 1
− 1

N + 2

35. Evaluate S =
∞∑

n=3

1

n(n + 3)
.

solution Note that
1

n(n + 3)
= 1

3

(
1

n
− 1

n + 3

)
so that

N∑
n=3

1

n(n + 3)
= 1

3

N∑
n=3

(
1

n
− 1

n + 3

)

= 1

3

((
1

3
− 1

6

)
+

(
1

4
− 1

7

)
+

(
1

5
− 1

8

)
(

1

6
− 1

9

)
+ · · · +

(
1

N − 1
− 1

N + 2

)
+

(
1

N
− 1

N + 3

))

= 1

3

(
1

3
+ 1

4
+ 1

5
− 1

N + 1
− 1

N + 2
− 1

N + 3

)
Thus

∞∑
n=3

1

n(n + 3)
= 1

3
lim

N→∞

N∑
n=3

(
1

n
− 1

n + 3

)

= 1

3

(
1

3
+ 1

4
+ 1

5
− 1

N + 1
− 1

N + 2
− 1

N + 3

)
= 1

3

(
1

3
+ 1

4
+ 1

5

)
= 47

180

Find the total area of the infinitely many circles on the interval [0, 1] in Figure 1.In Exercises 37–40, use the Integral Test to determine whether the infinite series converges.

37.
∞∑

n=1

n2

n3 + 1

solution Let f (x) = x2

x3+1
. This function is continuous and positive for x ≥ 1. Because

f ′(x) = (x3 + 1)(2x) − x2(3x2)

(x3 + 1)2
= x(2 − x3)

(x3 + 1)2
,

we see that f ′(x) < 0 and f is decreasing on the interval x ≥ 2. Therefore, the Integral Test applies on the interval x ≥ 2.
Now, ∫ ∞

2

x2

x3 + 1
dx = lim

R→∞

∫ R

2

x2

x3 + 1
dx = 1

3
lim

R→∞
(

ln(R3 + 1) − ln 9
)

= ∞.

The integral diverges; hence, the series
∞∑

n=2

n2

n3 + 1
diverges, as does the series

∞∑
n=1

n2

n3 + 1
.

∞∑
n=1

n2

(n3 + 1)1.01

39.
∞∑

n=1

1

(n + 2)(ln(n + 2))3

solution Let f (x) = 1
(x+2) ln3(x+2)

. Using the substitution u = ln(x + 2), so that du = 1
x+2 dx, we have

∫ ∞
0

f (x) dx =
∫ ∞

ln 2

1

u3
du = lim

R→∞

∫ ∞
ln 2

1

u3
du = lim

R→∞

(
− 1

2u2

∣∣∣∣R
ln 2

)

= lim
R→∞

(
1

2(ln 2)2
− 1

2(ln R)2

)
= 1

2(ln 2)2

Since the integral of f (x) converges, so does the series.
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∞∑
n=1

n3

en4

In Exercises 41–48, use the Comparison or Limit Comparison Test to determine whether the infinite series converges.

41.
∞∑

n=1

1

(n + 1)2

solution For all n ≥ 1,

0 <
1

n + 1
<

1

n
so

1

(n + 1)2
<

1

n2
.

The series
∞∑

n=1

1

n2
is a convergent p-series, so the series

∞∑
n=1

1

(n + 1)2
converges by the Comparison Test.

∞∑
n=1

1√
n + n

43.
∞∑

n=2

n2 + 1

n3.5 − 2

solution Apply the Limit Comparison Test with an = n2+1
n3.5−2

and bn = 1
n1.5 . Now,

L = lim
n→∞

n2+1
n3.5−2

1
n1.5

= lim
n→∞

n3.5 + n1.5

n3.5 − 2
= 1.

Because L exists and
∞∑

n=1

1

n1.5
is a convergent p-series, we conclude by the Limit Comparison Test that the series

∞∑
n=2

n2 + 1

n3.5 − 2
also converges.

∞∑
n=1

1

n − ln n

45.
∞∑

n=2

n√
n5 + 5

solution For all n ≥ 2,
n√

n5 + 5
<

n

n5/2
= 1

n3/2
.

The series
∞∑

n=2

1

n3/2
is a convergent p-series, so the series

∞∑
n=2

n√
n5 + 5

converges by the Comparison Test.

∞∑
n=1

1

3n − 2n

47.
∞∑

n=1

n10 + 10n

n11 + 11n

solution Apply the Limit Comparison Test with an = n10+10n

n11+11n and bn =
(

10
11

)n
. Then,

L = lim
n→∞

an

bn
= lim

n→∞

n10+10n

n11+11n(
10
11

)n = lim
n→∞

n10+10n

10n

n11+11n

11n

= lim
n→∞

n10

10n + 1

n11

11n + 1
= 1.

The series
∞∑

n=1

(
10

11

)n

is a convergent geometric series; because L exists, we may therefore conclude by the Limit

Comparison Test that the series
∞∑

n=1

n10 + 10n

n11 + 11n
also converges.

∞∑
n=1

n20 + 21n

n21 + 20n

49. Determine the convergence of
∞∑

n=1

2n + n

3n − 2
using the Limit Comparison Test with bn = ( 2

3

)n.

solution With an = 2n+n
3n−2 , we have

L = lim
n→∞

an

bn
= lim

n→∞
2n + n

3n − 2
· 3n

2n
= lim

n→∞
6n + n3n

6n − 2n+1
= lim

n→∞
1 + n

(
1
2

)n

1 − 2
(

1
3

)n = 1

Since L = 1, the two series either both converge or both diverge. Since
∞∑

n=1

(
2

3

)n

is a convergent geometric series, the

Limit Comparison Test tells us that
∞∑

n=1

2n + n

3n − 2
also converges.
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Determine the convergence of
∞∑

n=1

ln n

1.5n
using the Limit Comparison Test with bn = 1

1.4n
.

51. Let an = 1 −
√

1 − 1
n . Show that lim

n→∞ an = 0 and that
∞∑

n=1

an diverges. Hint: Show that an ≥ 1
2n

.

solution

1 −
√

1 − 1

n
= 1 −

√
n − 1

n
=

√
n − √

n − 1√
n

= n − (n − 1)√
n(

√
n + √

n − 1)
= 1

n +
√

n2 − n

≥ 1

n +
√

n2
= 1

2n
.

The series
∞∑

n=2

1

2n
diverges, so the series

∑∞
n=2

(
1 −

√
1 − 1

n

)
also diverges by the Comparison Test.

Determine whether
∞∑

n=2

(
1 −

√
1 − 1

n2

)
converges.

53. Let S =
∞∑

n=1

n

(n2 + 1)2
.

(a) Show that S converges.
(b) Use Eq. (4) in Exercise 83 of Section 10.3 with M = 99 to approximate S. What is the maximum size of the
error?

solution
(a) For n ≥ 1,

n

(n2 + 1)2
<

n

(n2)2
= 1

n3
.

The series
∞∑

n=1

1

n3
is a convergent p-series, so the series

∞∑
n=1

n

(n2 + 1)2
also converges by the Comparison Test.

(b) With an = n
(n2+1)2 , f (x) = x

(x2+1)2 and M = 99, Eq. (4) in Exercise 83 of Section 10.3 becomes

99∑
n=1

n

(n2 + 1)2
+

∫ ∞
100

x

(x2 + 1)2
dx ≤ S ≤

100∑
n=1

n

(n2 + 1)2
+

∫ ∞
100

x

(x2 + 1)2
dx,

or

0 ≤ S −
⎛
⎝ 99∑

n=1

n

(n2 + 1)2
+

∫ ∞
100

x

(x2 + 1)2
dx

⎞
⎠ ≤ 100

(1002 + 1)2
.

Now,

99∑
n=1

n

(n2 + 1)2
= 0.397066274; and

∫ ∞
100

x

(x2 + 1)2
dx = lim

R→∞

∫ R

100

x

(x2 + 1)2
dx = 1

2
lim

R→∞

(
− 1

R2 + 1
+ 1

1002 + 1

)

= 1

20002
= 0.000049995;

thus,

S ≈ 0.397066274 + 0.000049995 = 0.397116269.

The bound on the error in this approximation is

100

(1002 + 1)2
= 9.998 × 10−7.

In Exercises 54–57, determine whether the series converges absolutely. If it does not, determine whether it converges
conditionally.

∞∑
n=1

(−1)n

3√n + 2n

55.
∞∑

n=1

(−1)n

n1.1 ln(n + 1)

solution Consider the corresponding positive series
∞∑

n=1

1

n1.1 ln(n + 1)
. Because

1

n1.1 ln(n + 1)
<

1

n1.1
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and
∞∑

n=1

1

n1.1
is a convergent p-series, we can conclude by the Comparison Test that

∞∑
n=1

(−1)n

n1.1 ln(n + 1)
also converges.

Thus,
∞∑

n=1

(−1)n

n1.1 ln(n + 1)
converges absolutely.

∞∑
n=1

cos
(
π
4 + πn

)
√

n

57.
∞∑

n=1

cos
(
π
4 + 2πn

)
√

n

solution cos
(
π
4 + 2πn

) = cos π
4 =

√
2

2 , so

∞∑
n=1

cos
(
π
4 + 2πn

)
√

n
=

√
2

2

∞∑
n=1

1√
n

.

This is a divergent p-series, so the series
∞∑

n=1

cos
(
π
4 + 2πn

)
√

n
diverges.

Use a computer algebra system to approximate
∞∑

n=1

(−1)n

n3 + √
n

to within an error of at most 10−5.
59. Catalan’s constant is defined by K =

∞∑
k=0

(−1)k

(2k + 1)2
.

(a) How many terms of the series are needed to calculate K with an error of less than 10−6?
(b) Carry out the calculation.

solution Using the error bound for an alternating series, we have

|SN − K| ≤ 1

(2(N + 1) + 1)2
= 1

(2N + 3)2
.

For accuracy to three decimal places, we must choose N so that

1

(2N + 3)2
< 5 × 10−3 or (2N + 3)2 > 2000.

Solving for N yields

N >
1

2

(√
2000 − 3

)
≈ 20.9.

Thus,

K ≈
21∑

k=0

(−1)k

(2k + 1)2
= 0.915707728.

Give an example of conditionally convergent series
∞∑

n=1

an and
∞∑

n=1

bn such that
∞∑

n=1

(an + bn) converges abso-

lutely.

61. Let
∞∑

n=1

an be an absolutely convergent series. Determine whether the following series are convergent or divergent:

(a)
∞∑

n=1

(
an + 1

n2

)
(b)

∞∑
n=1

(−1)nan

(c)
∞∑

n=1

1

1 + a2
n

(d)
∞∑

n=1

|an|
n

solution Because
∞∑

n=1

an converges absolutely, we know that
∞∑

n=1

an converges and that
∞∑

n=1

|an| converges.

(a) Because we know that
∞∑

n=1

an converges and the series
∞∑

n=1

1

n2
is a convergent p-series, the sum of these two series,

∞∑
n=1

(
an + 1

n2

)
also converges.

(b) We have,

∞∑
n=1

∣∣(−1)nan

∣∣ =
∞∑

n=1

|an|

Because
∞∑

n=1

|an| converges, it follows that
∞∑

n=1

(−1)nan converges absolutely, which implies that
∞∑

n=1

(−1)nan converges.
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(c) Because
∞∑

n=1

an converges, limn→∞ an = 0. Therefore,

lim
n→∞

1

1 + a2
n

= 1

1 + 02
= 1 
= 0,

and the series
∞∑

n=1

1

1 + a2
n

diverges by the Divergence Test.

(d) |an|
n ≤ |an| and the series

∞∑
n=1

|an| converges, so the series
∞∑

n=1

|an|
n

also converges by the Comparison Test.

Let {an} be a positive sequence such that lim
n→∞

n
√

an = 1
2 . Determine whether the following series converge or

diverge:

(a)
∞∑

n=1

2an (b)
∞∑

n=1

3nan (c)
∞∑

n=1

√
an

In Exercises 63–70, apply the Ratio Test to determine convergence or divergence, or state that the Ratio Test is inconclusive.

63.
∞∑

n=1

n5

5n

solution With an = n5

5n , ∣∣∣∣an+1

an

∣∣∣∣ = (n + 1)5

5n+1
· 5n

n5 = 1

5

(
1 + 1

n

)5
,

and

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1

5
lim

n→∞

(
1 + 1

n

)5
= 1

5
· 1 = 1

5
.

Because ρ < 1, the series converges by the Ratio Test.

∞∑
n=1

√
n + 1

n8

65.
∞∑

n=1

1

n2n + n3

solution With an = 1
n2n+n3 ,

∣∣∣∣an+1

an

∣∣∣∣ = n2n + n3

(n + 1)2n+1 + (n + 1)3
=

n2n
(

1 + n2

2n

)
(n + 1)2n+1

(
1 + (n+1)2

2n+1

) = 1

2
· n

n + 1
· 1 + n2

2n

1 + (n+1)2

2n+1

,

and

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1

2
· 1 · 1 = 1

2
.

Because ρ < 1, the series converges by the Ratio Test.

∞∑
n=1

n4

n!
67.

∞∑
n=1

2n2

n!

solution With an = 2n2

n! ,

∣∣∣∣an+1

an

∣∣∣∣ = 2(n+1)2

(n + 1)! · n!
2n2 = 22n+1

n + 1
and ρ = lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣ = ∞.

Because ρ > 1, the series diverges by the Ratio Test.

∞∑
n=4

ln n

n3/2

69.
∞∑

n=1

(n

2

)n 1

n!
solution With an = (

n
2

)n 1
n! ,∣∣∣∣an+1

an

∣∣∣∣ =
(

n + 1

2

)n+1 1

(n + 1)! ·
(

2

n

)n

n! = 1

2

(
n + 1

n

)n

= 1

2

(
1 + 1

n

)n

,

and

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1

2
e.

Because ρ = e
2 > 1, the series diverges by the Ratio Test.
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∞∑
n=1

(n

4

)n 1

n!
In Exercises 71–74, apply the Root Test to determine convergence or divergence, or state that the Root Test is inconclusive.

71.
∞∑

n=1

1

4n

solution With an = 1
4n ,

L = lim
n→∞

n
√

an = lim
n→∞

n

√
1

4n
= 1

4
.

Because L < 1, the series converges by the Root Test.

∞∑
n=1

(
2

n

)n73.
∞∑

n=1

(
3

4n

)n

solution With an =
(

3
4n

)n
,

L = lim
n→∞

n
√

an = lim
n→∞

n

√(
3

4n

)n

= lim
n→∞

3

4n
= 0.

Because L < 1, the series converges by the Root Test.

∞∑
n=1

(
cos

1

n

)n3In Exercises 75–92, determine convergence or divergence using any method covered in the text.

75.
∞∑

n=1

(
2

3

)n

solution This is a geometric series with ratio r = 2
3 < 1; hence, the series converges.

∞∑
n=1

π7n

e8n

77.
∞∑

n=1

e−0.02n

solution This is a geometric series with common ratio r = 1
e0.02 ≈ 0.98 < 1; hence, the series converges.

∞∑
n=1

ne−0.02n79.
∞∑

n=1

(−1)n−1
√

n + √
n + 1

solution In this alternating series, an = 1√
n+√

n+1
. The sequence {an} is decreasing, and

lim
n→∞ an = 0;

therefore the series converges by the Leibniz Test.

∞∑
n=10

1

n(ln n)3/2

81.
∞∑

n=2

(−1)n

ln n

solution The sequence an = 1
ln n

is decreasing for n ≥ 10 and

lim
n→∞ an = 0;

therefore, the series converges by the Leibniz Test.

∞∑
n=1

en

n!
83.

∞∑
n=1

1

n
√

n + ln n

solution For n ≥ 1,

1

n
√

n + ln n
≤ 1

n
√

n
= 1

n3/2
.

The series
∞∑

n=1

1

n3/2
is a convergent p-series, so the series

∞∑
n=1

1

n
√

n + ln n
converges by the Comparison Test.
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∞∑
n=1

1
3√n(1 + √

n)

85.
∞∑

n=1

(
1√
n

− 1√
n + 1

)

solution This series telescopes:

∞∑
n=1

(
1√
n

− 1√
n + 1

)
=

(
1 − 1√

2

)
+

(
1√
2

− 1√
3

)
+

(
1√
3

− 1√
4

)
+ . . .

so that the nth partial sum Sn is

Sn =
(

1 − 1√
2

)
+

(
1√
2

− 1√
3

)
+

(
1√
3

− 1√
4

)
+ · · · +

(
1√
n

− 1√
n + 1

)
= 1 − 1√

n + 1

and then

∞∑
n=1

(
1√
n

− 1√
n + 1

)
= lim

n→∞ Sn = 1 − lim
n→∞

1√
n + 1

= 1

∞∑
n=1

(
ln n − ln(n + 1)

)87.
∞∑

n=1

1

n + √
n

solution For n ≥ 1,
√

n ≤ n, so that

∞∑
n=1

1

n + √
n

≥
∞∑

n=1

1

2n

which diverges since it is a constant multiple of the harmonic series. Thus
∞∑

n=1

1

n + √
n

diverges as well, by the Comparison

Test.

∞∑
n=2

cos(πn)

n2/3

89.
∞∑

n=2

1

nln n

solution For n ≥ N large enough, ln n ≥ 2 so that

∞∑
n=N

1

nln n
≤

∞∑
n=N

1

n2

which is a convergent p-series. Thus by the Comparison Test,
∞∑

n=N

1

nln n
also converges; adding back in the terms for

n < N does not affect convergence.

∞∑
n=2

1

ln3 n

91.
∞∑

n=1

sin2 π

n

solution For all x > 0, sin x < x. Therefore, sin2 x < x2, and for x = π
n ,

sin2 π

n
<

π2

n2
= π2 · 1

n2
.

The series
∞∑

n=1

1

n2
is a convergent p-series, so the series

∞∑
n=1

sin2 π

n
also converges by the Comparison Test.

∞∑
n=0

22n

n!
In Exercises 93–98, find the interval of convergence of the power series.

93.
∞∑

n=0

2nxn

n!
solution With an = 2nxn

n! ,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣2n+1xn+1

(n + 1)! · n!
2nxn

∣∣∣∣∣ = lim
n→∞

∣∣∣∣x · 2

n

∣∣∣∣ = 0

Then ρ < 1 for all x, so that the radius of convergence is R = ∞, and the series converges for all x.

∞∑
n=0

xn

n + 1
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95.
∞∑

n=0

n6

n8 + 1
(x − 3)n

solution With an = n6(x−3)n

n8+1
,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ (n + 1)6(x − 3)n+1

(n + 1)8 − 1
· n8 + 1

n6(x − 3)n

∣∣∣∣∣
= lim

n→∞

∣∣∣∣∣(x − 3) · (n + 1)6(n8 + 1)

n6((n + 1)8 + 1)

∣∣∣∣∣
= lim

n→∞

∣∣∣∣∣(x − 3) · n14 + terms of lower degree

n14 + terms of lower degree

∣∣∣∣∣ = |x − 3|

Then ρ < 1 when |x − 3| < 1, so the radius of convergence is 1, and the series converges absolutely for |x − 3| < 1, or

2 < x < 4. For the endpoint x = 4, the series becomes
∞∑

n=0

n6

n8 + 1
, which converges by the Comparison Test comparing

with the convergent p-series
∞∑

n=1

1

n2
. For the endpoint x = 2, the series becomes

∞∑
n=0

n6(−1)n

n8 + 1
, which converges by the

Leibniz Test. The series
∞∑

n=0

n6(x − 3)n

n8 + 1
therefore converges for 2 ≤ x ≤ 4.

∞∑
n=0

nxn97.
∞∑

n=0

(nx)n

solution With an = nnxn, and assuming x 
= 0,

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ (n + 1)n+1xn+1

nnxn

∣∣∣∣∣ = lim
n→∞

∣∣∣∣x(n + 1) ·
(

n + 1

n

)n∣∣∣∣ = ∞

since
(

n+1
n

)n =
(

1 + 1
n

)n
converges to e and the (n + 1) term diverges to ∞. Thus ρ < 1 only when x = 0, so the

series converges only for x = 0.

∞∑
n=0

(2x − 3)n

n ln n

99. Expand f (x) = 2

4 − 3x
as a power series centered at c = 0. Determine the values of x for which the series converges.

solution Write

2

4 − 3x
= 1

2

1

1 − 3
4x

.

Substituting 3
4x for x in the Maclaurin series for 1

1−x
, we obtain

1

1 − 3
4x

=
∞∑

n=0

(
3

4

)n

xn.

This series converges for
∣∣∣ 3

4x

∣∣∣ < 1, or |x| < 4
3 . Hence, for |x| < 4

3 ,

2

4 − 3x
= 1

2

∞∑
n=0

(
3

4

)n

xn.

Prove that

∞∑
n=0

ne−nx = e−x

(1 − e−x)2
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101. Let F(x) =
∞∑

k=0

x2k

2k · k! .

(a) Show that F(x) has infinite radius of convergence.

(b) Show that y = F(x) is a solution of

y′′ = xy′ + y, y(0) = 1, y′(0) = 0

(c) Plot the partial sums SN for N = 1, 3, 5, 7 on the same set of axes.

solution

(a) With ak = x2k

2k ·k! , ∣∣∣∣ak+1

ak

∣∣∣∣ = |x|2k+2

2k+1 · (k + 1)! · 2k · k!
|x|2k

= x2

2(k + 1)
,

and

ρ = lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ = x2 · 0 = 0.

Because ρ < 1 for all x, we conclude that the series converges for all x; that is, R = ∞.

(b) Let

y = F(x) =
∞∑

k=0

x2k

2k · k! .

Then

y′ =
∞∑

k=1

2kx2k−1

2kk! =
∞∑

k=1

x2k−1

2k−1(k − 1)! ,

y′′ =
∞∑

k=1

(2k − 1)x2k−2

2k−1(k − 1)! ,

and

xy′ + y = x

∞∑
k=1

x2k−1

2k−1(k − 1)! +
∞∑

k=0

x2k

2kk! =
∞∑

k=1

x2k

2k−1(k − 1)! + 1 +
∞∑

k=1

x2k

2kk!

= 1 +
∞∑

k=1

(2k + 1)x2k

2kk! =
∞∑

k=0

(2k + 1)x2k

2kk! =
∞∑

k=1

(2k − 1)x2k−2

2k−1(k − 1)! = y′′.

Moreover,

y(0) = 1 +
∞∑

k=1

02k

2kk! = 1 and y′(0) =
∞∑

k=1

02k−1

2k−1(k − 1)! = 0.

Thus,
∞∑

k=0

x2k

2kk! is the solution to the equation y′′ = xy′ + y satisfying y(0) = 1, y′(0) = 0.

(c) The partial sums S1, S3, S5 and S7 are plotted in the figure below.

y

x
−1−2 1

1

2

3

4

5

6

7

2

Find a power series P(x) =
∞∑

n=0

anxn that satisfies the Laguerre differential equation

xy′′ + (1 − x)y′ − y = 0
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In Exercises 103–112, find the Taylor series centered at c.

103. f (x) = e4x , c = 0

solution Substituting 4x for x in the Maclaurin series for ex yields

e4x =
∞∑

n=0

(4x)n

n! =
∞∑

n=0

4n

n! xn.

f (x) = e2x , c = −1
105. f (x) = x4, c = 2

solution We have

f ′(x) = 4x3 f ′′(x) = 12x2 f ′′′(x) = 24x f (4)(x) = 24

and all higher derivatives are zero, so that

f (2) = 24 = 16 f ′(2) = 4 · 23 = 32 f ′′(2) = 12 · 22 = 48 f ′′′(2) = 24 · 2 = 48 f (4)(2) = 24

Thus the Taylor series centered at c = 2 is

4∑
n=0

f (n)(2)

n! (x − 2)n = 16 + 32

1! (x − 2) + 48

2! (x − 2)2 + 48

3! (x − 2)3 + 24

4! (x − 2)4

= 16 + 32(x − 2) + 24(x − 2)2 + 8(x − 2)3 + (x − 2)4

f (x) = x3 − x, c = −2
107. f (x) = sin x, c = π

solution We have

f (4n)(x) = sin x f (4n+1)(x) = cos x f (4n+2)(x) = − sin x f (4n+3)(x) = − cos x

so that

f (4n)(π) = sin π = 0 f (4n+1)(π) = cos π = −1 f (4n+2)(π) = − sin π = 0 f (4n+3)(π) = − cos π = 1

Then the Taylor series centered at c = π is

∞∑
n=0

f (n)(π)

n! (x − π)n = −1

1! (x − π) + 1

3! (x − π)3 + −1

5! (x − π)5 + 1

7! (x − π)7 − . . .

= −(x − π) + 1

6
(x − π)3 − 1

120
(x − π)5 + 1

5040
(x − π)7 − . . .

f (x) = ex−1, c = −1109. f (x) = 1

1 − 2x
, c = −2

solution Write

1

1 − 2x
= 1

5 − 2(x + 2)
= 1

5

1

1 − 2
5 (x + 2)

.

Substituting 2
5 (x + 2) for x in the Maclaurin series for 1

1−x
yields

1

1 − 2
5 (x + 2)

=
∞∑

n=0

2n

5n
(x + 2)n;

hence,

1

1 − 2x
= 1

5

∞∑
n=0

2n

5n
(x + 2)n =

∞∑
n=0

2n

5n+1
(x + 2)n.

f (x) = 1

(1 − 2x)2
, c = −2
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111. f (x) = ln
x

2
, c = 2

solution Write

ln
x

2
= ln

(
(x − 2) + 2

2

)
= ln

(
1 + x − 2

2

)
.

Substituting x−2
2 for x in the Maclaurin series for ln(1 + x) yields

ln
x

2
=

∞∑
n=1

(−1)n+1
(

x−2
2

)n

n
=

∞∑
n=1

(−1)n+1(x − 2)n

n · 2n
.

This series is valid for |x − 2| < 2.

f (x) = x ln
(

1 + x

2

)
, c = 0

In Exercises 113–116, find the first three terms of the Maclaurin series of f (x) and use it to calculate f (3)(0).

113. f (x) = (x2 − x)ex2

solution Substitute x2 for x in the Maclaurin series for ex to get

ex2 = 1 + x2 + 1

2
x4 + 1

6
x6 + . . .

so that the Maclaurin series for f (x) is

(x2 − x)ex2 = x2 + x4 + 1

2
x6 + · · · − x − x3 − 1

2
x5 − · · · = −x + x2 − x3 + x4 + . . .

The coefficient of x3 is

f ′′′(0)

3! = −1

so that f ′′′(0) = −6.

f (x) = tan−1(x2 − x)115. f (x) = 1

1 + tan x

solution Substitute − tan x in the Maclaurin series for 1
1−x

to get

1

1 + tan x
= 1 − tan x + (tan x)2 − (tan x)3 + . . .

We have not yet encountered the Maclaurin series for tan x. We need only the terms up through x3, so compute

tan′(x) = sec2 x tan′′(x) = 2(tan x) sec2 x tan′′′(x) = 2(1 + tan2 x) sec2 x + 4(tan2 x) sec2 x

so that

tan′(0) = 1 tan′′(0) = 0 tan′′′(0) = 2

Then the Maclaurin series for tan x is

tan x = tan 0 + tan′(0)

1! x + tan′′(0)

2! x2 + tan′′′(0)

3! x3 + · · · = x + 1

3
x3 + . . .

Substitute these into the series above to get

1

1 + tan x
= 1 −

(
x + 1

3
x3

)
+

(
x + 1

3
x3

)2
−

(
x + 1

3
x3

)3
+ . . .

= 1 − x − 1

3
x3 + x2 − x3 + higher degree terms

= 1 − x + x2 − 4

3
x3 + higher degree terms

The coefficient of x3 is

f ′′′(0)

3! = −4

3

so that

f ′′′(0) = −6 · 4

3
= −8
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f (x) = (sin x)
√

1 + x117. Calculate
π

2
− π3

233! + π5

255! − π7

277! + · · · .

solution We recognize that

π

2
− π3

233! + π5

255! − π7

277! + · · · =
∞∑

n=0

(−1)n
(π/2)2n+1

(2n + 1)!

is the Maclaurin series for sin x with x replaced by π/2. Therefore,

π

2
− π3

233! + π5

255! − π7

277! + · · · = sin
π

2
= 1.

Find the Maclaurin series of the function F(x) =
∫ x

0

et − 1

t
dt .
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11 PARAMETRIC EQUATIONS,
POLAR COORDINATES,
AND CONIC SECTIONS

11.1 Parametric Equations (LT Section 12.1)

Preliminary Questions
1. Describe the shape of the curve x = 3 cos t, y = 3 sin t .

solution For all t ,

x2 + y2 = (3 cos t)2 + (3 sin t)2 = 9(cos2 t + sin2 t) = 9 · 1 = 9,

therefore the curve is on the circle x2 + y2 = 9. Also, each point on the circle x2 + y2 = 9 can be represented in the
form (3 cos t, 3 sin t) for some value of t . We conclude that the curve x = 3 cos t , y = 3 sin t is the circle of radius 3
centered at the origin.

2. How does x = 4 + 3 cos t, y = 5 + 3 sin t differ from the curve in the previous question?

solution In this case we have

(x − 4)2 + (y − 5)2 = (3 cos t)2 + (3 sin t)2 = 9(cos2 t + sin2 t) = 9 · 1 = 9

Therefore, the given equations parametrize the circle of radius 3 centered at the point (4, 5).

3. What is the maximum height of a particle whose path has parametric equations x = t9, y = 4 − t2?

solution The particle’s height is y = 4 − t2. To find the maximum height we set the derivative equal to zero and
solve:

dy

dt
= d

dt
(4 − t2) = −2t = 0 or t = 0

The maximum height is y(0) = 4 − 02 = 4.

4. Can the parametric curve (t, sin t) be represented as a graph y = f (x)? What about (sin t, t)?

solution In the parametric curve (t, sin t) we have x = t and y = sin t , therefore, y = sin x. That is, the curve can be
represented as a graph of a function. In the parametric curve (sin t, t) we have x = sin t , y = t , therefore x = sin y. This
equation does not define y as a function of x, therefore the parametric curve (sin t, t) cannot be represented as a graph of
a function y = f (x).

5. Match the derivatives with a verbal description:

(a)
dx

dt
(b)

dy

dt
(c)

dy

dx
(i) Slope of the tangent line to the curve

(ii) Vertical rate of change with respect to time

(iii) Horizontal rate of change with respect to time

solution

(a) The derivative
dx

dt
is the horizontal rate of change with respect to time.

(b) The derivative
dy

dt
is the vertical rate of change with respect to time.

(c) The derivative
dy

dx
is the slope of the tangent line to the curve.

Hence, (a) ↔ (iii), (b) ↔ (ii), (c) ↔ (i)

96
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Exercises
1. Find the coordinates at times t = 0, 2, 4 of a particle following the path x = 1 + t3, y = 9 − 3t2.

solution Substituting t = 0, t = 2, and t = 4 into x = 1 + t3, y = 9 − 3t2 gives the coordinates of the particle at
these times respectively. That is,

(t = 0) x = 1 + 03 = 1, y = 9 − 3 · 02 = 9 ⇒ (1, 9)

(t = 2) x = 1 + 23 = 9, y = 9 − 3 · 22 = −3 ⇒ (9, −3)

(t = 4) x = 1 + 43 = 65, y = 9 − 3 · 42 = −39 ⇒ (65, −39).

Find the coordinates at t = 0, π
4 , π of a particle moving along the path c(t) = (cos 2t, sin2 t).

3. Show that the path traced by the bullet in Example 3 is a parabola by eliminating the parameter.

solution The path traced by the bullet is given by the following parametric equations:

x = 200t, y = 400t − 16t2

We eliminate the parameter. Since x = 200t , we have t = x

200
. Substituting into the equation for y we obtain:

y = 400t − 16t2 = 400 · x

200
− 16

( x

200

)2 = 2x − x2

2500

The equation y = − x2

2500
+ 2x is the equation of a parabola.

Use the table of values to sketch the parametric curve (x(t), y(t)), indicating the direction of motion.

t −3 −2 −1 0 1 2 3

x −15 0 3 0 −3 0 15

y 5 0 −3 −4 −3 0 5

5. Graph the parametric curves. Include arrows indicating the direction of motion.

(a) (t, t), −∞ < t < ∞ (b) (sin t, sin t), 0 ≤ t ≤ 2π

(c) (et , et ), −∞ < t < ∞ (d) (t3, t3), −1 ≤ t ≤ 1

solution

(a) For the trajectory c(t) = (t, t), −∞ < t < ∞ we have y = x. Also the two coordinates tend to ∞ and −∞ as
t → ∞ and t → −∞ respectively. The graph is shown next:

x

y

(b) For the curve c(t) = (sin t, sin t), 0 ≤ t ≤ 2π , we have y = x. sin t is increasing for 0 ≤ t ≤ π
2 , decreasing for

π
2 ≤ t ≤ 3π

2 and increasing again for 3π
2 ≤ t ≤ 2π . Hence the particle moves from c(0) = (0, 0) to c(π

2 ) = (1, 1), then

moves back to c( 3π
2 ) = (−1, −1) and then returns to c(2π) = (0, 0). We obtain the following trajectory:

x

y

t =     (1,1)π
2

t = 0
x

y

t =     (1,1)π
2

t =      (−1,−1)3π
2

x

y

t =      (−1,−1)3π
2

0 < t ≤ π
2

π
2 ≤ t ≤ 3π

2
3π
2 ≤ t < 2π

These three parts of the trajectory are shown together in the next figure:
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x

y

t =      (−1,−1)3π
2

t =     (1,1)π
2

t = 0
t = 2π

(c) For the trajectory c(t) = (et , et ), −∞ < t < ∞, we have y = x. However since lim
t→−∞ et = 0 and lim

t→∞ et = ∞,

the trajectory is the part of the line y = x, 0 < x.

x

y

(d) For the trajectory c(t) = (t3, t3), −1 ≤ t ≤ 1, we have again y = x. Since the function t3 is increasing the particle
moves in one direction starting at ((−1)3, (−1)3) = (−1, −1) and ending at (13, 13) = (1, 1). The trajectory is shown
next:

x

y

t = 1(1,1)

t = −1 (−1,−1)

Give two different parametrizations of the line through (4, 1) with slope 2.In Exercises 7–14, express in the form y = f (x) by eliminating the parameter.

7. x = t + 3, y = 4t

solution We eliminate the parameter. Since x = t + 3, we have t = x − 3. Substituting into y = 4t we obtain

y = 4t = 4(x − 3) ⇒ y = 4x − 12

x = t−1, y = t−29. x = t , y = tan−1(t3 + et )

solution Replacing t by x in the equation for y we obtain y = tan−1(x3 + ex).

x = t2, y = t3 + 1
11. x = e−2t , y = 6e4t

solution We eliminate the parameter. Since x = e−2t , we have −2t = ln x or t = − 1
2 ln x. Substituting in y = 6e4t

we get

y = 6e4t = 6e4·(− 1
2 ln x) = 6e−2 ln x = 6eln x−2 = 6x−2 ⇒ y = 6

x2
, x > 0.

x = 1 + t−1, y = t2
13. x = ln t , y = 2 − t

solution Since x = ln t we have t = ex . Substituting in y = 2 − t we obtain y = 2 − ex .

x = cos t , y = tan tIn Exercises 15–18, graph the curve and draw an arrow specifying the direction corresponding to motion.

15. x = 1
2 t , y = 2t2

solution Let c(t) = (x(t), y(t)) = ( 1
2 t, 2t2). Then c(−t) = (−x(t), y(t)) so the curve is symmetric with respect to

the y-axis. Also, the function 1
2 t is increasing. Hence there is only one direction of motion on the curve. The corresponding

function is the parabola y = 2 · (2x)2 = 8x2. We obtain the following trajectory:
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x

y

t = 0

x = 2 + 4t , y = 3 + 2t
17. x = πt , y = sin t

solution We find the function by eliminating t . Since x = πt , we have t = x
π . Substituting t = x

π into y = sin t we
get y = sin x

π . We obtain the following curve:

x

y

(4π2,0)

(−2π2,0)

x = t2, y = t3
19. Match the parametrizations (a)–(d) below with their plots in Figure 14, and draw an arrow indicating the direction of
motion.

2π

xx

yy

1555

(II) (III)(I)

x x

1020

−1

5

yy

(IV)

FIGURE 14

(a) c(t) = (sin t, −t) (b) c(t) = (t2 − 9, 8t − t3)

(c) c(t) = (1 − t, t2 − 9) (d) c(t) = (4t + 2, 5 − 3t)

solution
(a) In the curve c(t) = (sin t, −t) the x-coordinate is varying between −1 and 1 so this curve corresponds to plot IV. As
t increases, the y-coordinate y = −t is decreasing so the direction of motion is downward.

x

y

−1

2π

−2π

1

(IV) c(t) = (sin t, −t)

(b) The curve c(t) = (t2 − 9, −t3 − 8) intersects the x-axis where y = −t3 − 8 = 0, or t = −2. The x-intercept is
(−5, 0). The y-intercepts are obtained where x = t2 − 9 = 0, or t = ±3. The y-intercepts are (0, −35) and (0, 19). As
t increases from −∞ to 0, x and y decrease, and as t increases from 0 to ∞, x increases and y decreases. We obtain the
following trajectory:

x

y

t = 0, (−9,−8) −5

19

(II)
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(c) The curve c(t) = (1 − t, t2 − 9) intersects the y-axis where x = 1 − t = 0, or t = 1. The y-intercept is (0, −8). The
x-intercepts are obtained where t2 − 9 = 0 or t = ±3. These are the points (−2, 0) and (4, 0). Setting t = 1 − x we get

y = t2 − 9 = (1 − x)2 − 9 = x2 − 2x − 8.

As t increases the x coordinate decreases and we obtain the following trajectory:

x

y

−2 4 5

10

(III)

(d) The curve c(t) = (4t + 2, 5 − 3t) is a straight line, since eliminating t in x = 4t + 2 and substituting in y = 5 − 3t

gives y = 5 − 3 · x−2
4 = − 3

4x + 13
2 which is the equation of a line. As t increases, the x coordinate x = 4t + 2 increases

and the y-coordinate y = 5 − 3t decreases. We obtain the following trajectory:

x

y

5

5

(I)

A particle follows the trajectory

x(t) = 1

4
t3 + 2t, y(t) = 20t − t2

with t in seconds and distance in centimeters.

(a) What is the particle’s maximum height?

(b) When does the particle hit the ground and how far from the origin does it land?

21. Find an interval of t-values such that c(t) = (cos t, sin t) traces the lower half of the unit circle.

solution For t = π , we have c(π) = (−1, 0). As t increases from π to 2π , the x-coordinate of c(t) increases from
−1 to 1, and the y-coordinate decreases from 0 to −1 (at t = 3π/2) and then returns to 0. Thus, for t in [π, 2π ], the
equation traces the lower part of the circle.

Find an interval of t-values such that c(t) = (2t + 1, 4t − 5) parametrizes the segment from (0, −7) to (7, 7).In Exercises 23–38, find parametric equations for the given curve.

23. y = 9 − 4x

solution This is a line through P = (0, 9) with slope m = −4. Using the parametric representation of a line, as given
in Example 3, we obtain c(t) = (t, 9 − 4t).

y = 8x2 − 3x
25. 4x − y2 = 5

solution We define the parameter t = y. Then, x = 5 + y2

4
= 5 + t2

4
, giving us the parametrization c(t) =(5 + t2

4
, t
)

.

x2 + y2 = 49
27. (x + 9)2 + (y − 4)2 = 49

solution This is a circle of radius 7 centered at (−9, 4). Using the parametric representation of a circle we get
c(t) = (−9 + 7 cos t, 4 + 7 sin t).

(x

5

)2 +
( y

12

)2 = 1

29. Line of slope 8 through (−4, 9)

solution Using the parametric representation of a line given in Example 3, we get the parametrization c(t) = (−4 +
t, 9 + 8t).

Line through (2, 5) perpendicular to y = 3x
31. Line through (3, 1) and (−5, 4)

solution We use the two-point parametrization of a line with P = (a, b) = (3, 1) and Q = (c, d) = (−5, 4). Then
c(t) = (3 − 8t, 1 + 3t) for −∞ < t < ∞.

Line through
( 1

3 , 1
6

)
and

(− 7
6 , 5

3

)
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33. Segment joining (1, 1) and (2, 3)

solution We use the two-point parametrization of a line with P = (a, b) = (1, 1) and Q = (c, d) = (2, 3). Then
c(t) = (1 + t, 1 + 2t); since we want only the segment joining the two points, we want 0 ≤ t ≤ 1.

Segment joining (−3, 0) and (0, 4)
35. Circle of radius 4 with center (3, 9)

solution Substituting (a, b) = (3, 9) and R = 4 in the parametric equation of the circle we get c(t) = (3 + 4 cos t, 9 +
4 sin t).

Ellipse of Exercise 28, with its center translated to (7, 4)
37. y = x2, translated so that the minimum occurs at (−4, −8)

solution We may parametrize y = x2 by (t, t2) for −∞ < t < ∞. The minimum of y = x2 occurs at (0, 0),

so the desired curve is translated by (−4, −8) from y = x2. Thus a parametrization of the desired curve is c(t) =
(−4 + t, −8 + t2).

y = cos x translated so that a maximum occurs at (3, 5)In Exercises 39–42, find a parametrization c(t) of the curve satisfying the given condition.

39. y = 3x − 4, c(0) = (2, 2)

solution Let x(t) = t + a and y(t) = 3x − 4 = 3(t + a) − 4. We want x(0) = 2, thus we must use a = 2. Our line
is c(t) = (x(t), y(t)) = (t + 2, 3(t + 2) − 4) = (t + 2, 3t + 2).

y = 3x − 4, c(3) = (2, 2)
41. y = x2, c(0) = (3, 9)

solution Let x(t) = t + a and y(t) = x2 = (t + a)2. We want x(0) = 3, thus we must use a = 3. Our curve is

c(t) = (x(t), y(t)) = (t + 3, (t + 3)2) = (t + 3, t2 + 6t + 9).

x2 + y2 = 4, c(0) = (1,
√

3)
43. Describe c(t) = (sec t, tan t) for 0 ≤ t < π

2 in the form y = f (x). Specify the domain of x.

solution The function x = sec t has period 2π and y = tan t has period π . The graphs of these functions in the
interval −π ≤ t ≤ π , are shown below:

p−p

p
2

p
2

−

y

x
p−p p

2
p
2

−

y

x

x = sec t y = tan t

x = sec t ⇒ x2 = sec2 t

y = tan t ⇒ y2 = tan2 t = sin2 t

cos2 t
= 1 − cos2 t

cos2 t
= sec2 t − 1 = x2 − 1

Hence the graph of the curve is the hyperbola x2 − y2 = 1. The function x = sec t is an even function while y = tan t is
odd. Also x has period 2π and y has period π . It follows that the intervals −π ≤ t < −π

2 , −π
2 < t < π

2 and π
2 < t < π

trace the curve exactly once. The corresponding curve is shown next:

y

x

p
2

− −t = p
2

−t =

p
2

− +t =p
2

+t =

t = 0

(−1, 0) (1, 0)

t = −p

c(t) = (sec t, tan t)

Find a parametrization of the right branch (x > 0) of the hyperbola(x

a

)2 −
(y

b

)2 = 1

using the functions cosh t and sinh t . How can you parametrize the branch x < 0?

45. The graphs of x(t) and y(t) as functions of t are shown in Figure 15(A). Which of (I)–(III) is the plot of c(t) =
(x(t), y(t))? Explain.

yyyy
x(t)

y(t)
xxxt

(A) (III)(II)(I)

FIGURE 15
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solution As seen in Figure 15(A), the x-coordinate is an increasing function of t , while y(t) is first increasing and
then decreasing. In Figure I, x and y are both increasing or both decreasing (depending on the direction on the curve).
In Figure II, x does not maintain one tendency, rather, it is decreasing and increasing for certain values of t . The plot
c(t) = (x(t), y(t)) is plot III.

Which graph, (I) or (II), is the graph of x(t) and which is the graph of y(t) for the parametric curve in Figure
16(A)?

47. Sketch c(t) = (t3 − 4t, t2) following the steps in Example 7.

solution We note that x(t) = t3 − 4t is odd and y(t) = t2 is even, hence c(−t) = (x(−t), y(−t)) = (−x(t), y(t)).
It follows that c(−t) is the reflection of c(t) across y-axis. That is, c(−t) and c(t) are symmetric with respect to the y-axis;
thus, it suffices to graph the curve for t ≥ 0. For t = 0, we have c(0) = (0, 0) and the y-coordinate y(t) = t2 tends to ∞
as t → ∞. To analyze the x-coordinate, we graph x(t) = t3 − 4t for t ≥ 0:

x
3 41 2

−4

−2

8

6

4

2

y

x = t3 − 4t

We see that x(t) < 0 and decreasing for 0 < t < 2/
√

3, x(t) < 0 and increasing for 2/
√

3 < t < 2 and x(t) > 0 and
increasing for t > 2. Also x(t) tends to ∞ as t → ∞. Therefore, starting at the origin, the curve first directs to the left of
the y-axis, then at t = 2/

√
3 it turns to the right, always keeping an upward direction. The part of the path for t ≤ 0 is

obtained by reflecting across the y-axis. We also use the points c(0) = (0, 0), c(1) = (−3, 1), c(2) = (0, 4) to obtain the
following graph for c(t):

x

y

t = 0

t = 1

t = 2

(−3, 1)

(0, 4)

y

x

t = 1

t = 0

t = 2

t = −1

t = −2

Graph of c(t) for t ≥ 0. Graph of c(t) for all t .

Sketch c(t) = (t2 − 4t, 9 − t2) for −4 ≤ t ≤ 10.
In Exercises 49–52, use Eq. (7) to find dy/dx at the given point.

49. (t3, t2 − 1), t = −4

solution By Eq. (7) we have

dy

dx
= y′(t)

x′(t) = (t2 − 1)
′

(t3)
′ = 2t

3t2
= 2

3t

Substituting t = −4 we get

dy

dx
= 2

3t

∣∣∣∣
t=−4

= 2

3 · (−4)
= −1

6
.

(2t + 9, 7t − 9), t = 151. (s−1 − 3s, s3), s = −1

solution Using Eq. (7) we get

dy

dx
= y′(s)

x′(s) = (s3)
′

(s−1 − 3s)
′ = 3s2

−s−2 − 3
= 3s4

−1 − 3s2

Substituting s = −1 we obtain

dy

dx
= 3s4

−1 − 3s2

∣∣∣∣
s=−1

= 3 · (−1)4

−1 − 3 · (−1)2
= −3

4
.
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(sin 2θ, cos 3θ), θ = π
6

In Exercises 53–56, find an equation y = f (x) for the parametric curve and compute dy/dx in two ways: using Eq. (7)
and by differentiating f (x).

53. c(t) = (2t + 1, 1 − 9t)

solution Since x = 2t + 1, we have t = x − 1

2
. Substituting in y = 1 − 9t we have

y = 1 − 9

(
x − 1

2

)
= −9

2
x + 11

2

Differentiating y = −9

2
x + 11

2
gives

dy

dx
= −9

2
. We now find

dy

dx
using Eq. (7):

dy

dx
= y′(t)

x′(t) = (1 − 9t)′
(2t + 1)′ = −9

2

c(t) = ( 1
2 t, 1

4 t2 − t
)55. x = s3, y = s6 + s−3

solution We find y as a function of x:

y = s6 + s−3 =
(
s3
)2 +

(
s3
)−1 = x2 + x−1.

We now differentiate y = x2 + x−1. This gives

dy

dx
= 2x − x−2.

Alternatively, we can use Eq. (7) to obtain the following derivative:

dy

dx
= y′(s)

x′(s) =
(
s6 + s−3

)′
(
s3
)′ = 6s5 − 3s−4

3s2
= 2s3 − s−6.

Hence, since x = s3,

dy

dx
= 2x − x−2.

x = cos θ , y = cos θ + sin2 θ
57. Find the points on the curve c(t) = (3t2 − 2t, t3 − 6t) where the tangent line has slope 3.

solution We solve

dy

dx
= 3t2 − 6

6t − 2
= 3

or 3t2 − 6 = 18t − 6, or t2 − 6t = 0, so the slope is 3 at t = 0, 6 and the points are (0, 0) and (96, 180)

Find the equation of the tangent line to the cycloid generated by a circle of radius 4 at t = π
2 .In Exercises 59–62, let c(t) = (t2 − 9, t2 − 8t) (see Figure 17).

60

40

20

604020
x

y

FIGURE 17 Plot of c(t) = (t2 − 9, t2 − 8t).

59. Draw an arrow indicating the direction of motion, and determine the interval of t-values corresponding to the portion
of the curve in each of the four quadrants.

solution We plot the functions x(t) = t2 − 9 and y(t) = t2 − 8t :
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t

x

3−3 t

y

1 2 3 4 5 6 7 8 9−3−2−1

x = t2 − 9 y = t2 − 8t

We note carefully where each of these graphs are positive or negative, increasing or decreasing. In particular, x(t) is
decreasing for t < 0, increasing for t > 0, positive for |t | > 3, and negative for |t | < 3. Likewise, y(t) is decreasing for
t < 4, increasing for t > 4, positive for t > 8 or t < 0, and negative for 0 < t < 8. We now draw arrows on the path
following the decreasing/increasing behavior of the coordinates as indicated above. We obtain:

x

y

20

t = 0
(−9,0)

t = 8
(55,0)

t = 3
(0,−15)

t = −3 (0,33)

t = 4 (7,−16)

40 60−20

−20

20

40

60

This plot also shows that:

• The graph is in the first quadrant for t < −3 or t > 8.
• The graph is in the second quadrant for −3 < t < 0.
• The graph is in the third quadrant for 0 < t < 3.
• The graph is in the fourth quadrant for 3 < t < 8.

Find the equation of the tangent line at t = 4.61. Find the points where the tangent has slope 1
2 .

solution The slope of the tangent at t is

dy

dx
=
(
t2 − 8t

)′
(
t2 − 9

)′ = 2t − 8

2t
= 1 − 4

t

The point where the tangent has slope 1
2 corresponds to the value of t that satisfies

dy

dx
= 1 − 4

t
= 1

2
⇒ 4

t
= 1

2
⇒ t = 8.

We substitute t = 8 in x(t) = t2 − 9 and y(t) = t2 − 8t to obtain the following point:

x(8) = 82 − 9 = 55

y(8) = 82 − 8 · 8 = 0
⇒ (55, 0)

Find the points where the tangent is horizontal or vertical.
63. Let A and B be the points where the ray of angle θ intersects the two concentric circles of radii r < R centered at
the origin (Figure 18). Let P be the point of intersection of the horizontal line through A and the vertical line through B.
Express the coordinates of P as a function of θ and describe the curve traced by P for 0 ≤ θ ≤ 2π .

x

y

B

P

Rr

A

FIGURE 18
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solution We use the parametric representation of a circle to determine the coordinates of the points A and B. That is,

A = (r cos θ, r sin θ), B = (R cos θ, R sin θ)

The coordinates of P are therefore

P = (R cos θ, r sin θ)

In order to identify the curve traced by P , we notice that the x and y coordinates of P satisfy x
R

= cos θ and y
r = sin θ .

Hence ( x

R

)2 +
(y

r

)2 = cos2θ + sin2θ = 1.

The equation ( x

R

)2 +
(y

r

)2 = 1

is the equation of ellipse. Hence, the coordinates of P , (R cos θ, r sin θ) describe an ellipse for 0 ≤ θ ≤ 2π .

A 10-ft ladder slides down a wall as its bottom B is pulled away from the wall (Figure 19). Using the angle θ as
parameter, find the parametric equations for the path followed by (a) the top of the ladder A, (b) the bottom of the
ladder B, and (c) the point P located 4 ft from the top of the ladder. Show that P describes an ellipse.

In Exercises 65–68, refer to the Bézier curve defined by Eqs. (8) and (9).

65. Show that the Bézier curve with control points

P0 = (1, 4), P1 = (3, 12), P2 = (6, 15), P3 = (7, 4)

has parametrization

c(t) = (1 + 6t + 3t2 − 3t3, 4 + 24t − 15t2 − 9t3)

Verify that the slope at t = 0 is equal to the slope of the segment P0P1.

solution For the given Bézier curve we have a0 = 1, a1 = 3, a2 = 6, a3 = 7, and b0 = 4, b1 = 12, b2 = 15, b3 = 4.
Substituting these values in Eq. (8)–(9) and simplifying gives

x(t) = (1 − t)3 + 9t (1 − t)2 + 18t2(1 − t) + 7t3

= 1 − 3t + 3t2 − t3 + 9t (1 − 2t + t2) + 18t2 − 18t3 + 7t3

= 1 − 3t + 3t2 − t3 + 9t − 18t2 + 9t3 + 18t2 − 18t3 + 7t3

= −3t3 + 3t2 + 6t + 1

y(t) = 4(1 − t)3 + 36t (1 − t)2 + 45t2(1 − t) + 4t3

= 4(1 − 3t + 3t2 − t3) + 36t (1 − 2t + t2) + 45t2 − 45t3 + 4t3

= 4 − 12t + 12t2 − 4t3 + 36t − 72t2 + 36t3 + 45t2 − 45t3 + 4t3

= 4 + 24t − 15t2 − 9t3

Then

c(t) = (1 + 6t + 3t2 − 3t3, 4 + 24t − 15t2 − 9t3), 0 ≤ t ≤ 1.

We find the slope at t = 0. Using the formula for slope of the tangent line we get

dy

dx
= (4 + 24t − 15t2 − 9t3)′

(1 + 6t + 3t2 − 3t3)′ = 24 − 30t − 27t2

6 + 6t − 9t2
⇒ dy

dx

∣∣∣∣
t=0

= 24

6
= 4.

The slope of the segment P0P1 is the slope of the line determined by the points P0 = (1, 4) and P1 = (3, 12). That is,
12−4
3−1 = 8

2 = 4. We see that the slope of the tangent line at t = 0 is equal to the slope of the segment P0P1, as expected.

Find an equation of the tangent line to the Bézier curve in Exercise 65 at t = 1
3 .

67. Find and plot the Bézier curve c(t) passing through the control points

P0 = (3, 2), P1 = (0, 2), P2 = (5, 4), P3 = (2, 4)

solution Setting a0 = 3, a1 = 0, a2 = 5, a3 = 2, and b0 = 2, b1 = 2, b2 = 4, b3 = 4 into Eq. (8)–(9) and
simplifying gives

x(t) = 3(1 − t)3 + 0 + 15t2(1 − t) + 2t3

= 3(1 − 3t + 3t2 − t3) + 15t2 − 15t3 + 2t3 = 3 − 9t + 24t2 − 16t3
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y(t) = 2(1 − t)3 + 6t (1 − t)2 + 12t2(1 − t) + 4t3

= 2(1 − 3t + 3t2 − t3) + 6t (1 − 2t + t2) + 12t2 − 12t3 + 4t3

= 2 − 6t + 6t2 − 2t3 + 6t − 12t2 + 6t3 + 12t2 − 12t3 + 4t3 = 2 + 6t2 − 4t3

We obtain the following equation

c(t) = (3 − 9t + 24t2 − 16t3, 2 + 6t2 − 4t3), 0 ≤ t ≤ 1.

The graph of the Bézier curve is shown in the following figure:

x

y

1 2 3

1

2

3

4

Show that a cubic Bézier curve is tangent to the segment P2P3 at P3.
69. A bullet fired from a gun follows the trajectory

x = at, y = bt − 16t2 (a, b > 0)

Show that the bullet leaves the gun at an angle θ = tan−1 ( b
a

)
and lands at a distance ab/16 from the origin.

solution The height of the bullet equals the value of the y-coordinate. When the bullet leaves the gun, y(t) =
t (b − 16t) = 0. The solutions to this equation are t = 0 and t = b

16 , with t = 0 corresponding to the moment the bullet
leaves the gun. We find the slope m of the tangent line at t = 0:

dy

dx
= y′(t)

x′(t) = b − 32t

a
⇒ m = b − 32t

a

∣∣∣∣
t=0

= b

a

It follows that tan θ = b
a or θ = tan−1

(
b
a

)
. The bullet lands at t = b

16 . We find the distance of the bullet from the origin

at this time, by substituting t = b
16 in x(t) = at . This gives

x

(
b

16

)
= ab

16

Plot c(t) = (t3 − 4t, t4 − 12t2 + 48) for −3 ≤ t ≤ 3. Find the points where the tangent line is horizontal or
vertical.

71. Plot the astroid x = cos3 θ , y = sin3 θ and find the equation of the tangent line at θ = π
3 .

solution The graph of the astroid x = cos3 θ , y = sin3 θ is shown in the following figure:

x

y

=     (0, 1)π 
2

   =      (0, −1)3π 
2

   = 0
(1, 0)

   = π
(−1, 0)

The slope of the tangent line at θ = π
3 is

m = dy

dx

∣∣∣∣
θ=π/3

= (sin3 θ)′
(cos3 θ)′

∣∣∣∣
θ=π/3

= 3 sin2 θ cos θ

3 cos2 θ(− sin θ)

∣∣∣∣
θ=π/3

= − sin θ

cos θ

∣∣∣∣
θ=π/3

= − tan θ

∣∣∣∣
π/3

= −√
3

We find the point of tangency: (
x
(π

3

)
, y
(π

3

))
=
(

cos3 π

3
, sin3 π

3

)
=
(

1

8
,

3
√

3

8

)
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The equation of the tangent line at θ = π
3 is, thus,

y − 3
√

3

8
= −√

3

(
x − 1

8

)
⇒ y = −√

3x +
√

3

2

Find the equation of the tangent line at t = π
4 to the cycloid generated by the unit circle with parametric equation

(5).

73. Find the points with horizontal tangent line on the cycloid with parametric equation (5).

solution The parametric equations of the cycloid are

x = t − sin t, y = 1 − cos t

We find the slope of the tangent line at t :

dy

dx
= (1 − cos t)′

(t − sin t)′ = sin t

1 − cos t

The tangent line is horizontal where it has slope zero. That is,

dy

dx
= sin t

1 − cos t
= 0 ⇒ sin t = 0

cos t 
= 1
⇒ t = (2k − 1)π, k = 0, ±1, ±2, . . .

We find the coordinates of the points with horizontal tangent line, by substituting t = (2k − 1)π in x(t) and y(t). This
gives

x = (2k − 1)π − sin(2k − 1)π = (2k − 1)π

y = 1 − cos((2k − 1)π) = 1 − (−1) = 2

The required points are

((2k − 1)π, 2), k = 0, ±1, ±2, . . .

Property of the Cycloid Prove that the tangent line at a point P on the cycloid always passes through the top
point on the rolling circle as indicated in Figure 20. Assume the generating circle of the cycloid has radius 1.

75. A curtate cycloid (Figure 21) is the curve traced by a point at a distance h from the center of a circle of radius R

rolling along the x-axis where h < R. Show that this curve has parametric equations x = Rt − h sin t , y = R − h cos t .

y

h
R

x
4π2π

FIGURE 21 Curtate cycloid.

solution Let P be a point at a distance h from the center C of the circle. Assume that at t = 0, the line of CP is
passing through the origin. When the circle rolls a distance Rt along the x-axis, the length of the arc ŜQ (see figure) is
also Rt and the angle 
 SCQ has radian measure t . We compute the coordinates x and y of P .

0

CC

R

S

Rt

A
P

h

t

Q

x = Rt − PA = Rt − h sin(π − t) = Rt − h sin t

y = R + AC = R + h cos(π − t) = R − h cos t

We obtain the following parametrization:

x = Rt − h sin t, y = R − h cos t.

Use a computer algebra system to explore what happens when h > R in the parametric equations of Exercise
75. Describe the result.

77. Show that the line of slope t through (−1, 0) intersects the unit circle in the point with coordinates

x = 1 − t2

t2 + 1
, y = 2t

t2 + 1
10

Conclude that these equations parametrize the unit circle with the point (−1, 0) excluded (Figure 22). Show further that
t = y/(x + 1).
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(x, y)

(−1, 0)

Slope t

y

x

FIGURE 22 Unit circle.

solution The equation of the line of slope t through (−1, 0) is y = t (x + 1). The equation of the unit circle is

x2 + y2 = 1. Hence, the line intersects the unit circle at the points (x, y) that satisfy the equations:

y = t (x + 1) (1)

x2 + y2 = 1 (2)

Substituting y from equation (1) into equation (2) and solving for x we obtain

x2 + t2(x + 1)2 = 1

x2 + t2x2 + 2t2x + t2 = 1

(1 + t2)x2 + 2t2x + (t2 − 1) = 0

This gives

x1,2 = −2t2 ±
√

4t4 − 4(t2 + 1)(t2 − 1)

2(1 + t2)
= −2t2 ± 2

2(1 + t2)
= ±1 − t2

1 + t2

So x1 = −1 and x2 = 1 − t2

t2 + 1
. The solution x = −1 corresponds to the point (−1, 0). We are interested in the second

point of intersection that is varying as t varies. Hence the appropriate solution is

x = 1 − t2

t2 + 1

We find the y-coordinate by substituting x in equation (1). This gives

y = t (x + 1) = t

(
1 − t2

t2 + 1
+ 1

)
= t · 1 − t2 + t2 + 1

t2 + 1
= 2t

t2 + 1

We conclude that the line and the unit circle intersect, besides at (−1, 0), at the point with the following coordinates:

x = 1 − t2

t2 + 1
, y = 2t

t2 + 1
(3)

Since these points determine all the points on the unit circle except for (−1, 0) and no other points, the equations in (3)
parametrize the unit circle with the point (−1, 0) excluded.

We show that t = y

x + 1
. Using (3) we have

y

x + 1
=

2t
t2+1

1−t2

t2+1
+ 1

=
2t

t2+1
1−t2+t2+1

t2+1

=
2t

t2+1
2

t2+1

= 2t

2
= t.

The folium of Descartes is the curve with equation x3 + y3 = 3axy, where a 
= 0 is a constant (Figure 23).

(a) Show that the line y = tx intersects the folium at the origin and at one other point P for all t 
= −1, 0. Express the
coordinates of P in terms of t to obtain a parametrization of the folium. Indicate the direction of the parametrization
on the graph.

(b) Describe the interval of t-values parametrizing the parts of the curve in quadrants I, II, and IV. Note that t = −1
is a point of discontinuity of the parametrization.

(c) Calculate dy/dx as a function of t and find the points with horizontal or vertical tangent.

79. Use the results of Exercise 78 to show that the asymptote of the folium is the line x + y = −a. Hint: Show that
lim

t→−1
(x + y) = −a.

solution We must show that as x → ∞ or x → −∞ the graph of the folium is getting arbitrarily close to the line

x + y = −a, and the derivative dy
dx

is approaching the slope −1 of the line.
In Exercise 78 we showed that x → ∞ when t → (−1−) and x → −∞ when t → (−1+). We first show that the graph

is approaching the line x + y = −a as x → ∞ or x → −∞, by showing that lim
t→−1− x + y = lim

t→−1+ x + y = −a.
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For x(t) = 3at

1 + t3
, y(t) = 3at2

1 + t3
, a > 0, calculated in Exercise 78, we obtain using L’Hôpital’s Rule:

lim
t→−1−(x + y) = lim

t→−1−
3at + 3at2

1 + t3
= lim

t→−1−
3a + 6at

3t2
= 3a − 6a

3
= −a

lim
t→−1+(x + y) = lim

t→−1+
3at + 3at2

1 + t3
= lim

t→−1+
3a + 6at

3t2
= 3a − 6a

3
= −a

We now show that
dy

dx
is approaching −1 as t → −1− and as t → −1+. We use

dy

dx
= 6at − 3at4

3a − 6at3
computed in Exercise

78 to obtain

lim
t→−1−

dy

dx
= lim

t→−1−
6at − 3at4

3a − 6at3
= −9a

9a
= −1

lim
t→−1+

dy

dx
= lim

t→−1+
6at − 3at4

3a − 6at3
= −9a

9a
= −1

We conclude that the line x + y = −a is an asymptote of the folium as x → ∞ and as x → −∞.

Find a parametrization of x2n+1 + y2n+1 = axnyn, where a and n are constants.
81. Second Derivative for a Parametrized Curve Given a parametrized curve c(t) = (x(t), y(t)), show that

d

dt

( dy

dx

)
= x′(t)y′′(t) − y′(t)x′′(t)

x′(t)2

Use this to prove the formula

d2y

dx2
= x′(t)y′′(t) − y′(t)x′′(t)

x′(t)3
11

solution By the formula for the slope of the tangent line we have

dy

dx
= y′(t)

x′(t)
Differentiating with respect to t , using the Quotient Rule, gives

d

dt

(
dy

dx

)
= d

dt

(
y′(t)
x′(t)

)
= x′(t)y′′(t) − y′(t)x′′(t)

x′(t)2

By the Chain Rule we have

d2y

dx2
= d

dx

(
dy

dx

)
= d

dt

(
dy

dx

)
· dt

dx

Substituting into the above equation

(
and using

dt

dx
= 1

dx/dt
= 1

x′(t)

)
gives

d2y

dx2
= x′(t)y′′(t) − y′(t)x′′(t)

x′(t)2
· 1

x′(t) = x′(t)y′′(t) − y′(t)x′′(t)
x′(t)3

The second derivative of y = x2 is dy2/d2x = 2. Verify that Eq. (11) applied to c(t) = (t, t2) yields dy2/d2x = 2.
In fact, any parametrization may be used. Check that c(t) = (t3, t6) and c(t) = (tan t, tan2 t) also yield dy2/d2x = 2.

In Exercises 83–86, use Eq. (11) to find d2y/dx2.

83. x = t3 + t2, y = 7t2 − 4, t = 2

solution We find the first and second derivatives of x(t) and y(t):

x′(t) = 3t2 + 2t ⇒ x′(2) = 3 · 22 + 2 · 2 = 16

x′′(t) = 6t + 2 ⇒ x′′(2) = 6 · 2 + 2 = 14

y′(t) = 14t ⇒ y′(2) = 14 · 2 = 28

y′′(t) = 14 ⇒ y′′(2) = 14

Using Eq. (11) we get

d2y

dx2

∣∣∣∣
t=2

= x′(t)y′′(t) − y′(t)x′′(t)
x′(t)3

∣∣∣∣
t=2

= 16 · 14 − 28 · 14

163
= −21

512
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x = s−1 + s, y = 4 − s−2, s = 1
85. x = 8t + 9, y = 1 − 4t , t = −3

solution We compute the first and second derivatives of x(t) and y(t):

x′(t) = 8 ⇒ x′(−3) = 8

x′′(t) = 0 ⇒ x′′(−3) = 0

y′(t) = −4 ⇒ y′(−3) = −4

y′′(t) = 0 ⇒ y′′(−3) = 0

Using Eq. (11) we get

d2y

dx2

∣∣∣∣
t=−3

= x′(−3)y′′(−3) − y′(−3)x′′(−3)

x′(−3)3
= 8 · 0 − (−4) · 0

83
= 0

x = cos θ , y = sin θ , θ = π
4

87. Use Eq. (11) to find the t-intervals on which c(t) = (t2, t3 − 4t) is concave up.

solution The curve is concave up where
d2y

dx2
> 0. Thus,

x′(t)y′′(t) − y′(t)x′′(t)
x′(t)3

> 0 (1)

We compute the first and second derivatives:

x′(t) = 2t, x′′(t) = 2

y′(t) = 3t2 − 4, y′′(t) = 6t

Substituting in (1) and solving for t gives

12t2 − (6t2 − 8)

8t3
= 6t2 + 8

8t3

Since 6t2 + 8 > 0 for all t , the quotient is positive if 8t3 > 0. We conclude that the curve is concave up for t > 0.

Use Eq. (11) to find the t-intervals on which c(t) = (t2, t4 − 4t) is concave up.
89. Area Under a Parametrized Curve Let c(t) = (x(t), y(t)), where y(t) > 0 and x′(t) > 0 (Figure 24). Show that
the area A under c(t) for t0 ≤ t ≤ t1 is

A =
∫ t1

t0

y(t)x′(t) dt 12

Hint: Because it is increasing, the function x(t) has an inverse t = g(x) and c(t) is the graph of y = y(g(x)). Apply the

change-of-variables formula to A = ∫ x(t1)
x(t0)

y(g(x)) dx.

y
c(t)

x(t1)x(t0)
xx

FIGURE 24

solution Let x0 = x(t0) and x1 = x(t1). We are given that x′(t) > 0, hence x = x(t) is an increasing function of
t , so it has an inverse function t = g(x). The area A is given by

∫ x1
x0

y(g(x)) dx. Recall that y is a function of t and

t = g(x), so the height y at any point x is given by y = y(g(x)). We find the new limits of integration. Since x0 = x(t0)

and x1 = x(t1), the limits for t are t0 and t1, respectively. Also since x′(t) = dx
dt

, we have dx = x′(t)dt . Performing this
substitution gives

A =
∫ x1

x0

y(g(x)) dx =
∫ t1

t0

y(g(x))x′(t) dt.

Since g(x) = t , we have A =
∫ t1

t0

y(t)x′(t) dt .

Calculate the area under y = x2 over [0, 1] using Eq. (12) with the parametrizations (t3, t6) and (t2, t4).
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91. What does Eq. (12) say if c(t) = (t, f (t))?

solution In the parametrization x(t) = t , y(t) = f (t) we have x′(t) = 1, t0 = x(t0), t1 = x(t1). Hence Eq. (12)
becomes

A =
∫ t1

t0

y(t)x′(t) dt =
∫ x(t1)

x(t0)
f (t) dt

We see that in this parametrization Eq. (12) is the familiar formula for the area under the graph of a positive function.

Sketch the graph of c(t) = (ln t, 2 − t) for 1 ≤ t ≤ 2 and compute the area under the graph using Eq. (12).
93. Galileo tried unsuccessfully to find the area under a cycloid. Around 1630, Gilles de Roberval proved that the area
under one arch of the cycloid c(t) = (Rt − R sin t, R − R cos t) generated by a circle of radius R is equal to three times
the area of the circle (Figure 25). Verify Roberval’s result using Eq. (12).

x

R

πR 2πR

y

FIGURE 25 The area of one arch of the cycloid equals three times the area of the generating circle.

solution This reduces to∫ 2π

0
(R − R cos t)(Rt − R sin t)′ dt =

∫ 2π

0
R2(1 − cos t)2 dt = 3πR2.

Further Insights and Challenges

Prove the following generalization of Exercise 93: For all t > 0, the area of the cycloidal sector OPC is equal to
three times the area of the circular segment cut by the chord PC in Figure 26.

95. Derive the formula for the slope of the tangent line to a parametric curve c(t) = (x(t), y(t)) using a method
different from that presented in the text. Assume that x′(t0) and y′(t0) exist and that x′(t0) 
= 0. Show that

lim
h→0

y(t0 + h) − y(t0)

x(t0 + h) − x(t0)
= y′(t0)

x′(t0)

Then explain why this limit is equal to the slope dy/dx. Draw a diagram showing that the ratio in the limit is the slope
of a secant line.

solution Since y′(t0) and x′(t0) exist, we have the following limits:

lim
h→0

y(t0 + h) − y(t0)

h
= y′(t0), lim

h→0

x(t0 + h) − x(t0)

h
= x′(t0) (1)

We use Basic Limit Laws, the limits in (1) and the given data x′(t0) 
= 0, to write

lim
h→0

y(t0 + h) − y(t0)

x(t0 + h) − x(t0)
= lim

h→0

y(t0+h)−y(t0)
h

x(t0+h)−x(t0)
h

= limh→0
y(t0+h)−y(t0)

h

limh→0
x(t0+h)−x(t0)

h

= y′(t0)

x′(t0)

Notice that the quotient
y(t0 + h) − y(t0)

x(t0 + h) − x(t0)
is the slope of the secant line determined by the points P = (x(t0), y(t0)) and

Q = (x(t0 + h), y(t0 + h)). Hence, the limit of the quotient as h → 0 is the slope of the tangent line at P , that is the
derivative dy

dx
.

x

y

x(t0 + h)x(t0)

y(t0)

y(t0, h)

P

Q

Verify that the tractrix curve (� > 0)

c(t) =
(

t − � tanh
t

�
, � sech

t

�

)

has the following property: For all t , the segment from c(t) to (t, 0) is tangent to the curve and has length � (Figure
27).

97. In Exercise 54 of Section 9.1 (LT Exercise 54 of Section 10.1), we described the tractrix by the differential equation

dy

dx
= − y√

�2 − y2

Show that the curve c(t) identified as the tractrix in Exercise 96 satisfies this differential equation. Note that the derivative
on the left is taken with respect to x, not t .
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solution Note that dx/dt = 1 − sech2(t/�) = tanh2(t/�) and dy/dt = − sech(t/�) tanh(t/�). Thus,

dy

dx
= dy/dt

dx/dt
= − sech(t/�)

tanh(t/�)
= −y/�√

1 − y2/�2

Multiplying top and bottom by �/� gives

dy

dx
= −y√

�2 − y2

In Exercises 98 and 99, refer to Figure 28.

In the parametrization c(t) = (a cos t, b sin t) of an ellipse, t is not an angular parameter unless a = b (in
which case the ellipse is a circle). However, t can be interpreted in terms of area: Show that if c(t) = (x, y), then
t = (2/ab)A, where A is the area of the shaded region in Figure 28. Hint: Use Eq. (12).

99. Show that the parametrization of the ellipse by the angle θ is

x = ab cos θ√
a2 sin2 θ + b2 cos2 θ

y = ab sin θ√
a2 sin2 θ + b2 cos2 θ

solution We consider the ellipse

x2

a2
+ y2

b2
= 1.

For the angle θ we have tan θ = y
x , hence,

y = x tan θ (1)

Substituting in the equation of the ellipse and solving for x we obtain

x2

a2
+ x2tan2θ

b2
= 1

b2x2 + a2x2tan2θ = a2b2

(a2tan2θ + b2)x2 = a2b2

x2 = a2b2

a2tan2θ + b2
= a2b2cos2θ

a2sin2θ + b2cos2θ

We now take the square root. Since the sign of the x-coordinate is the same as the sign of cos θ , we take the positive root,
obtaining

x = ab cos θ√
a2sin2θ + b2cos2θ

(2)

Hence by (1), the y-coordinate is

y = x tan θ = ab cos θ tan θ√
a2sin2θ + b2cos2θ

= ab sin θ√
a2sin2θ + b2cos2θ

(3)

Equalities (2) and (3) give the following parametrization for the ellipse:

c1(θ) =
(

ab cos θ√
a2sin2θ + b2cos2θ

,
ab sin θ√

a2sin2θ + b2cos2θ

)

11.2 Arc Length and Speed (LT Section 12.2)

Preliminary Questions
1. What is the definition of arc length?

solution A curve can be approximated by a polygonal path obtained by connecting points

p0 = c(t0), p1 = c(t1), . . . , pN = c(tN )
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on the path with segments. One gets an approximation by summing the lengths of the segments. The definition of arc
length is the limit of that approximation when increasing the number of points so that the lengths of the segments approach
zero. In doing so, we obtain the following theorem for the arc length:

S =
∫ b

a

√
x′(t)2 + y′(t)2 dt,

which is the length of the curve c(t) = (x(t), y(t)) for a ≤ t ≤ b.

2. What is the interpretation of
√

x′(t)2 + y′(t)2 for a particle following the trajectory (x(t), y(t))?

solution The expression
√

x′(t)2 + y′(t)2 denotes the speed at time t of a particle following the trajectory (x(t), y(t)).

3. A particle travels along a path from (0, 0) to (3, 4). What is the displacement? Can the distance traveled be determined
from the information given?

solution The net displacement is the distance between the initial point (0, 0) and the endpoint (3, 4). That is

√
(3 − 0)2 + (4 − 0)2 = √

25 = 5.

The distance traveled can be determined only if the trajectory c(t) = (x(t), y(t)) of the particle is known.

4. A particle traverses the parabola y = x2 with constant speed 3 cm/s. What is the distance traveled during the first
minute? Hint: No computation is necessary.

solution Since the speed is constant, the distance traveled is the following product: L = st = 3 · 60 = 180 cm.

Exercises
In Exercises 1–10, use Eq. (3) to find the length of the path over the given interval.

1. (3t + 1, 9 − 4t), 0 ≤ t ≤ 2

solution Since x = 3t + 1 and y = 9 − 4t we have x′ = 3 and y′ = −4. Hence, the length of the path is

S =
∫ 2

0

√
32 + (−4)2 dt = 5

∫ 2

0
dt = 10.

(1 + 2t, 2 + 4t), 1 ≤ t ≤ 43. (2t2, 3t2 − 1), 0 ≤ t ≤ 4

solution Since x = 2t2 and y = 3t2 − 1, we have x′ = 4t and y′ = 6t . By the formula for the arc length we get

S =
∫ 4

0

√
x′(t)2 + y′(t)2 dt =

∫ 4

0

√
16t2 + 36t2 dt = √

52
∫ 4

0
t dt = √

52 · t2

2

∣∣∣∣4
0

= 16
√

13

(3t, 4t3/2), 0 ≤ t ≤ 1
5. (3t2, 4t3), 1 ≤ t ≤ 4

solution We have x = 3t2 and y = 4t3. Hence x′ = 6t and y′ = 12t2. By the formula for the arc length we get

S =
∫ 4

1

√
x′(t)2 + y′(t)2 dt =

∫ 4

1

√
36t2 + 144t4 dt = 6

∫ 4

1

√
1 + 4t2t dt.

Using the substitution u = 1 + 4t2, du = 8t dt we obtain

S = 6

8

∫ 65

5

√
u du = 3

4
· 2

3
u3/2

∣∣∣∣65

5
= 1

2
(653/2 − 53/2) ≈ 256.43

(t3 + 1, t2 − 3), 0 ≤ t ≤ 1
7. (sin 3t, cos 3t), 0 ≤ t ≤ π

solution We have x = sin 3t , y = cos 3t , hence x′ = 3 cos 3t and y′ = −3 sin 3t . By the formula for the arc length
we obtain:

S =
∫ π

0

√
x′(t)2 + y′(t)2 dt =

∫ π

0

√
9 cos2 3t + 9 sin2 3t dt =

∫ π

0

√
9 dt = 3π

(sin θ − θ cos θ, cos θ + θ sin θ), 0 ≤ θ ≤ 2
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In Exercises 9 and 10, use the identity

1 − cos t

2
= sin2 t

2

9. (2 cos t − cos 2t, 2 sin t − sin 2t), 0 ≤ t ≤ π
2

solution We have x = 2 cos t − cos 2t , y = 2 sin t − sin 2t . Thus, x′ = −2 sin t + 2 sin 2t and y′ = 2 cos t − 2 cos 2t .
We get

x′(t)2 + y′(t)2 = (−2 sin t + 2 sin 2t)2 + (2 cos t − 2 cos 2t)2

= 4 sin2 t − 8 sin t sin 2t + 4 sin2 2t + 4 cos2 t − 8 cos t cos 2t + 4 cos2 2t

= 4(sin2 t + cos2 t) + 4(sin2 2t + cos2 2t) − 8(sin t sin 2t + cos t cos 2t)

= 4 + 4 − 8 cos(2t − t) = 8 − 8 cos t = 8(1 − cos t)

We now use the formula for the arc length to obtain

S =
∫ π/2

0

√
x′(t)2 + y′(t)2 =

∫ π/2

0

√
8(1 − cos t) dt =

∫ π/2

0

√
16 sin2 t

2
dt = 4

∫ π/2

0
sin

t

2
dt

= −8 cos
t

2

∣∣∣∣π/2

0
= −8

(
cos

π

4
− cos 0

)
= −8

(√
2

2
− 1

)
≈ 2.34

(5(θ − sin θ), 5(1 − cos θ)), 0 ≤ θ ≤ 2π
11. Show that one arch of a cycloid generated by a circle of radius R has length 8R.

solution Recall from earlier that the cycloid generated by a circle of radius R has parametric equations x = Rt −
R sin t , y = R − R cos t . Hence, x′ = R − R cos t , y′ = R sin t . Using the identity sin2 t

2
= 1 − cos t

2
, we get

x′(t)2 + y′(t)2 = R2(1 − cos t)2 + R2 sin2 t = R2(1 − 2 cos t + cos2 t + sin2 t)

= R2(1 − 2 cos t + 1) = 2R2(1 − cos t) = 4R2 sin2 t

2

One arch of the cycloid is traced as t varies from 0 to 2π . Hence, using the formula for the arc length we obtain:

S =
∫ 2π

0

√
x′(t)2 + y′(t)2 dt =

∫ 2π

0

√
4R2 sin2 t

2
dt = 2R

∫ 2π

0
sin

t

2
dt = 4R

∫ π

0
sin u du

= −4R cos u

∣∣∣∣π
0

= −4R(cos π − cos 0) = 8R

Find the length of the spiral c(t) = (t cos t, t sin t) for 0 ≤ t ≤ 2π to three decimal places (Figure 7). Hint: Use
the formula ∫ √

1 + t2 dt = 1

2
t
√

1 + t2 + 1

2
ln
(
t +
√

1 + t2
)

13. Find the length of the tractrix (see Figure 6)

c(t) = (t − tanh(t), sech(t)), 0 ≤ t ≤ A

solution Since x = t − tanh(t) and y = sech(t) we have x′ = 1 − sech2(t) and y′ = −sech(t) tanh(t). Hence,

x′(t)2 + y′(t)2 = (1 − sech2(t))
2 + sech2(t)tanh2(t)

= 1 − 2 sech2(t) + sech4(t) + sech2(t)tanh2(t)

= 1 − 2 sech2(t) + sech2(t)(sech2(t) + tanh2(t))

= 1 − 2 sech2(t) + sech2(t) = 1 − sech2(t) = tanh2(t)

Hence, using the formula for the arc length we get:

S =
∫ A

0

√
x′(t)2 + y′(t)2 dt =

∫ A

0

√
tanh2(t) dt =

∫ A

0
tanh(t) dt = ln(cosh(t))

∣∣∣∣A
0

= ln(cosh(A)) − ln(cosh(0)) = ln(cosh(A)) − ln 1 = ln(cosh(A))

Find a numerical approximation to the length of c(t) = (cos 5t, sin 3t) for 0 ≤ t ≤ 2π (Figure 8).In Exercises 15–18, determine the speed s at time t (assume units of meters and seconds).

15. (t3, t2), t = 2

solution We have x(t) = t3, y(t) = t2 hence x′(t) = 3t2, y′(t) = 2t . The speed of the particle at time t is thus,

ds
dt

=
√

x′(t)2 + y′(t)2 =
√

9t4 + 4t2 = t
√

9t2 + 4. At time t = 2 the speed is

ds

dt

∣∣∣∣
t=2

= 2
√

9 · 22 + 4 = 2
√

40 = 4
√

10 ≈ 12.65 m/s.
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(3 sin 5t, 8 cos 5t), t = π
4

17. (5t + 1, 4t − 3), t = 9

solution Since x = 5t + 1, y = 4t − 3, we have x′ = 5 and y′ = 4. The speed of the particle at time t is

ds

dt
= √x′(t) + y′(t) =

√
52 + 42 = √

41 ≈ 6.4 m/s.

We conclude that the particle has constant speed of 6.4 m/s.

(ln(t2 + 1), t3), t = 1
19. Find the minimum speed of a particle with trajectory c(t) = (t3 − 4t, t2 + 1) for t ≥ 0. Hint: It is easier to find the
minimum of the square of the speed.

solution We first find the speed of the particle. We have x(t) = t3 − 4t , y(t) = t2 + 1, hence x′(t) = 3t2 − 4 and
y′(t) = 2t . The speed is thus

ds

dt
=
√

(3t2 − 4)
2 + (2t)2 =

√
9t4 − 24t2 + 16 + 4t2 =

√
9t4 − 20t2 + 16.

The square root function is an increasing function, hence the minimum speed occurs at the value of t where the function
f (t) = 9t4 − 20t2 + 16 has minimum value. Since lim

t→∞ f (t) = ∞, f has a minimum value on the interval 0 ≤ t < ∞,

and it occurs at a critical point or at the endpoint t = 0. We find the critical point of f on t ≥ 0:

f ′(t) = 36t3 − 40t = 4t (9t2 − 10) = 0 ⇒ t = 0, t =
√

10

9
.

We compute the values of f at these points:

f (0) = 9 · 04 − 20 · 02 + 16 = 16

f

(√
10

9

)
= 9

(√
10

9

)4

− 20

(√
10

9

)2

+ 16 = 44

9
≈ 4.89

We conclude that the minimum value of f on t ≥ 0 is 4.89. The minimum speed is therefore(
ds

dt

)
min

≈ √
4.89 ≈ 2.21.

Find the minimum speed of a particle with trajectory c(t) = (t3, t−2) for t ≥ 0.5.
21. Find the speed of the cycloid c(t) = (4t − 4 sin t, 4 − 4 cos t) at points where the tangent line is horizontal.

solution We first find the points where the tangent line is horizontal. The slope of the tangent line is the following
quotient:

dy

dx
= dy/dt

dx/dt
= 4 sin t

4 − 4 cos t
= sin t

1 − cos t
.

To find the points where the tangent line is horizontal we solve the following equation for t ≥ 0:

dy

dx
= 0,

sin t

1 − cos t
= 0 ⇒ sin t = 0 and cos t 
= 1.

Now, sin t = 0 and t ≥ 0 at the points t = πk, k = 0, 1, 2, . . . . Since cos πk = (−1)k , the points where cos t 
= 1 are
t = πk for k odd. The points where the tangent line is horizontal are, therefore:

t = π(2k − 1), k = 1, 2, 3, . . .

The speed at time t is given by the following expression:

ds

dt
=
√

x′(t)2 + y′(t)2 =
√

(4 − 4 cos t)2 + (4 sin t)2

=
√

16 − 32 cos t + 16 cos2 t + 16 sin2 t = √
16 − 32 cos t + 16

= √32(1 − cos t) =
√

32 · 2 sin2 t

2
= 8

∣∣∣∣sin
t

2

∣∣∣∣
That is, the speed of the cycloid at time t is

ds

dt
= 8

∣∣∣∣sin
t

2

∣∣∣∣ .
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We now substitute

t = π(2k − 1), k = 1, 2, 3, . . .

to obtain

ds

dt
= 8

∣∣∣∣sin
π(2k − 1)

2

∣∣∣∣ = 8|(−1)k+1| = 8

Calculate the arc length integral s(t) for the logarithmic spiral c(t) = (et cos t, et sin t).In Exercises 23–26, plot the curve and use the Midpoint Rule with N = 10, 20, 30, and 50 to approximate its
length.

23. c(t) = (cos t, esin t ) for 0 ≤ t ≤ 2π

solution The curve of c(t) = (cos t, esin t ) for 0 ≤ t ≤ 2π is shown in the figure below:

y

t = 0, t = 2π, (1, 1)t = π, (−1, 1)

x

t =     (0, e)π 
2

t =      (0,    )3π 
2

1 
e

c(t) = (cos t, esin t ), 0 ≤ t ≤ 2π.

The length of the curve is given by the following integral:

S =
∫ 2π

0

√
x′(t)2 + y′(t)2 dt =

∫ 2π

0

√
(− sin t)2 + (cos t esin t )

2
dt.

That is, S = ∫ 2π
0

√
sin2 t + cos2 t e2 sin t dt . We approximate the integral using the Mid-Point Rule with N = 10, 20,

30, 50. For f (t) =
√

sin2 t + cos2 t e2 sin t we obtain

(N = 10): �x = 2π

10
= π

5
, ci =

(
i − 1

2

)
· π

5

M10 = π

5

10∑
i=1

f (ci) = 6.903734

(N = 20): �x = 2π

20
= π

10
, ci =

(
i − 1

2

)
· π

10

M20 = π

10

20∑
i=1

f (ci) = 6.915035

(N = 30): �x = 2π

30
= π

15
, ci =

(
i − 1

2

)
· π

15

M30 = π

15

30∑
i=1

f (ci) = 6.914949

(N = 50): �x = 2π

50
= π

25
, ci =

(
i − 1

2

)
· π

25

M50 = π

25

50∑
i=1

f (ci) = 6.914951

c(t) = (t − sin 2t, 1 − cos 2t) for 0 ≤ t ≤ 2π25. The ellipse
(x

5

)2 +
(y

3

)2 = 1

solution We use the parametrization given in Example 4, section 12.1, that is, c(t) = (5 cos t, 3 sin t), 0 ≤ t ≤ 2π .
The curve is shown in the figure below:

y

t = 0
t = 2π x

c(t) = (5 cos t, 3 sin t), 0 ≤ t ≤ 2π.
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The length of the curve is given by the following integral:

S =
∫ 2π

0

√
x′(t)2 + y′(t)2 dt =

∫ 2π

0

√
(−5 sin t)2 + (3 cos t)2 dt

=
∫ 2π

0

√
25 sin2 t + 9 cos2 t dt =

∫ 2π

0

√
9(sin2 t + cos2 t) + 16 sin2 t dt =

∫ 2π

0

√
9 + 16 sin2 t dt.

That is,

S =
∫ 2π

0

√
9 + 16 sin2 t dt.

We approximate the integral using the Mid-Point Rule with N = 10, 20, 30, 50, for f (t) =
√

9 + 16 sin2 t . We obtain

(N = 10): �x = 2π

10
= π

5
, ci =

(
i − 1

2

)
· π

5

M10 = π

5

10∑
i=1

f (ci) = 25.528309

(N = 20): �x = 2π

20
= π

10
, ci =

(
i − 1

2

)
· π

10

M20 = π

10

20∑
i=1

f (ci) = 25.526999

(N = 30): �x = 2π

30
= π

15
, ci =

(
i − 1

2

)
· π

15

M30 = π

15

30∑
i=1

f (ci) = 25.526999

(N = 50): �x = 2π

50
= π

25
, ci =

(
i − 1

2

)
· π

25

M50 = π

25

50∑
i=1

f (ci) = 25.526999

x = sin 2t , y = sin 3t for 0 ≤ t ≤ 2π
27. If you unwind thread from a stationary circular spool, keeping the thread taut at all times, then the endpoint traces a
curve C called the involute of the circle (Figure 9). Observe that PQ has length Rθ . Show that C is parametrized by

c(θ) = (R(cos θ + θ sin θ), R(sin θ − θ cos θ)
)

Then find the length of the involute for 0 ≤ θ ≤ 2π .

P = (x, y)

y

q x

R

Q

FIGURE 9 Involute of a circle.

solution Suppose that the arc Q̂T corresponding to the angle θ is unwound. Then the length of the segment QP

equals the length of this arc. That is, QP = Rθ . With the help of the figure we can see that

x = OA + AB = OA + EP = R cos θ + QP sin θ = R cos θ + Rθ sin θ = R(cos θ + θ sin θ).

Furthermore,

y = QA − QE = R sin θ − QP cos θ = R sin θ − Rθ cos θ = R(sin θ − θ cos θ)
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The coordinates of P with respect to the parameter θ form the following parametrization of the curve:

c(θ) = (R(cos θ + θ sin θ), R(sin θ − θ cos θ)), 0 ≤ θ ≤ 2π.

We find the length of the involute for 0 ≤ θ ≤ 2π , using the formula for the arc length:

S =
∫ 2π

0

√
x′(θ)2 + y′(θ)2 dθ.

We compute the integrand:

x′(θ) = d

dθ
(R(cos θ + θ sin θ)) = R(− sin θ + sin θ + θ cos θ) = Rθ cos θ

y′(θ) = d

dθ
(R(sin θ − θ cos θ)) = R(cos θ − (cos θ − θ sin θ)) = Rθ sin θ√

x′(θ)2 + y′(θ)2 =
√

(Rθ cos θ)2 + (Rθ sin θ)2 =
√

R2θ2(cos2 θ + sin2 θ) =
√

R2θ2 = Rθ

We now compute the arc length:

S =
∫ 2π

0
Rθ dθ = Rθ2

2

∣∣∣∣2π

0
= R · (2π)2

2
= 2π2R.

Let a > b and set

k =
√

1 − b2

a2

Use a parametric representation to show that the ellipse
(
x
a

)2 + ( y
b

)2 = 1 has length L = 4aG
(
π
2 , k

)
, where

G(θ, k) =
∫ θ

0

√
1 − k2 sin2 t dt

is the elliptic integral of the second kind.

In Exercises 29–32, use Eq. (4) to compute the surface area of the given surface.

29. The cone generated by revolving c(t) = (t, mt) about the x-axis for 0 ≤ t ≤ A

solution Substituting y(t) = mt , y′(t) = m, x′(t) = 1, a = 0, and b = 0 in the formula for the surface area, we get

S = 2π

∫ A

0
mt
√

1 + m2 dt = 2π
√

1 + m2m

∫ A

0
t dt = 2πm

√
1 + m2 · t2

2

∣∣∣∣A
0

= m
√

1 + m2πA2

A sphere of radius R
31. The surface generated by revolving one arch of the cycloid c(t) = (t − sin t, 1 − cos t) about the x-axis

solution One arch of the cycloid is traced as t varies from 0 to 2π . Since x(t) = t − sin t and y(t) = 1 − cos t , we

have x′(t) = 1 − cos t and y′(t) = sin t . Hence, using the identity 1 − cos t = 2 sin2 t
2 , we get

x′(t)2 + y′(t)2 = (1 − cos t)2 + sin2 t = 1 − 2 cos t + cos2 t + sin2 t = 2 − 2 cos t = 4 sin2 t

2

By the formula for the surface area we obtain:

S = 2π

∫ 2π

0
y(t)

√
x′(t)2 + y′(t)2 dt = 2π

∫ 2π

0
(1 − cos t) · 2 sin

t

2
dt

= 2π

∫ 2π

0
2 sin2 t

2
· 2 sin

t

2
dt = 8π

∫ 2π

0
sin3 t

2
dt = 16π

∫ π

0
sin3 u du

We use a reduction formula to compute this integral, obtaining

S = 16π

[
1

3
cos3 u − cos u

] ∣∣∣∣π
0

= 16π

[
4

3

]
= 64π

3

The surface generated by revolving the astroid c(t) = (cos3 t, sin3 t) about the x-axis for 0 ≤ t ≤ π
2Further Insights and Challenges

33. Let b(t) be the “Butterfly Curve”:

x(t) = sin t

(
ecos t − 2 cos 4t − sin

(
t

12

)5
)

y(t) = cos t

(
ecos t − 2 cos 4t − sin

(
t

12

)5
)

(a) Use a computer algebra system to plot b(t) and the speed s′(t) for 0 ≤ t ≤ 12π .

(b) Approximate the length b(t) for 0 ≤ t ≤ 10π .
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solution

(a) Let f (t) = ecos t − 2 cos 4t − sin
(

t
12

)5, then

x(t) = sin tf (t)

y(t) = cos tf (t)

and so

(x′(t))2 + (y′(t))2 = [sin tf ′(t) + cos tf (t)]2 + [cos tf ′(t) − sin tf (t)]2

Using the identity sin2 t + cos2 t = 1, we get

(x′(t))2 + (y′(t))2 = (f ′(t))2 + (f (t))2.

Thus, s′(t) is the following:√√√√[
ecos t − 2 cos 4t − sin

(
t

12

)5
]2

+
[
− sin tecos t + 8 sin 4t − 5

12

(
t

12

)4
cos

(
t

12

)5
]2

.

The following figures show the curves of b(t) and the speed s′(t) for 0 ≤ t ≤ 10π :

y

x
t = 10p

t = 0

302010

15

20

10

5

x

y

The “Butterfly Curve” b(t), 0 ≤ t ≤ 10π s′(t), 0 ≤ t ≤ 10π

Looking at the graph, we see it would be difficult to compute the length using numeric integration; due to the high
frequency oscillations, very small steps would be needed.

(b) The length of b(t) for 0 ≤ t ≤ 10π is given by the integral: L = ∫ 10π
0 s′(t) dt where s′(t) is given in part (a). We

approximate the length using the Midpoint Rule with N = 30. The numerical methods in Mathematica approximate
the answer by 211.952. Using the Midpoint Rule with N = 50, we get 204.48; with N = 500, we get 211.6; and with
N = 5000, we get 212.09.

Let a ≥ b > 0 and set k = 2
√

ab

a − b
. Show that the trochoid

x = at − b sin t, y = a − b cos t, 0 ≤ t ≤ T

has length 2(a − b)G
(
T
2 , k

)
with G(θ, k) as in Exercise 28.

35. A satellite orbiting at a distance R from the center of the earth follows the circular path x = R cos ωt , y = R sin ωt .

(a) Show that the period T (the time of one revolution) is T = 2π/ω.

(b) According to Newton’s laws of motion and gravity,

x′′(t) = −Gme
x

R3
, y′′(t) = −Gme

y

R3

where G is the universal gravitational constant and me is the mass of the earth. Prove that R3/T 2 = Gme/4π2. Thus,
R3/T 2 has the same value for all orbits (a special case of Kepler’s Third Law).

solution

(a) As shown in Example 4, the circular path has constant speed of ds
dt

= ωR. Since the length of one revolution is 2πR,
the period T is

T = 2πR

ωR
= 2π

ω
.

(b) Differentiating x = R cos ωt twice with respect to t gives

x′(t) = −Rω sin ωt

x′′(t) = −Rω2 cos ωt
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Substituting x(t) and x′′(t) in the equation x′′(t) = −Gme
x

R3
and simplifying, we obtain

−Rω2 cos ωt = −Gme · R cos ωt

R3

−Rω2 = −Gme

R2
⇒ R3 = Gme

ω2

By part (a), T = 2π

ω
. Hence, ω = 2π

T
. Substituting yields

R3 = Gme

4π2

T 2

= T 2Gme

4π2
⇒ R3

T 2
= Gme

4π2

The acceleration due to gravity on the surface of the earth is

g = Gme

R2
e

= 9.8 m/s2, where Re = 6378 km

Use Exercise 35(b) to show that a satellite orbiting at the earth’s surface would have period Te = 2π
√

Re/g ≈
84.5 min. Then estimate the distance Rm from the moon to the center of the earth. Assume that the period of the
moon (sidereal month) is Tm ≈ 27.43 days.

11.3 Polar Coordinates (LT Section 12.3)

Preliminary Questions
1. Points P and Q with the same radial coordinate (choose the correct answer):

(a) Lie on the same circle with the center at the origin.
(b) Lie on the same ray based at the origin.

solution Two points with the same radial coordinate are equidistant from the origin, therefore they lie on the same
circle centered at the origin. The angular coordinate defines a ray based at the origin. Therefore, if the two points have the
same angular coordinate, they lie on the same ray based at the origin.

2. Give two polar representations for the point (x, y) = (0, 1), one with negative r and one with positive r .

solution The point (0, 1) is on the y-axis, distant one unit from the origin, hence the polar representation with positive
r is (r, θ) = (1, π

2

)
. The point (r, θ) = (−1, π

2

)
is the reflection of (r, θ) = (1, π

2

)
through the origin, hence we must

add π to return to the original point.
We obtain the following polar representation of (0, 1) with negative r:

(r, θ) =
(
−1,

π

2
+ π

)
=
(

−1,
3π

2

)
.

3. Describe each of the following curves:

(a) r = 2 (b) r2 = 2 (c) r cos θ = 2

solution
(a) Converting to rectangular coordinates we get√

x2 + y2 = 2 or x2 + y2 = 22.

This is the equation of the circle of radius 2 centered at the origin.
(b) We convert to rectangular coordinates, obtaining x2 + y2 = 2. This is the equation of the circle of radius

√
2, centered

at the origin.
(c) We convert to rectangular coordinates. Since x = r cos θ we obtain the following equation: x = 2. This is the equation
of the vertical line through the point (2, 0).

4. If f (−θ) = f (θ), then the curve r = f (θ) is symmetric with respect to the (choose the correct answer):

(a) x-axis (b) y-axis (c) origin

solution The equality f (−θ) = f (θ) for all θ implies that whenever a point (r, θ) is on the curve, also the point
(r, −θ) is on the curve. Since the point (r, −θ) is the reflection of (r, θ) with respect to the x-axis, we conclude that the
curve is symmetric with respect to the x-axis.

Exercises
1. Find polar coordinates for each of the seven points plotted in Figure 16.

x

(x, y) = (2�3, 2) 

y

4

4
A

B

C D

G

E F

FIGURE 16
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solution We mark the points as shown in the figure.

x

A
y

F(2  3, 2)

G(2  3, −2)

B
C D

E

Using the data given in the figure for the x and y coordinates and the quadrants in which the point are located, we obtain:

(A), with rectangular coordinates (−3, 4): r =
√

(−3)2 + 32 = √
18

θ = π − π
4 = 3π

4

⇒ (r, θ) =
(

3
√

2, 3π
4

)

x

A
y

3  2
3π 
4

(B), with rectangular coordinates (−3, 0):
r = 3
θ = π

⇒ (r, θ) = (3, π)

x

y

3B

π

(C), with rectangular coordinates (−2, −1):

r =
√

22 + 12 = √
5 ≈ 2.2

θ = tan−1
(−1

−2

)
= tan−1

(
1
2

)
= π + 0.46 ≈ 3.6

⇒ (r, θ) ≈
(√

5, 3.6
)

x

y

C

3.6

2.2

(D), with rectangular coordinates (−1, −1):
r =

√
12 + 12 = √

2 ≈ 1.4
θ = π + π

4 = 5π
4

⇒ (r, θ) ≈
(√

2, 5π
4

)

x

y

D

5π 
4

1.4
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(E), with rectangular coordinates (1, 1):
r =

√
12 + 12 = √

2 ≈ 1.4

θ = tan−1
(

1
1

)
= π

4
⇒ (r, θ) ≈

(√
2, π

4

)

x

y

E π 
41.4

(F), with rectangular coordinates (2
√

3, 2):
r =

√(
2
√

3
)2 + 22 = √

16 = 4

θ = tan−1
(

2
2
√

3

)
= tan−1

(
1√
3

)
= π

6

⇒ (r, θ) = (4, π
6

)

x

y

F(2  3, 2)

π 
6

4

(G), with rectangular coordinates (2
√

3, −2): G is the reflection of F about the x axis, hence the two points have equal
radial coordinates, and the angular coordinate of G is obtained from the angular coordinate of F : θ = 2π − π

6 = 11π
6 .

Hence, the polar coordinates of G are
(

4, 11π
6

)
.

Plot the points with polar coordinates:

(a)
(
2, π

6

)
(b)

(
4, 3π

4

)
(c)

(
3, −π

2

)
(d)

(
0, π

6

)3. Convert from rectangular to polar coordinates.

(a) (1, 0) (b) (3,
√

3) (c) (−2, 2) (d) (−1,
√

3)

solution

(a) The point (1, 0) is on the positive x axis distanced one unit from the origin. Hence, r = 1 and θ = 0. Thus,
(r, θ) = (1, 0).

(b) The point
(

3,
√

3
)

is in the first quadrant so θ = tan−1
(√

3
3

)
= π

6 . Also, r =
√

32 +
(√

3
)2 = √

12. Hence,

(r, θ) =
(√

12, π
6

)
.

(c) The point (−2, 2) is in the second quadrant. Hence,

θ = tan−1
(

2

−2

)
= tan−1(−1) = π − π

4
= 3π

4
.

Also, r =
√

(−2)2 + 22 = √
8. Hence, (r, θ) =

(√
8, 3π

4

)
.

(d) The point
(
−1,

√
3
)

is in the second quadrant, hence,

θ = tan−1

(√
3

−1

)
= tan−1

(
−√

3
)

= π − π

3
= 2π

3
.

Also, r =
√

(−1)2 +
(√

3
)2 = √

4 = 2. Hence, (r, θ) =
(

2, 2π
3

)
.

Convert from rectangular to polar coordinates using a calculator (make sure your choice of θ gives the correct
quadrant).

(a) (2, 3) (b) (4, −7) (c) (−3, −8) (d) (−5, 2)

5. Convert from polar to rectangular coordinates:

(a)
(
3, π

6

)
(b)

(
6, 3π

4

)
(c)

(
0, π

5

)
(d)

(
5, −π

2

)
solution

(a) Since r = 3 and θ = π
6 , we have:

x = r cos θ = 3 cos
π

6
= 3 ·

√
3

2
≈ 2.6

y = r sin θ = 3 sin
π

6
= 3 · 1

2
= 1.5

⇒ (x, y) ≈ (2.6, 1.5) .
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(b) For
(

6, 3π
4

)
we have r = 6 and θ = 3π

4 . Hence,

x = r cos θ = 6 cos
3π

4
≈ −4.24

y = r sin θ = 6 sin
3π

4
≈ 4.24

⇒ (x, y) ≈ (−4.24, 4.24) .

(c) For
(
0, π

5

)
, we have r = 0, so that the rectangular coordinates are (x, y) = (0, 0).

(d) Since r = 5 and θ = −π
2 we have

x = r cos θ = 5 cos
(
−π

2

)
= 5 · 0 = 0

y = r sin θ = 5 sin
(
−π

2

)
= 5 · (−1) = −5

⇒ (x, y) = (0, −5)

Which of the following are possible polar coordinates for the point P with rectangular coordinates (0, −2)?

(a)
(

2,
π

2

)
(b)

(
2,

7π

2

)

(c)
(

−2, −3π

2

)
(d)

(
−2,

7π

2

)

(e)
(
−2, −π

2

)
(f)
(

2, −7π

2

)

7. Describe each shaded sector in Figure 17 by inequalities in r and θ .

(A) (B) (C)

x x x

y y y

3 5 3 5 3 5

45°

FIGURE 17

solution
(a) In the sector shown below r is varying between 0 and 3 and θ is varying between π and 2π . Hence the following
inequalities describe the sector:

0 ≤ r ≤ 3

π ≤ θ ≤ 2π

(b) In the sector shown below r is varying between 0 and 3 and θ is varying between π
4 and π

2 . Hence, the inequalities
for the sector are:

0 ≤ r ≤ 3
π

4
≤ θ ≤ π

2

(c) In the sector shown below r is varying between 3 and 5 and θ is varying between 3π
4 and π . Hence, the inequalities

are:

3 ≤ r ≤ 5

3π

4
≤ θ ≤ π

Find the equation in polar coordinates of the line through the origin with slope 1
2 .

9. What is the slope of the line θ = 3π
5 ?

solution This line makes an angle θ0 = 3π
5 with the positive x-axis, hence the slope of the line is m = tan 3π

5 ≈ −3.1.

Which of r = 2 sec θ and r = 2 csc θ defines a horizontal line?In Exercises 11–16, convert to an equation in rectangular coordinates.

11. r = 7

solution r = 7 describes the points having distance 7 from the origin, that is, the circle with radius 7 centered at the
origin. The equation of the circle in rectangular coordinates is

x2 + y2 = 72 = 49.

r = sin θ
13. r = 2 sin θ

solution We multiply the equation by r and substitute r2 = x2 + y2, r sin θ = y. This gives

r2 = 2r sin θ

x2 + y2 = 2y

Moving the 2y and completing the square yield: x2 + y2 − 2y = 0 and x2 + (y − 1)2 = 1. Thus, r = 2 sin θ is the
equation of a circle of radius 1 centered at (0, 1).
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r = 2 csc θ15. r = 1

cos θ − sin θ

solution We multiply the equation by cos θ − sin θ and substitute y = r sin θ , x = r cos θ . This gives

r (cos θ − sin θ) = 1

r cos θ − r sin θ = 1

x − y = 1 ⇒ y = x − 1. Thus,

r = 1

cos θ − sin θ

is the equation of the line y = x − 1.

r = 1

2 − cos θ

In Exercises 17–20, convert to an equation in polar coordinates.

17. x2 + y2 = 5

solution We make the substitution x2 + y2 = r2 to obtain; r2 = 5 or r = √
5.

x = 519. y = x2

solution Substituting y = r sin θ and x = r cos θ yields

r sin θ = r2 cos2 θ.

Then, dividing by r cos2 θ we obtain,

sin θ

cos2 θ
= r so r = tan θ sec θ

xy = 1
21. Match each equation with its description.

(a) r = 2 (i) Vertical line
(b) θ = 2 (ii) Horizontal line
(c) r = 2 sec θ (iii) Circle
(d) r = 2 csc θ (iv) Line through origin

solution
(a) r = 2 describes the points 2 units from the origin. Hence, it is the equation of a circle.
(b) θ = 2 describes the points P so that OP makes an angle of θ0 = 2 with the positive x-axis. Hence, it is the equation
of a line through the origin.
(c) This is r cos θ = 2, which is x = 2, a vertical line.
(d) Converting to rectangular coordinates, we get r = 2 csc θ , so r sin θ = 2 and y = 2. This is the equation of a
horizontal line.

Find the values of θ in the plot of r = 4 cos θ corresponding to points A, B, C, D in Figure 18. Then indicate the
portion of the graph traced out as θ varies in the following intervals:

(a) 0 ≤ θ ≤ π
2 (b) π

2 ≤ θ ≤ π (c) π ≤ θ ≤ 3π
2

23. Suppose that P = (x, y) has polar coordinates (r, θ). Find the polar coordinates for the points:

(a) (x, −y) (b) (−x, −y) (c) (−x, y) (d) (y, x)

solution
(a) (x, −y) is the symmetric point of (x, y) with respect to the x-axis, hence the two points have the same radial
coordinate, and the angular coordinate of (x, −y) is 2π − θ . Hence, (x, −y) = (r, 2π − θ).

y

x

2p −q
−q
q

(x, y)

(x, −y)

(b) (−x, −y) is the symmetric point of (x, y) with respect to the origin. Hence, (−x, −y) = (r, θ + π).

y

x

p +q
q

(x, y)

(−x, −y)
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(c) (−x, y) is the symmetric point of (x, y) with respect to the y-axis. Hence the two points have the same radial
coordinates and the angular coordinate of (−x, y) is π − θ . Hence, (−x, y) = (r, π − θ).

q−q
p − q

y

x

(x, y)(−x, y)

(d) Let (r1, θ1) denote the polar coordinates of (y, x). Hence,

r1 =
√

y2 + x2 =
√

x2 + y2 = r

tan θ1 = x

y
= 1

y/x
= 1

tan θ
= cot θ = tan

(π

2
− θ
)

Since the points (x, y) and (y, x) are in the same quadrant, the solution for θ1 is θ1 = π
2 − θ . We obtain the following

polar coordinates: (y, x) = (r, π
2 − θ

)
.

q

−q p
2

− q

y

x

(x, y)

(y, x)

Match each equation in rectangular coordinates with its equation in polar coordinates.

(a) x2 + y2 = 4 (i) r2(1 − 2 sin2 θ) = 4
(b) x2 + (y − 1)2 = 1 (ii) r(cos θ + sin θ) = 4
(c) x2 − y2 = 4 (iii) r = 2 sin θ

(d) x + y = 4 (iv) r = 2

25. What are the polar equations of the lines parallel to the line r cos
(
θ − π

3

) = 1?

solution The line r cos
(
θ − π

3

) = 1, or r = sec
(
θ − π

3

)
, is perpendicular to the ray θ = π

3 and at distance d = 1
from the origin. Hence, the lines parallel to this line are also perpendicular to the ray θ = π

3 , so the polar equations of
these lines are r = d sec

(
θ − π

3

)
or r cos

(
θ − π

3

) = d.

Show that the circle with center at
( 1

2 , 1
2

)
in Figure 19 has polar equation r = sin θ + cos θ and find the values

of θ between 0 and π corresponding to points A, B, C, and D.

27. Sketch the curve r = 1
2 θ (the spiral of Archimedes) for θ between 0 and 2π by plotting the points for θ =

0, π
4 , π

2 , . . . , 2π .

solution We first plot the following points (r, θ) on the spiral:

O = (0, 0) , A =
(π

8
,
π

4

)
, B =

(π

4
,
π

2

)
, C =

(
3π

8
,

3π

4

)
, D =

(π

2
, π
)

,

E =
(

5π

8
,

5π

4

)
, F =

(
3π

4
,

3π

2

)
, G =

(
7π

8
,

7π

4

)
, H = (π, 2π) .

p
4

3p
4

3p
2

5p
4

7p
4

p
2

O

D

E

A

G

C
B

0
2pp

H

F

Since r(0) = 0
2 = 0, the graph begins at the origin and moves toward the points A, B, C, D, E, F, G and H as θ varies

from θ = 0 to the other values stated above. Connecting the points in this direction we obtain the following graph for
0 ≤ θ ≤ 2π :
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p
4

3p
4

3p
2

5p
4

7p
4

p
2

O

D

E

A

G

C
B

0
2pp

H

F

Sketch r = 3 cos θ − 1 (see Example 8).
29. Sketch the cardioid curve r = 1 + cos θ .

solution Since cos θ is period with period 2π , the entire curve will be traced out as θ varies from 0 to 2π . Additionally,
since cos(2π − θ) = cos(θ), we can sketch the curve for θ between 0 and π and reflect the result through the x axis to
obtain the whole curve. Use the values θ = 0, π

6 , π
4 , π

3 , π
2 , 2π

3 , 3π
4 , 5π

6 , and π :

θ r point

0 1 + cos 0 = 2 (2, 0)

π
6 1 + cos π

6 = 2+√
3

2

(
2+√

3
2 , π

6

)
π
4 1 + cos π

4 = 2+√
2

2

(
2+√

2
2 , π

4

)
π
3 1 + cos π

3 = 3
2

(
3
2 , π

3

)
π
2 1 + cos π

2 = 1
(
1, π

2

)
2π
3 1 + cos 2π

3 = 1
2

(
1
2 , 2π

3

)
3π
4 1 + cos 3π

4 = 2−√
2

2

(
2−√

2
2 , 3π

4

)
5π
6 1 + cos 5π

6 = 2−√
3

2

(
2−√

3
2 , 5π

6

)
θ = 0 corresponds to the point (2, 0), and the graph moves clockwise as θ increases from 0 to π . Thus the graph is

5π

6

3π

4

2π

3

π

2 π

π

3 π

4
π

6

0

Reflecting through the x axis gives the other half of the curve:

−1

−1

1

2

y

x

−2

1 2

Show that the cardioid of Exercise 29 has equation

(x2 + y2 − x)2 = x2 + y2

in rectangular coordinates.

31. Figure 20 displays the graphs of r = sin 2θ in rectangular coordinates and in polar coordinates, where it is a “rose
with four petals.” Identify:

(a) The points in (B) corresponding to points A–I in (A).

(b) The parts of the curve in (B) corresponding to the angle intervals
[
0, π

2

]
,
[
π
2 , π

]
,
[
π, 3π

2

]
, and

[ 3π
2 , 2π

]
.
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A C E IG

B F

D H

x

r y

(A) Graph of r as a function
       of θ, where r = sin 2θ

(B) Graph of r = sin 2θ
      in polar coordinates

π π

2
3π 2π

2

θ

FIGURE 20

solution

(a) The graph (A) gives the following polar coordinates of the labeled points:

A: θ = 0, r = 0

B: θ = π

4
, r = sin

2π

4
= 1

C: θ = π

2
, r = 0

D: θ = 3π

4
, r = sin

2 · 3π

4
= −1

E: θ = π, r = 0

F : θ = 5π

4
, r = 1

G: θ = 3π

2
, r = 0

H : θ = 7π

4
, r = −1

I : θ = 2π, r = 0.

Since the maximal value of |r| is 1, the points with r = 1 or r = −1 are the furthest points from the origin. The corre-
sponding quadrant is determined by the value of θ and the sign of r . If r0 < 0, the point (r0, θ0) is on the ray θ = −θ0.
These considerations lead to the following identification of the points in the xy plane. Notice that A, C, G, E, and I are
the same point.

x

y

π 2π

r = 1 r = −1

B
π 
4

π 
2

5π 
4

r = −1

7π 
4

3π 
4

r = 1

=

==

= π 
4

3π 
4

7π 
4

3π 
2

5π 
4

H

F D

A,C,E,G,I

(b) We use the graph (A) to find the sign of r = sin 2θ : 0 ≤ θ ≤ π
2 ⇒ r ≥ 0 ⇒ (r, θ) is in the first quadrant.

π
2 ≤ θ ≤ π ⇒ r ≤ 0 ⇒ (r, θ) is in the fourth quadrant. π ≤ θ ≤ 3π

2 ⇒ r ≥ 0 ⇒ (r, θ) is in the third quadrant.
3π
2 ≤ θ ≤ 2π ⇒ r ≤ 0 ⇒ (r, θ) is in the second quadrant. That is,

x

y

π ≤    ≤ 3π 
2

≤    ≤ 2π3π 
2

0 ≤    ≤ π 
2

≤    ≤ ππ 
2
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Sketch the curve r = sin 3θ . First fill in the table of r-values below and plot the corresponding points of the curve.
Notice that the three petals of the curve correspond to the angle intervals

[
0, π

3

]
,
[
π
3 , 2π

3

]
, and

[
π
3 , π

]
. Then plot

r = sin 3θ in rectangular coordinates and label the points on this graph corresponding to (r, θ) in the table.

θ 0 π
12

π
6

π
4

π
3

5π
12 · · · 11π

12 π

r

33. Plot the cissoid r = 2 sin θ tan θ and show that its equation in rectangular coordinates is

y2 = x3

2 − x

solution Using a CAS we obtain the following curve of the cissoid:

x

y

0ππ

π 
2

31 2

3π 
2

We substitute sin θ = y
r and tan θ = y

x in r = 2 sin θ tan θ to obtain

r = 2
y

r
· y

x
.

Multiplying by rx, setting r2 = x2 + y2 and simplifying, yields

r2x = 2y2

(x2 + y2)x = 2y2

x3 + y2x = 2y2

y2 (2 − x) = x3

so

y2 = x3

2 − x

Prove that r = 2a cos θ is the equation of the circle in Figure 21 using only the fact that a triangle inscribed in a
circle with one side a diameter is a right triangle.

35. Show that

r = a cos θ + b sin θ

is the equation of a circle passing through the origin. Express the radius and center (in rectangular coordinates) in terms
of a and b.

solution We multiply the equation by r and then make the substitution x = r cos θ , y = r sin θ , and r2 = x2 + y2.
This gives

r2 = ar cos θ + br sin θ

x2 + y2 = ax + by

Transferring sides and completing the square yields

x2 − ax + y2 − by = 0(
x2 − 2 · a

2
x +

(a

2

)2
)

+
(

y2 − 2 · b

2
y +

(
b

2

)2
)

=
(a

2

)2 +
(

b

2

)2

(
x − a

2

)2 +
(

y − b

2

)2
= a2 + b2

4

This is the equation of the circle with radius
√

a2+b2

2 centered at the point
(

a
2 , b

2

)
. By plugging in x = 0 and y = 0 it is

clear that the circle passes through the origin.

Use the previous exercise to write the equation of the circle of radius 5 and center (3, 4) in the form r =
a cos θ + b sin θ .

37. Use the identity cos 2θ = cos2 θ − sin2 θ to find a polar equation of the hyperbola x2 − y2 = 1.

solution We substitute x = r cos θ , y = r sin θ in x2 − y2 = 1 to obtain

r2 cos2 θ − r2 sin2 θ = 1

r2(cos2 θ − sin2 θ) = 1
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Using the identity cos 2θ = cos2 θ − sin2 θ we obtain the following equation of the hyperbola:

r2 cos 2θ = 1 or r2 = sec 2θ.

Find an equation in rectangular coordinates for the curve r2 = cos 2θ .
39. Show that cos 3θ = cos3 θ − 3 cos θ sin2 θ and use this identity to find an equation in rectangular coordinates for the
curve r = cos 3θ .

solution We use the identities cos(α + β) = cos α cos β − sin α sin β, cos 2α = cos2 α − sin2 α, and sin 2α =
2 sin α cos α to write

cos 3θ = cos(2θ + θ) = cos 2θ cos θ − sin 2θ sin θ

= (cos2 θ − sin2 θ) cos θ − 2 sin θ cos θ sin θ

= cos3 θ − sin2 θ cos θ − 2 sin2 θ cos θ

= cos3 θ − 3 sin2 θ cos θ

Using this identity we may rewrite the equation r = cos 3θ as follows:

r = cos3 θ − 3 sin2 θ cos θ (1)

Since x = r cos θ and y = r sin θ , we have cos θ = x
r and sin θ = y

r . Substituting into (1) gives:

r =
(x

r

)3 − 3
(y

r

)2 (x

r

)

r = x3

r3
− 3y2x

r3

We now multiply by r3 and make the substitution r2 = x2 + y2 to obtain the following equation for the curve:

r4 = x3 − 3y2x

(x2 + y2)
2 = x3 − 3y2x

Use the addition formula for the cosine to show that the line L with polar equation r cos(θ − α) = d has the
equation in rectangular coordinates (cos α)x + (sin α)y = d. Show that L has slope m = − cot α and y-intercept
d/sin α.

In Exercises 41–44, find an equation in polar coordinates of the line L with the given description.

41. The point on L closest to the origin has polar coordinates
(
2, π

9

)
.

solution In Example 5, it is shown that the polar equation of the line where (r, α) is the point on the line closest to
the origin is r = d sec (θ − α). Setting (d, α) = (2, π

9

)
we obtain the following equation of the line:

r = 2 sec
(
θ − π

9

)
.

The point on L closest to the origin has rectangular coordinates (−2, 2).43. L is tangent to the circle r = 2
√

10 at the point with rectangular coordinates (−2, −6).

solution

x

y

(−2, −6)

Since L is tangent to the circle at the point (−2, −6), this is the point on L closest to the center of the circle which is at
the origin. Therefore, we may use the polar coordinates (d, α) of this point in the equation of the line:

r = d sec (θ − α) (1)

We thus must convert the coordinates (−2, −6) to polar coordinates. This point is in the third quadrant so π < α < 3π
2 .

We get

d =
√

(−2)2 + (−6)2 = √
40 = 2

√
10

α = tan−1
(−6

−2

)
= tan−1 3 ≈ π + 1.25 ≈ 4.39
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Substituting in (1) yields the following equation of the line:

r = 2
√

10 sec (θ − 4.39) .

L has slope 3 and is tangent to the unit circle in the fourth quadrant.
45. Show that every line that does not pass through the origin has a polar equation of the form

r = b

sin θ − a cos θ

where b 
= 0.

solution Write the equation of the line in rectangular coordinates as y = ax + b. Since the line does not pass through
the origin, we have b 
= 0. Substitute for y and x to convert to polar coordinates, and simplify:

y = ax + b

r sin θ = ar cos θ + b

r(sin θ − a cos θ) = b

r = b

sin θ − a cos θ

By the Law of Cosines, the distance d between two points (Figure 22) with polar coordinates (r, θ) and (r0, θ0) is

d2 = r2 + r2
0 − 2rr0 cos(θ − θ0)

Use this distance formula to show that

r2 − 10r cos
(
θ − π

4

)
= 56

is the equation of the circle of radius 9 whose center has polar coordinates
(
5, π

4

)
.

47. For a > 0, a lemniscate curve is the set of points P such that the product of the distances from P to (a, 0) and
(−a, 0) is a2. Show that the equation of the lemniscate is

(x2 + y2)2 = 2a2(x2 − y2)

Then find the equation in polar coordinates. To obtain the simplest form of the equation, use the identity cos 2θ =
cos2 θ − sin2 θ . Plot the lemniscate for a = 2 if you have a computer algebra system.

solution We compute the distances d1 and d2 of P(x, y) from the points (a, 0) and (−a, 0) respectively. We obtain:

d1 =
√

(x − a)2 + (y − 0)2 =
√

(x − a)2 + y2

d2 =
√

(x + a)2 + (y − 0)2 =
√

(x + a)2 + y2

For the points P(x, y) on the lemniscate we have d1d2 = a2. That is,

a2 =
√

(x − a)2 + y2
√

(x + a)2 + y2 =
√[

(x − a)2 + y2
] [

(x + a)2 + y2
]

=
√

(x − a)2(x + a)2 + y2(x − a)2 + y2(x + a)2 + y4

=
√

(x2 − a2)2 + y2
[
(x − a)2 + (x + a)2

]+ y4

=
√

x4 − 2a2x2 + a4 + y2
(
x2 − 2xa + a2 + x2 + 2xa + a2

)+ y4

=
√

x4 − 2a2x2 + a4 + 2y2x2 + 2y2a2 + y4

=
√

x4 + 2x2y2 + y4 + 2a2(y2 − x2) + a4

=
√

(x2 + y2)
2 + 2a2(y2 − x2) + a4.

Squaring both sides and simplifying yields

a4 = (x2 + y2)2 + 2a2(y2 − x2) + a4

0 = (x2 + y2)2 + 2a2(y2 − x2)

so

(x2 + y2)2 = 2a2(x2 − y2)
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We now find the equation in polar coordinates. We substitute x = r cos θ , y = r sin θ and x2 + y2 = r2 into the equation
of the lemniscate. This gives

(r2)2 = 2a2(r2 cos2 θ − r2 sin2 θ) = 2a2r2(cos2 θ − sin2 θ) = 2a2r2 cos 2θ

r4 = 2a2r2 cos 2θ

r = 0 is a solution, hence the origin is on the curve. For r 
= 0 we divide the equation by r2 to obtain r2 = 2a2 cos 2θ .
This curve also includes the origin (r = 0 is obtained for θ = π

4 for example), hence this is the polar equation of the

lemniscate. Setting a = 2 we get r2 = 8 cos 2θ .

r2 = 8 cos 2q

3p
2

p
2

p 0

Let c be a fixed constant. Explain the relationship between the graphs of:

(a) y = f (x + c) and y = f (x) (rectangular)

(b) r = f (θ + c) and r = f (θ) (polar)

(c) y = f (x) + c and y = f (x) (rectangular)

(d) r = f (θ) + c and r = f (θ) (polar)

49. The Derivative in Polar Coordinates Show that a polar curve r = f (θ) has parametric equations

x = f (θ) cos θ, y = f (θ) sin θ

Then apply Theorem 2 of Section 11.1 to prove

dy

dx
= f (θ) cos θ + f ′(θ) sin θ

−f (θ) sin θ + f ′(θ) cos θ
2

where f ′(θ) = df /dθ .

solution Multiplying both sides of the given equation by cos θ yields r cos θ = f (θ) cos θ ; multiplying both sides
by sin θ yields r sin θ = f (θ) sin θ . The left-hand sides of these two equations are the x and y coordinates in rectangular
coordinates, so for any θ we have x = f (θ) cos θ and y = f (θ) sin θ , showing that the parametric equations are as
claimed. Now, by the formula for the derivative we have

dy

dx
= y′ (θ)

x′ (θ)
(1)

We differentiate the functions x = f (θ) cos θ and y = f (θ) sin θ using the Product Rule for differentiation. This gives

y′ (θ) = f ′ (θ) sin θ + f (θ) cos θ

x′ (θ) = f ′ (θ) cos θ − f (θ) sin θ

Substituting in (1) gives

dy

dx
= f ′ (θ) sin θ + f (θ) cos θ

f ′ (θ) cos θ − f (θ) sin θ
= f (θ) cos θ + f ′ (θ) sin θ

−f (θ) sin θ + f ′ (θ) cos θ
.

Use Eq. (2) to find the slope of the tangent line to r = sin θ at θ = π
3 .

51. Use Eq. (2) to find the slope of the tangent line to r = θ at θ = π
2 and θ = π .

solution In the given curve we have r = f (θ) = θ . Using Eq. (2) we obtain the following derivative, which is the
slope of the tangent line at (r, θ).

dy

dx
= f (θ) cos θ + f ′ (θ) sin θ

−f (θ) sin θ + f ′ (θ) cos θ
= θ cos θ + 1 · sin θ

−θ sin θ + 1 · cos θ
(1)

The slope, m, of the tangent line at θ = π
2 and θ = π is obtained by substituting these values in (1). We get (θ = π

2 ):

m =
π
2 cos π

2 + sin π
2

−π
2 sin π

2 + cos π
2

=
π
2 · 0 + 1

−π
2 · 1 + 0

= 1

−π
2

= − 2

π
.

(θ = π):

m = π cos π + sin π

−π sin π + cos π
= −π

−1
= π.

Find the equation in rectangular coordinates of the tangent line to r = 4 cos 3θ at θ = π
6 .
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53. Find the polar coordinates of the points on the lemniscate r2 = cos 2t in Figure 23 where the tangent line is horizontal.

y

x
−1 1

r2 = cos (2t)

FIGURE 23

solution This curve is defined for −π
2 ≤ 2t ≤ π

2 (where cos 2t ≥ 0), so for −π
4 ≤ t ≤ π

4 . For each θ in that range,

there are two values of r satisfying the equation (±√
cos 2t). By symmetry, we need only calculate the coordinates of the

points corresponding to the positive square root (i.e. to the right of the y axis). Then the equation becomes r = √
cos 2t .

Now, by Eq. (2), with f (t) = √
cos(2t) and f ′(t) = − sin(2t)(cos(2t))−1/2, we have

dy

dx
= f (t) cos t + f ′(t) sin t

−f (t) sin t + f ′(t) cos t
= cos t

√
cos(2t) − sin(2t) sin t (cos(2t))−1/2

− sin t
√

cos(2t) − sin(2t) cos t (cos(2t))−1/2

The tangent line is horizontal when this derivative is zero, which occurs when the numerator of the fraction is zero and the
denominator is not. Multiply top and bottom of the fraction by

√
cos(2t), and use the identities cos 2t = cos2 t − sin2 t ,

sin 2t = 2 sin t cos t to get

−cos t cos 2t − sin t sin 2t

sin t cos 2t + cos t sin 2t
= − cos t (cos2 t − 3 sin2 t)

sin t cos 2t + cos t sin 2t

The numerator is zero when cos t = 0, so when t = π
2 or t = 3π

2 , or when tan t = ± 1√
3

, so when t = ±π
6 or t = ± 5π

6 .

Of these possibilities, only t = ±π
6 lie in the range −π

4 ≤ t ≤ π
4 . Note that the denominator is nonzero for t = ±π

6 , so
these are the two values of t for which the tangent line is horizontal. The corresponding values of r are solutions to

r2 = cos
(

2 · π

6

)
= cos

(π

3

)
= 1

2

r2 = cos

(
2 · −π

6

)
= cos

(
−π

3

)
= 1

2

Finally, the four points are (r, t) =(
1√
2
,
π

6

)
,

(
− 1√

2
,
π

6

)
,

(
1√
2
, −pi

6

)
,

(
− 1√

2
, −π

6

)

If desired, we can change the second and fourth points by adding π to the angle and making r positive, to get(
1√
2
,
π

6

)
,

(
1√
2
,

7π

6

)
,

(
1√
2
, −pi

6

)
,

(
1√
2
,

5π

6

)

Find the polar coordinates of the points on the cardioid r = 1 + cos θ where the tangent line is horizontal (see
Figure 24).

55. Use Eq. (2) to show that for r = sin θ + cos θ ,

dy

dx
= cos 2θ + sin 2θ

cos 2θ − sin 2θ

Then calculate the slopes of the tangent lines at points A, B, C in Figure 19.

solution In Exercise 49 we proved that for a polar curve r = f (θ) the following formula holds:

dy

dx
= f (θ) cos θ + f ′ (θ) sin θ

−f (θ) sin θ + f ′ (θ) cos θ
(1)

For the given circle we have r = f (θ) = sin θ + cos θ , hence f ′ (θ) = cos θ − sin θ . Substituting in (1) we have

dy

dx
= (sin θ + cos θ) cos θ + (cos θ − sin θ) sin θ

− (sin θ + cos θ) sin θ + (cos θ − sin θ) cos θ
= sin θ cos θ + cos2 θ + cos θ sin θ − sin2 θ

− sin2 θ − cos θ sin θ + cos2 θ − sin θ cos θ

= cos2 θ − sin2 θ + 2 sin θ cos θ

cos2 θ − sin2 θ − 2 sin θ cos θ

We use the identities cos2 θ − sin2 θ = cos 2θ and 2 sin θ cos θ = sin 2θ to obtain

dy

dx
= cos 2θ + sin 2θ

cos 2θ − sin 2θ
(2)
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The derivative dy
dx

is the slope of the tangent line at (r, θ). The slopes of the tangent lines at the points with polar coordinates

A = (1, π
2

)
B =

(
0, 3π

4

)
C = (1, 0) are computed by substituting the values of θ in (2). This gives

dy

dx

∣∣∣∣
A

= cos
(
2 · π

2

)+ sin
(
2 · π

2

)
cos
(
2 · π

2

)− sin
(
2 · π

2

) = cos π + sin π

cos π − sin π
= −1 + 0

−1 − 0
= 1

dy

dx

∣∣∣∣
B

=
cos
(

2 · 3π
4

)
+ sin

(
2 · 3π

4

)
cos
(

2 · 3π
4

)
− sin

(
2 · 3π

4

) = cos 3π
2 + sin 3π

2

cos 3π
2 − sin 3π

2

= 0 − 1

0 + 1
= −1

dy

dx

∣∣∣∣
C

= cos (2 · 0) + sin (2 · 0)

cos (2 · 0) − sin (2 · 0)
= cos 0 + sin 0

cos 0 − sin 0
= 1 + 0

1 − 0
= 1

Further Insights and Challenges

Let f (x) be a periodic function of period 2π—that is, f (x) = f (x + 2π). Explain how this periodicity is
reflected in the graph of:

(a) y = f (x) in rectangular coordinates

(b) r = f (θ) in polar coordinates

57. Use a graphing utility to convince yourself that the polar equations r = f1(θ) = 2 cos θ − 1 and r = f2(θ) =
2 cos θ + 1 have the same graph. Then explain why. Hint: Show that the points (f1(θ + π), θ + π) and (f2(θ), θ)

coincide.

solution The graphs of r = 2 cos θ − 1 and r = 2 cos θ + 1 in the xy -plane coincide as shown in the graph obtained
using a CAS.

x

y

2

−2

2−2

x

y

0ππ

π 
2

31 2

3π 
2

Recall that (r, θ) and (−r, θ + π) represent the same point. Replacing θ by θ + π and r by (−r) in r = 2 cos θ − 1 we
obtain

−r = 2 cos (θ + π) − 1

−r = −2 cos θ − 1

r = 2 cos θ + 1

Thus, the two equations define the same graph. (One could also convert both equations to rectangular coordinates and
note that they come out identical.)

We investigate how the shape of the limaçon curve r = b + cos θ depends on the constant b (see Figure 24).

(a) Argue as in Exercise 57 to show that the constants b and −b yield the same curve.

(b) Plot the limaçon for b = 0, 0.2, 0.5, 0.8, 1 and describe how the curve changes.

(c) Plot the limaçon for b = 1.2, 1.5, 1.8, 2, 2.4 and describe how the curve changes.

(d) Use Eq. (2) to show that

dy

dx
= −

(
b cos θ + cos 2θ

b + 2 cos θ

)
csc θ

(e) Find the points where the tangent line is vertical. Note that there are three cases: 0 ≤ b < 2, b = 1, and b > 2.
Do the plots constructed in (b) and (c) reflect your results?

11.4 Area and Arc Length in Polar Coordinates (LT Section 12.4)

Preliminary Questions
1. Polar coordinates are suited to finding the area (choose one):

(a) Under a curve between x = a and x = b.

(b) Bounded by a curve and two rays through the origin.

solution Polar coordinates are best suited to finding the area bounded by a curve and two rays through the origin. The
formula for the area in polar coordinates gives the area of this region.

2. Is the formula for area in polar coordinates valid if f (θ) takes negative values?

solution The formula for the area

1

2

∫ β

α
f (θ)2 dθ

always gives the actual (positive) area, even if f (θ) takes on negative values.
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3. The horizontal line y = 1 has polar equation r = csc θ . Which area is represented by the integral
1

2

∫ π/2

π/6
csc2 θ dθ

(Figure 12)?

(a) �ABCD (b) 
ABC (c) 
ACD

y

xA

D

B

C y = 1
1

�3

FIGURE 12

solution This integral represents an area taken from θ = π/6 to θ = π/2, which can only be the triangle 
ACD, as
seen in part (c).

Exercises
1. Sketch the area bounded by the circle r = 5 and the rays θ = π

2 and θ = π , and compute its area as an integral in
polar coordinates.

solution The region bounded by the circle r = 5 and the rays θ = π
2 and θ = π is the shaded region in the figure.

The area of the region is given by the following integral:

1

2

∫ π

π/2
r2 dθ = 1

2

∫ π

π/2
52 dθ = 25

2

(
π − π

2

)
= 25π

4

x

y
=

= π

π 
2

Sketch the region bounded by the line r = sec θ and the rays θ = 0 and θ = π
3 . Compute its area in two ways:

as an integral in polar coordinates and using geometry.

3. Calculate the area of the circle r = 4 sin θ as an integral in polar coordinates (see Figure 4). Be careful to choose the
correct limits of integration.

solution The equation r = 4 sin θ defines a circle of radius 2 tangent to the x-axis at the origin as shown in the figure:

= π 
2

π 
3

2π 
3

π 
6

5π 
6

x

y

= π = π

The circle is traced as θ varies from 0 to π . We use the area in polar coordinates and the identity

sin2 θ = 1

2
(1 − cos 2θ)

to obtain the following area:

A = 1

2

∫ π

0
r2 dθ = 1

2

∫ π

0
(4 sin θ)2 dθ = 8

∫ π

0
sin2 θ dθ = 4

∫ π

0
(1 − cos 2θ) dθ = 4

[
θ − sin 2θ

2

]π
0

= 4

((
π − sin 2π

2

)
− 0

)
= 4π.

Find the area of the shaded triangle in Figure 13 as an integral in polar coordinates. Then find the rectangular
coordinates of P and Q and compute the area via geometry.
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5. Find the area of the shaded region in Figure 14. Note that θ varies from 0 to π
2 .

x

y

r = θ2 + 4θ

8

1 2

FIGURE 14

solution Since θ varies from 0 to π
2 , the area is

1

2

∫ π/2

0
r2 dθ = 1

2

∫ π/2

0
(θ2 + 4θ)2 dθ = 1

2

∫ π/2

0
θ4 + 8θ3 + 16θ2 dθ

= 1

2

(
1

5
θ5 + 2θ4 + 16

3
θ3
) ∣∣∣∣π/2

0
= π5

320
+ π4

16
+ π2

3

Which interval of θ -values corresponds to the the shaded region in Figure 15? Find the area of the region.
7. Find the total area enclosed by the cardioid in Figure 16.

y

x
−1−2

FIGURE 16 The cardioid r = 1 − cos θ .

solution We graph r = 1 − cos θ in r and θ (cartesian, not polar, this time):

r

1

2

2πππ 
2

3π 
2

We see that as θ varies from 0 to π , the radius r increases from 0 to 2, so we get the upper half of the cardioid (the lower
half is obtained as θ varies from π to 2π and consequently r decreases from 2 to 0). Since the cardioid is symmetric with
respect to the x-axis we may compute the upper area and double the result. Using

cos2 θ = cos 2θ + 1

2

we get

A = 2 · 1

2

∫ π

0
r2 dθ =

∫ π

0
(1 − cos θ)2 dθ =

∫ π

0

(
1 − 2 cos θ + cos2 θ

)
dθ

=
∫ π

0

(
1 − 2 cos θ + cos 2θ + 1

2

)
dθ =

∫ π

0

(
3

2
− 2 cos θ + 1

2
cos 2θ

)
dθ

= 3

2
θ − 2 sin θ + 1

4
sin 2θ

∣∣∣∣π
0

= 3π

2

The total area enclosed by the cardioid is A = 3π
2 .
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Find the area of the shaded region in Figure 16.
9. Find the area of one leaf of the “four-petaled rose” r = sin 2θ (Figure 17). Then prove that the total area of the rose

is equal to one-half the area of the circumscribed circle.

y

x

r = sin 2θ

FIGURE 17 Four-petaled rose r = sin 2θ .

solution We consider the graph of r = sin 2θ in cartesian and in polar coordinates:

r

A

1

−1

ππ 
4

π 
2

3π 
4

y

A

x

r = 1, θ = π

4

We see that as θ varies from 0 to π
4 the radius r is increasing from 0 to 1, and when θ varies from π

4 to π
2 , r is decreasing

back to zero. Hence, the leaf in the first quadrant is traced as θ varies from 0 to π
2 . The area of the leaf (the four leaves

have equal areas) is thus

A = 1

2

∫ π/2

0
r2 dθ = 1

2

∫ π/2

0
sin2 2θ dθ.

Using the identity

sin2 2θ = 1 − cos 4θ

2

we get

A = 1

2

∫ π/2

0

(
1

2
− cos 4θ

2

)
dθ = 1

2

(
θ

2
− sin 4θ

8

) ∣∣∣∣π/2

0
= 1

2

((
π

4
− sin 2π

8

)
− 0

)
= π

8

The area of one leaf is A = π
8 ≈ 0.39. It follows that the area of the entire rose is π

2 . Since the “radius” of the rose (the
point where θ = π

4 ) is 1, and the circumscribed circle is tangent there, the circumscribed circle has radius 1 and thus area
π . Hence the area of the rose is half that of the circumscribed circle.

Find the area enclosed by one loop of the lemniscate with equation r2 = cos 2θ (Figure 18). Choose your limits
of integration carefully.

11. Sketch the spiral r = θ for 0 ≤ θ ≤ 2π and find the area bounded by the curve and the first quadrant.

solution The spiral r = θ for 0 ≤ θ ≤ 2π is shown in the following figure in the xy-plane:

x

y

q = 2p,
r = 2p

q = p,
r = p

q = p /2,
r = p /2

q = 0,
r = 0

The spiral r = θ

We must compute the area of the shaded region. This region is traced as θ varies from 0 to π
2 . Using the formula for the

area in polar coordinates we get

A = 1

2

∫ π/2

0
r2 dθ = 1

2

∫ π/2

0
θ2 dθ = 1

2

θ3

3

∣∣∣∣π/2

0
= 1

6

(π

2

)3 = π3

48
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Find the area of the intersection of the circles r = sin θ and r = cos θ .
13. Find the area of region A in Figure 19.

y

x
−1 41 2

A

r = 4 cos

r = 1

FIGURE 19
solution We first find the values of θ at the points of intersection of the two circles, by solving the following equation
for −π

2 ≤ x ≤ π
2 :

4 cos θ = 1 ⇒ cos θ = 1

4
⇒ θ1 = cos−1

(
1

4

)
y

x

r = 4 cos

= −1.32

= 1.32

r = 1

We now compute the area using the formula for the area between two curves:

A = 1

2

∫ θ1

−θ1

(
(4 cos θ)2 − 12

)
dθ = 1

2

∫ θ1

−θ1

(
16 cos2 θ − 1

)
dθ

Using the identity cos2 θ = cos 2θ+1
2 we get

A = 1

2

∫ θ1

−θ1

(
16 (cos 2θ + 1)

2
− 1

)
dθ = 1

2

∫ θ1

−θ1

(8 cos 2θ + 7) dθ = 1

2
(4 sin 2θ + 7θ)

∣∣∣∣θ1

−θ1

= 4 sin 2θ1 + 7θ1 = 8 sin θ1 cos θ1 + 7θ1 = 8
√

1 − cos2 θ1 cos θ1 + 7θ1

Using the fact that cos θ1 = 1
4 we get

A =
√

15

2
+ 7cos−1

(
1

4

)
≈ 11.163

Find the area of the shaded region in Figure 20, enclosed by the circle r = 1
2 and a petal of the curve r = cos 3θ .

Hint: Compute the area of both the petal and the region inside the petal and outside the circle.

15. Find the area of the inner loop of the limaçon with polar equation r = 2 cos θ − 1 (Figure 21).

21

1

−1

y

x

FIGURE 21 The limaçon r = 2 cos θ − 1.

solution We consider the graph of r = 2 cos θ − 1 in cartesian and in polar, for −π
2 ≤ x ≤ π

2 :

r

1

−1

− π 
2

π 
3

π 
3

− π 
2

y

x

− π 
3

π 
3

r = 2 cos θ − 1
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As θ varies from −π
3 to 0, r increases from 0 to 1. As θ varies from 0 to π

3 , r decreases from 1 back to 0. Hence, the
inner loop of the limaçon is traced as θ varies from −π

3 to π
3 . The area of the shaded region is thus

A = 1

2

∫ π/3

−π/3
r2 dθ = 1

2

∫ π/3

−π/3
(2 cos θ − 1)2 dθ = 1

2

∫ π/3

−π/3

(
4 cos2 θ − 4 cos θ + 1

)
dθ

= 1

2

∫ π/3

−π/3
(2 (cos 2θ + 1) − 4 cos θ + 1) dθ = 1

2

∫ π/3

−π/3
(2 cos 2θ − 4 cos θ + 3) dθ

= 1

2
(sin 2θ − 4 sin θ + 3θ)

∣∣∣∣π/3

−π/3
= 1

2

((
sin

2π

3
− 4 sin

π

3
+ π

)
−
(

sin

(
−2π

3

)
− 4 sin

(
−π

3

)
− π

))

=
√

3

2
− 4

√
3

2
+ π = π − 3

√
3

2
≈ 0.54

Find the area of the shaded region in Figure 21 between the inner and outer loop of the limaçon r = 2 cos θ − 1.
17. Find the area of the part of the circle r = sin θ + cos θ in the fourth quadrant (see Exercise 26 in Section 11.3).

solution The value of θ corresponding to the point B is the solution of r = sin θ + cos θ = 0 for −π ≤ θ ≤ π .

y

x
B A C

That is,

sin θ + cos θ = 0 ⇒ sin θ = − cos θ ⇒ tan θ = −1 ⇒ θ = −π

4

At the point C, we have θ = 0. The part of the circle in the fourth quadrant is traced if θ varies between −π
4 and 0. This

leads to the following area:

A = 1

2

∫ 0

−π/4
r2 dθ = 1

2

∫ 0

−π/4
(sin θ + cos θ)2 dθ = 1

2

∫ 0

−π/4

(
sin2 θ + 2 sin θ cos θ + cos2 θ

)
dθ

Using the identities sin2 θ + cos2 θ = 1 and 2 sin θ cos θ = sin 2θ we get:

A = 1

2

∫ 0

−π/4
(1 + sin 2θ) dθ = 1

2

(
θ − cos 2θ

2

) ∣∣∣∣0−π/4

= 1

2

((
0 − 1

2

)
−
(

−π

4
− cos

(−π
2

)
2

))
= 1

2

(
π

4
− 1

2

)
= π

8
− 1

4
≈ 0.14.

Find the area of the region inside the circle r = 2 sin
(
θ + π

4

)
and above the line r = sec

(
θ − π

4

)
.

19. Find the area between the two curves in Figure 22(A).

y y

x x

r = 2 + cos 2q

r = 2 + sin 2q

r = sin 2q

r = sin 2q

(A) (B)

FIGURE 22

solution We compute the area A between the two curves as the difference between the area A1 of the region enclosed
in the outer curve r = 2 + cos 2θ and the area A2 of the region enclosed in the inner curve r = sin 2θ . That is,

A = A1 − A2.
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y

x

A
A2

r = 2 + 2cos

r = sin 

In Exercise 9 we showed that A2 = π
2 , hence,

A = A1 − π

2
(1)

We compute the area A1.

y

x

A1

Using symmetry, the area is four times the area enclosed in the first quadrant. That is,

A1 = 4 · 1

2

∫ π/2

0
r2 dθ = 2

∫ π/2

0
(2 + cos 2θ)2 dθ = 2

∫ π/2

0

(
4 + 4 cos 2θ + cos2 2θ

)
dθ

Using the identity cos2 2θ = 1
2 cos 4θ + 1

2 we get

A1 = 2
∫ π/2

0

(
4 + 4 cos 2θ + 1

2
cos 4θ + 1

2

)
dθ = 2

∫ π/2

0

(
9

2
+ 1

2
cos 4θ + 4 cos 2θ

)
dθ

= 2

(
9θ

2
+ sin 4θ

8
+ 2 sin 2θ

) ∣∣∣∣π/2

0
= 2

((
9π

4
+ sin 2π

8
+ 2 sin π

)
− 0

)
= 9π

2
(2)

Combining (1) and (2) we obtain

A = 9π

2
− π

2
= 4π.

Find the area between the two curves in Figure 22(B).
21. Find the area inside both curves in Figure 23.

y

x

2 + sin 2q

2 + cos 2q

FIGURE 23

solution The area we need to find is the area of the shaded region in the figure.

y

x

A
D

C
B

r = 2 + sin 2

r = 2 + cos 2



May 18, 2011

140 C H A P T E R 11 PARAMETRIC EQUATIONS, POLAR COORDINATES, AND CONIC SECTIONS (LT CHAPTER 12)

We first find the values of θ at the points of intersection A, B, C, and D of the two curves, by solving the following
equation for −π ≤ θ ≤ π :

2 + cos 2θ = 2 + sin 2θ

cos 2θ = sin 2θ

tan 2θ = 1 ⇒ 2θ = π

4
+ πk ⇒ θ = π

8
+ πk

2

The solutions for −π ≤ θ ≤ π are

A: θ = π

8
.

B: θ = −3π

8
.

C: θ = −7π

8
.

D: θ = 5π

8
.

Using symmetry, we compute the shaded area in the figure below and multiply it by 4:

r = 2 + cos 2

π 0π

π 
8

π 
2

π 
2

5π 
8

A1

−

A = 4 · A1 = 4 · 1

2
·
∫ 5π/8

π/8
(2 + cos 2θ)2 dθ = 2

∫ 5π/8

π/8

(
4 + 4 cos 2θ + cos2 2θ

)
dθ

= 2
∫ 5π/8

π/8

(
4 + 4 cos 2θ + 1 + cos 4θ

2

)
dθ =

∫ 5π/8

π/8
(9 + 8 cos 2θ + cos 4θ) dθ

= 9θ + 4 sin 2θ + sin 4θ

4

∣∣∣∣5π/8

π/8
= 9

(
5π

8
− π

8

)
+ 4

(
sin

5π

4
− sin

π

4

)
+ 1

4

(
sin

5π

2
− sin

π

2

)
= 9π

2
− 4

√
2

Find the area of the region that lies inside one but not both of the curves in Figure 23.
23. Calculate the total length of the circle r = 4 sin θ as an integral in polar coordinates.

solution We use the formula for the arc length:

S =
∫ β

α

√
f (θ)2 + f ′(θ)2 dθ (1)

In this case, f (θ) = 4 sin θ and f ′(θ) = 4 cos θ , hence√
f (θ)2 + f ′(θ)2 =

√
(4 sin θ)2 + (4 cos θ)2 = √

16 = 4

The circle is traced as θ is varied from 0 to π . Substituting α = 0, β = π in (1) yields S = ∫ π
0 4 dθ = 4π .

2

y

x

The circle r = 4 sin θ

Sketch the segment r = sec θ for 0 ≤ θ ≤ A. Then compute its length in two ways: as an integral in polar
coordinates and using trigonometry.
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In Exercises 25–30, compute the length of the polar curve.

25. The length of r = θ2 for 0 ≤ θ ≤ π

solution We use the formula for the arc length. In this case f (θ) = θ2, f ′(θ) = 2θ , so we obtain

S =
∫ π

0

√(
θ2
)2 + (2θ)2 dθ =

∫ π

0

√
θ4 + 4θ2 dθ =

∫ π

0
θ
√

θ2 + 4 dθ

We compute the integral using the substitution u = θ2 + 4, du = 2θ dθ . This gives

S = 1

2

∫ π2+4

4

√
u du = 1

2
· 2

3
u3/2

∣∣∣∣π
2+4

4
= 1

3

((
π2 + 4

)3/2 − 43/2
)

= 1

3

((
π2 + 4

)3/2 − 8

)
≈ 14.55

The spiral r = θ for 0 ≤ θ ≤ A
27. The equiangular spiral r = eθ for 0 ≤ θ ≤ 2π

solution Since f (θ) = eθ , by the formula for the arc length we have:

L =
∫ 2π

0

√
f ′(θ)2 + f (θ) dθ +

∫ 2π

0

√(
eθ
)2 + (eθ

)2
dθ =

∫ 2π

0

√
2e2θ dθ

= √
2
∫ 2π

0
eθ dθ = √

2eθ

∣∣∣∣2π

0
= √

2
(
e2π − e0

)
= √

2
(
e2π − 1

)
≈ 755.9

The inner loop of r = 2 cos θ − 1 in Figure 21
29. The cardioid r = 1 − cos θ in Figure 16

solution In the equation of the cardioid, f (θ) = 1 − cos θ . Using the formula for arc length in polar coordinates we
have:

L =
∫ β

α

√
f (θ)2 + f ′(θ)2 dθ (1)

We compute the integrand:√
f (θ)2 + f ′ (θ)2 =

√
(1 − cos θ)2 + (sin θ)2 =

√
1 − 2 cos θ + cos2 θ + sin2 θ = √2 (1 − cos θ)

We identify the interval of θ . Since −1 ≤ cos θ ≤ 1, every 0 ≤ θ ≤ 2π corresponds to a nonnegative value of r . Hence,
θ varies from 0 to 2π . By (1) we obtain

L =
∫ 2π

0

√
2(1 − cos θ) dθ

Now, 1 − cos θ = 2 sin2(θ/2), and on the interval 0 ≤ θ ≤ π , sin(θ/2) is nonnegative, so that
√

2(1 − cos θ) =√
4 sin2(θ/2) = 2 sin(θ/2) there. The graph is symmetric, so it suffices to compute the integral for 0 ≤ θ ≤ π , and we

have

L = 2
∫ π

0

√
2(1 − cos θ) dθ = 2

∫ π

0
2 sin(θ/2) dθ = 8 sin

θ

2

∣∣∣∣π
0

= 8

r = cos2 θ
In Exercises 31 and 32, express the length of the curve as an integral but do not evaluate it.

31. r = (2 − cos θ)−1, 0 ≤ θ ≤ 2π

solution We have f (θ) = (2 − cos θ)−1, f ′(θ) = −(2 − cos θ)−2 sin θ , hence,

√
f 2(θ) + f ′(θ)2 =

√
(2 − cos θ)−2 + (2 − cos θ)−4 sin2 θ =

√
(2 − cos θ)−4

(
(2 − cos θ)2 + sin2 θ

)

= (2 − cos θ)−2
√

4 − 4 cos θ + cos2 θ + sin2 θ = (2 − cos θ)−2 √
5 − 4 cos θ

Using the integral for the arc length we get

L =
∫ 2π

0

√
5 − 4 cos θ(2 − cos θ)−2 dθ.

r = sin3 t , 0 ≤ θ ≤ 2π
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In Exercises 33–36, use a computer algebra system to calculate the total length to two decimal places.

33. The three-petal rose r = cos 3θ in Figure 20

solution We have f (θ) = cos 3θ , f ′(θ) = −3 sin 3θ , so that

√
f (θ)2 + f ′(θ)2 =

√
cos2 3θ + 9 sin2 3θ =

√
cos2 3θ + sin2 3θ + 8 sin2 3θ =

√
1 + 8 sin2 3θ

Note that the curve is traversed completely for 0 ≤ θ ≤ π . Using the arc length formula and evaluating with Maple gives

L =
∫ π

0

√
f (θ)2 + f ′(θ)2 dθ =

∫ π

0

√
1 + 8 sin2 3θ dθ ≈ 6.682446608

The curve r = 2 + sin 2θ in Figure 23
35. The curve r = θ sin θ in Figure 24 for 0 ≤ θ ≤ 4π

y

x
5 5

5

10

FIGURE 24 r = θ sin θ for 0 ≤ θ ≤ 4π .

solution We have f (θ) = θ sin θ , f ′(θ) = sin θ + θ cos θ , so that

√
f (θ)2 + f ′(θ)2 =

√
θ2 sin2 θ + (sin θ + θ cos θ)2 =

√
θ2 sin2 θ + sin2 θ + 2θ sin θ cos θ + θ2 cos2 θ

=
√

θ2 + sin2 θ + θ sin 2θ

using the identities sin2 θ + cos2 θ = 1 and 2 sin θ cos θ = sin 2θ . Thus by the arc length formula and evaluating with
Maple, we have

L =
∫ 4π

0

√
f (θ)2 + f ′(θ)2 dθ =

∫ 4π

0

√
θ2 + sin2 θ + θ sin 2θ dθ ≈ 79.56423976

r = √
θ , 0 ≤ θ ≤ 4π

Further Insights and Challenges
37. Suppose that the polar coordinates of a moving particle at time t are (r(t), θ(t)). Prove that the particle’s speed is

equal to
√

(dr/dt)2 + r2(dθ/dt)2.

solution The speed of the particle in rectangular coordinates is:

ds

dt
=
√

x′(t)2 + y′(t)2 (1)

We need to express the speed in polar coordinates. The x and y coordinates of the moving particles as functions of t are

x(t) = r(t) cos θ(t), y(t) = r(t) sin θ(t)

We differentiate x(t) and y(t), using the Product Rule for differentiation. We obtain (omitting the independent variable t)

x′ = r ′ cos θ − r (sin θ) θ ′

y′ = r ′ sin θ − r (cos θ) θ ′

Hence,

x′2 + y′2 = (r ′ cos θ − rθ ′ sin θ
)2 + (r ′ sin θ + rθ ′ cos θ

)2
= r ′2 cos2 θ − 2r ′rθ ′ cos θ sin θ + r2θ ′2 sin2 θ + r ′2 sin2 θ + 2r ′rθ ′ sin2 θ cos θ + r2θ ′2 cos2 θ

= r ′2 (cos2 θ + sin2 θ
)

+ r2θ ′2 (sin2 θ + cos2 θ
)

= r ′2 + r2θ ′2 (2)
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Substituting (2) into (1) we get

ds

dt
=
√

r ′2 + r2θ ′2 =
√(

dr

dt

)2
+ r2

(
dθ

dt

)2

Compute the speed at time t = 1 of a particle whose polar coordinates at time t are r = t , θ = t (use Exercise
37). What would the speed be if the particle’s rectangular coordinates were x = t , y = t? Why is the speed increasing
in one case and constant in the other?

11.5 Conic Sections (LT Section 12.5)

Preliminary Questions
1. Which of the following equations defines an ellipse? Which does not define a conic section?

(a) 4x2 − 9y2 = 12 (b) −4x + 9y2 = 0

(c) 4y2 + 9x2 = 12 (d) 4x3 + 9y3 = 12

solution

(a) This is the equation of the hyperbola
(

x√
3

)2 −
(

y
2√
3

)2

= 1, which is a conic section.

(b) The equation −4x + 9y2 = 0 can be rewritten as x = 9
4y2, which defines a parabola. This is a conic section.

(c) The equation 4y2 + 9x2 = 12 can be rewritten in the form
(

y√
3

)2 +
(

x
2√
3

)2

= 1, hence it is the equation of an

ellipse, which is a conic section.

(d) This is not the equation of a conic section, since it is not an equation of degree two in x and y.

2. For which conic sections do the vertices lie between the foci?

solution If the vertices lie between the foci, the conic section is a hyperbola.

y

x
Vertex

Vertex

Vertex

Vertex FocusFocus

F1 F2

Vertex VertexFocus Focus
x

y

F2 F1

ellipse: foci between vertices hyperbola: vertices between foci

3. What are the foci of (x

a

)2 +
(y

b

)2 = 1 if a < b?

solution If a < b the foci of the ellipse
(
x
a

)2 + ( y
b

)2 = 1 are at the points (0, c) and (0, −c) on the y-axis, where

c =
√

b2 − a2.

F1 = (0, c)

F2 = (0, −c)

y

x

b

a

(
x
a

)2 + ( y
b

)2 = 1; a < b
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4. What is the geometric interpretation of b/a in the equation of a hyperbola in standard position?

solution The vertices, i.e., the points where the focal axis intersects the hyperbola, are at the points (a, 0) and (−a, 0).

The values ± b
a are the slopes of the two asymptotes of the hyperbola.

x

y
y = − x

(−a, 0) (a, 0)

b
a

y = x

b

−b

b
a

Hyperbola in standard position

Exercises
In Exercises 1–6, find the vertices and foci of the conic section.

1.
(x

9

)2 +
(y

4

)2 = 1

solution This is an ellipse in standard position with a = 9 and b = 4. Hence, c =
√

92 − 42 = √
65 ≈ 8.06. The foci

are at F1 = (−8.06, 0) and F2 = (8.06, 0), and the vertices are (9, 0) , (−9, 0), (0, 4) , (0, −4).

x2

9
+ y2

4
= 1

3.
(x

4

)2 −
(y

9

)2 = 1

solution This is a hyperbola in standard position with a = 4 and b = 9. Hence, c =
√

a2 + b2 = √
97 ≈ 9.85. The

foci are at (±√
97, 0) and the vertices are (±2, 0).

x2

4
− y2

9
= 36

5.
(

x − 3

7

)2
−
(

y + 1

4

)2
= 1

solution We first consider the hyperbola
(
x
7

)2 − ( y4 )2 = 1. For this hyperbola, a = 7, b = 4 and c =
√

72 + 42 ≈
8.06. Hence, the foci are at (8.06, 0) and (−8.06, 0) and the vertices are at (7, 0) and (−7, 0). Since the given hyperbola

is obtained by translating the center of the hyperbola
(
x
7

)2 − ( y
4

)2 = 1 to the point (3, −1), the foci are at F1 =
(8.06 + 3, 0 − 1) = (11.06, −1) and F2 = (−8.06 + 3, 0 − 1) = (−5.06, −1) and the vertices are A = (7 + 3, 0 − 1) =
(10, −1) and A′ = (−7 + 3, 0 − 1) = (−4, −1).

(
x − 3

4

)2
+
(

y + 1

7

)2
= 1

In Exercises 7–10, find the equation of the ellipse obtained by translating (as indicated) the ellipse(
x − 8

6

)2
+
(

y + 4

3

)2
= 1

7. Translated with center at the origin

solution Recall that the equation

(x − h)2

a2
+ (y − k)2

b2
= 1

describes an ellipse with center (h, k). Thus, for our ellipse to be located at the origin, it must have equation

x2

62
+ y2

32
= 1

Translated with center at (−2, −12)
9. Translated to the right six units

solution Recall that the equation

(x − h)2

a2
+ (y − k)2

b2
= 1

describes an ellipse with center (h, k). The original ellipse has center at (8, −4), so we want an ellipse with center (14, −4).
Thus its equation is

(x − 14)2

62
+ (y + 4)2

32
= 1
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Translated down four unitsIn Exercises 11–14, find the equation of the given ellipse.

11. Vertices (±5, 0) and (0, ±7)

solution Since both sets of vertices are symmetric around the origin, the center of the ellipse is at (0, 0). We have
a = 5 and b = 7, so the equation of the ellipse is (x

5

)2 +
(y

7

)2 = 1

Foci (±6, 0) and focal vertices (±10, 0)
13. Foci (0, ±10) and eccentricity e = 3

5

solution Since the foci are on the y axis, this ellipse has a vertical major axis with center (0, 0), so its equation is

(x

b

)2 +
(y

a

)2 = 1

We have a = c
e = 10

3/5 = 50
3 and

b =
√

a2 − c2 =
√

2500

9
− 100 = 1

3

√
2500 − 900 = 40

3

Thus the equation of the ellipse is (
x

40/3

)2
+
(

y

50/3

)2
= 1

Vertices (4, 0), (28, 0) and eccentricity e = 2
3

In Exercises 15–20, find the equation of the given hyperbola.

15. Vertices (±3, 0) and foci (±5, 0)

solution The equation is
(
x
a

)2 − ( y
b

)2 = 1. The vertices are (±a, 0) with a = 3 and the foci (±c, 0) with c = 5. We

use the relation c =
√

a2 + b2 to find b:

b =
√

c2 − a2 =
√

52 − 32 = √
16 = 4

Therefore, the equation of the hyperbola is (x

3

)2 −
(y

4

)2 = 1.

Vertices (±3, 0) and asymptotes y = ± 1
2x

17. Foci (±4, 0) and eccentricity e = 2

solution We have c = 4 and e = 2; from c = ae we get a = 2, and then

b =
√

c2 − a2 =
√

42 − 22 = 2
√

3

The hyperbola has center at (0, 0) and horizontal axis, so its equation is

(x

2

)2 −
(

y

2
√

3

)2
= 1

Vertices (0, ±6) and eccentricity e = 3
19. Vertices (−3, 0), (7, 0) and eccentricity e = 3

solution The center is at −3+7
2 = 2 with a horizontal focal axis, so the equation is

(
x − 2

a

)2
−
(y

b

)2 = 1.

Then a = 7 − 2 = 5, and c = ae = 5 · 3 = 15. Finally,

b =
√

c2 − a2 =
√

152 − 52 = 10
√

2

so that the equation of the hyperbola is (
x − 2

5

)2
−
(

y

10
√

2

)2
= 1

Vertices (0, −6), (0, 4) and foci (0, −9), (0, 7)
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In Exercises 21–28, find the equation of the parabola with the given properties.

21. Vertex (0, 0), focus
( 1

12 , 0
)

solution Since the focus is on the x-axis rather than the y-axis, and the vertex is (0, 0), the equation is x = 1
4c

y2.

The focus is (0, c) with c = 1
12 , so the equation is

x = 1

4 · 1
12

y2 = 3y2

Vertex (0, 0), focus (0, 2)
23. Vertex (0, 0), directrix y = −5

solution The equation is y = 1
4c

x2. The directrix is y = −c with c = 5, hence y = 1
20x2.

Vertex (3, 4), directrix y = −2
25. Focus (0, 4), directrix y = −4

solution The focus is (0, c) with c = 4 and the directrix is y = −c with c = 4, hence the equation of the parabola is

y = 1

4c
x2 = x2

16
.

Focus (0, −4), directrix y = 4
27. Focus (2, 0), directrix x = −2

solution The focus is on the x-axis rather than on the y-axis and the directrix is a vertical line rather than horizontal
as in the parabola in standard position. Therefore, the equation of the parabola is obtained by interchanging x and y in

y = 1
4c

x2. Also, by the given information c = 2. Hence, x = 1
4c

y2 = 1
4·2y2 or x = y2

8 .

Focus (−2, 0), vertex (2, 0)In Exercises 29–38, find the vertices, foci, center (if an ellipse or a hyperbola), and asymptotes (if a hyperbola).

29. x2 + 4y2 = 16

solution We first divide the equation by 16 to convert it to the equation in standard form:

x2

16
+ 4y2

16
= 1 ⇒ x2

16
+ y2

4
= 1 ⇒

(x

4

)2 +
(y

2

)2 = 1

For this ellipse, a = 4 and b = 2 hence c =
√

42 − 22 = √
12 ≈ 3.5. Since a > b we have:

• The vertices are at (±4, 0), (0, ±2).

• The foci are F1 = (−3.5, 0) and F2 = (3.5, 0).

• The focal axis is the x-axis and the conjugate axis is the y-axis.

• The ellipse is centered at the origin.

4x2 + y2 = 1631.
(

x − 3

4

)2
−
(

y + 5

7

)2
= 1

solution For this hyperbola a = 4 and b = 7 so c =
√

42 + 72 = √
65 ≈ 8.06. For the standard hyperbola(

x
4

)2 − ( y7 )2 = 1, we have

• The vertices are A = (4, 0) and A′ = (−4, 0).

• The foci are F = (
√

65, 0) and F ′ = (−√
65, 0).

• The focal axis is the x-axis y = 0, and the conjugate axis is the y-axis x = 0.

• The center is at the midpoint of FF ′; that is, at the origin.

• The asymptotes y = ± b
a x are y = ± 7

4x.

The given hyperbola is a translation of the standard hyperbola, 3 units to the right and 5 units downward. Hence the
following holds:

• The vertices are at A = (7, −5) and A′ = (−1, −5).

• The foci are at F = (3 + √
65, −5) and F ′ = (3 − √

65, −5).

• The focal axis is y = −5 and the conjugate axis is x = 3.

• The center is at (3, −5).

• The asymptotes are y + 5 = ± 7
4 (x − 3).
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3x2 − 27y2 = 12
33. 4x2 − 3y2 + 8x + 30y = 215

solution Since there is no cross term, we complete the square of the terms involving x and y separately:

4x2 − 3y2 + 8x + 30y = 4
(
x2 + 2x

)
− 3

(
y2 − 10y

)
= 4(x + 1)2 − 4 − 3(y − 5)2 + 75 = 215

Hence,

4(x + 1)2 − 3(y − 5)2 = 144

4(x + 1)2

144
− 3(y − 5)2

144
= 1

(
x + 1

6

)2
−
(

y − 5√
48

)2
= 1

This is the equation of the hyperbola obtained by translating the hyperbola
(
x
6

)2 −
(

y√
48

)2 = 1 one unit to the left and

five units upwards. Since a = 6, b = √
48, we have c = √

36 + 48 = √
84 ∼ 9.2. We obtain the following table:

Standard position Translated hyperbola

vertices (6, 0), (−6, 0) (5, 5), (−7, 5)

foci (±9.2, 0) (8.2, 5), (−10.2, 5)

focal axis The x-axis y = 5

conjugate axis The y-axis x = −1

center The origin (−1, 5)

asymptotes y = ±1.15x y = −1.15x + 3.85
y = 1.15x + 6.15

y = 4x235. y = 4(x − 4)2

solution By Exercise 34, the parabola y = 4x2 has the vertex at the origin, the focus at
(

0, 1
16

)
and its axis is the

y-axis. Our parabola is a translation of the standard parabola four units to the right. Hence its vertex is at (4, 0), the focus

is at
(

4, 1
16

)
and its axis is the vertical line x = 4.

8y2 + 6x2 − 36x − 64y + 134 = 0
37. 4x2 + 25y2 − 8x − 10y = 20

solution Since there are no cross terms this conic section is obtained by translating a conic section in standard position.
To identify the conic section we complete the square of the terms involving x and y separately:

4x2 + 25y2 − 8x − 10y = 4
(
x2 − 2x

)
+ 25

(
y2 − 2

5
y

)

= 4(x − 1)2 − 4 + 25

(
y − 1

5

)2
− 1

= 4(x − 1)2 + 25

(
y − 1

5

)2
− 5 = 20

Hence,

4(x − 1)2 + 25

(
y − 1

5

)2
= 25

4

25
(x − 1)2 +

(
y − 1

5

)2
= 1

(
x − 1

5
2

)2

+
(

y − 1

5

)2
= 1
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This is the equation of the ellipse obtained by translating the ellipse in standard position

(
x
5
2

)2
+ y2 = 1 one unit to the

right and 1
5 unit upward. Since a = 5

2 , b = 1 we have c =
√(

5
2

)2 − 1 ≈ 2.3, so we obtain the following table:

Standard position Translated ellipse

Vertices
(
± 5

2 , 0
)

, (0, ±1)
(

1 ± 5
2 , 1

5

)
,
(

1, 1
5 ± 1

)
Foci (−2.3, 0) , (2.3, 0)

(
−1.3, 1

5

)
,
(

3.3, 1
5

)
Focal axis The x-axis y = 1

5

Conjugate axis The y-axis x = 1

Center The origin
(

1, 1
5

)

16x2 + 25y2 − 64x − 200y + 64 = 0
In Exercises 39–42, use the Discriminant Test to determine the type of the conic section (in each case, the equation is
nondegenerate). Plot the curve if you have a computer algebra system.

39. 4x2 + 5xy + 7y2 = 24

solution Here, D = 25 − 4 · 4 · 7 = −87, so the conic section is an ellipse.

x2 − 2xy + y2 + 24x − 8 = 0
41. 2x2 − 8xy + 3y2 − 4 = 0

solution Here, D = 64 − 4 · 2 · 3 = 40, giving us a hyperbola.

2x2 − 3xy + 5y2 − 4 = 0
43. Show that the “conic” x2 + 3y2 − 6x + 12y + 23 = 0 has no points.

solution Complete the square in each variable separately:

−23 = x2 − 6x + 3y2 + 12y = (x2 − 6x + 9) + (3y2 + 12y + 12) − 9 − 12 = (x − 3)2 + 3(y + 2)2 − 21

Collecting constants and reversing sides gives

(x − 3)2 + 3(y + 2)2 = −2

which has no solutions since the left-hand side is a sum of two squares so is always nonnegative.

For which values of a does the conic 3x2 + 2y2 − 16y + 12x = a have at least one point?45. Show that
b

a
=
√

1 − e2 for a standard ellipse of eccentricity e.

solution By the definition of eccentricity:

e = c

a
(1)

For the ellipse in standard position, c =
√

a2 − b2. Substituting into (1) and simplifying yields

e =
√

a2 − b2

a
=
√

a2 − b2

a2
=
√

1 −
(

b

a

)2

We square the two sides and solve for b
a :

e2 = 1 −
(

b

a

)2
⇒
(

b

a

)2
= 1 − e2 ⇒ b

a
=
√

1 − e2

Show that the eccentricity of a hyperbola in standard position is e =
√

1 + m2, where ±m are the slopes of the
asymptotes.

47. Explain why the dots in Figure 23 lie on a parabola. Where are the focus and directrix located?

y = −c

y = c
y = 2c
y = 3c

y

x

FIGURE 23
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solution All the circles are centered at (0, c) and the kth circle has radius kc. Hence the indicated point Pk on the kth
circle has a distance kc from the point F = (0, c). The point Pk also has distance kc from the line y = −c. That is, the
indicated point on each circle is equidistant from the point F = (0, c) and the line y = −c, hence it lies on the parabola
with focus at F = (0, c) and directrix y = −c.

y = −c

(0, c) 2c

2c

3c

3c P2

P3

P1

y

x

Find the equation of the ellipse consisting of points P such that PF1 + PF2 = 12, where F1 = (4, 0) and
F2 = (−2, 0).

49. A latus rectum of a conic section is a chord through a focus parallel to the directrix. Find the area bounded by the
parabola y = x2/(4c) and its latus rectum (refer to Figure 8).

solution The directrix is y = −c, and the focus is (0, c). The chord through the focus parallel to y = −c is clearly

y = c; this line intersects the parabola when c = x2/(4c) or 4c2 = x2, so when x = ±2c. The desired area is then∫ 2c

−2c
c − 1

4c
x2 dx =

(
c x − 1

12c
x3
) ∣∣∣∣2c

−2c

= 2c2 − 8c3

12c
−
(

−2c2 − (−2c)3

12c

)
= 4c2 − 4

3
c2 = 8

3
c2

Show that the tangent line at a point P = (x0, y0) on the hyperbola
(x

a

)2 −
(y

b

)2 = 1 has equation

Ax − By = 1

where A = x0

a2
and B = y0

b2
.

In Exercises 51–54, find the polar equation of the conic with the given eccentricity and directrix, and focus at the origin.

51. e = 1
2 , x = 3

solution Substituting e = 1
2 and d = 3 in the polar equation of a conic section we obtain

r = ed

1 + e cos θ
=

1
2 · 3

1 + 1
2 cos θ

= 3

2 + cos θ
⇒ r = 3

2 + cos θ

e = 1
2 , x = −3

53. e = 1, x = 4

solution We substitute e = 1 and d = 4 in the polar equation of a conic section to obtain

r = ed

1 + e cos θ
= 1 · 4

1 + 1 · cos θ
= 4

1 + cos θ
⇒ r = 4

1 + cos θ

e = 3
2 , x = −4

In Exercises 55–58, identify the type of conic, the eccentricity, and the equation of the directrix.

55. r = 8

1 + 4 cos θ

solution Matching with the polar equation r = ed
1+e cos θ

we get ed = 8 and e = 4 yielding d = 2. Since e > 1, the
conic section is a hyperbola, having eccentricity e = 4 and directrix x = 2 (referring to the focus-directrix definition (11)).

r = 8

4 + cos θ

57. r = 8

4 + 3 cos θ

solution We first rewrite the equation in the form r = ed
1+e cos θ

, obtaining

r = 2

1 + 3
4 cos θ

Hence, ed = 2 and e = 3
4 yielding d = 8

3 . Since e < 1, the conic section is an ellipse, having eccentricity e = 3
4 and

directrix x = 8
3 .

r = 12

4 + 3 cos θ

59. Find a polar equation for the hyperbola with focus at the origin, directrix x = −2, and eccentricity e = 1.2.

solution We substitute d = −2 and e = 1.2 in the polar equation r = ed
1+e cos θ

and use Exercise 40 to obtain

r = 1.2 · (−2)

1 + 1.2 cos θ
= −2.4

1 + 1.2 cos θ
= −12

5 + 6 cos θ
= 12

5 − 6 cos θ
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Let C be the ellipse r = de/(1 + e cos θ), where e < 1. Show that the x-coordinates of the points in Figure 24
are as follows:

Point A C F2 A′

x-coordinate
de

e + 1
− de2

1 − e2
− 2de2

1 − e2
− de

1 − e

61. Find an equation in rectangular coordinates of the conic

r = 16

5 + 3 cos θ

Hint: Use the results of Exercise 60.

solution Put this equation in the form of the referenced exercise:

16

5 + 3 cos θ
=

16
5

1 + 3
5 cos θ

=
16
3 · 3

5

1 + 3
5 cos θ

so that e = 3
5 and d = 16

3 . Then the center of the ellipse has x-coordinate

− de2

1 − e2
= −

16
3 · 9

25

1 − 9
25

= −16

3
· 9

25
· 25

16
= −3

and y-coordinate 0, and A′ has x-coordinate

− de

1 − e
= −

16
3 · 3

5

1 − 3
5

= −16

3
· 3

5
· 5

2
= −8

and y-coordinate 0, so a = −3 − (−8) = 5, and the equation is(
x + 3

5

)2
+
(y

b

)2 = 1

To find b, set θ = π
2 ; then r = 16

5 . But the point corresponding to θ = π
2 lies on the y-axis, so has coordinates

(
0, 16

5

)
.

This point is on the ellipse, so that

(
0 + 3

5

)2
+
(

16
5
b

)2

= 1 ⇒ 256

25 · b2
= 16

25
⇒ 256

b2
= 16 ⇒ b = 4

and the equation is (
x + 3

5

)2
+
(y

4

)2 = 1

Let e > 1. Show that the vertices of the hyperbola r = de

1 + e cos θ
have x-coordinates

ed

e + 1
and

ed

e − 1
.

63. Kepler’s First Law states that planetary orbits are ellipses with the sun at one focus. The orbit of Pluto has eccentricity
e ≈ 0.25. Its perihelion (closest distance to the sun) is approximately 2.7 billion miles. Find the aphelion (farthest
distance from the sun).

solution We define an xy-coordinate system so that the orbit is an ellipse in standard position, as shown in the figure.

y

x
Sun

F1(c, 0)

A(a, 0)A' (−a, 0)

The aphelion is the length of A′F1, that is a + c. By the given data, we have

0.25 = e = c

a
⇒ c = 0.25a

a − c = 2.7 ⇒ c = a − 2.7

Equating the two expressions for c we get

0.25a = a − 2.7

0.75a = 2.7 ⇒ a = 2.7

0.75
= 3.6, c = 3.6 − 2.7 = 0.9

The aphelion is thus

A′F0 = a + c = 3.6 + 0.9 = 4.5 billion miles.

Kepler’s Third Law states that the ratio T/a3/2 is equal to a constant C for all planetary orbits around the sun,
where T is the period (time for a complete orbit) and a is the semimajor axis.

(a) Compute C in units of days and kilometers, given that the semimajor axis of the earth’s orbit is 150 × 106 km.

(b) Compute the period of Saturn’s orbit, given that its semimajor axis is approximately 1.43 × 109 km.

(c) Saturn’s orbit has eccentricity e 0 056 Find the perihelion and aphelion of Saturn (see Exercise 63)
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Further Insights and Challenges
65. Verify Theorem 2.

solution Let F1 = (c, 0) and F2 = (−c, 0) and let P (x, y) be an arbitrary point on the hyperbola. Then for some
constant a,

PF1 − PF2 = ±2a

y

x
F2 = (−c, 0) F1 = (c, 0)

P = (x, y)

Using the distance formula we write this as

√
(x − c)2 + y2 −

√
(x + c)2 + y2 = ±2a.

Moving the second term to the right and squaring both sides gives

√
(x − c)2 + y2 =

√
(x + c)2 + y2 ± 2a

(x − c)2 + y2 = (x + c)2 + y2 ± 4a

√
(x + c)2 + y2 + 4a2

(x − c)2 − (x + c)2 − 4a2 = ±4a

√
(x + c)2 + y2

xc + a2 = ±a

√
(x + c)2 + y2

We square and simplify to obtain

x2c2 + 2xca2 + a4 = a2
(
(x + c)2 + y2

)
= a2x2 + 2a2xc + a2c2 + a2y2(

c2 − a2
)

x2 − a2y2 = a2
(
c2 − a2

)
x2

a2
− y2

c2 − a2
= 1

For b =
√

c2 − a2 (or c =
√

a2 + b2) we get

x2

a2
− y2

b2
= 1 ⇒

(x

a

)2 −
(y

b

)2 = 1.

Verify Theorem 5 in the case 0 < e < 1. Hint: Repeat the proof of Theorem 5, but set c = d/(e−2 − 1).
67. Verify that if e > 1, then Eq. (11) defines a hyperbola of eccentricity e, with its focus at the origin and directrix at
x = d.

solution The points P = (r, θ) on the hyperbola satisfy PF = ePD, e > 1. Referring to the figure we see that

PF = r, PD = d − r cos θ (1)

Hence

r = e(d − r cos θ)

r = ed − er cos θ

r(1 + e cos θ) = ed ⇒ r = ed

1 + e cos θ
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F

r P

q
D

y

x

x = d

D

d − rcos q
rcos q

Remark: Equality (1) holds also for θ > π
2 . For example, in the following figure, we have

PD = d + r cos (π − θ) = d − r cos θ

y

x

P

r

dr cos (p − q )

q

x = d

D

Reflective Property of the Ellipse In Exercises 68–70, we prove that the focal radii at a point on an ellipse make equal
angles with the tangent line L. Let P = (x0, y0) be a point on the ellipse in Figure 25 with foci F1 = (−c, 0) and
F2 = (c, 0), and eccentricity e = c/a.

R2 = (  2,    2)

R1 = (  1,    1)

1
2

y

x

P = (x0, y0)

F1 = (−c, 0) F2 = (c, 0)

L

FIGURE 25 The ellipse
(x

a

)2 +
(y

b

)2 = 1.

Show that the equation of the tangent line at P is Ax + By = 1, where A = x0

a2
and B = y0

b2
.

69. Points R1 and R2 in Figure 25 are defined so that F1R1 and F2R2 are perpendicular to the tangent line.

(a) Show, with A and B as in Exercise 68, that

α1 + c

β1
= α2 − c

β2
= A

B

(b) Use (a) and the distance formula to show that

F1R1

F2R2
= β1

β2

(c) Use (a) and the equation of the tangent line in Exercise 68 to show that

β1 = B(1 + Ac)

A2 + B2
, β2 = B(1 − Ac)

A2 + B2

solution
(a) Since R1 = (α1, β1) and R2 = (α2, β2) lie on the tangent line at P , that is on the line Ax + By = 1, we have

Aα1 + Bβ1 = 1 and Aα2 + Bβ2 = 1

The slope of the line R1F1 is β1
α1+c and it is perpendicular to the tangent line having slope −A

B
. Similarly, the slope of

the line R2F2 is β2
α2−c and it is also perpendicular to the tangent line. Hence,

α1 + c

β1
= A

B
and

α2 − c

β2
= A

B
.
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(b) Using the distance formula, we have

R1F1
2 = (α1 + c)2 + β2

1

Thus,

R1F1
2 = β2

1

((
α1 + c

β1

)2
+ 1

)
(1)

By part (a), α1+c
β1

= A
B

. Substituting in (1) gives

R1F1
2 = β2

1

(
A2

B2
+ 1

)
(2)

Likewise,

R2F2
2 = (α2 − c)2 + β2

2 = β2
2

((
α2 − c

β2

)2
+ 1

)
(3)

but since α2−c
β2

= A
B

, substituting in (3) gives

R2F2
2 = β2

2

(
A2

B2
+ 1

)
. (4)

Dividing, we find that

R1F1
2

R2F2
2

= β2
1

β2
2

so
R1F1

R2F2
= β1

β2
,

as desired.

(c) In part (a) we showed that ⎧⎪⎨
⎪⎩

Aα1 + Bβ1 = 1

β1

α1 + c
= B

A

Eliminating α1 and solving for β1 gives

β1 = B(1 + Ac)

A2 + B2
. (5)

Similarly, we have ⎧⎪⎨
⎪⎩

Aα2 + Bβ2 = 1

β2

α2 − c
= B

A

Eliminating α2 and solving for β2 yields

β2 = B (1 − Ac)

A2 + B2
(6)

(a) Prove that PF1 = a + x0e and PF2 = a − x0e. Hint: Show that PF1
2 − PF2

2 = 4x0c. Then use the defining
property PF1 + PF2 = 2a and the relation e = c/a.

(b) Verify that
F1R1

PF1
= F2R2

PF2
.

(c) Show that sin θ1 = sin θ2. Conclude that θ1 = θ2.

71. Here is another proof of the Reflective Property.

(a) Figure 25 suggests that L is the unique line that intersects the ellipse only in the point P . Assuming this, prove that
QF1 + QF2 > PF1 + PF2 for all points Q on the tangent line other than P .

(b) Use the Principle of Least Distance (Example 6 in Section 4.7) to prove that θ1 = θ2.

solution

(a) Consider a point Q 
= P on the line L (see figure). Since L intersects the ellipse in only one point, the remainder of
the line lies outside the ellipse, so that QR does not have zero length, and F2QR is a triangle. Thus

QF1 + QF2 = QR + RF1 + QF2 = RF1 + (QR + QF2) > RF1 + RF2

since the sum of lengths of two sides of a triangle exceeds the length of the third side. But since point R lies on the ellipse,
RF2 + RF2 = PF1 + PF2, and we are done.
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y

Q
R

P

x
F1 F2

(b) Consider a beam of light traveling from F1 to F2 by reflection off of the line L. By the principle of least distance,
the light takes the shortest path, which by part (a) is the path through P . By Example 6 in Section 4.7, this shortest path
has the property that the angle of incidence (θ1) is equal to the angle of reflection (θ2).

Show that the length QR in Figure 26 is independent of the point P .73. Show that y = x2/4c is the equation of a parabola with directrix y = −c, focus (0, c), and the vertex at the origin,
as stated in Theorem 3.

solution The points P = (x, y) on the parabola are equidistant from F = (0, c) and the line y = −c.

y

x

y = −c

P(x, y)

F(0, c)

That is, by the distance formula, we have

PF = PD√
x2 + (y − c)2 = |y + c|

Squaring and simplifying yields

x2 + (y − c)2 = (y + c)2

x2 + y2 − 2yc + c2 = y2 + 2yc + c2

x2 − 2yc = 2yc

x2 = 4yc ⇒ y = x2

4c

Thus, we showed that the points that are equidistant from the focus F = (0, c) and the directrix y = −c satisfy the

equation y = x2

4c
.

Consider two ellipses in standard position:

E1 :
(

x

a1

)2
+
(

y

b1

)2
= 1

E2 :
(

x

a2

)2
+
(

y

b2

)2
= 1

We say that E1 is similar to E2 under scaling if there exists a factor r > 0 such that for all (x, y) on E1, the point
(rx, ry) lies on E2. Show that E1 and E2 are similar under scaling if and only if they have the same eccentricity.
Show that any two circles are similar under scaling.

75. Derive Eqs. (13) and (14) in the text as follows. Write the coordinates of P with respect to the rotated axes
in Figure 21 in polar form x′ = r cos α, y′ = r sin α. Explain why P has polar coordinates (r, α + θ) with respect to the
standard x and y-axes and derive Eqs. (13) and (14) using the addition formulas for cosine and sine.

solution If the polar coordinates of P with respect to the rotated axes are (r, α), then the line from the origin to P

has length r and makes an angle of α with the rotated x-axis (the x′-axis). Since the x′-axis makes an angle of θ with the
x-axis, it follows that the line from the origin to P makes an angle of α + θ with the x-axis, so that the polar coordinates
of P with respect to the standard axes are (r, α + θ). Write (x′, y′) for the rectangular coordinates of P with respect to
the rotated axes and (x, y) for the rectangular coordinates of P with respect to the standard axes. Then

x = r cos(α + θ) = (r cos α) cos θ − (r sin α) sin θ = x′ cos θ − y′ sin θ

y = r sin(α + θ) = r sin α cos θ + r cos α sin θ = (r cos α) sin θ + (r sin α) cos θ = x′ sin θ + y′ cos θ

If we rewrite the general equation of degree 2 (Eq. 12) in terms of variables x′ and y′ that are related to x and y by
Eqs. (13) and (14), we obtain a new equation of degree 2 in x′ and y′ of the same form but with different coefficients:

a′x2 + b′xy + c′y2 + d ′x + e′y + f ′ = 0

(a) Show that b′ = b cos 2θ + (c − a) sin 2θ .

(b) Show that if b 
= 0, then we obtain b′ = 0 for

θ = 1

2
cot−1 a − c

b

This proves that it is always possible to eliminate the cross term bxy by rotating the axes through a suitable angle.

CHAPTER REVIEW EXERCISES

1. Which of the following curves pass through the point (1, 4)?

(a) c(t) = (t2, t + 3) (b) c(t) = (t2, t − 3)

(c) c(t) = (t2, 3 − t) (d) c(t) = (t − 3, t2)
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solution To check whether it passes through the point (1, 4), we solve the equations c(t) = (1, 4) for the given curves.

(a) Comparing the second coordinate of the curve and the point yields:

t + 3 = 4

t = 1

We substitute t = 1 in the first coordinate, to obtain

t2 = 12 = 1

Hence the curve passes through (1, 4).
(b) Comparing the second coordinate of the curve and the point yields:

t − 3 = 4

t = 7

We substitute t = 7 in the first coordinate to obtain

t2 = 72 = 49 
= 1

Hence the curve does not pass through (1, 4).
(c) Comparing the second coordinate of the curve and the point yields

3 − t = 4

t = −1

We substitute t = −1 in the first coordinate, to obtain

t2 = (−1)2 = 1

Hence the curve passes through (1, 4).
(d) Comparing the first coordinate of the curve and the point yields

t − 3 = 1

t = 4

We substitute t = 4 in the second coordinate, to obtain:

t2 = 42 = 16 
= 4

Hence the curve does not pass through (1, 4).

Find parametric equations for the line through P = (2, 5) perpendicular to the line y = 4x − 3.
3. Find parametric equations for the circle of radius 2 with center (1, 1). Use the equations to find the points of intersection

of the circle with the x- and y-axes.

solution Using the standard technique for parametric equations of curves, we obtain

c(t) = (1 + 2 cos t, 1 + 2 sin t)

We compare the x coordinate of c(t) to 0:

1 + 2 cos t = 0

cos t = −1

2

t = ±2π

3

Substituting in the y coordinate yields

1 + 2 sin

(
±2π

3

)
= 1 ± 2

√
3

2
= 1 ± √

3

Hence, the intersection points with the y-axis are (0, 1 ± √
3). We compare the y coordinate of c(t) to 0:

1 + 2 sin t = 0

sin t = −1

2

t = −π

6
or

7

6
π
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Substituting in the x coordinates yields

1 + 2 cos
(
−π

6

)
= 1 + 2

√
3

2
= 1 + √

3

1 + 2 cos

(
7

6
π

)
= 1 − 2 cos

(π

6

)
= 1 − 2

√
3

2
= 1 − √

3

Hence, the intersection points with the x-axis are (1 ± √
3, 0).

Find a parametrization c(t) of the line y = 5 − 2x such that c(0) = (2, 1).
5. Find a parametrization c(θ) of the unit circle such that c(0) = (−1, 0).

solution The unit circle has the parametrization

c(t) = (cos t, sin t)

This parametrization does not satisfy c(0) = (−1, 0). We replace the parameter t by a parameter θ so that t = θ + α, to
obtain another parametrization for the circle:

c∗(θ) = (cos(θ + α), sin(θ + α)) (1)

We need that c∗(0) = (1, 0), that is,

c∗(0) = (cos α, sin α) = (−1, 0)

Hence

cos α = −1

sin α = 0
⇒ α = π

Substituting in (1) we obtain the following parametrization:

c∗(θ) = (cos(θ + π), sin(θ + π))

Find a path c(t) that traces the parabolic arc y = x2 from (0, 0) to (3, 9) for 0 ≤ t ≤ 1.
7. Find a path c(t) that traces the line y = 2x + 1 from (1, 3) to (3, 7) for 0 ≤ t ≤ 1.

solution Solution 1: By one of the examples in section 12.1, the line through P = (1, 3) with slope 2 has the
parametrization

c(t) = (1 + t, 3 + 2t)

But this parametrization does not satisfy c(1) = (3, 7). We replace the parameter t by a parameter s so that t = αs + β.
We get

c∗(s) = (1 + αs + β, 3 + 2(αs + β)) = (αs + β + 1, 2αs + 2β + 3)

We need that c∗(0) = (1, 3) and c∗(1) = (3, 7). Hence,

c∗(0) = (1 + β, 3 + 2β) = (1, 3)

c∗(1) = (α + β + 1, 2α + 2β + 3) = (3, 7)

We obtain the equations

1 + β = 1

3 + 2β = 3

α + β + 1 = 3

2α + 2β + 3 = 7

⇒ β = 0, α = 2

Substituting in (1) gives

c∗(s) = (2s + 1, 4s + 3)

Solution 2: The segment from (1, 3) to (3, 7) has the following vector parametrization:

(1 − t) 〈1, 3〉 + t 〈3, 7〉 = 〈1 − t + 3t, 3(1 − t) + 7t〉 = 〈1 + 2t, 3 + 4t〉
The parametrization is thus

c(t) = (1 + 2t, 3 + 4t)

Sketch the graph c(t) = (1 + cos t, sin 2t) for 0 ≤ t ≤ 2π and draw arrows specifying the direction of motion.
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In Exercises 9–12, express the parametric curve in the form y = f (x).

9. c(t) = (4t − 3, 10 − t)

solution We use the given equation to express t in terms of x.

x = 4t − 3

4t = x + 3

t = x + 3

4

Substituting in the equation of y yields

y = 10 − t = 10 − x + 3

4
= −x

4
+ 37

4

That is,

y = −x

4
+ 37

4

c(t) = (t3 + 1, t2 − 4)11. c(t) =
(

3 − 2

t
, t3 + 1

t

)
solution We use the given equation to express t in terms of x:

x = 3 − 2

t

2

t
= 3 − x

t = 2

3 − x

Substituting in the equation of y yields

y =
(

2

3 − x

)3
+ 1

2/(3 − x)
= 8

(3 − x)3
+ 3 − x

2

x = tan t , y = sec tIn Exercises 13–16, calculate dy/dx at the point indicated.

13. c(t) = (t3 + t, t2 − 1), t = 3

solution The parametric equations are x = t3 + t and y = t2 − 1. We use the theorem on the slope of the tangent

line to find dy
dx

:

dy

dx
=

dy
dt
dx
dt

= 2t

3t2 + 1

We now substitute t = 3 to obtain

dy

dx

∣∣∣∣
t=3

= 2 · 3

3 · 32 + 1
= 3

14

c(θ) = (tan2 θ, cos θ), θ = π
4

15. c(t) = (et − 1, sin t), t = 20

solution We use the theorem for the slope of the tangent line to find dy
dx

:

dy

dx
=

dy
dt
dx
dt

= (sin t)′
(et − 1)′ = cos t

et

We now substitute t = 20:

dy

dx

∣∣∣∣
t=0

= cos 20

e20

c(t) = (ln t, 3t2 − t), P = (0, 2)
17. Find the point on the cycloid c(t) = (t − sin t, 1 − cos t) where the tangent line has slope 1

2 .

solution Since x = t − sin t and y = 1 − cos t , the theorem on the slope of the tangent line gives

dy

dx
=

dy
dt
dx
dt

= sin t

1 − cos t
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The points where the tangent line has slope 1
2 are those where dy

dx
= 1

2 . We solve for t :

dy

dx
= 1

2

sin t

1 − cos t
= 1

2
(1)

2 sin t = 1 − cos t

We let u = sin t . Then cos t = ±
√

1 − sin2t = ±
√

1 − u2. Hence

2u = 1 ±
√

1 − u2

We transfer sides and square to obtain

±
√

1 − u2 = 2u − 1

1 − u2 = 4u2 − 4u + 1

5u2 − 4u = u(5u − 4) = 0

u = 0, u = 4

5

We find t by the relation u = sin t :

u = 0: sin t = 0 ⇒ t = 0, t = π

u = 4

5
: sin t = 4

5
⇒ t ≈ 0.93, t ≈ 2.21

These correspond to the points (0, 1), (π, 2), (0.13, 0.40), and (1.41, 1.60), respectively, for 0 < t < 2π .

Find the points on (t + sin t, t − 2 sin t) where the tangent is vertical or horizontal.
19. Find the equation of the Bézier curve with control points

P0 = (−1, −1), P1 = (−1, 1), P2 = (1, 1), P3(1, −1)

solution We substitute the given points in the appropriate formulas in the text to find the parametric equations of the
Bézier curve. We obtain

x(t) = −(1 − t)3 − 3t (1 − t)2 + t2(1 − t) + t3

= −(1 − 3t + 3t2 − t3) − (3t − 6t2 + 3t3) + (t2 − t3) + t3

= (−2t3 + 4t2 − 1)

y(t) = −(1 − t)3 + 3t (1 − t)2 + t2(1 − t) − t3

= −(1 − 3t + 3t2 − t3) + (3t − 6t2 + 3t3) + (t2 − t3) − t3

= (2t3 − 8t2 + 6t − 1)

Find the speed at t = π
4 of a particle whose position at time t seconds is c(t) = (sin 4t, cos 3t).

21. Find the speed (as a function of t) of a particle whose position at time t seconds is c(t) = (sin t + t, cos t + t). What
is the particle’s maximal speed?

solution We use the parametric definition to find the speed. We obtain

ds

dt
=
√

((sin t + t)′)2 + ((cos t + t)′)2 =
√

(cos t + 1)2 + (1 − sin t)2

=
√

cos2 t + 2 cos t + 1 + 1 − 2 sin t + sin2 t = √3 + 2(cos t − sin t)

We now differentiate the speed function to find its maximum:

d2s

dt2
=
(√

3 + 2(cos t − sin t)
)′ = − sin t − cos t√

3 + 2(cos t − sin t)
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We equate the derivative to zero, to obtain the maximum point:

d2s

dt2
= 0

− sin t − cos t√
3 + 2(cos t − sin t)

= 0

− sin t − cos t = 0

− sin t = cos t

sin(−t) = cos(−t)

−t = π

4
+ πk

t = −π

4
+ πk

Substituting t in the function of speed we obtain the value of the maximal speed:

√
3 + 2

(
cos −π

4
− sin −π

4

)
=
√√√√3 + 2

(√
2

2
−
(

−
√

2

2

))
=
√

3 + 2
√

2

Find the length of (3et − 3, 4et + 7) for 0 ≤ t ≤ 1.

In Exercises 23 and 24, let c(t) = (e−t cos t, e−t sin t).

23. Show that c(t) for 0 ≤ t < ∞ has finite length and calculate its value.

solution We use the formula for arc length, to obtain:

s =
∫ ∞

0

√
((e−t cos t)′)2 + ((e−t sin t)′)2dt

=
∫ ∞

0

√
(−e−t cos t − e−t sin t)2 + (−e−t sin t + e−t cos t)2dt

=
∫ ∞

0

√
e−2t (cos t + sin t)2 + e−2t (cos t − sin t)2dt

=
∫ ∞

0
e−t

√
cos2 t + 2 sin t cos t + sin2 t + cos2 t − 2 sin t cos t + sin2 tdt

=
∫ ∞

0
e−t

√
2dt = √

2(−e−t )

∣∣∣∣∞
0

= −√
2

(
lim

t→∞ e−t − e0
)

= −√
2(0 − 1) = √

2

Find the first positive value of t0 such that the tangent line to c(t0) is vertical, and calculate the speed at t = t0.25. Plot c(t) = (sin 2t, 2 cos t) for 0 ≤ t ≤ π . Express the length of the curve as a definite integral, and
approximate it using a computer algebra system.

solution We use a CAS to plot the curve. The resulting graph is shown here.

x

y

2

1

−2

−1

−2 −1 21

Plot of the curve (sin 2t, 2 cos t)
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To calculate the arc length we use the formula for the arc length to obtain

s =
∫ π

0

√
(2 cos 2t)2 + (−2 sin t)2 dt = 2

∫ π

0

√
cos2 2t + sin2 t dt

We use a CAS to obtain s = 6.0972.

Convert the points (x, y) = (1, −3), (3, −1) from rectangular to polar coordinates.27. Convert the points (r, θ) = (1, π
6

)
,
(
3, 5π

4

)
from polar to rectangular coordinates.

solution We convert the points from polar coordinates to cartesian coordinates. For the first point we have

x = r cos θ = 1 · cos
π

6
=

√
3

2

y = r sin θ = 1 · sin
π

6
= 1

2

For the second point we have

x = r cos θ = 3 cos
5π

4
= −3

√
2

2

y = r sin θ = 3 sin
5π

4
= −3

√
2

2

Write (x + y)2 = xy + 6 as an equation in polar coordinates.29. Write r = 2 cos θ

cos θ − sin θ
as an equation in rectangular coordinates.

solution We use the formula for converting from polar coordinates to cartesian coordinates to substitute x and y for
r and θ :

r = 2 cos θ

cos θ − sin θ√
x2 + y2 = 2r cos θ

r cos θ − r sin θ√
x2 + y2 = 2x

x − y

Show that r = 4

7 cos θ − sin θ
is the polar equation of a line.

31. Convert the equation

9(x2 + y2) = (x2 + y2 − 2y)2

to polar coordinates, and plot it with a graphing utility.

solution We use the formula for converting from cartesian coordinates to polar coordinates to substitute r and θ for
x and y:

9(x2 + y2) = (x2 + y2 − 2y)2

9r2 = (r2 − 2r sin θ)2

3r = r2 − 2r sin θ

3 = r − 2 sin θ

r = 3 + 2 sin θ

The plot of r = 3 + 2 sin θ is shown here:

r = 3 + 2sin

5

40 31−4 2−1−2−3
−2

4

3

2

1

0

−1

Plot of r = 3 + 2 sin θ
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Calculate the area of the circle r = 3 sin θ bounded by the rays θ = π
3 and θ = 2π

3 .
33. Calculate the area of one petal of r = sin 4θ (see Figure 1).

y

x

n = 2 (4 petals)

y

x

n = 4 (8 petals)

y

x

n = 6 (12 petals)

FIGURE 1 Plot of r = sin(nθ).

solution We use a CAS to generate the plot, as shown here.

r = 4sin

−0.8 −0.4

1
0.8
0.6
0.4
0.2

0
−0.2
−0.4
−0.6
−0.8

−1
10 0.80.4−1

Plot of r = sin 4θ

We can see that one leaf lies between the rays θ = 0 and θ = θ

4
. We now use the formula for area in polar coordinates to

obtain

A = 1

2

∫ π/4

0
sin2 4θ dθ = 1

4

∫ π/4

0
(1 − cos 8θ) dθ = 1

4

(
θ − sin 8θ

8

∣∣∣∣π/4

0

)

= π

16
− 1

32
(sin 2π − sin 0) = π

16

The equation r = sin(nθ), where n ≥ 2 is even, is a “rose” of 2n petals (Figure 1). Compute the total area of the
flower, and show that it does not depend on n.

35. Calculate the total area enclosed by the curve r2 = cos θesin θ (Figure 2).

y

x

1

1−1

FIGURE 2 Graph of r2 = cos θesin θ .

solution Note that this is defined only for θ between −π/2 and π/2. We use the formula for area in polar coordinates
to obtain:

A = 1

2

∫ π/2

−π/2
r2 dθ = 1

2

∫ π/2

−π/2
cos θesin θ dθ

We evaluate the integral by making the substitution x = sin θ dx = cos θ dθ :

A = 1

2

∫ π/2

−π/2
cos θesin θ dθ = 1

2
ex

∣∣∣∣1−1
= 1

2

(
e − e−1

)

Find the shaded area in Figure 3.
37. Find the area enclosed by the cardioid r = a(1 + cos θ), where a > 0.

solution The graph of r = a (1 + cos θ) in the rθ -plane for 0 ≤ θ ≤ 2π and the cardioid in the xy-plane are shown
in the following figures:
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r

a

2a

2πππ 
2

3π 
2

y

x
θ = 0
r = 2a

θ = , r = a
3π

2

θ = , r = a
π

2

θ = π, r = 0

r = a (1 + cos θ) The cardioid r = a (1 + cos θ), a > 0

As θ varies from 0 to π the radius r decreases from 2a to 0, and this gives the upper part of the cardioid.
The lower part is traced as θ varies from π to 2π and consequently r increases from 0 back to 2a. We compute

the area enclosed by the upper part of the cardioid and the x-axis, using the following integral (we use the identity
cos2 θ = 1

2 + 1
2 cos 2θ ):

1

2

∫ π

0
r2 dθ = 1

2

∫ π

0
a2(1 + cos θ)2 dθ = a2

2

∫ π

0

(
1 + 2 cos θ + cos2 θ

)
dθ

= a2

2

∫ π

0

(
1 + 2 cos θ + 1

2
+ 1

2
cos 2θ

)
dθ = a2

2

∫ π

0

(
3

2
+ 2 cos θ + 1

2
cos 2θ

)
dθ

= a2

2

[
3θ

2
+ 2 sin θ + 1

4
sin 2θ

] ∣∣∣∣π
0

= a2

2

[
3π

2
+ 2 sin π + 1

4
sin 2π − 0

]
= 3πa2

4

Using symmetry, the total area A enclosed by the cardioid is

A = 2 · 3πa2

4
= 3πa2

2

Calculate the length of the curve with polar equation r = θ in Figure 4.39. Figure 5 shows the graph of r = e0.5θ sin θ for 0 ≤ θ ≤ 2π . Use a computer algebra system to approximate
the difference in length between the outer and inner loops.

y

x

5

10

3−6

FIGURE 5

solution We note that the inner loop is the curve for θ ∈ [0, π ], and the outer loop is the curve for θ ∈ [π, 2π ]. We
express the length of these loops using the formula for the arc length. The length of the inner loop is

s1 =
∫ π

0

√
(e0.5θ sin θ)2 + ((e0.5θ sin θ)′)2dθ =

∫ π

0

√
eθ sin2 θ +

(
e0.5θ sin θ

2
+ e0.5θ cos θ

)2

dθ

and the length of the outer loop is

s2 =
∫ 2π

π

√
eθ sin2 θ +

(
e0.5θ sin θ

2
+ e0.5θ cos θ

)2

dθ

We now use the CAS to calculate the arc length of each of the loops. We obtain that the length of the inner loop is 7.5087
and the length of the outer loop is 36.121, hence the outer one is 4.81 times longer than the inner one.

Show that r = f1(θ) and r = f2(θ) define the same curves in polar coordinates if f1(θ) = −f2(θ + π). Use
this to show that the following define the same conic section:

r = de

1 − e cos θ
, r = −de

1 + e cos θ

In Exercises 41–44, identify the conic section. Find the vertices and foci.

41.
(x

3

)2 +
(y

2

)2 = 1

solution This is an ellipse in standard position. Its foci are (±
√

32 − 22, 0) = (±√
5, 0) and its vertices are

(±3, 0), (0,±2).

x2 − 2y2 = 4
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43.
(
2x + 1

2y
)2 = 4 − (x − y)2

solution We simplify the equation:

(
2x + 1

2
y

)2
= 4 − (x − y)2

4x2 + 2xy + 1

4
y2 = 4 − x2 + 2xy − y2

5x2 + 5

4
y2 = 4

5x2

4
+ 5y2

16
= 1

⎛
⎝ x

2√
5

⎞
⎠2

+
⎛
⎝ y

4√
5

⎞
⎠2

= 1

This is an ellipse in standard position, with foci

(
0, ±

√(
4√
5

)2 −
(

2√
5

)2
)

=
(

0, ±
√

12
5

)
and vertices

(
± 2√

5
, 0
)

,(
0, ± 4√

5

)
.

(y − 3)2 = 2x2 − 1
In Exercises 45–50, find the equation of the conic section indicated.

45. Ellipse with vertices (±8, 0) and foci (±√
3, 0)

solution Since the foci of the desired ellipse are on the x-axis, we conclude that a > b. We are given that the points

(±8, 0) are vertices of the ellipse, and since they are on the x-axis, a = 8. We are given that the foci are (±√
3, 0) and

we have shown that a > b, hence we have that
√

a2 − b2 = √
3. Solving for b yields√

a2 − b2 = √
3

a2 − b2 = 3

82 − b2 = 3

b2 = 61

b = √
61

Next we use a and b to construct the equation of the ellipse:

(x

8

)2 +
(

y√
61

)2
= 1.

Ellipse with foci (±8, 0), eccentricity 1
8

47. Hyperbola with vertices (±8, 0), asymptotes y = ± 3
4x

solution Since the asymptotes of the hyperbola are y = ± 3
4x, and the equation of the asymptotes for a general

hyperbola in standard position is y = ± b
a x, we conclude that b

a = 3
4 . We are given that the vertices are (±8, 0), thus

a = 8. We substitute and solve for b:

b

a
= 3

4

b

8
= 3

4

b = 6

Next we use a and b to construct the equation of the hyperbola:(x

8

)2 −
(y

6

)2 = 1.

Hyperbola with foci (2, 0) and (10, 0), eccentricity e = 4
49. Parabola with focus (8, 0), directrix x = −8

solution This is similar to the usual equation of a parabola, but we must use y as x, and x as y, to obtain

x = 1

32
y2.
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Parabola with vertex (4, −1), directrix x = 1551. Find the asymptotes of the hyperbola 3x2 + 6x − y2 − 10y = 1.

solution We complete the squares and simplify:

3x2 + 6x − y2 − 10y = 1

3(x2 + 2x) − (y2 + 10y) = 1

3(x2 + 2x + 1 − 1) − (y2 + 10y + 25 − 25) = 1

3(x + 1)2 − 3 − (y + 5)2 + 25 = 1

3(x + 1)2 − (y + 5)2 = −21(
y + 5√

21

)2
−
(

x + 1√
7

)2
= 1

We obtained a hyperbola with focal axis that is parallel to the y-axis, and is shifted −5 units on the y-axis, and −1 units
in the x-axis. Therefore, the asymptotes are

x + 1 = ±
√

7√
21

(y + 5) or y + 5 = ±√
3(x + 1).

Show that the “conic section” with equation x2 − 4x + y2 + 5 = 0 has no points.
53. Show that the relation dy

dx
= (e2 − 1) x

y holds on a standard ellipse or hyperbola of eccentricity e.

solution We differentiate the equations of the standard ellipse and the hyperbola with respect to x:

Ellipse: Hyperbola:

x2

a2
+ y2

b2
= 1

2x

a2
+ 2y

b2

dy

dx
= 0

dy

dx
= −b2

a2

x

y

x2

a2
− y2

b2
= 1

2x

a2
− 2y

b2

dy

dx
= 0

dy

dx
= b2

a2

x

y

The eccentricity of the ellipse is e =
√

a2−b2

a , hence e2a2 = a2 − b2 or e2 = 1 − b2

a2 yielding b2

a2 = 1 − e2.

The eccentricity of the hyperbola is e =
√

a2+b2

a , hence e2a2 = a2 + b2 or e2 = 1 + b2

a2 , giving b2

a2 = e2 − 1.

Combining with the expressions for dy
dx

we get:

Ellipse: Hyperbola:

dy

dx
= −(1 − e2)

x

y
= (e2 − 1)

x

y

dy

dx
= (e2 − 1)

x

y

We, thus, proved that the relation dy
dx

= (e2 − 1) x
y holds on a standard ellipse or hyperbola of eccentricity e.

The orbit of Jupiter is an ellipse with the sun at a focus. Find the eccentricity of the orbit if the perihelion (closest
distance to the sun) equals 740 × 106 km and the aphelion (farthest distance from the sun) equals 816 × 106 km.

55. Refer to Figure 25 in Section 11.5. Prove that the product of the perpendicular distances F1R1 and F2R2 from the
foci to a tangent line of an ellipse is equal to the square b2 of the semiminor axes.

solution We first consider the ellipse in standard position:

x2

a2
+ y2

b2
= 1

The equation of the tangent line at P = (x0, y0) is

x0x

a2
+ y0y

b2
= 1

or

b2x0x + a2y0y − a2b2 = 0

The distances of the foci F1 = (c, 0) and F2 = (−c, 0) from the tangent line are

F1R1 = |b2x0c − a2b2|√
b4x2

0 + a4y2
0

; F2R2 = |b2x0c + a2b2|√
b4x2

0 + a4y2
0



May 18, 2011

Chapter Review Exercises 165

We compute the product of the distances:

F1R1 · F2R2 =
∣∣∣∣∣∣
(
b2x0c − a2b2

) (
b2x0c + a2b2

)
b4x2

0 + a4y2
0

∣∣∣∣∣∣ =
∣∣∣∣∣b

4x2
0c2 − a4b4

b4x2
0 + a4y2

0

∣∣∣∣∣ (1)

The point P = (x0, y0) lies on the ellipse, hence:

x2
0

a2
+ y2

0

b2
= 1 ⇒ a4y2

0 = a4b2 − a2b2x2
0

We substitute in (1) to obtain (notice that b2 − a2 = −c2)

F1R1 · F2R2 = |b4x2
0c2 − a4b4|

|b4x2
0 + a4b2 − a2b2x2

0 | = |b4x2
0c2 − a4b4|

|b2(b2 − a2)x2
0 + a4b2|

= |b4x2
0c2 − a4b4|

| − b2x2
0c2 + a4b2| = |b2(x2

0c2 − a4)|
| − (x2

0c2 − a4)| = | − b2| = b2

The product F1R1 · F2R2 remains unchanged if we translate the standard ellipse.
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12 VECTOR GEOMETRY

12.1 Vectors in the Plane (LT Section 13.1)

Preliminary Questions
1. Answer true or false. Every nonzero vector is:

(a) Equivalent to a vector based at the origin.

(b) Equivalent to a unit vector based at the origin.

(c) Parallel to a vector based at the origin.

(d) Parallel to a unit vector based at the origin.

solution

(a) This statement is true. Translating the vector so that it is based on the origin, we get an equivalent vector based at the
origin.

(b) Equivalent vectors have equal lengths, hence vectors that are not unit vectors, are not equivalent to a unit vector.

(c) This statement is true. A vector based at the origin such that the line through this vector is parallel to the line through
the given vector, is parallel to the given vector.

(d) Since parallel vectors do not necessarily have equal lengths, the statement is true by the same reasoning as in (c).

2. What is the length of −3a if ‖a‖ = 5?

solution Using properties of the length we get

‖−3a‖ = |−3|‖a‖ = 3‖a‖ = 3 · 5 = 15

3. Suppose that v has components 〈3, 1〉. How, if at all, do the components change if you translate v horizontally two
units to the left?

solution Translating v = 〈3, 1〉 yields an equivalent vector, hence the components are not changed.

4. What are the components of the zero vector based at P = (3, 5)?

solution The components of the zero vector are always 〈0, 0〉, no matter where it is based.

5. True or false?

(a) The vectors v and −2v are parallel.

(b) The vectors v and −2v point in the same direction.

solution

(a) The lines through v and −2v are parallel, therefore these vectors are parallel.

(b) The vector −2v is a scalar multiple of v, where the scalar is negative. Therefore −2v points in the opposite direction
as v.

6. Explain the commutativity of vector addition in terms of the Parallelogram Law.

solution To determine the vector v + w, we translate w to the equivalent vector w′ whose tail coincides with the head
of v. The vector v + w is the vector pointing from the tail of v to the head of w′.

v v'

w'

w

v +
 w

w + v

To determine the vector w + v, we translate v to the equivalent vector v′ whose tail coincides with the head of w. Then
w + v is the vector pointing from the tail of w to the head of v′. In either case, the resulting vector is the vector with the
tail at the basepoint of v and w, and head at the opposite vertex of the parallelogram. Therefore v + w = w + v.

166
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Exercises
1. Sketch the vectors v1, v2, v3, v4 with tail P and head Q, and compute their lengths. Are any two of these vectors

equivalent?

v1 v2 v3 v4

P (2, 4) (−1, 3) (−1, 3) (4, 1)

Q (4, 4) (1, 3) (2, 4) (6, 3)

solution Using the definitions we obtain the following answers:

v1 = −→
PQ = 〈4 − 2, 4 − 4〉 = 〈2, 0〉

‖v1‖ =
√

22 + 02 = 2
y

x

QP
v1

v2 = 〈1 − (−1), 3 − 3〉 = 〈2, 0〉
‖v2‖ =

√
22 + 02 = 2

y

x

QP
v2

v3 = 〈2 − (−1), 4 − 3〉 = 〈3, 1〉
‖v3‖ =

√
32 + 12 = √

10
y

x

Q

P v3

v4 = 〈6 − 4, 3 − 1〉 = 〈2, 2〉
‖v4‖ =

√
22 + 22 = √

8 = 2
√

2
y

x

Q

P v4

v1 and v2 are parallel and have the same length, hence they are equivalent.

Sketch the vector b = 〈3, 4〉 based at P = (−2, −1).
3. What is the terminal point of the vector a = 〈1, 3〉 based at P = (2, 2)? Sketch a and the vector a0 based at the origin

and equivalent to a.

solution The terminal point Q of the vector a is located 1 unit to the right and 3 units up from P = (2, 2). Therefore,
Q = (2 + 1, 2 + 3) = (3, 5). The vector a0 equivalent to a based at the origin is shown in the figure, along with the
vector a.

y

x

P

Q

0

a0

a

Let v = −→
PQ, where P = (1, 1) and Q = (2, 2). What is the head of the vector v′ equivalent to v based at (2, 4)?

What is the head of the vector v0 equivalent to v based at the origin? Sketch v, v0, and v′.
In Exercises 5–8, find the components of

−→
PQ.

5. P = (3, 2), Q = (2, 7)

solution Using the definition of the components of a vector we have
−→
PQ = 〈2 − 3, 7 − 2〉 = 〈−1, 5〉.

P = (1, −4), Q = (3, 5)
7. P = (3, 5), Q = (1, −4)

solution By the definition of the components of a vector, we obtain
−→
PQ = 〈1 − 3, −4 − 5〉 = 〈−2, −9〉.

P = (0, 2), Q = (5, 0)
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In Exercises 9–14, calculate.

9. 〈2, 1〉 + 〈3, 4〉
solution Using vector algebra we have 〈2, 1〉 + 〈3, 4〉 = 〈2 + 3, 1 + 4〉 = 〈5, 5〉.

〈−4, 6〉 − 〈3, −2〉11. 5 〈6, 2〉
solution 5〈6, 2〉 = 〈5 · 6, 5 · 2〉 = 〈30, 10〉

4(〈1, 1〉 + 〈3, 2〉)13.
〈
− 1

2 , 5
3

〉
+
〈
3, 10

3

〉
solution The vector sum is

〈
−1

2
,

5

3

〉
+
〈
3,

10

3

〉
=
〈
−1

2
+ 3,

5

3
+ 10

3

〉
=
〈

5

2
, 5

〉
.

〈ln 2, e〉 + 〈ln 3, π〉15. Which of the vectors (A)–(C) in Figure 21 is equivalent to v − w?

w

v

(A) (B) (C)

FIGURE 21

solution The vector −w has the same length as w but points in the opposite direction. The sum v + (−w), which is
the difference v − w, is obtained by the parallelogram law. This vector is the vector shown in (b).

w

vv − w

−w

−w

Sketch v + w and v − w for the vectors in Figure 22.
17. Sketch 2v, −w, v + w, and 2v − w for the vectors in Figure 23.

2 4 61 3 5

1

2

3

4

5

x

y

v = 〈2, 3〉

w = 〈1, 4〉

FIGURE 23

solution The scalar multiple 2v points in the same direction as v and its length is twice the length of v. It is the vector
2v = 〈4, 6〉.

2 4 61 3 5

2v

1

2

3

4

5

x

y

2 4 61 3 5

v
1

2

3

4

5

x

y

−w has the same length as w but points to the opposite direction. It is the vector −w = 〈−4, −1〉.
y

x
w

−w

The vector sum v + w is the vector:

v + w = 〈2, 3〉 + 〈4, 1〉 = 〈6, 4〉.
This vector is shown in the following figure:
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y

x
w

v

v + w

The vector 2v − w is

2v − w = 2〈2, 3〉 − 〈4, 1〉 = 〈4, 6〉 − 〈4, 1〉 = 〈0, 5〉
It is shown next:

2v − w

y

x

Sketch v = 〈1, 3〉, w = 〈2, −2〉, v + w, v − w.
19. Sketch v = 〈0, 2〉, w = 〈−2, 4〉, 3v + w, 2v − 2w.

solution We compute the vectors and then sketch them:

3v + w = 3〈0, 2〉 + 〈−2, 4〉 = 〈0, 6〉 + 〈−2, 4〉 = 〈−2, 10〉
2v − 2w = 2〈0, 2〉 − 2〈−2, 4〉 = 〈0, 4〉 − 〈−4, 8〉 = 〈4, −4〉

y

x

w

v

3v + w

2v − 2w

Sketch v = 〈−2, 1〉, w = 〈2, 2〉, v + 2w, v − 2w.
21. Sketch the vector v such that v + v1 + v2 = 0 for v1 and v2 in Figure 24(A).

1−3

1

3

x

y

v1

v2

(A)

x

y

v3

v1

v4 v2

(B)

FIGURE 24

solution Since v + v1 + v2 = 0, we have that v = −v1 − v2, and since v1 = 〈1, 3〉 and v2 = 〈−3, 1〉, then
v = −v1 − v2 = 〈2, −4〉, as seen in this picture.

1 2

3

1

−4

−3

y

x

v

v1

v2
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Sketch the vector sum v = v1 + v2 + v3 + v4 in Figure 24(B).23. Let v = −→
PQ, where P = (−2, 5), Q = (1, −2). Which of the following vectors with the given tails and heads are

equivalent to v?

(a) (−3, 3), (0, 4) (b) (0, 0), (3, −7)

(c) (−1, 2), (2, −5) (d) (4, −5), (1, 4)

solution Two vectors are equivalent if they have the same components. We thus compute the vectors and check
whether this condition is satisfied.

v = −→
PQ = 〈1 − (−2), −2 − 5〉 = 〈3, −7〉

(a) 〈0 − (−3), 4 − 3〉 = 〈3, 1〉 (b) 〈3 − 0, −7 − 0〉 = 〈3, −7〉
(c) 〈2 − (−1), −5 − 2〉 = 〈3, −7〉 (d) 〈1 − 4, 4 − (−5)〉 = 〈−3, 9〉
We see that the vectors in (b) and (c) are equivalent to v.

Which of the following vectors are parallel to v = 〈6, 9〉 and which point in the same direction?

(a) 〈12, 18〉 (b) 〈3, 2〉 (c) 〈2, 3〉
(d) 〈−6, −9〉 (e) 〈−24, −27〉 (f) 〈−24, −36〉

In Exercises 25–28, sketch the vectors
−→
AB and

−→
PQ, and determine whether they are equivalent.

25. A = (1, 1), B = (3, 7), P = (4, −1), Q = (6, 5)

solution We compute the vectors and check whether they have the same components:

−→
AB = 〈3 − 1, 7 − 1〉 = 〈2, 6〉
−→
PQ = 〈6 − 4, 5 − (−1)〉 = 〈2, 6〉

⇒ The vectors are equivalent.

A = (1, 4), B = (−6, 3), P = (1, 4), Q = (6, 3)
27. A = (−3, 2), B = (0, 0), P = (0, 0), Q = (3, −2)

solution We compute the vectors
−→
AB and

−→
PQ :

−→
AB = 〈0 − (−3), 0 − 2〉 = 〈3, −2〉
−→
PQ = 〈3 − 0, −2 − 0〉 = 〈3, −2〉

⇒ The vectors are equivalent.

A = (5, 8), B = (1, 8), P = (1, 8), Q = (−3, 8)In Exercises 29–32, are
−→
AB and

−→
PQ parallel? And if so, do they point in the same direction?

29. A = (1, 1), B = (3, 4), P = (1, 1), Q = (7, 10)

solution We compute the vectors
−→
AB and

−→
PQ:

−→
AB = 〈3 − 1, 4 − 1〉 = 〈2, 3〉
−→
PQ = 〈7 − 1, 10 − 1〉 = 〈6, 9〉

Since
−→
AB = 1

3 〈6, 9〉, the vectors are parallel and point in the same direction.

A = (−3, 2), B = (0, 0), P = (0, 0), Q = (3, 2)
31. A = (2, 2), B = (−6, 3), P = (9, 5), Q = (17, 4)

solution We compute the vectors
−→
AB and

−→
PQ:

−→
AB = 〈−6 − 2, 3 − 2〉 = 〈−8, 1〉
−→
PQ = 〈17 − 9, 4 − 5〉 = 〈8, −1〉

Since
−→
AB = −−→

PQ, the vectors are parallel and point in opposite directions.

A = (5, 8), B = (2, 2), P = (2, 2), Q = (−3, 8)In Exercises 33–36, let R = (−2, 7). Calculate the following.

33. The length of
−→
OR

solution Since
−→
OR = 〈−2, 7〉, the length of the vector is ‖−→

OR‖ =
√

(−2)2 + 72 = √
53.

The components of u = −→
PR, where P = (1, 2)

35. The point P such that
−→
PR has components 〈−2, 7〉

solution Denoting P = (x0, y0) we have:

−→
PR = 〈−2 − x0, 7 − y0〉 = 〈−2, 7〉

Equating corresponding components yields:

− 2 − x0 = −2

7 − y0 = 7
⇒ x0 = 0, y0 = 0 ⇒ P = (0, 0)
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The point Q such that
−→
RQ has components 〈8, −3〉In Exercises 37–42, find the given vector.

37. Unit vector ev where v = 〈3, 4〉
solution The unit vector ev is the following vector:

ev = 1

‖v‖v

We find the length of v = 〈3, 4〉:

‖v‖ =
√

32 + 42 = √
25 = 5

Thus

ev = 1

5
〈3, 4〉 =

〈
3

5
,

4

5

〉
.

Unit vector ew where w = 〈24, 7〉39. Vector of length 4 in the direction of u = 〈−1, −1〉
solution Since ‖u‖ =

√
(−1)2 + (−1)2 = √

2, the unit vector in the direction of u is eu =
〈
− 1√

2
, − 1√

2

〉
. We

multiply eu by 4 to obtain the desired vector:

4eu = 4

〈
− 1√

2
, − 1√

2

〉
=
〈
−2

√
2, −2

√
2
〉

Unit vector in the direction opposite to v = 〈−2, 4〉41. Unit vector e making an angle of 4π
7 with the x-axis

solution The unit vector e is the following vector:

e =
〈
cos

4π

7
, sin

4π

7

〉
= 〈−0.22, 0.97〉.

Vector v of length 2 making an angle of 30◦ with the x-axis
43. Find all scalars λ such that λ 〈2, 3〉 has length 1.

solution We have:

‖λ〈2, 3〉‖ = |λ|‖〈2, 3〉‖ = |λ|
√

22 + 32 = |λ|√13

The scalar λ must satisfy

|λ|√13 = 1

|λ| = 1√
13

⇒ λ1 = 1√
13

, λ2 = − 1√
13

Find a vector v satisfying 3v + 〈5, 20〉 = 〈11, 17〉.45. What are the coordinates of the point P in the parallelogram in Figure 25(A)?

x

y

x

y

(2, 2)

(A)

P

(5, 4)

(7, 8)

(2, 3)

(−3, 2)
(a, 1)

(−1, b)

(B)

FIGURE 25

solution We denote by A, B, C the points in the figure.

x

y

C (7, 8)

P (x0, y0)

B (5, 4)

A (2, 2)
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Let P = (x0, y0). We compute the following vectors:

−→
PC = 〈7 − x0, 8 − y0〉
−→
AB = 〈5 − 2, 4 − 2〉 = 〈3, 2〉

The vectors
−→
PC and

−→
AB are equivalent, hence they have the same components. That is:

7 − x0 = 3

8 − y0 = 2
⇒ x0 = 4, y0 = 6 ⇒ P = (4, 6)

What are the coordinates a and b in the parallelogram in Figure 25(B)?47. Let v = −→
AB and w = −→

AC, where A, B, C are three distinct points in the plane. Match (a)–(d) with (i)–(iv). (Hint:
Draw a picture.)

(a) −w (b) −v (c) w − v (d) v − w

(i)
−→
CB (ii)

−→
CA (iii)

−→
BC (iv)

−→
BA

solution

(a) −w has the same length as w and points in the opposite direction. Hence: −w = −→
CA.

C

A

−w

(b) −v has the same length as v and points in the opposite direction. Hence: −v = −→
BA.

B

A

−v

(c) By the parallelogram law we have:

−→
BC = −→

BA + −→
AC = −v + w = w − v

That is,

w − v = −→
BC

−v

w

−v + w = BC

A

B

C

→

(d) By the parallelogram law we have:

−→
CB = −→

CA + −→
AB = −w + v = v − w

That is,

v − w = −→
CB.

−w

v −w + v = CB

A

B

C

→

Find the components and length of the following vectors:

(a) 4i + 3j (b) 2i − 3j (c) i + j (d) i − 3j

In Exercises 49–52, calculate the linear combination.

49. 3j + (9i + 4j)

solution We have:

3j + (9i + 4j) = 3 〈0, 1〉 + 9 〈1, 0〉 + 4 〈0, 1〉 = 〈9, 7〉
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− 3
2 i + 5

( 1
2 j − 1

2 i
)51. (3i + j) − 6j + 2(j − 4i)

solution We have:

(3i + j) − 6j + 2(j − 4i) = (〈3, 0〉 + 〈0, 1〉) − 〈0, 6〉 + 2(〈0, 1〉 − 〈4, 0〉) = 〈−5, −3〉

3(3i − 4j) + 5(i + 4j)
53. For each of the position vectors u with endpoints A, B, and C in Figure 26, indicate with a diagram the multiples rv
and sw such that u = rv + sw. A sample is shown for u = −−→

OQ.

y

x

C

A

Q

B

w

v

sw

rv

FIGURE 26

solution See the following three figures:

y

x

A

w

v

sw

rv

y

x

w

v
B

sw
rv

y

x

w

vsw

rv

C

Sketch the parallelogram spanned by v = 〈1, 4〉 and w = 〈5, 2〉. Add the vector u = 〈2, 3〉 to the sketch and
express u as a linear combination of v and w.

In Exercises 55 and 56, express u as a linear combination u = rv + sw. Then sketch u, v, w, and the parallelogram
formed by rv and sw.

55. u = 〈3, −1〉; v = 〈2, 1〉, w = 〈1, 3〉
solution We have

u = 〈3, −1〉 = rv + sw = r〈2, 1〉 + s〈1, 3〉
which becomes the two equations

3 = 2r + s

−1 = r + 3s

Solving the second equation for r gives r = −1 − 3s, and substituting that into the first equation gives 3 = 2(−1 − 3s) +
s = −2 − 6s + s, so 5 = −5s, so s = −1, and thus r = 2. In other words,

u = 〈3, −1〉 = 2〈2, 1〉 − 1〈1, 3〉
as seen in this sketch:

y

x

v

u

w
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u = 〈6, −2〉; v = 〈1, 1〉, w = 〈1, −1〉57. Calculate the magnitude of the force on cables 1 and 2 in Figure 27.

65° 25°

Cable 1 Cable 2

50 lbs

FIGURE 27

solution The three forces acting on the point P are:

• The force F of magnitude 50 lb that acts vertically downward.

• The forces F1 and F2 that act through cables 1 and 2 respectively.

y

x
25°

115°F1

F

F2

P

Since the point P is not in motion we have

F1 + F2 + F = 0 (1)

We compute the forces. Letting ‖F1‖ = f1 and ‖F2‖ = f2 we have:

F1 = f1〈cos 115◦, sin 115◦〉 = f1〈−0.423, 0.906〉
F2 = f2〈cos 25◦, sin 25◦〉 = f2〈0.906, 0.423〉
F = 〈0, −50〉

Substituting the forces in (1) gives

f1〈−0.423, 0.906〉 + f2〈0.906, 0.423〉 + 〈0, −50〉 = 〈0, 0〉
〈−0.423f1 + 0.906f2, 0.906f1 + 0.423f2 − 50〉 = 〈0, 0〉

We equate corresponding components and get

−0.423f1 + 0.906f2 = 0

0.906f1 + 0.423f2 − 50 = 0

By the first equation, f2 = 0.467f1. Substituting in the second equation and solving for f1 yields

0.906f1 + 0.423 · 0.467f1 − 50 = 0

1.104f1 = 50 ⇒ f1 = 45.29, f2 = 0.467f1 = 21.15

We conclude that the magnitude of the force on cable 1 is f1 = 45.29 lb and the magnitude of the force on cable 2 is
f2 = 21.15 lb.

Determine the magnitude of the forces F1 and F2 in Figure 28, assuming that there is no net force on the object.
59. A plane flying due east at 200 km/h encounters a 40-km/h wind blowing in the north-east direction. The resultant
velocity of the plane is the vector sum v = v1 + v2, where v1 is the velocity vector of the plane and v2 is the velocity
vector of the wind (Figure 29). The angle between v1 and v2 is π

4 . Determine the resultant speed of the plane (the length
of the vector v).

40 kkkkmkmmm/hm/hm/hm/hm/h/h/hhhh40 km/h

hh/hm/hm/hm/hkm/h200 km/h200 km/h200 km/h200 km/h200 km/200 km/200 km200 km200 k200 k200 k00

vvvvvv22222

vvvvvvvvvvvvv11111

vvvvvv

FIGURE 29
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solution The resultant speed of the plane is the length of the sum vector v = v1 + v2. We place the xy-coordinate
system as shown in the figure, and compute the components of the vectors v1 and v2. This gives

v1 = 〈v1, 0〉

v2 =
〈
v2 cos

π

4
, v2 sin

π

4

〉
=
〈
v2 ·

√
2

2
, v2 ·

√
2

2

〉

y

xv1

v2

v1

v2

π
4

We now compute the sum v = v1 + v2:

v = 〈v1, 0〉 +
〈√

2v2

2
,

√
2v2

2

〉
=
〈√

2

2
v2 + v1,

√
2

2
v2

〉

The resultant speed is the length of v, that is,

v = ‖v‖ =
√√√√(√

2v2

2

)2

+
(

v1 +
√

2v2

2

)2

=
√

v2
2
2

+ v2
1 + 2 ·

√
2

2
v2v1 + v2

2
2

=
√

v2
1 + v2

2 + √
2v1v2

Finally, we substitute the given information v1 = 200 and v2 = 40 in the equation above, to obtain

v =
√

2002 + 402 + √
2 · 200 · 40 ≈ 230 km/hr

Further Insights and Challenges
In Exercises 60–62, refer to Figure 30, which shows a robotic arm consisting of two segments of lengths L1 and L2.

x

y

q1

q1

q2
PL1

L2

r

FIGURE 30

Find the components of the vector r = −→
OP in terms of θ1 and θ2.

61. Let L1 = 5 and L2 = 3. Find r for θ1 = π
3 , θ2 = π

4 .

solution In Exercise 60 we showed that

r = 〈L1 sin θ1 + L2 sin θ2, L1 cos θ1 − L2cos θ2〉
Substituting the given information we obtain

r =
〈
5 sin

π

3
+ 3 sin

π

4
, 5 cos

π

3
− 3 cos

π

4

〉
=
〈

5
√

3

2
+ 3

√
2

2
,

5

2
− 3

√
2

2

〉
≈ 〈6.45, 0.38〉

Let L1 = 5 and L2 = 3. Show that the set of points reachable by the robotic arm with θ1 = θ2 is an ellipse.63. Use vectors to prove that the diagonals AC and BD of a parallelogram bisect each other (Figure 31). Hint: Observe
that the midpoint of BD is the terminal point of w + 1

2 (v − w).

(v + w)

(v − w)

v

w

A
B

D
C

1
2

1
2

FIGURE 31
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solution We denote by O the midpoint of BD. Hence,

−−→
DO = 1

2
−→
DB

v

v

w
w

A
B

D
C

O

Using the Parallelogram Law we have

−→
AO = −→

AD + −−→
DO = −→

AD + 1

2
−→
DB

Since
−→
AD = w and

−→
DB = v − w we get

−→
AO = w + 1

2
(v − w) = w + v

2
(1)

On the other hand,
−→
AC = −→

AD + −→
DC = w + v, hence the midpoint O ′ of the diagonal AC is the terminal point of w+v

2 .
That is,

−−→
AO ′ = w + v

2
(2)

v

v

w

A
B

D
C

O'

We combine (1) and (2) to conclude that O and O ′ are the same point. That is, the diagonal AC and BD bisect each other.

Use vectors to prove that the segments joining the midpoints of opposite sides of a quadrilateral bisect each other
(Figure 32). Hint: Show that the midpoints of these segments are the terminal points of

1

4
(2u + v + z) and

1

4
(2v + w + u)

65. Prove that two vectors v = 〈a, b〉 and w = 〈c, d〉 are perpendicular if and only if

ac + bd = 0

solution Suppose that the vectors v and w make angles θ1 and θ2, which are not π
2 or 3π

2 , respectively, with the
positive x-axis. Then their components satisfy

a = ‖v‖ cos θ1

b = ‖v‖ sin θ1
⇒ b

a
= sin θ1

cos θ1
= tan θ1

c = ‖w‖ cos θ2

d = ‖w‖ sin θ2
⇒ d

c
= sin θ2

cos θ2
= tan θ2

y

x

v

w
q1

q2

That is, the vectors v and w are on the lines with slopes b
a and d

c , respectively. The lines are perpendicular if and only if
their slopes satisfy

b

a
· d

c
= −1 ⇒ bd = −ac ⇒ ac + bd = 0

We now consider the case where one of the vectors, say v, is perpendicular to the x-axis. In this case a = 0, and the
vectors are perpendicular if and only if w is parallel to the x-axis, that is, d = 0. So ac + bd = 0 · c + b · 0 = 0.

12.2 Vectors in Three Dimensions (LT Section 13.2)

Preliminary Questions
1. What is the terminal point of the vector v = 〈3, 2, 1〉 based at the point P = (1, 1, 1)?

solution We denote the terminal point by Q = (a, b, c). Then by the definition of components of a vector, we have

〈3, 2, 1〉 = 〈a − 1, b − 1, c − 1〉
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Equivalent vectors have equal components respectively, thus,

3 = a − 1 a = 4

2 = b − 1 ⇒ b = 3

1 = c − 1 c = 2

The terminal point of v is thus Q = (4, 3, 2).

2. What are the components of the vector v = 〈3, 2, 1〉 based at the point P = (1, 1, 1)?

solution The component of v = 〈3, 2, 1〉 are 〈3, 2, 1〉 regardless of the base point. The component of v and the base
point P = (1, 1, 1) determine the head Q = (a, b, c) of the vector, as found in the previous exercise.

3. If v = −3w, then (choose the correct answer):

(a) v and w are parallel.
(b) v and w point in the same direction.

solution The vectors v and w lie on parallel lines, hence these vectors are parallel. Since v is a scalar multiple of w
by a negative scalar, v and w point in opposite directions. Thus, (a) is correct and (b) is not.

4. Which of the following is a direction vector for the line through P = (3, 2, 1) and Q = (1, 1, 1)?

(a) 〈3, 2, 1〉 (b) 〈1, 1, 1〉 (c) 〈2, 1, 0〉
solution Any vector that is parallel to the vector

−→
PQ is a direction vector for the line through P and Q. We compute

the vector
−→
PQ:

−→
PQ = 〈1 − 3, 1 − 2, 1 − 1〉 = 〈−2,−1, 0〉.

The vectors 〈3, 2, 1〉 and 〈1, 1, 1〉 are not constant multiples of
−→
PQ, hence they are not parallel to

−→
PQ. However 〈2, 1, 0〉 =

−1〈−2, −1, 0〉 = −−→
PQ, hence the vector 〈2, 1, 0〉 is parallel to

−→
PQ. Therefore, the vector 〈2, 1, 0〉 is a direction vector

for the line through P and Q.

5. How many different direction vectors does a line have?

solution All the vectors that are parallel to a line are also direction vectors for that line. Therefore, there are infinitely
many direction vectors for a line.

6. True or false? If v is a direction vector for a line L, then −v is also a direction vector for L.

solution True. Every vector that is parallel to v is a direction vector for the line L. Since −v is parallel to v, it is also
a direction vector for L.

Exercises
1. Sketch the vector v = 〈1, 3, 2〉 and compute its length.

solution The vector v = 〈1, 3, 2〉 is shown in the following figure:

1 3

2

yx

z

v = 〈1, 3, 2〉

The length of v is

‖v‖ =
√

12 + 32 + 22 = √
14

Let v = −−−→
P0Q0, where P0 = (1, −2, 5) and Q0 = (0, 1, −4). Which of the following vectors (with tail P and

head Q) are equivalent to v?

v1 v2 v3 v4

P (1, 2, 4) (1, 5, 4) (0, 0, 0) (2, 4, 5)

Q (0, 5, −5) (0, −8, 13) (−1, 3, −9) (1, 7, 4)

3. Sketch the vector v = 〈1, 1, 0〉 based at P = (0, 1, 1). Describe this vector in the form
−→
PQ for some point Q, and

sketch the vector v0 based at the origin equivalent to v.

solution The vector v = 〈1, 1, 0〉 based at P = (0, 1, 1) is shown in the figure:

v

v0
yx

Q = (1, 2, 1)

P = (0, 1, 1)

z
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The head Q of the vector v = −→
PQ is at the point Q = (0 + 1, 1 + 1, 1 + 0) = (1, 2, 1).

v y
x S = (1, 1, 0)

O

z

The vector v0 based at the origin and equivalent to v is

v0 = 〈1, 1, 0〉 = −→
OS, where S = (1, 1, 0).

Determine whether the coordinate systems (A)–(C) in Figure 17 satisfy the right-hand rule.In Exercises 5–8, find the components of the vector
−→
PQ.

5. P = (1, 0, 1), Q = (2, 1, 0)

solution By the definition of the vector components we have

−→
PQ = 〈2 − 1, 1 − 0, 0 − 1〉 = 〈1, 1, −1〉

P = (−3, −4, 2), Q = (1, −4, 3)
7. P = (4, 6, 0), Q = (−1

2 , 9
2 , 1
)

solution Using the definition of vector components we have

−→
PQ =

〈
−1

2
− 4,

9

2
− 6, 1 − 0

〉
=
〈
−9

2
, −3

2
, 1

〉

P = (− 1
2 , 9

2 , 1
)
, Q = (4, 6, 0)

In Exercises 9–12, let R = (1, 4, 3).

9. Calculate the length of
−→
OR.

solution The length of
−→
OR is the distance from R = (1, 4, 3) to the origin. That is,

‖−→
OR‖ =

√
(1 − 0)2 + (4 − 0)2 + (3 − 0)2 = √

26 ≈ 5.1.

Find the point Q such that v = −→
RQ has components 〈4, 1, 1〉, and sketch v.

11. Find the point P such that w = −→
PR has components 〈3, −2, 3〉, and sketch w.

solution Denoting P = (x0, y0, z0) we get

−→
PR = 〈1 − x0, 4 − y0, 3 − z0〉 = 〈3, −2, 3〉

Equating corresponding components gives

1 − x0 = 3

4 − y0 = −2

3 − z0 = 3

⇒ x0 = −2, y0 = 6, z0 = 0

The point P is, thus, P = (−2, 6, 0).

w

z

x

yP = (−2, 6, 0)

R = (1, 4, 3)

(0, 0, 3)

(−2, 0, 0)

(0, 6, 0)

Find the components of u = −→
PR, where P = (1, 2, 2).

13. Let v = 〈4, 8, 12〉. Which of the following vectors is parallel to v? Which point in the same direction?

(a) 〈2, 4, 6〉 (b) 〈−1, −2, 3〉
(c) 〈−7, −14, −21〉 (d) 〈6, 10, 14〉
solution A vector is parallel to v if it is a scalar multiple of v. It points in the same direction if the multiplying scalar
is positive. Using these properties we obtain the following answer:

(a) 〈2, 4, 6〉 = 1
2 v ⇒ The vectors are parallel and point in the same direction.

(b) 〈−1, −2, 3〉 is not a scalar multiple of v, hence these vectors are not parallel.
(c) 〈−7, −14, −21〉 = − 7

4 v ⇒ The vectors are parallel but point in opposite directions.
(d) 〈6, 10, 14〉 is not a constant multiple of v, hence these vectors are not parallel.
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In Exercises 14–17, determine whether
−→
AB is equivalent to

−→
PQ.

A = (1, 1, 1) B = (3, 3, 3)

P = (1, 4, 5) Q = (3, 6, 7)

15.
A = (1, 4, 1) B = (−2, 2, 0)

P = (2, 5, 7) Q = (−3, 2, 1)

solution We compute the two vectors:

−→
AB = 〈−2 − 1, 2 − 4, 0 − 1〉 = 〈−3, −2, −1〉
−→
PQ = 〈−3 − 2, 2 − 5, 1 − 7〉 = 〈−5, −3, −6〉

The components of
−→
AB and

−→
PQ are not equal, hence they are not a translate of each other, that is, the vectors are not

equivalent.

A = (0, 0, 0) B = (−4, 2, 3)

P = (4, −2, −3) Q = (0, 0, 0)

17.
A = (1, 1, 0) B = (3, 3, 5)

P = (2, −9, 7) Q = (4, −7, 13)

solution The vectors
−→
AB and

−→
PQ are the following vectors:

−→
AB = 〈3 − 1, 3 − 1, 5 − 0〉 = 〈2, 2, 5〉
−→
PQ = 〈4 − 2, −7 − (−9), 13 − 7〉 = 〈2, 2, 6〉

The z-coordinates of the vectors are not equal, hence the vectors are not equivalent.

In Exercises 18–23, calculate the linear combinations.

5 〈2, 2, −3〉 + 3 〈1, 7, 2〉19. −2 〈8, 11, 3〉 + 4 〈2, 1, 1〉
solution Using the operations of vector addition and scalar multiplication we have

−2〈8, 11, 3〉 + 4〈2, 1, 1〉 = 〈−16, −22, −6〉 + 〈8, 4, 4〉 = 〈−8, −18, −2〉.

6(4j + 2k) − 3(2i + 7k)
21. 1

2 〈4, −2, 8〉 − 1
3 〈12, 3, 3〉

solution Using the operations on vectors we have

1

2
〈4, −2, 8〉 − 1

3
〈12, 3, 3〉 = 〈2, −1, 4〉 − 〈4, 1, 1〉 = 〈−2, −2, 3〉.

5(i + 2j) − 3(2j + k) + 7(2k − i)
23. 4 〈6, −1, 1〉 − 2 〈1, 0, −1〉 + 3 〈−2, 1, 1〉
solution Using the operations of vector addition and scalar multiplication we have

4 〈6, −1, 1〉 − 2 〈1, 0, −1〉 + 3 〈−2, 1, 1〉 = 〈24, −4, 4〉 + 〈−2, 0, 2〉 + 〈−6, 3, 3〉
= 〈16, −1, 9〉 .

In Exercises 24–27, find the given vector.

ev, where v = 〈1, 1, 2〉25. ew, where w = 〈4, −2, −1〉
solution We first find the length of w:

‖w‖ =
√

42 + (−2)2 + 12 = √
21

Hence,

ew = 1

‖w‖w =
〈

4√
21

,
−2√

21
,

−1√
21

〉

Unit vector in the direction of u = 〈1, 0, 7〉27. Unit vector in the direction opposite to v = 〈−4, 4, 2〉
solution A unit vector in the direction opposite to v = 〈−4, 4, 2〉 is the following vector:

−ev = − 1

‖v‖v

We compute the length of v:

‖v‖ =
√

(−4)2 + 42 + 22 = 6

The desired vector is, thus,

−ev = −1

6
〈−4, 4, 2〉 =

〈−4

−6
,

4

−6
,

2

−6

〉
=
〈

2

3
, −2

3
, −1

3

〉
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Sketch the following vectors, and find their components and lengths.

(a) 4i + 3j − 2k (b) i + j + k

(c) 4j + 3k (d) 12i + 8j − k

In Exercises 29–36, find a vector parametrization for the line with the given description.

29. Passes through P = (1, 2, −8), direction vector v = 〈2, 1, 3〉
solution The vector parametrization for the line is

r(t) = −→
OP + tv

Inserting the given data we get

r(t) = 〈1, 2, −8〉 + t〈2, 1, 3〉 = 〈1 + 2t, 2 + t, −8 + 3t〉

Passes through P = (4, 0, 8), direction vector v = 〈1, 0, 1〉31. Passes through P = (4, 0, 8), direction vector v = 7i + 4k

solution Since v = 7i + 4k = 〈7, 0, 4〉 we obtain the following parametrization:

r(t) = −→
OP + tv = 〈4, 0, 8〉 + t〈7, 0, 4〉 = 〈4 + 7t, 0, 8 + 4t〉

Passes through O, direction vector v = 〈3, −1, −4〉33. Passes through (1, 1, 1) and (3, −5, 2)

solution We use the equation of the line through two points P and Q:

r(t) = (1 − t)
−→
OP + t

−−→
OQ

Since
−→
OP = 〈1, 1, 1〉 and

−−→
OQ = 〈3, −5, 2〉 we obtain

r(t) = (1 − t)〈1, 1, 1〉 + t〈3, −5, 2〉 = 〈1 − t, 1 − t, 1 − t〉 + 〈3t, −5t, 2t〉 = 〈1 + 2t, 1 − 6t, 1 + t〉

Passes through (−2, 0, −2) and (4, 3, 7)
35. Passes through O and (4, 1, 1)

solution By the equation of the line through two points we get

r(t) = (1 − t)〈0, 0, 0〉 + t〈4, 1, 1〉 = 〈0, 0, 0〉 + 〈4t, t, t〉 = 〈4t, t, t〉

Passes through (1, 1, 1) parallel to the line through (2, 0, −1) and (4, 1, 3)In Exercises 37–40, find parametric equations for the lines with the given description.

37. Perpendicular to the xy-plane, passes through the origin

solution A direction vector for the line is a vector parallel to the z-axis, for instance, we may choose v = 〈0, 0, 1〉.
The line passes through the origin (0, 0, 0), hence we obtain the following parametrization:

r(t) = 〈0, 0, 0〉 + t〈0, 0, 1〉 = 〈0, 0, t〉
or x = 0, y = 0, z = t .

Perpendicular to the yz-plane, passes through (0, 0, 2)
39. Parallel to the line through (1, 1, 0) and (0, −1, −2), passes through (0, 0, 4)

solution The direction vector is v = 〈0 − 1, −1 − 1, −2 − 0〉 = 〈−1, −2, −2〉. Hence, using the equation of a line
we obtain

r(t) = 〈0, 0, 4〉 + t〈−1, −2, −2〉 = 〈−t, −2t, 4 − 2t〉

Passes through (1, −1, 0) and (0, −1, 2)
41. Which of the following is a parametrization of the line through P = (4, 9, 8) perpendicular to the xz-plane (Figure
18)?

(a) r(t) = 〈4, 9, 8〉 + t 〈1, 0, 1〉 (b) r(t) = 〈4, 9, 8〉 + t 〈0, 0, 1〉
(c) r(t) = 〈4, 9, 8〉 + t 〈0, 1, 0〉 (d) r(t) = 〈4, 9, 8〉 + t 〈1, 1, 0〉

y

P = (4, 9, 8)

z

x

FIGURE 18
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solution Since the direction vector must be perpendicular to the xz-plane, then the direction vector for the line must
be parallel to j, which is only satisfied by solution (c).

Find a parametrization of the line through P = (4, 9, 8) perpendicular to the yz-plane.In Exercises 43–46, let P = (2, 1, −1) and Q = (4, 7, 7). Find the coordinates of each of the following.

43. The midpoint of PQ

solution We first parametrize the line through P = (2, 1, −1) and Q = (4, 7, 7):

r(t) = (1 − t)〈2, 1, −1〉 + t〈4, 7, 7〉 = 〈2 + 2t, 1 + 6t, −1 + 8t〉
The midpoint of PQ occurs at t = 1

2 , that is,

midpoint = r
(

1

2

)
=
〈
2 + 2 · 1

2
, 1 + 6 · 1

2
, −1 + 8 · 1

2

〉
= 〈3, 4, 3〉

The midpoint of PQ is the terminal point of the vector r(t), that is, (3, 4, 3). (One could also use the midpoint formula
to arrive at the same solution.)

The point on PQ lying two-thirds of the way from P to Q
45. The point R such that Q is the midpoint of PR

solution We denote R = (x0, y0, z0). By the formula for the midpoint of a segment we have

〈4, 7, 7〉 =
〈

2 + x0

2
,

1 + y0

2
,
−1 + z0

2

〉

Equating corresponding components we get

4 = 2 + x0

2

7 = 1 + y0

2

7 = −1 + z0

2

⇒ x0 = 6, y0 = 13, z0 = 15 ⇒ R = (6, 13, 15)

The two points on the line through PQ whose distance from P is twice its distance from Q
47. Show that r1(t) and r2(t) define the same line, where

r1(t) = 〈3, −1, 4〉 + t 〈8, 12, −6〉
r2(t) = 〈11, 11, −2〉 + t 〈4, 6, −3〉

Hint: Show that r2 passes through (3, −1, 4) and that the direction vectors for r1 and r2 are parallel.

solution We observe first that the direction vectors of r1(t) and r2(t) are multiples of each other:

〈8, 12, −6〉 = 2 〈4, 6, −3〉
Therefore r1(t) and r2(t) are parallel. To show they coincide, it suffices to prove that they share a point in common, so
we verify that r1(0) = 〈3, −1, 4〉 lies on r2(t) by solving for t :

〈3, −1, 4〉 = 〈11, 11, −2〉 + t 〈4, 6, −3〉
〈3, −1, 4〉 − 〈11, 11, −2〉 = t 〈4, 6, −3〉

〈−8, −12, 6〉 = t 〈4, 6, −3〉
This equation is satisfied for t = −2, so r1 and r2 coincide.

Show that r1(t) and r2(t) define the same line, where

r1(t) = t 〈2, 1, 3〉 , r2(t) = 〈−6, −3, −9〉 + t 〈8, 4, 12〉

49. Find two different vector parametrizations of the line through P = (5, 5, 2) with direction vector v = 〈0, −2, 1〉.
solution Two different parameterizations are

r1(t) = 〈5, 5, 2〉 + t 〈0, −2, 1〉
r2(t) = 〈5, 5, 2〉 + t 〈0, −20, 10〉

Find the point of intersection of the lines r(t) = 〈1, 0, 0〉 + t 〈−3, 1, 0〉 and s(t) = 〈0, 1, 1〉 + t 〈2, 0, 1〉.51. Show that the lines r1(t) = 〈−1, 2, 2〉 + t 〈4, −2, 1〉 and r2(t) = 〈0, 1, 1〉 + t 〈2, 0, 1〉 do not intersect.

solution The two lines intersect if there exist parameter values t1 and t2 such that

〈−1, 2, 2〉 + t1〈4, −2, 1〉 = 〈0, 1, 1〉 + t2〈2, 0, 1〉
〈−1 + 4t1, 2 − 2t1, 2 + t1〉 = 〈2t2, 1, 1 + t2〉
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Equating corresponding components yields

−1 + 4t1 = 2t2

2 − 2t1 = 1

2 + t1 = 1 + t2

The second equation implies t1 = 1
2 . Substituting into the first and third equations we get

−1 + 4 · 1

2
= 2t2 ⇒ t2 = 1

2

2 + 1

2
= 1 + t2 ⇒ t2 = 3

2

We conclude that the equations do not have solutions, which means that the two lines do not intersect.

Determine whether the lines r1(t) = 〈2, 1, 1〉 + t 〈−4, 0, 1〉 and r2(s) = 〈−4, 1, 5〉 + s 〈2, 1, −2〉 intersect, and
if so, find the point of intersection.

53. Determine whether the lines r1(t) = 〈0, 1, 1〉 + t 〈1, 1, 2〉 and r2(s) = 〈2, 0, 3〉 + s 〈1, 4, 4〉 intersect, and if so, find
the point of intersection.

solution The lines intersect if there exist parameter values t and s such that

〈0, 1, 1〉 + t〈1, 1, 2〉 = 〈2, 0, 3〉 + s〈1, 4, 4〉
〈t, 1 + t, 1 + 2t〉 = 〈2 + s, 4s, 3 + 4s〉 (1)

Equating corresponding components we get

t = 2 + s

1 + t = 4s

1 + 2t = 3 + 4s

Substituting t from the first equation into the second equation we get

1 + 2 + s = 4s

3s = 3
⇒ s = 1, t = 2 + s = 3

We now check whether s = 1, t = 3 satisfy the third equation:

1 + 2 · 3 = 3 + 4 · 1

7 = 7

We conclude that s = 1, t = 3 is the solution of (1), hence the two lines intersect. To find the point of intersection we
substitute s = 1 in the right-hand side of (1) to obtain

〈2 + 1, 4 · 1, 3 + 4 · 1〉 = 〈3, 4, 7〉
The point of intersection is the terminal point of this vector, that is, (3, 4, 7).

Find the intersection of the lines r1(t) = 〈−1, 1〉 + t 〈2, 4〉 and r2(s) = 〈2, 1〉 + s 〈−1, 6〉 in R2.
55. Find the components of the vector v whose tail and head are the midpoints of segments AC and BC in Figure 19.

B = (1, 1, 0)

C = (0, 1, 1)
A = (1, 0, 1)

y

x

z

FIGURE 19

solution We denote by P and Q the midpoints of the segments AC and BC respectively. Thus,

v = −→
PQ (1)
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y
x

A = (1, 0, 1) C = (0, 1, 1)

B = (1, 1, 0)

P

Q

z

We use the formula for the midpoint of a segment to find the coordinates of the points P and Q. This gives

P =
(

1 + 0

2
,

0 + 1

2
,

1 + 1

2

)
=
(

1

2
,

1

2
, 1

)

Q =
(

1 + 0

2
,

1 + 1

2
,

0 + 1

2

)
=
(

1

2
, 1,

1

2

)
Substituting in (1) yields the following vector:

v = −→
PQ =

〈
1

2
− 1

2
, 1 − 1

2
,

1

2
− 1

〉
=
〈
0,

1

2
, −1

2

〉
.

Find the components of the vector w whose tail is C and head is the midpoint of AB in Figure 19.Further Insights and Challenges
In Exercises 57–63, we consider the equations of a line in symmetric form, when a �= 0, b �= 0, c �= 0.

x − x0

a
= y − y0

b
= z − z0

c
12

57. Let L be the line through P0 = (x0, y0, c0) with direction vector v = 〈a, b, c〉. Show that L is defined by the
symmetric Eq. (12). Hint: Use the vector parametrization to show that every point on L satisfies Eq. (12).

solution L is given by vector parametrization

r(t) = 〈x0, y0, z0〉 + t 〈a, b, c〉
which gives us the equations

x = x0 + at

y = y0 + bt

z = z0 + ct.

Solving for t gives

t = x − x0

a

t = y − y0

b

t = z − z0

c

Setting each equation equal to the other gives Eq. (12).

Find the symmetric equations of the line through P0 = (−2, 3, 3) with direction vector v = 〈2, 4, 3〉.59. Find the symmetric equations of the line through P = (1, 1, 2) and Q = (−2, 4, 0).

solution This line has direction vector
−→
PQ = 〈−3, 3, −2〉. Using (x0, y0, z0) = P = (1, 1, 2) and 〈a, b, c〉 = −→

PQ =
〈−3, 3, −2〉 in Eq. (12) gives

x − 1

−3
= y − 1

3
= z − 2

−2

Find the symmetric equations of the line

x = 3 + 2t, y = 4 − 9t, z = 12t

61. Find a vector parametrization for the line

x − 5

9
= y + 3

7
= z − 10

solution Using (x0, y0, z0) = (5, −3, 10) and 〈a, b, c〉 = 〈9, 7, 1〉 gives

r(t) = 〈5, −3, 10〉 + t 〈9, 7, 1〉

v

w

4

21

3

u
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Find a vector parametrization for the line
x

2
= y

7
= z

8
.

63. Show that the line in the plane through (x0, y0) of slope m has symmetric equations

x − x0 = y − y0

m

solution The line through (x0, y0) of slope m has equation y − y0 = m(x − x0), which becomes x − x0 = 1
m(y − y0),

which becomes

x − x0

1
= y − y0

m

A median of a triangle is a segment joining a vertex to the midpoint of the opposite side. Referring to Figure 20(A),
prove that three medians of triangle ABC intersect at the terminal point P of the vector 1

3 (u + v + w). The point P

is the centroid of the triangle. Hint: Show, by parametrizing the segment AA′, that P lies two-thirds of the way from
A to A′. It will follow similarly that P lies on the other two medians.

65. A median of a tetrahedron is a segment joining a vertex to the centroid of the opposite face. The tetrahedron in Figure
20(B) has vertices at the origin and at the terminal points of vectors u, v, and w. Show that the medians intersect at the
terminal point of 1

4 (u + v + w).

solution We first find vectors from the origin to the centroids of the four faces (labelled 1,2,3,4 after their opposite
vertices, also labelled 1,2,3,4). Now, by the previous problem (Exercise 64), a vector from the origin (vertex 1) to the
centroid of the opposite face (face 1) is 1

3 (u + v + w). As for face 2, a vector from vertex 2 to the centroid of face 2 is
1
3 (−u + (v − u) + (w − u)), but since vertex 2 is at the head of vector u, then a vector from the origin to the centroid of

face 2 is u + 1
3 (−u + (v − u) + (w − u)) = 1

3 (v + w). Similarly, a vector from the origin to the centroid of face 3 is

v + 1
3 (−v + (u − v) + (w − v)) = 1

3 (u + w), and from the origin to the centroid of face 4 is 1
3 (u + v).

We now find the paramentric equations of four lines �1, . . . , �4, each from vertex i to the centroid of the (opposite)
face i.

�1(t) = t0 + (1 − t)
1

3
(u + v + w)

�2(t) = tu + (1 − t)
1

3
(v + w)

�3(t) = tv + (1 − t)
1

3
(u + w)

�4(t) = tw + (1 − t)
1

3
(u + v)

By substituting t = 1/4 into each line, we find that they all intersect in the same point:

�1(1/4) = 1/40 + (1 − 1/4)
1

3
(u + v + w) = 1/4(u + v + w)

�2(1/4) = 1/4u + (1 − 1/4)
1

3
(v + w) = 1/4(u + v + w)

�3(1/4) = 1/4v + (1 − 1/4)
1

3
(u + w) = 1/4(u + v + w)

�4(1/4) = 1/4w + (1 − 1/4)
1

3
(u + v) = 1/4(u + v + w)

We conclude that all four lines intersect at the terminal point of the vector 1/4(u + v + w), as desired.

12.3 Dot Product and the Angle between Two Vectors (LT Section 13.3)

Preliminary Questions
1. Is the dot product of two vectors a scalar or a vector?

solution The dot product of two vectors is the sum of products of scalars, hence it is a scalar.

2. What can you say about the angle between a and b if a · b < 0?

solution Since the cosine of the angle between a and b satisfies cos θ = a·b
‖a‖‖b‖ , also cos θ < 0. By definition

0 ≤ θ ≤ π , but since cos θ < 0 then θ is in (π/2, π ]. In other words, the angle between a and b is obtuse.

3. Which property of dot products allows us to conclude that if v is orthogonal to both u and w, then v is orthogonal to
u + w?

solution One property is that two vectors are orthogonal if and only if the dot product of the two vectors is zero. The
second property is the Distributive Law. Since v is orthogonal to u and w, we have v · u = 0 and v · w = 0. Therefore,

v · (u + w) = v · u + v · w = 0 + 0 = 0

We conclude that v is orthogonal to u + w.
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4. Which is the projection of v along v: (a) v or (b) ev?

solution The projection of v along itself is v, since

v|| =
(v · v

v · v

)
v = v

Also, the projection of v along ev is the same answer, v, because

v|| =
(

v · ev

ev · ev

)
ev = ‖v‖ev = v

5. Let u|| be the projection of u along v. Which of the following is the projection u along the vector 2v and which is the
projection of 2u along v?

(a) 1
2 u|| (b) u|| (c) 2u||

solution Since u|| is the projection of u along v, we have,

u|| =
(u · v

v · v

)
v

The projection of u along the vector 2v is(
u · 2v
2v · 2v

)
2v =

(
2u · v
4v · v

)
2v =

(
4u · v
4v · v

)
v =

(u · v
v · v

)
v = u||

That is, u|| is the projection of u along 2v, so our answer is (b) for the first part. Notice that the projection of u along
v is the projection of u along the unit vector ev, hence it depends on the direction of v rather than on the length of v.
Therefore, the projection of u along v and along 2v is the same vector.

On the other hand, the projection of 2u along v is as follows:(
2u · v
v · v

)
v = 2

(u · v
v · v

)
v = 2u||

giving us answer (c) for the second part.

6. Which of the following is equal to cos θ , where θ is the angle between u and v?

(a) u · v (b) u · ev (c) eu · ev

solution By the Theorems on the Dot Product and the Angle Between Vectors, we have

cos θ = u · v
‖u‖‖v‖ = u

‖u‖ · v
‖v‖ = eu · ev

The correct answer is (c).

Exercises
In Exercises 1–12, compute the dot product.

1. 〈1, 2, 1〉 · 〈4, 3, 5〉
solution Using the definition of the dot product we obtain

〈1, 2, 1〉 · 〈4, 3, 5〉 = 1 · 4 + 2 · 3 + 1 · 5 = 15

〈3, −2, 2〉 · 〈1, 0, 1〉3. 〈0, 1, 0〉 · 〈7, 41, −3〉
solution The dot product is

〈0, 1, 0〉 · 〈7, 41, −3〉 = 0 · 7 + 1 · 41 + 0 · (−3) = 41

〈1, 1, 1〉 · 〈6, 4, 2〉5. 〈3, 1〉 · 〈4, −7〉
solution The dot product of the two vectors is the following scalar:

〈3, 1〉 · 〈4, −7〉 = 3 · 4 + 1 · (−7) = 5

〈 1
6 , 1

2

〉 · 〈3, 1
2

〉7. k · j

solution By the orthogonality of j and k, we have k · j = 0

k · k
9. (i + j) · (j + k)

solution By the distributive law and the orthogonality of i, j and k we have

(i + j) · (j + k) = i · j + i · k + j · j + j · k = 0 + 0 + 1 + 0 = 1
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(3j + 2k) · (i − 4k)
11. (i + j + k) · (3i + 2j − 5k)

solution We use properties of the dot product to obtain

(i + j + k) · (3i + 2j − 5k) = 3i · i + 2i · j − 5i · k + 3j · i + 2j · j − 5j · k + 3k · i + 2k · j − 5k · k

= 3‖i‖2 + 2‖j‖2 − 5‖k‖2 = 3 · 1 + 2 · 1 − 5 · 1 = 0

(−k) · (i − 2j + 7k)In Exercises 13–18, determine whether the two vectors are orthogonal and, if not, whether the angle between them is
acute or obtuse.

13. 〈1, 1, 1〉, 〈1, −2, −2〉
solution We compute the dot product of the two vectors:

〈1, 1, 1〉 · 〈1, −2, −2〉 = 1 · 1 + 1 · (−2) + 1 · (−2) = −3

Since the dot product is negative, the angle between the vectors is obtuse.

〈0, 2, 4〉, 〈−5, 0, 0〉15. 〈1, 2, 1〉, 〈7, −3, −1〉
solution We compute the dot product:

〈1, 2, 1〉 · 〈7, −3, −1〉 = 1 · 7 + 2 · (−3) + 1 · (−1) = 0

The dot product is zero, hence the vectors are orthogonal.

〈0, 2, 4〉, 〈3, 1, 0〉17.
〈 12

5 , − 4
5

〉
,
〈 1
2 , − 7

4

〉
solution We find the dot product of the two vectors:〈

12

5
, −4

5

〉
·
〈

1

2
, −7

4

〉
= 12

5
· 1

2
+
(

−4

5

)
·
(

−7

4

)
= 12

10
+ 28

20
= 13

5

The dot product is positive, hence the angle between the vectors is acute.

〈12, 6〉, 〈2, −4〉In Exercises 19–22, find the cosine of the angle between the vectors.

19. 〈0, 3, 1〉, 〈4, 0, 0〉
solution Since 〈0, 3, 1〉 · 〈4, 0, 0〉 = 0 · 4 + 3 · 0 + 1 · 0 = 0, the vectors are orthogonal, that is, the angle between
them is θ = 90◦ and cos θ = 0.

〈1, 1, 1〉, 〈2, −1, 2〉21. i + j, j + 2k

solution We use the formula for the cosine of the angle between two vectors. Let v = i + j and w = j + 2k. We
compute the following values:

‖v‖ = ‖i + j‖ =
√

12 + 12 = √
2

‖w‖ = ‖j + 2k‖ =
√

12 + 22 = √
5

v · w = (i + j) · (j + 2k) = i · j + 2i · k + j · j + 2j · k = ‖j‖2 = 1

Hence,

cos θ = v · w
‖v‖‖w‖ = 1√

2
√

5
= 1√

10
.

3i + k, i + j + kIn Exercises 23–28, find the angle between the vectors. Use a calculator if necessary.

23.
〈
2,

√
2
〉
,
〈
1 + √

2, 1 − √
2
〉

solution We write v =
〈
2,

√
2
〉

and w =
〈
2,

√
2
〉
. To use the formula for the cosine of the angle θ between two vectors

we need to compute the following values:

‖v‖ = √
4 + 2 = √

6

‖w‖ =
√

(1 + √
2)2 + (1 − √

2)2 = √
6

v · w = 2 + 2
√

2 + √
2 − 2 = 3

√
2
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Hence,

cos θ = v · w
‖v‖‖w‖ = 3

√
2√

6
√

6
=

√
2

2

and so,

θ = cos−1
√

2

2
= π/4

〈
5,

√
3
〉
,
〈√

3, 2
〉25. 〈1, 1, 1〉, 〈1, 0, 1〉

solution We denote v = 〈1, 1, 1〉 and w = 〈1, 0, 1〉. To use the formula for the cosine of the angle θ between two
vectors we need to compute the following values:

‖v‖ =
√

12 + 12 + 12 = √
3

‖w‖ =
√

12 + 02 + 12 = √
2

v · w = 1 + 0 + 1 = 2

Hence,

cos θ = v · w
‖v‖‖w‖ = 2√

3
√

2
=

√
6

3

and so,

θ = cos−1
√

6

3
≈ 0.615

〈3, 1, 1〉, 〈2, −4, 2〉27. 〈0, 1, 1〉, 〈1, −1, 0〉
solution We denote v = 〈0, 1, 1〉 and w = 〈1, −1, 0〉. To use the formula for the cosine of the angle θ between two
vectors we need to compute the following values:

‖v‖ =
√

02 + 12 + 12 = √
2

‖w‖ =
√

12 + (−1)2 + 02 = √
2

v · w = 0 + (−1) + 0 = −1

Hence,

cos θ = v · w
‖v‖‖w‖ = −1√

2
√

2
= −1

2

and so,

θ = cos−1 −1

2
= 2π

3

〈1, 1, −1〉, 〈1, −2, −1〉29. Find all values of b for which the vectors are orthogonal.

(a) 〈b, 3, 2〉, 〈1, b, 1〉 (b) 〈4, −2, 7〉, 〈
b2, b, 0

〉
solution
(a) The vectors are orthogonal if and only if the scalar product is zero. That is,

〈b, 3, 2〉 · 〈1, b, 1〉 = 0

b · 1 + 3 · b + 2 · 1 = 0

4b + 2 = 0 ⇒ b = −1

2

(b) We set the scalar product of the two vectors equal to zero and solve for b. This gives

〈4, −2, 7〉 · 〈b2, b, 0〉 = 0

4b2 − 2b + 7 · 0 = 0

2b(2b − 1) = 0 ⇒ b = 0 or b = 1

2
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Find a vector that is orthogonal to 〈−1, 2, 2〉.31. Find two vectors that are not multiples of each other and are both orthogonal to 〈2, 0, −3〉.
solution We denote by 〈a, b, c〉, a vector orthogonal to 〈2, 0, −3〉. Hence,

〈a, b, c〉 · 〈2, 0, −3〉 = 0

2a + 0 − 3c = 0

2a − 3c = 0 ⇒ a = 3

2
c

Thus, the vectors orthogonal to 〈2, 0, −3〉 are of the form〈
3

2
c, b, c

〉
.

We may find two such vectors by setting c = 0, b = 1 and c = 2, b = 2. We obtain

v1 = 〈0, 1, 0〉, v2 = 〈3, 2, 2〉.

Find a vector that is orthogonal to v = 〈1, 2, 1〉 but not to w = 〈1, 0, −1〉.33. Find v · e where ‖v‖ = 3, e is a unit vector, and the angle between e and v is 2π
3 .

solution Since v · e = ‖v‖‖e‖ cos 2π/3, and ‖v‖ = 3 and ‖e‖ = 1, we have v · e = 3 · 1 · (−1/2) = −3/2.

Assume that v lies in the yz-plane. Which of the following dot products is equal to zero for all choices of v?

(a) v · 〈0, 2, 1〉 (b) v · k

(c) v · 〈−3, 0, 0〉 (d) v · j

In Exercises 35–38, simplify the expression.

35. (v − w) · v + v · w

solution By properties of the dot product we obtain

(v − w) · v + v · w = v · v − w · v + v · w = ‖v‖2 − v · w + v · w = ‖v‖2

(v + w) · (v + w) − 2v · w
37. (v + w) · v − (v + w) · w

solution We use properties of the dot product to write

(v + w) · v − (v + w) · w = v · v + w · v − v · w − w · w

= ‖v‖2 + w · v − w · v − ‖w‖2 = ‖v‖2 − ‖w‖2

(v + w) · v − (v − w) · wIn Exercises 39–42, use the properties of the dot product to evaluate the expression, assuming that u · v = 2, ‖u‖ = 1,
and ‖v‖ = 3.

39. u · (4v)

solution Using properties of the dot product we get

u · (4v) = 4(u · v) = 4 · 2 = 8.

(u + v) · v
41. 2u · (3u − v)

solution By properties of the dot product we obtain

2u · (3u − v) = (2u) · (3u) − (2u) · v = 6(u · u) − 2(u · v)

= 6‖u‖2 − 2(u · v) = 6 · 12 − 2 · 2 = 2

(u + v) · (u − v)
43. Find the angle between v and w if v · w = −‖v‖ ‖w‖.

solution Using the formula for dot product, and the given equation v · w = −‖v‖ ‖w‖, we get:

‖v‖ ‖w‖ cos θ = −‖v‖ ‖w‖,
which implies cos θ = −1, and so the angle between the two vectors is θ = π .

Find the angle between v and w if v · w = 1
2‖v‖ ‖w‖.

45. Assume that ‖v‖ = 3, ‖w‖ = 5 and that the angle between v and w is θ = π
3 .

(a) Use the relation ‖v + w‖2 = (v + w) · (v + w) to show that ‖v + w‖2 = 32 + 52 + 2v · w.
(b) Find ‖v + w‖.

solution For part (a), we use the distributive property to get:

‖v + w‖2 = (v + w) · (v + w)

= v · v + v · w + w · v + w · w

= ‖v‖2 + 2v · w + ‖w‖2

= 32 + 52 + 2v · w
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For part (b), we use the definition of dot product on the previous equation to get:

‖v + w‖2 = 32 + 52 + 2v · w

= 34 + 2 · 3 · 5 · cos π/3

= 34 + 15 = 49

Thus, ‖v + w‖ = √
49 = 7.

Assume that ‖v‖ = 2, ‖w‖ = 3, and the angle between v and w is 120◦. Determine:

(a) v · w (b) ‖2v + w‖ (c) ‖2v − 3w‖
47. Show that if e and f are unit vectors such that ‖e + f‖ = 3

2 , then ‖e − f‖ =
√

7
2 . Hint: Show that e · f = 1

8 .

solution We use the relation of the dot product with length and properties of the dot product to write

9/4 = ‖e + f‖2 = (e + f) · (e + f) = e · e + e · f + f · e + f · f

= ‖e‖2 + 2e · f + ‖f‖2 = 12 + 2e · f + 12 = 2 + 2e · f

We now find e · f :

9/4 = 2 + 2e · f ⇒ e · f = 1/8

Hence, using the same method as above, we have:

‖e − f‖2 = (e − f) · (e − f) = e · e − e · f − f · e + f · f

= ‖e‖2 − 2e · f + ‖f‖2 = 12 − 2e · f + 12 = 2 − 2e · f = 2 − 2/8 = 7/4.

Taking square roots, we get:

‖e − f‖ =
√

7

2

Find ‖2e − 3f‖ assuming that e and f are unit vectors such that ‖e + f‖ = √
3/2.

49. Find the angle θ in the triangle in Figure 12.

x

y

(0, 10)

(10, 8)

(3, 2)

FIGURE 12

solution We denote by u and v the vectors in the figure.

x

y

(0, 10)

(10, 8)

(3, 2)

v

u

Hence,

cos θ = v · u
‖v‖‖u‖ (1)

We find the vectors v and u, and then compute their length and the dot product v · u. This gives

v = 〈0 − 10, 10 − 8〉 = 〈−10, 2〉
u = 〈3 − 10, 2 − 8〉 = 〈−7, −6〉

‖v‖ =
√

(−10)2+22 = √
104

‖u‖ =
√

(−7)2 + (−6)2 = √
85

v · u = 〈−10, 2〉 · 〈−7, −6〉 = (−10) · (−7) + 2 · (−6) = 58
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Substituting these values in (1) yields

cos θ = 58√
104

√
85

≈ 0.617

Hence the angle of the triangle is 51.91◦.

Find all three angles in the triangle in Figure 13.In Exercises 51–58, find the projection of u along v.

51. u = 〈2, 5〉, v = 〈1, 1〉
solution We first compute the following dot products:

u · v = 〈2, 5〉 · 〈1, 1〉 = 7

v · v = ‖v‖2 = 12 + 12 = 2

The projection of u along v is the following vector:

u|| =
(u · v

v · v

)
v = 7

2
v =

〈
7

2
,

7

2

〉

u = 〈2, −3〉, v = 〈1, 2〉53. u = 〈−1, 2, 0〉, v = 〈2, 0, 1〉
solution The projection of u along v is the following vector:

u|| =
(u · v

v · v

)
v

We compute the values in this expression:

u · v = 〈−1, 2, 0〉 · 〈2, 0, 1〉 = −1 · 2 + 2 · 0 + 0 · 1 = −2

v · v = ‖v‖2 = 22 + 02 + 12 = 5

Hence,

u|| = −2

5
〈2, 0, 1〉 =

〈
−4

5
, 0, −2

5

〉
.

u = 〈1, 1, 1〉, v = 〈1, 1, 0〉55. u = 5i + 7j − 4k, v = k

solution The projection of u along v is the following vector:

u|| =
(u · v

v · v

)
v

We compute the dot products:

u · v = (5i + 7j − 4k) · k = −4k · k = −4

v · v = ‖v‖2 = ‖k‖2 = 1

Hence,

u|| = −4

1
k = −4k

u = i + 29k, v = j
57. u = 〈a, b, c〉, v = i

solution The component of u along v is a, since

u · ev = (ai + bj + ck) · i = a

Therefore, the projection of u along v is the vector

u|| = (u · ev)ev = ai

u = 〈a, a, b〉, v = i − jIn Exercises 59 and 60, compute the component of u along v.

59. u = 〈3, 2, 1〉, v = 〈1, 0, 1〉
solution We first compute the following dot products:

u · v = 〈3, 2, 1〉 · 〈1, 0, 1〉 = 4

v · v = ‖v‖2 = 12 + 12 = 2
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The component of u along v is the length of the projection of u along v∥∥∥(u · v
v · v

)
v
∥∥∥ = 4

2
‖v‖ = 2‖v‖ = 2

√
2

u = 〈3, 0, 9〉, v = 〈1, 2, 2〉61. Find the length of OP in Figure 14.

x

y

u = 〈3, 5〉

v = 〈8, 2〉
u⊥

P

O

FIGURE 14

solution This is just the component of u = 〈3, 5〉 along v = 〈8, 2〉. We first compute the following dot products:

u · v = 〈3, 5〉 · 〈8, 2〉 = 34

v · v = ‖v‖2 = 82 + 22 = 68

The component of u along v is the length of the projection of u along v∥∥∥(u · v
v · v

)
v
∥∥∥ = 34

68
‖v‖ = 34

68

√
68

Find ‖u⊥‖ in Figure 14.In Exercises 63–68, find the decomposition a = a|| + a⊥ with respect to b.

63. a = 〈1, 0〉, b = 〈1, 1〉
solution
Step 1. We compute a · b and b · b

a · b = 〈1, 0〉 · 〈1, 1〉 = 1 · 1 + 0 · 1 = 1

b · b = ‖b‖2 = 12 + 12 = 2

Step 2. We find the projection of a along b:

a|| =
(

a · b
b · b

)
b = 1

2
〈1, 1〉 =

〈
1

2
,

1

2

〉
Step 3. We find the orthogonal part as the difference:

a⊥ = a − a|| = 〈1, 0〉 −
〈

1

2
,

1

2

〉
=
〈

1

2
, −1

2

〉
Hence,

a = a|| + a⊥ =
〈

1

2
,

1

2

〉
+
〈

1

2
, −1

2

〉
.

a = 〈2, −3〉, b = 〈5, 0〉65. a = 〈4, −1, 0〉, b = 〈0, 1, 1〉
solution We first compute a · b and b · b to find the projection of a along b:

a · b = 〈4, −1, 0〉 · 〈0, 1, 1〉 = 4 · 0 + (−1) · 1 + 0 · 1 = −1

b · b = ‖b‖2 = 02 + 12 + 12 = 2

Hence,

a|| =
(

a · b
b · b

)
b = −1

2
〈0, 1, 1〉 =

〈
0, −1

2
, −1

2

〉
We now find the vector a⊥ orthogonal to b by computing the difference:

a − a|| = 〈4, −1, 0〉 −
〈
0, −1

2
, −1

2

〉
=
〈
4, −1

2
,

1

2

〉
Thus, we have

a = a|| + a⊥ =
〈
0, −1

2
, −1

2

〉
+
〈
4, −1

2
,

1

2

〉
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a = 〈4, −1, 5〉, b = 〈2, 1, 1〉67. a = 〈x, y〉, b = 〈1, −1〉
solution We first compute a · b and b · b to find the projection of a along b:

a · b = 〈x, y〉 · 〈1, −1〉 = x − y

b · b = ‖b‖2 = 12 + (−1)2 = 2

Hence,

a|| =
(

a · b
b · b

)
b = x − y

2
〈1, −1〉 =

〈
x − y

2
,
y − x

2

〉
We now find the vector a⊥ orthogonal to b by computing the difference:

a − a|| = 〈x, y〉 −
〈
x − y

2
,
y − x

2

〉
=
〈
x + y

2
,
x + y

2

〉
Thus, we have

a = a|| + a⊥ =
〈
x − y

2
,
y − x

2

〉
+
〈
x + y

2
,
x + y

2

〉

a = 〈x, y, z〉, b = 〈1, 1, 1〉69. Let eθ = 〈cos θ, sin θ〉. Show that eθ · eψ = cos(θ − ψ) for any two angles θ and ψ .

solution First, eθ is a unit vector since by a trigonometric identity we have

‖eθ‖ =
√

cos2 θ + sin2 θ = √
1 = 1

The cosine of the angle α between eθ and the vector i in the direction of the positive x-axis is

cos α = eθ · i
‖eθ‖ · ‖i‖ = eθ · i = ((cos θ)i + (sin θ)j) · i = cos θ

The solution of cos α = cos θ for angles between 0 and π is α = θ . That is, the vector eθ makes an angle θ with the
x-axis. We now use the trigonometric identity

cos θ cos ψ + sin θ sin ψ = cos(θ − ψ)

to obtain the following equality:

eθ · eψ = 〈cos θ, sin θ〉 · 〈cos ψ, sin ψ〉 = cos θ cos ψ + sin θ sin ψ = cos(θ − ψ)

Let v and w be vectors in the plane.

(a) Use Theorem 2 to explain why the dot product v · w does not change if both v and w are rotated by the same
angle θ .

(b) Sketch the vectors e1 = 〈1, 0〉 and e2 =
〈√

2
2 ,

√
2

2

〉
, and determine the vectors e′

1, e′
2 obtained by rotating e1, e2

through an angle π
4 . Verify that e1 · e2 = e′

1 · e′
2.

In Exercises 71–74, refer to Figure 15.

A = (0, 0, 1)

C = (1, 1, 0)

D = (0, 1, 0)
B = (1, 0, 0)

O

FIGURE 15 Unit cube in R3.

71. Find the angle between AB and AC.

solution The cosine of the angle α between the vectors
−→
AB and

−→
AC is

cos α =
−→
AB · −→

AC

‖−→AB‖‖−→AC‖
(1)

A = (0, 0, 1)

C = (1, 1, 0)

O

D = (0, 1, 0)

B = (1, 0, 0)

α
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We compute the vectors
−→
AB and

−→
AC and then calculate their dot product and lengths. We get

−→
AB = 〈1 − 0, 0 − 0, 0 − 1〉 = 〈1, 0, −1〉
−→
AC = 〈1 − 0, 1 − 0, 0 − 1〉 = 〈1, 1, −1〉

−→
AB · −→

AC = 〈1, 0, −1〉 · 〈1, 1, −1〉 = 1 · 1 + 0 · 1 + (−1) · (−1) = 2

‖−→AB‖ =
√

12 + 02 + (−1)2 = √
2

‖−→AC‖ =
√

12 + 12 + (−1)2 = √
3

Substituting in (1) and solving for 0 ≤ α ≤ 90◦ gives

cos α = 2√
2 · √

3
≈ 0.816 ⇒ α ≈ 35.31◦.

Find the angle between AB and AD.
73. Calculate the projection of

−→
AC along

−→
AD.

solution DC is perpendicular to the face OAD of the cube. Hence, it is orthogonal to the segment AD on this face.

Therefore, the projection of the vector
−→
AC along

−→
AD is the vector

−→
AD itself.

Calculate the projection of
−→
AD along

−→
AB.

75. Let v and w be nonzero vectors and set u = ev + ew. Use the dot product to show that the angle between u
and v is equal to the angle between u and w. Explain this result geometrically with a diagram.

solution We denote by α the angle between u and v and by β the angle between u and w. Since ev and ew are vectors
in the directions of v and w respectively, α is the angle between u and ev and β is the angle between u and ew. The cosines
of these angles are thus

cos α = u · ev

‖u‖‖ev‖ = u · ev

‖u‖ ; cos β = u · ew

‖u‖‖ew‖ = u · ew

‖u‖
To show that cos α = cos β (which implies that α = β) we must show that

u · ev = u · ew.

We compute the two dot products:

u · ev = (ev + ew) · ev = ev · ev + ew · ev = 1 + ew · ev

u · ew = (ev + ew) · ew = ev · ew + ew · ew = ev · ew + 1

We see that u · ev = u · ew. We conclude that cos α = cos β, hence α = β. Geometrically, u is a diagonal in the rhombus
OABC (see figure), hence it bisects the angle �AOC of the rhombus.

C

A
B 

O

u

v

w

ev

ew

Let v, w, and a be nonzero vectors such that v · a = w · a. Is it true that v = w? Either prove this or give a
counterexample.

77. Calculate the force (in newtons) required to push a 40-kg wagon up a 10◦ incline (Figure 16).

10°

40 kg

FIGURE 16

solution Gravity exerts a force Fg of magnitude 40g newtons where g = 9.8. The magnitude of the force required to
push the wagon equals the component of the force Fg along the ramp. Resolving Fg into a sum Fg = F|| + F⊥, where
F|| is the force along the ramp and F⊥ is the force orthogonal to the ramp, we need to find the magnitude of F||. The angle
between Fg and the ramp is 90◦ − 10◦ = 80◦. Hence,

F|| = ‖Fg‖ cos 80◦ = 40 · 9.8 · cos 80◦ ≈ 68.07 N.
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10°
80°

F^

F||

Fg

Therefore the minimum force required to push the wagon is 68.07 N. (Actually, this is the force required to keep the
wagon from sliding down the hill; any slight amount greater than this force will serve to push it up the hill.)

A force F is applied to each of two ropes (of negligible weight) attached to opposite ends of a 40-kg wagon and
making an angle of 35◦ with the horizontal (Figure 17). What is the maximum magnitude of F (in newtons) that can
be applied without lifting the wagon off the ground?

79. A light beam travels along the ray determined by a unit vector L, strikes a flat surface at point P , and is reflected
along the ray determined by a unit vector R, where θ1 = θ2 (Figure 18). Show that if N is the unit vector orthogonal to
the surface, then

R = 2(L · N)N − L

R

N

L

Incoming light Reflected light

2
1

P

FIGURE 18

solution We denote by W a unit vector orthogonal to N in the direction shown in the figure, and let θ1 = θ2 = θ .

R

W

N
L

Incoming light Reflected light

We resolve the unit vectors R and L into a sum of forces along N and W. This gives

R = cos(90 − θ)W + cos θN = sin θW + cos θN

L = − cos(90 − θ)W + cos θN = − sin θW + cos θN (1)

W

N

Now, since

L · N = ‖L‖‖N‖ cos θ = 1 · 1 cos θ = cos θ

W

N

L

q
90 + q

W

N

R

q

90 − q

we have by (1):

2(L · N)N − L = (2 cos θ)N − L = (2 cos θ)N − ((− sin θ)W + (cos θ)N)

= (2 cos θ)N + (sin θ)W − (cos θ)N = (sin θ)W + (cos θ)N = R

Let P and Q be antipodal (opposite) points on a sphere of radius r centered at the origin and let R be a third point
on the sphere (Figure 19). Prove that PR and QR are orthogonal.
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81. Prove that ‖v + w‖2 − ‖v − w‖2 = 4v · w.

solution We compute the following values:

‖v + w‖2 = (v + w) · (v + w) = v · v + v · w + w · v + w · w = ‖v‖2 + 2v · w + ‖w‖2

‖v − w‖2 = (v − w) · (v − w) = v · v − v · w − w · v − w · w = ‖v‖2 − 2v · w + ‖w‖2

Hence,

‖v + w‖2 − ‖v − w‖2 = (‖v‖2 + 2v · w + ‖w‖2) − (‖v‖2 − 2v · w + ‖w‖2) = 4v · w

Use Exercise 81 to show that v and w are orthogonal if and only if ‖v − w‖ = ‖v + w‖.
83. Show that the two diagonals of a parallelogram are perpendicular if and only if its sides have equal length. Hint: Use
Exercise 82 to show that v − w and v + w are orthogonal if and only if ‖v‖ = ‖w‖.

solution We denote the vectors
−→
AB and

−→
AD by

w = −→
AB, v = −→

AD.

Then,

−→
AC = w + v,

−→
BD = −w + v.

w

v

v + w
−w + v

A

B C

D

The diagonals are perpendicular if and only if the vectors v + w and v − w are orthogonal. By Exercise 82 these vectors
are orthogonal if and only if the norms of the sum (v + w) + (v − w) = 2v and the difference (v + w) − (v − w) = 2w
are equal, that is,

‖2v‖ = ‖2w‖
2‖v‖ = 2‖w‖ ⇒ ‖v‖ = ‖w‖

Verify the Distributive Law:

u · (v + w) = u · v + u · w

85. Verify that (λv) · w = λ(v · w) for any scalar λ.

solution We denote the components of the vectors v and w by

v = 〈a1, a2, a3〉 w = 〈b1, b2, b3〉
Thus,

(λv) · w = (λ〈a1, a2, a3〉) · 〈b1, b2, b3〉 = 〈λa1, λa2, λa3〉 · 〈b1, b2, b3〉
= λa1b1 + λa2b2 + λa3b3

Recalling that λ, ai , and bi are scalars and using the definitions of scalar multiples of vectors and the dot product, we get

(λv) · w = λ(a1b1 + a2b2 + a3b3) = λ (〈a1, a2, a3〉 · 〈b1, b2, b3〉) = λ(v · w)

Further Insights and Challenges

Prove the Law of Cosines, c2 = a2 + b2 − 2ab cos θ , by referring to Figure 20. Hint: Consider the right triangle
�PQR.

87. In this exercise, we prove the Cauchy–Schwarz inequality: If v and w are any two vectors, then

|v · w| ≤ ‖v‖ ‖w‖ 6

(a) Let f (x) = ‖xv + w‖2 for x a scalar. Show that f (x) = ax2 + bx + c, where a = ‖v‖2, b = 2v · w, and c = ‖w‖2.
(b) Conclude that b2 − 4ac ≤ 0. Hint: Observe that f (x) ≥ 0 for all x.

solution
(a) We express the norm as a dot product and compute it:

f (x) = ‖xv + w‖2 = (xv + w) · (xv + w)

= x2v · v + xv·w + xw · v + w · w = ‖v‖2x2 + 2(v · w)x + ‖w‖2

Hence, f (x) = ax2 + bx + c, where a = ‖v‖2, b = 2v · w, and c = ‖w‖2.
(b) If f has distinct real roots x1 and x2, then f (x) is negative for x between x1 and x2, but this is impossible since f is
the square of a length.
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y

xx1 x2

f (x) = ax2 + bx + c, a > 0

Using properties of quadratic functions, it follows that f has a nonpositive discriminant. That is, b2 − 4ac ≤ 0. Substituting
the values for a, b, and c, we get

4(v · w)2 − 4‖v‖2‖w‖2 ≤ 0

(v · w)2 ≤ ‖v‖2‖w‖2

Taking the square root of both sides we obtain

|v · w| ≤ ‖v‖‖w‖

Use (6) to prove the Triangle Inequality

‖v + w‖ ≤ ‖v‖ + ‖w‖
Hint: First use the Triangle Inequality for numbers to prove

|(v + w) · (v + w)| ≤ |(v + w) · v| + |(v + w) · w|

89. This exercise gives another proof of the relation between the dot product and the angle θ between two vectors
v = 〈a1, b1〉 and w = 〈a2, b2〉 in the plane. Observe that v = ‖v‖ 〈cos θ1, sin θ1〉 and w = ‖w‖ 〈cos θ2, sin θ2〉, with θ1
and θ2 as in Figure 21. Then use the addition formula for the cosine to show that

v · w = ‖v‖ ‖w‖ cos θ

= 2 1−

2
1

w w

v v

x

y

x

y

x

y
a2

b2

b1

a1

FIGURE 21

solution Using the trigonometric function for angles in right triangles, we have

a2 = ‖v‖ sin θ1, a1 = ‖v‖ cos θ1

b2 = ‖w‖ sin θ2, b1 = ‖w‖ cos θ2

Hence, using the given identity we obtain

v · w = 〈a1, a2〉 · 〈b1, b2〉 = a1b1 + a2b2 = ‖v‖ cos θ1‖w‖ cos θ2 + ‖v‖ sin θ1‖w‖ sin θ2

= ‖v‖‖w‖(cos θ1 cos θ2 + sin θ1 sin θ2) = ‖v‖‖w‖ cos(θ1 − θ2)

That is,

v · w = ‖v‖‖w‖ cos(θ)

Let v = 〈x, y〉 and

vθ = 〈x cos θ + y sin θ, −x sin θ + y cos θ〉
Prove that the angle between v and vθ is θ .

91. Let v be a nonzero vector. The angles α, β, γ between v and the unit vectors i, j, k are called the direction angles of
v (Figure 22). The cosines of these angles are called the direction cosines of v. Prove that

cos2 α + cos2 β + cos2 γ = 1

y

v

x

z

FIGURE 22 Direction angles of v.
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solution We use the relation between the dot product and the angle between two vectors to write

cos α = v · i
‖v‖‖i‖ = v · i

‖v‖

cos β = v · j
‖v‖‖j‖ = v · j

‖v‖ (1)

cos γ = v · k
‖v‖‖k‖ = v · k

‖v‖
We compute the values involved in (1). Letting v = 〈v1, v2, v3〉 we get

v · i = 〈v1, v2, v3〉 · 〈1, 0, 0〉 = v1

v · j = 〈v1, v2, v3〉 · 〈0, 1, 0〉 = v2

v · k = 〈v1, v2, v3〉 · 〈0, 0, 1〉 = v3

‖v‖ =
√

v2
1 + v2

2 + v2
3 (2)

We now substitute (2) into (1) to obtain

cos α = v1

‖v‖ , cos β = v2

‖v‖ , cos γ = v3

‖v‖
Finally, we compute the sum of squares of the direction cosines:

cos2 α + cos2 β + cos2 γ =
(

v1

‖v‖
)2

+
(

v2

‖v‖
)2

+
(

v3

‖v‖
)2

= 1

‖v‖2
(v2

1 + v2
2 + v2

3) = 1

‖v‖2
· ‖v‖2 = 1

Find the direction cosines of v = 〈3, 6, −2〉.93. The set of all points X = (x, y, z) equidistant from two points P , Q in R3 is a plane (Figure 23). Show that X lies
on this plane if

−→
PQ · −→

OX = 1

2

(
‖−−→OQ‖2 − ‖−→

OP ‖2
)

7

Hint: If R is the midpoint of PQ, then X is equidistant from P and Q if and only if
−→
XR is orthogonal to

−→
PQ.

y

x

z

P

X

R

Q

FIGURE 23

solution Let R be the midpoint of the segment PQ. The points X = (x, y, z) that are equidistant from P and Q are

the points for which the vector
−→
XR is orthogonal to

−→
PQ. That is,

−→
XR · −→

PQ = 0 (1)

Since
−→
XR = −→

XO + −→
OR we have by (1):

O =
(−→
XO + −→

OR
)

· −→
PQ = −→

XO · −→
PQ + −→

OR · −→
PQ = −−→

OX · −→
PQ + −→

OR · −→
PQ

Transferring sides we get

−→
OX · −→

PQ = −→
OR · −→

PQ (2)

We now write
−→
PQ = −→

PO + −−→
OQ on the right-hand-side of (2), and

−→
OR =

−→
OP + −−→

OQ

2
. We get

−→
OX · −→

PQ = 1

2

(−→
OP + −−→

OQ
)

·
(−→
PO + −−→

OQ
)

= 1

2

(−→
OP + −−→

OQ
)

·
(−−→
OQ − −→

OP
)

= 1

2

(−→
OP · −−→

OQ − −→
OP · −→

OP + −−→
OQ · −−→

OQ − −−→
OQ · −→

OP
)

= 1

2

(
‖−−→OQ‖2 − ‖−→

OP ‖2
)
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Thus, we showed that the vector equation of the plane is

−→
OX · −→

PQ = 1

2

(
‖−−→OQ‖2 − ‖−→

OP ‖2
)

.

Sketch the plane consisting of all points X = (x, y, z) equidistant from the points P = (0, 1, 0) and Q = (0, 0, 1).
Use Eq. (7) to show that X lies on this plane if and only if y = z.

95. Use Eq. (7) to find the equation of the plane consisting of all points X = (x, y, z) equidistant from P = (2, 1, 1) and
Q = (1, 0, 2).

solution Using Eq. (7) with X = (x, y, z), P = (2, 1, 1), and Q = (1, 0, 2) gives

〈x, y, z〉 · 〈−1, −1, 1〉 = 1

2

(
(
√

5)2 − (
√

6)2
)

= −1

2

This gives us −1x − 1y + 1z = − 1
2 , which leads to 2x + 2y − 2z = 1.

12.4 The Cross Product (LT Section 13.4)

Preliminary Questions

1. What is the (1, 3) minor of the matrix

∣∣∣∣∣∣
3 4 2

−5 −1 1
4 0 3

∣∣∣∣∣∣?
solution The (1, 3) minor is obtained by crossing out the first row and third column of the matrix. That is,∣∣∣∣∣∣

3 4 2
−5 −1 1
4 0 3

∣∣∣∣∣∣ ⇒
∣∣∣∣ −5 −1

4 0

∣∣∣∣
2. The angle between two unit vectors e and f is π

6 . What is the length of e × f?

solution We use the Formula for the Length of the Cross Product:

‖e × f‖ = ‖e‖‖f‖ sin θ

Since e and f are unit vectors, ‖e‖ = ‖f‖ = 1. Also θ = π
6 , therefore,

‖e × f‖ = 1 · 1 · sin
π

6
= 1

2

The length of e × f is 1
2 .

3. What is u × w, assuming that w × u = 〈2, 2, 1〉?
solution By anti-commutativity of the cross product, we have

u × w = −w × u = −〈2, 2, 1〉 = 〈−2, −2, −1〉

4. Find the cross product without using the formula:

(a) 〈4, 8, 2〉 × 〈4, 8, 2〉 (b) 〈4, 8, 2〉 × 〈2, 4, 1〉
solution By properties of the cross product, the cross product of parallel vectors is the zero vector. In particular, the
cross product of a vector with itself is the zero vector. Since 〈4, 8, 2〉 = 2〈2, 4, 1〉, the vectors 〈4, 8, 2〉 and 〈2, 4, 1〉 are
parallel. We conclude that

〈4, 8, 2〉 × 〈4, 8, 2〉 = 0 and 〈4, 8, 2〉 × 〈2, 4, 1〉 = 0.

5. What are i × j and i × k?

solution The cross product i × j and i × k are determined by the right-hand rule. We can also use the following figure
to determine these cross-products:

j

i

k
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We get

i × j = k and i × k = −j

6. When is the cross product v × w equal to zero?

solution The cross product v × w is equal to zero if one of the vectors v or w (or both) is the zero vector, or if v and
w are parallel vectors.

Exercises
In Exercises 1–4, calculate the 2 × 2 determinant.

1.

∣∣∣∣ 1 2
4 3

∣∣∣∣
solution Using the definition of 2 × 2 determinant we get∣∣∣∣ 1 2

4 3

∣∣∣∣ = 1 · 3 − 2 · 4 = −5

∣∣∣∣∣
2
3

1
6

−5 2

∣∣∣∣∣
3.

∣∣∣∣ −6 9
1 1

∣∣∣∣
solution We evaluate the determinant to obtain∣∣∣∣ −6 9

1 1

∣∣∣∣ = −6 · 1 − 9 · 1 = −15

∣∣∣∣ 9 25
5 14

∣∣∣∣In Exercises 5–8, calculate the 3 × 3 determinant.

5.

∣∣∣∣∣∣
1 2 1
4 −3 0
1 0 1

∣∣∣∣∣∣
solution Using the definition of 3 × 3 determinant we obtain∣∣∣∣∣∣

1 2 1
4 −3 0
1 0 1

∣∣∣∣∣∣ = 1

∣∣∣∣ −3 0
0 1

∣∣∣∣− 2

∣∣∣∣ 4 0
1 1

∣∣∣∣+ 1

∣∣∣∣ 4 −3
1 0

∣∣∣∣
= 1 · (−3 · 1 − 0 · 0) − 2 · (4 · 1 − 0 · 1) + 1 · (4 · 0 − (−3) · 1)

= −3 − 8 + 3 = −8

∣∣∣∣∣∣
1 0 1

−2 0 3
1 3 −1

∣∣∣∣∣∣
7.

∣∣∣∣∣∣
1 2 3
2 4 6

−3 −4 2

∣∣∣∣∣∣
solution We have∣∣∣∣∣∣

1 2 3
2 4 6

−3 −4 2

∣∣∣∣∣∣ = 1

∣∣∣∣ 4 6
−4 2

∣∣∣∣− 2

∣∣∣∣ 2 6
−3 2

∣∣∣∣+ 3

∣∣∣∣ 2 4
−3 −4

∣∣∣∣
= 1(4 · 2 − 6 · (−4)) − 2(2 · 2 − 6 · (−3)) + 3(2 · (−4) − 4 · (−3))

= 32 − 44 + 12 = 0

∣∣∣∣∣∣
1 0 0
0 0 −1
0 1 0

∣∣∣∣∣∣
In Exercises 9–12, calculate v × w.

9. v = 〈1, 2, 1〉, w = 〈3, 1, 1〉
solution Using the definition of the cross product we get

v × w =
∣∣∣∣∣∣

i j k
1 2 1
3 1 1

∣∣∣∣∣∣ =
∣∣∣∣ 2 1

1 1

∣∣∣∣ i −
∣∣∣∣ 1 1

3 1

∣∣∣∣ j +
∣∣∣∣ 1 2

3 1

∣∣∣∣ k
= (2 − 1)i − (1 − 3)j + (1 − 6)k = i + 2j − 5k
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v = 〈2, 0, 0〉, w = 〈−1, 0, 1〉11. v = 〈 23 , 1, 1
2

〉
, w = 〈4, −6, 3〉

solution We have

v × w =
∣∣∣∣∣∣

i j k
2
3 1 1

2
4 −6 3

∣∣∣∣∣∣ =
∣∣∣∣ 1 1

2−6 3

∣∣∣∣ i −
∣∣∣∣ 2

3
1
2

4 3

∣∣∣∣ j +
∣∣∣∣ 2

3 1
4 −6

∣∣∣∣ k
= (3 + 3) i − (2 − 2) j + (−4 − 4) k = 6i − 8k

v = 〈1, 1, 0〉, w = 〈0, 1, 1〉In Exercises 13–16, use the relations in Eq. (5) to calculate the cross product.

13. (i + j) × k

solution We use basic properties of the cross product to obtain

(i + j) × k = i × k + j × k = −j + i

j

i

k

i × k = −j

j × k = i

( j − k) × ( j + k)
15. (i − 3j + 2k) × ( j − k)

solution Using the distributive law we obtain

(i − 3j + 2k) × (j − k) = (i − 3j + 2k) × j − (i − 3j + 2k) × (k)

= i × j + 2k × j − i × k − (−3j) × k

= i + j + k

(2i − 3j + 4k) × (i + j − 7k)In Exercises 17–22, calculate the cross product assuming that

u × v = 〈1, 1, 0〉 , u × w = 〈0, 3, 1〉 , v × w = 〈2, −1, 1〉
17. v × u

solution Using the properties of the cross product we obtain

v × u = −u × v = 〈−1, −1, 0〉

v × (u + v)
19. w × (u + v)

solution Using the properties of the cross product we obtain

w × (u + v) = w × u + w × v = −u × w − v × w = 〈−2, −2, −2〉 .

(3u + 4w) × w
21. (u − 2v) × (u + 2v)

solution Using the properties of the cross product we obtain

(u − 2v) × (u + 2v) = (u − 2v) × u + (u − 2v) × 2v = u × u − 2v × u + u × 2v − 4v × v

= 0 + 2u × v + 2u × v − 0 = 0 + 4u × v = 〈4, 4, 0〉

(v + w) × (3u + 2v)
23. Let v = 〈a, b, c〉. Calculate v × i, v × j, and v × k.

solution We write v = ai + bj + ck and use the distributive law:

v × i = (ai + bj + ck) × i = ai × i + bj × i + ck × i = a · 0 − bk + cj = −bk + cj = 〈0, c, −b〉
v × j = (ai + bj + ck) × j = ai × j + bj × j + ck × j = ak + b0 − ci = ak − ci = 〈−c, 0, a〉

v × k = (ai + bj + ck) × k = ai × k + bj × k + ck × k = −aj + bi + c0 = −aj + bi = 〈b, −a, 0〉



May 16, 2011

S E C T I O N 12.4 The Cross Product (LT SECTION 13.4) 201

j

i

k

Find v × w, where v and w are vectors of length 3 in the xz-plane, oriented as in Figure 15, and θ = π
6 .In Exercises 25 and 26, refer to Figure 16.

v

−u

u

w

FIGURE 16

25. Which of u and −u is equal to v × w?

solution The direction of v × w is determined by the right-hand rule, that is, our thumb points in the direction of
v × w when the fingers of our right hand curl from v to w. Therefore v × w equals −u rather than u.

Which of the following form a right-handed system?

(a) {v, w, u} (b) {w, v, u} (c) {v, u, w}
(d) {u, v, w} (e) {w, v, −u} (f) {v, −u, w}

27. Let v = 〈3, 0, 0〉 and w = 〈0, 1, −1〉. Determine u = v × w using the geometric properties of the cross product
rather than the formula.

solution The cross product u = v × w is orthogonal to v.

y
x

v
w

z

u = v × w

Since v lies along the x-axis, u lies in the yz-plane, therefore u = 〈0, b, c〉. u is also orthogonal to w, so u · w = 0.
This gives u · w = 〈0, b, c〉 · 〈0, 1, −1〉 = b − c = 0 ⇒ b = c. Thus, u = 〈0, b, b〉. By the right-hand rule, u points
to the positive z-direction so b > 0. We compute the length of u. Since v · w = 〈3, 0, 0〉 · 〈0, 1, −1〉 = 0, v and w are
orthogonal. Hence,

‖v × w‖ = ‖v‖‖w‖ sin
π

2
= ‖v‖‖w‖ = 3 · √

2.

Also since b > 0, we have

‖u‖ = ‖〈0, b, b〉‖ =
√

2b2 = b
√

2

Equating the lengths gives

b
√

2 = 3
√

2 ⇒ b = 3.

We conclude that u = v × w = 〈0, 3, 3〉.

What are the possible angles θ between two unit vectors e and f if ‖e × f‖ = 1
2 ?

29. Show that if v and w lie in the yz-plane, then v × w is a multiple of i.

solution v × w is orthogonal to v and w. Since v and w lie in the yz-plane, v × w must lie along the x axis which is
perpendicular to yz-plane. That is, v × w is a scalar multiple of the unit vector i.

Find the two unit vectors orthogonal to both a = 〈3, 1, 1〉 and b = 〈−1, 2, 1〉.31. Let e and e′ be unit vectors in R3 such that e ⊥ e′. Use the geometric properties of the cross product to compute
e × (e′ × e).

solution Let u = e × (e′ × e
)

and v = e′ × e. The vector v is orthogonal to e′ and e, hence v is orthogonal to the
plane π defined by e′ and e. Now u is orthogonal to v, hence u lies in the plane π orthogonal to v. u is orthogonal to e,
which is in this plane, hence u is a multiple of e′:

u = λe′ (1)



May 16, 2011

202 C H A P T E R 12 VECTOR GEOMETRY (LT CHAPTER 13)

v

ee'

The right-hand rule implies that u is in the direction of e′, hence λ > 0. To find λ, we compute the length of u:

‖v‖ = ‖e′ × e‖ = ‖e′‖‖e‖ sin
π

2
= 1 · 1 · 1 = 1

‖u‖ = ‖e × v‖ = ‖e‖‖v‖ sin
π

2
= 1 · 1 · 1 = 1 (2)

Combining (1), (2), and λ > 0 we conclude that

u = e × (e′ × e
) = e′.

Calculate the force F on an electron (charge q = −1.6 × 10−19 C) moving with velocity 105 m/s in the direction
i in a uniform magnetic field B, where B = 0.0004i + 0.0001j teslas (see Example 5).

33. An electron moving with velocity v in the plane experiences a force F = q(v × B), where q is the charge on the
electron and B is a uniform magnetic field pointing directly out of the page. Which of the two vectors F1 or F2 in Figure
17 represents the force on the electron? Remember that q is negative.

v F2

F1

B

FIGURE 17 The magnetic field vector B points directly out of the page.

solution Since the magnetic field B points directly out of the page (toward us), the right-hand rule implies that the
cross product v × B is in the direction of F2 (see figure).

v F2

F1

B

I

II

Since F = q (v × B) and q < 0, the force F on the electron is represented by the opposite vector F1.

Calculate the scalar triple product u · (v × w), where u = 〈1, 1, 0〉, v = 〈3, −2, 2〉, and w = 〈4, −1, 2〉.35. Verify identity (10) for vectors v = 〈3, −2, 2〉 and w = 〈4, −1, 2〉.
solution We compute the cross product v × w:

v × w =
∣∣∣∣∣∣

i j k
3 −2 2
4 −1 2

∣∣∣∣∣∣ =
∣∣∣∣ −2 2

−1 2

∣∣∣∣ i −
∣∣∣∣ 3 2

4 2

∣∣∣∣ j +
∣∣∣∣ 3 −2

4 −1

∣∣∣∣ k
= (−4 + 2)i − (6 − 8)j + (−3 + 8)k = −2i + 2j + 5k = 〈−2, 2, 5〉

We now find the dot product v · w:

v · w = 〈3, −2, 2〉 · 〈4, −1, 2〉 = 3 · 4 + (−2) · (−1) + 2 · 2 = 18

Finally we compute the squares of the lengths of v, w and v × w:

‖v‖2 = 32 + (−2)2 + 22 = 17

‖w‖2 = 42 + (−1)2 + 22 = 21

‖v × w‖2 = (−2)2 + 22 + 52 = 33

We now verify the equality:

‖v‖2‖w‖2 − (v · w)2 = 17 · 21 − 182 = 33 = ‖v × w‖2
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Find the volume of the parallelepiped spanned by u, v, and w in Figure 18.
37. Find the area of the parallelogram spanned by v and w in Figure 18.

solution The area of the parallelogram equals the length of the cross product of the two vectors v = 〈1, 3, 1〉 and
w = 〈−4, 2, 6〉. We calculate the cross product as follows:

v × w =
∣∣∣∣∣∣

i j k
1 3 1

−4 2 6

∣∣∣∣∣∣ = (18 − 2)i − (6 + 4)j + (2 + 12)k = 16i − 10j + 14k

The length of this vector 16i − 10j + 14k is
√

162 + 102 + 142 = 2
√

138. Thus, the area of the parallelogram is 2
√

138.

Calculate the volume of the parallelepiped spanned by

u = 〈2, 2, 1〉 , v = 〈1, 0, 3〉 , w = 〈0, −4, 0〉

39. Sketch and compute the volume of the parallelepiped spanned by

u = 〈1, 0, 0〉 , v = 〈0, 2, 0〉 , w = 〈1, 1, 2〉
solution Using u = 〈1, 0, 0〉, v = 〈0, 2, 0〉, and w = 〈1, 1, 2〉, the volume is given by the following scalar triple
product:

u · (v × w) =
∣∣∣∣∣∣

1 0 0
0 2 0
1 1 2

∣∣∣∣∣∣ = 1(4 − 0) − 0 + 0 = 4.

u
v

w

y

x

z

Sketch the parallelogram spanned by u = 〈1, 1, 1〉 and v = 〈0, 0, 4〉, and compute its area.
41. Calculate the area of the parallelogram spanned by u = 〈1, 0, 3〉 and v = 〈2, 1, 1〉.
solution The area of the parallelogram is the length of the vector u × v. We first compute this vector:

u × v =
∣∣∣∣∣∣

i j k
1 0 3
2 1 1

∣∣∣∣∣∣ =
∣∣∣∣ 0 3

1 1

∣∣∣∣ i −
∣∣∣∣ 1 3

2 1

∣∣∣∣ j +
∣∣∣∣ 1 0

2 1

∣∣∣∣ k = −3i − (1 − 6)j + k = −3i + 5j + k

The area A is the length

A = ‖u × v‖ =
√

(−3)2 + 52 + 12 = √
35 ≈ 5.92.

Find the area of the parallelogram determined by the vectors 〈a, 0, 0〉 and 〈0, b, c〉.43. Sketch the triangle with vertices at the origin O, P = (3, 3, 0), and Q = (0, 3, 3), and compute its area using cross
products.

solution The triangle OPQ is shown in the following figure.

y
x

O

Q = (0, 3, 3)

P = (3, 3, 0)

z

The area S of the triangle is half of the area of the parallelogram determined by the vectors
−→
OP = 〈3, 3, 0〉 and−−→

OQ = 〈0, 3, 3〉. Thus,

S = 1

2
‖−→
OP × −−→

OQ‖ (1)

We compute the cross product:

−→
OP × −−→

OQ =
∣∣∣∣∣∣

i j k
3 3 0
0 3 3

∣∣∣∣∣∣ =
∣∣∣∣ 3 0

3 3

∣∣∣∣ i −
∣∣∣∣ 3 0

0 3

∣∣∣∣ j +
∣∣∣∣ 3 3

0 3

∣∣∣∣ k
= 9i − 9j + 9k = 9〈1, −1, 1〉
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Substituting into (1) gives

S = 1

2
‖9〈1, −1, 1〉‖ = 9

2
‖〈1, −1, 1〉‖ = 9

2

√
12 + (−1)2 + 12 = 9

√
3

2
≈ 7.8

The area of the triangle is S = 9
√

3
2 ≈ 7.8.

Use the cross product to find the area of the triangle with vertices P = (1, 1, 5), Q = (3, 4, 3), and R = (1, 5, 7)

(Figure 19).

In Exercises 45–47, verify the identity using the formula for the cross product.

45. v × w = −w × v

solution Let v = 〈a, b, c〉 and w = 〈d, e, f 〉. By the definition of the cross product we have

v × w =
∣∣∣∣∣∣

i j k
a b c

d e f

∣∣∣∣∣∣ =
∣∣∣∣ b c

e f

∣∣∣∣ i −
∣∣∣∣ a c

d f

∣∣∣∣ j +
∣∣∣∣ a b

d e

∣∣∣∣ k = (bf − ec)i − (af − dc)j + (ae − db)k

We also have

−w × v =
∣∣∣∣∣∣

i j k
−d −e −f

a b c

∣∣∣∣∣∣ = (−ec + bf )i − (−dc + af )j + (−db + ea)k

Thus, v × w = −w × v, as desired.

(λv) × w = λ(v × w) (λ a scalar)
47. (u + v) × w = u × w + v × w

solution We let u = 〈a1, a2, a3〉, v = 〈b1, b2, b3〉 and w = 〈c1, c2, c3〉. Computing the left-hand side gives

(u + v) × w = 〈a1 + b1, a2 + b2, a3 + b3〉 × 〈c1, c2, c3〉 =
∣∣∣∣∣∣

i j k
a1 + b1 a2 + b2 a3 + b3

c1 c2 c3

∣∣∣∣∣∣
=
∣∣∣∣ a2 + b2 a3 + b3

c2 c3

∣∣∣∣ i −
∣∣∣∣ a1 + b1 a3 + b3

c1 c3

∣∣∣∣ j +
∣∣∣∣ a1 + b1 a2 + b2

c1 c2

∣∣∣∣ k
= (c3(a2 + b2) − c2(a3 + b3)) i − (c3 (a1 + b1) − c1 (a3 + b3)) j + (c2(a1 + b1) − c1(a2 + b2)) k

We now compute the right-hand-side of the equality:

u × w + v × w =
∣∣∣∣∣∣

i j k
a1 a2 a3
c1 c2 c3

∣∣∣∣∣∣+
∣∣∣∣∣∣

i j k
b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣
=
∣∣∣∣ a2 a3

c2 c3

∣∣∣∣ i −
∣∣∣∣ a1 a3

c1 c3

∣∣∣∣ j +
∣∣∣∣ a1 a2

c1 c2

∣∣∣∣ k +
∣∣∣∣ b2 b3

c2 c3

∣∣∣∣ i −
∣∣∣∣ b1 b3

c1 c3

∣∣∣∣ j +
∣∣∣∣ b1 b2

c1 c2

∣∣∣∣ k
= (a2c3 − a3c2)i − (a1c3 − a3c1)j + (a1c2 − a2c1)k

+ (b2c3 − b3c2)i − (b1c3 − b3c1)j + (b1c2 − b2c1)k

= (a2c3 − a3c2 + b2c3 − b3c2)i − (a1c3 − a3c1 + b1c3 − b3c1)j + (a1c2 − a2c1 + b1c2 − b2c1)k

= (c3(a2 + b2) − c2(a3 + b3)) i − (c3(a1 + b1) − c1(a3 + b3)) j + (c2(a1 + b1) − c1(a2 + b2)) k

The results are the same. Hence,

(u + v) × w = u × w + v × w.

Use the geometric description in Theorem 1 to prove Theorem 2 (iii): v × w = 0 if and only if w = λv for some
scalar λ or v = 0.

49. Verify the relations (5).

solution We must verify the following relations:

i × j = k, j × k = i, k × i = j, i × i = j × j = k × k = 0

We compute the cross products using the definition of the cross product. This gives

i × j =
∣∣∣∣∣∣

i j k
1 0 0
0 1 0

∣∣∣∣∣∣ =
∣∣∣∣ 0 0

1 0

∣∣∣∣ i −
∣∣∣∣ 1 0

0 0

∣∣∣∣ j +
∣∣∣∣ 1 0

0 1

∣∣∣∣ k = k
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j × k =
∣∣∣∣∣∣

i j k
0 1 0
0 0 1

∣∣∣∣∣∣ =
∣∣∣∣ 1 0

0 1

∣∣∣∣ i −
∣∣∣∣ 0 0

0 1

∣∣∣∣ j +
∣∣∣∣ 0 1

0 0

∣∣∣∣ k = i

k × i =
∣∣∣∣∣∣

i j k
0 0 1
1 0 0

∣∣∣∣∣∣ =
∣∣∣∣ 0 1

0 0

∣∣∣∣ i −
∣∣∣∣ 0 1

1 0

∣∣∣∣ j +
∣∣∣∣ 0 0

1 0

∣∣∣∣ k = j

i × i =
∣∣∣∣∣∣

i j k
1 0 0
1 0 0

∣∣∣∣∣∣ =
∣∣∣∣ 0 0

0 0

∣∣∣∣ i −
∣∣∣∣ 1 0

1 0

∣∣∣∣ j +
∣∣∣∣ 1 0

1 0

∣∣∣∣ k = 0

j × j =
∣∣∣∣∣∣

i j k
0 1 0
0 1 0

∣∣∣∣∣∣ =
∣∣∣∣ 1 0

1 0

∣∣∣∣ i −
∣∣∣∣ 0 0

0 0

∣∣∣∣ j +
∣∣∣∣ 0 1

0 1

∣∣∣∣ k = 0

k × k =
∣∣∣∣∣∣

i j k
0 0 1
0 0 1

∣∣∣∣∣∣ =
∣∣∣∣ 0 1

0 1

∣∣∣∣ i −
∣∣∣∣ 0 1

0 1

∣∣∣∣ j +
∣∣∣∣ 0 0

0 0

∣∣∣∣ k = 0

Show that

(i × j) × j �= i × (j × j)

Conclude that the Associative Law does not hold for cross products.

51. The components of the cross product have a geometric interpretation. Show that the absolute value of the k-component
of v × w is equal to the area of the parallelogram spanned by the projections v0 and w0 onto the xy-plane (Figure 20).

y

x v0

v
w

w0

z

FIGURE 20

solution Let v = 〈a1, a2, a3〉 and w = 〈b1, b2, b3〉, hence, v0 = 〈a1, a2, 0〉 and w0 = 〈b1, b2, 0〉. The area S of the
parallelogram spanned by v0 and w0 is the following value:

S = ‖v0 × w0‖ (1)

We compute the cross product:

v0 × w0 =
∣∣∣∣∣∣

i j k
a1 a2 0
b1 b2 0

∣∣∣∣∣∣ =
∣∣∣∣ a2 0

b2 0

∣∣∣∣ i −
∣∣∣∣ a1 0

b1 0

∣∣∣∣ j +
∣∣∣∣ a1 a2

b1 b2

∣∣∣∣ k
= 0i − 0j + (a1b2 − a2b1)k = 〈0, 0, a1b2 − a2b1〉

Using (1) we have

S =
√

02 + 02 + (a1b2 − a2b1)2 = |a1b2 − a2b1| (2)

We now compute v × w:

v × w =
∣∣∣∣∣∣

i j k
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣ =
∣∣∣∣ a2 a3

b2 b3

∣∣∣∣ i −
∣∣∣∣ a1 a3

b1 b3

∣∣∣∣ j +
∣∣∣∣ a1 a2

b1 b2

∣∣∣∣ k
The k-component of v × w is, thus, ∣∣∣∣ a1 a2

b1 b2

∣∣∣∣ = a1b2 − a2b1 (3)

By (2) and (3) we obtain the desired result.
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Formulate and prove analogs of the result in Exercise 51 for the i- and j-components of v × w.53. Show that three points P, Q, R are collinear (lie on a line) if and only if
−→
PQ × −→

PR = 0.

solution The points P , Q, and R lie on one line if and only if the vectors
−→
PQ and

−→
PR are parallel. By basic properties

of the cross product this is equivalent to
−→
PQ × −→

PR = 0.

R

P

Q

Use the result of Exercise 53 to determine whether the points P , Q, and R are collinear, and if not, find a vector
normal to the plane containing them.

(a) P = (2, 1, 0), Q = (1, 5, 2), R = (−1, 13, 6)

(b) P = (2, 1, 0), Q = (−3, 21, 10), R = (5, −2, 9)

(c) P = (1, 1, 0), Q = (1, −2, −1), R = (3, 2,−4)

55. Solve the equation 〈1, 1, 1〉 × X = 〈1, −1, 0〉, where X = 〈x, y, z〉. Note: There are infinitely many solutions.

solution Let X = 〈a, b, c〉. We compute the cross product:

〈1, 1, 1〉 × 〈a, b, c〉 =
∣∣∣∣∣∣

i j k
1 1 1
a b c

∣∣∣∣∣∣ =
∣∣∣∣ 1 1

b c

∣∣∣∣ i −
∣∣∣∣ 1 1

a c

∣∣∣∣ j +
∣∣∣∣ 1 1

a b

∣∣∣∣ k
= (c − b)i−(c − a)j + (b − a)k = 〈c − b, a − c, b − a〉

The equation for X is, thus,

〈c − b, a − c, b − a〉 = 〈1, −1, 0〉
Equating corresponding components we get

c − b = 1

a − c = −1

b − a = 0

The third equation implies a = b. Substituting in the first and second equations gives

c − a = 1

a − c = −1
⇒ c = a + 1

The solution is thus, b = a, c = a + 1. The corresponding solutions X are

X = 〈a, b, c〉 = 〈a, a, a + 1〉
One possible solution is obtained for a = 0, that is, X = 〈0, 0, 1〉.

Explain geometrically why 〈1, 1, 1〉 × X = 〈1, 0, 0〉 has no solution, where X = 〈x, y, z〉.57. Let X = 〈x, y, z〉. Show that i × X = v has a solution if and only if v is contained in the yz-plane (the
i-component is zero).

solution The cross product vector i × X = v must be orthogonal to the vector i = 〈1, 0, 0〉. This condition is true if
and only if 〈1, 0, 0〉 · v = 0, which is true if and only if the i-component of v is zero (that is, v is in the yz-plane).

Suppose that vectors u, v, and w are mutually orthogonal—that is, u ⊥ v, u ⊥ w, and v ⊥ w. Prove that
(u × v) × w = 0 and u × (v × w) = 0.

In Exercises 59–62: The torque about the origin O due to a force F acting on an object with position vector r is the vector
quantity τ = r × F. If several forces Fj act at positions rj , then the net torque (units: N-m or lb-ft) is the sum

τ =
∑

rj × Fj

Torque measures how much the force causes the object to rotate. By Newton’s Laws, τ is equal to the rate of change of
angular momentum.

59. Calculate the torque τ about O acting at the point P on the mechanical arm in Figure 21(A), assuming that a 25-N
force acts as indicated. Ignore the weight of the arm itself.

O

y

10 m

F = 25 N

P

125°

x

(A) (B)

O

y

10 m

F = 25 N

P

125°

x

Fg

FIGURE 21
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solution We denote by O and P the points shown in the figure and compute the position vector r = −→
OP and the

force vector F.

O

y

10 m

F = 25 N

P

125°

x

Denoting by θ the angle between the arm and the x-axis we have

r = −→
OP = 10 (cos θ i + sin θ j)

The angle between the force vector F and the x-axis is
(
θ + 125◦), hence,

F = 25
(
cos
(
θ + 125◦) i + sin

(
θ + 125◦) j

)
The torque τ about O acting at the point P is the cross product τ = r × F. We compute it using the cross products of the
unit vectors i and j:

τ = r × F = 10 (cos θ i + sin θ j) × 25
(
cos
(
θ + 125◦) i + sin

(
θ + 125◦) j

)
= 250 (cos θ i + sin θ j) × (cos

(
θ + 125◦) i + sin

(
θ + 125◦) j

)
= 250

(
cos θ sin

(
θ + 125◦) k + sin θ cos

(
θ + 125◦) (−k)

)
= 250

(
sin
(
θ + 125◦) cos θ − sin θ cos

(
θ + 125◦)) k

We now use the identity sin α cos β − sin β cos α = sin(α − β) to obtain

τ = 250 sin
(
θ + 125◦ − θ

)
k = 250 sin 125◦k ≈ 204.79k

Calculate the net torque about O at P , assuming that a 30-kg mass is attached at P [Figure 21(B)]. The force Fg

due to gravity on a mass m has magnitude 9.8m m/s2 in the downward direction.

61. Let τ be the net torque about O acting on the robotic arm of Figure 22. Assume that the two segments of the arms
have mass m1 and m2 (in kg) and that a weight of m3 kg is located at the endpoint P . In calculating the torque, we may
assume that the entire mass of each arm segment lies at the midpoint of the arm (its center of mass). Show that the position
vectors of the masses m1, m2, and m3 are

r1 = 1

2
L1(sin θ1i + cos θ1j)

r2 = L1(sin θ1i + cos θ1j) + 1

2
L2(sin θ2i − cos θ2j)

r3 = L1(sin θ1i + cos θ1j) + L2(sin θ2i − cos θ2j)

Then show that

τ = −g

(
L1

(
1

2
m1 + m2 + m3

)
sin θ1 + L2

(
1

2
m2 + m3

)
sin θ2

)
k

where g = 9.8m/s2. To simplify the computation, note that all three gravitational forces act in the −j direction, so the
j-components of the position vectors ri do not contribute to the torque.

x

y

1

1

2
PL1

m1

m2

L2

m3

FIGURE 22

solution We denote by O, P , and Q the points shown in the figure.

x

y

1

1

2
P

O

Q

L1

m1

m2

L2

m3
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The coordinates of O and Q are

O = (0, 0), Q = (L1 sin θ1, L1 cos θ1)

The midpoint of the segment OQ is, thus,(
0 + L1 sin θ1

2
,

0 + L1 cos θ1

2

)
=
(

L1 sin θ1

2
,
L1 cos θ1

2

)
Since the mass m1 is assumed to lie at the midpoint of the arm, the position vector of m1 is

r1 = L1

2
(sin θ1i + cos θ1j) (1)

We now find the position vector r2 of m2. We have (see figure)

x

y

O

P

Q

M

q1
q 2

L2 
2

−(90 − q 2)

r2

r2 = −−→
OQ + −−→

QM (2)

−−→
OQ = L1 sin θ1i + L1 cos θ1j = L1 (sin θ1i + cos θ1j) (3)

The vector
−−→
QM makes an angle of − (90◦ − θ2

)
with the x axis and has length L2

2 , hence,

−−→
QM = L2

2

(
cos
(− (90◦ − θ2

))
i + sin

(− (90◦ − θ2
))

j
) = L2

2
(sin θ2i − cos θ2j) (4)

Combining (2), (3) and (4) we get

r2 = L1 (sin θ1i + cos θ1j) + L2

2
(sin θ2i − cos θ2j) (5)

Finally, we find the position vector r3:

r3 = −−→
OQ + −→

QP = −−→
OQ + 2

−−→
QM

x

y

O

P

Q

M

r3

Substituting (3) and (4) we get

r3 = L1 (sin θ1i + cos θ1j) + L2 (sin θ2i − cos θ2j) (6)

The net torque is the following vector:

τ = r1 × (−m1gj) + r2 × (−m2gj) + r3 × (−m3gj)

In computing the cross products, the j components of r1, r2 and r3 do not contribute to the torque since j × j = 0. We
thus consider only the i components of r1, r2 and r3 in (1), (5) and (6). This gives

τ = L1

2
sin θ1i × (−m1gj) +

(
L1 sin θ1 + L2

2
sin θ2

)
i × (−m2gj) + (L1 sin θ1 + L2 sin θ2) i × (−m3gj)

= −L1m1g sin θ1

2
k −

(
L1m2g sin θ1 + L2m2g

2
sin θ2

)
k − (L1m3g sin θ1 + L2m3g sin θ2) k

= −g

(
L1

(
1

2
m1 + m2 + m3

)
sin θ1 + L2

(
1

2
m2 + m3

)
sin θ2

)
k

Continuing with Exercise 61, suppose that L1 = 3 m, L2 = 2 m, m1 = 15 kg, m2 = 20 kg, and m3 = 18 kg. If
the angles θ1, θ2 are equal (say, to θ ), what is the maximum allowable value of θ if we assume that the robotic arm
can sustain a maximum torque of 1200 N-m?
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Further Insights and Challenges
63. Show that 3 × 3 determinants can be computed using the diagonal rule: Repeat the first two columns of the matrix
and form the products of the numbers along the six diagonals indicated. Then add the products for the diagonals that slant
from left to right and subtract the products for the diagonals that slant from right to left.

det(A) =

∣∣∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

− − −

∣∣∣∣∣∣∣∣
a11 a12
a21 a22
a31 a32
+ + +

= a11a22a33 + a12a23a31 + a13a21a32 − a13a22a31 − a11a23a32 − a12a21a33

solution Using the definition of 3 × 3 determinants given in Eq. (2) we get

det(A) = a11

∣∣∣∣ a22 a23
a32 a33

∣∣∣∣− a12

∣∣∣∣ a21 a23
a31 a33

∣∣∣∣+ a13

∣∣∣∣ a21 a22
a31 a32

∣∣∣∣
Using the definition of 2 × 2 determinants given in Eq. (1) we get

det(A) = a11(a22a33 − a23a32) − a12(a21a33 − a23a31) + a13(a21a32 − a22a31)

= a11a22a33 − a11a23a32 − a12a21a33 + a12a23a31 + a13a21a32 − a13a22a31

= a11a22a33 + a12a23a31 + a13a21a32 − a13a22a31 − a11a23a32 − a12a21a33

Use the diagonal rule to calculate

∣∣∣∣∣∣
2 4 3
0 1 −7

−1 5 3

∣∣∣∣∣∣.
65. Prove that v × w = v × u if and only if u = w + λv for some scalar λ. Assume that v �= 0.

solution Transferring sides and using the distributive law and the property of parallel vectors, we obtain the following
equivalent equalities:

v × w = v × u

0 = v × u − v × w

0 = v × (u − w)

This holds if and only if there exists a scalar λ such that

u − w = λv

u = w + λv

Use Eq. (10) to prove the Cauchy–Schwarz inequality:

|v · w| ≤ ‖v‖ ‖w‖
Show that equality holds if and only if w is a multiple of v or at least one of v and w is zero.

67. Show that if u, v, and w are nonzero vectors and (u × v) × w = 0, then either (i) u and v are parallel, or (ii) w is
orthogonal to u and v.

solution By the theorem on basic properties of the cross product, part (c), it follows that (u × v) × w = 0 if and only
if

• u × v = 0 or
• w = λ (u × v)

We consider the two possibilities.

1. u × v = 0 is equivalent to u and v being parallel vectors or one of them being the zero vector.

2. The cross product u × v is orthogonal to u and v, hence w = λ (u × v) implies that w is also orthogonal to u and v
(for λ �= 0) or w = 0 (for λ = 0).

Conclusions: (u × v) × w = 0 implies that either u and v are parallel, or w is orthogonal to u and v, or one of the vectors
u, v, w is the zero vector.

Suppose that u, v, w are nonzero and

(u × v) × w = u × (v × w) = 0

Show that u, v, and w are either mutually parallel or mutually perpendicular. Hint: Use Exercise 67.

69. Let a, b, c be nonzero vectors. Assume that b and c are not parallel, and set

v = a × (b × c), w = (a · c)b − (a · b)c

(a) Prove that

(i) v lies in the plane spanned by b and c.

(ii) v is orthogonal to a.

(b) Prove that w also satisfies (i) and (ii). Conclude that v and w are parallel.

(c) Show algebraically that v = w (Figure 23).
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a × (b

a

b × c

FIGURE 23

solution

(a) Since v is the cross product of a and another vector (b × c), then v is orthogonal to a. Furthermore, v is orthogonal
to (b × c), so it is orthogonal to the normal vector to the plane containing b and c, so v must be in that plane.

(b) w · a = ((a · c)b − (a · b)c) · a = (a · c)(b · a) − (a · b)(c · a) = 0 (since a · c = c · a and b · a = a · b). Thus, w is
orthogonal to a. Also, w is a multiple of b and c, so w must be in the plane containing b and c.

Now, if a is perpendicular to the plane spanned by b and c, then a is parallel to b × c and so a × (b × c) = 0, which
means v = 0, but also a · b = a · c = 0 which means w = 0. Thus, v and w are parallel (in fact, equal).

Now, if a is not perpendicular to the plane spanned by b and c, then the set of vectors on that plane that are also
perpendicular to a form a line, and thus all such vectors are parallel. We conclude that v and w, being on that plane and
perpendicular to a, are parallel.

(c) On the one hand,

v = a × (b × c) = 〈a1, a2, a3〉 ×
∣∣∣∣∣∣

i j k
b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣
=
∣∣∣∣∣∣

i j k
a1 a2 a3

(b2c3 − b3c2) (b3c1 − b1c3) (b1c2 − b2c1)

∣∣∣∣∣∣
= 〈a2(b1c2 − b2c1) − a3(b3c1 − b1c3), a3(b2c3 − b3c2) − a1(b1c2 − b2c1),

a1(b3c1 − b1c3) − a2(b2c3 − b3c2)
〉

but on the other hand,

w = (a · c)b − (a · b)c

= (a1c1 + a2c2 + a3c3)〈b1, b2, b3〉 − (a1b1 + a2b2 + a3b3)〈c1, c2, c3〉
= 〈a2c2b1 + a3c3b1 − a2b2c1 − a3b3c1, a1c1b2 + a3c3b2 − a1b1c2 − a3b3c2,

a1c1b3 + a2c2b3 − a1b1c3 − a2b2c3
〉

= 〈a2(b1c2 − b2c1) − a3(b3c1 − b1c3), a3(b2c3 − b3c2) − a1(b1c2 − b2c1),

a1(b3c1 − b1c3) − a2(b2c3 − b3c2)
〉

which is the same as v.

Use Exercise 69 to prove the identity

(a × b) × c − a × (b × c) = (a · b)c − (b · c)a

71. Show that if a, b are nonzero vectors such that a ⊥ b, then there exists a vector X such that

a × X = b 13

Hint: Show that if X is orthogonal to b and is not a multiple of a, then a × X is a multiple of b.

solution We define the following vectors:

X = b × a

‖a‖2
, c = X × a (1)

We show that c = b. Since X is orthogonal to a and b, X is orthogonal to the plane of a and b. But c is orthogonal to X,
hence c is contained in the plane of a and b, that is, a, b and c are in the same plane. Now the vectors a, b and c are in
one plane, and the vectors c and b are orthogonal to a.

It follows that c and b are parallel. (2)

We now show that ‖c‖ = ‖b‖. We use the cross-product identity to obtain

‖c‖2 = ‖X × a‖2 = ‖X‖2‖a‖2 − (X · a)2
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X is orthogonal to a, hence X · a = 0, and we obtain

‖c‖2 = ‖X‖2‖a‖2 =
∥∥∥∥b × a

‖a‖2

∥∥∥∥2
‖a‖2 = 1

‖a‖4
‖b × a‖2‖a‖2 = 1

‖a‖2
‖b × a‖2

By the given data, a and b are orthogonal vectors, so,

‖c‖2 = 1

‖a‖2

(
‖b‖2‖a‖2

)
= ‖b‖2 ⇒ ‖c‖ = ‖b‖ (3)

By (2) and (3) it follows that c = b or c = −b. We thus proved that the vector X = b × a

‖a‖2
satisfies X × a = b or

X × a = −b. If X × a = −b, then (−X) × a = b. Hence, there exists a vector X such that X × a = b.

Show that if a, b are nonzero vectors such that a ⊥ b, then the set of all solutions of Eq. (13) is a line with a as
direction vector. Hint: Let X0 be any solution (which exists by Exercise 71), and show that every other solution is of
the form X0 + λa for some scalar λ.

73. Assume that v and w lie in the first quadrant in R2 as in Figure 24. Use geometry to prove that the area of the

parallelogram is equal to det

(
v
w

)
.

(a + c, b + d)
c a

ca

v

w

b

d

b

d

y

FIGURE 24

solution We denote the components of u and v by

u = 〈c, d〉
v = 〈a, b〉

We also denote by O, A, B, C, D, E, F , G, H , K the points shown in the figure.

(a + c, b + d)
c a

ca

v

R

b

d

b

d

CD
E

F

O
A

B

HK

G

Since OGCK is a parallelogram, it follows by geometrical properties that the triangles OFG and KHC and also the
triangles DGC and AKO are congruent. It also follows that the rectangles EFDG and ABHK have equal areas. We
use the following notation:

A: The area of the parallelogram

S: The area of the rectangle OBCE

S1: The area of the rectangle EFDG

S2: The area of the triangle OFG

S3: The area of the triangle DGC

Hence,

A = S − 2(S1 + S2 + S3) (1)

Using the formulas for the areas of rectangles and triangles we have (see figure)

S = OB · OE = (a + c)(d + b)

S1 = bc, S2 = cd

2
, S3 = ab

2
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Substituting into (1) we get

A = (a + c)(d + b) − 2

(
bc + cd

2
+ ab

2

)
= ad + ab + cd + cb − 2bc − cd − ab (2)

= ad − bc

On the other hand,

det

(
v
w

)
=
∣∣∣∣ a b

c d

∣∣∣∣ = ad − bc (3)

By (2) and (3) we obtain the desired result.

Consider the tetrahedron spanned by vectors a, b, and c as in Figure 25(A). Let A, B, C be the faces containing the
origin O, and let D be the fourth face opposite O. For each face F , let vF be the vector normal to the face, pointing
outside the tetrahedron, of magnitude equal to twice the area of F . Prove the relations

vA + vB + vC = a × b + b × c + c × a

vA + vB + vC + vD = 0

Hint: Show that vD = (c − b) × (b − a).

75. In the notation of Exercise 74, suppose that a, b, c are mutually perpendicular as in Figure 25(B). Let SF be the area
of face F . Prove the following three-dimensional version of the Pythagorean Theorem:

S2
A + S2

B + S2
C = S2

D

solution Since ‖vD‖ = SD then using Exercise 74 we obtain

S2
D = ‖vD‖2 = vD · vD = (vA + vB + vC) · (vA + vB + vC)

= vA · vA + vA · vB + vA · vC + vB · vA + vB · vB + vB · vC + vC · vA + vC · vB + vC · vC

= ‖vA‖2 + ‖vB‖2 + ‖vC‖2 + 2 (vA · vB + vA · vC + vB · vC) (1)

Now, the normals vA, vB , and vC to the coordinate planes are mutually orthogonal, hence,

vA · vB = vA · vC = vB · vC = 0 (2)

Combining (1) and (2) and using the relations ‖vF ‖ = SF we obtain

S2
D = S2

A + S2
B + S2

C

12.5 Planes in Three-Space (LT Section 13.5)

Preliminary Questions
1. What is the equation of the plane parallel to 3x + 4y − z = 5 passing through the origin?

solution The two planes are parallel, therefore the vector n = 〈3, 4, −1〉 that is normal to the given plane is also normal
to the plane we need to find. This plane is passing through the origin, hence we may substitute 〈x0, y0, z0〉 = 〈0, 0, 0〉 in
the vector form of the equation of the plane. This gives

n · 〈x, y, z〉 = n · 〈x0, y0, z0〉
〈3, 4, −1〉 · 〈x, y, z〉 = 〈3, 4, −1〉 · 〈0, 0, 0〉 = 0

or in scalar form

3x + 4y − z = 0

2. The vector k is normal to which of the following planes?

(a) x = 1 (b) y = 1 (c) z = 1

solution The planes x = 1, y = 1, and z = 1 are orthogonal to the x, y, and z-axes respectively. Since the plane
z = 1 is orthogonal to the z-axis, the vector k is normal to this plane.

3. Which of the following planes is not parallel to the plane x + y + z = 1?

(a) 2x + 2y + 2z = 1 (b) x + y + z = 3
(c) x − y + z = 0

solution The two planes are parallel if vectors that are normal to the planes are parallel. The vector n = 〈1, 1, 1〉 is
normal to the plane x + y + z = 1. We identify the following normals:

• v = 〈2, 2, 2〉 is normal to plane (a)
• u = 〈1, 1, 1〉 is normal to plane (b)
• w = 〈1, −1, 1〉 is normal to plane (c)

The vectors v and u are parallel to n, whereas w is not. (These vectors are not constant multiples of each other). Therefore,
only plane (c) is not parallel to the plane x + y + z = 1.
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4. To which coordinate plane is the plane y = 1 parallel?

solution The plane y = 1 is parallel to the xz-plane.

y

x

z

1

5. Which of the following planes contains the z-axis?

(a) z = 1 (b) x + y = 1 (c) x + y = 0

solution The points on the z-axis are the points with zero x and y coordinates. A plane contains the z-axis if and only
if the points (0, 0, c) satisfy the equation of the plane for all values of c.

(a) Plane (a) does not contain the z-axis, rather it is orthogonal to this axis. Only the point (0, 0, 1) is on the plane.
(b) x = 0 and y = 0 do not satisfy the equation of the plane, since 0 + 0 �= 1. Therefore the plane does not contain the
z-axis.
(c) The plane x + y = 0 contains the z-axis since x = 0 and y = 0 satisfy the equation of the plane.

6. Suppose that a plane P with normal vector n and a line L with direction vector v both pass through the origin and
that n · v = 0. Which of the following statements is correct?

(a) L is contained in P .
(b) L is orthogonal to P .

solution The direction vector of the line L is orthogonal to the vector n that is normal to the plane. Therefore, L is
either parallel or contained in the plane. Since the origin is common to L and P , the line is contained in the plane. That
is, statement (a) is correct.

P

O
v

n

Exercises
In Exercises 1–8, write the equation of the plane with normal vector n passing through the given point in each of the three
forms (one vector form and two scalar forms).

1. n = 〈1, 3, 2〉, (4, −1, 1)

solution The vector equation is

〈1, 3, 2〉 · 〈x, y, z〉 = 〈1, 3, 2〉 · 〈4, −1, 1〉 = 4 − 3 + 2 = 3

To obtain the scalar forms we compute the dot product on the left-hand side of the previous equation:

x + 3y + 2z = 3

or in the other scalar form:

(x − 4) + 3(y + 1) + 2(z − 1) + 4 − 3 + 2 = 3

(x − 4) + 3(y + 1) + 2(z − 1) = 0

n = 〈−1, 2, 1〉, (3, 1, 9)
3. n = 〈−1, 2, 1〉, (4, 1, 5)

solution The vector form is

〈−1, 2, 1〉 · 〈x, y, z〉 = 〈−1, 2, 1〉 · 〈4, 1, 5〉 = −4 + 2 + 5 = 3

To obtain the scalar form we compute the dot product above:

−x + 2y + z = 3
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or in the other scalar form:

−(x − 4) + 2(y − 1) + (z − 5) = 3 + 4 − 2 − 5 = 0

−(x − 4) + 2(y − 1) + (z − 5) = 0

n = 〈2, −4, 1〉, ( 1
3 , 2

3 , 1
)5. n = i, (3, 1, −9)

solution We find the vector form of the equation of the plane. We write the vector n = i as n = 〈1, 0, 0〉 and obtain

〈1, 0, 0〉 · 〈x, y, z〉 = 〈1, 0, 0〉 · 〈3, 1, −9〉 = 3 + 0 + 0 = 3

Computing the dot product above gives the scalar form:

x + 0 + 0 = 3

x = 3

Or in the other scalar form:

(x − 3) + 0 · (y − 1) + 0 · (z + 9) = 3 − 3 = 0

n = j,
(−5, 1

2 , 1
2

)7. n = k, (6, 7, 2)

solution We write the normal n = k in the form n = 〈0, 0, 1〉 and obtain the following vector form of the equation
of the plane:

〈0, 0, 1〉 · 〈x, y, z〉 = 〈0, 0, 1〉 · 〈6, 7, 2〉 = 0 + 0 + 2 = 2

We compute the dot product to obtain the scalar form:

0x + 0y + 1z = 2

z = 2

or in the other scalar form:

0(x − 6) + 0(y − 7) + 1(z − 2) = 0

n = i − k, (4, 2,−8)
9. Write down the equation of any plane through the origin.

solution We can use any equation ax + by + cz = d which contains the point (x, y, z) = (0, 0, 0). One solution
(and there are many) is x + y + z = 0.

Write down the equations of any two distinct planes with normal vector n = 〈3, 2, 1〉 that do not pass through the
origin.

11. Which of the following statements are true of a plane that is parallel to the yz-plane?

(a) n = 〈0, 0, 1〉 is a normal vector.
(b) n = 〈1, 0, 0〉 is a normal vector.
(c) The equation has the form ay + bz = d

(d) The equation has the form x = d

solution
(a) For n = 〈0, 0, 1〉 a normal vector, the plane would be parallel to the xy-plane, not the yz-plane. This statement is
false.
(b) For n = 〈1, 0, 0〉 a normal vector, the plane would be parallel to the yz-plane. This statement is true.
(c) For the equation ay + bz = d, this plane intersects the yz-plane at y = 0, z = d/b or y = d/a, z = 0 depending on
whether a or b is non-zero, but it is not equal to the yz-plane (which has equation x = d) Thus, it is not parallel to the
yz-plane This statement is false.
(d) For the equation of the form x = d, this has 〈1, 0, 0〉 as a normal vector and is parallel to the yz-plane. This statement
is true.

Find a normal vector n and an equation for the planes in Figures 7(A)–(C).In Exercises 13–16, find a vector normal to the plane with the given equation.

13. 9x − 4y − 11z = 2

solution Using the scalar form of the equation of the plane, a vector normal to the plane is the coefficients vector:

n = 〈9, −4, −11〉

x − z = 0
15. 3(x − 4) − 8(y − 1) + 11z = 0

solution Using the scalar form of the equation of the plane, 3x − 8y + 11z = 4 a vector normal to the plane is the
coefficients vector:

n = 〈3, −8, 11〉

x = 1
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In Exercises 17–20, find an equation of the plane passing through the three points given.

17. P = (2, −1, 4), Q = (1, 1, 1), R = (3, 1, −2)

solution We go through the steps below:

Step 1. Find the normal vector n. The vectors a = −→
PQ and b = −→

PR lie on the plane, hence the cross product n = a × b
is normal to the plane. We compute the cross product:

a = −→
PQ = 〈1 − 2, 1 − (−1), 1 − 4〉 = 〈−1, 2, −3〉

b = −→
PR = 〈3 − 2, 1 − (−1), −2 − 4〉 = 〈1, 2, −6〉

n = a × b =
∣∣∣∣∣∣

i j k
−1 2 −3
1 2 −6

∣∣∣∣∣∣ =
∣∣∣∣ 2 −3

2 −6

∣∣∣∣ i −
∣∣∣∣ −1 −3

1 −6

∣∣∣∣ j +
∣∣∣∣ −1 2

1 2

∣∣∣∣ k
= −6i − 9j − 4k = 〈−6, −9, −4〉

Step 2. Choose a point on the plane. We choose any one of the three points on the plane, for instance Q = (1, 1, 1).
Using the vector form of the equation of the plane we get

n · 〈x, y, z〉 = n · 〈x0, y0, z0〉
〈−6, −9, −4〉 · 〈x, y, z〉 = 〈−6, −9, −4〉 · 〈1, 1, 1〉

Computing the dot products we obtain the following equation:

−6x − 9y − 4z = −6 − 9 − 4 = −19

6x + 9y + 4z = 19

P = (5, 1, 1), Q = (1, 1, 2), R = (2, 1, 1)
19. P = (1, 0, 0), Q = (0, 1, 1), R = (2, 0, 1)

solution We use the vector form of the equation of the plane:

n · 〈x, y, z〉 = d (1)

To find the normal vector to the plane, n, we first compute the vectors
−→
PQ and

−→
PR that lie in the plane, and then find the

cross product of these vectors. This gives

−→
PQ = 〈0, 1, 1〉 − 〈1, 0, 0〉 = 〈−1, 1, 1〉
−→
PR = 〈2, 0, 1〉 − 〈1, 0, 0〉 = 〈1, 0, 1〉

n = −→
PQ × −→

PR =
∣∣∣∣∣∣

i j k
−1 1 1

1 0 1

∣∣∣∣∣∣ =
∣∣∣∣ 1 1

0 1

∣∣∣∣ i −
∣∣∣∣ −1 1

1 1

∣∣∣∣ j +
∣∣∣∣ −1 1

1 0

∣∣∣∣ k
= i + 2j − k = 〈1, 2, −1〉 (2)

We now choose any one of the three points in the plane, say P = (1, 0, 0), and compute d:

d = n · −→
OP = 〈1, 2, −1〉 · 〈1, 0, 0〉 = 1 · 1 + 2 · 0 + (−1) · 0 = 1 (3)

Finally we substitute (2) and (3) into (1) to obtain the following equation of the plane:

〈1, 2, −1〉 · 〈x, y, z〉 = 1

x + 2y − z = 1

P = (2, 0, 0), Q = (0, 4, 0), R = (0, 0, 2)In Exercises 21–28, find the equation of the plane with the given description.

21. Passes through O and is parallel to 4x − 9y + z = 3

solution The vector n = 〈4, −9, 1〉 is normal to the plane 4x − 9y + z = 3, and so is also normal to the parallel
plane. Setting n = 〈4, −9, 1〉 and (x0, y0, z0) = (0, 0, 0) in the vector equation of the plane yields

〈4, −9, 1〉 · 〈x, y, z〉 = 〈4, −9, 1〉 · 〈0, 0, 0〉 = 0

4x − 9y + z = 0

Passes through (4, 1, 9) and is parallel to x + y + z = 3
23. Passes through (4, 1, 9) and is parallel to x = 3

solution The vector form of the plane x = 3 is

〈1, 0, 0〉 · 〈x, y, z〉 = 3
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Hence, n = 〈1, 0, 0〉 is normal to this plane. This vector is also normal to the parallel plane. Setting (x0, y0, z0) = (4, 1, 9)

and n = 〈1, 0, 0〉 in the vector equation of the plane yields

〈1, 0, 0〉 · 〈x, y, z〉 = 〈1, 0, 0〉 · 〈4, 1, 9〉 = 4 + 0 + 0 = 4

or

x + 0 + 0 = 4 ⇒ x = 4

Passes through P = (3, 5, −9) and is parallel to the xz-plane
25. Passes through (−2, −3, 5) and has normal vector i + k

solution We substitute n = 〈1, 0, 1〉 and (x0, y0, z0) = (−2, −3, 5) in the vector equation of the plane to obtain

〈1, 0, 1〉 · 〈x, y, z〉 = 〈1, 0, 1〉 · 〈−2, −3, 5〉
or

x + 0 + z = −2 + 0 + 5 = 3

x + z = 3

Contains the lines r1(t) = 〈t, 2t, 3t〉 and r2(t) = 〈3t, t, 8t〉27. Contains the lines r1(t) = 〈2, 1, 0〉 + 〈t, 2t, 3t〉 and r2(t) = 〈2, 1, 0〉 + 〈3t, t, 8t〉
solution Since the plane contains the lines r1(t) and r2(t), the direction vectors v1 = 〈1, 2, 3〉 and v2 = 〈3, 1, 8〉 of
the lines lie in the plane. Therefore the cross product n = v1 × v2 is normal to the plane. We compute the cross product:

n = 〈1, 2, 3〉 × 〈3, 1, 8〉 =
∣∣∣∣∣∣

i j k
1 2 3
3 1 8

∣∣∣∣∣∣ =
∣∣∣∣ 2 3

1 8

∣∣∣∣ i −
∣∣∣∣ 1 3

3 8

∣∣∣∣ j +
∣∣∣∣ 1 2

3 1

∣∣∣∣ k
= 13i + j − 5k = 〈13, 1, −5〉

We now must choose a point on the plane. Since the line r1 (t) = 〈2 + t, 1 + 2t, 3t〉 is contained in the plane, all of its
points are on the plane. We choose the point corresponding to t = 0, that is,

〈x0, y0, z0〉 = 〈2, 1, 0〉
We now use the vector equation of the plane to determine the equation of the desired plane:

n · 〈x, y, z〉 = n · 〈x0, y0, z0〉
〈13, 1, −5〉 · 〈x, y, z〉 = 〈13, 1, −5〉 · 〈2, 1, 0〉

13x + y − 5z = 26 + 1 + 0 = 27

13x + y − 5z = 27

Contains P = (−1, 0, 1) and r(t) = 〈t + 1, 2t, 3t − 1〉29. Are the planes 1
2x + 2x − y = 5 and 3x + 12x − 6y = 1 parallel?

solution The planes 2 1
2x − y = 5 and 15x − 6y = 1, are parallel if and only if the vectors n1 = 〈

2 1
2 , −1, 0

〉
and

n2 = 〈15, −6, 0〉 normal to the planes are parallel. Since n2 = 6n1 the planes are parallel.

Let a, b, c be constants. Which two of the following equations define the plane passing through (a, 0, 0), (0, b, 0),
(0, 0, c)?

(a) ax + by + cz = 1 (b) bcx + acy + abz = abc

(c) bx + cy + az = 1 (d)
x

a
+ y

b
+ z

c
= 1

31. Find an equation of the plane P in Figure 8.

3
2

5

y

x

z

FIGURE 8

solution We must find the equation of the plane passing though the points P = (3, 0, 0), Q = (0, 2, 0), and R =
(0, 0, 5).
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2 3

5

y

x

z

We use the following steps:

Step 1. Find a normal vector n. The vectors a = −→
PQ and b = −→

PR lie in the plane, hence the cross product n = a × b is
normal to the plane. We compute the cross product:

a = −→
PQ = 〈0 − 3, 2 − 0, 0 − 0〉 = 〈−3, 2, 0〉

b = −→
PR = 〈0 − 3, 0 − 0, 5 − 0〉 = 〈−3, 0, 5〉

n = a × b =
∣∣∣∣∣∣

i j k
−3 2 0
−3 0 5

∣∣∣∣∣∣ =
∣∣∣∣ 2 0

0 5

∣∣∣∣ i −
∣∣∣∣ −3 0

−3 5

∣∣∣∣ j +
∣∣∣∣ −3 2

−3 0

∣∣∣∣ k
= 10i + 15j + 6k = 〈10, 15, 6〉

Step 2. Choose a point on the plane. We choose one of the points on the plane, say P = (3, 0, 0). Substituting n =
〈10, 15, 6〉 and (x0, y0, z0) = (3, 0, 0) in the vector form of the equation of the plane gives

n · 〈x, y, z〉 = n · 〈x0, y0, z0〉
〈10, 15, 6〉 · 〈x, y, z〉 = 〈10, 15, 6〉 · 〈3, 0, 0〉

Computing the dot products we get the following scalar form of the equation of the plane:

10x + 15y + 6z = 10 · 3 + 0 + 0 = 30

10x + 15y + 6z = 30

Verify that the plane x − y + 5z = 10 and the line r(t) = 〈1, 0, 1〉 + t 〈−2, 1, 1〉 intersect at P = (−3, 2, 3).In Exercises 33–36, find the intersection of the line and the plane.

33. x + y + z = 14, r(t) = 〈1, 1, 0〉 + t 〈0, 2, 4〉
solution The line has parametric equations

x = 1, y = 1 + 2t, z = 4t

To find a value of t for which (x, y, z) lies on the plane, we substitute the parametric equations in the equation of the
plane and solve for t :

x + y + z = 14

1 + (1 + 2t) + 4t = 14

6t = 12 ⇒ t = 2

The point P of intersection has coordinates

x = 1, y = 1 + 2 · 2 = 5, z = 4 · 2 = 8

That is, P = (1, 5, 8).

2x + y = 3, r(t) = 〈2, −1, −1〉 + t 〈1, 2, −4〉35. z = 12, r(t) = t 〈−6, 9, 36〉
solution The parametric equations of the line are

x = −6t, y = 9t, z = 36t (1)

We substitute the parametric equations in the equation of the plane and solve for t :

z = 12

36t = 12 ⇒ t = 1

3
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The value of the parameter at the point of intersection is t = 1
3 . Substituting into (1) gives the coordinates of the point P

of intersection:

x = −6 · 1

3
= −2, y = 9 · 1

3
= 3, z = 36 · 1

3
= 12

That is,

P = (−2, 3, 12) .

x − z = 6, r(t) = 〈1, 0, −1〉 + t 〈4, 9, 2〉In Exercises 37–42, find the trace of the plane in the given coordinate plane.

37. 3x − 9y + 4z = 5, yz

solution The yz-plane has the equation x = 0, hence the intersection of the plane with the yz-plane must satisfy both
x = 0 and the equation of the plane 3x − 9y + 4z = 5. That is, this is the set of all points (0, y, z) in the yz-plane such
that −9y + 4z = 5.

3x − 9y + 4z = 5, xz
39. 3x + 4z = −2, xy

solution The trace of the plane 3x + 4z = −2 in the xy coordinate plane is the set of all points that satisfy the equation
of the plane and the equation z = 0 of the xy coordinate plane. Thus, we substitute z = 0 in 3x + 4z = −2 to obtain the
line 3x = −2 or x = − 2

3 in the xy-plane.

3x + 4z = −2, xz
41. −x + y = 4, xz

solution The trace of the plane −x + y = 4 on the xz-plane is the set of all points that satisfy both the equation of
the given plane and the equation y = 0 of the xz-plane. That is, the set of all points (x, 0, z) such that −x + 0 = 4, or
x = −4. This is a vertical line in the xz-plane.

−x + y = 4, yz
43. Does the plane x = 5 have a trace in the yz-plane? Explain.

solution The yz-plane has the equation x = 0, hence the x-coordinates of the points in this plane are zero, whereas
the x-coordinates of the points in the plane x = 5 are 5. Thus, the two planes have no common points.

Give equations for two distinct planes whose trace in the xy-plane has equation 4x + 3y = 8.
45. Give equations for two distinct planes whose trace in the yz-plane has equation y = 4z.

solution The yz-plane has the equation x = 0, hence the trace of a plane ax + by + cz = 0 in the yz-plane is
obtained by substituting x = 0 in the equation of the plane. Therefore, the following two planes have trace y = 4z (that
is, y − 4z = 0) in the yz-plane:

x + y − 4z = 0; 2x + y − 4z = 0

Find parametric equations for the line through P0 = (3, −1, 1) perpendicular to the plane 3x + 5y − 7z = 29.47. Find all planes in R3 whose intersection with the xz-plane is the line with equation 3x + 2z = 5.

solution The intersection of the plane ax + by + cz = d with the xz-plane is obtained by substituting y = 0 in the
equation of the plane. This gives the following line in the xz-plane:

ax + cz = d

This is the equation of the line 3x + 2z = 5 if and only if for some λ �= 0,

a = 3λ, c = 2λ, d = 5λ

Notice that b can have any value. The planes are thus

(3λ)x + by + (2λ)z = 5λ, λ �= 0.

Find all planes in R3 whose intersection with the xy-plane is the line r(t) = t 〈2, 1, 0〉.In Exercises 49–54, compute the angle between the two planes, defined as the angle θ (between 0 and π ) between their
normal vectors (Figure 9).

L

n2

n1

n1

FIGURE 9 By definition, the angle between two planes is the angle between their normal vectors.
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49. Planes with normals n1 = 〈1, 0, 1〉, n2 = 〈−1, 1, 1〉
solution Using the formula for the angle between two vectors we get

cos θ = n1 · n2

‖n1‖‖n2‖ = 〈1, 0, 1〉 · 〈−1, 1, 1〉
‖〈1, 0, 1〉‖‖〈−1, 1, 1〉‖ = −1 + 0 + 1√

12 + 0 + 12
√

(−1)2 + 12 + 12
= 0

The solution for 0 ≤ θ < π is θ = π
2 .

Planes with normals n1 = 〈1, 2, 1〉, n2 = 〈4, 1, 3〉51. 2x + 3y + 7z = 2 and 4x − 2y + 2z = 4

solution The planes 2x + 3y + 7z = 2 and 4x − 2y + 2z = 4 have the normals n1 = 〈2, 3, 7〉 and n2 = 〈4, −2, 2〉
respectively. The cosine of the angle between n1 and n2 is

cos θ = n1 · n2

‖n1‖‖n2‖ = 〈2, 3, 7〉 · 〈4, −2, 2〉
‖〈2, 3, 7〉‖‖〈4, −2, 2〉‖ = 8 − 6 + 14√

22 + 32 + 72
√

42 + (−2)2 + 22
= 16√

62
√

24
≈ 0.415

The solution for 0 ≤ θ < π is θ = 1.143 rad or θ = 65.49◦.

x − 3y + z = 3 and 2x − 3z = 4
53. 3(x − 1) − 5y + 2(z − 12) = 0 and the plane with normal n = 〈1, 0, 1〉
solution The plane 3(x − 1) − 5y + 2(z − 12) = 0 has the normal n1 = 〈3, −5, 2〉, and our second plane has given
normal n2 = 〈1, 0, 1〉. We use the formula for the angle between two vectors:

cos θ = n1 · n2

‖n1‖‖n2‖ = 〈3, −5, 2〉 · 〈1, 0, 1〉
‖〈3, −5, 2〉‖‖〈1, 0, 1〉‖ = 3 + 0 + 2√

32 + (−5)2 + 22
√

12 + 0 + 12
= 5√

38
√

2
≈ 0.5735

The solution for 0 ≤ θ < π is θ = 0.96 rad or θ = 55◦.

The plane through (1, 0, 0), (0, 1, 0), and (0, 0, 1) and the yz-plane
55. Find an equation of a plane making an angle of π

2 with the plane 3x + y − 4z = 2.

solution The angle θ between two planes (chosen so that 0 ≤ θ < π) is defined as the angle between their normal
vectors. The following vector is normal to the plane 3x + y − 4z = 2:

n1 = 〈3, 1, −4〉
Let n · 〈x, y, z〉 = d denote the equation of a plane making an angle of π

2 with the given plane, where n = 〈a, b, c〉. Since
the two planes are perpendicular, the dot product of their normal vectors is zero. That is,

n · n1 = 〈a, b, c〉 · 〈3, 1, −4〉 = 3a + b − 4c = 0 ⇒ b = −3a + 4c

Thus, the required planes (there is more than one plane) have the following normal vector:

n = 〈a, −3a + 4c, c〉
We obtain the following equation:

n · 〈x, y, c〉 = d

〈a, −3a + 4c, c〉 · 〈x, y, z〉 = d

ax + (4c − 3a)y + cz = d

Every choice of the values of a, c and d yields a plane with the desired property. For example, we set a = c = d = 1 to
obtain

x + y + z = 1

Let P1 and P2 be planes with normal vectors n1 and n2. Assume that the planes are not parallel, and let L be
their intersection (a line). Show that n1 × n2 is a direction vector for L.

57. Find a plane that is perpendicular to the two planes x + y = 3 and x + 2y − z = 4.

solution The vector forms of the equations of the planes are 〈1, 1, 0〉 · 〈x, y, z〉 = 3 and 〈1, 2, −1〉 · 〈x, y, z〉 = 4,
hence the vectors n1 = 〈1, 1, 0〉 and n2 = 〈1, 2, −1〉 are normal to the planes. We denote the equation of the planes which
are perpendicular to the two planes by

ax + by + cz = d (1)

Then, the normal n = 〈a, b, c〉 to the planes is orthogonal to the normals n1 and n2 of the given planes. Therefore,
n · n1 = 0 and n · n2 = 0 which gives us

〈a, b, c〉 · 〈1, 1, 0〉 = 0, 〈a, b, c〉 · 〈1, 2, −1〉 = 0
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We obtain the following equations: {
a + b = 0
a + 2b − c = 0

The first equation implies that b = −a. Substituting in the second equation we get a − 2a − c = 0, or c = −a. Substituting
b = −a and c = −a in (1) gives (for a �= 0):

ax − ay − az = d ⇒ x − y − z = d

a

d
a is an arbitrary constant which we denote by f . The planes which are perpendicular to the given planes are, therefore,

x − y − z = f

Let L be the intersection of the planes x + y + z = 1 and x + 2y + 3z = 1. Use Exercise 56 to find a direction
vector for L. Then find a point P on L by inspection, and write down the parametric equations for L.

59. Let L denote the intersection of the planes x − y − z = 1 and 2x + 3y + z = 2. Find parametric equations for the
line L. Hint: To find a point on L, substitute an arbitrary value for z (say, z = 2) and then solve the resulting pair of
equations for x and y.

solution We use Exercise 56 to find a direction vector for the line of intersection L of the planes x − y − z = 1 and
2x + 3y + z = 2. We identify the normals n1 = 〈1, −1, −1〉 and n2 = 〈2, 3, 1〉 to the two planes respectively. Hence, a
direction vector for L is the cross product v = n1 × n2. We find it here:

v = n1 × n2 =
∣∣∣∣∣∣

i j k
1 −1 −1
2 3 1

∣∣∣∣∣∣ = 2i − 3j + 5k = 〈2, −3, 5〉

We now need to find a point on L. We choose z = 2, substitute in the equations of the planes and solve the resulting
equations for x and y. This gives

x − y − 2 = 1

2x + 3y + 2 = 2
or

x − y = 3

2x + 3y = 0

The 1st equation implies that y = x − 3. Substituting in the 2nd equation and solving for x gives

2x + 3(x − 3) = 0

5x = 9 ⇒ x = 9

5
, y = 9

5
− 3 = −6

5

We conclude that the point
( 9

5 , − 6
5 , 2
)

is on L. We now use the vector parametrization of a line to obtain the following
parametrization for L:

r(t) =
〈

9

5
, −6

5
, 2

〉
+ t〈2, −3, 5〉

This yields the parametric equations

x = 9

5
+ 2t, y = −6

5
− 3t, z = 2 + 5t

Find parametric equations for the intersection of the planes 2x + y − 3z = 0 and x + y = 1.
61. Two vectors v and w, each of length 12, lie in the plane x + 2y − 2z = 0. The angle between v and w is π/6. This
information determines v × w up to a sign ±1. What are the two possible values of v × w?

solution The length of v × w is ‖v‖‖w‖ sin θ , but since both vectors have length 12 and since the angle between them
is π/6, then the length of v × w is 12 · 12 · 1/2 = 72. The direction of v × w is perpendicular to the plane containing them,
which is the plane x + 2y − 2z = 0, which has normal vector n = 〈1, 2, −2〉. Since v × w must have length 72 and must

be parallel to 〈1, 2, −2〉, then it must be ±72 times the unit vector 〈1, 2, −2〉 /

√
12 + 22 + (−2)2 = 〈1/3, 2/3, −2/3〉.

Thus,

v × w = ±72 · 〈1/3, 2/3, −2/3〉 = ±24 · 〈1, 2, −2〉

The plane

x

2
+ y

4
+ z

3
= 1

intersects the x-, y-, and z-axes in points P , Q, and R. Find the area of the triangle �PQR.

63. In this exercise, we show that the orthogonal distance D from the plane P with equation ax + by + cz = d

to the origin O is equal to (Figure 10)

D = |d|√
a2 + b2 + c2

Let n = 〈a, b, c〉, and let P be the point where the line through n intersects P . By definition, the orthogonal distance
from P to O is the distance from P to O.
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(a) Show that P is the terminal point of v =
(

d

n · n

)
n.

(b) Show that the distance from P to O is D.

n · 〈x, y, z〉 = d

y

x

O

D

z

P

n

FIGURE 10

solution Let v be the vector v =
(

d

n · n

)
n. Then v is parallel to n and the two vectors are on the same ray.

(a) First we must show that the terminal point of v lies on the plane ax + by + cz = d. Since the terminal point of v is
the point (

d

n · n

)
(a, b, c) =

(
da

a2 + b2 + c2
,

db

a2 + b2 + c2
,

dc

a2 + b2 + c2

)

then we need only show that this point satisfies ax + by + cz = d. Plugging in, we find:

ax + by + cz = a · da

a2 + b2 + c2
+ b · db

a2 + b2 + c2
+ c · dc

a2 + b2 + c2
= a2d + b2d + c2d

a2 + b2 + c2
= d

(b) We now show that the distance from P to O is D. This distance is just the length of the vector v, which is:

‖v‖ =
( |d|

n · n

)
‖n‖ = |d|

‖n‖ = |d|√
a2 + b2 + c2

as desired.

Use Exercise 63 to compute the orthogonal distance from the plane x + 2y + 3z = 5 to the origin.
Further Insights and Challenges
In Exercises 65 and 66, let P be a plane with equation

ax + by + cz = d

and normal vector n = 〈a, b, c〉. For any point Q, there is a unique point P on P that is closest to Q, and is such that
PQ is orthogonal to P (Figure 11).

n

P y
Q

x

O

z

FIGURE 11

65. Show that the point P on P closest to Q is determined by the equation

−→
OP = −−→

OQ +
(

d − −−→
OQ · n

n · n

)
n 7
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solution Since
−→
PQ is orthogonal to the plane P , it is parallel to the vector n = 〈a, b, c〉 which is normal to the plane.

Hence,

−→
PQ = λn (1)

Q

O

Since
−→
OP + −→

PQ = −−→
OQ, we have

−→
PQ = −−→

OQ − −→
OP . Thus, by (1) we get

−−→
OQ − −→

OP = λn ⇒ −→
OP = −−→

OQ − λn (2)

The point P is on the plane, hence
−→
OP satisfies the vector form of the equation of the plane, that is,

n · −→
OP = d (3)

Substituting (2) into (3) and solving for λ yields

n ·
(−−→
OQ − λn

)
= d

n · −−→
OQ − λn · n = d

λn · n = n · −−→
OQ − d ⇒ λ = n · −−→

OQ − d

n · n
(4)

Finally, we combine (2) and (4) to obtain

−→
OP = −−→

OQ +
(

d − n · −−→
OQ

n · n

)
n

By definition, the distance from a point Q = (x1, y1, z1) to the plane P is ‖QP ‖ where P is the point on P that
is closest to Q. Prove:

Distance from Q to P = |ax1 + by1 + cz1 − d|
‖n‖

67. Use Eq. (7) to find the point P nearest to Q = (2, 1, 2) on the plane x + y + z = 1.

solution We identify n = 〈1, 1, 1〉 as a vector normal to the plane. By Eq. (7) the nearest point P to Q is determined
by

−→
OP = −−→

OQ +
(

d − −−→
OQ · n

n · n

)
n

We substitute n = 〈1, 1, 1〉, −−→
OQ = 〈2, 1, 2〉 and d = 1 in this equation to obtain

−→
OP = 〈2, 1, 2〉 + 1 − 〈2, 1, 2〉 · 〈1, 1, 1〉

〈1, 1, 1〉 · 〈1, 1, 1〉 〈1, 1, 1〉 = 〈2, 1, 2〉 + 1 − (2 + 1 + 2)

1 + 1 + 1
〈1, 1, 1〉

= 〈2, 1, 2〉 − 4

3
〈1, 1, 1〉 =

〈
2

3
, −1

3
,

2

3

〉

The terminal point P =
(

2
3 , − 1

3 , 2
3

)
of

−→
OP is the nearest point to Q = (2, 1, 2) on the plane.

Find the point P nearest to Q = (−1, 3, −1) on the plane

x − 4z = 2

69. Use Eq. (8) to find the distance from Q = (1, 1, 1) to the plane 2x + y + 5z = 2.

solution By Eq. (8), the distance from Q = 〈x1, y1, z1〉 to the plane ax + by + cz = d is

� = |ax1 + by1 + cz1 − d|
‖n‖ (1)

We identify the vector n = 〈2, 1, 5〉 as a normal to the plane 2x + y + 5z = 2. Also a = 2, b = 1, c = 5, d = 2, and
(x1, y1, z1) = (1, 1, 1). Substituting in (1) above we get

� = |2 · 1 + 1 · 1 + 5 · 1 − 2|
‖〈2, 1, 5〉‖ = 6√

22 + 12 + 52
= 6√

30
≈ 1.095
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Find the distance from Q = (1, 2, 2) to the plane n · 〈x, y, z〉 = 3, where n = 〈 35 , 4
5 , 0
〉
.

71. What is the distance from Q = (a, b, c) to the plane x = 0? Visualize your answer geometrically and explain without
computation. Then verify that Eq. (8) yields the same answer.

solution The plane x = 0 is the yz-coordinate plane. The nearest point to Q on the plane is the projection of Q on
the plane, which is the point Q′ = (0, b, c).

z

a y
x

b

b, c)

(a, b, c)

Hence, the distance from Q to the plane is the length of the vector
−−→
Q′Q = 〈a, 0, 0〉 which is |a|. We now verify that Eq. (8)

gives the same answer. The plane x = 0 has the vector parametrization 〈1, 0, 0〉 · 〈x, y, z〉 = 0, hence n = 〈1, 0, 0〉. The
coefficients of the plane x = 0 are A = 1, B = C = D = 0. Also (x1, y1, z1) = (a, b, c). Substituting this value in
Eq. (8) we get

|Ax1 + By1 + Cz1 − D|
‖n‖ = |1 · a + 0 + 0 − 0|

‖〈1, 0, 0〉‖ = |a|√
12 + 02 + 02

= |a|

The two answers agree, as expected.

The equation of a plane n · 〈x, y, z〉 = d is said to be in normal form if n is a unit vector. Show that in this case,
|d| is the distance from the plane to the origin. Write the equation of the plane 4x − 2y + 4z = 24 in normal form.

12.6 A Survey of Quadric Surfaces (LT Section 13.6)

Preliminary Questions
1. True or false? All traces of an ellipsoid are ellipses.

solution This statement is true, mostly. All traces of an ellipsoid
(
x
a

)2 + ( y
b

)2 + ( zc )2 = 1 are ellipses, except for
the traces obtained by intersecting the ellipsoid with the planes x = ±a, y = ±b and z = ±c. These traces reduce to the
single points (±a, 0, 0), (0, ±b, 0) and (0, 0, ±c) respectively.

2. True or false? All traces of a hyperboloid are hyperbolas.

solution The statement is false. For a hyperbola in the standard orientation, the horizontal traces are ellipses (or
perhaps empty for a hyperbola of two sheets), and the vertical traces are hyperbolas.

3. Which quadric surfaces have both hyperbolas and parabolas as traces?

solution The hyperbolic paraboloid z = ( xa )2 − ( y
b

)2 has vertical trace curves which are parabolas. If we set x = x0
or y = y0 we get

z =
(x0

a

)2 −
(y

b

)2 ⇒ z = −
(y

b

)2 + C

z =
(x

a

)2 −
(y0

b

)2 ⇒ z =
(x

a

)2 + C

The hyperbolic paraboloid has vertical traces which are hyperbolas, since for z = z0, (z0 > 0), we get

z0 =
(x

a

)2 −
(y

b

)2

4. Is there any quadric surface whose traces are all parabolas?

solution There is no quadric surface whose traces are all parabolas.

5. A surface is called bounded if there exists M > 0 such that every point on the surface lies at a distance of at most
M from the origin. Which of the quadric surfaces are bounded?

solution The only quadric surface that is bounded is the ellipsoid(x

a

)2 +
(y

b

)2 +
( z

c

)2 = 1.

All other quadric surfaces are not bounded, since at least one of the coordinates can increase or decrease without bound.

6. What is the definition of a parabolic cylinder?

solution A parabolic cylinder consists of all vertical lines passing through a parabola C in the xy-plane.
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Exercises
In Exercises 1–6, state whether the given equation defines an ellipsoid or hyperboloid, and if a hyperboloid, whether it is
of one or two sheets.

1.
(x

2

)2 +
(y

3

)2 +
( z

5

)2 = 1

solution This equation is the equation of an ellipsoid.

(x

5

)2 +
(y

5

)2 −
( z

7

)2 = 1
3. x2 + 3y2 + 9z2 = 1

solution We rewrite the equation as follows:

x2 +
⎛
⎝ y

1√
3

⎞
⎠2

+
(

z

1
3

)2

= 1

This equation defines an ellipsoid.

−
(x

2

)2 −
(y

3

)2 +
( z

5

)2 = 1
5. x2 − 3y2 + 9z2 = 1

solution We rewrite the equation in the form

x2 −
⎛
⎝ y

1√
3

⎞
⎠2

+
(

z

1
3

)2

= 1

This is the equation of a hyperboloid of one sheet.

x2 − 3y2 − 9z2 = 1
In Exercises 7–12, state whether the given equation defines an elliptic paraboloid, a hyperbolic paraboloid, or an elliptic
cone.

7. z =
(x

4

)2 +
(y

3

)2

solution This equation defines an elliptic paraboloid.

z2 =
(x

4

)2 +
(y

3

)29. z =
(x

9

)2 −
( y

12

)2

solution This equation defines a hyperbolic paraboloid.

4z = 9x2 + 5y211. 3x2 − 7y2 = z

solution Rewriting the equation as

z =
⎛
⎝ x

1√
3

⎞
⎠2

−
⎛
⎝ y

1√
7

⎞
⎠2

we identify it as the equation of a hyperbolic paraboloid.

3x2 + 7y2 = 14z2In Exercises 13–20, state the type of the quadric surface and describe the trace obtained by intersecting with the given
plane.

13. x2 +
(y

4

)2 + z2 = 1, y = 0

solution The equation x2 + ( y4 )2 + z2 = 1 defines an ellipsoid. The xz-trace is obtained by substituting y = 0 in the

equation of the ellipsoid. This gives the equation x2 + z2 = 1 which defines a circle in the xz-plane.

x2 +
(y

4

)2 + z2 = 1, y = 5
15. x2 +

(y

4

)2 + z2 = 1, z = 1

4

solution The quadric surface is an ellipsoid, since its equation has the form
(
x
a

)2 + ( y
b

)2 + ( zc )2 = 1 for a = 1,

b = 4, c = 1. To find the trace obtained by intersecting the ellipsoid with the plane z = 1
4 , we set z = 1

4 in the equation
of the ellipsoid. This gives

lx2 +
(y

4

)2 +
(

1

4

)2
= 1

x2 + y2

16
= 15

16
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To get the standard form we divide by 15
16 to obtain

x2

15
16

+ y2

16·15
16

= 1 ⇒
⎛
⎝ x√

15
4

⎞
⎠2

+
(

y√
15

)2
= 1 (1)

We conclude that the trace is an ellipse on the xy-plane, whose equation is given in (1).

(x

2

)2 +
(y

5

)2 − 5z2 = 1, x = 0
17.

(x

3

)2 +
(y

5

)2 − 5z2 = 1, y = 1

solution Rewriting the equation in the form

(x

3

)2 +
(y

5

)2 −
⎛
⎝ z

1√
5

⎞
⎠2

= 1

we identify it as the equation of a hyperboloid of one sheet. Substituting y = 1 we get

x2

9
+ 1

25
− 5z2 = 1

x2

9
− 5z2 = 24

25

25

24 · 9
x2 − 25 · 5

24
z2 = 1

⎛
⎝ x

6
√

6
5

⎞
⎠2

−
⎛
⎜⎝ z

2
5

√
6
5

⎞
⎟⎠

2

= 1

Thus, the trace on the plane y = 1 is a hyperbola.

4x2 +
(y

3

)2 − 2z2 = −1, z = 1
19. y = 3x2, z = 27

solution This equation defines a parabolic cylinder, consisting of all vertical lines passing through the parabola

y = 3x2 in the xy-plane. Hence, the trace of the cylinder on the plane z = 27 is the parabola y = 3x2 on this plane, that
is, the following set: {

(x, y, z) : y = 3x2, z = 27
}
.

y = 3x2, y = 27
21. Match each of the ellipsoids in Figure 12 with the correct equation:

(a) x2 + 4y2 + 4z2 = 16 (b) 4x2 + y2 + 4z2 = 16

(c) 4x2 + 4y2 + z2 = 16

y y y

x x x

z z z

(A) (B) (C)

FIGURE 12

solution
(a) We rewrite the equation in the form (x

4

)2 +
(y

2

)2 +
( z

2

)2 = 1

The ellipsoid intersects thex,y, and z axes at the points (±4, 0, 0), (0, ±2, 0), and (0, 0, ±2), hence (B) is the corresponding
figure.

(b) We rewrite the equation in the form (x

2

)2 +
(y

4

)2 +
( z

2

)2 = 1

The x, y, and z intercepts are (±2, 0, 0), (0, ±4, 0), and (0, 0, ±2) respectively, hence (C) is the correct figure.
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(c) We write the equation in the form (x

2

)2 +
(y

2

)2 +
( z

4

)2 = 1

The x, y, and z intercepts are (±2, 0, 0), (0, ±2, 0), and (0, 0, ±4) respectively, hence the corresponding figure is (A).

Describe the surface that is obtained when, in the equation ±8x2 ± 3y2 ± z2 = 1, we choose (a) all plus signs,
(b) one minus sign, and (c) two minus signs.

23. What is the equation of the surface obtained when the elliptic paraboloid z =
(x

2

)2 +
(y

4

)2
is rotated about the

x-axis by 90◦? Refer to Figure 13.

zz

y

y

xx

FIGURE 13

solution The axis of symmetry of the resulting surface is the y-axis rather than the z-axis. Interchanging y and z in
the given equation gives the following equation of the rotated paraboloid:

y =
(x

2

)2 +
( z

4

)2

Describe the intersection of the horizontal plane z = h and the hyperboloid −x2 − 4y2 + 4z2 = 1. For which
values of h is the intersection empty?

In Exercises 25–30, sketch the given surface.

25. x2 + y2 − z2 = 1

solution This equation defines a hyperboloid of one sheet. The trace on the plane z = z0 is the circle x2 + y2 = 1 + z2
0.

The trace on the plane y = y0 is the hyperbola x2 − z2 = 1 − y2
0 and the trace on the plane x = x0 is the hyperbola

y2 − z2 = 1 − x2
0 . We obtain the following surface:

z

y

x

Graph of x2 + y2 − z2 = 1

(x

4

)2 +
(y

8

)2 +
( z

12

)2 = 1
27. z =

(x

4

)2 +
(y

8

)2

solution This equation defines an elliptic paraboloid, as shown in the following figure:

z

y

x

z =
(x

4

)2 −
(y

8

)2
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29. z2 =
(x

4

)2 +
(y

8

)2

solution This equation defines the following elliptic cone:

4

1

8

z

y

x

z = −x2
31. Find the equation of the ellipsoid passing through the points marked in Figure 14(A).

z

y

x

(A)

6

4

−4

2

−2

−6

z

y

x

(B)

4

−4

2

−2

FIGURE 14

solution The equation of an ellipsoid is (x

a

)2 +
(y

b

)2 +
( z

c

)2 = 1 (1)

The x, y and z intercepts are (±a, 0, 0), (0, ±b, 0) and (0, 0, ±c) respectively. The x, y and z intercepts of the desired
ellipsoid are (±2, 0, 0), (0, ±4, 0) and (0, 0, ±6) respectively, hence a = 2, b = 4 and c = 6. Substituting into (1) we
get (x

2

)2 +
(y

4

)2 +
( z

6

)2 = 1.

Find the equation of the elliptic cylinder passing through the points marked in Figure 14(B).
33. Find the equation of the hyperboloid shown in Figure 15(A).

z

y

x

(A)

6

12
8

4

6

5
9

8

z

y

x

(B)

FIGURE 15

solution The hyperboloid in the figure is of one sheet and the intersections with the planes z = z0 are ellipses. Hence,
the equation of the hyperboloid has the form (x

a

)2 +
(y

b

)2 −
( z

c

)2 = 1 (1)

Substituting z = 0 we get (x

a

)2 +
(y

b

)2 = 1

By the given information this ellipse has x and y intercepts at the points (±4, 0) and (0, ±6) hence a = 4, b = 6.
Substituting in (1) we get (x

4

)2 +
(y

6

)2 −
( z

c

)2 = 1 (2)
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Substituting z = 9 we get

x2

16
+ y2

36
− 92

c2
= 1

x2

16
+ y2

36
= 1 + 81

c2
= c2 + 81

c2

c2x2

16(81 + c2)
+ c2y2

36(81 + c2)
= 1

(
x

4
c

√
81 + c2

)2

+
(

y

6
c

√
81 + c2

)2

= 1

By the given information the following must hold:

4

c

√
81 + c2 = 8

6

c

√
81 + c2 = 12

⇒
√

81 + c2

c
= 2 ⇒ 81 + c2 = 4c2 ⇒ 3c2 = 81

Thus, c = 3
√

3, and by substituting in (2) we obtain the following equation:

(x

4

)2 +
(y

6

)2 −
(

z

3
√

3

)2
= 1

Find the equation of the quadric surface shown in Figure 15(B).
35. Determine the vertical traces of elliptic and parabolic cylinders in standard form.

solution The vertical traces of elliptic or parabolic cylinders are one or two vertical lines, or an empty set.

What is the equation of a hyperboloid of one or two sheets in standard form if every horizontal trace is a circle?
37. Let C be an ellipse in a horizonal plane lying above the xy-plane. Which type of quadric surface is made up of all
lines passing through the origin and a point on C?

solution The quadric surface is the upper part of an elliptic cone.

z

y

x

The eccentricity of a conic section is defined in Section 11.5. Show that the horizontal traces of the ellipsoid(x

a

)2 +
(y

b

)2 +
( z

c

)2 = 1

are ellipses of the same eccentricity (apart from the traces at height h = ±c, which reduce to a single point). Find
the eccentricity.

Further Insights and Challenges
39. Let S be the hyperboloid x2 + y2 = z2 + 1 and let P = (α, β, 0) be a point on S in the (x, y)-plane. Show that there
are precisely two lines through P entirely contained in S (Figure 16). Hint: Consider the line r(t) = 〈α + at, β + bt, t〉
through P . Show that r(t) is contained in S if (a, b) is one of the two points on the unit circle obtained by rotating (α, β)

through ±π
2 . This proves that a hyperboloid of one sheet is a doubly ruled surface, which means that it can be swept

out by moving a line in space in two different ways.

FIGURE 16
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solution The parametric equations of the lines through P = (α, β, 0) have the form

x = α + ks, y = β + �s, z = ms

Setting the parameter t = ms and replacing k
m and �

m by a and b, respectively, we obtain the following (normalized) form

x = α + at, y = β + bt, z = t

The line is entirely contained in S if and only if for all values of the parameter t , the following equality holds:

(α + at)2 + (β + bt)2 = t2 + 1

That is, for all t ,

α2 + 2αat + a2t2 + β2 + 2βbt + b2t2 = t2 + 1

(a2 + b2 − 1)t2 + 2(αa + βb)t + (α2 + β2 − 1) = 0

This equality holds for all t if and only if all the coefficients are zero. That is, if and only if⎧⎨
⎩

a2 + b2 − 1 = 0
αa + βb = 0
α2 + β2 − 1 = 0

The first and the third equations imply that (a, b) and (α, β) are points on the unit circle x2 + y2 = 1. The second equation
implies that the vector u = 〈a, b〉 is orthogonal to the vector v = 〈α, β〉 (since u · v = aα + bβ = 0).

Conclusions: There are precisely two lines through P entirely contained in S. For the direction vectors (a, b, 1) of
these lines, (a, b) is obtained by rotating (α, β) through ±π

2 about the origin.

In Exercises 40 and 41, let C be a curve in R3 not passing through the origin. The cone on C is the surface consisting of
all lines passing through the origin and a point on C [Figure 17(A)].

Cone on ellipse C Cone on parabola C
(half of cone shown)

O

C

C

z

y

x

y

x

z

O

c

c

FIGURE 17

Show that the elliptic cone
( z

c

)2 =
(x

a

)2 +
(y

b

)2
is, in fact, a cone on the ellipse C consisting of all points

(x, y, c) such that
(x

a

)2 +
(y

b

)2 = 1.

41. Let a and c be nonzero constants and let C be the parabola at height c consisting of all points (x, ax2, c) [Figure
17(B)]. Let S be the cone consisting of all lines passing through the origin and a point on C. This exercise shows that S
is also an elliptic cone.

(a) Show that S has equation yz = acx2.
(b) Show that under the change of variables y = u + v and z = u − v, this equation becomes acx2 = u2 − v2 or
u2 = acx2 + v2 (the equation of an elliptic cone in the variables x, v, u).

solution A point P on the parabola C has the form P =
(
x0, ax2

0 , c
)

, hence the parametric equations of the line

through the origin and P are

x = tx0, y = tax2
0 , z = tc

To find a direct relation between xy and z we notice that

yz = tax2
0ct = ac(tx0)2 = acx2

Now, defining new variables z = u − v and y = u + v. This equation becomes

(u + v)(u − v) = acx2

u2 − v2 = acx2 ⇒ u2 = acx2 + v2

This is the equation of an elliptic cone in the variables x, v, u. We, thus, showed that the cone on the parabola C is
transformed to an elliptic cone by the transformation (change of variables) y = u + v, z = u − v, x = x.
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12.7 Cylindrical and Spherical Coordinates (LT Section 13.7)

Preliminary Questions
1. Describe the surfaces r = R in cylindrical coordinates and ρ = R in spherical coordinates.

solution The surface r = R consists of all points located at a distance R from the z-axis. This surface is the cylinder
of radius R whose axis is the z-axis. The surface ρ = R consists of all points located at a distance R from the origin. This
is the sphere of radius R centered at the origin.

2. Which statement about cylindrical coordinates is correct?

(a) If θ = 0, then P lies on the z-axis.
(b) If θ = 0, then P lies in the xz-plane.

solution The equation θ = 0 defines the half-plane of all points that project onto the ray θ = 0, that is, onto the
nonnegative x-axis. This half plane is part of the (x, z)-plane, therefore if θ = 0, then P lies in the (x, z)-plane.

z

y

x

The half-plane q = 0

For instance, the point P = (1, 0, 1) satisfies θ = 0, but it does not lie on the z-axis. We conclude that statement (b) is
correct and statement (a) is false.

3. Which statement about spherical coordinates is correct?

(a) If φ = 0, then P lies on the z-axis.
(b) If φ = 0, then P lies in the xy-plane.

solution The equation φ = 0 describes the nonnegative z-axis. Therefore, if φ = 0, P lies on the z-axis as stated in
(a). Statement (b) is false, since the point (0, 0, 1) satisfies φ = 0, but it does not lie in the (x, y)-plane.

4. The level surface φ = φ0 in spherical coordinates, usually a cone, reduces to a half-line for two values of φ0. Which
two values?

solution For φ0 = 0, the level surface φ = 0 is the upper part of the z-axis. For φ0 = π , the level surface φ = π is
the lower part of the z-axis. These are the two values of φ0 where the level surface φ = φ0 reduces to a half-line.

5. For which value of φ0 is φ = φ0 a plane? Which plane?

solution For φ0 = π
2 , the level surface φ = π

2 is the xy-plane.

z

y

P

P

x

π
2

π
2

Exercises
In Exercises 1–4, convert from cylindrical to rectangular coordinates.

1. (4, π, 4)

solution By the given data r = 4, θ = π and z = 4. Hence,

x = r cos θ = 4 cos π = 4 · (−1) = −4

y = r sin θ = 4 sin π = 4 · 0

z = 4

⇒ (x, y, z) = (−4, 0, 4)
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(
2,

π

3
, −8

)
3.
(

0,
π

5
,

1

2

)
solution We have r = 0, θ = π

5 , z = 1
2 . Thus,

x = r cos θ = 0 · cos
π

5
= 0

y = r sin θ = 0 · sin
π

5
= 0

z = 1

2

⇒ (x, y, z) =
(

0, 0,
1

2

)

(
1,

π

2
, −2

)In Exercises 5–10, convert from rectangular to cylindrical coordinates.

5. (1, −1, 1)

solution We are given that x = 1, y = −1, z = 1. We find r:

r =
√

x2 + y2 =
√

12 + (−1)2 = √
2

Next we find θ . The point (x, y) = (1, −1) lies in the fourth quadrant, hence,

tan θ = y

x
= −1

1
= −1,

3π

2
≤ θ ≤ 2π ⇒ θ = 7π

4

We conclude that the cylindrical coordinates of the point are

(r, θ, z) =
(√

2,
7π

4
, 1

)
.

(2, 2, 1)7. (1,
√

3, 7)

solution We have x = 1, y = √
3, z = 7. We first find r:

r =
√

x2 + y2 =
√

12 +
(√

3
)2 = 2

Since the point (x, y) =
(

1,
√

3
)

lies in the first quadrant, 0 ≤ θ ≤ π
2 . Hence,

tan θ = y

x
=

√
3

1
= √

3, 0 ≤ θ ≤ π

2
⇒ θ = π

3

The cylindrical coordinates are thus

(r, θ, z) =
(

2,
π

3
, 7
)

.

(
3

2
,

3
√

3

2
, 9

)
9.
(

5√
2
,

5√
2
, 2

)
solution We have x = 5√

2
, y = 5√

2
, z = 2. We find r:

r =
√

x2 + y2 =
√(

5√
2

)2
+
(

5√
2

)2
= √

25 = 5

Since the point (x, y) =
(

5√
2
, 5√

2

)
is in the first quadrant, 0 ≤ θ ≤ π

2 , therefore,

tan θ = y

x
= 5/

√
2

5/
√

2
= 1, 0 ≤ θ ≤ π

2
⇒ θ = π

4

The corresponding cylindrical coordinates are

(r, θ, z) =
(

5,
π

4
, 2
)

.

(3, 3
√

3, 2)
In Exercises 11–16, describe the set in cylindrical coordinates.

11. x2 + y2 ≤ 1

solution The inequality describes a solid cylinder of radius 1 centered on the z-axis. Since x2 + y2 = r2, this

inequality can be written as r2 ≤ 1.

x2 + y2 + z2 ≤ 1
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13. y2 + z2 ≤ 4, x = 0

solution The projection of the points in this set onto the xy-plane are points on the y axis, thus θ = π
2 or θ = 3π

2 .

Therefore, y = r sin π
2 = r · 1 = r or y = r sin

(
3π
2

)
= −r . In both cases, y2 = r2, thus the inequality y2 + z2 ≤ 4

becomes r2 + z2 ≤ 4. In cylindrical coordinates, we obtain the following inequality

r2 + z2 ≤ 4, θ = π

2
or θ = 3π

2

x2 + y2 + z2 = 4, x ≥ 0, y ≥ 0, z ≥ 0
15. x2 + y2 ≤ 9, x ≥ y

solution The equation x2 + y2 ≤ 9 in cylindrical coordinates becomes r2 ≤ 9, which becomes r ≤ 3. However, we
also have the restriction that x ≥ y. This means that the projection of our set onto the xy plane is below and to the right
of the line y = x. In other words, our θ is restricted to −3π/4 ≤ θ ≤ π/4. In conclusion, the answer is:

r ≤ 3, −3π/4 ≤ θ ≤ π/4

y2 + z2 ≤ 9, x ≥ y
In Exercises 17–24, sketch the set (described in cylindrical coordinates).

17. r = 4

solution The surface r = 4 consists of all points located at a distance 4 from the z-axis. It is a cylinder of radius 4
whose axis is the z-axis. The cylinder is shown in the following figure:

−4

−4

4
4

z

y

x

θ = π

3

19. z = −2

solution z = −2 is the horizontal plane at height −2, shown in the following figure:

−2

z

y

x

r = 2, z = 3
21. 1 ≤ r ≤ 3, 0 ≤ z ≤ 4

solution The region 1 ≤ r ≤ 3, 0 ≤ z ≤ 4 is shown in the following figure:

z

y

x

−4

44

1 ≤ r ≤ 3, 0 ≤ θ ≤ π

2
, 0 ≤ z ≤ 4

23. z2 + r2 ≤ 4

solution The region z2 + r2 ≤ 4 is shown in the following figure:
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2

2

2

−2

−2

−2

z

y

x

In rectangular coordinates the inequality is z2 +
(
x2 + y2

)
≤ 4, or x2 + y2 + z2 ≤ 4, which is a ball of radius 2.

r ≤ 3, π ≤ θ ≤ 3π

2
, z = 4

In Exercises 25–30, find an equation of the form r = f (θ, z) in cylindrical coordinates for the following surfaces.

25. z = x + y

solution We substitute x = r cos θ , y = r sin θ to obtain the following equation in cylindrical coordinates:

z = r cos θ + r sin θ

z = r(cos θ + sin θ)
⇒ r = z

cos θ + sin θ
.

x2 + y2 + z2 = 427.
x2

yz
= 1

solution We rewrite the equation in the form

x
y
x z

= 1

Substituting x = r cos θ and y
x = tan θ we get

r cos θ

(tan θ) z
= 1

r = z tan θ

cos θ

x2 − y2 = 4
29. x2 + y2 = 4

solution Since x2 + y2 = r2, the equation in cylindrical coordinates is, r2 = 4 or r = 2.

z = 3xyIn Exercises 31–36, convert from spherical to rectangular coordinates.

31.
(

3, 0,
π

2

)
solution We are given that ρ = 3, θ = 0, φ = π

2 . Using the relations between spherical and rectangular coordinates
we have

x = ρ sin φ cos θ = 3 sin
π

2
cos 0 = 3 · 1 · 1 = 3

y = ρ sin φ sin θ = 3 sin
π

2
sin 0 = 3 · 1 · 0 = 0

z = ρ cos φ = 3 cos
π

2
= 3 · 0 = 0

⇒ (x, y, z) = (3, 0, 0)

(
2,

π

4
,
π

3

)33. (3, π, 0)

solution We have ρ = 3, θ = π , φ = 0. Hence,

x = ρ sin φ cos θ = 3 sin 0 cos π = 0

y = ρ sin φ sin θ = 3 sin 0 sin π = 0

z = ρ cos φ = 3 cos 0 = 3

⇒ (x, y, z) = (0, 0, 3)

(
5,

3π

4
,
π

4

)
35.

(
6,

π

6
,

5π

6

)
solution Since ρ = 6, θ = π

6 , and φ = 5π
6 we get

x = ρ sin φ cos θ = 6 sin
5π

6
cos

π

6
= 6 · 1

2
·
√

3

2
= 3

√
3

2

y = ρ sin φ sin θ = 6 sin
5π

6
sin

π

6
= 6 · 1

2
· 1

2
= 3

2

z = ρ cos φ = 6 cos
5π

6
= 6 ·

(
−

√
3

2

)
= −3

√
3

⇒ (x, y, z) =
(

3
√

3

2
,

3

2
, −3

√
3

)
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(0.5, 3.7, 2)
In Exercises 37–42, convert from rectangular to spherical coordinates.

37. (
√

3, 0, 1)

solution By the given data x = √
3, y = 0, and z = 1. We find the radial coordinate:

ρ =
√

x2 + y2 + z2 =
√(√

3
)2 + 02 + 12 = 2

The angular coordinate θ satisfies

tan θ = y

x
= 0√

3
= 0 ⇒ θ = 0 or θ = π

Since the point (x, y) =
(√

3, 0
)

lies in the first quadrant, the correct choice is θ = 0. The angle of declination φ satisfies

cos φ = z

ρ
= 1

2
, 0 ≤ φ ≤ π ⇒ φ = π

3

The spherical coordinates of the given points are thus

(ρ, θ, φ) =
(

2, 0,
π

3

)
(√

3

2
,

3

2
, 1

)39. (1, 1, 1)

solution We have x = y = z = 1. The radial coordinate is

ρ =
√

x2 + y2 + z2 =
√

12 + 12 + 12 = √
3

The angular coordinate θ is determined by tan θ = y
x = 1

1 = 1 and by the quadrant of the point (x, y) = (1, 1), that is,
θ = π

4 . The angle of declination φ satisfies

cos φ = z

ρ
= 1√

3
, 0 ≤ φ ≤ π ⇒ φ = 0.955

The spherical coordinates are thus (√
3,

π

4
, 0.955

)

(1, −1, 1)41.

(
1

2
,

√
3

2
,
√

3

)

solution We have x = 1
2 , y =

√
3

2 , and z = √
3. Thus

ρ =
√

x2 + y2 + z2 =
√√√√(1

2

)2
+
(√

3

2

)2

+
(√

3
)2 = 2

The angular coordinate θ satisfies 0 ≤ θ ≤ π
2 , since the point (x, y) =

(
1
2 ,

√
3

2

)
is in the first quadrant. Also tan θ =

y
x =

√
3/2

1/2 = √
3, hence the angle is θ = π

3 . The angle of declination φ satisfies

cos φ = z

ρ
=

√
3

2
, 0 ≤ φ ≤ π ⇒ φ = π

6

We conclude that

(ρ, θ, φ) =
(

2,
π

3
,
π

6

)
(√

2

2
,

√
2

2
,
√

3

)In Exercises 43 and 44, convert from cylindrical to spherical coordinates.

43. (2, 0, 2)

solution We are given that r = 2, θ = 0, z = 2. Using the conversion formulas, we have

ρ =
√

x2 + y2 + z2 =
√

r2 + z2 =
√

22 + 22 = 2
√

2

θ = θ = 0

φ = cos−1(z/ρ) = cos−1(2/(2
√

2)) = π/4

(3, π,
√

3)
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In Exercises 45 and 46, convert from spherical to cylindrical coordinates.

45.
(
4, 0, π

4

)
solution We are given that ρ = 4, θ = 0, and φ = π/4. To find r , we use the formulas x = r cos θ and x =
ρ cos θ sin φ to get r cos θ = ρ cos θ sin φ, and so

r = ρ sin φ = 4 sin π/4 = 2
√

2

Clearly θ = 0, and as for z,

z = ρ cos φ = 4 cos π/4 = 2
√

2

So, in cylindrical coordinates, our point is (2
√

2, 0, 2
√

2)

(
2, π

3 , π
6

)In Exercises 47–52, describe the given set in spherical coordinates.

47. x2 + y2 + z2 ≤ 1

solution Substituting ρ2 = x2 + y2 + z2 we obtain ρ2 ≤ 1 or 0 ≤ ρ ≤ 1.

x2 + y2 + z2 = 1, z ≥ 0
49. x2 + y2 + z2 = 1, x ≥ 0, y ≥ 0, z ≥ 0

solution By ρ2 = x2 + y2 + z2, we get ρ2 = 1 or ρ = 1. The inequalities x ≥ 0, y ≥ 0 determine the first quadrant,
which is also determined by 0 ≤ θ ≤ π

2 . Finally, z ≥ 0 gives cos φ = z
ρ ≥ 0. Also 0 ≤ φ ≤ π , hence 0 ≤ φ ≤ π

2 . We
obtain the following description:

ρ = 1, 0 ≤ θ ≤ π

2
, 0 ≤ φ ≤ π

2

x2 + y2 + z2 ≤ 1, x = y, x ≥ 0, y ≥ 0
51. y2 + z2 ≤ 4, x = 0

solution We substitute y = ρ sin θ sin φ and z = ρ cos φ in the given inequality. This gives

4 ≥ ρ2 sin2 θ sin2 φ + ρ2 cos2 φ (1)

The equality x = 0 determines that θ = π
2 or θ = 3π

2 (and the origin). In both cases, sin2 θ = 1. Hence by (1) we get

ρ2 sin2 φ + ρ2 cos2 φ ≤ 4

ρ2(1) ≤ 4

ρ ≤ 2

We obtain the following description: {
(ρ, θ, φ) : 0 ≤ ρ ≤ 2, θ = π

2
or θ = 3π

2

}

x2 + y2 = 3z2In Exercises 53–60, sketch the set of points (described in spherical coordinates).

53. ρ = 4

solution ρ = 4 describes the sphere of radius 4. This is shown in the following figure:

z

y

x

φ = π

4

55. ρ = 2, θ = π

4

solution The equation ρ = 2 is a sphere of radius 2, and the equation θ = π
4 is the vertical plane y = x. These two

surfaces intersect in a (vertical) circle of radius 2, as seen here.
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x

y

z

ρ = 2, φ = π

4

57. ρ = 2, 0 ≤ φ ≤ π

2

solution The set

ρ = 2, 0 ≤ φ ≤ π

2

is shown in the following figure:

2

2
2

−2

−2

z

y

x

It is the upper half of the sphere with radius 2.

θ = π

2
, φ = π

4
, ρ ≥ 1

59. ρ ≤ 2, 0 ≤ θ ≤ π

2
,

π

2
≤ φ ≤ π

solution This set is the part of the ball of radius 2 which is below the first quadrant of the xy-plane, as shown in the
following figure:

2
2

−2

z

y

x

ρ = 1,
π

3
≤ φ ≤ 2π

3

In Exercises 61–66, find an equation of the form ρ = f (θ, φ) in spherical coordinates for the following surfaces.

61. z = 2

solution Since z = ρ cos φ, we have ρ cos φ = 2, or ρ = 2
cos φ .

z2 = 3(x2 + y2)
63. x = z2

solution Substituting x = ρ cos θ sin φ and z = ρ cos φ we obtain

ρ cos θ sin φ = ρ2 cos2 φ

cos θ sin φ = ρ cos2 φ

ρ = cos θ sin φ

cos2 φ
= cos θ tan φ

cos φ

z = x2 + y265. x2 − y2 = 4

solution We substitute x = ρ cos θ sin φ and y = ρ sin θ sin φ to obtain

4 = ρ2 cos2 θ sin2 φ − ρ2 sin2 θ sin2 φ = ρ2 sin2 φ
(
cos2 θ − sin2 θ

)



May 16, 2011

S E C T I O N 12.7 Cylindrical and Spherical Coordinates (LT SECTION 13.7) 237

Using the identity cos2 θ − sin2 θ = cos 2θ we get

4 = ρ2 sin2 φ cos 2θ

ρ2 = 4

sin2 φ cos 2θ

We take the square root of both sides. Since 0 < φ < π we have sin φ > 0, hence,

ρ = 2

sin φ
√

cos 2θ

xy = z67. Which of (a)–(c) is the equation of the cylinder of radius R in spherical coordinates? Refer to Figure 15.

(a) Rρ = sin φ (b) ρ sin φ = R (c) ρ = R sin φ

R

r
f

q

z

y

x

FIGURE 15

solution The equation of the cylinder of radius R in rectangular coordinates is x2 + y2 = R2 (z is unlimited).
Substituting the formulas for x and y in terms of ρ, θ and φ yields

R2 = ρ2 cos2 θ sin2 φ + ρ2 sin2 θ sin2 φ = ρ2 sin2 φ
(
cos2 θ + sin2 θ

) = ρ2 sin2 φ

Hence,

R2 = ρ2 sin2 φ

We take the square root of both sides. Since 0 ≤ φ ≤ π , we have sin φ ≥ 0, therefore,

R = ρ sin φ

Equation (b) is the correct answer.

Let P1 = (1, −√
3, 5) and P2 = (−1,

√
3, 5) in rectangular coordinates. In which quadrants do the projections

of P1 and P2 onto the xy-plane lie? Find the polar angle θ of each point.

69. Find the spherical angles (θ, φ) for Helsinki, Finland (60.1◦ N, 25.0◦ E) and Sao Paulo, Brazil (23.52◦ S, 46.52◦ W).

solution For Helsinki, θ is 25◦ and φ is 90 − 60.1 = 29.9◦.
For Sao Paulo, θ is 360 − 46.52 = 313.48◦ and φ is 90 + 23.52 = 113.52◦.

Find the longitude and latitude for the points on the globe with angular coordinates (θ, φ) = (π/8, 7π/12) and
(4, 2).

71. Consider a rectangular coordinate system with origin at the center of the earth, z-axis through the North Pole, and
x-axis through the prime meridian. Find the rectangular coordinates of Sydney, Australia (34◦ S, 151◦ E), and Bogotá,
Colombia (4◦ 32′ N, 74◦ 15′ W). A minute is 1/60◦. Assume that the earth is a sphere of radius R = 6370 km.

solution We first find the angle (θ, φ) for the two towns. For Sydney θ = 151◦, since its longitude lies to the east of
Greenwich, that is, in the positive θ direction. Sydney’s latitude is south of the equator, hence φ = 90 + 34 = 124◦.

For Bogota, we have θ = 360◦ − 74◦15′ = 285◦45′, since 74◦15′W refers to 74◦15′ in the negative θ direction. The
latitude is north of the equator hence φ = 90◦ − 4◦32′ = 85◦28′.

We now use the formulas of x,y and z in terms of ρ, θ , φ to find the rectangular coordinates of the two towns. (Notice
that 285◦45′ = 285.75◦ and 85◦28′ = 85.47◦).
Sydney:

x = ρ cos θ sin φ = 6370 cos 151◦ sin 124◦ = −4618.8

y = ρ sin θ sin φ = 6370 sin 151◦ sin 124◦ = 2560

z = ρ cos φ = 6370 cos 124◦ = −3562.1

Bogota:

x = ρ cos θ sin φ = 6370 cos 285.75◦ sin 85.47◦ = 1723.7

y = ρ sin θ sin φ = 6370 sin 285.75◦ sin 85.47◦ = −6111.7

z = ρ cos φ = 6370 cos 85.47◦ = 503.1
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Find the equation in rectangular coordinates of the quadric surface consisting of the two cones φ = π
4 and φ = 3π

4 .
73. Find an equation of the form z = f (r, θ) in cylindrical coordinates for z2 = x2 − y2.

solution In cylindrical coordinates, x = r cos θ and y = r sin θ . Hence,

z2 = x2 − y2 = r2 cos2 θ − r2 sin2 θ

We use the identity cos2 θ − sin2 θ = cos 2θ to obtain

z2 = r2 cos 2θ ⇒ z = ±r
√

cos 2θ

Show that ρ = 2 cos φ is the equation of a sphere with its center on the z-axis. Find its radius and center.75. Explain the following statement: If the equation of a surface in cylindrical or spherical coordinates does not
involve the coordinate θ , then the surface is rotationally symmetric with respect to the z-axis.

solution Since the equation of the surface does not involve the coordinate θ , then for every point P on the surface
(P = (ρ0, θ0, φ0) in spherical coordinates or P = (r0, θ0, z0) in cylindrical coordinates) so also all the points (ρ0, θ, φ0)

or (r0, θ, z0) are on the surface. That is, all the points obtained by rotating P around the z-axis are on the surface. Hence,
the surface is rotationally symmetric with respect to the z-axis.

Plot the surface ρ = 1 − cos φ. Then plot the trace of S in the xz-plane and explain why S is obtained by
rotating this trace.

77. Find equations r = g(θ, z) (cylindrical) and ρ = f (θ, φ) (spherical) for the hyperboloid x2 + y2 = z2 + 1
(Figure 16). Do there exist points on the hyperboloid with φ = 0 or π? Which values of φ occur for points on the
hyperboloid?

y

z

x

FIGURE 16 The hyperboloid x2 + y2 = z2 + 1.

solution For the cylindrical coordinates (r, θ, z) we have x2 + y2 = r2. Substituting into the equation x2 + y2 =
z2 + 1 gives

r2 = z2 + 1 ⇒ r =
√

z2 + 1

For the spherical coordinates (ρ, θ, φ) we have x = ρ sin φ cos θ , y = ρ sin φ sin θ and z = ρ cos φ. We substitute into
the equation of the hyperboloid x2 + y2 = z2 + 1 and simplify to obtain

ρ2 sin2 φ cos2 θ + ρ2 sin2 φ sin2 θ = ρ2 cos2 φ + 1

ρ2 sin2 φ
(
cos2 θ + sin2 θ

) = ρ2 cos2 φ + 1

ρ2(sin2 φ − cos2 φ
) = 1

Using the trigonometric identity cos 2φ = cos2 φ − sin2 φ we get

ρ2 · (− cos 2φ
) = 1 ⇒ ρ =

√
− 1

cos 2φ

For φ = 0 and φ = π we have cos 2 · 0 = 1 and cos 2π = 1. In both cases − 1
cos 2φ

= −1 < 0, hence there is no real

value of ρ satisfying ρ =
√

− 1
cos 2φ

. We conclude that there are no points on the hyperboloid with φ = 0 or π .

To obtain a real ρ such that ρ =
√

− 1
cos 2φ

, we must have − 1
cos 2φ

> 0. That is, cos 2φ < 0 (and of course 0 ≤ φ ≤ π ).

The corresponding values of φ are

π

2
< 2φ ≤ 3π

2
⇒ π

4
< φ ≤ 3π

4
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Further Insights and Challenges
In Exercises 78–82, a great circle on a sphere S with center O is a circle obtained by intersecting S with a plane that
passes through O (Figure 17). If P and Q are not antipodal (on opposite sides), there is a unique great circle through P

and Q on S (intersect S with the plane through O, P , and Q). The geodesic distance from P to Q is defined as the length
of the smaller of the two circular arcs of this great circle.

Great circle
through P and Q

Smaller circle

FIGURE 17

Show that the geodesic distance from P to Q is equal to Rψ , where ψ is the central angle between P and Q (the

angle between the vectors v = −→
OP and u = −−→

OQ).

79. Show that the geodesic distance from Q = (a, b, c) to the North Pole P = (0, 0, R) is equal to R cos−1
( c

R

)
.

solution Let ψ be the central angle between P and Q, that is, the angle between the vectors v = −→
OP and u = −−→

OQ.
By Exercise 78 the geodesic distance from P to Q is Rψ . We find ψ . By the formula for the cosine of the angle between
two vectors, we have

cos ψ = u · v
‖u‖‖v‖ (1)

We compute the values in this quotient:

u · v = 〈0, 0, R〉 · 〈a, b, c〉 = 0 + 0 + Rc = Rc

‖v‖ = ‖−→
OP ‖= R

‖u‖ = ‖−−→OQ‖=
√

a2 + b2 + c2 = R

Substituting in (1) we get

cos ψ = Rc

R2
= c

R
⇒ ψ = cos−1

( c

R

)
The geodesic distance from Q to P is thus

Rψ = R cos−1
( c

R

)

The coordinates of Los Angeles are 34◦ N and 118◦ W. Find the geodesic distance from the North Pole to Los
Angeles, assuming that the earth is a sphere of radius R = 6370 km.

81. Show that the central angle ψ between points P and Q on a sphere (of any radius) with angular coordinates (θ, φ)

and (θ ′, φ′) is equal to

ψ = cos−1(sin φ sin φ′ cos(θ − θ ′) + cos φ cos φ′)
Hint: Compute the dot product of

−→
OP and

−−→
OQ. Check this formula by computing the geodesic distance between the

North and South Poles.

solution We denote the vectors u = −→
OP and v = −−→

OQ. By the formula for the angle between two vectors we have

ψ = cos−1
(

u · v
‖u‖‖v‖

)

Denoting by R the radius of the sphere, we have ‖u‖ = ‖v‖ = R, hence,

ψ = cos−1
(

u · v

R2

)
(1)

The rectangular coordinates of u and v are

u v

x = R sin φ cos θ x′ = R sin φ′ cos θ ′
y = R sin φ sin θ y′ = R sin φ′ sin θ ′
z = R cos φ z′ = R cos φ′
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Hence,

u · v = R2 sin φ cos θ sin φ′ cos θ ′ + R2 sin φ sin θ sin φ′ sin θ ′ + R2 cos φ cos φ′

= R2 [sin φ sin φ′ (cos θ cos θ ′ + sin θ sin θ ′)+ cos φ cos φ′]
We use the identity cos (α − β) = cos α cos β + sin α sin β to obtain

u · v = R2 (sin φ sin φ′ cos
(
θ − θ ′)+ cos φ cos φ′)

Substituting in (1) we obtain

ψ = cos−1 (sin φ sin φ′ cos
(
θ − θ ′)+ cos φ cos φ′) (2)

We now check this formula in the case where P and Q are the north and south poles respectively. In this case θ = θ ′ = 0,
φ = 0, φ′ = π . Substituting in (2) gives

ψ = cos−1 (sin 0 sin π cos 0 + cos 0 cos π) = cos−1(−1) = π

Using Exercise 78, the geodesic distance between the two poles is Rψ = Rπ , in accordance with the formula for the
length of a semicircle.

Use Exercise 81 to find the geodesic distance between LosAngeles (34◦ N, 118◦ W) and Bombay (19◦ N, 72.8◦ E).

CHAPTER REVIEW EXERCISES

In Exercises 1–6, let v = 〈−2, 5〉 and w = 〈3, −2〉.

1. Calculate 5w − 3v and 5v − 3w.

solution We use the definition of basic vector operations to compute the two linear combinations:

5w − 3v = 5〈3, −2〉 − 3〈−2, 5〉 = 〈15, −10〉 + 〈6, −15〉 = 〈21, −25〉
5v − 3w = 5〈−2, 5〉 − 3〈3, −2〉 = 〈−10, 25〉 + 〈−9, 6〉 = 〈−19, 31〉

Sketch v, w, and 2v − 3w.
3. Find the unit vector in the direction of v.

solution The unit vector in the direction of v is

ev = 1

‖v‖v

We compute the length of v:

‖v‖ =
√

(−2)2 + 52 = √
29

Hence,

ev = v
‖v‖ = 〈−2, 5〉√

29
=
〈 −2√

29
,

5√
29

〉
.

Find the length of v + w.
5. Express i as a linear combination rv + sw.

solution We use basic properties of vector algebra to write

i = rv + sw (1)

〈1, 0〉 = r〈−2, 5〉 + s〈3, −2〉 = 〈−2r + 3s, 5r − 2s〉
The vector are equivalent, hence,

1 = −2r + 3s

0 = 5r − 2s

The second equation implies that s = 5
2 r . We substitute in the first equation and solve for r:

1 = −2r + 3 · 5

2
r

1 = 11

2
r

r = 2

11
⇒ s = 5

2
· 2

11
= 5

11
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Substituting in (1) we obtain

i = 2

11
v + 5

11
w.

Find a scalar α such that ‖v + αw‖ = 6.7. If P = (1, 4) and Q = (−3, 5), what are the components of
−→
PQ? What is the length of

−→
PQ?

solution By the Definition of Components of a Vector we have

−→
PQ = 〈−3 − 1, 5 − 4〉 = 〈−4, 1〉

The length of
−→
PQ is

∥∥−→
PQ

∥∥ =
√

(−4)2 + 12 = √
17.

Let A = (2, −1), B = (1, 4), and P = (2, 3). Find the point Q such that
−→
PQ is equivalent to

−→
AB. Sketch

−→
PQ

and
−→
AB.

9. Find the vector with length 3 making an angle of 7π
4 with the positive x-axis.

solution We denote the vector by v = 〈a, b〉. v makes an angle θ = 7π
4 with the x-axis, and its length is 3, hence,

a = ‖v‖ cos θ = 3 cos
7π

4
= 3√

2

b = ‖v‖ sin θ = 3 sin
7π

4
= − 3√

2

That is,

v = 〈a, b〉 =
〈

3√
2
, − 3√

2

〉
.

Calculate 3 (i − 2j) − 6 (i + 6j).
11. Find the value of β for which w = 〈−2, β〉 is parallel to v = 〈4, −3〉.
solution If v = 〈4, −3〉 and w = 〈−2, β〉 are parallel, there exists a scalar λ such that w = λv. That is,

〈−2, β〉 = λ〈4,−3〉 = 〈4λ, −3λ〉
yielding

−2 = 4λ and β = −3λ

These equations imply that λ = −1
2 and λ = −β

3 . Equating the two expressions for λ gives

−1

2
= −β

3
or β = 3

2
.

Let P = (1, 4, −3).

(a) Find the point Q such that
−→
PQ is equivalent to 〈3, −1, 5〉.

(b) Find a unit vector e equivalent to
−→
PQ.

13. Let w = 〈2, −2, 1〉 and v = 〈4, 5, −4〉. Solve for u if v + 5u = 3w − u.

solution Using vector algebra we have

v + 5u = 3w − u

6u = 3w − v

u = 1

2
w − 1

6
v =

〈
1, −1,

1

2

〉
−
〈

4

6
,

5

6
, −4

6

〉
=
〈

1

3
, −11

6
,

7

6

〉

Let v = 3i − j + 4k. Find the length of v and the vector 2v + 3 (4i − k).
15. Find a parametrization r1(t) of the line passing through (1, 4, 5) and (−2, 3, −1). Then find a parametrization r2(t)

of the line parallel to r1 passing through (1, 0, 0).

solution Since the points P = (−2, 3, −1) and Q = (1, 4, 5) are on the line l1, the vector
−→
PQ is a direction vector

for the line. We find this vector:

−→
PQ = 〈1 − (−2), 4 − 3, 5 − (−1)〉 = 〈3, 1, 6〉

Substituting v = 〈3, 1, 6〉 and P0 = 〈1, 4, 5〉 in the vector parametrization of the line we obtain the following equation
for l1:

r1(t) = −−→
OP0 + tv

r1(t) = 〈1, 4, 5〉 + t〈3, 1, 6〉 = 〈1 + 3t, 4 + t, 5 + 6t〉



May 16, 2011

242 C H A P T E R 12 VECTOR GEOMETRY (LT CHAPTER 13)

The line l2 is parallel to l1, hence
−→
PQ = 〈3, 1, 6〉 is also a direction vector for l2. Substituting v = 〈3, 1, 6〉 and

P0 = (1, 0, 0) in the vector parametrization of the line we obtain the following equation for l2:

r2(t) = −−→
OP0 + tv

r2(t) = 〈1, 0, 0〉 + t〈3, 1, 6〉 = 〈1 + 3t, t, 6t〉

Let r1(t) = v1 + tw1 and r2(t) = v2 + tw2 be parametrizations of lines L1 and L2. For each statement (a)–(e),
provide a proof if the statement is true and a counterexample if it is false.

(a) If L1 = L2, then v1 = v2 and w1 = w2.

(b) If L1 = L2 and v1 = v2, then w1 = w2.

(c) If L1 = L2 and w1 = w2, then v1 = v2.

(d) If L1 is parallel to L2, then w1 = w2.

(e) If L1 is parallel to L2, then w1 = λw2 for some scalar λ.

17. Find a and b such that the lines r1 = 〈1, 2, 1〉 + t〈1, −1, 1〉 and r2 = 〈3, −1, 1〉 + t〈a, b,−2〉 are parallel.

solution The lines are parallel if and only if the direction vectors v1 = 〈1, −1, 1〉 and v2 = 〈a, b,−2〉 are parallel.
That is, if and only if there exists a scalar λ such that:

v2 = λv1

〈a, b,−2〉 = λ〈1,−1, 1〉 = 〈λ, −λ, λ〉
We obtain the following equations:

a = λ

b = −λ ⇒ a = −2, b = 2

−2 = λ

Find a such that the lines r1 = 〈1, 2, 1〉 + t〈1, −1, 1〉 and r2 = 〈3, −1, 1〉 + t〈a, 4, −2〉 intersect.
19. Sketch the vector sum v = v1 − v2 + v3 for the vectors in Figure 1(A).

(A)

x

y

v1

v2

v3

(B)

x

y

v1

v2

v3

FIGURE 1

solution Using the Parallelogram Law we obtain the vector sum shown in the figure.

x

y

v1

v1 − v2 + v3

−v2

v2

v3

v'3

v1 − v2

We first add v1 and −v2, then we add v3 to v1 − v2.

Sketch the sums v1 + v2 + v3, v1 + 2v2, and v2 − v3 for the vectors in Figure 1(B).In Exercises 21–26, let v = 〈1, 3, −2〉 and w = 〈2, −1, 4〉.
21. Compute v · w.

solution Using the definition of the dot product we have

v · w = 〈1, 3, −2〉 · 〈2, −1, 4〉 = 1 · 2 + 3 · (−1) + (−2) · 4 = 2 − 3 − 8 = −9

Compute the angle between v and w.
23. Compute v × w.

solution We use the definition of the cross product as a “determinant”:

v × w =
∣∣∣∣∣∣

i j k
1 3 −2
2 −1 4

∣∣∣∣∣∣ =
∣∣∣∣ 3 −2

−1 4

∣∣∣∣ i −
∣∣∣∣ 1 −2

2 4

∣∣∣∣ j +
∣∣∣∣ 1 3

2 −1

∣∣∣∣ k
= (12 − 2)i − (4 + 4)j + (−1 − 6)k = 10i − 8j − 7k = 〈10, −8, −7〉
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Find the area of the parallelogram spanned by v and w.
25. Find the volume of the parallelepiped spanned by v, w, and u = 〈1, 2, 6〉.
solution The volume V of the parallelepiped spanned by v, w and u is the following determinant:

V =
∣∣∣∣∣∣det

⎛
⎝ v

w
u

⎞
⎠
∣∣∣∣∣∣ =

∣∣∣∣∣∣
1 3 −2
2 −1 4
1 2 6

∣∣∣∣∣∣ =
∣∣∣∣1 ·
∣∣∣∣ −1 4

2 6

∣∣∣∣− 3

∣∣∣∣ 2 4
1 6

∣∣∣∣− 2

∣∣∣∣ 2 −1
1 2

∣∣∣∣
∣∣∣∣

= |1 · (−6 − 8) − 3(12 − 4) − 2(4 + 1)| = 48

Find all the vectors orthogonal to both v and w.
27. Use vectors to prove that the line connecting the midpoints of two sides of a triangle is parallel to the third side.

solution Let E and F be the midpoints of sides AC and BC in a triangle ABC (see figure).

C

F

A E

B

We must show that
−→
EF ‖ −→

AB

Using the Parallelogram Law we have

−→
EF = −→

EA + −→
AB + −→

BF (1)

By the definition of the points E and F ,

−→
EA = 1

2
−→
CA; −→

BF = 1

2
−→
BC

We substitute (1) to obtain

−→
EF = 1

2
−→
CA + −→

AB + 1

2
−→
BC = −→

AB + 1

2

(−→
CA + −→

BC
)

= −→
AB + 1

2

(−→
BC + −→

CA
) = −→

AB + 1

2
−→
BA = −→

AB − 1

2
−→
AB = 1

2
−→
AB

Therefore,
−→
EF is a constant multiple of

−→
AB, which implies that

−→
EF and

−→
AB are parallel vectors.

Let v = 〈1, −1, 3〉 and w = 〈4, −2, 1〉.
(a) Find the decomposition v = v‖ + v⊥ with respect to w.

(b) Find the decomposition w = w‖ + w⊥ with respect to v.

29. Calculate the component of v = 〈− 2, 1
2 , 3
〉

along w = 〈1, 2, 2〉.
solution We first compute the following dot products:

v · w = 〈−2,
1

2
, 3〉 · 〈1, 2, 2〉 = 5

w · w = ‖w‖2 = 12 + 22 + 22 = 9

The component of v along w is the following number:∥∥∥( v · w
w · w

)
w
∥∥∥ = 5

9
‖w‖ = 5

9
· 3 = 5

3

Calculate the magnitude of the forces on the two ropes in Figure 2.
31. A 50-kg wagon is pulled to the right by a force F1 making an angle of 30◦ with the ground. At the same time the
wagon is pulled to the left by a horizontal force F2.

(a) Find the magnitude of F1 in terms of the magnitude of F2 if the wagon does not move.
(b) What is the maximal magnitude of F1 that can be applied to the wagon without lifting it?

solution
(a) By Newton’s Law, at equilibrium, the total force acting on the wagon is zero.

F2

F1

W

N

30°

F^

F||
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We resolve the force F1 into its components:

F1 = F‖ + F⊥

where F‖ is the horizontal component and F⊥ is the vertical component. Since the wagon does not move, the magnitude
of F‖ must be equal to the magnitude of F2. That is,

‖F‖‖ = ‖F1‖ cos 30◦ = ‖F2‖
The above equation gives:

‖F1‖
√

3

2
= ‖F2‖ ⇒ ‖F1‖ = 2‖F2‖√

3

(b) The maximum magnitude of force F1 that can be applied to the wagon without lifting the wagon is found by comparing
the vertical forces:

‖F1‖ sin 30◦ = 9.8 · 50

‖F1‖ · 1

2
= 9.8 · 50 ⇒ ‖F1‖ = 9.8 · 100 = 980 N

Let v, w, and u be the vectors in R3. Which of the following is a scalar?

(a) v × (u + w)

(b) (u + w) · (v × w)

(c) (u × w) + (w − v)

In Exercises 33–36, let v = 〈1, 2, 4〉, u = 〈6, −1, 2〉, and w = 〈1, 0, −3〉. Calculate the given quantity.

33. v × w

solution We use the definition of the cross product as a determinant to compute v × w:

v × w =
∣∣∣∣∣∣

i j k
1 2 4
1 0 −3

∣∣∣∣∣∣ =
∣∣∣∣ 2 4

0 −3

∣∣∣∣ i −
∣∣∣∣ 1 4

1 −3

∣∣∣∣ j +
∣∣∣∣ 1 2

1 0

∣∣∣∣ k
= (−6 − 0)i − (−3 − 4)j + (0 − 2)k = −6i + 7j − 2k = 〈−6, 7, −2〉

w × u
35. det

⎛
⎝ u

v
w

⎞
⎠

solution We compute the determinant:

det

⎛
⎝ u

v
w

⎞
⎠ =

∣∣∣∣∣∣
6 −1 2
1 2 4
1 0 −3

∣∣∣∣∣∣ = 6 ·
∣∣∣∣ 2 4

0 −3

∣∣∣∣+ 1 ·
∣∣∣∣ 1 4

1 −3

∣∣∣∣+ 2

∣∣∣∣ 1 2
1 0

∣∣∣∣
= 6 · (−6 − 0) + 1 · (−3 − 4) + 2 · (0 − 2) = −47

v · (u × w)
37. Use the cross product to find the area of the triangle whose vertices are (1, 3, −1), (2, −1, 3), and (4, 1, 1).

solution Let A = (1, 3, −1), B = (2, −1, 3) and C = (4, 1, 1).

y

x

z

A = (1, 3, −1)

B = (2, −1, 3)

C = (4, 1, 1)

The area S of the triangle ABC is half the area of the parallelogram spanned by
−→
AB and

−→
AC. Using the Formula for the

Area of the Parallelogram, we conclude that the area of the triangle is:

S = 1

2

∥∥∥−→AB × −→
AC

∥∥∥ (1)

We first compute the vectors
−→
AB and

−→
AC:

−→
AB = 〈2 − 1, −1 − 3, 3 − (−1)〉 = 〈1, −4, 4〉
−→
AC = 〈4 − 1, 1 − 3, 1 − (−1)〉 = 〈3, −2, 2〉



May 16, 2011

Chapter Review Exercises 245

We compute the cross product of the two vectors:

−→
AB × −→

AC =
∣∣∣∣∣∣

i j k
1 −4 4
3 −2 2

∣∣∣∣∣∣ =
∣∣∣∣ −4 4

−2 2

∣∣∣∣ i −
∣∣∣∣ 1 4

3 2

∣∣∣∣ j +
∣∣∣∣ 1 −4

3 −2

∣∣∣∣ k
= (−8 − (−8))i − (2 − 12)j + (−2 − (−12))k

= 10j + 10k = 〈0, 10, 10〉 = 10〈0, 1, 1〉

The length of
−→
AB × −→

AC is, thus:∥∥−→AB × −→
AC
∥∥ = ‖10〈0, 1, 1〉‖ = 10‖〈0, 1, 1〉‖ = 10

√
02 + 12 + 12 = 10

√
2

Substituting in (1) gives the following area:

S = 1

2
· 10

√
2 = 5

√
2.

Calculate ‖v × w‖ if ‖v‖ = 2, v · w = 3, and the angle between v and w is π
6 .

39. Show that if the vectors v, w are orthogonal, then ‖v + w‖2 = ‖v‖2 + ‖w‖2.

solution The vectors v and w are orthogonal, hence:

v · w = 0 (1)

Using the relation of the dot product with length and properties of the dot product we obtain:

‖v + w‖2 = (v + w) · (v + w) = v · (v + w) + w · (v + w)

= v · v + v · w + w · v + w · w = ‖v‖2 + 2v · w + ‖w‖2 (2)

Combining (1) and (2) we get:

‖v + w‖2 = ‖v‖2 + ‖w‖2.

Find the angle between v and w if ‖v + w‖ = ‖v‖ = ‖w‖.41. Find ‖e − 4f‖, assuming that e and f are unit vectors such that ‖e + f‖ = √
3.

solution We use the relation of the dot product with length and properties of the dot product to write

3 = ‖e + f‖2 = (e + f) · (e + f) = e · e + e · f + f · e + f · f

= ‖e‖2 + 2e · f + ‖f‖2 = 12 + 2e · f + 12 = 2 + 2e · f

We now find e · f :

3 = 2 + 2e · f ⇒ e · f = 1/2

Hence, using the same method as above, we have:

‖e − 4f‖2 = (e − 4f) · (e − 4f)

= ‖e‖2 − 2 · e · 4f + ‖4f‖2 = 12 − 8e · f + 42 = 17 − 4 = 13

Taking square roots, we get:

‖e − 4f‖ = √
13

Find the area of the parallelogram spanned by vectors v and w such that ‖v‖ = ‖w‖ = 2 and v · w = 1.
43. Show that the equation 〈1, 2, 3〉 × v = 〈−1, 2, a〉 has no solution for a �= −1.

solution By properties of the cross product, the vector 〈−1, 2, a〉 is orthogonal to 〈1, 2, 3〉, hence the dot product of
these vectors is zero. That is:

〈−1, 2, a〉 · 〈1, 2, 3〉 = 0

We compute the dot product and solve for a:

−1 + 4 + 3a = 0

3a = −3 ⇒ a = −1

We conclude that if the given equation is solvable, then a = −1.

Prove with a diagram the following: If e is a unit vector orthogonal to v, then e × (v × e) = (e × v) × e = v.
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45. Use the identity

u × (v × w) = (u · w) v − (u · v) w

to prove that

u × (v × w) + v × (w × u) + w × (u × v) = 0

solution The given identity implies that:

u × (v × w) = (u · w) v − (u · v) w

v × (w × u) = (v · u) w − (v · w) u

w × (u × v) = (w · v) u − (w · u) v

Adding the three equations and using the commutativity of the dot product we find that:

u × (v × w) + v × (w × u) + w × (u × v)

= (u · w − w · u) v + (v · u − u · v) w + (w · v − v · w) u = 0

Find an equation of the plane through (1, −3, 5) with normal vector n = 〈2, 1, −4〉.47. Write the equation of the plane P with vector equation

〈1, 4,−3〉 · 〈x, y, z〉 = 7

in the form

a (x − x0) + b (y − y0) + c (z − z0) = 0

Hint: You must find a point P = (x0, y0, z0) on P .

solution We identify the vector n = 〈a, b, c〉 = 〈1, 4, −3〉 that is normal to the plane, hence we may choose,

a = 1, b = 4, c = −3.

We now must find a point in the plane. The point (x0, y0, z0) = (0, 1, −1), for instance, satisfies the equation of the plane,
therefore the equation may be written in the form:

1(x − 0) + 4(y − 1) − 3(z − (−1)) = 0

or

(x − 0) + 4(y − 1) − 3(z + 1) = 0

Find all the planes parallel to the plane passing through the points (1, 2, 3), (1, 2, 7), and (1, 1, −3).
49. Find the plane through P = (4, −1, 9) containing the line r(t) = 〈1, 4, −3〉 + t〈2, 1, 1〉.
solution Since the plane contains the line, the direction vector of the line, v = 〈2, 1, 1〉, is in the plane. To find another
vector in the plane, we use the points A = (1, 4, −3) and B = (4, −1, 9) that lie in the plane, and compute the vector

u = −→
AB:

u = −→
AB = 〈4 − 1, −1 − 4, 9 − (−3)〉 = 〈3, −5, 12〉

We now compute the cross product n = v × u that is normal to the plane:

n = v × u =
∣∣∣∣∣∣

i j k
2 1 1
3 −5 12

∣∣∣∣∣∣ =
∣∣∣∣ 1 1

−5 12

∣∣∣∣ i −
∣∣∣∣ 2 1

3 12

∣∣∣∣ j +
∣∣∣∣ 2 1

3 −5

∣∣∣∣ k
= (12 + 5)i − (24 − 3)j + (−10 − 3)k = 17i − 21j − 13k = 〈17, −21, −13〉

Finally, we use the vector form of the equation of the plane with n = 〈17, −21, −13〉 and P0 = (4, −1, 9) to obtain the
following equation:

n · 〈x, y, z〉 = n · 〈x0, y0, z0〉
〈17, −21, −13〉 · 〈x, y, z〉 = 〈17, −21, −13〉 · 〈4, −1, 9〉

17x − 21y − 13z = 17 · 4 + 21 − 13 · 9 = −28

The equation of the plane is, thus,

17x − 21y − 13z = −28.

Find the intersection of the line r(t) = 〈3t + 2, 1, −7t〉 and the plane 2x − 3y + z = 5.
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51. Find the trace of the plane 3x − 2y + 5z = 4 in the xy-plane.

solution The xy-plane has equation z = 0, therefore the intersection of the plane 3x − 2y + 5z = 4 with the xy-plane
must satisfy both z = 0 and the equation of the plane. Therefore the trace has the following equation:

3x − 2y + 5 · 0 = 4 ⇒ 3x − 2y = 4

We conclude that the trace of the plane in the xy-plane is the line 3x − 2y = 4 in the xy-plane.

Find the intersection of the planes x + y + z = 1 and 3x − 2y + z = 5.In Exercises 53–58, determine the type of the quadric surface.

53.
(x

3

)2 +
(y

4

)2 + 2z2 = 1

solution Writing the equation in the form:

(x

3

)2 +
(y

4

)2 +
⎛
⎝ z

1√
2

⎞
⎠2

= 1

we identify the quadric surface as an ellipsoid.

(x

3

)2 −
(y

4

)2 + 2z2 = 1
55.

(x

3

)2 +
(y

4

)2 − 2z = 0

solution We rewrite this equation as:

2z =
(x

3

)2 +
(y

4

)2

or

z =
(

x

3
√

2

)2
+
(

y

4
√

2

)2

This is the equation of an elliptic paraboloid.

(x

3

)2 −
(y

4

)2 − 2z = 0
57.

(x

3

)2 −
(y

4

)2 − 2z2 = 0

solution This equation may be rewritten in the form

(x

3

)2 −
(y

4

)2 =
⎛
⎝ z

1√
2

⎞
⎠2

we identify the quadric surface as an elliptic cone.

(x

3

)2 −
(y

4

)2 − 2z2 = 1
59. Determine the type of the quadric surface ax2 + by2 − z2 = 1 if:

(a) a < 0, b < 0
(b) a > 0, b > 0
(c) a > 0, b < 0

solution

(a) If a < 0, b < 0 then for all x, y and z we have ax2 + by2 − z2 < 0, hence there are no points that satisfy
ax2 + by2 − z2 = 1. Therefore it is the empty set.
(b) For a > 0 and b > 0 we rewrite the equation as⎛

⎝ x

1√
a

⎞
⎠2

+
⎛
⎝ y

1√
b

⎞
⎠2

− z2 = 1

which is the equation of a hyperboloid of one sheet.
(c) For a > 0, b < 0 we rewrite the equation in the form⎛

⎝ x

1√
a

⎞
⎠2

−
⎛
⎝ y

1√|b|

⎞
⎠2

− z2 = 1

which is the equation of a hyperboloid of two sheets.

Describe the traces of the surface (x

2

)2 − y2 +
( z

2

)2 = 1

in the three coordinate planes.

61. Convert (x, y, z) = (3, 4, −1) from rectangular to cylindrical and spherical coordinates.

solution In cylindrical coordinates (r, θ, z) we have

r =
√

x2 + y2, tan θ = y

x
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Therefore, r =
√

32 + 42 = 5 and tan θ = 4
3 . The projection of the point (3, 4, −1) onto the xy-plane is the point (3, 4),

in the first quadrant. Therefore, the corresponding value of θ is tan−1 4
3 ≈ 0.93 rad. The cylindrical coordinates are, thus,

(r, θ, z) =
(

5, tan−1 4

3
, −1

)
The spherical coordinates (ρ, θ, φ) satisfy

ρ =
√

x2 + y2 + z2, tan θ = y

x
, cos φ = z

ρ

Therefore,

ρ =
√

32 + 42 + (−1)2 = √
26

tan θ = 4

3

cos φ = −1√
26

The angle θ is the same as in the cylindrical coordinates, that is, θ = tan−1 4
3 . The angle φ is the solution of cos φ = −1√

26

that satisfies 0 ≤ φ ≤ π , that is, φ = cos1
( −1√

26

)
≈ 1.77 rad. The spherical coordinates are, thus,

(ρ, θ, φ) =
(√

26, tan−1 4

3
, cos−1

( −1√
26

))
.

Convert (r, θ, z) = (3, π
6 , 4

)
from cylindrical to spherical coordinates.

63. Convert the point (ρ, θ, φ) = (3, π
6 , π

3

)
from spherical to cylindrical coordinates.

solution By the given information, ρ = 3, θ = π
6 , and φ = π

3 . We must determine the cylindrical coordinates
(r, θ, z). The angle θ is the same as in spherical coordinates. We find z using the relation cos φ = z

ρ , or z = ρ cos φ. We
obtain

z = ρ cos φ = 3 cos
π

3
= 3 · 1

2
= 3

2

We find r using the relation ρ2 = x2 + y2 + z2 = r2 + z2, or r =
√

ρ2 − z2, we get

r =
√

32 −
(

3

2

)2
=
√

27

4
= 3

√
3

2

Hence, in cylindrical coordinates we obtain the following description:

(r, θ, z) =
(

3
√

3

2
,
π

6
,

3

2

)
.

Describe the set of all points P = (x, y, z) satisfying x2 + y2 ≤ 4 in both cylindrical and spherical coordinates.
65. Sketch the graph of the cylindrical equation z = 2r cos θ and write the equation in rectangular coordinates.

solution To obtain the equation in rectangular coordinates, we substitute x = r cos θ in the equation z = 2r cos θ :

z = 2r cos θ = 2x ⇒ z = 2x

This is the equation of a plane normal to the xz-plane, whose intersection with the xz-plane is the line z = 2x. The graph
of the plane is shown in the following figure (the same plane drawn twice, using the cylindrical coordinates’ equation and
using the rectangular coordinates’ equation):

4

2

2

2

−4

y

x

z

4

2

2

2

−4

y

x

z



May 16, 2011

Chapter Review Exercises 249

Write the surface x2 + y2 − z2 = 2 (x + y) as an equation r = f (θ, z) in cylindrical coordinates.
67. Show that the cylindrical equation

r2(1 − 2 sin2 θ) + z2 = 1

is a hyperboloid of one sheet.

solution We rewrite the equation in the form

r2 − 2(r sin θ)2 + z2 = 1

To write this equation in rectangular coordinates, we substitute r2 = x2 + y2 and r sin θ = y. This gives

x2 + y2 − 2y2 + z2 = 1

x2 − y2 + z2 = 1

We now can identify the surface as a hyperboloid of one sheet.

Sketch the graph of the spherical equation ρ = 2 cos θ sin φ and write the equation in rectangular coordinates.69. Describe how the surface with spherical equation

ρ2(1 + A cos2 φ) = 1

depends on the constant A.

solution To identify the surface we convert the equation to rectangular coordinates. We write

ρ2 + Aρ2 cos2 φ = 1

To obtain the following equation in terms of x, y, z only, we substitute ρ2 = x2 + y2 + z2 and ρ cos φ = z:

x2 + y2 + z2 + Az2 = 1

x2 + y2 + (1 + A)z2 = 1 (1)

Case 1: A < −1. Then A + 1 < 0 and the equation can be rewritten in the form

x2 + y2 −
(

z

|1 + A|−1/2

)2
= 1

The corresponding surface is a hyperboloid of one sheet.
Case 2: A = −1. Equation (1) becomes:

x2 + y2 = 1

In R3, this equation describes a cylinder with the z-axis as its central axis.
Case 3: A > −1. Then equation (1) can be rewritten as

x2 + y2 +
(

z

(1 + A)−1/2

)2
= 1

Then if A = 0 the equation x2 + y2 + z2 = 1 describes the unit sphere in R3. Otherwise, the surface is an ellipsoid.

Show that the spherical equation cot φ = 2 cos θ + sin θ defines a plane through the origin (with the origin
excluded). Find a normal vector to this plane.

71. Let c be a scalar, let a and b be vectors, and let X = 〈x, y, z〉. Show that the equation (X − a) · (X − b) = c2 defines

a sphere with center m = 1
2 (a + b) and radius R, where R2 = c2 + ∥∥ 1

2 (a − b)
∥∥2.

solution We evaluate the following length:

‖x − m‖2 =
∥∥∥∥x − 1

2
(a + b)

∥∥∥∥2
=
(

(x − a) + 1

2
(a − b)

)
·
(

(x − b) − 1

2
(a − b)

)

= (x − a) · (x − b) − 1

2
(x − a) · (a − b) + 1

2
(a − b) · (x − b) − 1

4
(a − b) · (a − b)

= (x − a) · (x − b) + 1

2
(a − b) · (x − b − x + a) − 1

4
(a − b) · (a − b)

= (x − a) · (x − b) + 1

2
(a − b) · (a − b) − 1

4
(a − b) · (a − b)

= (x − a) · (x − b) + 1

4
(a − b) · (a − b)

= (x − a) · (x − b) +
∥∥∥∥1

2
(a − b)

∥∥∥∥2

Since R2 = c2 + ‖ 1
2 (a − b) ‖2

we get

‖x − m‖2 = (x − a) · (x − b) + R2 − c2

We conclude that if (x − a) (x − b) = c2 then ‖x − m‖2 = R2. That is, the equation (x − a) (x − b) = c2 defines a
sphere with center m and radius R.



May 16, 2011

13 CALCULUS OF
VECTOR-VALUED
FUNCTIONS

13.1 Vector-Valued Functions (LT Section 14.1)

Preliminary Questions
1. Which one of the following does not parametrize a line?

(a) r1(t) = 〈8 − t, 2t, 3t〉
(b) r2(t) = t3i − 7t3j + t3k
(c) r3(t) = 〈

8 − 4t3, 2 + 5t2, 9t3〉
solution
(a) This is a parametrization of the line passing through the point (8, 0, 0) in the direction parallel to the vector 〈−1, 2, 3〉,
since:

〈8 − t, 2t, 3t〉 = 〈8, 0, 0〉 + t 〈−1, 2, 3〉
(b) Using the parameter s = t3 we get:〈

t3, −7t3, t3〉 = 〈s, −7s, s〉 = s 〈1, −7, 1〉
This is a parametrization of the line through the origin, with the direction vector v = 〈−1, 7, 1〉.
(c) The parametrization

〈
8 − 4t3, 2 + 5t2, 9t3〉 does not parametrize a line. In particular, the points (8, 2, 0) (at t = 0),

(4, 7, 9) (at t = 1), and (−24, 22, 72) (at t = 2) are not collinear.

2. What is the projection of r(t) = t i + t4j + etk onto the xz-plane?

solution The projection of the path onto the xz-plane is the curve traced by t i + etk = 〈
t, 0, et

〉
. This is the curve

z = ex in the xz-plane.

3. Which projection of 〈cos t, cos 2t, sin t〉 is a circle?

solution The parametric equations are

x = cos t, y = cos 2t, z = sin t

The projection onto the xz-plane is 〈cos t, 0, sin t〉. Since x2 + z2 = cos2 t + sin2 t = 1, the projection is a circle in the
xz-plane. The projection onto the xy-plane is traced by the curve 〈cos t, cos 2t, 0〉. Therefore, x = cos t and y = cos 2t .
We express y in terms of x:

y = cos 2t = 2 cos2 t − 1 = 2x2 − 1

The projection onto the xy-plane is a parabola. The projection onto the yz-plane is the curve 〈0, cos 2t, sin t〉. Hence
y = cos 2t and z = sin t . We find y as a function of z:

y = cos 2t = 1 − 2 sin2 t = 1 − 2z2

The projection onto the yz-plane is again a parabola.

4. What is the center of the circle with parametrization

r(t) = (−2 + cos t)i + 2j + (3 − sin t)k?

solution The parametric equations are

x = −2 + cos t, y = 2, z = 3 − sin t

Therefore, the curve is contained in the plane y = 2, and the following holds:

(x + 2)2 + (z − 3)2 = cos2 t + sin2 t = 1

We conclude that the curve r(t) is the circle of radius 1 in the plane y = 2 centered at the point (−2, 2, 3).

250



May 16, 2011

S E C T I O N 13.1 Vector-Valued Functions (LT SECTION 14.1) 251

5. How do the paths r1(t) = 〈cos t, sin t〉 and r2(t) = 〈sin t, cos t〉 around the unit circle differ?

solution The two paths describe the unit circle. However, as t increases from 0 to 2π , the point on the path sin t i + cos tj
moves in a clockwise direction, whereas the point on the path cos t i + sin tj moves in a counterclockwise direction.

6. Which three of the following vector-valued functions parametrize the same space curve?

(a) (−2 + cos t)i + 9j + (3 − sin t)k (b) (2 + cos t)i − 9j + (−3 − sin t)k
(c) (−2 + cos 3t)i + 9j + (3 − sin 3t)k (d) (−2 − cos t)i + 9j + (3 + sin t)k
(e) (2 + cos t)i + 9j + (3 + sin t)k

solution All the curves except for (b) lie in the vertical plane y = 9. We identify each one of the curves (a), (c), (d)
and (e).

(a) The parametric equations are:

x = −2 + cos t, y = 9, z = 3 − sin t

Hence,

(x + 2)2 + (z − 3)2 = (cos t)2 + (− sin t)2 = 1

This is the circle of radius 1 in the plane y = 9, centered at (−2, 9, 3).

(c) The parametric equations are:

x = −2 + cos 3t, y = 9, z = 3 − sin 3t

Hence,

(x + 2)2 + (z − 3)2 = (cos 3t)2 + (− sin 3t)2 = 1

This is the circle of radius 1 in the plane y = 9, centered at (−2, 9, 3).

(d) In this curve we have:

x = −2 − cos t, y = 9, z = 3 + sin t

Hence,

(x + 2)2 + (z − 3)2 = (− cos t)2 + (sin t)2 = 1

Again, the circle of radius 1 in the plane y = 9, centered at (−2, 9, 3).

(e) In this parametrization we have:

x = 2 + cos t, y = 9, z = 3 + sin t

Hence,

(x − 2)2 + (z − 3)2 = (cos t)2 + (sin t)2 = 1

This is the circle of radius 1 in the plane y = 9, centered at (2, 9, 3).

We conclude that (a), (c) and (d) parametrize the same circle whereas (b) and (e) are different curves.

Exercises
1. What is the domain of r(t) = et i + 1

t
j + (t + 1)−3k?

solution r(t) is defined for t �= 0 and t �= −1, hence the domain of r(t) is:

D = {t ∈ R : t �= 0, t �= −1}

What is the domain of r(s) = es i + √
sj + cos sk?3. Evaluate r(2) and r(−1) for r(t) =

〈
sin π

2 t, t2, (t2 + 1)−1
〉
.

solution Since r(t) =
〈
sin π

2 t, t2, (t2 + 1)−1
〉
, then

r(2) =
〈
sin π, 4, 5−1

〉
=

〈
0, 4,

1

5

〉

and

r(−1) =
〈
sin

−π

2
, 1, 2−1

〉
=

〈
−1, 1,

1

2

〉
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Does either of P = (4, 11, 20) or Q = (−1, 6, 16) lie on the path r(t) = 〈
1 + t, 2 + t2, t4〉?5. Find a vector parametrization of the line through P = (3, −5, 7) in the direction v = 〈3, 0, 1〉.

solution We use the vector parametrization of the line to obtain:

r(t) = −→
OP + tv = 〈3, −5, 7〉 + t 〈3, 0, 1〉 = 〈3 + 3t, −5, 7 + t〉

or in the form:

r(t) = (3 + 3t)i − 5j + (7 + t)k, −∞ < t < ∞

Find a direction vector for the line with parametrization r(t) = (4 − t)i + (2 + 5t)j + 1
2 tk.

7. Match the space curves in Figure 8 with their projections onto the xy-plane in Figure 9.

y

x

z

y

x

z

y

x

z

(A) (B) (C)

FIGURE 8

(i)

x

y

(ii)

x

y

(iii)

x

y

FIGURE 9

solution The projection of curve (C) onto the xy-plane is neither a segment nor a periodic wave. Hence, the correct
projection is (iii), rather than the two other graphs. The projection of curve (A) onto the xy-plane is a vertical line, hence
the corresponding projection is (ii). The projection of curve (B) onto the xy-plane is a periodic wave as illustrated in (i).

Match the space curves in Figure 8 with the following vector-valued functions:

(a) r1(t) = 〈cos 2t, cos t, sin t〉
(b) r2(t) = 〈t, cos 2t, sin 2t〉
(c) r3(t) = 〈1, t, t〉

9. Match the vector-valued functions (a)–(f) with the space curves (i)–(vi) in Figure 10.

(a) r(t) = 〈
t + 15, e0.08t cos t, e0.08t sin t

〉
(b) r(t) = 〈

cos t, sin t, sin 12t
〉

(c) r(t) =
〈
t, t,

25t

1 + t2

〉
(d) r(t) = 〈

cos3 t, sin3 t, sin 2t
〉

(e) r(t) = 〈
t, t2, 2t

〉
(f) r(t) = 〈

cos t, sin t, cos t sin 12t
〉

y

(i) (ii) (iii)

(iv) (v) (vi)

x

z

y

x

z

y

x

z

y

y

x

x

z

z

y

x

z

FIGURE 10

solution
(a) (v) (b) (i) (c) (ii)

(d) (vi) (e) (iv) (f) (iii)
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Which of the following curves have the same projection onto the xy-plane?

(a) r1(t) = 〈
t, t2, et

〉
(b) r2(t) = 〈

et , t2, t
〉

(c) r3(t) = 〈
t, t2, cos t

〉11. Match the space curves (A)–(C) in Figure 11 with their projections (i)–(iii) onto the xy-plane.

y

y

x
x

(A) (B) (C)

(i) (iii)(ii)

z

y

x

z

y

x

z

z

y

x

z

y

x

z

FIGURE 11

solution Observing the curves and the projections onto the xy-plane we conclude that: Projection (i) corresponds to
curve (C); Projection (ii) corresponds to curve (A); Projection (iii) corresponds to curve (B).

Describe the projections of the circle r(t) = 〈sin t, 0, 4 + cos t〉 onto the coordinate planes.In Exercises 13–16, the function r(t) traces a circle. Determine the radius, center, and plane containing the circle.

13. r(t) = (9 cos t)i + (9 sin t)j

solution Since x(t) = 9 cos t , y(t) = 9 sin t we have:

x2 + y2 = 81 cos2 t + 81 sin2 t = 81(cos2 t + sin2 t) = 81

This is the equation of a circle with radius 9 centered at the origin. The circle lies in the xy-plane.

r(t) = 7i + (12 cos t)j + (12 sin t)k
15. r(t) = 〈sin t, 0, 4 + cos t〉
solution x(t) = sin t , z(t) = 4 + cos t , hence:

x2 + (z − 4)2 = sin2 t + cos2 t = 1

y = 0 is the equation of the xz-plane. We conclude that the function traces the circle of radius 1, centered at the point
(0, 0, 4), and contained in the xz-plane.

r(t) = 〈6 + 3 sin t, 9, 4 + 3 cos t〉17. Let C be the curve r(t) = 〈t cos t, t sin t, t〉.
(a) Show that C lies on the cone x2 + y2 = z2.

(b) Sketch the cone and make a rough sketch of C on the cone.

solution x = t cos t , y = t sin t and z = t , hence:

x2 + y2 = t2 cos2 t + t2 sin2 t = t2(cos2 t + sin2 t
) = t2 = z2.

x2 + y2 = z2 is the equation of a circular cone, hence the curve lies on a circular cone. As the height z = t increases
linearly with time, the x and y coordinates trace out points on the circles of increasing radius. We obtain the following
curve:

x

y

z

r(t) = 〈t cos t, t sin t, t〉
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Use a computer algebra system to plot the projections onto the xy- and xz-planes of the curve r(t) =
〈t cos t, t sin t, t〉 in Exercise 17.

In Exercises 19 and 20, let

r(t) = 〈sin t, cos t, sin t cos 2t〉
as shown in Figure 12.

y

x

z

y

x

z

FIGURE 12

19. Find the points where r(t) intersects the xy-plane.

solution The curve intersects the xy-plane at the points where z = 0. That is, sin t cos 2t = 0 and so either sin t = 0
or cos 2t = 0. The solutions are, thus:

t = πk or t = π

4
+ πk

2
, k = 0, ±1, ±2, . . .

The values t = πk yield the points: (sin πk, cos πk, 0) =
(

0, (−1)k, 0
)

. The values t = π
4 + πk

2 yield the points:

k = 0 :
(

sin
π

4
, cos

π

4
, 0

)
=

(
1√
2
,

1√
2
, 0

)

k = 1 :
(

sin
3π

4
, cos

3π

4
, 0

)
=

(
1√
2
, − 1√

2
, 0

)

k = 2 :
(

sin
5π

4
, cos

5π

4
, 0

)
=

(
− 1√

2
, − 1√

2
, 0

)

k = 3 :
(

sin
7π

4
, cos

7π

4
, 0

)
=

(
− 1√

2
,

1√
2
, 0

)

(Other values of k do not provide new points). We conclude that the curve intersects the xy-plane at the following points:

(0, 1, 0), (0, −1, 0),
(

1√
2
, 1√

2
, 0

)
,
(

1√
2
, − 1√

2
, 0

)
,
(
− 1√

2
, − 1√

2
, 0

)
,
(
− 1√

2
, 1√

2
, 0

)
Show that the projection of r(t) onto the xz-plane is the curve

z = x − 2x3 for − 1 ≤ x ≤ 1

21. Parametrize the intersection of the surfaces

y2 − z2 = x − 2, y2 + z2 = 9

using t = y as the parameter (two vector functions are needed as in Example 3).

solution We solve for z and x in terms of y. From the equation y2 + z2 = 9 we have z2 = 9 − y2 or z = ±
√

9 − y2.
From the second equation we have:

x = y2 − z2 + 2 = y2 − (
9 − y2) + 2 = 2y2 − 7

Taking t = y as a parameter, we have z = ±
√

9 − t2, x = 2t2 − 7, yielding the following vector parametrization:

r(t) =
〈
2t2 − 7, t, ±

√
9 − t2

〉
, for − 3 ≤ t ≤ 3.

Find a parametrization of the curve in Exercise 21 using trigonometric functions.
23. Viviani’s Curve C is the intersection of the surfaces (Figure 13)

x2 + y2 = z2, y = z2

(a) Parametrize each of the two parts of C corresponding to x ≥ 0 and x ≤ 0, taking t = z as parameter.

(b) Describe the projection of C onto the xy-plane.

(c) Show that C lies on the sphere of radius 1 with center (0, 1, 0). This curve looks like a figure eight lying on a sphere
[Figure 13(B)].
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y

y = z2
Viviani's curve

(A) (B)  Viviani’s curve viewed
          from the negative y-axis.

x

x2 + y2 = z2

z

FIGURE 13 Viviani’s curve is the intersection of the surfaces x2 + y2 = z2 and y = z2.

solution

(a) We must solve for y and x in terms of z (which is a parameter). We get:

y = z2

x2 = z2 − y2 ⇒ x = ±
√

z2 − y2 = ±
√

z2 − z4

Here, the ± from x = ±
√

z2 − z4 represents the two parts of the parametrization: + for x ≥ 0, and − for x ≤ 0.
Substituting the parameter z = t we get:

y = t2, x = ±
√

t2 − t4 = ±t
√

1 − t2.

We obtain the following parametrization:

r(t) =
〈
±t

√
1 − t2, t2, t

〉
for − 1 ≤ t ≤ 1 (1)

(b) The projection of the curve onto the xy-plane is the curve on the xy-plane obtained by setting the z-coordinate of
r(t) equal to zero. We obtain the following curve:〈

±t
√

1 − t2, t2, 0
〉
, −1 ≤ t ≤ 1

We also note that since x = ±t
√

1 − t2, then x2 = t2(1 − t2), but also y = t2, so that gives us the equation x2 = y(1 − y)

for the projection onto the xy plane. We rewrite this as follows.

x2 = y(1 − y) ⇒ x2 + y2 − y = 0

x2 + y2 − y + 1/4 = 1/4

x2 + (y − 1/2)2 = (1/2)2

We can now identify this projection as a circle in the xy plane, with radius 1/2, centered at the xy point (0, 1/2).

(c) The equation of the sphere of radius 1 with center (0, 1, 0) is:

x2 + (y − 1)2 + z2 = 1 (2)

To show that C lies on this sphere, we show that the coordinates of the points on C (given in (1)) satisfy the equation of
the sphere. Substituting the coordinates from (1) into the left side of (2) gives:

x2 + (y − 1)2 + z2 =
(
±t

√
1 − t2

)2 + (t2 − 1)2 + t2 = t2(1 − t2) + (t2 − 1)2 + t2

= (t2 − 1)(t2 − 1 − t2) + t2 = 1

We conclude that the curve C lies on the sphere of radius 1 with center (0, 1, 0).

Show that any point on x2 + y2 = z2 can be written in the form (z cos θ, z sin θ, z) for some θ . Use this to find a
parametrization of Viviani’s curve (Exercise 23) with θ as parameter.

25. Use sine and cosine to parametrize the intersection of the cylinders x2 + y2 = 1 and x2 + z2 = 1 (use two
vector-valued functions). Then describe the projections of this curve onto the three coordinate planes.

solution The circle x2 + z2 = 1 in the xz-plane is parametrized by x = cos t , z = sin t , and the circle x2 + y2 = 1
in the xy-plane is parametrized by x = cos s, y = sin s. Hence, the points on the cylinders can be written in the form:

x2 + z2 = 1: 〈cos t, y, sin t〉 , 0 ≤ t ≤ 2π

x2 + y2 = 1: 〈cos s, sin s, z〉 , 0 ≤ t ≤ 2π
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The points (x, y, z) on the intersection of the two cylinders must satisfy the following equations:

cos t = cos s

y = sin s

z = sin t

The first equation implies that s = ±t + 2πk. Substituting in the second equation gives y = sin (±t + 2πk) = sin (±t) =
± sin t . Hence, x = cos t , y = ± sin t , z = sin t . We obtain the following vector parametrization of the intersection:

r(t) = 〈cos t, ± sin t, sin t〉
The projection of the curve on the xy-plane is traced by 〈cos t, ± sin t, 0〉 which is the unit circle in this plane. The
projection of the curve on the xz-plane is traced by 〈cos t, 0, sin t〉 which is the unit circle in the xz-plane. The projection
of the curve on the yz-plane is traced by 〈0, ± sin t, sin t〉 which is the two segments z = y and z = −y for −1 ≤ y ≤ 1.

Use hyperbolic functions to parametrize the intersection of the surfaces x2 − y2 = 4 and z = xy.
27. Use sine and cosine to parametrize the intersection of the surfaces x2 + y2 = 1 and z = 4x2 (Figure 14).

y

x

z

FIGURE 14 Intersection of the surfaces x2 + y2 = 1 and z = 4x2.

solution The points on the cylinder x2 + y2 = 1 and on the parabolic cylinder z = 4x2 can be written in the form:

x2 + y2 = 1: 〈cos t, sin t, z〉
z = 4x2:

〈
x, y, 4x2

〉
The points (x, y, z) on the intersection curve must satisfy the following equations:

x = cos t

y = sin t

z = 4x2
⇒ x = cos t, y = sin t, z = 4 cos2 t

We obtain the vector parametrization:

r(t) = 〈
cos t, sin t, 4 cos2 t

〉
, 0 ≤ t ≤ 2π

Using the CAS we obtain the following curve:

z

–2
x

y

1–1

2

4

2
1–1

r(t) = 〈
cos t, sin t, 4 cos2 t

〉
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In Exercises 28–30, two paths r1(t) and r2(t) intersect if there is a point P lying on both curves. We say that r1(t) and
r2(t) collide if r1(t0) = r2(t0) at some time t0.

Which of the following statements are true?

(a) If r1 and r2 intersect, then they collide.

(b) If r1 and r2 collide, then they intersect.

(c) Intersection depends only on the underlying curves traced by r1 and r2, but collision depends on the actual
parametrizations.

29. Determine whether r1 and r2 collide or intersect:

r1(t) = 〈
t2 + 3, t + 1, 6t−1〉

r2(t) = 〈
4t, 2t − 2, t2 − 7

〉
solution To determine if the paths collide, we must examine whether the following equations have a solution:⎧⎪⎨

⎪⎩
t2 + 3 = 4t

t + 1 = 2t − 2
6

t
= t2 − 7

We simplify to obtain:

t2 − 4t + 3 = (t − 3)(t − 1) = 0

t = 3

t3 − 7t − 6 = 0

The solution of the second equation is t = 3. This is also a solution of the first and the third equations. It follows that
r1(3) = r2(3) so the curves collide. The curves also intersect at the point where they collide. We now check if there are
other points of intersection by solving the following equation:

r1(t) = r2(s)〈
t2 + 3, t + 1,

6

t

〉
= 〈

4s, 2s − 2, s2 − 7
〉

Equating coordinates we get: ⎧⎪⎨
⎪⎩

t2 + 3 = 4s

t + 1 = 2s − 2
6

t
= s2 − 7

By the second equation, t = 2s − 3. Substituting into the first equation yields:

(2s − 3)2 + 3 = 4s

4s2 − 12s + 9 + 3 = 4s

s2 − 4s + 3 = 0 ⇒ s1 = 1, s2 = 3

Substituting s1 = 1 and s2 = 3 into the second equation gives:

t1 + 1 = 2 · 1 − 2 ⇒ t1 = −1

t2 + 1 = 2 · 3 − 2 ⇒ t2 = 3

The solutions of the first two equations are:

t1 = −1, s1 = 1; t2 = 3, s2 = 3

We check if these solutions satisfy the third equation:

6

t1
= 6

−1
= −6, s2

1 − 7 = 12 − 7 = −6 ⇒ 6

t1
= s2

1 − 7

6

t2
= 6

3
= 2, s2

2 − 7 = 32 − 7 = 2 ⇒ 6

t2
= s2

2 − 7

We conclude that the paths intersect at the endpoints of the vectors r1(−1) and r1(3) (or equivalently r2(1) and r2(3)).
That is, at the points (4, 0, −6) and (12, 4, 2).

Determine whether r1 and r2 collide or intersect:

r1(t) = 〈
t, t2, t3〉, r2(t) = 〈

4t + 6, 4t2, 7 − t
〉

In Exercises 31–40, find a parametrization of the curve.

31. The vertical line passing through the point (3, 2, 0)

solution The points of the vertical line passing through the point (3, 2, 0) can be written as (3, 2, z). Using z = t as
parameter we get the following parametrization:

r(t) = 〈3, 2, t〉 , −∞ < t < ∞
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The line passing through (1, 0, 4) and (4, 1, 2)
33. The line through the origin whose projection on the xy-plane is a line of slope 3 and whose projection on the yz-plane
is a line of slope 5 (i.e., �z/�y = 5)

solution We denote by (x, y, z) the points on the line. The projection of the line on the xy-plane is the line through
the origin having slope 3, that is the line y = 3x in the xy-plane. The projection of the line on the yz-plane is the line
through the origin with slope 5, that is the line z = 5y. Thus, the points on the desired line satisfy the following equalities:

y = 3x

z = 5y
⇒ y = 3x, z = 5 · 3x = 15x

We conclude that the points on the line are all the points in the form (x, 3x, 15x). Using x = t as parameter we obtain
the following parametrization:

r(t) = 〈t, 3t, 15t〉 , −∞ < t < ∞.

The horizontal circle of radius 1 with center (2, −1, 4)
35. The circle of radius 2 with center (1, 2, 5) in a plane parallel to the yz-plane

solution The circle is parallel to the yz-plane and centered at (1, 2, 5), hence the x-coordinates of the points on the
circle are x = 1. The projection of the circle on the yz-plane is a circle of radius 2 centered at (2, 5). This circle is
parametrized by:

y = 2 + 2 cos t, z = 5 + 2 sin t

We conclude that the points on the required circle can be written as (1, 2 + 2 cos t, 5 + 2 sin t). This gives the following
parametrization:

r(t) = 〈1, 2 + 2 cos t, 5 + 2 sin t〉 , 0 ≤ t ≤ 2π.

The ellipse
(x

2

)2 +
(y

3

)2 = 1 in the xy-plane, translated to have center (9, −4, 0)

37. The intersection of the plane y = 1
2 with the sphere x2 + y2 + z2 = 1

solution Substituting y = 1
2 in the equation of the sphere gives:

x2 +
(

1

2

)2
+ z2 = 1 ⇒ x2 + z2 = 3

4

This circle in the horizontal plane y = 1
2 has the parametrization x =

√
3

2 cos t , z =
√

3
2 sin t . Therefore, the points on

the intersection of the plane y = 1
2 and the sphere x2 + y2 + z2 = 1, can be written in the form

(√
3

2 cos t, 1
2 ,

√
3

2 sin t
)

,

yielding the following parametrization:

r(t) =
〈√

3

2
cos t,

1

2
,

√
3

2
sin t

〉
, 0 ≤ t ≤ 2π.

The intersection of the surfaces

z = x2 − y2 and z = x2 + xy − 1

39. The ellipse
(x

2

)2 +
( z

3

)2 = 1 in the xz-plane, translated to have center (3, 1, 5) [Figure 15(A)]

(A)

3

1

(B)

y

x

zz

y

x
3

1

FIGURE 15 The ellipses described in Exercises 39 and 40.

solution The translated ellipse is in the vertical plane y = 1, hence the y-coordinate of the points on this ellipse is
y = 1. The x and z coordinates satisfy the equation of the ellipse:(

x − 3

2

)2
+

(
z − 5

3

)2
= 1.

This ellipse is parametrized by the following equations:

x = 3 + 2 cos t, z = 5 + 3 sin t.
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Therefore, the points on the translated ellipse can be written as (3 + 2 cos t, 1, 5 + 3 sin t). This gives the following
parametrization:

r(t) = 〈3 + 2 cos t, 1, 5 + 3 sin t〉 , 0 ≤ t ≤ 2π.

The ellipse
(y

2

)2 +
( z

3

)2 = 1, translated to have center (3, 1, 5) [Figure 15(B)]
Further Insights and Challenges
41. Sketch the curve parametrized by r(t) = 〈|t | + t, |t | − t〉.
solution We have:

|t | + t =
{

0 t ≤ 0

2t t > 0
; |t | − t =

{
2t t ≤ 0

0 t > 0

As t increases from −∞ to 0, the x-coordinate is zero and the y-coordinate is positive and decreasing to zero. As t

increases from 0 to +∞, the y-coordinate is zero and the x-coordinate is positive and increasing to +∞. We obtain the
following curve:

x

y

r(t) = 〈|t | + t, |t | − t〉

Find the maximum height above the xy-plane of a point on r(t) = 〈
et , sin t, t (4 − t)

〉
.43. Let C be the curve obtained by intersecting a cylinder of radius r and a plane. Insert two spheres of radius

r into the cylinder above and below the plane, and let F1 and F2 be the points where the plane is tangent to the spheres
[Figure 16(A)]. Let K be the vertical distance between the equators of the two spheres. Rediscover Archimedes’s proof
that C is an ellipse by showing that every point P on C satisfies

PF1 + PF2 = K 2

Hint: If two lines through a point P are tangent to a sphere and intersect the sphere at Q1 and Q2 as in Figure 16(B), then
the segments PQ1 and PQ2 have equal length. Use this to show that PF1 = PR1 and PF2 = PR2.

(A)

R2

(B)

Q1
Q2

F2

F1P

P

K

R1

FIGURE 16

solution To show that C is an ellipse, we show that every point P on C satisfies:

F1P + F2P = K

We denote the points of intersection of the vertical line through P with the equators of the two spheres by R1 and R2 (see
figure).
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R2

F2

F1P
K

R1

We denote by O1 and O2 the centers of the spheres.

F1

O1

P

r

Since F1 is the tangency point, the radius O1F1 is perpendicular to the plane of the curve C, and therefore it is orthogonal
to the segment PF1 on this plane. Hence, �O1F1P is a right triangle and by Pythagoras’ Theorem we have:

O1F1
2 + PF1

2 = O1P
2

r2 + PF1
2 = O1P

2 ⇒ PF1 =
√

O1P
2 − r2 (1)

R1

O1

P

r

�O1R1P is also a right triangle, hence by Pythagoras’ Theorem we have:

O1R1
2 + R1P

2 = O1P
2

r2 + R1P
2 = O1P

2 ⇒ PR1 =
√

O1P
2 − r2 (2)

Combining (1) and (2) we get:

PF1 = PR1 (3)

Similarly we have:

PF2 = PR2 (4)

We now combine (3), (4) and the equality PR1 + PR2 = K to obtain:

F1P + F2P = PR1 + PR2 = K

Thus, the sum of the distances of the points P on C to the two fixed points F1 and F2 is a constant K > 0, hence C is an
ellipse.

Assume that the cylinder in Figure 16 has equation x2 + y2 = r2 and the plane has equation z = ax + by. Find
a vector parametrization r(t) of the curve of intersection using the trigonometric functions cos t and sin t .

45. Now reprove the result of Exercise 43 using vector geometry.Assume that the cylinder has equationx2 + y2 =
r2 and the plane has equation z = ax + by.

(a) Show that the upper and lower spheres in Figure 16 have centers

C1 =
(

0, 0, r
√

a2 + b2 + 1
)

C2 =
(

0, 0, −r
√

a2 + b2 + 1
)
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(b) Show that the points where the plane is tangent to the sphere are

F1 = r√
a2 + b2 + 1

(
a, b, a2 + b2)

F2 = −r√
a2 + b2 + 1

(
a, b, a2 + b2)

Hint: Show that C1F1 and C2F2 have length r and are orthogonal to the plane.
(c) Verify, with the aid of a computer algebra system, that Eq. (2) holds with

K = 2r
√

a2 + b2 + 1

To simplify the algebra, observe that since a and b are arbitrary, it suffices to verify Eq. (2) for the point P = (r, 0, ar).

solution
(a) and (b) Since F1 is the tangency point of the sphere and the plane, the radius to F1 is orthogonal to the plane. Therefore
to show that the center of the sphere is at C1 and the tangency point is the given point we must show that:

‖−−−→
C1F1‖ = r (1)

−−−→
C1F1 is orthogonal to the plane. (2)

We compute the vector
−−−→
C1F1:

−−−→
C1F1 =

〈
ra√

a2 + b2 + 1
,

rb√
a2 + b2 + 1

,
r(a2 + b2)√
a2 + b2 + 1

− r
√

a2 + b2 + 1

〉
= r√

a2 + b2 + 1
〈a, b,−1〉

Hence,

‖−−−→
C1F1‖ = r√

a2 + b2 + 1
‖ 〈a, b,−1〉 ‖ = r√

a2 + b2 + 1

√
a2 + b2 + (−1)2 = r

We, thus, proved that (1) is satisfied. To show (2) we must show that
−−−→
C1F1 is parallel to the normal vector 〈a, b,−1〉 to

the plane z = ax + by (i.e., ax + by − z = 0). The two vectors are parallel since by (1)
−−−→
C1F1 is a constant multiple of

〈a, b,−1〉. In a similar manner one can show (1) and (2) for the vector
−−−→
C2F2.

(c) This is an extremely challenging problem. As suggested in the book, we use P = (r, 0, ar), and we also use the
expressions for F1 and F2 as given above. This gives us:

PF1 =
√(

1 + 2 a2 + b2 − 2 a
√

1 + a2 + b2
)

r2

PF2 =
√(

1 + 2 a2 + b2 + 2 a
√

1 + a2 + b2
)

r2

Their sum is not very inspiring:

PF1 + PF2 =
√(

1 + 2 a2 + b2 − 2 a
√

1 + a2 + b2
)

r2 +
√(

1 + 2 a2 + b2 + 2 a
√

1 + a2 + b2
)

r2

Let us look, instead, at (PF1 + PF2)2, and show that this is equal to K2. Since everything is positive, this will imply
that PF1 + PF2 = K , as desired.

(PF1 + PF2)2 = 2 r2 + 4 a2 r2 + 2 b2 r2 + 2
√

r4 + 2b2r4 + b4r4

= 2 r2 + 4 a2 r2 + 2 b2 r2 + 2 (1 + b2)r2 = 4r2(1 + a2 + b2) = K2

13.2 Calculus of Vector-Valued Functions (LT Section 14.2)

Preliminary Questions
1. State the three forms of the Product Rule for vector-valued functions.

solution The Product Rule for scalar multiple f (t) of a vector-valued function r(t) states that:

d

dt
f (t)r(t) = f (t)r′(t) + f ′(t)r(t)

The Product Rule for dot products states that:

d

dt
r1(t) · r2(t) = r1(t) · r′

2(t) + r′
1(t) · r2(t)
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Finally, the Product Rule for cross product is

d

dt
r1(t) × r2(t) = r1(t) × r′

2(t) + r′
1(t) × r2(t).

In Questions 2–6, indicate whether the statement is true or false, and if it is false, provide a correct statement.

2. The derivative of a vector-valued function is defined as the limit of the difference quotient, just as in the scalar-valued
case.

solution The statement is true. The derivative of a vector-valued function r(t) is defined a limit of the difference
quotient:

r′(t) = lim
t→0

r (t + h) − r(t)
h

in the same way as in the scalar-valued case.

3. There are two Chain Rules for vector-valued functions: one for the composite of two vector-valued functions and one
for the composite of a vector-valued and a scalar-valued function.

solution This statement is false. A vector-valued function r(t) is a function whose domain is a set of real numbers
and whose range consists of position vectors. Therefore, if r1(t) and r2(t) are vector-valued functions, the composition
“(r1 · r2)(t) = r1(r2(t))” has no meaning since r2(t) is a vector and not a real number. However, for a scalar-valued
function f (t), the composition r(f (t)) has a meaning, and there is a Chain Rule for differentiability of this vector-valued
function.

4. The terms “velocity vector” and “tangent vector” for a path r(t) mean one and the same thing.

solution This statement is true.

5. The derivative of a vector-valued function is the slope of the tangent line, just as in the scalar case.

solution The statement is false. The derivative of a vector-valued function is again a vector-valued function, hence
it cannot be the slope of the tangent line (which is a scalar). However, the derivative, r′(t0) is the direction vector of the
tangent line to the curve traced by r(t), at r(t0).

6. The derivative of the cross product is the cross product of the derivatives.

solution The statement is false, since usually,

d

dt
r1(t) × r2(t) �= r′

1(t) × r′
2(t)

The correct statement is the Product Rule for Cross Products. That is,

d

dt
r1(t) × r2(t) = r1(t) × r′

2(t) + r′
1(t) × r2(t)

7. State whether the following derivatives of vector-valued functions r1(t) and r2(t) are scalars or vectors:

(a)
d

dt
r1(t) (b)

d

dt

(
r1(t) · r2(t)

)
(c)

d

dt

(
r1(t) × r2(t)

)
solution (a) vector, (b) scalar, (c) vector.

Exercises
In Exercises 1–6, evaluate the limit.

1. lim
t→3

〈
t2, 4t,

1

t

〉
solution By the theorem on vector-valued limits we have:

lim
t→3

〈
t2, 4t,

1

t

〉
=

〈
lim
t→3

t2, lim
t→3

4t, lim
t→3

1

t

〉
=

〈
9, 12,

1

3

〉
.

lim
t→π

sin 2t i + cos tj + tan 4tk3. lim
t→0

e2t i + ln(t + 1)j + 4k

solution Computing the limit of each component, we obtain:

lim
t→0

(
e2t i + ln (t + 1) j + 4k

)
=

(
lim
t→0

e2t

)
i +

(
lim
t→0

ln(t + 1)

)
j +

(
lim
t→0

4

)
k = e0i + (ln 1)j + 4k = i + 4k
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lim
t→0

〈
1

t + 1
,
et − 1

t
, 4t

〉5. Evaluate lim
h→0

r(t + h) − r(t)
h

for r(t) =
〈
t−1, sin t, 4

〉
.

solution This limit is the derivative dr
dt

. Using componentwise differentiation yields:

lim
h→0

r (t + h) − r(t)
h

= dr
dt

=
〈

d

dt

(
t−1

)
,

d

dt
(sin t) ,

d

dt
(4)

〉
=

〈
− 1

t2
, cos t, 0

〉
.

Evaluate lim
t→0

r(t)
t

for r(t) = 〈sin t, 1 − cos t, −2t〉.
In Exercises 7–12, compute the derivative.

7. r(t) = 〈
t, t2, t3〉

solution Using componentwise differentiation we get:

dr
dt

=
〈

d

dt
(t),

d

dt
(t2),

d

dt
(t3)

〉
=

〈
1, 2t, 3t2

〉

r(t) = 〈
7 − t, 4

√
t, 8

〉9. r(s) = 〈
e3s , e−s , s4〉

solution Using componentwise differentiation we get:

dr
ds

=
〈

d

ds
(e3s ),

d

ds
(e−s ),

d

ds
(s4)

〉
=

〈
3e3s , −e−s , 4s3

〉

b(t) =
〈
e3t−4, e6−t , (t + 1)−1

〉11. c(t) = t−1i − e2tk

solution Using componentwise differentiation we get:

c′(t) = (
t−1)′i − (

e2t
)′

k = −t−2i − 2e2tk

a(θ) = (cos 3θ)i + (sin2 θ)j + (tan θ)k
13. Calculate r′(t) and r′′(t) for r(t) = 〈

t, t2, t3〉.
solution We perform the differentiation componentwise to obtain:

r′(t) = 〈
(t)′, (t2)

′
, (t3)

′〉 = 〈
1, 2t, 3t2〉

We now differentiate the derivative vector to find the second derivative:

r′′(t) = d

dt

〈
1, 2t, 3t2〉 = 〈0, 2, 6t〉 .

Sketch the curve r(t) = 〈
1 − t2, t

〉
for −1 ≤ t ≤ 1. Compute the tangent vector at t = 1 and add it to the sketch.

15. Sketch the curve r1(t) = 〈
t, t2〉 together with its tangent vector at t = 1. Then do the same for r2(t) = 〈

t3, t6〉.
solution Note that r1

′(t) = 〈1, 2t〉 and so r1
′(1) = 〈1, 2〉. The graph of r1(t) satisfies y = x2. Likewise, r2

′(t) =〈
3t2, 6t5〉 and so r2

′(1) = 〈3, 6〉. The graph of r2(t) also satisfies y = x2. Both graphs and tangent vectors are given here.

2

r2(t )
1

r1(t )

Sketch the cycloid r(t) = 〈
t − sin t, 1 − cos t

〉
together with its tangent vectors at t = π

3 and 3π
4 .

In Exercises 17–20, evaluate the derivative by using the appropriate Product Rule, where

r1(t) = 〈
t2, t3, t

〉
, r2(t) = 〈

e3t , e2t , et
〉

17.
d

dt

(
r1(t) · r2(t)

)
solution

d

dt
(r1(t) · r2(t)) = r1(t) · r′

2(t) + r′
1(t) · r2(t)

=
〈
t2, t3, t

〉
·
〈
3e3t , 2e2t , et

〉
+

〈
2t, 3t2, 1

〉
·
〈
e3t , e2t , et

〉
= 3t2e3t + 2t3e2t + tet + 2te3t + 3t2e2t + et

= (3t2 + 2t)e3t + (2t3 + 3t2)e2t + (t + 1)et
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d

dt

(
t4r1(t)

)19.
d

dt

(
r1(t) × r2(t)

)
solution

d

dt
(r1(t) × r2(t)) = r1(t) × r′

2(t) + r′
1(t) × r2(t)

=
〈
t2, t3, t

〉
×

〈
3e3t , 2e2t , et

〉
+

〈
2t, 3t2, 1

〉
×

〈
e3t , e2t , et

〉

=
∣∣∣∣∣∣

i j k
t2 t3 t

3e3t 2e2t et

∣∣∣∣∣∣ +
∣∣∣∣∣∣

i j k
2t 3t2 1
e3t e2t et

∣∣∣∣∣∣
= (t3et − 2te2t )i + (3te3t − t2et )j + (2t2e2t − 3t3e3t )k

+ (3t2et − e2t )i + (e3t − 2tet )j + (2te2t − 3t2e3t )k

= [(t3 + 3t2)et − (2t + 1)e2t ]i + [(3t + 1)e3t − (t2 + 2t)et ]j
+ [(2t2 + 2t)e2t − (3t3 + 3t2)e3t ]k

d

dt

(
r(t) · r1(t)

)∣∣∣
t=2

, assuming that

r(2) = 〈2, 1, 0〉 , r′(2) = 〈1, 4, 3〉

In Exercises 21 and 22, let

r1(t) = 〈
t2, 1, 2t

〉
, r2(t) = 〈

1, 2, et
〉

21. Compute
d

dt
r1(t) · r2(t)

∣∣∣
t=1

in two ways:

(a) Calculate r1(t) · r2(t) and differentiate.
(b) Use the Product Rule.

solution
(a) First we will calculate r1(t) · r2(t):

r1(t) · r2(t) =
〈
t2, 1, 2t

〉
· 〈1, 2, et

〉
= t2 + 2 + 2tet

And then differentiating we get:

d

dt
(r1(t) · r2(t)) = d

dt
(t2 + 2 + 2tet ) = 2t + 2tet + 2et

d

dt
(r1(t) · r2(t))

∣∣∣∣
t=1

= 2 + 2e + 2e = 2 + 4e

(b) First we differentiate:

r1(t) =
〈
t2, 1, 2t

〉
, r′

1(t) = 〈2t, 0, 2〉

r2(t) = 〈
1, 2, et

〉
, r′

2(t) = 〈
0, 0, et

〉
Using the Product Rule we see:

d

dt
(r1(t) · r2(t)) = r1(t) · r′

2(t) + r′
1(t) · r2(t)

=
〈
t2, 1, 2t

〉
· 〈0, 0, et

〉 + 〈2t, 0, 2〉 · 〈1, 2, et
〉

= 2tet + 2t + 2et

d

dt
(r1(t) · r2(t))

∣∣∣∣
t=1

= 2e + 2 + 2e = 2 + 4e

Compute
d

dt
r1(t) × r2(t)

∣∣∣
t=1

in two ways:

(a) Calculate r1(t) × r2(t) and differentiate.

(b) Use the Product Rule.

In Exercises 23–26, evaluate
d

dt
r(g(t)) using the Chain Rule.

23. r(t) = 〈
t2, 1 − t

〉
, g(t) = et

solution We first differentiate the two functions:

r′(t) = d

dt

〈
t2, 1 − t

〉
= 〈2t, −1〉

g′(t) = d

dt
(et ) = et
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Using the Chain Rule we get:

d

dt
r(g(t)) = g′(t)r′(g(t)) = et

〈
2et , −1

〉 =
〈
2e2t , −et

〉

r(t) = 〈
t2, t3〉, g(t) = sin t

25. r(t) = 〈
et , e2t , 4

〉
, g(t) = 4t + 9

solution We first differentiate the two functions:

r′(t) = d

dt

〈
et , e2t , 4

〉 = 〈
et , 2e2t , 0

〉
g′(t) = d

dt
(4t + 9) = 4

Using the Chain Rule we get:

d

dt
r (g(t)) = g′(t)r′(g(t)) = 4

〈
e4t+9, 2e2(4t+9), 0

〉 = 〈
4e4t+9, 8e8t+18, 0

〉

r(t) = 〈4 sin 2t, 6 cos 2t〉, g(t) = t227. Let r(t) = 〈
t2, 1 − t, 4t

〉
. Calculate the derivative of r(t) · a(t) at t = 2, assuming that a(2) = 〈1, 3, 3〉 and

a′(2) = 〈−1, 4, 1〉.
solution By the Product Rule for dot products we have

d

dt
r(t) · a(t) = r(t) · a′(t) + r′(t) · a(t)

At t = 2 we have

d

dt
r(t) · a(t)

∣∣∣∣
t=2

= r(2) · a′(2) + r′(2) · a(2) (1)

We compute the derivative r′(2):

r′(t) = d

dt

〈
t2, 1 − t, 4t

〉 = 〈2t, −1, 4〉 ⇒ r′(2) = 〈4, −1, 4〉 (2)

Also, r(2) = 〈
22, 1 − 2, 4 · 2

〉 = 〈4, −1, 8〉. Substituting the vectors in the equation above, we obtain:

d

dt
r(t) · a(t)

∣∣∣∣
t=2

= 〈4, −1, 8〉 · 〈−1, 4, 1〉 + 〈4, −1, 4〉 · 〈1, 3, 3〉 = (−4 − 4 + 8) + (4 − 3 + 12) = 13

The derivative of r(t) · a(t) at t = 2 is 13.

Let v(s) = s2i + 2sj + 9s−2k. Evaluate
d

ds
v(g(s)) at s = 4, assuming that g(4) = 3 and g′(4) = −9.

In Exercises 29–34, find a parametrization of the tangent line at the point indicated.

29. r(t) = 〈
t2, t4〉, t = −2

solution The tangent line has the following parametrization:

�(t) = r(−2) + tr′(−2) (1)

We compute the vectors r(−2) and r′(−2):

r(−2) = 〈
(−2)2, (−2)4〉 = 〈4, 16〉

r′(t) = d

dt

〈
t2, t4〉 = 〈

2t, 4t3〉 ⇒ r′(−2) = 〈−4, −32〉

Substituting in (1) gives:

�(t) = 〈4, 16〉 + t 〈−4, −32〉 = 〈4 − 4t, 16 − 32t〉
The parametrization for the tangent line is, thus,

x = 4 − 4t, y = 16 − 32t, −∞ < t < ∞.

To find a direct relation between y and x, we express t in terms of x and substitute in y = 16 − 32t . This gives:

x = 4 − 4t ⇒ t = x − 4

−4
.

Hence,

y = 16 − 32t = 16 − 32 · x − 4

−4
= 16 + 8(x − 4) = 8x − 16.

The equation of the tangent line is y = 8x − 16.
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r(t) = 〈
cos 2t, sin 3t

〉
, t = π

4
31. r(t) = 〈

1 − t2, 5t, 2t3〉, t = 2

solution The tangent line is parametrized by:

�(t) = r(2) + tr′(2) (1)

We compute the vectors in the above parametrization:

r(2) = 〈
1 − 22, 5 · 2, 2 · 23〉 = 〈−3, 10, 16〉

r′(t) = d

dt

〈
1 − t2, 5t, 2t3〉 = 〈−2t, 5, 6t2〉 ⇒ r′(2) = 〈−4, 5, 24〉

Substituting the vectors in (1) we obtain the following parametrization:

�(t) = 〈−3, 10, 16〉 + t 〈−4, 5, 24〉 = 〈−3 − 4t, 10 + 5t, 16 + 24t〉

r(t) = 〈
4t, 5t, 9t

〉
, t = −4

33. r(s) = 4s−1i − 8
3 s−3k, s = 2

solution The tangent line is parametrized by:

�(s) = r(2) + sr′(2) (1)

We compute the vectors in the above parametrization:

r(2) = 4(2)−1i − 8

3
(2)−3k = 2i − 1

3
k

r′(s) = d

ds

(
4s−1i − 8

3
s−3k

)
= −4s−2i + 8s−4k ⇒ r′(2) = −i + 1

2
k

Substituting the vectors in (1) we obtain the following parametrization:

�(t) =
(

2i − 1

3
k
)

+ s

(
−i + 1

2
k
)

= (2 − s)i +
(

1

2
s − 1

3

)
k

r(s) = (ln s)i + s−1j + 9sk, s = 135. Use Example 4 to calculate
d

dt
(r × r′), where r(t) = 〈

t, t2, et
〉
.

solution In Example 4 it is proved that:

d

dt
r × r′ = r × r′′ (1)

We compute the derivatives r′(t) and r′′(t):

r′(t) = d

dt

〈
t, t2, et

〉 = 〈
1, 2t, et

〉
r′′(t) = d

dt

〈
1, 2t, et

〉 = 〈
0, 2, et

〉
Using (1) we get

d

dt
r × r′ = r × r′′ = 〈

t, t2, et
〉 × 〈

0, 2, et
〉 =

∣∣∣∣∣∣
i j k
t t2 et

0 2 et

∣∣∣∣∣∣ = (
t2et − 2et

)
i − (

0 − tet
)
j + (

2t − 0
)
k

= (
t2 − 2

)
et i + tet j + 2tk = 〈(

t2 − 2t
)
et , tet , 2t

〉
Let r(t) = 〈3 cos t, 5 sin t, 4 cos t〉. Show that ‖r(t)‖ is constant and conclude, using Example 7, that r(t) and

r′(t) are orthogonal. Then compute r′(t) and verify directly that r′(t) is orthogonal to r(t).

37. Show that the derivative of the norm is not equal to the norm of the derivative by verifying that ‖r(t)‖′ �= ‖r′(t)‖ for
r(t) = 〈t, 1, 1〉.
solution First let us compute ‖r(t)‖′ for r(t) = 〈t, 1, 1〉:

‖r(t)‖′ = d

dt
(
√

t2 + 2) = t√
t2 + 2

Now, first let us compute the derivative, r′(t):

r′(t) = 〈1, 0, 0〉
and then computing the norm:

‖r′(t)‖ = ‖〈1, 0, 0〉‖ = √
1 = 1

It is clear in this example, that ‖r(t)‖′ �= ‖r′(t)‖.
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Show that
d

dt
(a × r) = a × r′ for any constant vector a.

In Exercises 39–46, evaluate the integrals.

39.
∫ 3

−1

〈
8t2 − t, 6t3 + t

〉
dt

solution Vector-valued integration is defined via componentwise integration. Thus, we first compute the integral of
each component.

∫ 3

−1
8t2 − t dt = 8

3
t3 − t2

2

∣∣∣∣3−1
=

(
72 − 9

2

)
−

(
−8

3
− 1

2

)
= 212

3∫ 3

−1
6t3 + t dt = 3

2
t4 + t2

2

∣∣∣∣3−1
=

(
243

2
+ 9

2

)
−

(
3

2
+ 1

2

)
= 124

Therefore,

∫ 3

−1

〈
8t2 − t, 6t3 + t

〉
dt =

〈∫ 3

−1
8t2 − t dt,

∫ 3

−1
6t3 + t dt

〉
=

〈
212

3
, 124

〉

∫ 1

0

〈
1

1 + s2
,

s

1 + s2

〉
ds

41.
∫ 2

−2

(
u3i + u5j

)
du

solution The vector-valued integration is defined via componentwise integration. Thus, we first compute the integral
of each component.

∫ 2

−2
u3 du = u4

4

∣∣∣∣2−2
= 16

4
− 16

4
= 0

∫ 2

−2
u5 du = u6

6

∣∣∣∣2−2
= 64

6
− 64

6
= 0

Therefore,

∫ 2

−2

(
u3i + u5j

)
du =

(∫ 2

−2
u3 du

)
i +

(∫ 2

−2
u5 du

)
j = 0i + 0j

∫ 1

0

(
te−t2

i + t ln(t2 + 1)j
)

dt
43.

∫ 1

0
〈2t, 4t, − cos 3t〉 dt

solution The vector valued integration is defined via componentwise integration. Therefore,

∫ 1

0
〈2t, 4t, − cos 3t〉 dt =

〈∫ 1

0
2t dt,

∫ 1

0
4t dt,

∫ 1

0
− cos 3t dt

〉
=

〈
t2
∣∣∣∣1
0
, 2t2

∣∣∣∣1
0
, − sin 3t

3

∣∣∣∣1
0

〉
=

〈
1, 2, − sin 3

3

〉

∫ 1

1/2

〈
1

u2
,

1

u4
,

1

u5

〉
du

45.
∫ 4

1

(
t−1i + 4

√
t j − 8t3/2k

)
dt

solution We perform the integration componentwise. Computing the integral of each component we get:

∫ 4

1
t−1 dt = ln t

∣∣∣∣4
1

= ln 4 − ln 1 = ln 4

∫ 4

1
4
√

t dt = 4 · 2

3
t3/2

∣∣∣∣4
1

= 8

3

(
43/2 − 1

)
= 56

3∫ 4

1
−8t3/2 dt = −16

5
t5/2

∣∣∣∣4
1

= −16

5

(
45/2 − 1

)
= −496

5

Hence,

∫ 4

1

(
t−1i + 4

√
tj − 8t3/2k

)
dt = (ln 4) i + 56

3
j − 496

5
k

∫ t

0

(
3si + 6s2j + 9k

)
ds
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In Exercises 47–54, find both the general solution of the differential equation and the solution with the given initial
condition.

47.
dr
dt

= 〈1 − 2t, 4t〉, r(0) = 〈3, 1〉
solution We first find the general solution by integrating dr

dt
:

r(t) =
∫

〈1 − 2t, 4t〉 dt =
〈∫

(1 − 2t) dt,

∫
4t dt

〉
= 〈

t − t2, 2t2〉 + c (1)

Since r(0) = 〈3, 1〉, we have:

r(0) = 〈
0 − 02, 2 · 02〉 + c = 〈3, 1〉 ⇒ c = 〈3, 1〉

Substituting in (1) gives the solution:

r(t) = 〈
t − t2, 2t2〉 + 〈3, 1〉 = 〈−t2 + t + 3, 2t2 + 1

〉

r′(t) = i − j, r(0) = 2i + 3k
49. r′(t) = t2i + 5tj + k, r(1) = j + 2k

solution We first find the general solution by integrating r′(t):

r(t) =
∫ (

t2i + 5tj + k
)

dt =
(∫

t2 dt

)
i +

(∫
5t dt

)
j +

(∫
1 dt

)
k =

(
1

3
t3
)

i +
(

5

2
t2
)

j + tk + c (1)

The solution which satisfies the initial condition must satisfy:

r(1) =
(

1

3
· 13

)
i +

(
5

2
· 12

)
j + 1 · k + c = j + 2k

That is,

c = −1

3
i − 3

2
j + 1k

Substituting in (1) gives the following solution:

r(t) =
(

1

3
t3
)

i +
(

5

2
t2
)

j + tk − 1

3
i − 3

2
j + k =

(
1

3
t3 − 1

3

)
i +

(
5t2

2
− 3

2

)
j + (t + 1) k

r′(t) = 〈sin 3t, sin 3t, t〉, r
(
π
2

) =
〈

2, 4,
π2

4

〉51. r′′(t) = 16k, r(0) = 〈1, 0, 0〉, r′(0) = 〈0, 1, 0〉
solution To find the general solution we first find r′(t) by integrating r′′(t):

r′(t) =
∫

r′′(t) dt =
∫

16k dt = (16t) k + c1 (1)

We now integrate r′(t) to find the general solution r(t):

r(t) =
∫

r′(t) dt =
∫

((16t) k + c1) dt =
(∫

16(t) dt

)
k + c1t + c2 = (8t2)k + c1t + c2 (2)

We substitute the initial conditions in (1) and (2). This gives:

r′(0) = c1 = 〈0, 1, 0〉 = j

r(0) = 0k + c1 · 0 + c2 = 〈1, 0, 0〉 ⇒ c2 = 〈1, 0, 0〉 = i

Combining with (2) we obtain the following solution:

r(t) = (8t2)k + tj + i = i + tj + (8t2)k

r′′(t) =
〈
e2t−2, t2 − 1, 1

〉
, r(1) = 〈0, 0, 1〉, r′(1) = 〈2, 0, 0〉

53. r′′(t) = 〈0, 2, 0〉, r(3) = 〈1, 1, 0〉, r′(3) = 〈0, 0, 1〉
solution To find the general solution we first find r′(t) by integrating r′′(t):

r′(t) =
∫

r′′(t) dt =
∫

〈0, 2, 0〉 dt = 〈0, 2t, 0〉 + c1 (1)

We now integrate r′(t) to find the general solution r(t):

r(t) =
∫

r′(t) dt =
∫

(〈0, 2t, 0〉 + c1) dt =
〈
0, t2, 0

〉
+ c1t + c2 (2)
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We substitute the initial conditions in (1) and (2). This gives:

r′(3) = 〈0, 6, 0〉 + c1 = 〈0, 0, 1〉 ⇒ c1 = 〈0, −6, 1〉
r(3) = 〈0, 9, 0〉 + c1(3) + c2 = 〈1, 1, 0〉

〈0, 9, 0〉 + 〈0, −18, 3〉 + c2 = 〈1, 1, 0〉
⇒ c2 = 〈1, 10, −3〉

Combining with (2) we obtain the following solution:

r(t) =
〈
0, t2, 0

〉
+ t 〈0, −6, 1〉 + 〈1, 10, −3〉

=
〈
1, t2 − 6t + 10, t − 3

〉

r′′(t) = 〈
et , sin t, cos t

〉
, r(0) = 〈1, 0, 1〉 , r′(0) = 〈0, 2, 2〉55. Find the location at t = 3 of a particle whose path (Figure 8) satisfies

dr
dt

=
〈
2t − 1

(t + 1)2
, 2t − 4

〉
, r(0) = 〈3, 8〉

y

x
252015105

10

5

(3, 8)
t = 0

t = 3

FIGURE 8 Particle path.

solution To determine the position of the particle in general, we perform integration componentwise on r′(t) to obtain:

r(t) =
∫

r′(t) dt

=
∫ 〈

2t − 1

(t + 1)2
, 2t − 4

〉
dt

=
〈
t2 + 1

t + 1
, t2 − 4t

〉
+ c1

Using the initial condition, observe the following:

r(0) = 〈1, 0〉 + c1 = 〈3, 8〉
⇒ c1 = 〈2, 8〉

Therefore,

r(t) =
〈
t2 + 1

t + 1
, t2 − 4t

〉
+ 〈2, 8〉 =

〈
t2 + 1

t + 1
+ 2, t2 − 4t + 8

〉
and thus, the location of the particle at t = 3 is r(3) = 〈45/4, 5〉 = 〈11.25, 5〉

Find the location and velocity at t = 4 of a particle whose path satisfies

dr
dt

=
〈
2t−1/2, 6, 8t

〉
, r(1) = 〈4, 9, 2〉

57. A fighter plane, which can shoot a laser beam straight ahead, travels along the path r(t) = 〈
5 − t, 21 − t2, 3 − t3/27

〉
.

Show that there is precisely one time t at which the pilot can hit a target located at the origin.

solution By the given information the laser beam travels in the direction of r′(t). The pilot hits a target located at
the origin at the time t when r′(t) points towards the origin, that is, when r(t) and r′(t) are parallel and point to opposite
directions.

321

10

x

20

y

r (t)

r ′(t)
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We find r′(t):

r′(t) = d

dt

〈
5 − t, 21 − t2, 3 − t3

27

〉
=

〈
−1, −2t, − t2

9

〉

We first find t such that r(t) and r′(t) are parallel, that is, we find t such that the cross product of the two vectors is zero.
We obtain:

0 = r′(t) × r(t) =

∣∣∣∣∣∣∣
i j k

−1 −2t − t2

9
5 − t 21 − t2 3 − t3

27

∣∣∣∣∣∣∣
=

(
−2t

(
3 − t3

27

)
+ t2

9
(21 − t2)

)
i −

(
−

(
3 − t3

27

)
+ t2

9
(5 − t)

)
j + (−(

21 − t2) + 2t (5 − t)
)
k

=
(

−t4

27
+ 7t2

3
− 6t

)
i −

(
−2t3

27
+ 5t2

9
− 3

)
j + (−t2 + 10t − 21

)
k

Equating each component to zero we obtain the following equations:

− t4

27
+ 7

3
t2 − 6t = 0

−2t3

27
+ 5t2

9
− 3 = 0

−t2 + 10t − 21 = −(t − 7)(t − 3) = 0

The third equation implies that t = 3 or t = 7. Only t = 3 satisfies the other two equations as well. We now must verify
that r(3) and r′(3) point in opposite directions. We find these vectors:

r(3) =
〈

5 − 3, 21 − 32, 3 − 33

27

〉
= 〈2, 12, 2〉

r′(3) =
〈
−1, −2 · 3, −32

9

〉
= 〈−1, −6, −1〉

Since r(3) = −2r′(3), the vectors point in opposite direction. We conclude that only at time t = 3 can the pilot hit a
target located at the origin.

The fighter plane of Exercise 57 travels along the path r(t) = 〈
t − t3, 12 − t2, 3 − t

〉
. Show that the pilot cannot

hit any target on the x-axis.

59. Find all solutions to r′(t) = v with initial condition r(1) = w, where v and w are constant vectors in R3.

solution We denote the components of the constant vector v by v = 〈v1, v2, v3〉 and integrate to find the general
solution. This gives:

r(t) =
∫

v dt =
∫

〈v1, v2, v3〉 dt =
〈∫

v1 dt,

∫
v2 dt,

∫
v3 dt

〉
= 〈v1t + c1, v2t + c2, v3t + c3〉 = t 〈v1, v2, v3〉 + 〈c1, c2, c3〉

We let c = 〈c1, c2, c3〉 and obtain:
r(t) = tv + c = c + tv

Notice that the solutions are the vector parametrizations of all the lines with direction vector v.
We are also given the initial condition that r(1) = w, using this information we can determine:

r(1) = (1)v + c = w

Therefore c = w − v and we get:
r(t) = (w − v) + tv = (t − 1)v + w

Let u be a constant vector in R3. Find the solution of the equation r′(t) = (sin t)u satisfying r′(0) = 0.
61. Find all solutions to r′(t) = 2r(t) where r(t) is a vector-valued function in three-space.

solution We denote the components of r(t) by r(t) = 〈x(t), y(t), z(t)〉. Then, r′(t) = 〈
x′(t), y′(t), z′(t)

〉
. Substituting

in the differential equation we get: 〈
x′(t), y′(t), z′(t)

〉 = 2 〈x(t), y(t), z(t)〉
Equating corresponding components gives:

x′(t) = 2x(t)

y′(t) = 2y(t)

z′(t) = 2z(t)

⇒
x(t) = c1e2t

y(t) = c2e2t

z(t) = c3e2t
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We denote the constant vector by c = 〈c1, c2, c3〉 and obtain the following solutions:

r(t) = 〈
c1e2t , c2e2t , c3e2t

〉 = e2t 〈c1, c2, c3〉 = e2tc

Show that w(t) = 〈sin(3t + 4), sin(3t − 2), cos 3t〉 satisfies the differential equation w′′(t) = −9w(t).
63. Prove that the Bernoulli spiral (Figure 9) with parametrization r(t) = 〈

et cos 4t, et sin 4t
〉

has the property that the
angle ψ between the position vector and the tangent vector is constant. Find the angle ψ in degrees.

−10

20
x

y

t = 0

ψ

ψ

ψ

t = 
π

2

FIGURE 9 Bernoulli spiral.

solution First, let us compute the tangent vector, r′(t):
r(t) = 〈

et cos 4t, et sin 4t
〉
, ⇒ r′(t) = 〈−4et sin 4t + et cos 4t, 4et cos 4t + et sin 4t

〉
Then recall the identity that a · b = ‖a‖ · ‖b‖ cos θ , where θ is the angle between a and b, so then,

r(t) · r′(t) = 〈
et cos 4t, et sin 4t

〉 · 〈−4et sin 4t + et cos 4t, 4et cos 4t + et sin 4t
〉

= −4e2t sin 4t cos 4t + e2t cos2 4t + 4e2t sin 4t cos 4t + e2t sin2 4t

= e2t (cos2 4t + sin2 4t)

= e2t

Then, computing norms, we get:

‖r(t)‖ =
√

e2t cos2 4t + e2t sin2 4t =
√

e2t (cos2 4t + sin2 4t) = et

‖r′(t)‖ =
√

(−4et sin 4t + et cos 4t)2 + (4et cos 4t + et sin 4t)2

=
√

16e2t sin2 4t − 4e2t sin 4t cos 4t + e2t cos2 4t + 16e2t cos2 4t + 4e2t sin 4t cos 4t + e2t sin2 4t

=
√

16e2t (sin2 4t + cos2 4t) + e2t (cos2 4t + sin2 4t)

=
√

16e2t + e2t

= √
17et

Then using the dot product relation listed above we get:

e2t = et (
√

17et ) cos θ = √
17e2t cos θ

Hence

cos θ = 1√
17

, ⇒ θ ≈ 75.96◦

Therefore, the angle between the position vector and the tangent vector is constant.

A curve in polar form r = f (θ) has parametrization

r(θ) = f (θ) 〈cos θ, sin θ〉
Let ψ be the angle between the radial and tangent vectors (Figure 10). Prove that

tan ψ = r

dr/dθ
= f (θ)

f ′(θ)

Hint: Compute r(θ) × r′(θ) and r(θ) · r′(θ).

65. Prove that if ‖r(t)‖ takes on a local minimum or maximum value at t0, then r(t0) is orthogonal to r′(t0).
Explain how this result is related to Figure 11. Hint: Observe that if ‖r(t0)‖ is a minimum, then r(t) is tangent at t0 to the
sphere of radius ‖r(t0)‖ centered at the origin.

z

y

x

r¢(t0)

r (t0)

r (t)

FIGURE 11
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solution Suppose that ‖r(t)‖ takes on a minimum or maximum value at t = t0. Hence, ‖r(t)‖2 also takes on a

minimum or maximum value at t = t0, therefore d
dt

‖r(t)‖2
∣∣
t=t0

= 0. Using the Product Rule for dot products we get

d

dt
‖r(t)‖2

∣∣∣∣
t=t0

= d

dt
r(t) · r(t)

∣∣∣∣
t=t0

= r(t0) · r′(t0) + r′(t0) · r(t0) = 2r(t0) · r′(t0) = 0

Thus r(t0) · r′(t0) = 0, which implies the orthogonality of r(t0) and r′(t0). In Figure 11, ‖r(t0)‖ is a minimum and the
path intersects the sphere of radius ‖r(t0)‖ at a single point. Therefore, the point of intersection is a tangency point which
implies that r′(t0) is tangent to the sphere at t0. We conclude that r(t0) and r′(t0) are orthogonal.

Newton’s Second Law of Motion in vector form states that F = dp
dt

where F is the force acting on an object of

mass m and p = mr′(t) is the object’s momentum. The analogs of force and momentum for rotational motion are the
torque τ = r × F and angular momentum

J = r(t) × p(t)

Use the Second Law to prove that τ = dJ
dt

.

Further Insights and Challenges
67. Let r(t) = 〈x(t), y(t)〉 trace a plane curve C. Assume that x′(t0) �= 0. Show that the slope of the tangent vector r′(t0)

is equal to the slope dy/dx of the curve at r(t0).

solution

(a) By the Chain Rule we have

dy

dt
= dy

dx
· dx

dt

Hence, at the points where dx
dt

�= 0 we have:

dy

dx
=

dy
dt
dx
dt

= y′(t)
x′(t)

(b) The line �(t) = 〈a, b〉 + tr′(t0) passes through (a, b) at t = 0. It holds that:

�(0) = 〈a, b〉 + 0r′(t0) = 〈a, b〉
That is, (a, b) is the terminal point of the vector �(0), hence the line passes through (a, b). The line has the direction

vector r′(t0) = 〈
x′(t0), y′(t0)

〉
, therefore the slope of the line is y′(t0)

x′(t0) which is equal to dy
dx

∣∣∣
t=t0

by part (a).

Prove that
d

dt
(r · (r′ × r′′)) = r · (r′ × r′′′).

69. Verify the Sum and Product Rules for derivatives of vector-valued functions.

solution We first verify the Sum Rule stating:

(r1(t) + r2(t))′ = r′
1(t) + r′

2(t)

Let r1(t) = 〈x1(t), y1(t), z1(t)〉 and r2(t) = 〈x2(t), y2(t), z2(t)〉. Then,

(r1(t) + r2(t)) ′ = d

dt
〈x1(t) + x2(t), y1(t) + y2(t), z1(t) + z2(t)〉

= 〈
(x1(t) + x2(t))′, (y1(t) + y2(t))′, (z1(t) + z2(t))′

〉
= 〈

x′
1(t) + x′

2(t), y′
1(t) + y′

2(t), z′
1(t) + z′

2(t)
〉

= 〈
x′

1(t), y′
1(t), z′

1(t)
〉 + 〈

x′
2(t), y′

2(t), z′
2(t)

〉 = r′
1(t) + r′

2(t)

The Product Rule states that for any differentiable scalar-valued function f (t) and differentiable vector-valued function
r(t), it holds that:

d

dt
f (t)r(t) = f (t)r′(t) + f ′(t)r(t)

To verify this rule, we denote r(t) = 〈x(t), y(t), z(t)〉. Then,

d

df
f (t)r(t) = d

dt
〈f (t)x(t), f (t)y(t), f (t)z(t)〉

Applying the Product Rule for scalar functions for each component we get:

d

dt
f (t)r(t) = 〈

f (t)x′(t) + f ′(t)x(t), f (t)y′(t) + f ′(t)y(t), f (t)z′(t) + f ′(t)z(t)
〉

= 〈
f (t)x′(t), f (t)y′(t), f (t)z′(t)

〉 + 〈
f ′(t)x(t), f ′(t)y(t), f ′(t)z(t)

〉
= f (t)

〈
x′(t), y′(t), z′(t)

〉 + f ′(t) 〈x(t), y(t), z(t)〉 = f (t)r′(t) + f ′(t)r(t)

Verify the Chain Rule for vector-valued functions.
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71. Verify the Product Rule for cross products [Eq. (5)].

solution Let r1(t) = 〈a1(t), a2(t), a3(t)〉 and r2(t) = 〈b1(t), b2(t), b3(t)〉. Then (we omit the independent variable
t for simplicity):

r1(t) × r2(t) =
∣∣∣∣∣∣

i j k
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣ = (a2b3 − a3b2) i − (a1b3 − a3b1) j + (a1b2 − a2b1) k

Differentiating this vector componentwise we get:

d

dt
r1 × r2 = (

a2b′
3 + a′

2b3 − a3b′
2 − a′

3b2
)

i − (
a1b′

3 + a′
1b3 − a3b′

1 − a′
3b1

)
j + (

a1b′
2 + a′

1b2 − a2b′
1 − a′

2b1
)

k

= ((
a2b′

3 − a3b′
2
)

i − (
a1b′

3 − a3b′
1
)

j + (
a1b′

2 − a2b′
1
)

k
)

+ ((
a′

2b3 − a′
3b2

)
i − (

a′
1b3 − a′

3b1
)

j + (
a′

1b2 − a′
2b1

)
k
)

Notice that the vectors in each of the two brackets can be written as the following formal determinants:

d

dt
r1 × r2 =

∣∣∣∣∣∣
i j k

a1 a2 a3
b′

1 b′
2 b′

3

∣∣∣∣∣∣ +
∣∣∣∣∣∣

i j k
a′

1 a′
2 a′

3
b1 b2 b3

∣∣∣∣∣∣ = 〈
a1,a2, a3

〉 × 〈
b′

1, b′
2, b′

3
〉 + 〈

a′
1, a′

2, a′
3
〉 × 〈

b1,b2, b3
〉

= r1 × r′
2 + r′

1 × r2

Verify the linearity properties ∫
cr(t) dt = c

∫
r(t) dt (c any constant)

∫ (
r1(t) + r2(t)

)
dt =

∫
r1(t) dt +

∫
r2(t) dt

73. Prove the Substitution Rule (where g(t) is a differentiable scalar function):∫ b

a
r(g(t))g′(t) dt =

∫ g−1(b)

g−1(a)
r(u) du

solution (Note that an early edition of the textbook had the integral limits as g(a) and g(b); they should actually

be g−1(a) and g−1(b).) We denote the components of the vector-valued function by r(t) dt = 〈x(t), y(t), z(t)〉. Using
componentwise integration we have:∫ b

a
r(t) dt =

〈∫ b

a
x(t) dt,

∫ b

a
y(t) dt,

∫ b

a
z(t) dt

〉

Write
∫ b

a
x(t) dt as

∫ b

a
x(s) ds. Let s = g(t), so ds = g′(t) dt . The substitution gives us

∫ g−1(b)

g−1(a)
x(g(t))g′(t) dt . A

similar procedure for the other two integrals gives us:∫ b

a
r(t) dt =

〈∫ g−1(b)

g−1(a)
x (g(t)) g′(t) dt,

∫ g−1(b)

g−1(a)
y (g(t)) g′(t) dt,

∫ g−1(b)

g−1(a)
z (g(t)) g′(t) dt

〉

=
∫ g−1(b)

g−1(a)

〈
x (g(t)) g′(t), y (g(t)) g′(t), z (g(t)) g′(t)

〉
dt

=
∫ g−1(b)

g−1(a)
〈x (g(t)) , y (g(t)) , z (g(t))〉 g′(t) dt =

∫ g−1(b)

g−1(a)
r (g(t)) g′(t) dt

Prove that if ‖r(t)‖ ≤ K for t ∈ [a, b], then∥∥∥∥∥
∫ b

a
r(t) dt

∥∥∥∥∥ ≤ K(b − a)

13.3 Arc Length and Speed (LT Section 14.3)

Preliminary Questions
1. At a given instant, a car on a roller coaster has velocity vector r′ = 〈25, −35, 10〉 (in miles per hour). What would the

velocity vector be if the speed were doubled? What would it be if the car’s direction were reversed but its speed remained
unchanged?

solution The speed is doubled but the direction is unchanged, hence the new velocity vector has the form:

λr′ = λ 〈25, −35, 10〉 for λ > 0

We use λ = 2, and so the new velocity vector is 〈50, −70, 20〉. If the direction is reversed but the speed is unchanged,
the new velocity vector is:

−r′ = 〈−25, 35, −10〉 .
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2. Two cars travel in the same direction along the same roller coaster (at different times). Which of the following
statements about their velocity vectors at a given point P on the roller coaster is/are true?

(a) The velocity vectors are identical.
(b) The velocity vectors point in the same direction but may have different lengths.
(c) The velocity vectors may point in opposite directions.

solution
(a) The length of the velocity vector is the speed of the particle. Therefore, if the speeds of the cars are different the
velocities are not identical. The statement is false.
(b) The velocity vector is tangent to the curve. Since the cars travel in the same direction, their velocity vectors point in
the same direction. The statement is true.
(c) Since the cars travel in the same direction, the velocity vectors point in the same direction. The statement is false.

3. A mosquito flies along a parabola with speed v(t) = t2. Let s(t) be the total distance traveled at time t .

(a) How fast is s(t) changing at t = 2?
(b) Is s(t) equal to the mosquito’s distance from the origin?

solution
(a) By the Arc Length Formula, we have:

s(t) =
∫ t

t0

‖r′(t)‖ dt =
∫ t

t0

v(t) dt

Therefore,

s′(t) = v(t)

To find the rate of change of s(t) at t = 2 we compute the derivative of s(t) at t = 2, that is,

s′(2) = v(2) = 22 = 4

(b) s(t) is the distance along the path traveled by the mosquito. This distance is usually different from the mosquito’s
distance from the origin, which is the length of r(t).

r(t )Distance L(t)

Distance from
the origin

t0

t

4. What is the length of the path traced by r(t) for 4 ≤ t ≤ 10 if r(t) is an arc length parametrization?

solution Since r(t) is an arc length parametrization, the length of the path for 4 ≤ t ≤ 10 is equal to the length of the
time interval 4 ≤ t ≤ 10, which is 6.

Exercises
In Exercises 1–6, compute the length of the curve over the given interval.

1. r(t) = 〈3t, 4t − 3, 6t + 1〉, 0 ≤ t ≤ 3

solution We have x(t) = 3t , y(t) = 4t − 3, z(t) = 6t + 1 hence

x′(t) = 3, y′(t) = 4, z′(t) = 6.

We use the Arc Length Formula to obtain:

s =
∫ 3

0
‖r′(t)‖ dt =

∫ 3

0

√
x′(t)2 + y′(t)2 + z′(t)2 dt =

∫ 3

0

√
32 + 42 + 62 dt = 3

√
61

r(t) = 2t i − 3tk, 11 ≤ t ≤ 153. r(t) = 〈
2t, ln t, t2〉, 1 ≤ t ≤ 4

solution The derivative of r(t) is r′(t) =
〈
2, 1

t , 2t
〉
. We use the Arc Length Formula to obtain:

s =
∫ 4

1
‖r′(t)‖ dt =

∫ 4

1

√
22 +

(
1

t

)2
+ (2t)2 dt =

∫ 4

1

√
4t2 + 4 + 1

t2
dt =

∫ 4

1

√(
2t + 1

t

)2
dt

=
∫ 4

1

(
2t + 1

t

)
dt = t2 + ln t

∣∣∣∣4
1

= (16 + ln 4) − (1 + ln 1) = 15 + ln 4
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r(t) = 〈
2t2 + 1, 2t2 − 1, t3〉, 0 ≤ t ≤ 2

5. r(t) = 〈t cos t, t sin t, 3t〉, 0 ≤ t ≤ 2π

solution The derivative of r(t) is r′(t) = 〈cos t − t sin t, sin t + t cos t, 3〉. The length of r′(t) is, thus,

‖r′(t)‖ =
√

(cos t − t sin t)2 + (sin t + t cos t)2 + 9

=
√

cos2 t − 2t cos t sin t + t2 sin2 t + sin2 t + 2t sin t cos t + t2 cos2 t + 9

=
√(

cos2 t + sin2 t
)

+ t2
(

sin2 t + cos2t
)

+ 9 =
√

t2 + 10

Using the Arc Length Formula and the integration formula given in Exercise 6, we obtain:

s =
∫ 2π

0
‖r′(t)‖ dt =

∫ 2π

0

√
t2 + 10 dt = 1

2
t
√

t2 + 10 + 1

2
· 10 ln

(
t +

√
t2 + 10

)∣∣∣∣2π

0

= π
√

4π2 + 10 + 5 ln
(

2π +
√

4π2 + 10
)

− 5 ln
√

10 = π
√

4π2 + 10 + 5 ln
2π +

√
4π2 + 10√
10

≈ 29.3

r(t) = t i + 2tj + (t2 − 3)k, 0 ≤ t ≤ 2. Use the formula:∫ √
t2 + a2 dt = 1

2
t
√

t2 + a2 + 1

2
a2 ln

(
t +

√
t2 + a2

)
In Exercises 7 and 8, compute the arc length function s(t) =

∫ t

a
‖r′(u)‖ du for the given value of a.

7. r(t) = 〈
t2, 2t2, t3〉, a = 0

solution The derivative of r(t) is r′(t) = 〈
2t, 4t, 3t2〉. Hence,

‖r′(t)‖ =
√

(2t)2 + (4t)2 + (3t2)
2 =

√
4t2 + 16t2 + 9t4 = t

√
20 + 9t2

Hence,

s(t) =
∫ t

0
‖r′(u)‖ du =

∫ t

0
u
√

20 + 9u2 du

We compute the integral using the substitution v = 20 + 9u2, dv = 18u du. This gives:

s(t) = 1

18

∫ 20+9t2

20
v1/2 dv = 1

18
· 2

3
v3/2

∣∣∣∣20+9t2

20
= 1

27

(
(20 + 9t2)3/2 − 203/2

)
.

r(t) = 〈
4t1/2, ln t, 2t

〉
, a = 1

In Exercises 9–12, find the speed at the given value of t .

9. r(t) = 〈2t + 3, 4t − 3, 5 − t〉, t = 4

solution The speed is the magnitude of the derivative r′(t) = 〈2, 4, −1〉. That is,

v(t) = ‖r′(t)‖ =
√

22 + 42 + (−1)2 = √
21 ≈ 4.58

r(t) = 〈
et−3, 12, 3t−1〉, t = 3

11. r(t) = 〈sin 3t, cos 4t, cos 5t〉, t = π
2

solution The velocity vector is r′(t) = 〈3 cos 3t,−4 sin 4t,−5 sin 5t〉. At t = π
2 the velocity vector is r′ (π

2

) =〈
3 cos 3π

2 , −4 sin 2π,−5 sin 5π
2

〉
= 〈0, 0, −5〉. The speed is the magnitude of the velocity vector:

v
(π

2

)
= ‖ 〈0, 0, −5〉 ‖ = 5.

r(t) = 〈cosh t, sinh t, t〉, t = 013. What is the velocity vector of a particle traveling to the right along the hyperbola y = x−1 with constant speed 5 cm/s
when the particle’s location is

(
2, 1

2

)
?

solution The position of the particle is given as r(t) = t−1. The magnitude of the velocity vector r′(t) is the speed
of the particle. Hence,

‖r′(t)‖ = 5 (1)

The velocity vector points in the direction of motion, hence it is parallel to the tangent line to the curve y = x−1 and
points to the right. We find the slope of the tangent line at x = 2:

m = dy

dx

∣∣∣∣
x=2

= d

dx
(x−1)

∣∣∣∣
x=2

= −x−2
∣∣∣∣
x=2

= −1

4
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We conclude that the vector
〈
1, − 1

4

〉
is a direction vector of the tangent line at x = 2, and for some λ > 0 we have at the

given instance:

r′ = λ

〈
1, −1

4

〉
(2)

x

y

1
2 1

4

y = 1
x

1
4〈1, −   〉

2 4

1

1
1
2(2,    )

To satisfy (1) we must have:

‖r′‖ = λ

√
12 +

(
−1

4

)2
= λ

√
17

4
= 5 ⇒ λ = 20√

17

Substituting in (2) we obtain the following velocity vector at
(

2, 1
2

)
:

r′ = 20√
17

〈
1, −1

4

〉
=

〈
20√
17

,
−5√

17

〉

A bee with velocity vector r′(t) starts out at the origin at t = 0 and flies around for T seconds. Where is the bee

located at time T if
∫ T

0
r′(u) du = 0? What does the quantity

∫ T

0
‖r′(u)‖ du represent?

15. Let

r(t) =
〈
R cos

(
2πNt

h

)
, R sin

(
2πNt

h

)
, t

〉
, 0 ≤ t ≤ h

(a) Show that r(t) parametrizes a helix of radius R and height h making N complete turns.
(b) Guess which of the two springs in Figure 5 uses more wire.
(c) Compute the lengths of the two springs and compare.

3 cm4 cm

5 turns, radius 4 cm3 turns, radius 7 cm
(A) (B)

FIGURE 5 Which spring uses more wire?

solution We first verify that the projection p(t) =
〈
R cos

(
2πNt

h

)
, R sin

(
2πNt

h

)
, 0

〉
onto the xy-plane describes a

point moving around the circle of radius R. We have:

x(t)2 + y(t)2 = R2 cos2
(

2πNt

h

)
+ R2 sin2

(
2πNt

h

)
= R2

(
cos2

(
2πNt

h

)
+ sin2

(
2πNt

h

))
= R2

This is the equation of the circle of radius R in the xy-plane. As t changes in the interval 0 ≤ t ≤ h the argument 2πNt
h

changes from 0 to 2πN , that is, it covers N periods of the cos and sin functions. It follows that the projection onto the
xy-plane describes a point moving around the circle of radius R, making N complete turns. The height of the helix is the
maximum value of the z-component, which is t = h.

(a) The second wire seems to use more wire than the first one.
(b) Setting R = 7, h = 4 and N = 3 in the parametrization in Exercise 15 gives:

r1(t) =
〈
7 cos

2π · 3t

4
, 7 sin

2π · 3t

4
, t

〉
=

〈
7 cos

3πt

2
, 7 sin

3πt

2
, t

〉
, 0 ≤ t ≤ 4

Setting R = 4, h = 3 and N = 5 in this parametrization we get:

r2(t) =
〈
4 cos

2π · 5t

3
, 4 sin

2π · 5t

3
, t

〉
=

〈
4 cos

10πt

3
, 4 sin

10πt

3
, t

〉
, 0 ≤ t ≤ 3
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We find the derivatives of the two vectors and their lengths:

r′
1(t) =

〈
−21π

2
sin

3πt

2
,

21π

2
cos

3πt

2
, 1

〉
⇒ ‖r′

1(t)‖ =
√

441π2

4
+ 1 = 1

2

√
441π2 + 4

r′
2(t) =

〈
−40π

3
sin

10πt

3
,

40π

3
cos

10πt

3
, 1

〉
⇒ ‖r′

2(t)‖ =
√

1600π2

9
+ 1 = 1

3

√
1600π2 + 9

Using the Arc Length Formula we obtain the following lengths:

s1 =
∫ 4

0

1

2

√
441π2 + 4 dt = 2

√
441π2 + 4 ≈ 132

s2 =
∫ 3

0

1

3

√
1600π2 + 9 dt =

√
1600π2 + 9 ≈ 125.7

We see that the first spring uses more wire than the second one.

Use Exercise 15 to find a general formula for the length of a helix of radius R and height h that makes N complete
turns.

17. The cycloid generated by the unit circle has parametrization

r(t) = 〈t − sin t, 1 − cos t〉
(a) Find the value of t in [0, 2π ] where the speed is at a maximum.
(b) Show that one arch of the cycloid has length 8. Recall the identity sin2(t/2) = (1 − cos t)/2.

solution One arch of the cycloid is traced as 0 ≤ t ≤ 2π . By the Arc Length Formula we have:

s =
∫ 2π

0
‖r′(t)‖ dt (1)

We compute the derivative and its length:

r′(t) = 〈1 − cos t, sin t〉

‖r′(t)‖ =
√

(1 − cos t)2 + (sin t)2 =
√

1 − 2 cos t + cos2 t + sin2 t

= √
2 − 2 cos t = √

2(1 − cos t) =
√

2 · 2 sin2 t

2
= 2

∣∣∣∣sin
t

2

∣∣∣∣ .
For 0 ≤ t ≤ 2π , we have 0 ≤ t

2 ≤ π , so sin t
2 ≥ 0. Therefore we may omit the absolute value sign and write:

‖r′(t)‖ = 2 sin
t

2

Substituting in (1) and computing the integral using the substitution u = t
2 , du = 1

2 dt , gives:

s =
∫ 2π

0
2 sin

t

2
dt =

∫ π

0
2 sin u · (2 du) = 4

∫ π

0
sin u du

= 4(− cos u)

∣∣∣∣π
0

= 4 (− cos π − (− cos 0)) = 4(1 + 1) = 8

The length of one arc of the cycloid is s = 8. The speed is given by the function:

v(t) = ‖r′(t)‖ = 2 sin
t

2
, 0 ≤ t ≤ π

To find the value of t in [0, 2π ] where the speed is at maximum, we first find the critical point in this interval:

v′(t) = 2 · 1

2
cos

t

2
= cos

t

2

cos
t

2
= 0 ⇒ t

2
= π

2
⇒ t = π

Since v′′(t) = − 1
2 sin t

2 , we have v′′(π) = − 1
2 sin π

2 = − 1
2 < 0, hence the speed v(t) has a maximum value at t = π.

Which of the following is an arc length parametrization of a circle of radius 4 centered at the origin?

(a) r1(t) = 〈4 sin t, 4 cos t〉
(b) r2(t) = 〈4 sin 4t, 4 cos 4t〉
(c) r3(t) = 〈

4 sin t
4 , 4 cos t

4

〉

19. Let r(t) = 〈3t + 1, 4t − 5, 2t〉.
(a) Evaluate the arc length integral s(t) =

∫ t

0
‖r′(u)‖ du.

(b) Find the inverse g(s) of s(t).
(c) Verify that r1(s) = r(g(s)) is an arc length parametrization.
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solution

(a) We differentiate r(t) componentwise and then compute the norm of the derivative vector. This gives:

r′(t) = 〈3, 4, 2〉
‖r′(t)‖ =

√
32 + 42 + 22 = √

29

We compute s(t):

s(t) =
∫ t

0
‖r′(u)‖ du =

∫ t

0

√
29 du = √

29 u

∣∣∣∣t
0

= √
29t

(b) We find the inverse g(s) = t (s) by solving s = √
29t for t . We obtain:

s = √
29t ⇒ t = g(s) = s√

29

We obtain the following arc length parametrization:

r1(s) = r
(

s√
29

)
=

〈
3s√
29

+ 1,
4s√
29

− 5,
2s√
29

〉

To verify that r1(s) is an arc length parametrization we must show that ‖r′
1(s)‖ = 1. We compute r′

1(s):

r′
1(s) = d

ds

〈
3s√
29

+ 1,
4s√
29

− 5,
2s√
29

〉
=

〈
3√
29

,
4√
29

,
2√
29

〉
= 1√

29
〈3, 4, 2〉

Thus,

‖r′
1(s)‖ = 1√

29
‖ 〈3, 4, 2〉 ‖ = 1√

29

√
32 + 42 + 22 = 1√

29
· √

29 = 1

Find an arc length parametrization of the line y = 4x + 9.
21. Let r(t) = w + tv be the parametrization of a line.

(a) Show that the arc length function s(t) =
∫ t

0
‖r′(u)‖ du is given by s(t) = t‖v‖. This shows that r(t) is an arc length

parametrizaton if and only if v is a unit vector.

(b) Find an arc length parametrization of the line with w = 〈1, 2, 3〉 and v = 〈3, 4, 5〉.
solution

(a) Since r(t) = w + tv, then r′(t) = v and ‖r′(t)‖ = ‖v‖. Then computing s(t) we get:

s(t) =
∫ t

0
‖r′(u)‖ du =

∫ t

0
‖v‖ du = t‖v‖

If we consider s(t),

s(t) = t if and only if ‖v‖ = 1

(b) Since v = 〈3, 4, 5〉, then from part (a) we get:

s(t) = t‖v‖ = t
√

32 + 42 + 52 = t
√

50, ⇒ t = g(s) = s√
50

Therefore, since we are given r(t) = w + tv, the arc length parametrization is:

r1(s) = 〈1, 2, 3〉 + s√
50

〈3, 4, 5〉 =
〈
1 + 3s√

50
, 2 + 4s√

50
, 3 + 5s√

50

〉

Find an arc length parametrization of the circle in the plane z = 9 with radius 4 and center (1, 4, 9).
23. Find a path that traces the circle in the plane y = 10 with radius 4 and center (2, 10, −3) with constant speed 8.

solution We start with the following parametrization of the circle:

r(t) = 〈2, 10, −3〉 + 4 〈cos t, 0, sin t〉 = 〈2 + 4 cos t, 10, −3 + 4 sin t〉
We need to reparametrize the curve by making a substitution t = g(s), so that the new parametrization r1(s) = r (g(s))

satisfies ‖r′
1(s)‖ = 8 for all s. We find r′

1(s) using the Chain Rule:

r′
1(s) = d

ds
r (g(s)) = g′(s)r′ (g(s)) (1)
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Next, we differentiate r(t) and then replace t by g(s):

r′(t) = 〈−4 sin t, 0, 4 cos t〉
r′ (g(s)) = 〈−4 sin g(s), 0, 4 cos g(s)〉

Substituting in (1) we get:

r′
1(s) = g′(s) 〈−4 sin g(s), 0, 4 cos g(s)〉 = −4g′(s) 〈sin g(s), 0, − cos g(s)〉

Hence,

‖r′
1(s)‖ = 4|g′(s)|

√
(sin g(s))2 + (− cos g(s))2 = 4|g′(s)|

To satisfy ‖r′
1(s)‖ = 8 for all s, we choose g′(s) = 2. We may take the antiderivative g(s) = 2 · s, and obtain the

following parametrization:

r1(s) = r (g(s)) = r(2s) = 〈2 + 4 cos(2s), 10, −3 + 4 sin(2s)〉 .

This is a parametrization of the given circle, with constant speed 8.

Find an arc length parametrization of r(t) = 〈
et sin t, et cos t, et

〉
.

25. Find an arc length parametrization of r(t) = 〈
t2, t3〉.

solution We follow two steps.

Step 1. Find the inverse of the arc length function. The arc length function is the following function:

s(t) =
∫ t

0
‖r′(u)‖ du (1)

In our case r′(t) = 〈
2t, 3t2〉 hence ‖r′(t)‖ =

√
4t2 + 9t4 =

√
4 + 9t2t . We substitute in (1) and compute the resulting

integral using the substitution v = 4 + 9u2, dv = 18u du. This gives:

s(t) =
∫ t

0

√
4 + 9u2u du = 1

18

∫ 4+9t2

4
v1/2 dv = 1

18
· 2

3
v3/2

∣∣∣∣4+9t2

4
= 1

27

(
(4 + 9t2)3/2 − 43/2

)

= 1

27

((
4 + 9t2

)3/2 − 8

)
We find the inverse of t = s(t) by solving for t in terms of s. This function is invertible for t ≥ 0 and for t ≤ 0.

s = 1

27

(
(4 + 9t2)3/2 − 8

)
27s + 8 = (4 + 9t2)3/2

(27s + 8)2/3 − 4 = 9t2

t2 = 1

9

(
(27s + 8)2/3 − 4

)
= 1

9
(27s + 8)2/3 − 4

9

t = ±1

3

√
(27s + 8)2/3 − 4 (2)

Step 2. Reparametrize the curve. The arc length parametrization is obtained by replacing t by (2) in r(t):

r1(s) =
〈

1

9
(27s + 8)2/3 − 4

9
, ± 1

27

(
(27s + 8)2/3 − 4

)3/2
〉

Find an arc length parametrization of the cycloid with parametrization r(t) = 〈t − sin t, 1 − cos t〉.27. Find an arc length parametrization of the line y = mx for an arbitrary slope m.

solution
Step 1. Find the inverse of the arc length function. We are given the line y = mx and a parametrization of this line is
r(t) = 〈t, mt〉, thus r′(t) = 〈1, m〉 and

‖r′(t)‖ =
√

1 + m2

We then compute s(t):

s(t) =
∫ t

0

√
1 + m2 du = t

√
1 + m2

Solving s = t
√

1 + m2 for t we get:

t = s√
1 + m2
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Step 2. Reparametrize the curve using the t we just found.

r1(s) =
〈

s√
1 + m2

,
sm√

1 + m2

〉

Express the arc length s of y = x3 for 0 ≤ x ≤ 8 as an integral in two ways, using the parametrizations
r1(t) = 〈

t, t3〉 and r2(t) = 〈
t3, t9〉. Do not evaluate the integrals, but use substitution to show that they yield the same

result.

29. The curve known as the Bernoulli spiral (Figure 6) has parametrization r(t) = 〈
et cos 4t, et sin 4t

〉
.

(a) Evaluate s(t) =
∫ t

−∞
‖r′(u)‖ du. It is convenient to take lower limit −∞ because r(−∞) = 〈0, 0〉.

(b) Use (a) to find an arc length parametrization of r(t).

20

t = 0

t = 2π

−10

x

y

FIGURE 6 Bernoulli spiral.

solution

(a) We differentiate r(t) and compute the norm of the derivative vector. This gives:

r′(t) = 〈
et cos 4t − 4et sin 4t, et sin 4t + 4et cos 4t

〉 = et 〈cos 4t − 4 sin 4t, sin 4t + 4 cos 4t〉

‖r′(t)‖ = et
√

(cos 4t − 4 sin 4t)2 + (sin 4t + 4 cos 4t)2

= et
(
cos2 4t − 8 cos 4t sin 4t + 16 sin2 4t + sin2 4t + 8 sin 4t cos 4t + 16 cos2 4t

)1/2

= et
√

cos2 4t + sin2 4t + 16
(
sin2 4t + cos2 4t

) = et
√

1 + 16 · 1 = √
17et

We now evaluate the improper integral:

s(t) =
∫ t

−∞
‖r′(u)‖ du = lim

R→−∞

∫ t

R

√
17eu du = lim

R→−∞
√

17eu
∣∣∣t
R

= lim
R→−∞

√
17(et − eR)

= √
17(et − 0) = √

17et

(b) An arc length parametrization of r(t) is r1(s) = r (g(s)) where t = g(s) is the inverse function of s(t). We find
t = g(s) by solving s = √

17et for t :

s = √
17et ⇒ et = s√

17
⇒ t = g(s) = ln

s√
17

An arc length parametrization of r(t) is:

r1(s) = r (g(s)) =
〈
eln(s/(

√
17)) cos

(
4 ln

s√
17

)
, eln(s/(

√
17)) sin

(
4 ln

s√
17

)〉

= s√
17

〈
cos

(
4 ln

s√
17

)
, sin

(
4 ln

s√
17

)〉
(1)

Further Insights and Challenges

Prove that the length of a curve as computed using the arc length integral does not depend on its parametrization.
More precisely, let C be the curve traced by r(t) for a ≤ t ≤ b. Let f (s) be a differentiable function such that f ′(s) > 0
and that f (c) = a and f (d) = b. Then r1(s) = r(f (s)) parametrizes C for c ≤ s ≤ d. Verify that∫ b

a
‖r′(t)‖ dt =

∫ d

c
‖r′

1(s)‖ ds

31. The unit circle with the point (−1, 0) removed has parametrization (see Exercise 73 in Section 11.1)

r(t) =
〈

1 − t2

1 + t2
,

2t

1 + t2

〉
, −∞ < t < ∞

Use this parametrization to compute the length of the unit circle as an improper integral. Hint: The expression for ‖r′(t)‖
simplifies.
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solution We have x(t) = 1−t2

1+t2 , y(t) = 2t
1+t2 . Hence,

x2(t) + y2(t) =
(

1 − t2

1 + t2

)2

+
(

2t

1 + t2

)2
= 1 − 2t2 + t4 + 4t2(

1 + t2
)2

= 1 + 2t2 + t4(
1 + t2

)2
=

(
1 + t2

)2

(
1 + t2

)2
= 1

It follows that the path r(t) lies on the unit circle. We now show that the entire circle is indeed parametrized by r(t)
as t moves from −∞ to ∞. First, note that x′(t) can be written as

[−2t (1 + t2) − 2t (1 − t2)
]
/(1 + t2)2 which is

−4t/(1 + t2)2. So, for t negative, x(t) is an increasing function, y(t) is negative, and since lim
t→−∞ x(t) = −1 and

lim
t→0

x(t) = 1, we conclude that r(t) does indeed parametrize the lower half of the circle for negative t . A similar

argument proves that we get the upper half of the circle for positive t . We now compute r′(t) and its length:

r′(t) =
〈

−2t (1 + t2) − 2t (1 − t2)

(1 + t2)2
,

2(1 + t2) − 2t · 2t

(1 + t2)2

〉

=
〈
− 4t

(1 + t2)2
,

2 − 2t2

(1 + t2)2

〉
= 1

(1 + t2)
2

〈
−4t, 2(1 − t2)

〉

‖r′(t)‖ = 1

(1 + t2)2

√
16t2 + 4(1 − t2)2 = 2

(1 + t2)2

√
t4 + 2t2 + 1

= 2

(1 + t2)2

√
(t2 + 1)2 = 2(t2 + 1)

(1 + t2)
2

= 2

1 + t2

That is,

‖r′(t)‖ = 2

1 + t2

We now use the Arc Length Formula to compute the length of the circle:

s =
∫ ∞
−∞

‖r′(t)‖ dt = 2
∫ ∞
−∞

dt

1 + t2
= 2

(
lim

R→∞ tan−1 R − lim
R→−∞ tan−1 R

)
= 2

(π

2
−

(
−π

2

))
= 2π

The involute of a circle (Figure 7), traced by a point at the end of a thread unwinding from a circular spool of
radius R, has parametrization (see Exercise 26 in Section 12.2)

r(θ) = 〈
R(cos θ + θ sin θ), R(sin θ − θ cos θ)

〉
Find an arc length parametrization of the involute.

33. The curve r(t) = 〈t − tanh t, sech t〉 is called a tractrix (see Exercise 92 in Section 11.1).

(a) Show that s(t) =
∫ t

0
‖r′(u)‖ du is equal to s(t) = ln(cosh t).

(b) Show that t = g(s) = ln(es +
√

e2s − 1) is an inverse of s(t) and verify that

r1(s) =
〈
tanh−1

(√
1 − e−2s

)
−

√
1 − e−2s , e−s

〉
is an arc length parametrization of the tractrix.

solution
(a) We compute the derivative vector and its length:

r′(t) = 〈
1 − sech2 t, − sech t tanh t

〉
‖r′(t)‖ =

√
(1 − sech2 t) + sech2 t tanh2 t =

√
1 − 2 sech2 t + sech4 t + sech2 t tanh2 t

=
√

− sech2 t (2 − tanh2 t) + 1 + sech4 t

We use the identity 1 − tanh2 t = sech2 t to write:

‖r′(t)‖ =
√

− sech2 t (1 + sech2 t) + 1 + sech4 t =
√

− sech2 t − sech4 t + 1 + sech4 t

=
√

1 − sech2 t =
√

tanh2 t = | tanh t |
For t ≥ 0, tanh t ≥ 0 hence, ‖r′(t)‖ = tanh t . We now apply the Arc Length Formula to obtain:

s(t) =
∫ t

0
‖r′(u)‖ du =

∫ t

0
(tanh u) du = ln(cosh u)

∣∣∣∣t
0

= ln(cosh t) − ln(cosh 0)

= ln(cosh t) − ln 1 = ln(cosh t)

That is:

s(t) = ln(cosh t)
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(b) We show that the function t = g(s) = ln
(
es +

√
e2s − 1

)
is an inverse of s(t). First we note that s′(t) = tanh t ,

hence s′(t) > 0 for t > 0, which implies that s(t) has an inverse function for t ≥ 0. Therefore, it suffices to verify that
g(s(t)) = t . We have:

g(s(t)) = ln
(
eln(cosh t) +

√
e2 ln(cosh t) − 1

)
= ln

(
cosh t +

√
cosh2t − 1

)

Since cosh2t − 1 = sinh2t we obtain (for t ≥ 0):

g (s(t)) = ln
(

cosh t +
√

sinh2t
)

= ln (cosh t + sinh t) = ln

(
et + e−t

2
+ et − e−t

2

)
= ln

(
et
) = t

We thus proved that t = g(s) is an inverse of s(t). Therefore, the arc length parametrization is obtained by substituting
t = g(s) in r(t) = 〈t − tanh t, sech t〉. We compute t , tanh t and sech t in terms of s. We have:

s = ln (cosh t) ⇒ es = cosh t ⇒ sech t = e−s

Also:

tanh2 t = 1 − sech2 t = 1 − e−2s ⇒ tanh t =
√

1 − e−2s ⇒ t = tanh−1
√

1 − e−2s

Substituting in r(t) gives:

r1(s) = 〈t − tanh t, sech t〉 =
〈
tanh−1

√
1 − e−2s −

√
1 − e−2s , e−s

〉
(c) The tractrix is shown in the following figure:

2 4

y

x

1 

13.4 Curvature (LT Section 14.4)

Preliminary Questions
1. What is the unit tangent vector of a line with direction vector v = 〈2, 1, −2〉?

solution A line with direction vector v has the parametrization:

r(t) = −−→
OP0 + tv

hence, since
−−→
OP0 and v are constant vectors, we have:

r′(t) = v

Therefore, since ‖v‖ = 3, the unit tangent vector is:

T(t) = r′(t)
‖r′(t)‖ = v

‖v‖ = 〈2/3, 1/3, −2/3〉

2. What is the curvature of a circle of radius 4?

solution The curvature of a circle of radius R is 1
R

, hence the curvature of a circle of radius 4 is 1
4 .

3. Which has larger curvature, a circle of radius 2 or a circle of radius 4?

solution The curvature of a circle of radius 2 is 1
2 , and it is larger than the curvature of a circle of radius 4, which is

1
4 .

4. What is the curvature of r(t) = 〈2 + 3t, 7t, 5 − t〉?
solution r(t) parametrizes the line 〈2, 0, 5〉 + t 〈3, 7, −1〉, and a line has zero curvature.
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5. What is the curvature at a point where T′(s) = 〈1, 2, 3〉 in an arc length parametrization r(s)?

solution The curvature is given by the formula:

κ(t) = ‖T′(t)‖
‖r′(t)‖

In an arc length parametrization, ‖r′(t)‖ = 1 for all t , hence the curvature is κ(t) = ‖T′(t)‖. Using the given information
we obtain the following curvature:

κ = ‖ 〈1, 2, 3〉 ‖ =
√

12 + 22 + 32 = √
14

6. What is the radius of curvature of a circle of radius 4?

solution The definition of the osculating circle implies that the osculating circles at the points of a circle, is the circle
itself. Therefore, the radius of curvature is the radius of the circle, that is, 4.

7. What is the radius of curvature at P if κP = 9?

solution The radius of curvature is the reciprocal of the curvature, hence the radius of curvature at P is:

R = 1

κP
= 1

9

Exercises
In Exercises 1–6, calculate r′(t) and T(t), and evaluate T(1).

1. r(t) = 〈
4t2, 9t

〉
solution We differentiate r(t) to obtain:

r′(t) = 〈8t, 9〉 ⇒ ‖r′(t)‖ =
√

(8t)2 + 92 =
√

64t2 + 81

We now find the unit tangent vector:

T(t) = r′(t)
‖r′(t)‖ = 1√

64t2 + 81
〈8t, 9〉

For t = 1 we obtain the vector:

T(t) = 1√
64 + 81

〈8, 9〉 =
〈

8√
145

,
9√
145

〉
.

r(t) = 〈
et , t2〉3. r(t) = 〈

3 + 4t, 3 − 5t, 9t
〉

solution We first find the vector r′(t) and its length:

r′(t) = 〈4, −5, 9〉 ⇒ ‖r′(t)‖ =
√

42 + (−5)2 + 92 = √
122

The unit tangent vector is therefore:

T(t) = r′(t)
‖r′(t)‖ = 1√

122
〈4, −5, 9〉 =

〈
4√
122

, − 5√
122

,
9√
122

〉
We see that the unit tangent vector is constant, since the curve is a straight line.

r(t) = 〈
1 + 2t, t2, 3 − t2〉5. r(t) = 〈

cos πt, sin πt, t
〉

solution We compute the derivative vector and its length:

r′(t) = 〈−π sin πt, π cos πt, 1〉

‖r′(t)‖ =
√

(−π sin πt)2 + (π cos πt)2 + 12 =
√

π2(sin2 πt + cos2 πt) + 1 =
√

π2 + 1

The unit tangent vector is thus:

T(t) = r′(t)
‖r′(t)‖ = 1√

π2 + 1
〈−π sin πt, π cos πt, 1〉

For t = 1 we get:

T(1) = 1√
π2 + 1

〈−π sin π, π cos π, 1〉 = 1√
π2 + 1

〈0, −π, 1〉 =
〈

0, − π√
π2 + 1

,
1√

π2 + 1

〉
.
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r(t) = 〈
et , e−t , t2〉In Exercises 7–10, use Eq. (3) to calculate the curvature function κ(t).

7. r(t) = 〈
1, et , t

〉
solution We compute the first and the second derivatives of r(t):

r′(t) = 〈
0, et , 1

〉
, r′′(t) = 〈

0, et , 0
〉
.

Next, we find the cross product r′(t) × r′′(t):

r′(t) × r′′(t) =
∣∣∣∣∣∣

i j k
0 et 1
0 et 0

∣∣∣∣∣∣ =
∣∣∣∣ et 1

et 0

∣∣∣∣ i −
∣∣∣∣ 0 1

0 0

∣∣∣∣ j +
∣∣∣∣ 0 et

0 et

∣∣∣∣ k = −et i = 〈−et , 0, 0
〉

We need to find the lengths of the following vectors:

‖r′(t) × r′′(t)‖ = ∣∣〈−et , 0, 0
〉∣∣ = et

‖r′(t)‖ =
√

02 + (et )2 + 12 =
√

1 + e2t

We now use the formula for curvature to calculate κ(t):

κ(t) = ‖r′(t) × r′′(t)‖
‖r′(t)‖3

= et(√
1 + e2t

)3
= et(

1 + e2t
)3/2

r(t) = 〈
4 cos t, t, 4 sin t

〉9. r(t) = 〈
4t + 1, 4t − 3, 2t

〉
solution By Formula (3) we have:

κ(t) = ‖r′(t) × r′′(t)‖
‖r′(t)‖3

We compute r′(t) and r′′(t):

r′(t) = 〈4, 4, 2〉 , r′′(t) = 〈0, 0, 0〉
Thus r′(t) × r′′(t) = 〈0, 0, 0〉, ‖r′(t) × r′′(t)‖ = 0, and κ(t) = 0, as expected.

r(t) = 〈
t−1, 1, t

〉In Exercises 11–14, use Eq. (3) to evaluate the curvature at the given point.

11. r(t) = 〈
1/t, 1/t2, t2〉, t = −1

solution By the formula for curvature we know:

κ(t) = ‖r′(t) × r′′(t)‖
‖r′(t)‖3

We now find r′(t), r′′(t) and the cross product. These give:

r′(t) =
〈
−t−2, −2t−3, 2t

〉
, ⇒ r′(−1) = 〈−1, 2, −2〉

r′′(t) =
〈
2t−3, 6t−4, 2

〉
, ⇒ r′′(−1) = 〈−2, 6, 2〉

r′(−1) × r′′(−1) = 〈16, 6, −2〉
Now finding the norms, we get:

‖r′(−1)‖ =
√

(−1)2 + 22 + (−2)2 = 3

‖r′(−1) × r′′(−1)‖ =
√

162 + 62 + (−2)2 = √
296 = 2

√
74

Therefore,

κ(−1) = ‖r′(−1) × r′′(−1)‖
‖r′(−1)‖3

= 2
√

74

33
= 2

√
74

27

r(t) = 〈
3 − t, et−4, 8t − t2〉, t = 4

13. r(t) = 〈
cos t, sin t, t2〉, t = π

2

solution By the formula for curvature we know:

κ(t) = ‖r′(t) × r′′(t)‖
‖r′(t)‖3
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We now find r′(t), r′′(t) and the cross product. These give:

r′(t) = 〈− sin t, cos t, 2t〉 ⇒ r′(π/2) = 〈−1, 0, π〉
r′′(t) = 〈− cos t, − sin t, 2〉 ⇒ r′′(π/2) = 〈0, −1, 2〉

r′(π/2) × r′′(π/2) = 〈π, 2, 1〉

Now finding norms we get:

‖r′(π/2)‖ =
√

(−1)2 + 02 + π2 =
√

1 + π2

‖r′(π/2) × r′′(π/2)‖ =
√

π2 + (−1)2 + 22 =
√

π2 + 5

Therefore,

κ(π/2) = ‖r′(π/2) × r′′(π/2)‖
‖r′(π/2)‖3

=
√

π2 + 5

(
√

1 + π2)3
=

√
π2 + 5

(1 + π2)3/2
≈ 0.108

r(t) = 〈
cosh t, sinh t, t

〉
, t = 0In Exercises 15–18, find the curvature of the plane curve at the point indicated.

15. y = et , t = 3

solution We use the curvature of a graph in the plane:

κ(t) = |f ′′(t)|(
1 + f ′(t)2

)3/2

In our case f (t) = et , hence f ′(t) = f ′′(t) = et and we obtain:

κ(t) = et(
1 + e2t

)3/2
⇒ κ(3) = e3(

1 + e6
)3/2

≈ 0.0025

y = cos x, x = 017. y = t4, t = 2

solution By the curvature of a graph in the plane, we have:

κ(t) = |f ′′(t)|(
1 + f ′(t)2)3/2

In this case f (t) = t4, f ′(t) = 4t3, f ′′(t) = 12t2. Hence,

κ(t) = 12t2(
1 + (

4t3
)2
)3/2

= 12t2(
1 + 16t6

)3/2

At t = 2 we obtain the following curvature:

κ(2) = 12 · 22

(1 + 16 · 26)3/2
= 48

(1025)3/2
≈ 0.0015.

y = tn, t = 1
19. Find the curvature of r(t) = 〈2 sin t, cos 3t, t〉 at t = π

3 and t = π
2 (Figure 16).

y
x

z

t = π

3

FIGURE 16 The curve r(t) = 〈2 sin t, cos 3t, t〉.
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solution By the formula for curvature we have:

κ(t) = ‖r′(t) × r′′(t)‖
‖r′(t)‖3

(1)

We compute the first and second derivatives:

r′(t) = 〈2 cos t, −3 sin 3t, 1〉 , r′′(t) = 〈−2 sin t, −9 cos 3t, 0〉

At the points t = π
3 and t = π

2 we have:

r′ (π

3

)
=

〈
2 cos

π

3
, −3 sin

3π

3
, 1

〉
=

〈
2 cos

π

3
, −3 sin π, 1

〉
= 〈1, 0, 1〉

r′′ (π

3

)
=

〈
−2 sin

π

3
, −9 cos

3π

3
, 0

〉
=

〈
−√

3, 9, 0
〉

r′ (π

2

)
=

〈
2 cos

π

2
, −3 sin

3π

2
, 1

〉
= 〈0, 3, 1〉

r′′ (π

2

)
=

〈
−2 sin

π

2
, −9 cos

3π

2
, 0

〉
= 〈−2, 0, 0〉

We compute the cross products required to use (1):

r′ (π

3

)
× r′′ (π

3

)
=

∣∣∣∣∣∣
i j k
1 0 1

−√
3 9 0

∣∣∣∣∣∣ =
∣∣∣∣ 0 1

9 0

∣∣∣∣ i −
∣∣∣∣ 1 1

−√
3 0

∣∣∣∣ j +
∣∣∣∣ 1 0

−√
3 9

∣∣∣∣ k = −9i − √
3j + 9k

r′ (π

2

)
× r′′ (π

2

)
=

∣∣∣∣∣∣
i j k
0 3 1

−2 0 0

∣∣∣∣∣∣ =
∣∣∣∣ 3 1

0 0

∣∣∣∣ i −
∣∣∣∣ 0 1

−2 0

∣∣∣∣ j +
∣∣∣∣ 0 3

−2 0

∣∣∣∣ k = −2j + 6k

Hence,

∥∥∥r′ (π

3

)
× r′′ (π

3

)∥∥∥ =
√

(−9)2 +
(
−√

3
)2 + 92 = √

165∥∥∥r′ (π

3

)∥∥∥ =
√

12 + 02 + 12 = √
2

At t = π
2 we have:

∥∥∥r′ (π

2

)
× r′′ (π

2

)∥∥∥ =
√

(−2)2 + 62 = √
40 = 2

√
10∥∥∥r′ (π

2

)∥∥∥ =
√

02 + 32 + 12 = √
10

Substituting the values for t = π
3 and t = π

2 in (1) we obtain the following curvatures:

κ
(π

3

)
=

√
165(√
2
)3

=
√

165

2
√

2
≈ 4.54

κ
(π

2

)
= 2

√
10(√

10
)3

= 2
√

10

10
√

10
= 0.2

Find the curvature function κ(x) for y = sin x. Use a computer algebra system to plot κ(x) for 0 ≤ x ≤ 2π .

Prove that the curvature takes its maximum at x = π
2 and 3π

2 . Hint: As a shortcut to finding the max, observe that
the maximum of the numerator and the minimum of the denominator of κ(x) occur at the same points.

21. Show that the tractrix r(t) = 〈t − tanh t, sech t〉 has the curvature function κ(t) = sech t .

solution Writing r(t) = 〈x(t), y(t)〉, we have x(t) = t − tanh t and y(t) = sech t . We compute the first and second

derivatives of these functions. We use tanh2 t = 1 − sech2t to obtain:

x′(t) = 1 − sech2t = tanh2 t

x′′(t) = −2 sech t (− sech t tanh t) = 2 sech2 t tanh t

y′(t) = − sech t tanh t

y′′(t) = −(− sech t tanh2 t + sech3 t
) = sech t

(
tanh2 t − sech2 t

) = sech t
(
1 − 2 sech2 t

)
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We compute the cross product ‖r′ × r′′‖:

x′(t)y′′(t) − x′′(t)y′(t) = tanh2 t sech t (1 − 2 sech2 t) + 2 sech3 t tanh2 t

= tanh2 t
[
sech t − 2 sech3 t + 2 sech3 t

]
= tanh2 t sech t

We compute the length of r′:

x′(t)2 + y′(t)2 = tanh4 t + sech2 t tanh2 t = tanh2 t (tanh2 t + sech2 t) = tanh2 t

Hence

‖r′‖3 = (
tanh2 t

)3/2 = tanh3 t

Substituting, we obtain

κ(t) = | sech t tanh2 t |
tanh3 t

= sech t tanh2 t

tanh3 t
= sech t

tanh t

Show that curvature at an inflection point of a plane curve y = f (x) is zero.
23. Find the value of α such that the curvature of y = eαx at x = 0 is as large as possible.

solution Using the curvature of a graph in the plane we have:

κ(x) = |y′′(x)|(
1 + y′(x)2)3/2

(1)

In our case y′(x) = αeαx , y′′(x) = α2eαx . Substituting in (1) we obtain

κ(x) = α2eαx(
1 + α2e2αx

)3/2

The curvature at the origin is thus

κ(0) = α2eα·0(
1 + α2e2α·0)3/2

= α2(
1 + α2

)3/2

Since κ(0) and κ2(0) have their maximum values at the same values of α, we may maximize the function:

g(α) = κ2(0) = α4

(1 + α2)
3

We find the stationary points:

g′(α) = 4α3(1 + α2)
3 − α4(3)(1 + α2)

2
2α

(1 + α2)
6

= 2α3(1 + α2)
2
(2 − α2)

(1 + α2)
6

= 0

The stationary points are the solutions of the following equation:

2α3(1 + α2)2(2 − α2) = 0
↙ ↘

α3 = 0 or 2 − α2 = 0
α = 0 α = ±√

2

Since g(α) ≥ 0 and g(0) = 0, α = 0 is a minimum point. Also, g′(α) is positive immediately to the left of
√

2 and
negative to the right. Hence, α = √

2 is a maximum point. Since g(α) is an even function, α = −√
2 is a maximum point

as well. Conclusion: κ(x) takes its maximum value at the origin when α = ±√
2.

Find the point of maximum curvature on y = ex .
25. Show that the curvature function of the parametrization r(t) = 〈a cos t, b sin t〉 of the ellipse(x

a

)2 +
(y

b

)2 = 1 is

κ(t) = ab

(b2 cos2 t + a2 sin2 t)3/2
9

solution The curvature is the following function:

κ(t) = ‖r′(t) × r′′(t)‖
‖r′(t)‖3

(1)
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We compute the derivatives and their cross product:

r′(t) = 〈−a sin t, b cos t〉 , r′′(t) = 〈−a cos t, −b sin t〉
r′(t) × r′′(t) = (−a sin t i + b cos tj) × (−a cos t i − b sin tj)

= ab sin2 tk + ab cos2 tk = ab
(
sin2 t + cos2 t

)
k = abk

Thus,

‖r′(t) × r′′(t)‖ = ‖abk‖ = ab

‖r′(t)‖ =
√

(−a sin t)2 + (b cos t)2 =
√

a2 sin2 t + b2 cos2 t

Substituting in (1) we obtain the following curvature:

κ(t) = ab(√
a2 sin2 t + b2 cos2 t

)3
= ab(

a2 sin2 t + b2 cos2 t
)3/2

Use a sketch to predict where the points of minimal and maximal curvature occur on an ellipse. Then use Eq. (9)
to confirm or refute your prediction.

27. In the notation of Exercise 25, assume that a ≥ b. Show that b/a2 ≤ κ(t) ≤ a/b2 for all t .

solution In Exercise 25 we showed that the curvature of the ellipse r(t) = 〈a cos t, b sin t〉 is the following function:

κ(t) = ab(
b2 cos2 t + a2 sin2 t

)3/2

Since a ≥ b > 0 the quotient becomes greater if we replace a by b in the denominator, and it becomes smaller if we
replace b by a in the denominator. We use the identity cos2 t + sin2 t = 1 to obtain:

ab(
a2 cos2 t + a2 sin2 t

)3/2
≤ κ(t) ≤ ab(

b2 cos2 t + b2 sin2 t
)3/2

ab(
a2

(
cos2 t + sin2 t

))3/2
≤ κ(t) ≤ ab(

b2
(
cos2 t + sin2 t

))3/2

ab

a3
= ab

(a2)
3/2

≤ κ(t) ≤ ab

(b2)
3/2

= ab

b3

b

a2
≤ κ(t) ≤ a

b2

Use Eq. (3) to prove that for a plane curve r(t) = 〈x(t), y(t)〉,

κ(t) = |x′(t)y′′(t) − x′′(t)y′(t)|(
x′(t)2 + y′(t)2

)3/2

In Exercises 29–32, use Eq. (10) to compute the curvature at the given point.

29.
〈
t2, t3〉, t = 2

solution For the given parametrization, x(t) = t2, y(t) = t3, hence

x′(t) = 2t

x′′(t) = 2

y′(t) = 3t2

y′′(t) = 6t

At the point t = 2 we have

x′(2) = 4, x′′(2) = 2, y′(2) = 3 · 22 = 12, y′′(2) = 12

Substituting in Eq. (10) we get

κ(2) = |x′(2)y′′(2) − x′′(2)y′(2)|(
x′(2)2 + y′(2)2

)3/2
= |4 · 12 − 2 · 12|(

42 + 122
)3/2

= 24

1603/2
≈ 0.012

〈
cosh s, s

〉
, s = 0

31.
〈
t cos t, sin t

〉
, t = π

solution We have x(t) = t cos t and y(t) = sin t , hence:

x′(t) = cos t − t sin t ⇒ x′(π) = cos π − π sin π = −1

x′′(t) = − sin t − (sin t + t cos t) = −2 sin t − t cos t ⇒ x′′(π) = −2 sin π − π cos π = π

y′(t) = cos t ⇒ y′(π) = cos π = −1

y′′(t) = − sin t ⇒ y′′(π) = − sin π = 0
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Substituting in Eq. (10) gives the following curvature:

κ(π) = |x′(π)y′′(π) − x′′(π)y′(π)|(
x′(π)2 + y′(π)2)3/2

= | − 1 · 0 − π · (−1)|(
(−1)2 + (−1)2)3/2

= π

2
√

2
≈ 1.11

〈
sin 3s, 2 sin 4s

〉
, s = π

2
33. Let s(t) =

∫ t

−∞
‖r′(u)‖ du for the Bernoulli spiral r(t) = 〈

et cos 4t, et sin 4t
〉

(see Exercise 29 in Section 13.3).

Show that the radius of curvature is proportional to s(t).

solution The radius of curvature is the reciprocal of the curvature:

R(t) = 1

κ(t)

We compute the curvature using the equality given in Exercise 29 in Section 3:

κ(t) = |x′(t)y′′(t) − x′′(t)y′(t)|(
x′(t)2 + y′(t)2

)3/2
(1)

In our case, x(t) = et cos 4t and y(t) = et sin 4t . Hence:

x′(t) = et cos 4t − 4et sin 4t = et (cos 4t − 4 sin 4t)

x′′(t) = et (cos 4t − 4 sin 4t) + et (−4 sin 4t − 16 cos 4t) = −et (15 cos 4t + 8 sin 4t)

y′(t) = et sin 4t + 4et cos 4t = et (sin 4t + 4 cos 4t)

y′′(t) = et (sin 4t + 4 cos 4t) + et (4 cos 4t − 16 sin 4t) = et (8 cos 4t − 15 sin 4t)

We compute the numerator in (1):

x′(t)y′′(t) − x′′(t)y′(t) = e2t (cos 4t − 4 sin 4t) · (8 cos 4t − 15 sin 4t)

+e2t (15 cos 4t + 8 sin 4t) · (sin 4t + 4 cos 4t)

= e2t
(
68 cos2 4t + 68 sin2 4t

) = 68e2t

We compute the denominator in (1):

x′(t)2 + y′(t)2 = e2t (cos 4t − 4 sin 4t)2 + e2t (sin 4t + 4 cos 4t)2

= e2t
(
cos2 4t − 8 cos 4t sin 4t + 16 sin2 4t + sin2 4t + 8 sin 4t cos 4t + 16 cos2 4t

)
= e2t

(
cos2 4t + sin2 4t + 16

(
sin2 4t + cos2 4t

))
= e2t (1 + 16 · 1) = 17e2t (2)

Hence (
x′(t)2 + y′(t)2)3/2 = 173/2e3t

Substituting in (2) we have

κ(t) = 68e2t

173/2e3t
= 4√

17
e−t ⇒ R =

√
17

4
et (3)

On the other hand, by the Fundamental Theorem and (2) we have

s′(t) = ‖r′(t)‖ =
√

x′(t)2 + y′(t)2 =
√

17e2t = √
17et

We integrate to obtain

s(t) =
∫ √

17 et dt = √
17 et + C (4)

Since s(t) =
∫ t

−∞
‖r′(u)‖ du, we have lim

t→−∞ s(t) = 0, hence by (4):

0 = lim
t→−∞

(√
17et + C

)
= 0 + C = C.
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Substituting C = 0 in (4) we get:

s(t) = √
17et (5)

Combining (3) and (5) gives:

R(t) = 1

4
s(t)

which means that the radius of curvature is proportional to s(t).

The Cornu spiral is the plane curve r(t) = 〈x(t), y(t)〉, where

x(t) =
∫ t

0
sin

u2

2
du, y(t) =

∫ t

0
cos

u2

2
du

Verify that κ(t) = |t |. Since the curvature increases linearly, the Cornu spiral is used in highway design to create
transitions between straight and curved road segments (Figure 17).

35. Plot and compute the curvature κ(t) of the clothoid r(t) = 〈x(t), y(t)〉, where

x(t) =
∫ t

0
sin

u3

3
du, y(t) =

∫ t

0
cos

u3

3
du

solution We use the following formula for the curvature (given earlier):

κ(t) = |x′(t)y′′(t) − x′′(t)y′(t)|(
x′(t)2 + y′(t)2

)3/2
(1)

We compute the first and second derivatives of x(t) and y(t). Using the Fundamental Theorem and the Chain Rule we
get:

x′(t) = sin
t3

3

x′′(t) = 3t2

3
cos

t3

3
= t2 cos

t3

3

y′(t) = cos
t3

3

y′′(t) = 3t2

3

(
− sin

t3

3

)
= −t2 sin

t3

3

Substituting in (1) gives the following curvature function:

κ(t) =
∣∣∣sin t3

3

(
−t2 sin t3

3

)
− t2 cos t3

3 cos t3

3

∣∣∣((
sin t3

3

)2 +
(

cos t3

3

)2
)3/2

=
t2

(
sin2 t3

3 + cos2 t3

3

)
13/2

= t2

That is, κ(t) = t2. Here is a plot of the curvature as a function of t :

κ

t

κ(t) = t2

Find the unit normal vector N(θ) to r(θ) = R 〈cos θ, sin θ〉, the circle of radius R. Does N(θ) point inside or
outside the circle? Draw N(θ) at θ = π

4 with R = 4.

37. Find the unit normal vector N(t) to r(t) = 〈4, sin 2t, cos 2t〉.
solution We first find the unit tangent vector:

T(t) = r′(t)
‖r′(t)‖ (1)

We have

r′(t) = d

dt
〈4, sin 2t, cos 2t〉 = 〈0, 2 cos 2t,−2 sin 2t〉 = 2 〈0, cos 2t,− sin 2t〉

‖r′(t)‖ = 2
√

02 + cos2 2t + (− sin 2t)2 = 2
√

0 + 1 = 2
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Substituting in (1) gives:

T(t) = 2 〈0, cos 2t,− sin 2t〉
2

= 〈0, cos 2t,− sin 2t〉

The normal vector is the following vector:

N(t) = T′(t)
‖T′(t)‖ (2)

We compute the derivative of the unit tangent vector and its length:

T′(t) = d

dt
〈0, cos 2t,− sin 2t〉 = 〈0, −2 sin 2t,−2 cos 2t〉 = −2 〈0, sin 2t, cos 2t〉

‖T′(t)‖ = 2
√

02 + sin2 2t + cos2 2t = 2
√

0 + 1 = 2

Substituting in (2) we obtain:

N(t) = −2 〈0, sin 2t, cos 2t〉
2

= 〈0, − sin 2t,− cos 2t〉

Sketch the graph of r(t) = 〈
t, t3〉. Since r′(t) = 〈

1, 3t2〉, the unit normal N(t) points in one of the two directions

±〈−3t2, 1
〉
. Which sign is correct at t = 1? Which is correct at t = −1?

39. Find the normal vectors to r(t) = 〈t, cos t〉 at t = π
4 and t = 3π

4 .

solution The normal vector to r(t) = 〈t, cos t〉 is T′(t), where T(t) = r′(t)
‖r′(t)‖ is the unit tangent vector. We have

r′(t) = 〈1, − sin t〉 ⇒ ‖r′(t)‖ =
√

12 + (sin t)2 =
√

1 + sin2 t

Hence,

T(t) = 1√
1 + sin2 t

〈1, − sin t〉

We compute the derivative of T(t) to find the normal vector.We use the Product Rule and the Chain Rule to obtain:

T′(t) = 1√
1 + sin2 t

d

dt
〈1, − sin t〉 +

(
1√

1 + sin2 t

)′
〈1, − sin t〉

= 1√
1 + sin2 t

〈0, − cos t〉 − 1

1 + sin2 t
· 2 sin t cos t

2
√

1 + sin2 t
〈1, − sin t〉

= 1√
1 + sin2 t

〈0, − cos t〉 − sin 2t

2
(

1 + sin2 t
)3/2

〈1, − sin t〉

At t = π
4 we obtain the normal vector:

T′ (π

4

)
= 1√

1 + 1
2

〈
0, − 1√

2

〉
− 1

2
(

1 + 1
2

)3/2

〈
1, − 1√

2

〉
=

〈
0, − 1√

3

〉
−

〈 √
2

3
√

3
,

−1

3
√

3

〉
=

〈
−√

2

3
√

3
,

−2

3
√

3

〉

At t = 3π
4 we obtain:

T′
(

3π

4

)
= 1√

1 + 1
2

〈
0,

1√
2

〉
− −1

2
(

1 + 1
2

)3/2

〈
1, − 1√

2

〉
=

〈
0,

1√
3

〉
+

〈 √
2

3
√

3
,

−1

3
√

3

〉
=

〈 √
2

3
√

3
,

2

3
√

3

〉

Find the unit normal to the Cornu spiral (Exercise 34) at t = √
π .

41. Find the unit normal to the clothoid (Exercise 35) at t = π1/3.

solution The Clothoid is the plane curve r(t) = 〈x(t), y(t)〉 with

x(t) =
∫ t

0
sin

u3

3
du, y(t) =

∫ t

0
cos

u3

3
du

The unit normal is the following vector:

N(t) = T′(t)
‖T′(t)‖ (1)
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We first find the unit tangent vector T(t) = r′(t)
‖r′(t)‖ . By the Fundamental Theorem we have

r′(t) =
〈

sin
t3

3
, cos

t3

3

〉
⇒ ‖r′(t)‖ =

√
sin2 t3

3
+ cos2 t3

3
= √

1 = 1

Hence,

T(t) =
〈

sin
t3

3
, cos

t3

3

〉

We now differentiate T(t) using the Chain Rule to obtain:

T′(t) =
〈

3t2

3
cos

t3

3
,
−3t2

3
sin

t3

3

〉
= t2

〈
cos

t3

3
, − sin

t3

3

〉

Hence,

‖T′(t)‖ = t2

√
cos2 t3

3
+

(
− sin

t3

3

)2

= t2

Substituting in (1) we obtain the following unit normal:

N(t) =
〈

cos
t3

3
, − sin

t3

3

〉

At the point T = π1/3 the unit normal is

N(π1/3) =
〈

cos
(π1/3)

3

3
, − sin

(π1/3)
3

3

〉
=

〈
cos

π

3
, − sin

π

3

〉
=

〈
1

2
, −

√
3

2

〉

Method for Computing N Let v(t) = ‖r′(t)‖. Show that

N(t) = v(t)r′′(t) − v′(t)r′(t)
‖v(t)r′′(t) − v′(t)r′(t)‖

Hint: N is the unit vector in the direction T′(t). Differentiate T(t) = r′(t)/v(t) to show that v(t)r′′(t) − v′(t)r′(t) is
a positive multiple of T′(t).

In Exercises 43–48, use Eq. (11) to find N at the point indicated.

43.
〈
t2, t3〉, t = 1

solution We use the equality

N(t) = v(t)r′′(t) − v′(t)r′(t)
‖v(t)r′′(t) − v′(t)r′(t)‖

For r(t) = 〈
t2, t3〉 we have

r′(t) = 〈2t, 3t2〉
r′′(t) = 〈2, 6t〉

v(t) = ‖r′(t)‖ =
√

(2t)2 + (3t2)
2 =

√
4t2 + 9t4

v′(t) = 8t + 36t3

2
√

4t2 + 9t4
= 4t + 18t3√

4t2 + 9t4

At the point t = 1 we get

r′′(1) = 〈2, 6〉 , v′(1) = 4 + 18√
4 + 9

= 22√
13

,

and also

r′(1) = 〈2, 3〉 , v(1) = √
4 + 9 = √

13

Hence,

v(1)r′′(1) − v′(1)r′(1) = √
13 〈2, 6〉 − 22√

13
· 〈2, 3〉 =

〈
26 − 44√

13
,

78 − 66√
13

〉
= 1√

13
〈−18, 12〉

∥∥v(1)r′′(1) − v′(1)r′(1)
∥∥ =

∥∥∥∥ 1√
13

〈−18, 12〉
∥∥∥∥ = 1√

13

√
(−18)2 + 122 =

√
468

13
= 6
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Substituting in (1) gives the following unit normal:

N(1) =
1√
13

〈−18, 12〉
6

= 1√
13

〈−3, 2〉

〈
t − sin t, 1 − cos t

〉
, t = π

45.
〈
t2/2, t3/3, t

〉
, t = 1

solution We use the following equality:

N(t) = v(t)r′′(t) − v′(t)r′(t)
‖v(t)r′′(t) − v′(t)r′(t)‖

We compute the vectors in the equality above. For r(t) =
〈
t2/2, t3/3, t

〉
we get:

r′(t) =
〈
t, t2, 1

〉
r′′(t) = 〈1, 2t, 0〉
v(t) = ‖r′(t)‖ =

√
t2 + t4 + 1

v′(t) = 1

2
(t2 + t4 + 1)−1/2(4t3 + 2t) = 4t3 + 2t

2
√

t2 + t4 + 1

At the point t = 1 we get:

r′(1) = 〈1, 1, 1〉
r′′(1) = 〈1, 2, 0〉

v′(1) = 6

2
√

3
= 3√

3
= √

3

v(1) = √
3

Hence,

v(1)r′′(1) − v′(1)r′(1) = √
3 〈1, 2, 0〉 − √

3 〈1, 1, 1〉 =
〈
0,

√
3, −√

3
〉

‖v(1)r′′(1) − v′(1)r′(1)‖ =
√

02 + (
√

3)2 + (−√
3)2 = √

6

We now substitute these values in (1) to obtain the following unit normal:

N(1) = v(1)r′′(1) − v′(1)r′(1)

‖v(1)r′′(1) − v′(1)r′(1)‖ =
〈
0,

√
3, −√

3
〉

√
6

=
〈
0,

1√
2
, − 1√

2

〉

〈
t−1, t, t2〉, t = −1

47.
〈
t, et , t

〉
, t = 0

solution We use the equality

N(t) = v(t)r′′(t) − v′(t)r′(t)
‖v(t)r′′(t) − v′(t)r′(t)‖

For r(t) = 〈
t, et , t

〉
we have

r′(t) = 〈
1, et , 1

〉
r′′(t) = 〈

0, et , 0
〉

v(t) = ‖r′(t)‖ =
√

12 + (et )2 + 12 =
√

e2t + 2

v′(t) = 2e2t

2
√

e2t + 2
= e2t√

e2t + 2

At the point t = 0 we have

r′(0 = 〈1, 1, 1〉 , r′′(0) = 〈
0, 1, 0

〉
, v(0) = √

3, v′(0) = 1√
3
,
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Hence,

v(0)r′′(0) − v′(0)r′(0) = √
3 〈0, 1, 0〉 − 1√

3
〈1, 1, 1〉

=
〈
− 1√

3
,

2√
3
, − 1√

3

〉

= 1√
3

〈−1, 2, −1〉

‖v(0)r′′(0) − v′(0)r′(0)‖ = 1√
3

√
1 + 4 + 1 = √

2

Substituting in (1) we obtain the following unit normal:

N(0) =
1√
3

〈−1, 2, −1〉
√

2
= 1√

6
〈−1, 2, −1〉

〈
cosh t, sinh t, t2〉, t = 049. Let f (x) = x2. Show that the center of the osculating circle at (x0, x2

0 ) is given by
(
−4x3

0 , 1
2 + 3x2

0

)
.

solution We parametrize the curve by r(x) = 〈
x, x2〉. The center Q of the osculating circle at x = x0 has the position

vector

−−→
OQ = r(x0) + κ(x0)−1N(x0) (1)

We first find the curvature, using the formula for the curvature of a graph in the plane. We have f ′(x) = 2x and f ′′(x) = 2,
hence,

κ(x) = |f ′′(x)|
(1 + f ′(x)2)

3/2
= 2

(1 + 4x2)
3/2

⇒ κ(x0)−1 = 1

2
(1 + 4x2

0 )
3/2

To find the unit normal vector N(x0) we use the following considerations:

• The tangent vector is r′(x0) = 〈1, 2x0〉, hence the vector 〈−2x0, 1〉 is orthogonal to r′(x0) (since their dot product
is zero). Hence N(x0) is one of the two unit vectors ± 1√

1+4x2
0

〈−2x0, 1〉.

• The graph of f (x) = x2 shows that the unit normal vector points in the positive y-direction, hence, the appropriate
choice is:

N(x0) = 1√
1 + 4x2

0

〈−2x0, 1〉 (2)

y

x

f (x) = x2

We now substitute (2), (3), and r(x0) = 〈
x0, x2

0

〉
in (1) to obtain

−−→
OQ = 〈

x0, x2
0
〉 + 1

2

(
1 + 4x2

0
)3/2 · 1√

1 + 4x2
0

〈−2x0, 1
〉 = 〈

x0, x2
0
〉 + 1

2

(
1 + 4x2

0
) 〈−2x0, 1〉

= 〈
x0, x2

0
〉 + 〈

−x0 − 4x3
0 ,

1

2

(
1 + 4x2

0
)〉 =

〈
−4x3

0 ,
1

2
+ 3x2

0

〉

The center of the osculating circle is the terminal point of
−−→
OQ, that is,

Q =
(

−4x3
0 ,

1

2
+ 3x2

0

)

Use Eq. (8) to find the center of curvature to r(t) = 〈
t2, t3〉 at t = 1.
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In Exercises 51–58, find a parametrization of the osculating circle at the point indicated.

51. r(t) = 〈
cos t, sin t

〉
, t = π

4

solution The curve r(t) = 〈cos t, sin t〉 is the unit circle. By the definition of the osculating circle, it follows that the
osculating circle at each point of the circle is the circle itself. Therefore the osculating circle to the unit circle at t = π

4 is
the unit circle itself.

r(t) = 〈
sin t, cos t

〉
, t = 0

53. y = x2, x = 1

solution Let f (x) = x2. We use the parametrization r(x) = 〈x, x2〉 and proceed by the following steps.

Step 1. Find κ and N. We compute κ using the curvature of a graph in the plane:

κ(x) = |f ′′(x)|(
1 + f ′(x)2)3/2

We have f ′(x) = 2x, f ′′(x) = 2, therefore,

κ(x) = 2

(1 + (2x)2)
3/2

= 2

(1 + 4x2)
3/2

⇒ κ(1) = 2

53/2
(1)

To find N(x) we notice that the tangent vector is r′(x) = 〈1, 2x〉 hence 〈−2x, 1〉 is orthogonal to r′(x) (their dot product
is zero). Therefore, N(x) is the unit vector in the direction of 〈−2x, 1〉 or − 〈−2x, 1〉 that points to the “inside” of the
curve.

x

y

y = x2

As shown in the figure, the unit normal vector points in the positive y-direction, hence:

N(x) = 〈−2x, 1〉√
4x2 + 1

⇒ N(1) = 1√
5

〈−2, 1〉 (2)

Step 2. Find the center of the osculating circle. The center Q at r(1) has the position vector

−−→
OQ = r(1) + κ(1)−1N(1)

Substituting (1), (2) and r(1) = 〈1, 1〉 we get:

−−→
OQ = 〈1, 1〉 + 53/2

2
· 1

51/2
〈−2, 1〉 = 〈1, 1〉 + 5

2
〈−2, 1〉 =

〈
−4,

7

2

〉

Step 3. Parametrize the osculating circle. The osculating circle has radius R = 1
κ(1)

= 53/2

2 and it is centered at the point(
−4, 7

2

)
, therefore it has the following parametrization:

c(t) =
〈
−4,

7

2

〉
+ 53/2

2
〈cos t, sin t〉

y = sin x, x = π
2

55.
〈
t − sin t, 1 − cos t

〉
, t = π

solution
Step 1. Find κ and N. In Exercise 44 we found that:

N(π) = 〈0, −1〉 (1)

To find κ we use the formula for curvature:

κ(π) = ‖r′ (π) × r′′ (π) ‖
‖r′ (π) ‖3

(2)
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For r(t) = 〈t − sin t, 1 − cos t〉 we have:

r′(t) = 〈1 − cos t, sin t〉 ⇒ r′ (π) = 〈1 − cos π, sin π〉 = 〈2, 0〉
r′′(t) = 〈sin t, cos t〉 ⇒ r′′ (π) = 〈sin π, cos π〉 = 〈0, −1〉

Hence,

r′ (π) × r′′ (π) = 2i × (−j) = −2k

‖r′ (π) × r′′ (π) ‖ = ‖ − 2k‖ = 2 and ‖r′ (π) ‖ = ‖ 〈2, 0〉 ‖ = 2

Substituting in (2) we get:

κ (π) = 2

23
= 1

4
(3)

Step 2. Find the center of the osculating circle. The center Q of the osculating circle at r (π) = 〈π, 2〉 has position vector

−−→
OQ = r (π) + κ(π)−1N (π)

Substituting (1), (3) and r (π) = 〈π, 2〉 we get:

−−→
OQ = 〈π, 2〉 +

(
1

4

)−1
〈0, −1〉 = 〈π, 2〉 + 〈0, −4〉 = 〈π, −2〉

Step 3. Parametrize the osculating circle. The osculating circle has radius R = 1
κ(π)

and it is centered at (π, −2), hence
it has the following parametrization:

c(t) = 〈π, −2〉 + 4 〈cos t, sin t〉

r(t) = 〈
t2/2, t3/3, t

〉
, t = 0

57. r(t) = 〈
cos t, sin t, t

〉
, t = 0

solution The curvature is the following quotient:

κ(t) = ‖r′(t) × r′′(t)‖
‖r′(t)‖3

(1)

We compute the vectors r′(t) and r′′(t):

r′(t) = d

dt
〈cos t, sin t, t〉 = 〈− sin t, cos t, 1〉 (2)

r′′(t) = d

dt
〈− sin t, cos t, 1〉 = 〈− cos t, − sin t, 0〉

We now compute the following cross product:

r′(t) × r′′(t) =
∣∣∣∣∣∣

i j k
− sin t cos t 1
− cos t − sin t 0

∣∣∣∣∣∣ =
∣∣∣∣ cos t 1

− sin t 0

∣∣∣∣ i −
∣∣∣∣ − sin t 1

− cos t 0

∣∣∣∣ j +
∣∣∣∣ − sin t cos t

− cos t − sin t

∣∣∣∣ k

= (sin t)i − (cos t)j + 1 · k (3)

We calculate the norms of the vectors in (1). By (2) and (3) we have:

‖r′(t) × r′′(t)‖ =
√

sin2 t + (− cos t)2 + 12 = √
1 + 1 = √

2

‖r′(t)‖ =
√

(− sin t)2 + cos2 t + 12 = √
1 + 1 = √

2 (4)

Substituting (4) in (1) yields the following curvature:

κ(t) =
√

2(√
2
)3

= 1

2
⇒ κ(0) = 1

2
(5)

The unit normal vector is the following vector:

N(t) = T′(t)
‖T′(t)‖ (6)
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By (2) and (4) we have:

T(t) = r′(t)
‖r′(t)‖ = 1√

2
〈− sin t, cos t, 1〉 ⇒ T′(t) = 1√

2
〈− cos t, − sin t, 0〉 (7)

‖T′(t)‖ = 1√
2

√
(− cos t)2 + (− sin t)2 + 02 = 1√

2
· 1 = 1√

2

Combining (6) and (7) gives:

N(t) = 〈− cos t, − sin t, 0〉 ⇒ N(0) = 〈−1, 0, 0〉 (8)

The center of curvature at t = 0 is:

−−→
OQ = r(0) + κ(0)−1N(0)

By (5), (8) and r(0) = 〈1, 0, 0〉 we get:

−−→
OQ = 〈1, 0, 0〉 + 2 〈−1, 0, 0〉 = 〈1, 0, 0〉 + 〈−2, 0, 0〉 = 〈−1, 0, 0〉

Finally, we find a parametrization of the osculating circle at t = 0. The osculating circle has radius R = 1
κ(0)

= 2 and
center 〈−1, 0, 0〉, hence it has the following parametrization:

c(t) = 〈−1, 0, 0〉 + 2N(0) cos t + 2T(0) sin t = 〈−1, 0, 0〉 + 2〈−1, 0, 0〉 cos t + 2√
2
〈0, 1, 1〉 sin t

c(t) =
〈
−1 − 2 cos t,

2 sin t√
2

,
2 sin t√

2

〉

r(t) = 〈
cosh t, sinh t, t

〉
, t = 0

59. Figure 18 shows the graph of the half-ellipse y = ±
√

2rx − px2, where r and p are positive constants. Show that the
radius of curvature at the origin is equal to r . Hint: One way of proceeding is to write the ellipse in the form of Exercise
25 and apply Eq. (9).

x

y

r

r

FIGURE 18 The curve y = ±
√

2rx − px2 and the osculating circle at the origin.

solution The radius of curvature is the reciprocal of the curvature. We thus must find the curvature at the origin. We
use the following simple variant of the formula for the curvature of a graph in the plane:

κ(y) = |x′′(y)|(
1 + x′(y)2)3/2

(1)

(The traditional formula of κ(x) = |y′′(x)|(
1+y′(x)2

)3/2 is inappropriate for this problem, as y′(x) is undefined at x = 0.) We

find x in terms of y:

y =
√

2rx − px2

y2 = 2rx − px2

px2 − 2rx + y2 = 0

We solve for x and obtain:

x = ± 1

p

√
r2 − py2 + r

p
, y ≥ 0.
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We find x′ and x′′:

x′ = ± −2py

2p
√

r2 − py2
= ± y√

r2 − py2

x′′ = ±
1 ·

√
r2 − py2 − y · −py√

r2−py2

r2 − py2
= ± r2 − py2 + py2(

r2 − py2
)3/2

= ± r2(
r2 − py2

)3/2

At the origin we get:

x′(0) = 0, x′′(0) = ±r2

(r2)
3/2

= ±1

r

Substituting in (1) gives the following curvature at the origin:

κ(0) = |x′′(0)|
(1 + x′(0)2)3/2

= |±1
r |

(1 + 0)3/2
= 1

|r| = 1

r

We conclude that the radius of curvature at the origin is

R = 1

κ(0)
= r

In a recent study of laser eye surgery by Gatinel, Hoang-Xuan, and Azar, a vertical cross section of the cornea is
modeled by the half-ellipse of Exercise 59. Show that the half-ellipse can be written in the form x = f (y), where
f (y) = p−1(r −

√
r2 − py2

)
. During surgery, tissue is removed to a depth t (y) at height y for −S ≤ y ≤ S, where

t (y) is given by Munnerlyn’s equation (for some R > r):

t (y) =
√

R2 − S2 −
√

R2 − y2 −
√

r2 − S2 +
√

r2 − y2

After surgery, the cross section of the cornea has the shape x = f (y) + t (y) (Figure 19). Show that after surgery, the
radius of curvature at the point P (where y = 0) is R.

61. The angle of inclination at a point P on a plane curve is the angle θ between the unit tangent vector T and the x-axis
(Figure 20). Assume that r(s) is a arc length parametrization, and let θ = θ(s) be the angle of inclination at r(s). Prove
that

κ(s) =
∣∣∣∣dθ

ds

∣∣∣∣ 12

Hint: Observe that T(s) = 〈cos θ(s), sin θ(s)〉.
y

P

x

T = 〈cos θ, sin θ〉

θ

FIGURE 20 The curvature at P is the quantity |dθ/ds|.

solution Since T(t) is a unit vector that makes an angle θ(t) with the positive x-axis, we have

T(t) = 〈cos θ(t), sin θ(t)〉 .

Differentiating this vector using the Chain Rule gives:

T′(t) = 〈−θ ′(t) sin θ(t), θ ′(t) cos θ(t)
〉 = θ ′(t) 〈− sin θ(t), cos θ(t)〉

We compute the norm of the vector T′(t):

‖T′(t)‖ = ‖θ ′(t) 〈− sin θ(t), cos θ(t)〉 ‖ = |θ ′(t)|
√

(− sin θ(t))2 + (cos θ(t))2 = |θ ′(t)| · 1 = |θ ′(t)|
When r(s) is a parametrization by arc length we have:

κ(s) =
∥∥∥∥dT

ds

∥∥∥∥ =
∥∥∥∥dT

dt

∥∥∥∥
∣∣∣∣ dt

dθ

dθ

ds

∣∣∣∣ = ∣∣θ ′(t)
∣∣ 1

|θ ′(t)|
∣∣∣∣dθ

ds

∣∣∣∣ =
∣∣∣∣dθ

ds

∣∣∣∣
as desired.

A particle moves along the path y = x3 with unit speed. How fast is the tangent turning (i.e., how fast is the angle
of inclination changing) when the particle passes through the point (2, 8)?

63. Let θ(x) be the angle of inclination at a point on the graph y = f (x) (see Exercise 61).

(a) Use the relation f ′(x) = tan θ to prove that
dθ

dx
= f ′′(x)

(1 + f ′(x)2)
.

(b) Use the arc length integral to show that
ds

dx
=

√
1 + f ′(x)2.

(c) Now give a proof of Eq. (5) using Eq. (12).
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solution

(a) By the relation f ′(x) = tan θ we have θ = tan−1f ′(x). Differentiating using the Chain Rule we get:

dθ

dx
= d

dx

(
tan−1f ′(x)

) = 1

1 + f ′(x)2

d

dx

(
f ′(x)

) = f ′′(x)

1 + f ′(x)2

(b) We use the parametrization r(x) = 〈x, f (x)〉. Hence, r′(x) = 〈
1, f ′(x)

〉
and we obtain the following arc length

function:

S(x) =
∫ x

0
‖r′(u)‖ du =

∫ x

0

∥∥〈1, f ′(u)
〉∥∥ du =

∫ x

0

√
1 + f ′(u)2 du

Differentiating using the Fundamental Theorem gives:

ds

dx
= d

dx

(∫ x

0

√
1 + f ′(u)2 du

)
=

√
1 + f ′(x)2

(c) By Eq. (12),

κ(s) =
∣∣∣∣dθ

ds

∣∣∣∣ (1)

Using the Chain Rule and the equalities in part (a) and part (b), we obtain:

dθ

ds
= dθ

dx
· dx

ds
= dθ

dx
· 1

ds
dx

= f ′′(x)

1 + f ′(x)2
· 1√

1 + f ′(x)2
= f ′′(x)(

1 + f ′(x)2
)3/2

Combining with (1) we obtain the curvature as the following function of x:

κ(x) = |f ′′(x)|(
1 + f ′(x)2)3/2

which proves Eq. (5).

Use the parametrization r(θ) = 〈f (θ) cos θ, f (θ) sin θ〉 to show that a curve r = f (θ) in polar coordinates has
curvature

κ(θ) = |f (θ)2 + 2f ′(θ)2 − 2f (θ)f ′′(θ)|(
f (θ)2 + f ′(θ)2

)3/2

In Exercises 65–67, use Eq. (13) to find the curvature of the curve given in polar form.

65. f (θ) = 2 cos θ

solution By Eq. (13):,

κ(θ) = |f (θ)2 + 2f ′(θ)2 − f (θ)f ′′(θ)|(
f (θ)2 + f ′2(θ)

)3/2

We compute the derivatives f ′(θ) and f ′′(θ) and evaluate the numerator of κ(θ). This gives:

f ′(θ) = −2 sin θ

f ′′(θ) = −2 cos θ

f (θ)2 + 2f ′(θ)2 − f (θ)f ′′(θ) = 4 cos2 θ + 2 · 4 sin2 θ − 2 cos θ(−2 cos θ)

= 8 cos2 θ + 8 sin2 θ = 8

We compute the denominator of κ(θ):

(
f (θ)2 + f ′(θ)2)3/2 = (

4 cos2 θ + 4 sin2 θ
)3/2 = 43/2 = 8

Hence,

κ(θ) = 8

8
= 1

f (θ) = θ
67. f (θ) = eθ

solution By Eq. (13) we have the following curvature:

κ(θ) = |f (θ)2 + 2f ′(θ)2 − f (θ)f ′′(θ)|(
f (θ)2 + f ′2(θ)

)3/2
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Since f (θ) = eθ also f ′(θ) = f ′′(θ) = eθ . We compute the numerator and denominator of κ(θ):

f (θ)2 + 2f ′(θ)2 − f (θ)f ′′(θ) = e2θ + 2e2θ − eθ · eθ = 2e2θ

(
f (θ)2 + f ′(θ)2)3/2 = (

e2θ + e2θ
)3/2 = (

2e2θ
)3/2 = 2

√
2e3θ

Substituting in the formula for κ(θ) we obtain:

κ(θ) = 2e2θ

2
√

2e3θ
= 1√

2
e−θ

Use Eq. (13) to find the curvature of the general Bernoulli spiral r = aebθ in polar form (a and b are constants).
69. Show that both r′(t) and r′′(t) lie in the osculating plane for a vector function r(t). Hint: Differentiate r′(t) = v(t)T(t).

solution The osculating plane at P is the plane through P determined by the unit tangent T and the unit normal N at

P . Since T(t) = r′(t)
‖r′(t)‖ we have r′(t) = v(t)T(t) where v(t) = ‖r′(t)‖. That is, r′(t) is a scalar multiple of T(t), hence

it lies in every plane containing T(t), in particular in the osculating plane. We now differentiate r′(t) = v(t)T(t) using
the Product Rule:

r′′(t) = v′(t)T(t) + v(t)T′(t) (1)

By N(t) = T′(t)
‖T′(t)‖ we have T′(t) = b(t)N(t) for b(t) = ‖T′(t)‖. Substituting in (1) gives:

r′′(t) = v′(t)T(t) + v(t)b(t)N(t)

We see that r′′(t) is a linear combination of T(t) and N(t), hence r′′(t) lies in the plane determined by these two vectors,
that is, r′′(t) lies in the osculating plane.

Show that

γ (s) = r(t0) + 1

κ
N + 1

κ

(
(sin κs)T − (cos κs)N

)
is an arc length parametrization of the osculating circle at r(t0).

71. Two vector-valued functions r1(s) and r2(s) are said to agree to order 2 at s0 if

r1(s0) = r2(s0), r′
1(s0) = r′

2(s0), r′′
1(s0) = r′′

2(s0)

Let r(s) be an arc length parametrization of a path C, and let P be the terminal point of r(0). Let γ (s) be the arc length
parametrization of the osculating circle given in Exercise 70. Show that r(s) and γ (s) agree to order 2 at s = 0 (in fact,
the osculating circle is the unique circle that approximates C to order 2 at P ).

solution The arc length parametrization of the osculating circle at P , described in the xy-coordinate system with P

at the origin and the x and y axes in the directions of T and N respectively, is given in Exercise 70 by:

γ (s) = 1

κ
N + 1

κ

(
(sin κs)T − (cos κs)N

)
Hence

γ (0) = 1

κ
N + 1

κ

(
(sin 0)T − (cos 0)N

) = 1

κ
N + 1

κ
(0 − 1 · N) = 1

κ
N − 1

κ
N = 0

r(0) = −→
OP = 0

We get:

γ (0) = r(0) (1)

Differentiating γ (s) gives (notice that N, T, and κ are fixed):

γ ′(s) = 1

κ

(
(κ cos κs)T + (κ sin κs)N

) = (cos κs)T + (sin κs)N

Hence:

γ ′(0) = (cos κ · 0) T + (sin κ · 0) N = 1 · T + 0 · N = T

P
T

N
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Also, since r(s) is the arc length parametrization, ‖r′(s)‖ = 1, hence:

T = T(0) = r′(0)

‖r′(0)‖ = r′(0)

We conclude that:

γ ′(0) = r′(0) (2)

We differentiate γ ′(s) to obtain:

γ ′′(s) = (−κ sin κs) T + (κ cos κs) N

Hence:

γ ′′(0) = (−κ sin 0) T + (κ cos 0) N = 0T + κN = κN

For the arc length parametrization r(s) we have:

r′′(s) = T′(s) = ‖T′(s)‖N(s) = ‖r′(s)‖κ(s)N(s) = 1 · κ(s)N(s)

Hence:

r′′(0) = κ(0)N(0) = κN

We conclude that:

γ ′′(0) = r′′(0) (3)

(1), (2), and (3) show that r(s) and γ (s) agree to order two at s = 0.

Let r(t) = 〈x(t), y(t), z(t)〉 be a path with curvature κ(t) and define the scaled path r1(t) = 〈λx(t), λy(t), λz(t)〉,
where λ �= 0 is a constant. Prove that curvature varies inversely with the scale factor. That is, prove that the curvature
κ1(t) of r1(t) is κ1(t) = λ−1κ(t). This explains why the curvature of a circle of radius R is proportional to 1/R (in
fact, it is equal to 1/R). Hint: Use Eq. (3).

Further Insights and Challenges
73. Show that the curvature of Viviani’s curve, given by r(t) = 〈1 + cos t, sin t, 2 sin(t/2)〉, is

κ(t) =
√

13 + 3 cos t

(3 + cos t)3/2

solution We use the formula for curvature:

κ(t) = ‖r′(t) × r′′(t)‖
‖r′(t)‖3

(1)

Differentiating r(t) gives

r′(t) =
〈
− sin t, cos t, 2 · 1

2
cos

t

2

〉
=

〈
− sin t, cos t, cos

t

2

〉

r′′(t) =
〈
− cos t, − sin t, −1

2
sin

t

2

〉

We compute the cross product in (1):

r′(t) × r′′(t) =
∣∣∣∣∣∣

i j k
− sin t cos t cos t

2
− cos t − sin t − 1

2 sin t
2

∣∣∣∣∣∣
=

(
−1

2
cos t sin

t

2
+ sin t cos

t

2

)
i −

(
1

2
sin t sin

t

2
+ cos t cos

t

2

)
j + k

We find the length of the cross product:

‖r′(t) × r′′(t)‖2 =
(

−1

2
cos t sin

t

2
+ sin t cos

t

2

)2
+

(
1

2
sin t sin

t

2
+ cos t cos

t

2

)2
+ 1

= 1

4
sin2 t

2

(
cos2 t + sin2 t

)
+ cos2 t

2

(
sin2 t + cos2 t

)
+ 1

= 1

4
sin2 t

2
+ cos2 t

2
+ 1
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We use the identities sin2 t
2 + cos2 t

2 = 1 and cos2 t
2 = 1

2 + 1
2 cos t to write:

‖r′(t) × r′′(t)‖2 = 1

4
sin2 t

2
+ cos2 t

2
+ 1 = 1

4

(
sin2 t

2
+ cos2 t

2

)
+ 3

4
cos2 t

2
+ 1

= 1

4
+ 3

4

(
1

2
+ 1

2
cos t

)
+ 1 = 3

8
cos t + 13

8

Hence:

‖r′(t) × r′′(t)‖ = 1√
8

√
13 + 3 cos t (2)

We compute the length of r′(t):

‖r′(t)‖2 = (− sin t)2 + cos2 t + cos2 t

2
= 1 + cos2 t

2
= 1 +

(
1

2
+ 1

2
cos t

)
= 3

2
+ 1

2
cos t

Hence,

‖r′(t)‖ = 1√
2

√
3 + cos t (3)

Substituting (2) and (3) in (1) gives:

κ(t) =
1√
8

√
13 + 3 cos t(

1√
2

√
3 + cos t

)3
=

1√
8

√
13 + 3 cos t

1
2

1√
2
(3 + cos t)3/2

=
√

13 + 3 cos t

(3 + cos t)3/2

Let r(s) be an arc length parametrization of a closed curve C of length L. We call C an oval if dθ/ds > 0 (see
Exercise 61). Observe that −N points to the outside of C. For k > 0, the curve C1 defined by r1(s) = r(s) − kN is
called the expansion of c(s) in the normal direction.

(a) Show that ‖r′
1(s)‖ = ‖r′(s)‖ + kκ(s).

(b) As P moves around the oval counterclockwise, θ increases by 2π [Figure 21(A)]. Use this and a change of

variables to prove that
∫ L

0
κ(s) ds = 2π .

(c) Show that C1 has length L + 2πk.

In Exercises 75–82, let B denote the binormal vector at a point on a space curve C, defined by B = T × N.

75. Show that B is a unit vector.

solution T and N are orthogonal unit vectors, therefore the length of their cross product is:

‖B‖ = ‖T × N‖ = ‖T‖‖N‖ sin
π

2
= 1 · 1 · 1 = 1

Therefore B is a unit vector.

Follow steps (a)–(c) to prove that there is a number τ (lowercase Greek “tau”) called the torsion such that

dB
ds

= −τN

(a) Show that
dB
ds

= T × dN
ds

and conclude that dB/ds is orthogonal to T.

(b) Differentiate B · B = 1 with respect to s to show that dB/ds is orthogonal to B.

(c) Conclude that dB/ds is a multiple of N.

77. Show that if C is contained in a plane P , then B is a unit vector normal to P . Conclude that τ = 0 for a plane curve.

solution If C is contained in a plane P , then the unit normal N and the unit tangent T are in P . The cross product
B = T × N is orthogonal to T and N which are in the plane, hence B is normal to the plane. Thus, B is a unit vector
normal to the plane. There are only two different unit normal vectors to a plane, one pointing “up” and the other pointing
“down”. Thus, we can assume (due to continuity) that B is a constant vector, therefore

dB
ds

= 0 or τ = 0.

Torsion means “twisting.” Is this an appropriate name for τ? Explain by interpreting τ geometrically.
79. Use the identity

a × (b × c) = (a · c)b − (a · b)c

to prove

N × B = T, B × T = N 15

solution We use the given equality and the definition B = T × N to write:

N × B = N × (T × N) = (N · N) T − (N · T) N (1)

The unit normal N and the unit tangent T are orthogonal unit vectors, hence N · N = ‖N‖2 = 1 and N · T = 0. Therefore,
(1) gives:

N × B = 1 · T − 0N = T

To prove the second equality, we substitute T = N × B and then use the given equality. We obtain:

B × T = B × (N × B) = (B · B) N − (B · N) B (2)
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Now, B is a unit vector, hence B · B = ‖B‖2 = 1. Also, since B = T × N, B is orthogonal to N which implies that
B · N = 0. Substituting in (2) we get:

B × T = 1N − 0B = N.

Follow steps (a)–(b) to prove

dN
ds

= −κT + τB

(a) Show that dN/ds is orthogonal to N. Conclude that dN/ds lies in the plane spanned by T and B, and hence,
dN/ds = aT + bB for some scalars a, b.

(b) Use N · T = 0 to show that T · dN
ds

= −N · dT
ds

and compute a. Compute b similarly. Equations (14) and (16)

together with dT/dt = κN are called the Frenet formulas and were discovered by the French geometer Jean Frenet
(1816–1900).

81. Show that r′ × r′′ is a multiple of B. Conclude that

B = r′ × r′′
‖r′ × r′′‖ 17

solution By the definition of the binormal vector, B = T × N. We denote a(t) = 1
‖r′(t)‖ and write:

T(t) = r′(t)
‖r′(t)‖ = a(t)r′(t) (1)

We differentiate T(t) using the Product Rule:

T′(t) = a(t)r′′(t) + a′(t)r′(t)

We denote b(t) = ‖T′(t)‖ and obtain:

N(t) = T′(t)
‖T′(t)‖ = a(t)

b(t)
r′′(t) + a′(t)

b(t)
r′(t)

For c1 = a(t)
b(t)

and c2 = a′(t)
b(t)

we have:

N(t) = c1(t)r′′(t) + c2(t)r′(t) (2)

We now find B as the cross product of T(t) in (1) and N(t) in (2). This gives:

B(t) = a(t)r′(t) × (
c1(t)r′′(t) + c2(t)r′(t)

) = a(t)c1(t)r′(t) × r′′(t) + a(t)c2(t)r′(t) × r′(t)
= a(t)c1(t)r′(t) × r′′(t) + 0 = a(t)c1(t)r′(t) × r′′(t)

We see that B is parallel to r′ × r′′. Since B is a unit vector we have:

B = r′ × r′′
‖r′ × r′′‖ .

The vector N can be computed using N = B × T [Eq. (15)] with B, as in Eq. (17). Use this method to find N in
the following cases:

(a) r(t) = 〈
cos t, t, t2〉 at t = 0

(b) r(t) = 〈
t2, t−1, t

〉
at t = 1

13.5 Motion in Three-Space (LT Section 14.5)

Preliminary Questions
1. If a particle travels with constant speed, must its acceleration vector be zero? Explain.

solution If the speed of the particle is constant, the tangential component, aT (t) = v′(t), of the acceleration is zero.

However, the normal component, aN(t) = κ(t)v(t)2 is not necessarily zero, since the particle may change its direction.

2. For a particle in uniform circular motion around a circle, which of the vectors v(t) or a(t) always points toward the
center of the circle?

solution For a particle in uniform circular motion around a circle, the acceleration vector a(t) points towards the
center of the circle, whereas v(t) is tangent to the circle.

3. Two objects travel to the right along the parabola y = x2 with nonzero speed. Which of the following statements
must be true?

(a) Their velocity vectors point in the same direction.

(b) Their velocity vectors have the same length.

(c) Their acceleration vectors point in the same direction.

solution

(a) The velocity vector points in the direction of motion, hence the velocities of the two objects point in the same direction.

(b) The length of the velocity vector is the speed. Since the speeds are not necessarily equal, the velocity vectors may
have different lengths.

(c) The acceleration is determined by the tangential component v′(t) and the normal component κ(t)v(t)2. Since v and
v′ may be different for the two objects, the acceleration vectors may have different directions.
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4. Use the decomposition of acceleration into tangential and normal components to explain the following statement: If
the speed is constant, then the acceleration and velocity vectors are orthogonal.

solution If the speed is constant, v′(t) = 0. Therefore, the acceleration vector has only the normal component:

a(t) = aN(t)N(t)

The velocity vector always points in the direction of motion. Since the vector N(t) is orthogonal to the direction of motion,
the vectors a(t) and v(t) are orthogonal.

5. If a particle travels along a straight line, then the acceleration and velocity vectors are (choose the correct description):

(a) Orthogonal (b) Parallel

solution Since a line has zero curvature, the normal component of the acceleration is zero, hence a(t) has only the
tangential component. The velocity vector is always in the direction of motion, hence the acceleration and the velocity
vectors are parallel to the line. We conclude that (b) is the correct statement.

6. What is the length of the acceleration vector of a particle traveling around a circle of radius 2 cm with constant
velocity 4 cm/s?

solution The acceleration vector is given by the following decomposition:

a(t) = v′(t)T(t) + κ(t)v(t)2N(t) (1)

In our case v(t) = 4 is constant hence v′(t) = 0. In addition, the curvature of a circle of radius 2 is κ(t) = 1
2 . Substituting

v(t) = 4, v′(t) = 0 and κ(t) = 1
2 in (1) gives:

a(t) = 1

2
· 42N(t) = 8N(t)

The length of the acceleration vector is, thus,

‖a(t)‖ = 8 cm/s2

7. Two cars are racing around a circular track. If, at a certain moment, both of their speedometers read 110 mph. then
the two cars have the same (choose one):

(a) aT (b) aN

solution The tangential acceleration aT and the normal acceleration aN are the following values:

aT (t) = v′(t); aN(t) = κ(t)v(t)2

At the moment where both speedometers read 110 mph, the speeds of the two cars are v = 110 mph. Since the track is
circular, the curvature κ(t) is constant, hence the normal accelerations of the two cars are equal at this moment. Statement
(b) is correct.

Exercises
1. Use the table below to calculate the difference quotients

r(1 + h) − r(1)

h
for h = −0.2, −0.1, 0.1, 0.2. Then estimate

the velocity and speed at t = 1.

r(0.8) 〈1.557, 2.459, −1.970〉
r(0.9) 〈1.559, 2.634, −1.740〉
r(1) 〈1.540, 2.841, −1.443〉
r(1.1) 〈1.499, 3.078, −1.035〉
r(1.2) 〈1.435, 3.342, −0.428〉

solution

(h = −0.2)

r(1 − 0.2) − r(1)

−0.2
= r(0.8) − r(1)

−0.2
= 〈1.557, 2.459, −1.970〉 − 〈1.540, 2.841, −1.443〉

−0.2

= 〈0.017, −0.382, −0.527〉
−0.2

= 〈−0.085, 1.91, 2.635〉

(h = −0.1)

r(1 − 0.1) − r(1)

−0.1
= r(0.9) − r(1)

−0.1
= 〈1.559, 2.634, −1.740〉 − 〈1.540, 2.841, −1.443〉

−0.1

= 〈0.019, −0.207, −0.297〉
−0.1

= 〈−0.19, 2.07, 2.97〉
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(h = 0.1)

r(1 + 0.1) − r(1)

0.1
= r(1.1) − r(1)

0.1
= 〈1.499, 3.078, −1.035〉 − 〈1.540, 2.841, −1.443〉

0.1

= 〈−0.041, 0.237, 0.408〉
0.1

= 〈−0.41, 2.37, 4.08〉

(h = 0.2)

r(1 + 0.2) − r(1)

0.2
= r(1.2) − r(1)

0.2
= 〈1.435, 3.342, −0.428〉 − 〈1.540, 2.841, −1.443〉

0.2

= 〈−0.105, 0.501, 1.015〉
0.2

= 〈−0.525, 2.505, 5.075〉

The velocity vector is defined by:

v(t) = r′(t) = lim
h→0

r(t + h) − r(t)
h

We may estimate the velocity at t = 1 by:

v(1) ≈ 〈−0.3, 2.2, 3.5〉
and the speed by:

v(1) = ‖v(1)‖ ≈
√

0.32 + 2.22 + 3.52 ∼= 4.1

Draw the vectors r(2 + h) − r(2) and
r(2 + h) − r(2)

h
for h = 0.5 for the path in Figure 10. Draw v(2) (using a

rough estimate for its length).

In Exercises 3–6, calculate the velocity and acceleration vectors and the speed at the time indicated.

3. r(t) = 〈
t3, 1 − t, 4t2〉, t = 1

solution In this case r(t) = 〈
t3, 1 − t, 4t2〉 hence:

v(t) = r′(t) = 〈
3t2, −1, 8t

〉 ⇒ v(1) = 〈3, −1, 8〉
a(t) = r′′(t) = 〈6t, 0, 8〉 ⇒ a(1) = 〈6, 0, 8〉

The speed is the magnitude of the velocity vector, that is,

v(1) = ‖v(1)‖ =
√

32 + (−1)2 + 82 = √
74

r(t) = et j − cos(2t)k, t = 0
5. r(θ) = 〈sin θ, cos θ, cos 3θ〉, θ = π

3

solution Differentiating r(θ) = 〈sin θ, cos θ, cos 3θ〉 gives:

v(θ) = r′(θ) = 〈cos θ, − sin θ, −3 sin 3θ〉

⇒ v
(π

3

)
=

〈
cos

π

3
, − sin

π

3
, −3 sin π

〉
=

〈
1

2
, −

√
3

2
, 0

〉

a(θ) = r′′(θ) = 〈− sin θ, − cos θ, −9 cos 3θ〉

⇒ a
(π

3

)
=

〈
− sin

π

3
, − cos

π

3
, −9 cos π

〉
=

〈
−

√
3

2
, −1

2
, 9

〉

The speed is the magnitude of the velocity vector, that is:

v
(π

3

)
=

∥∥∥v
(π

3

)∥∥∥ =
√√√√(

1

2

)2
+

(
−

√
3

2

)2

+ 02 = 1

r(s) =
〈

1

1 + s2
,

s

1 + s2

〉
, s = 2

7. Find a(t) for a particle moving around a circle of radius 8 cm at a constant speed of v = 4 cm/s (see Example 4).
Draw the path and acceleration vector at t = π

4 .

solution The position vector is:

r(t) = 8 〈cos ωt, sin ωt〉
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Hence,

v(t) = r′(t) = 8 〈−ω sin ωt, ω cos ωt〉 = 8ω 〈− sin ωt, cos ωt〉 (1)

We are given that the speed of the particle is v = 4 cm/s. The speed is the magnitude of the velocity vector, hence:

v = 8ω

√
(− sin ωt)2 + cos2 ωt = 8ω = 4 ⇒ ω = 1

2
rad/s

Substituting in (2) we get:

v(t) = 4

〈
− sin

t

2
, cos

t

2

〉

We now find a(t) by differentiating the velocity vector. This gives

a(t) = v′(t) = 4

〈
−1

2
cos

t

2
, −1

2
sin

t

2

〉
= −2

〈
cos

t

2
, sin

t

2

〉

The path of the particle is r(t) = 8
〈
cos t

2 , sin t
2

〉
and the acceleration vector at t = π

4 is:

a
(π

4

)
= −2

〈
cos

π

8
, sin

π

8

〉
≈ 〈−1.85, −0.77〉

The path r(t) and the acceleration vector at t = π
4 are shown in the following figure:

8

r(t) = 8
〈
cos t

2 , sin t
2

〉

Sketch the path r(t) = 〈
1 − t2, 1 − t

〉
for −2 ≤ t ≤ 2, indicating the direction of motion. Draw the velocity and

acceleration vectors at t = 0 and t = 1.

9. Sketch the path r(t) = 〈
t2, t3〉 together with the velocity and acceleration vectors at t = 1.

solution We compute the velocity and acceleration vectors at t = 1:

v(t) = r′(t) = 〈
2t, 3t2〉 ⇒ v(1) = 〈2, 3〉

a(t) = v′(t) = 〈2, 6t〉 ⇒ a(1) = 〈2, 6〉
The following figure shows the path r(t) = 〈

t2, t3〉 and the vectors v(1) and a(1):

x

y

a(1)

r(t) = (t2, t  3  )

v(1)

t = 1

The paths r(t) = 〈
t2, t3〉 and r1(t) = 〈

t4, t6〉 trace the same curve, and r1(1) = r(1). Do you expect either
the velocity vectors or the acceleration vectors of these paths at t = 1 to point in the same direction? Compute these
vectors and draw them on a single plot of the curve.

In Exercises 11–14, find v(t) given a(t) and the initial velocity.

11. a(t) = 〈
t, 4

〉
, v(0) = 〈 1

3 , −2
〉

solution We find v(t) by integrating a(t):

v(t) =
∫ t

0
a(u)du =

∫ t

0
〈u, 4〉 du =

〈
1

2
u2, 4u

〉 ∣∣∣∣t
0

+ v0 =
〈

t2

2
, 4t

〉
+ v0
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The initial condition gives:

v(0) = 〈0, 0〉 + v0 =
〈

1

3
, −2

〉
⇒ v0 =

〈
1

3
, −2

〉
Hence,

v(t) =
〈

t2

2
, 4t

〉
+

〈
1

3
, −2

〉
=

〈
3t2 + 2

6
, 4t − 2

〉

a(t) = 〈
et , 0, t + 1

〉
, v(0) = 〈

1, −3,
√

2
〉13. a(t) = k, v(0) = i

solution We compute v(t) by integrating the acceleration vector:

v(t) =
∫ t

0
a(u) du =

∫ t

0
k du = ku

∣∣∣∣t
0

+ v0 = tk + v0 (1)

Substituting the initial condition gives:

v(0) = 0k + v0 = i ⇒ v0 = i

Combining with (1) we obtain:

v(t) = i + tk

a(t) = t2k, v(0) = i − j
In Exercises 15–18, find r(t) and v(t) given a(t) and the initial velocity and position.

15. a(t) = 〈t, 4〉, v(0) = 〈3, −2〉, r(0) = 〈0, 0〉
solution We first integrate a(t) to find the velocity vector:

v(t) =
∫ t

0
〈u, 4〉 du =

〈
u2

2
, 4u

〉 ∣∣∣∣t
0

+ v0 =
〈

t2

2
, 4t

〉
+ v0 (1)

The initial condition v(0) = 〈3, −2〉 gives:

v(0) = 〈0, 0〉 + v0 = 〈3, −2〉 ⇒ v0 = 〈3, −2〉
Substituting in (1) we get:

v(t) =
〈

t2

2
, 4t

〉
+ 〈3, −2〉 =

〈
t2

2
+ 3, 4t − 2

〉

We now integrate the velocity vector to find r(t):

r(t) =
∫ t

0

〈
u2

2
+ 3, 4u − 2

〉
du =

〈
u3

6
+ 3u, 2u2 − 2u

〉∣∣∣∣∣
t

0

+ r0 =
〈

t3

6
+ 3t, 2t2 − 2t

〉
+ r0

The initial condition r(0) = 〈0, 0〉 gives:

r(0) = 〈0, 0〉 + r0 = 〈0, 0〉 ⇒ r0 = 〈0, 0〉
Hence,

r(t) =
〈

t3

6
+ 3t, 2t2 − 2t

〉

a(t) = 〈
et , 2t, t + 1

〉
, v(0) = 〈1, 0, 1〉, r(0) = 〈2, 1, 1〉17. a(t) = tk, v(0) = i, r(0) = j

solution Integrating the acceleration vector gives:

v(t) =
∫ t

0
uk du = u2

2
k

∣∣∣∣t
0

+ v0 = t2

2
k + v0 (1)

The initial condition for v(t) gives:

v(0) = 02

2
k + v0 = i ⇒ v0 = i
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We substitute in (1):

v(t) = t2

2
k + i = i + t2

2
k

We now integrate v(t) to find r(t):

r(t) =
∫ t

0

(
i + u2

2
k

)
du = ui + u3

6
k

∣∣∣∣t
0

+ r0 = t i + t3

6
k + r0 (2)

The initial condition for r(t) gives:

r(0) = 0i + 0k + r0 = j ⇒ r0 = j

Combining with (2) gives the position vector:

r(t) = t i + j + t3

6
k

a(t) = cos tk, v(0) = i − j, r(0) = iIn Exercises 19–24, recall that g = 9.8 m/s2 is the acceleration due to gravity on the earth’s surface.

19. A bullet is fired from the ground at an angle of 45◦. What initial speed must the bullet have in order to hit the top of
a 120-m tower located 180 m away?

solution We place the gun at the origin and let r(t) be the bullet’s position vector.

Step 1. Use Newton’s Law. The net force vector acting on the bullet is the force of gravity F = 〈0, −gm〉 = m 〈0, −g〉.
By Newton’s Second Law, F = mr′′(t), hence:

m 〈0, −g〉 = mr′′(t) ⇒ r′′(t) = 〈0, −g〉
We compute the position vector by integrating twice:

r′(t) =
∫ t

0
r′′(u) du =

∫ t

0
〈0, −g〉 du = 〈0, −gt〉 + v0

r(t) =
∫ t

0
r′(u) du =

∫ t

0
(〈0, −gu〉 + v0) du =

〈
0, −g

t2

2

〉
+ v0t + r0

That is,

r(t) =
〈
0,

−g

2
t2
〉
+ v0t + r0 (1)

Since the gun is at the origin, r0 = 0. The bullet is fired at an angle of 45◦, hence the initial velocity v0 points in the

direction of the unit vector
〈
cos 45◦, sin 45◦〉 =

〈√
2

2 ,

√
2

2

〉
therefore, v0 = v0

〈√
2

2 ,

√
2

2

〉
. Substituting these initial values

in (1) gives:

r(t) =
〈
0,

−g

2
t2
〉
+ tv0

〈√
2

2
,

√
2

2

〉

Step 2. Solve for v0. The position vector of the top of the tower is 〈180, 120〉, hence at the moment of hitting the tower
we have,

r(t) =
〈
0,

−g

2
t2
〉
+ tv0

〈√
2

2
,

√
2

2

〉
= 〈180, 120〉

〈
tv0

√
2

2
,
−g

2
t2 +

√
2

2
tv0

〉
= 〈180, 120〉

Equating components, we get the equations: ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

tv0

√
2

2
= 180

−g

2
t2 +

√
2

2
tv0 = 120
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The first equation implies that t = 360√
2v0

. We substitute in the second equation and solve for v0 (we use g = 9.8 m/s2):

−9.8

2

(
360√
2v0

)2
+

√
2

2

(
360√
2v0

)
v0 = 120

−2.45

(
360

v0

)2
+ 180 = 120

(
360

v0

)2
= 1200

49
⇒ 360

v0
=

√
1200

49
⇒ v0 = 42

√
3 ≈ 72.746 m/s

The initial speed of the bullet must be v0 = 42
√

3 m/s ≈ 72.746 m/s.

Find the initial velocity vector v0 of a projectile released with initial speed 100 m/s that reaches a maximum height
of 300 m.

21. Show that a projectile fired at an angle θ with initial speed v0 travels a total distance (v2
0/g) sin 2θ before hitting the

ground. Conclude that the maximum distance (for a given v0) is attained for θ = 45◦.

solution We place the gun at the origin and let r(t) be the projectile’s position vector. The net force acting on the
projectile is F = 〈0, −mg〉 = m 〈0, −g〉. By Newton’s Second Law, F = mr′′(t), hence:

m 〈0, −g〉 = mr′′(t) ⇒ r′′(t) = 〈0, −g〉
Integrating twice we get:

r′(t) =
∫ t

0
r′′(u) du =

∫ t

0
〈0, −g〉 du = 〈0, −gt〉 + v0

r(t) =
∫ t

0
r′(u) du =

∫ t

0
(〈0, −g · u〉 + v0) du =

〈
0, −g

2
t2
〉
+ v0t + r0 (1)

Since the gun is at the origin, r0 = 0. The firing was at an angle θ , hence the initial velocity points in the direction of the
unit vector 〈cos θ, sin θ〉. Hence, v0 = v0 〈cos θ, sin θ〉. We substitute the initial vectors in (1) to obtain:

r(t) =
〈
0, −g

2
t2
〉
+ v0t 〈cos θ, sin θ〉 (2)

The total distance is obtained when the y-component of r(t) is zero (besides the original moment, that is,

−g

2
t2 + (v0 sin θ) t = 0

t
(
−g

2
t + v0 sin θ

)
= 0 ⇒ t = 0 or t = 2v0 sin θ

g

The appropriate choice is t = 2v0 sin θ
g . We now find the total distance xT by substituting this value of t in the x-component

of r(t) in (2). We obtain:

x(t) = v0t cos θ

xT = v0 cos θ · 2v0 sin θ

g
= 2v2

0 cos θ sin θ

g
= v2

0 sin 2θ

g

The maximum distance is attained when sin 2θ = 1, that is 2θ = 90◦ or θ = 45◦.

One player throws a baseball to another player standing 25 m away with initial speed 18 m/s. Use the result of
Exercise 21 to find two angles θ at which the ball can be released. Which angle gets the ball there faster?

23. A bullet is fired at an angle θ = π
4 at a tower located d = 600 m away, with initial speed v0 = 120 m/s. Find the

height H at which the bullet hits the tower.

solution We place the gun at the origin and let r(t) be the bullet’s position vector.

Step 1. Use Newton’s Law. The net force vector acting on the bullet is the force of gravity F = 〈0, −gm〉 = m 〈0, −g〉.
By Newton’s Second Law, F = mr′′(t), hence:

m 〈0, −g〉 = mr′′(t) ⇒ r′′(t) = 〈0, −g〉
We compute the position vector by integrating twice:

r′(t) =
∫ t

0
r′′(u) du =

∫ t

0
〈0, −g〉 du = 〈0, −gt〉 + v0

r(t) =
∫ t

0
r′(u) du =

∫ t

0
(〈0, −gu〉 + v0) du =

〈
0, −g

t2

2

〉
+ v0t + r0
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That is,

r(t) =
〈
0,

−g

2
t2
〉
+ v0t + r0 (1)

Since the gun is at the origin, r0 = 0. The bullet is fired at an angle of π/4 radians, hence the initial velocity v0 points

in the direction of the unit vector 〈cos π/4, sin π/4〉 =
〈

1√
2
, 1√

2

〉
therefore, v0 = v0

〈
1√
2
, 1√

2

〉
. Substituting these initial

values in (1) gives:

r(t) =
〈
0,

−g

2
t2
〉
+ tv0

〈
1√
2
,

1√
2

〉
Step 2. Solve for H .

The position vector for the point at which the bullet hits the tower, 600 meters away, is 〈600, H 〉, hence at the moment
of hitting the tower we have, 〈

0,
−g

2
t2
〉
+ tv0

〈
1√
2
,

1√
2

〉
= 〈600, H 〉

Therefore, for v0 = 120:

tv0√
2

= 600 ⇒ t = 600
√

2

120
= 5

√
2

and

−gt2

2
+ tv0√

2
= −9.8(50)

2
+ 5(

√
2)(120)√

2
= H

Hence, H = 355 meters. The bullet hits the tower at 355 meters high.

Show that a bullet fired at an angle θ will hit the top of an h-meter tower located d meters away if its initial speed
is

v0 =
√

g/2 d sec θ√
d tan θ − h

25. A constant force F = 〈5, 2〉 (in newtons) acts on a 10-kg mass. Find the position of the mass at t = 10 s if it is located
at the origin at t = 0 and has initial velocity v0 = 〈2, −3〉 (in meters per second).

solution We know that F = ma and thus 〈5, 2〉 = 10a so then a = 〈0.5, 0.2〉. Using integration we know

v(t) =
∫

a(t) dt = ta + c

and we know v(0) = 〈2, −3〉 = c. Therefore,

v(t) = ta + v0 = t 〈0.5, 0.2〉 + 〈2, −3〉 = 〈0.5t + 2, 0.2t − 3〉
Again, integrating,

r(t) =
∫

v(t) dt

=
∫

ta + v0 dt

= t2

2
a + tv0 + c

= t2

2
〈0.5, 0.2〉 + t 〈2, −3〉

=
〈
0.25t2 + 2t, 0.1t2 − 3t

〉
+ r0

Using the initial condition r(0) = 〈0, 0〉 = c, we conclude

r(t) =
〈
0.25t2 + 2t, 0.1t2 − 3t

〉
and hence the position of the mass at t = 10 is r(10) = 〈45, −20〉.

A force F = 〈24t, 16 − 8t〉 (in newtons) acts on a 4-kg mass. Find the position of the mass at t = 3 s if it is located
at (10, 12) at t = 0 and has zero initial velocity.

27. A particle follows a path r(t) for 0 ≤ t ≤ T , beginning at the origin O. The vector v = 1

T

∫ T

0
r′(t) dt is called the

average velocity vector. Suppose that v = 0. Answer and explain the following:
(a) Where is the particle located at time T if v = 0?
(b) Is the particle’s average speed necessarily equal to zero?

solution
(a) If the average velocity is 0, then the particle must be back at its original position at time t = T . This is perhaps best

seen by noting that v = 1

T

∫ T

0
r′(t) dt = r(t)

∣∣∣∣T
0

.
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(b) The average speed need not be zero! Consider a particle moving at constant speed around a circle, with position
vector r(t) = 〈cos t, sin t〉. From 0 to 2π , this has average velocity of 0, but constant average speed of 1.

At a certain moment, a moving particle has velocity v = 〈2, 2, −1〉 and a = 〈0, 4, 3〉. Find T, N, and the
decomposition of a into tangential and normal components.

29. At a certain moment, a particle moving along a path has velocity v = 〈12, 20, 20〉 and acceleration a = 〈2, 1, −3〉.
Is the particle speeding up or slowing down?

solution We are asked if the particle is speeding up or slowing down, that is if ‖v‖ or ‖v‖2 is increasing or decreasing.

We check
(‖v‖2)′:
(‖v‖2)′ = (v · v)′ = 2v′ · v = 2 · a · v = 2 〈2, 1, −3〉 · 〈12, 20, 20〉 = 2 · (24 + 20 − 60) = −32 < 0

So the speed is decreasing.

In Exercises 30–33, use Eq. (3) to find the coefficients aT and aN as a function of t (or at the specified value of t).

r(t) = 〈
t2, t3〉31. r(t) = 〈

t, cos t, sin t
〉

solution We find aT and aN using the following equalities:

aT = a · T, aN = ‖a × v‖
‖v‖ .

We compute v and a by differentiating r twice:

v(t) = r′(t) = 〈1, − sin t, cos t〉 ⇒ ‖v(t)‖ =
√

1 + (− sin t)2 + cos2 t = √
2

a(t) = r′′(t) = 〈0, − cos t, − sin t〉
The unit tangent vector T is, thus:

T(t) = v(t)

‖v(t)‖ = 1√
2

〈1, − sin t, cos t〉

Since the speed is constant (v = ‖v(t)‖ = √
2), the tangential component of the acceleration is zero, that is:

aT = 0

To find aN we first compute the following cross product:

a × v =
∣∣∣∣∣∣

i j k
0 − cos t − sin t

1 − sin t cos t

∣∣∣∣∣∣ =
∣∣∣∣ − cos t − sin t

− sin t cos t

∣∣∣∣ i −
∣∣∣∣ 0 − sin t

1 cos t

∣∣∣∣ j +
∣∣∣∣ 0 − cos t

1 − sin t

∣∣∣∣ k

= −
(

cos2 t + sin2 t
)

i − sin tj + cos tk = −i − sin tj + cos tk = 〈−1, − sin t, cos t〉

Hence,

aN = ‖a × v‖
‖v‖ =

√
(−1)2 + (− sin t)2 + cos2t√

2
=

√
2√
2

= 1.

r(t) = 〈
t−1, ln t, t2〉, t = 1

33. r(t) = 〈
e2t , t, e−t

〉
, t = 0

solution We will use the following equalities:

aT = a · T, aN = ‖a × v‖
‖v‖ .

We first find a and v by twice differentiating r. We get:

v(t) = r′(t) =
〈
2e2t , 1, −e−t

〉
a(t) = r′′(t) =

〈
4e2t , 0, e−t

〉

Then evaluating at t = 0 we get:

v(0) = 〈2, 1, −1〉 , ⇒ ‖v(0)‖ =
√

22 + 12 + (−1)2 = √
6

a(0) = 〈4, 0, 1〉
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Hence, T = v
‖v‖ = 1√

6
〈2, 1, −1〉 and we obtain:

aT = a · T = 〈4, 0, 1〉 · 1√
6

〈2, 1, −1〉 = 1√
6
(8 + 0 − 1) = 7√

6

To find aN we first compute the following cross product:

a × v =
∣∣∣∣∣∣
i j k
4 0 1
2 1 −1

∣∣∣∣∣∣ = 〈−1, 6, 4〉

Therefore,

aN = ‖a × v‖
‖v‖ =

√
(−1)2 + 62 + 42

√
6

=
√

53

6

In Exercise 34–41, find the decomposition of a(t) into tangential and normal components at the point indicated, as in
Example 6.

r(t) = 〈
et , 1 − t

〉
, t = 035. r(t) =

〈
1
3 t3, 1 − 3t

〉
, t = −2

solution First note here that:

v(t) = r′(t) =
〈
t2, −3

〉
a(t) = r′′(t) = 〈2t, 0〉

At t = −2 we have:

v = r′(−2) = 〈4, −3〉
a = r′′(−2) = 〈−4, 0〉

Thus,

a · v = 〈−4, 0〉 · 〈4, −3〉 = −16

‖v‖ = √
16 + 9 = 5

Recall that we have:

T = v
‖v‖ = 〈4, −3〉

5
=

〈
4

5
, −3

5

〉

aT = a · v
‖v‖ = −16

5

Next, we compute aN and N:

aNN = a − aTT = 〈−4, 0〉 + 16

5

〈
4

5
, −3

5

〉
=

〈
−36

25
, −48

25

〉

This vector has length:

aN = ‖aNN‖ =
√(

−36

25

)2
+

(
−48

25

)2
= 60

25
= 12

5

and thus,

N = aNN
aN

=
〈
− 36

25 , − 48
25

〉
12/5

=
〈
−3

5
, −4

5

〉

Finally we obtain the decomposition,

a = 〈−4, 0〉 = −16

5
T + 12

5
N

where T =
〈

4
5 , − 3

5

〉
and N =

〈
− 3

5 , − 4
5

〉
.

r(t) =
〈
t, 1

2 t2, 1
6 t3

〉
, t = 1
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37. r(t) =
〈
t, 1

2 t2, 1
6 t3

〉
, t = 4

solution First note here that:

v(t) = r′(t) =
〈
1, t,

1

2
t2
〉

a(t) = r′′(t) = 〈0, 1, t〉
At t = 4 we have:

v = r′(4) = 〈1, 4, 8〉
a = r′′(4) = 〈0, 1, 4〉

Thus,

a · v = 〈0, 1, 4〉 · 〈1, 4, 8〉 = 36

‖v‖ = √
1 + 16 + 64 = √

81 = 9

Recall that we have:

T = v
‖v‖ = 〈1, 4, 8〉

9
=

〈
1

9
,

4

9
,

8

9

〉

aT = a · v
‖v‖ = 36

9
= 4

Next, we compute aN and N:

aNN = a − aTT = 〈0, 1, 4〉 − 4

〈
1

9
,

4

9
,

8

9

〉
=

〈
−4

9
, −7

9
,

4

9

〉
This vector has length:

aN = ‖aNN‖ =
√

16

81
+ 49

81
+ 16

81
= 1

and thus,

N = aNN
aN

=
〈
− 4

9 , − 7
9 , 4

9

〉
1

=
〈
−4

9
, −7

9
,

4

9

〉
Finally we obtain the decomposition,

a = 〈0, 1, 4〉 = 4T + (1)N

where T =
〈

1
9 , 4

9 , 8
9

〉
and N =

〈
− 4

9 , − 7
9 , 4

9

〉
.

r(t) = 〈
4 − t, t + 1, t2〉, t = 2

39. r(t) = 〈
t, et , tet

〉
, t = 0

solution First note here that:

v(t) = r′(t) = 〈
1, et , (t + 1)et

〉
a(t) = r′′(t) = 〈

0, et , (t + 2)et
〉

At t = 0 we have:

v = r′(0) = 〈1, 1, 1〉
a = r′′(0) = 〈0, 1, 2〉

Thus,

a · v = 〈0, 1, 2〉 · 〈1, 1, 1〉 = 3

‖v‖ = √
1 + 1 + 1 = √

3

Recall that we have:

T = v
‖v‖ = 1√

3
〈1, 1, 1〉

aT = a · v
‖v‖ = 3√

3
= √

3
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Next, we compute aN and N:

aNN = a − aTT = 〈0, 1, 2〉 − √
3

1√
3

〈1, 1, 1〉 = 〈−1, 0, 1〉

This vector has length:

aN = ‖aNN‖ = √
1 + 1 = √

2

and thus,

N = aNN
aN

= 〈−1, 0, 1〉√
2

=
〈
− 1√

2
, 0,

1√
2

〉
Finally we obtain the decomposition,

a = 〈0, 1, 2〉 = √
3T + √

2N

where T = 1√
3

〈1, 1, 1〉 and N =
〈
− 1√

2
, 0, 1√

2

〉
.

r(θ) = 〈cos θ, sin θ, θ〉, θ = 0
41. r(t) = 〈t, cos t, t sin t〉, t = π

2

solution First note here that:

v(t) = r′(t) = 〈1, − sin t, t cos t + sin t, 〉
a(t) = r′′(t) = 〈0, − cos t, −t sin t + 2 cos t〉

At t = π
2 we have:

v = r′(π/2) = 〈1, −1, 1〉
a = r′′(−2) =

〈
0, 0, −π

2

〉
Thus,

a · v =
〈
0, 0, −π

2

〉
· 〈1, −1, 1〉 = −π

2

‖v‖ = √
1 + 1 + 1 = √

3

Recall that we have:

T = v
‖v‖ = 1√

3
〈1, −1, 1〉

aT = a · v
‖v‖ = −π/2√

3
= − π

2
√

3

Next, we compute aN and N:

aNN = a − aTT =
〈
0, 0, −π

2

〉
+ π

2
√

3

1√
3

〈1, −1, 1〉

=
〈
0, 0, −π

2

〉
+ π

6
〈1, −1, 1〉

=
〈π

6
, −π

6
, −π

3

〉
= π

6
〈1, −1, −2〉

This vector has length:

aN = ‖aNN‖ =
∣∣∣∣
∣∣∣∣π6 〈1, −1, −2〉

∣∣∣∣
∣∣∣∣ = π

6

√
1 + 1 + 4 = π

√
6

6
= π√

6

and thus,

N = aNN
aN

=
π
6 〈1, −1, −2〉

π√
6

= 1√
6

〈1, −1, −2〉

Finally we obtain the decomposition,

a =
〈
0, 0, −π

2

〉
= π

2
√

3
T + π√

6
N

where T = 1√
3

〈1, −1, 1〉 and N = 1√
6

〈1, −1, −2〉.
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Let r(t) = 〈
t2, 4t − 3

〉
. Find T(t) and N(t), and show that the decomposition of a(t) into tangential and normal

components is

a(t) =
(

2t√
t2 + 4

)
T +

(
4√

t2 + 4

)
N

43. Find the components aT and aN of the acceleration vector of a particle moving along a circular path of radius
R = 100 cm with constant velocity v0 = 5 cm/s.

solution Since the particle moves with constant speed, we have v′(t) = 0, hence:

aT = v′(t) = 0

The normal component of the acceleration is aN = κ(t)v(t)2. The curvature of a circular path of radius R = 100 is
κ(t) = 1

R
= 1

100 , and the velocity is the constant value v(t) = v0 = 5. Hence,

aN = 1

R
v2

0 = 25

100
= 0.25 cm/s2

In the notation of Example 5, find the acceleration vector for a person seated in a car at (a) the highest point of
the Ferris wheel and (b) the two points level with the center of the wheel.

45. Suppose that the Ferris wheel in Example 5 is rotating clockwise and that the point P at angle 45◦ has acceleration
vector a = 〈0, −50〉 m/min2 pointing down, as in Figure 11. Determine the speed and tangential acceleration of the Ferris
wheel.

Ferris wheel

45°
x

y

FIGURE 11

solution The normal and tangential accelerations are both 50/
√

2 ≈ 35 m/min2. The normal acceleration is v2/R =
v2/30 = 35, so the speed is

v = √
35(28) ≈ 31.3

At time t0, a moving particle has velocity vector v = 2i and acceleration vector a = 3i + 18k. Determine the
curvature κ(t0) of the particle’s path at time t0.

47. A space shuttle orbits the earth at an altitude 400 km above the earth’s surface, with constant speed v = 28,000 km/h.
Find the magnitude of the shuttle’s acceleration (in km/h2), assuming that the radius of the earth is 6378 km (Figure 12).

FIGURE 12 Space shuttle orbit.

solution The shuttle is in a uniform circular motion, therefore the tangential component of its acceleration is zero,
and the acceleration can be written as:

a = κv2N (1)

The radius of motion is 6378 + 400 = 6778 km hence the curvature is κ = 1
6778 . Also by the given information the

constant speed is v = 28000 km/h. Substituting these values in (1) we get:

a =
(

1

6778
· 280002

)
N = (11.5668 · 104 km/h2)N

The magnitude of the shuttle’s acceleration is thus:

‖a‖ = 11.5668 · 104 km/h2

In units of m/s2 we obtain

‖a‖ = 11.5668 · 104 · 1000

36002
= 8.925 m/s2
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A car proceeds along a circular path of radius R = 300 m centered at the origin. Starting at rest, its speed increases
at a rate of t m/s2. Find the acceleration vector a at time t = 3 s and determine its decomposition into normal and
tangential components.

49. A runner runs along the helix r(t) = 〈cos t, sin t, t〉. When he is at position r
(
π
2

)
, his speed is 3 m/s and he is

accelerating at a rate of 1
2 m/s2. Find his acceleration vector a at this moment. Note: The runner’s acceleration vector

does not coincide with the acceleration vector of r(t).

solution We have

r′(t) = 〈− sin t, cos t, 1〉 , ‖r′(t)‖ =
√

(− sin t)2 + cos2 t + 12 = √
2,

⇒ T = 1√
2

〈− sin t, cos t, 1〉

By definition, N is the unit vector in the direction of

dT
dt

= 1√
2

〈− cos t, − sin t, 0〉 ⇒ N = 〈− cos t, − sin t, 0〉

Therefore N = 〈− cos t, − sin t, 0〉. At t = π/2, we have

T = 1√
2

〈−1, 0, 1〉 , N = 〈0, −1, 0〉

The acceleration vector is

a = v′T + κv2N

We need to find the curvature, which happens to be constant:

κ =
∣∣∣∣
∣∣∣∣dT
ds

∣∣∣∣
∣∣∣∣ = ‖ dT

dt
‖

‖r′‖ =
‖ 1√

2
〈− cos t, − sin t, 0〉‖

√
2

= 1

2

Now we have

a = v′T + κv2N =
(

1

2

)
T +

(
1

2

)
(32)N =

(
1

2

)(
1√
2

)
〈−1, 0, 1〉 + 9

2
〈0, −1, 0〉

=
〈
− 1

2
√

2
, −9

2
,

1

2
√

2

〉

Explain why the vector w in Figure 13 cannot be the acceleration vector of a particle moving along the circle.
Hint: Consider the sign of w · N.

51. Figure 14 shows acceleration vectors of a particle moving clockwise around a circle. In each case, state
whether the particle is speeding up, slowing down, or momentarily at constant speed. Explain.

(A) (B) (C)

FIGURE 14

solution In (A) and (B) the acceleration vector has a nonzero tangential and normal components; these are both
possible acceleration vectors. In (C) the normal component of the acceleration toward the inside of the curve is zero, that
is, a is parallel to T, so κ · v(t)2 = 0, so either κ = 0 (meaning our curve is not a circle) or v(t) = 0 (meaning our particle
isn’t moving). Either way, (C) is not a possible acceleration vector.

Prove that aN = ‖a × v‖
‖v‖ .

53. Suppose that r = r(t) lies on a sphere of radius R for all t . Let J = r × r′. Show that r′ = (J × r)/‖r‖2. Hint:
Observe that r and r′ are perpendicular.

solution

(a) Solution 1. Since r = r(t) lies on the sphere, the vectors r = r(t) and r′ = r′(t) are orthogonal, therefore:

r · r′ = 0 (1)

We use the following well-known equality:

a × (b × c) = (a · c) b − (a · b) · c
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Using this equality and (1) we obtain:

J × r = (
r × r′) × r = −r × (

r × r′) = − ((
r · r′) r − (r · r) r′)

= − (
r · r′) r + ‖r‖2r′ = 0r + ‖r‖2r′ = ‖r‖2r′

Divided by the scalar ‖r‖2 we obtain:

r′ = J × r

‖r‖2

(b) Solution 2. The cross product J = r × r′ is orthogonal to r and r′. Also, r and r′ are orthogonal, hence the vectors r,
r′ and J are mutually orthogonal. Now, since r′ is orthogonal to r and J, the right-hand rule implies that r′ points in the
direction of J × r. Therefore, for some α > 0 we have:

r′ = αJ × r = ‖r′‖ · J × r
‖J × r‖ (2)

By properties of the cross product and since J, r, and r′ are mutually orthogonal we have:

‖J × r‖ = ‖J‖‖r‖ = ‖r × r′‖‖r‖ = ‖r‖‖r′‖‖r‖ = ‖r‖2‖r′‖
Substituting in (2) we get:

r′ = ‖r′‖ J × r

‖r‖2‖r′‖ = J × r

‖r‖2

Further Insights and Challenges

The orbit of a planet is an ellipse with the sun at one focus. The sun’s gravitational force acts along the radial
line from the planet to the sun (the dashed lines in Figure 15), and by Newton’s Second Law, the acceleration vector
points in the same direction. Assuming that the orbit has positive eccentricity (the orbit is not a circle), explain why
the planet must slow down in the upper half of the orbit (as it moves away from the sun) and speed up in the lower
half. Kepler’s Second Law, discussed in the next section, is a precise version of this qualitative conclusion. Hint:
Consider the decomposition of a into normal and tangential components.

In Exercises 55–59, we consider an automobile of mass m traveling along a curved but level road. To avoid skidding,
the road must supply a frictional force F = ma, where a is the car’s acceleration vector. The maximum magnitude of the
frictional force is μmg, where μ is the coefficient of friction and g = 9.8 m/s2. Let v be the car’s speed in meters per
second.

55. Show that the car will not skid if the curvature κ of the road is such that (with R = 1/κ)

(v′)2 +
(

v2

R

)2

≤ (μg)2 5

Note that braking (v′ < 0) and speeding up (v′ > 0) contribute equally to skidding.

solution To avoid skidding, the frictional force the road must supply is:

F = ma

where a is the acceleration of the car. We consider the decomposition of the acceleration a into normal and tangential
directions:

a(t) = v′(t)T(t) + κv2(t)N(t)

Since N and T are orthogonal unit vectors, T · N = 0 and T · T = N · N = 1. Thus:

‖a‖2 =
(
v′T + κv2N

)
·
(
v′T + κv2N

)
= v′2T · T + 2κv2v′N · T + κ2v4N · N

= v′2 + κ2v4 = v′2 + v4

R2

Therefore:

‖a‖ =
√(

v′)2 + v4

R2

Since the maximal fractional force is μmg we obtain that to avoid skidding the curvature must satisfy:

m

√(
v′)2 + v4

R2
≤ mμg.
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Hence,

(
v′)2 + v4

R2
≤ (μg)2,

which becomes:

(
v′)2 +

(
v2

R

)2

≤ (μg)2

Suppose that the maximum radius of curvature along a curved highway is R = 180 m. How fast can an automobile
travel (at constant speed) along the highway without skidding if the coefficient of friction is μ = 0.5?

57. Beginning at rest, an automobile drives around a circular track of radius R = 300 m, accelerating at a rate of 0.3 m/s2.
After how many seconds will the car begin to skid if the coefficient of friction is μ = 0.6?

solution By Exercise 55 the car will begin to skid when:

(v′)2 + v4

R2
= μ2g2 (1)

We are given that v′ = 0.3 and v0 = 0. Integrating gives:

v =
∫ t

0
v′ dt =

∫ t

0
0.3 dt = 0.3t + v0 = 0.3t

We substitute v = t , v′ = 0.3, R = 300, μ = 0.6 and g = 9.8 in (1) and solve for t . This gives:

(0.3)2 + 0.34t4

3002
= 0.62 · 9.82

t4 = 3002(0.62 · 9.82 − 0.32)
0.34

= 383,160,000

t = 139.91 s

After 139.91 s or 2.33 minutes, the car will begin to skid.

You want to reverse your direction in the shortest possible time by driving around a semicircular bend (Figure
16). If you travel at the maximum possible constant speed v that will not cause skidding, is it faster to hug the inside
curve (radius r) or the outside curb (radius R)? Hint: Use Eq. (5) to show that at maximum speed, the time required
to drive around the semicircle is proportional to the square root of the radius.

59. What is the smallest radius R about which an automobile can turn without skidding at 100 km/h if μ = 0.75 (a typical
value)?

solution In Exercise 55 we showed that the car will not skid if the following inequality holds:

(
v′)2 + v4

R2
< μ2g2

In case of constant speed, v′ = 0, so the inequality becomes:

v4

R2
< μ2g2

Solving for R we get:

v4 < μ2g2R2

v4

μ2g2
< R2 ⇒ R >

v2

μg

The smallest radius R in which skidding does not occur is, thus,

R ≈ v2

μg

We substitute v = 100 km/h, μ = 0.75, and g ≈ 127,008 km/h2 to obtain:

R ≈ 1002

0.75 · 127,008
= 0.105 km.
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13.6 Planetary Motion According to Kepler and Newton (LT Section 14.6)

Preliminary Questions
1. Describe the relation between the vector J = r × r′ and the rate at which the radial vector sweeps out area.

solution The rate at which the radial vector sweeps out area equals half the magnitude of the vector J. This relation
is expressed in the formula:

dA

dt
= 1

2
‖J‖.

2. Equation (1) shows that r′′ is proportional to r. Explain how this fact is used to prove Kepler’s Second Law.

solution In the proof of Kepler’s Second Law it is shown that the rate at which area is swept out is

dA

dt
= 1

2
‖J‖, where J = r(t) × r′(t)

To show that ‖J‖ is constant, show that J is constant. This is done using the proportionality of r′′ and r which implies
that r(t) × r′′(t) = 0. Using this we get:

dJ
dt

= d

dt

(
r × r′) = r × r′′ + r′ × r′ = 0 + 0 = 0 ⇒ J = const

3. How is the period T affected if the semimajor axis a is increased four-fold?

solution Kepler’s Third Law states that the period T of the orbit is given by:

T 2 =
(

4π2

GM

)
a3

or

T = 2π√
GM

a3/2

If a is increased four-fold the period becomes:

2π√
GM

(4a)3/2 = 8 · 2π√
GM

a3/2

That is, the period is increased eight-fold.

Exercises
1. Kepler’s Third Law states that T 2/a3 has the same value for each planetary orbit. Do the data in the following table

support this conclusion? Estimate the length of Jupiter’s period, assuming that a = 77.8 × 1010 m.

Planet Mercury Venus Earth Mars

a (1010 m) 5.79 10.8 15.0 22.8
T (years) 0.241 0.615 1.00 1.88

solution Using the given data we obtain the following values of T 2/a3, where a, as always, is measured not in meters

but in 1010 m:

Planet Mercury Venus Earth Mars

T 2/a3 2.99 · 10−4 3 · 10−4 2.96 · 10−4 2.98 · 10−4

The data on the planets supports Kepler’s prediction. We estimate Jupiter’s period (using the given a) as T ≈√
a3 · 3 · 10−4 ≈ 11.9 years.

Finding the Mass of a Star Using Kepler’s Third Law, show that if a planet revolves around a star with period

T and semimajor axis a, then the mass of the star is M =
(

4π2

G

)(
a3

T 2

)
.

3. Ganymede, one of Jupiter’s moons discovered by Galileo, has an orbital period of 7.154 days and a semimajor axis
of 1.07 × 109 m. Use Exercise 2 to estimate the mass of Jupiter.

solution By Exercise 2, the mass of Jupiter can be computed using the following equality:

M = 4π2

G

a3

T 2
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We substitute the given data T = 7.154 · 24 · 602 = 618,105.6 a = 1.07 × 109 m and G = 6.67300 × 10−11m3kg−1s−1,
to obtain:

M =
4π2 ·

(
1.07 × 109

)3

6.67300 × 10−11 · (618,105.6)2
≈ 1.897 × 1027 kg.

An astronomer observes a planet orbiting a star with a period of 9.5 years and a semimajor axis of 3 × 108 km.
Find the mass of the star using Exercise 2.

5. Mass of the Milky Way The sun revolves around the center of mass of the Milky Way galaxy in an orbit that is

approximately circular, of radius a ≈ 2.8 × 1017 km and velocity v ≈ 250 km/s. Use the result of Exercise 2 to estimate
the mass of the portion of the Milky Way inside the sun’s orbit (place all of this mass at the center of the orbit).

solution Write a = 2.8 × 1020 m and v = 250 × 103 m/s. The circumference of the sun’s orbit (which is assumed

circular) is 2πa m; since the sun’s speed is a constant v m/s, its period is T = 2πa

v
s. By Exercise 2, the mass of the

portion of the Milky Way inside the sun’s orbit is

M =
(

4π2

G

)(
a3

T 2

)

Substituting the values of a and T from above, G = 6.673 × 10−11 m3kg−1s−2 gives

M = 4π2a3

G
( 4π2a2

v3

) = av2

G
= 2.8 · 1020 · (250 × 103)

2

6.673 × 10−11
= 2.6225 × 1041 kg.

The mass of the sun is 1.989 × 1030 kg, hence M is 1.32 × 1011 times the mass of the sun (132 billions times the mass
of the sun).

A satellite orbiting above the equator of the earth is geosynchronous if the period is T = 24 hours (in this case, the
satellite stays over a fixed point on the equator). Use Kepler’s Third Law to show that in a circular geosynchronous
orbit, the distance from the center of the earth is R ≈ 42,246 km. Then compute the altitude h of the orbit above the
earth’s surface. The earth has mass M ≈ 5.974 × 1024 kg and radius R ≈ 6371 km.

7. Show that a planet in a circular orbit travels at constant speed. Hint: Use that J is constant and that r(t) is orthogonal
to r′(t) for a circular orbit.

solution It is shown in the proof of Kepler’s Second Law that the vector J = r(t) × r′(t) is constant, hence its length
is constant:

‖J‖ = ‖r(t) × r′(t)‖ = const (1)

We consider the orbit as a circle of radius R, therefore, r(t) and r′(t) are orthogonal and ‖r(t)‖ = R. By (1) and using
properties of the cross product we obtain:

‖r(t) × r′(t)‖ = ‖r(t)‖‖r′(t)‖ sin
π

2
= R · ‖r′(t)‖ = const

We conclude that ‖r′(t)‖ is constant, that is the speed v = ‖r′(t)‖ of the planet is constant.

Verify that the circular orbit

r(t) = 〈R cos ωt, R sin ωt〉

satisfies the differential equation, Eq. (1), provided thatω2 = kR−3.Then deduce Kepler’sThird LawT 2 =
(

4π2

k

)
R3

for this orbit.

9. Prove that if a planetary orbit is circular of radius R, then vT = 2πR, where v is the planet’s speed (constant by

Exercise 7) and T is the period. Then use Kepler’s Third Law to prove that v =
√

k

R
.

solution By the Arc Length Formula and since the speed v = ‖r′(t)‖ is constant, the length L of the circular orbit
can be computed by the following integral:

L =
∫ T

0
‖r′(t)‖ dt =

∫ T

0
v dt = vt

∣∣∣∣T
0

= vT

On the other hand, the length of a circular orbit of radius R is 2πR, so we obtain:

vT = 2πR ⇒ T = 2πR

v
(1)

In a circular orbit of radius R, a = R, hence by Kepler’s Third Law we have:

T 2 = 4π2

GM
R3 (2)

We now substitute (1) in (2) and solve for v. This gives:(
2πR

v

)2
= 4π2R3

GM

4π2R2

v2
= 4π2R3

GM

1

v2
= R

GM
⇒ v =

√
GM

R

Find the velocity of a satellite in geosynchronous orbit about the earth. Hint: Use Exercises 6 and 9.
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11. A communications satellite orbiting the earth has initial position r = 〈29,000, 20,000, 0〉 (in km) and initial velocity
r′ = 〈1, 1, 1〉 (in km/s), where the origin is the earth’s center. Find the equation of the plane containing the satellite’s
orbit. Hint: This plane is orthogonal to J.

solution The vectors r(t) and r′(t) lie in the plane containing the satellite’s orbit, in particular the initial position
r = 〈29,000, 20,000, 0〉 and the initial velocity r′ = 〈1, 1, 1〉. Therefore, the cross product J = r × r′ is perpendicular
to the plane. We compute J:

J = r × r′ =
∣∣∣∣∣∣

i j k
29,000 20,000 0

1 1 1

∣∣∣∣∣∣ =
∣∣∣∣ 20,000 0

1 1

∣∣∣∣ i −
∣∣∣∣ 29,000 0

1 1

∣∣∣∣ j +
∣∣∣∣ 29,000 20,000

1 1

∣∣∣∣ k

= 20,000i − 29,000j + 9000k = 〈20,000, −29,000, 9000〉
We now use the vector form of the equation of the plane with n = J = 〈20,000, −29,000, 9000〉 and 〈x0, y0, z0〉 = r =
〈29,000, 20,000, 0〉, to obtain the following equation:

〈29,000, −20,000, 9000〉 · 〈x, y, z〉 = 〈29,000, −20,000, 9000〉 · 〈29,000, 20,000, 9000〉
1000 〈29, −20, 9〉 · 〈x, y, z〉 = 1000 〈29, −20, 9〉 · 〈29,000, 20,000, 9000〉

29x − 20y + 9z = 841,000 − 400,000 + 81,000 = 0

29x − 20y + 9z − 522,000 = 0

The plane containing the satellite’s orbit is, thus:

P = {(x, y, z) : 29x − 20y + 9z − 522,000 = 0}

Assume that the earth’s orbit is circular of radius R = 150 × 106 km (it is nearly circular with eccentricity
e = 0.017). Find the rate at which the earth’s radial vector sweeps out area in units of km2/s. What is the magnitude
of the vector J = r × r′ for the earth (in units of km2 per second)?

Exercises 13–19: The perihelion and aphelion are the points on the orbit closest to and farthest from the sun, respectively
(Figure 8). The distance from the sun at the perihelion is denoted rper and the speed at this point is denoted vper . Similarly,
we write rap and vap for the distance and speed at the aphelion. The semimajor axis is denoted a.

F2
F1

y

x
O

Semimajor axis

Aphelion

Perihelion

vperr

vap

a

FIGURE 8 r and v = r′ are perpendicular at the perihelion and aphelion.

13. Use the polar equation of an ellipse

r = p

1 + e cos θ

to show that rper = a(1 − e) and rap = a(1 + e). Hint: Use the fact that rper + rap = 2a.

solution We use the polar equation of the elliptic orbit:

r = p

1 + e cos θ
(1)

Apogee Perigee
F1F2

rap rper

r

At the perigee, θ = 0 and at the apogee θ = π . Substituting these values in (1) gives the distances rper and rap respectively.
That is,

rper = p

1 + e cos θ
= p

1 + e
(2)

rap = p

1 + e cos π
= p

1 − e
(3)

To obtain the solutions in terms of a rather than p, we notice that:

rper + rap = 2a
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Hence:

2a = p

1 + e
+ p

1 − e
= p(1 − e) + p(1 + e)

(1 + e)(1 − e)
= 2p

(1 + e)(1 − e)

yielding

p = a(1 + e)(1 − e)

Substituting in (2) and (3) we obtain:

rper = a(1 + e)(1 − e)

1 + e
= a(1 − e)

rap = a(1 + e)(1 − e)

1 − e
= a(1 + e)

Use the result of Exercise 13 to prove the formulas

e = rap − rper

rap + rper
, p = 2raprper

rap + rper

15. Use the fact that J = r × r′ is constant to prove

vper(1 − e) = vap(1 + e)

Hint: r is perpendicular to r′ at the perihelion and aphelion.

solution Since the vector J(t) = r(t) × r′(t) is constant, it is the same vector at the perigee and at the apogee, hence
we may equate the length of J(t) at these two points. Since at the perigee and at the apogee r(t) and r′(t) are orthogonal
we have by properties of the cross product:

‖rap × r′
ap‖ = ‖rap‖‖r′

ap‖ = rapvap

‖rper × r′
per‖ = ‖rper‖‖r′

per‖ = rpervper

Equating the two values gives:

rapvap = rpervper (1)

In Exercise 13 we showed that rper = a(1 − e) and rap = a(1 + e). Substituting in (1) we obtain:

a(1 + e)vap = a(1 − e)vper

(1 + e)vap = (1 − e)vper

Compute rper and rap for the orbit of Mercury, which has eccentricity e = 0.244 (see the table in Exercise 1 for
the semimajor axis).

17. Conservation of Energy The total mechanical energy (kinetic energy plus potential energy) of a planet of mass m

orbiting a sun of mass M with position r and speed v = ‖r′‖ is

E = 1

2
mv2 − GMm

‖r‖ 8

(a) Prove the equations

d

dt

1

2
mv2 = v · (ma),

d

dt

GMm

‖r‖ = v ·
(

−GMm

‖r‖3
r
)

(b) Then use Newton’s Law to show that E is conserved—that is,
dE

dt
= 0.

solution We start by observing that since ‖r‖2 = r · r, we have (using Eq. (4) in Theorem 3, Section 13.2)

d

dt
‖r‖2 = 2‖r‖ d

dt
‖r‖, and

d

dt
‖r‖2 = d

dt
r · r = 2r · r′

Equating these two expressions gives

d

dt
‖r‖ = r · r′

‖r‖ (1)

(a) Applying (1) to r′, we have

d

dt

1

2
mv2 = d

dt

1

2
m‖r′‖2 = m‖r′‖ d

dt
‖r′‖ = m‖r′‖r′ · r′′

‖r′‖ = r′ · (mr′′) = v · (ma)

proving half of formula 2. For the other half, note that again by (1),

d

dt

GMm

‖r‖ = GMm
d

dt
‖r‖−1 = −GMm‖r‖−2 d

dt
‖r‖ = −GMm‖r‖−2 · r · r′

‖r‖

= r′ ·
(

−GMm

‖r‖3

)
r = v ·

(
−GMm

‖r‖3
r
)
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(b) We have by part (a)

dE

dt
= d

dt

(
1

2
mv2

)
− d

dt

(
GMm

‖r‖
)

= v · (ma) + v ·
(

GMm

‖r‖3
r
)

= v ·
(

ma + GMm

‖r‖3
r
)

(2)

By Newton’s Law, formula (1) in the text,

r′′ = − GM

‖r‖2
er = − GM

‖r‖3
r (3)

Substituting (3) into (2), and noting that v = r′ and a = r′′ gives

dE

dt
= r′ ·

(
mr′′ + GMm

‖r‖3
r
)

= r′ ·
(

−GMm

‖r‖3
r + GMm

‖r‖3
r
)

= 0

Show that the total energy [Eq. (8)] of a planet in a circular orbit of radius R is E = −GMm

2R
. Hint: Use Exercise

9.

19. Prove that vper =
√(

GM

a

)
1 + e

1 − e
as follows:

(a) Use Conservation of Energy (Exercise 17) to show that

v2
per − v2

ap = 2GM
(
r−1
per − r−1

ap
)

(b) Show that r−1
per − r−1

ap = 2e

a(1 − e2)
using Exercise 13.

(c) Show that v2
per − v2

ap = 4
e

(1 + e)2
v2

per using Exercise 15. Then solve for vper using (a) and (b).

solution

(a) The total mechanical energy of a planet is constant. That is,

E = 1

2
mv2 − GMm

‖r‖ = const.

Therefore, E has equal values at the perigee and apogee. Hence,

1

2
mv2

per − GMm

rper
= 1

2
mv2

ap − GMm

rap

1

2
m

(
v2

per − v2
ap

)
= GMm

(
1

rper
− 1

rap

)

v2
per − v2

ap = 2GM
(
r−1
per − r−1

ap

)
(b) In Exercise 13 we showed that rper = a(1 − e) and rap = a(1 + e). Therefore,

r−1
per − r−1

ap = 1

a(1 − e)
− 1

a(1 + e)
= 1 + e − (1 − e)

a(1 − e)(1 + e)
= 2e

a(1 − e2)

(c) In Exercise 15 we showed that

vper(1 − e) = vap(1 + e)

Hence,

vap = 1 − e

1 + e
vper

We compute the following difference,

v2
per − v2

ap = v2
per −

(
1 − e

1 + e
vper

)2
= v2

per

(
1 −

(
1 − e

1 + e

)2
)

= v2
per

(1 + e)2 − (1 − e)2

(1 + e)2
= v2

per
1 + 2e + e2 − (1 − 2e + e2)

(1 + e)2
= 4

e

(1 + e)2
v2

per

We combine this equality with the equality in part (a) to write

4e

(1 + e)2
v2

per = 2GM
(
r−1
per − r−1

ap

)
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Replacing the difference in the right-hand side by 2e
a
(
1−e2

) (from part (b)) and solving for vper we obtain:

4e

(1 + e)2
v2

per = 2GM · 2e

a(1 − e2)

v2
per = 4GMe

a(1 − e)(1 + e)
· (1 + e)2

4e
= GM(1 + e)

a(1 − e)

or,

vper =
√

GM

a

1 + e

1 − e

Show that a planet in an elliptical orbit has total mechanical energy E = −GMm

2a
, where a is the semimajor axis.

Hint: Use Exercise 19 to compute the total energy at the perihelion.

21. Prove that v2 = GM

(
2

r
− 1

a

)
at any point on an elliptical orbit, where r = ‖r‖, v is the velocity, and a is the

semimajor axis of the orbit.

solution The total energy E = 1
2mv2 − GMm

‖r‖ is conserved, and in Exercise 20 we showed that its constant value is

−GMm
2a

. We obtain the following equality:

1

2
mv2 − GMm

r
= −GMm

2a

Algebraic manipulations yield:

v2 = 2GM

r
− GM

a
= GM

(
2

r
− 1

a

)

Two space shuttles A and B orbit the earth along the solid trajectory in Figure 9. Hoping to catch up to B, the
pilot of A applies a forward thrust to increase her shuttle’s kinetic energy. Use Exercise 20 to show that shuttle A will
move off into a larger orbit as shown in the figure. Then use Kepler’s Third Law to show that A’s orbital period T

will increase (and she will fall farther and farther behind B)!

Further Insights and Challenges
Exercises 23 and 24 prove Kepler’s Third Law. Figure 10 shows an elliptical orbit with polar equation

r = p

1 + e cos θ

where p = J 2/k. The origin of the polar coordinates is at F1. Let a and b be the semimajor and semiminor axes,
respectively.

F2 F1

B

A

Semimajor axis

Semiminor axis

a

a a

b

C

FIGURE 10

23. This exercise shows that b = √
pa.

(a) Show that CF1 = ae. Hint: rper = a(1 − e) by Exercise 13.

(b) Show that a = p

1 − e2
.

(c) Show that F1A + F2A = 2a. Conclude that F1B + F2B = 2a and hence F1B = F2B = a.
(d) Use the Pythagorean Theorem to prove that b = √

pa.

solution
(a) Since CF2 = AF1, we have:

F2A = CA − CF2 = 2a − F1A

Therefore,

F1A + F2A = 2a (1)

0
C A

B

F2 F1

The ellipse is the set of all points such that the sum of the distances to the two foci F1 and F2 is constant. Therefore,

F1A + F2A = F1B + F2B (2)
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Combining (1) and (2), we obtain:

F1B + F2B = 2a (3)

The triangle F2BF1 is isosceles, hence F2B = F1B and so we conclude that

F1B = F2B = a

(b) The polar equation of the ellipse, where the focus F1 is at the origin is

r = p

1 + e cos θ

0
C A

r

B

F2 F1

The point A corresponds to θ = 0, hence,

F1A = p

1 + e cos 0
= p

1 + e
(4)

The point C corresponds to θ = π hence,

F1C = p

1 + e cos π
= p

1 − e

We now find F2A. Using the equality CF2 = AF1 we get:

F2A = F2F1 + F1A = F2F1 + F2C = F1C = p

1 − e

That is,

F2A = p

1 − e
(5)

Combining (1), (4), and (5) we obtain:

p

1 + e
+ p

1 − e
= 2a

Hence,

a = 1

2

(
p

1 + e
+ p

1 − e

)
= p(1 − e) + p(1 + e)

2(1 + e)(1 − e)
= 2p

2
(
1 − e2

) = p

1 − e2

(c) We use Pythagoras’ Theorem for the triangle OBF1:

OB2 + OF 2
1 = BF 2

1 (6)

0
A

B

b

F1

a

Using (4) we have

OF1 = a − F1A = a − p

1 + e

Also OB = b and BF1 = a, hence (6) gives:

b2 +
(

a − p

1 + e

)2
= a2

We solve for b:

b2 + a2 − 2ap

1 + e
+ p2

(1 + e)2
= a2

b2 − 2ap

1 + e
+ p2

(1 + e)2
= 0
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In part (b) we showed that a = p

1−e2 . We substitute to obtain:

b2 − 2p

1 + e
· p

1 − e2
+ p2

(1 + e)2
= 0

b2 = 2p2

(1 + e)2(1 − e)
− p2

(1 + e)2
= 2p2 − p2(1 − e)

(1 + e)2(1 − e)

= p2(1 + e)

(1 + e)2(1 − e)
= p2

1 − e2

Hence,

b = p√
1 − e2

Since 1 − e2 = p
a we also have

b = p√
p
a

= √
ap

The area A of the ellipse is A = πab.

(a) Prove, using Kepler’s First Law, that A = 1
2JT , where T is the period of the orbit.

(b) Use Exercise 23 to show that A = (π
√

p)a3/2.

(c) Deduce Kepler’s Third Law: T 2 = 4π2

GM
a3.

25. According to Eq. (7) the velocity vector of a planet as a function of the angle θ is

v(θ) = k

J
eθ + c

Use this to explain the following statement: As a planet revolves around the sun, its velocity vector traces out a circle
of radius k/J with center c (Figure 11). This beautiful but hidden property of orbits was discovered by William Rowan
Hamilton in 1847.

c

B
v(θ)

v(θ)

D

Planetary orbit

C

A

Velocity circle

B

A

C D
θ

θ

FIGURE 11 The velocity vector traces out a circle as the planet travels along its orbit.

solution Recall that eθ = 〈− sin θ, cos θ〉, so that

v(θ) = k

J
〈− sin θ, cos θ〉 + c = k

J
〈sin(−θ), cos(−θ)〉 + c

The first term is obviously a clockwise (due to having −θ instead of θ ) parametrization of a circle of radius k/J centered
at the origin. It follows that v(θ) is a clockwise parametrization of a circle of radius k/J and center c.

CHAPTER REVIEW EXERCISES

1. Determine the domains of the vector-valued functions.

(a) r1(t) = 〈
t−1, (t + 1)−1, sin−1 t

〉
(b) r2(t) = 〈√

8 − t3, ln t, e
√

t
〉

solution

(a) We find the domain of r1(t) = 〈
t−1, (t + 1)−1, sin−1 t

〉
. The function t−1 is defined for t �= 0. (t + 1)−1 is defined

for t �= −1 and sin−1 t is defined for −1 ≤ t ≤ 1. Hence, the domain of r1(t) is defined by the following inequalities:

t �= 0

t �= −1 ⇒ −1 < t < 0

−1 ≤ t ≤ 1

or 0 < t ≤ 1
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(b) We find the domain of r2(t) = 〈√
8 − t3, ln t, e

√
t
〉
. The domain of

√
8 − t3 is 8 − t3 ≥ 0. The domain of ln t is

t > 0 and e
√

t is defined for t ≥ 0. Hence, the domain of r2(t) is defined by the following inequalities:

8 − t3 ≥ 0

t > 0

t ≥ 0

⇒ t3 ≤ 8

t > 0
⇒ 0 < t ≤ 2

Sketch the paths r1(θ) = 〈θ, cos θ〉 and r2(θ) = 〈cos θ, θ〉 in the xy-plane.3. Find a vector parametrization of the intersection of the surfaces x2 + y4 + 2z3 = 6 and x = y2 in R3.

solution We need to find a vector parametrization r(t) = 〈x(t), y(t), z(t)〉 for the intersection curve. Using t = y as

a parameter, we have x = t2 and y = t . We substitute in the equation of the surface x2 + y4 + 2z3 = 6 and solve for z

in terms of t . This gives:

t4 + t4 + 2z3 = 6

2t4 + 2z3 = 6

z3 = 3 − t4 ⇒ z = 3
√

3 − t4

We obtain the following parametrization of the intersection curve:

r(t) = 〈
t2, t,

3
√

3 − t4
〉
.

Find a vector parametrization using trigonometric functions of the intersection of the plane x + y + z = 1 and

the elliptical cylinder
(y

3

)2 +
( z

8

)2 = 1 in R3.

In Exercises 5–10, calculate the derivative indicated.

5. r′(t), r(t) = 〈
1 − t, t−2, ln t

〉
solution We use the Theorem on Componentwise Differentiation to compute the derivative r′(t). We get

r′(t) = 〈
(1 − t)′, (t−2)′, (ln t)′

〉 =
〈
−1, −2t−3,

1

t

〉

r′′′(t), r(t) = 〈
t3, 4t2, 7t

〉7. r′(0), r(t) = 〈
e2t , e−4t2

, e6t
〉

solution We differentiate r(t) componentwise to find r′(t):

r′(t) = 〈
(e2t )

′
, (e−4t2

)
′
, (e6t )

′〉 = 〈
2e2t , −8te−4t2

, 6e6t
〉

The derivative r′(0) is obtained by setting t = 0 in r′(t). This gives

r′(0) = 〈
2e2·0, −8 · 0e−4·02

, 6e6·0〉 = 〈2, 0, 6〉

r′′(−3), r(t) = 〈
t−2, (t + 1)−1, t3 − t

〉9.
d

dt
et
〈
1, t, t2〉

solution Using the Product Rule for differentiation gives

d

dt
et
〈
1, t, t2〉 = et d

dt

〈
1, t, t2〉 + (

et
)′〈1, t, t2〉 = et 〈0, 1, 2t〉 + et

〈
1, t, t2〉

= et
(
〈0, 1, 2t〉 + 〈

1, t, t2〉) = et
〈
1, 1 + t, 2t + t2〉

d

dθ
r(cos θ), r(s) = 〈

s, 2s, s2〉In Exercises 11–14, calculate the derivative at t = 3, assuming that

r1(3) = 〈1, 1, 0〉 , r2(3) = 〈1, 1, 0〉
r′

1(3) = 〈0, 0, 1〉 , r′
2(3) = 〈0, 2, 4〉

11.
d

dt
(6r1(t) − 4 · r2(t))

solution Using Differentiation Rules we obtain:

d

dt
(6r1(t) − 4r2(t))

∣∣∣∣
t=3

= 6r′
1(3) − 4r′

2(3) = 6 · 〈0, 0, 1〉 − 4 · 〈0, 2, 4〉

= 〈0, 0, 6〉 − 〈0, 8, 16〉 = 〈0, −8, −10〉

d

dt

(
etr2(t)

)13.
d

dt

(
r1(t) · r2(t)

)
solution Using Product Rule for Dot Products we obtain:

d

dt
r1(t) · r2(t) = r1(t) · r′

2(t) + r′
1(t) · r2(t)
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Setting t = 3 gives:

d

dt
r1(t) · r2(t)

∣∣∣∣
t=3

= r1(3) · r′
2(3) + r′

1(3) · r2(3) = 〈1, 1, 0〉 · 〈0, 2, 4〉 + 〈0, 0, 1〉 · 〈1, 1, 0〉 = 2 + 0 = 2

d

dt

(
r1(t) × r2(t)

)15. Calculate
∫ 3

0

〈
4t + 3, t2, −4t3〉 dt .

solution By the definition of vector-valued integration, we have

∫ 3

0

〈
4t + 3, t2, −4t3

〉
dt =

〈∫ 3

0
(4t + 3) dt,

∫ 3

0
t2 dt,

∫ 3

0
−4t3 dt

〉
(1)

We compute the integrals on the right-hand side:

∫ 3

0
(4t + 3) dt = 2t2 + 3t

∣∣∣∣3
0

= 2 · 9 + 3 · 3 − 0 = 27

∫ 3

0
t2 dt = t3

3

∣∣∣∣3
0

= 33

3
= 9

∫ 3

0
−4t3 dt = −t4

∣∣∣∣3
0

= −34 = −81

Substituting in (1) gives the following integral:

∫ 3

0

〈
4t + 3, t2, −4t3〉 dt = 〈27, 9, −81〉

Calculate
∫ π

0

〈
sin θ, θ, cos 2θ

〉
dθ .

17. A particle located at (1, 1, 0) at time t = 0 follows a path whose velocity vector is v(t) = 〈
1, t, 2t2〉. Find the particle’s

location at t = 2.

solution We first find the path r(t) by integrating the velocity vector v(t):

r(t) =
∫ 〈

1, t, 2t2
〉

dt =
〈∫

1 dt,

∫
t dt,

∫
2t2 dt

〉
=

〈
t + c1,

1

2
t2 + c2,

2

3
t3 + c3

〉

Denoting by c = 〈c1, c2, c3〉 the constant vector, we obtain:

r(t) =
〈
t,

1

2
t2,

2

3
t3
〉
+ c (1)

To find the constant vector c, we use the given information on the initial position of the particle. At time t = 0 it is at
the point (1, 1, 0). That is, by (1):

r(0) = 〈0, 0, 0〉 + c = 〈1, 1, 0〉

or,

c = 〈1, 1, 0〉

We substitute in (1) to obtain:

r(t) =
〈
t,

1

2
t2,

2

3
t3
〉
+ 〈1, 1, 0〉 =

〈
t + 1,

1

2
t2 + 1,

2

3
t3
〉

Finally, we substitute t = 2 to obtain the particle’s location at t = 2:

r(2) =
〈
2 + 1,

1

2
· 22 + 1,

2

3
· 23

〉
=

〈
3, 3,

16

3

〉

At time t = 2 the particle is located at the point (
3, 3,

16

3

)
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Find the vector-valued function r(t) = 〈
x(t), y(t)

〉
in R2 satisfying r′(t) = −r(t) with initial conditions r(0) =

〈1, 2〉.
19. Calculate r(t) assuming that

r′′(t) =
〈
4 − 16t, 12t2 − t

〉
, r′(0) = 〈1, 0〉 , r(0) = 〈0, 1〉

solution Using componentwise integration we get:

r′(t) =
∫ 〈

4 − 16t, 12t2 − t
〉

dt

=
〈∫

4 − 16t dt,

∫
12t2 − t dt

〉

=
〈

4t − 8t2, 4t3 − t2

2

〉
+ c1

Then using the initial condition r′(0) = 〈1, 0〉 we get:

r′(0) = 〈1, 0〉 = c1

so then

r′(t) =
〈

4t − 8t2, 4t3 − t2

2

〉
+ 〈1, 0〉 =

〈
4t − 8t2 + 1, 4t3 − t2

2

〉

Then integrating componentwise once more we get:

r(t) =
∫ 〈

4t − 8t2 + 1, 4t3 − t2

2

〉
dt

=
〈∫

4t − 8t2 + 1 dt,

∫
4t3 − t2

2
dt

〉

=
〈

2t2 − 8

3
t3 + t, t4 − t3

6

〉
+ c2

Using the initial condition r(0) = 〈0, 1〉 we have:

r(0) = 〈0, 1〉 = c2

Therefore,

r(t) =
〈

2t2 − 8

3
t3 + t, t4 − t3

6

〉
+ 〈0, 1〉 =

〈
2t2 − 8

3
t3 + t, t4 − t3

6
+ 1

〉

Solve r′′(t) =
〈
t2 − 1, t + 1, t3

〉
subject to the initial conditions r(0) = 〈1, 0, 0〉 and r′(0) = 〈−1, 1, 0〉

21. Compute the length of the path

r(t) = 〈
sin 2t, cos 2t, 3t − 1

〉
for 1 ≤ t ≤ 3

solution We use the formula for the arc length:

s =
∫ 3

1
‖r′(t)‖ dt (1)

We compute the derivative vector r′(t) and its length:

r′(t) = 〈2 cos 2t,−2 sin 2t, 3〉

‖r′(t)‖ =
√

(2 cos 2t)2 + (−2 sin 2t)2 + 32 =
√

4 cos22t + 4 sin2 2t + 9

=
√

4
(

cos2 2t + sin2 2t
)

+ 9 = √
4 · 1 + 9 = √

13

We substitute in (1) and compute the integral to obtain the following length:

s =
∫ 3

1

√
13 dt = √

13t

∣∣∣∣3
1

= 2
√

13.

Express the length of the path r(t) = 〈
ln t, t, et

〉
for 1 ≤ t ≤ 2 as a definite integral, and use a computer algebra

system to find its value to two decimal places.
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23. Find an arc length parametrization of a helix of height 20 cm that makes four full rotations over a circle of radius
5 cm.

solution Since the radius is 5 cm and the height is 20 cm, the helix is traced by a parametrization of the form:

r(t) = 〈5 cos at, 5 sin at, t〉 , 0 ≤ t ≤ 20

Since the helix makes exactly 4 full rotations, we have:

a · 20 = 4 · 2π ⇒ a = 2π

5

The parametrization of the helix is, thus:

r(t) =
〈
5 cos

2πt

5
, 5 sin

2πt

5
, t

〉
, 0 ≤ t ≤ 20

The helix is shown in the following figure:

0 5
5

0

20

15

10

5

0

5

5

To find the arc length parametrization for the helix, we use:

s(t) =
∫ t

0
‖r′(u)‖ du (1)

We find r′(t) and its length:

r′(t) =
〈
−5 · 2π

5
sin

2πt

5
, 5 · 2π

5
cos

2πt

5
, 1

〉
=

〈
−2π sin

2πt

5
, 2π cos

2πt

5
, 1

〉

‖r′(t)‖ =
√

4π2 sin2 2πt

5
+ 4π2 cos2 2πt

5
+ 1 =

√
4π2

(
sin2 2πt

5
+ cos2 2πt

5

)
+ 1 =

√
1 + 4π2

Substituting in (1) we get:

s(t) =
∫ t

0

√
1 + 4π2 du = t

√
1 + 4π2

Therefore, we let s = t
√

1 + 4π2 and thus,

t = s√
1 + 4π2

= g(s)

Thus, we can write

r(s) =
〈

5 cos
sa√

1 + 4π2
, 5 sin

sa√
1 + 4π2

,
s√

1 + 4π2

〉
, 0 ≤ s ≤ 20

√
1 + 4π2 ≈ 127.245

Find the minimum speed of a particle with trajectory r(t) = 〈
t, et−3, e4−t

〉
.

25. A projectile fired at an angle of 60◦ lands 400 m away. What was its initial speed?

solution Place the projectile at the origin, and let r(t) be the position vector of the projectile.

Step 1. Use Newton’s Law
Gravity exerts a downward force of magnitude mg, where m is the mass of the bullet and g = 9.8 m/s2. In vector

form,

F = 〈0, −mg〉 = m 〈0, −g〉
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Newton’s Second Law F = mr′(t) yields m 〈0, −g〉 = mr′′(t) or r′′(t) = 〈0, −g〉. We determine r(t) by integrating
twice:

r′(t) =
∫ t

0
r′′(u) du =

∫ t

0
〈0, −g〉 du = 〈0, −gt〉 + v0

r(t) =
∫ t

0
r′(u) du =

∫ t

0
(〈0, −gu〉 + v0) du =

〈
0, −1

2
gt2

〉
+ tv0 + r0

Step 2. Use the initial conditions
By our choice of coordinates, r0 = 0. The initial velocity v0 has unknown magnitude v0, but we know that it points

in the direction of the unit vector
〈
cos 60◦, sin 60◦〉. Therefore,

v0 = v0
〈
cos 60◦, sin 60◦〉 = v0

〈
1

2
,

√
3

2

〉

r(t) =
〈
0, −1

2
gt2

〉
+ tv0

〈
1

2
,

√
3

2

〉

Step 3. Solve for v0.
The projectile hits the point 〈400, 0〉 on the ground if there exists a time t such that r(t) = 〈400, 0〉; that is,

〈
0, −1

2
gt2

〉
+ tv0

〈
1

2
,

√
3

2

〉
= 〈400, 0〉

Equating components, we obtain

1

2
tv0 = 400, −1

2
gt2 +

√
3

2
tv0 = 0

The first equation yields t = 800
v0

. Now substitute in the second equation and solve, using g = 9.8m/s2:

−4.9

(
800

v0

)2
+

√
3

2

(
800

v0

)
v0 = 0

(
800

v0

)2
= 400

√
3

4.9( v0

800

)2 = 4.9

400
√

3
≈ 0.00707

v2
0 = 4526.42611, v0 ≈ 67.279 m/s

We obtain v0 ≈ 67.279 m/s.

A specially trained mouse runs counterclockwise in a circle of radius 0.6 m on the floor of an elevator with speed
0.3 m/s while the elevator ascends from ground level (along the z-axis) at a speed of 12 m/s. Find the mouse’s
acceleration vector as a function of time. Assume that the circle is centered at the origin of the xy-plane and the
mouse is at (2, 0, 0) at t = 0.

27. During a short time interval [0.5, 1.5], the path of an unmanned spy plane is described by

r(t) =
〈
−100

t2
, 7 − t, 40 − t2

〉

A laser is fired (in the tangential direction) toward the yz-plane at time t = 1. Which point in the yz-plane does the laser
beam hit?

solution Notice first that by differentiating we get the tangent vector:

r′(t) =
〈

200

t3
, −1, −2t

〉
, ⇒ r′(1) = 〈200, −1, −2〉

and the tangent line to the path would be:

�(s) = r(1) + sr′(1) = 〈−100, 6, 39〉 + s 〈200, −1, −2〉 = 〈−100 + 200s, 6 − s, 39 − 2s〉
If the laser is fired in the tangential direction toward the yz-plane means that the x-coordinate will be zero - this is when
s = 1/2. Therefore,

�(1/2) = 〈0, 11/2, 38〉
Hence, the laser beam will hit the point (0, 11/2, 38).

A force F = 〈12t + 4, 8 − 24t〉 (in newtons) acts on a 2-kg mass. Find the position of the mass at t = 2 s if it is
located at (4, 6) at t = 0 and has initial velocity 〈2, 3〉 in m/s.
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29. Find the unit tangent vector to r(t) = 〈
sin t, t, cos t

〉
at t = π .

solution The unit tangent vector at t = π is

T(π) = r′(π)

‖r′(π)‖ (1)

We differentiate r(t) componentwise to obtain:

r′(t) = 〈cos t, 1, − sin t〉
Therefore,

r′(π) = 〈cos π, 1, − sin π〉 = 〈−1, 1, 0〉
We compute the length of r′(π):

‖r′(π)‖ =
√

(−1)2 + 12 + 02 = √
2

Substituting in (1) gives:

T(π) =
〈−1√

2
,

1√
2
, 0

〉

Find the unit tangent vector to r(t) = 〈
t2, tan−1 t, t

〉
at t = 1.

31. Calculate κ(1) for r(t) = 〈ln t, t〉.
solution Recall,

κ(t) = ‖r′(t) × r′′(t)‖
‖r′(t)‖3

Computing derivatives we get:

r′(t) =
〈

1

t
, 1

〉
, ⇒ r′(1) = 〈1, 1〉 , ⇒ ‖r′(1)‖ = √

2

r′′(t) =
〈
− 1

t2
, 0

〉
, ⇒ r′′(1) = 〈−1, 0〉

Computing the cross product we get:

r′(1) × r′′(1) =
∣∣∣∣∣∣

i j k
1 1 0

−1 0 0

∣∣∣∣∣∣ = 〈0, 0, 1〉

and ‖r′(1) × r′′(1)‖ = 1. Therefore,

κ(1) = ‖r′(1) × r′′(1)‖
‖r′(1)‖3

= 1

(
√

2)3
= 1

23/2

Calculate κ
(
π
4

)
for r(t) = 〈tan t, sec t, cos t〉.In Exercises 33 and 34, write the acceleration vector a at the point indicated as a sum of tangential and normal components.

33. r(θ) = 〈
cos θ, sin 2θ

〉
, θ = π

4

solution First note here that:

v(θ) = r′(θ) = 〈− sin θ, 2 cos 2θ〉
a(θ) = r′′(θ) = 〈− cos θ, −4 sin 2θ〉

At t = π/4 we have:

v = r′(π/4) =
〈
− 1√

2
, 0

〉

a = r′′(π/4) =
〈
− 1√

2
, −4

〉
Thus,

a · v =
〈
− 1√

2
, −4

〉
·
〈
− 1√

2
, 0

〉
= 1

2

‖v‖ =
√

1

2
+ 0 = 1√

2
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Recall that we have:

T = v
‖v‖ =

〈
− 1√

2
, 0

〉
1/

√
2

= 〈−1, 0〉

aT = a · v
‖v‖ = 1/2

1/
√

2
= 1√

2

Next, we compute aN and N:

aNN = a − aTT =
〈
− 1√

2
, −4

〉
− 1√

2
〈−1, 0〉 = 〈0, −4〉

This vector has length:

aN = ‖aNN‖ = 4

and thus,

N = aNN
aN

= 〈0, −4〉
4

= 〈0, −1〉

Finally, we obtain the decomposition,

a =
〈
− 1√

2
, −4

〉
= 1√

2
T + 4N

where T = 〈−1, 0〉 and N = 〈0, −1〉.

r(t) = 〈
t2, 2t − t2, t

〉
, t = 2

35. At a certain time t0, the path of a moving particle is tangent to the y-axis in the positive direction. The particle’s speed
at time t0 is 4 m/s, and its acceleration vector is a = 〈5, 4, 12〉. Determine the curvature of the path at t0.

solution We are given that the particle is moving tangent to the y-axis with speed 4 m/s, so then:

r′ = 〈0, 4, 0〉

and a = r′′ = 〈5, 4, 12〉. Recall the formula for curvature:

κ = ‖r′ × r′′‖
‖r′‖3

First calculate the cross product:

r′ × r′′ =
∣∣∣∣∣∣
i j k
0 4 0
5 4 12

∣∣∣∣∣∣ = 〈48, 0, −20〉

Then the length of r′ and r′ × r′′:

‖r′‖ = 4, ‖r′ × r′′‖ =
√

482 + 202 = √
2704 = 52

so then for curvature we get:

κ = ‖r′ × r′′‖
‖r′‖3

= 52

43
= 13

16

Parametrize the osculating circle to y = x2 − x3 at x = 1.
37. Parametrize the osculating circle to y = √

x at x = 4.

solution First differentiate twice:

f ′(x) = 1

2
√

x
, f ′′(x) = − 1

4x3/2

and at the point x = 4 we get:

f ′(4) = 1

4
, f ′′(4) = − 1

32
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Step 1. Find the radius
Then recall the formula for curvature:

κ(x) = |f ′′(x)|
[1 + (f ′(x))2]3/2

and evaluating at x = 4 we have:

κ(4) =
1

32[
1 + 1

16

]3/2
= 1

32
· 1(

17
16

)3/2
= 1

32

163/2

173/2
= 2

173/2

Therefore the radius of the osculating circle is R = 173/2

2 .

Step 2. Find N at x = 4
First we will parametrize the curve f (x) = √

x as:

r(x) = 〈
x,

√
x
〉
, r(4) = 〈4, 2〉

and differentiate:

r′(x) =
〈
1,

1

2
x−1/2

〉

Note here that the vector
〈

1
2x−1/2, −1

〉
is orthogonal to r′(x) for all values of x and points in the direction of the bending

of the curve y = √
x.

Computing the unit normal to the curve, using the vector orthogonal to r′(x) we get:

N(x) =
〈

1
2x−1/2, −1

〉
√

1
4x

+ 1
, N(4) =

〈
1
4 , −1

〉
√

1
16 + 1

= 4√
17

〈
1

4
, −1

〉

Step 3. Find the center Q

Now to find the center Q of the osculating circle:

−−→
OQ = r(4) + κ−1N(4)

= 〈4, 2〉 + 173/2

2

4√
17

〈
1

4
, −1

〉

= 〈4, 2〉 + 34

〈
1

4
, −1

〉

= 〈4, 2〉 +
〈

17

2
, −34

〉

=
〈

25

2
, −32

〉

The center of the osculating circle is Q = ( 25
2 , −32).

Step 4. Parametrize the osculating circle
Then parametrizing the osculating circle we get:

c(t) =
〈

25

2
, −32

〉
+ 173/2

2
〈cos t, sin t〉

If a planet has zero mass (m = 0), then Newton’s laws of motion reduce to r′′(t) = 0 and the orbit is a straight
line r(t) = r0 + tv0, where r0 = r(0) and v0 = r′(0) (Figure 1). Show that the area swept out by the radial vector
at time t is A(t) = 1

2‖r0 × v0‖t and thus Kepler’s Second Law continues to hold (the rate is constant).

39. Suppose the orbit of a planet is an ellipse of eccentricity e = c/a and period T (Figure 2). Use Kepler’s Second Law
to show that the time required to travel from A′ to B ′ is equal to

(
1

4
+ e

2π

)
T
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(c, 0)

Sun

y

x
O

B

b

B´

aA´ A

FIGURE 2

solution By the Law of Equal Areas, the position vector pointing from the sun to the planet sweeps out equal areas
in equal times. We denote by S1 the area swept by the position vector when the planet moves from A′ to B ′, and t is the
desired time. Since the position vector sweeps out the whole area of the ellipse (πab) in time T , the Law of Equal Areas
implies that:

S1

πab
= t

T
⇒ t = T S1

πab
(1)

We now find the area S1 as the sum of the area of a quarter of the ellipse and the area of the triangle ODB. That is,

S1 = πab

4
+ OD · OB

′

2
= πab

4
+ cb

2
= b

4
(πa + 2c)

Substituting in (1) we get:

t = T b(πa + 2c)

4πab
= T (πa + 2c)

4πa
= T

(
1

4
+ 1

2π

c

a

)
= T

(
1

4
+ e

2π

)

D(c, 0)

Sun

y

x
O

S1

b

B′

aA′

The period of Mercury is approximately 88 days, and its orbit has eccentricity 0.205. How much longer does it
take Mercury to travel from A′ to B ′ than from B ′ to A (Figure 2)?
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14 DIFFERENTIATION
IN SEVERAL VARIABLES

14.1 Functions of Two or More Variables (LT Section 15.1)

Preliminary Questions
1. What is the difference between a horizontal trace and a level curve? How are they related?

solution A horizontal trace at height c consists of all points (x, y, c) such that f (x, y) = c. A level curve is the curve
f (x, y) = c in the xy-plane. The horizontal trace is in the z = c plane. The two curves are related in the sense that the
level curve is the projection of the horizontal trace on the xy-plane. The two curves have the same shape but they are
located in parallel planes.

2. Describe the trace of f (x, y) = x2 − sin(x3y) in the xz-plane.

solution The intersection of the graph of f (x, y) = x2 − sin(x3y) with the xz-plane is obtained by setting y = 0 in

the equation z = x2 − sin(x3y). We get the equation z = x2 − sin 0 = x2. This is the parabola z = x2 in the xz-plane.

3. Is it possible for two different level curves of a function to intersect? Explain.

solution Two different level curves of f (x, y) are the curves in the xy-plane defined by equations f (x, y) = c1 and
f (x, y) = c2 for c1 �= c2. If the curves intersect at a point (x0, y0), then f (x0, y0) = c1 and f (x0, y0) = c2, which
implies that c1 = c2. Therefore, two different level curves of a function do not intersect.

4. Describe the contour map of f (x, y) = x with contour interval 1.

solution The level curves of the function f (x, y) = x are the vertical lines x = c. Therefore, the contour map of f

with contour interval 1 consists of vertical lines so that every two adjacent lines are distanced one unit from another.

5. How will the contour maps of

f (x, y) = x and g(x, y) = 2x

with contour interval 1 look different?

solution The level curves of f (x, y) = x are the vertical lines x = c, and the level curves of g(x, y) = 2x are the
vertical lines 2x = c or x = c

2 . Therefore, the contour map of f (x, y) = x with contour interval 1 consists of vertical
lines with distance one unit between adjacent lines, whereas in the contour map of g(x, y) = 2x (with contour interval
1) the distance between two adjacent vertical lines is 1

2 .

Exercises
In Exercises 1–4, evaluate the function at the specified points.

1. f (x, y) = x + yx3, (2, 2), (−1, 4)

solution We substitute the values for x and y in f (x, y) and compute the values of f at the given points. This gives

f (2, 2) = 2 + 2 · 23 = 18

f (−1, 4) = −1 + 4 · (−1)3 = −5

g(x, y) = y

x2 + y2
, (1, 3), (3, −2)

3. h(x, y, z) = xyz−2, (3, 8, 2), (3, −2, −6)

solution Substituting (x, y, z) = (3, 8, 2) and (x, y, z) = (3, −2, −6) in the function, we obtain

h(3, 8, 2) = 3 · 8 · 2−2 = 3 · 8 · 1

4
= 6

h(3, −2, −6) = 3 · (−2) · (−6)−2 = −6 · 1

36
= −1

6

Q(y, z) = y2 + y sin z, (y, z) = (2, π
2

)
,
(− 2, π

6

)In Exercises 5–12, sketch the domain of the function.

5. f (x, y) = 12x − 5y

solution The function is defined for all x and y, hence the domain is the entire xy-plane.

336
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f (x, y) =
√

81 − x2
7. f (x, y) = ln(4x2 − y)

solution The function is defined if 4x2 − y > 0, that is, y < 4x2. The domain is the region in the xy-plane that is

below the parabola y = 4x2.

x

y y = 4x2

h(x, t) = 1

x + t

9. g(y, z) = 1

z + y2

solution The function is defined if z + y2 �= 0, that is, z �= −y2. The domain is the (y, z) plane with the parabola

z = −y2 excluded.

D = {(y, z) : z �= −y2}

x

y

z = −y2

z + y2 �= 0

f (x, y) = sin
y

x

11. F(I, R) = √
IR

solution The function is defined if IR ≥ 0. Therefore the domain is the first and the third quadrants of the IR-plane
including both axes.

x

y

IR ≥ 0

f (x, y) = cos−1(x + y)
In Exercises 13–16, describe the domain and range of the function.

13. f (x, y, z) = xz + ey

solution The domain of f is the entire (x, y, z)-space. Since f takes all the real values, the range is the entire real
line.

f (x, y, z) = x
√

y + zez/x15. P(r, s, t) =
√

16 − r2s2t2

solution The domain is subset of R3 where rst ≤ 4 and the range is {w : 0 ≤ w ≤ 4} because the minimum is 0 and

the maximum of P is
√

16 = 4.

g(r, s) = cos−1(rs)
17. Match graphs (A) and (B) in Figure 21 with the functions

(i) f (x, y) = −x + y2 (ii) g(x, y) = x + y2
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(A) (B)

y

x

z

y

x

z

FIGURE 21

solution

(i) The vertical trace for f (x, y) = −x + y2 in the xz-plane (y = 0) is z = −x. This matches the graph shown in (B).

(ii) The vertical trace for f (x, y) = x + y2 in the xz-plane (y = 0) is z = x. This matches the graph show in (A).

Match each of graphs (A) and (B) in Figure 22 with one of the following functions:

(i) f (x, y) = (cos x)(cos y)

(ii) g(x, y) = cos(x2 + y2)

19. Match the functions (a)–(f) with their graphs (A)–(F) in Figure 23.

(a) f (x, y) = |x| + |y| (b) f (x, y) = cos(x − y)

(c) f (x, y) = −1

1 + 9x2 + y2
(d) f (x, y) = cos(y2)e−0.1(x2+y2)

(e) f (x, y) = −1

1 + 9x2 + 9y2
(f) f (x, y) = cos(x2 + y2)e−0.1(x2+y2)

(A) (B)

y

x

(C) (D)

y

x

z

y

(E) (F)

x

y

x

z

z z

x

y

z z

FIGURE 23

solution

(a) |x| + |y|. The level curves are |x| + |y| = c, y = c − |x|, or y = −c + |x|. The graph (D) corresponds to the function
with these level curves.

(b) cos(x − y). The vertical trace in the plane x = c is the curve z = cos(c − y) in the plane x = c. These traces
correspond to the graph (C).
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(c)
−1

1 + 9x2 + y2
(e)

−1

1 + 9x2 + 9y2
.

The level curves of the two functions are:

−1

1 + 9x2 + y2
= c

−1

1 + 9x2 + 9y2
= c

1 + 9x2 + y2 = −1

c
1 + 9x2 + 9y2 = −1

c

9x2 + y2 = −1 − 1

c
9x2 + 9y2 = −1 − 1

c

x2 + y2 = −1 + c

9c

For suitable values of c, the level curves of the function in (c) are ellipses as in (E), and the level curves of the function
(e) are circles as in (A).

(d) cos(x2)e−1/(x2+y2) (f) cos(x2 + y2)e−1/(x2+y2).
The value of |z| is decreasing to zero as x or y are decreasing, hence the possible graphs are (B) and (F).
In (f), z is constant whenever x2 + y2 is constant, that is, z is constant whenever (x, y) varies on a circle. Hence (f)

corresponds to the graph (F) and (d) corresponds to (B).

To summarize, we have the following matching:

(a) ↔ (D) (b) ↔ (C) (c) ↔ (E)

(d) ↔ (B) (e) ↔ (A) (f) ↔ (F)

Match the functions (a)–(d) with their contour maps (A)–(D) in Figure 24.

(a) f (x, y) = 3x + 4y (b) g(x, y) = x3 − y

(c) h(x, y) = 4x − 3y (d) k(x, y) = x2 − y

In Exercises 21–26, sketch the graph and describe the vertical and horizontal traces.

21. f (x, y) = 12 − 3x − 4y

solution The graph of f (x, y) = 12 − 3x − 4y is shown in the figure:

y

x

z

3

12

4

The horizontal trace at height c is the line 12 − 3x − 4y = c or 3x + 4y = 12 − c in the plane z = c.

y

x

z

The vertical traces obtained by setting x = a or y = a are the lines z = (12 − 3a) − 4y and z = −3x + (12 − 4a) in the
planes x = a and y = a, respectively.

y

x

z

y

x

z

f (x, y) =
√

4 − x2 − y2
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23. f (x, y) = x2 + 4y2

solution The graph of the function is shown in the figure:

y

x

z

The horizontal trace at height c is the curve x2 + 4y2 = c, where c ≥ 0 (if c = 0, it is the origin). The horizontal traces
are ellipses for c > 0.

y

x

z

The vertical trace in the plane x = a is the parabola z = a2 + 4y2, and the vertical trace in the plane y = a is the parabola
z = x2 + 4a2.

y

x

z

y

x

z

f (x, y) = y2
25. f (x, y) = sin(x − y)

solution The graph of f (x, y) = sin(x − y) is shown in the figure:

z

y
4

2

4

2
4

−2

x

The horizontal trace at the height z = c is sin(x − y) = c (we could also write x − y = sin−1(c) or y = x − sin−1(c)).
The trace consists of multiple lines all having slope 1, with y-intercepts separated by multiples of 2π .

4

y

x

2

−2

−2 2 4−4

−4
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The vertical trace in the plane x = a is sin(a − y) = − sin(y − a) = z. This curve is a shifted sine curve reflected
through the z-axis.

y

0.8

0.6

0.4

0.2

−0.2
−4 −2 2 4

−0.4

−0.6

−0.8

x

The vertical trace in the plane y = a is sin(x − a) = z. This curve is a shifted sine curve as well.

y

0.8

0.6

0.4

0.2

−0.2
−4 −2 2 4

−0.4

−0.6

−0.8

x

f (x, y) = 1

x2 + y2 + 1

27. Sketch contour maps of f (x, y) = x + y with contour intervals m = 1 and 2.

solution The level curves are x + y = c or y = c − x. Using contour interval m = 1, we plot y = c − x for various
values of c.

420−4

−4

−2

0

2

4

−2

Using contour interval m = 2, we plot y = c − x for various values of c.

420−4

−4

−2

0

2

4

−2

Sketch the contour map of f (x, y) = x2 + y2 with level curves c = 0, 4, 8, 12, 16.
In Exercises 29–36, draw a contour map of f (x, y) with an appropriate contour interval, showing at least six level curves.

29. f (x, y) = x2 − y

solution The level curves are the parabolas y = x2 + c. We draw a contour plot with contour interval m = 1, for
c = 0, 1, 2, 3, 4, 5:

4

21 3−2−3 −1 0

3

2

1

5

6
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f (x, y) = y

x2

31. f (x, y) = y

x

solution The level curves are y
x = c or y = cx. We plot y = cx for c = −2, −1, 0, 1, 2, 3 using contour interval

m = 1:

−1

0.2 0.4 0.6 0.8 1
0

1

−0.5

0.5

f (x, y) = xy
33. f (x, y) = x2 + 4y2

solution The level curves are x2 + 4y2 = c. These are ellipses centered at the origin in the xy-plane.

y

x
−5

−5

−10

10

5

5 10−10

f (x, y) = x + 2y − 135. f (x, y) = x2

solution The level curves are x2 = c. For c > 0 these are the two vertical lines x = √
c and x = −√

c and for c = 0
it is the y-axis. We draw a contour map using contour interval m = 4 and c = 0, 4, 8, 12, 16, 20:

420−4

−4

−2

0

2

4

−2

f (x, y) = 3x2 − y237. Find the linear function whose contour map (with contour interval m = 6) is shown in Figure 25. What is
the linear function if m = 3 (and the curve labeled c = 6 is relabeled c = 3)?

c = 0
c = 6

63−6 −3 −1
−2

2
1

x

y

FIGURE 25 Contour map with contour interval m = 6

solution A linear function has the form f (x, y) = Ax + By + C.

Case 1: According to the contour map, the level curve through the origin (0, 0) has equation f (x, y) = 6. Therefore

f (0, 0) = A(0) + B(0) + C = 6 ⇒ C = 6
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Next, we see from the contour map that the points (−3, 0) = 0 and f (0, −1) lie on the level curve f (x, y) = 0. Hence

f (−3, 0) = A(−3) + B(0) + 6 = 0 ⇒ A = 2

f (0, −1) = A(0) + B(−1) + 6 = 0 ⇒ B = 6

Therefore f (x, y) = 2x + 6y + 6.

Case 1: If m = 3, then (0, 0) lies on the level curve f (x, y) = 3, and we proceed as before

f (0, 0) = A(0) + B(0) + C = 3 ⇒ C = 3f (−3, 0) = A(−3) + B(0) + 3 = 0 ⇒ A = 1

f (0, −1) = A(0) + B(−1) + 3 = 0 ⇒ B = 2

Therefore f (x, y) = x + 3y + 3.

Use the contour map in Figure 26 to calculate the average rate of change:

(a) From A to B. (b) From A to C.

39. Referring to Figure 27, answer the following questions:

(a) At which of (A)–(C) is pressure increasing in the northern direction?

(b) At which of (A)–(C) is pressure increasing in the easterly direction?

(c) In which direction at (B) is pressure increasing most rapidly?

10001004

1006

1012

1024

1024

1024
1020

1020

1008

1032 1032

1020
1028

1028

1016

1016
1012

1004

1012
1016

1016

1016

1008

1016

A

B

C

FIGURE 27 Atmospheric Pressure (in millibars) over the continental U.S. on March 26, 2009

solution

(a) (A) and (B)

(b) (C)

(c) west

In Exercises 40–43, ρ(S, T ) is seawater density (kg/m3) as a function of salinity S (ppt) and temperature T (◦C). Refer
to the contour map in Figure 28.

32.031.5 32.5 33.0

B

A

33.5 34.0 34.5

Te
m

pe
ra

tu
re

 T
 °

C

25

20

15

10

5

0

Salinity (ppt)

1.0230

1.0235

1.0240

1.0245

1.0250

1.0255

1.0260

1.0265

1.0270

C

FIGURE 28 Contour map of seawater density ρ(S, T ) (kg/m3).

Calculate the average rate of change of ρ with respect to T from B to A.
41. Calculate the average rate of change of ρ with respect to S from B to C.

solution For fixed temperature, the segment BC spans one level curve and the level curve of C is to the right of the

level curve of B. Therefore, the change in density from B to C is �ρ = 0.0005 kg/m3. The salinity at C is greater than
the salinity at B and �S = 0.8 ppt. Therefore,

Average ROC from B to C = �ρ

�S
= 0.0005

0.8
= 0.000625 kg/m3 · ppt.
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At a fixed level of salinity, is seawater density an increasing or a decreasing function of temperature?
43. Does water density appear to be more sensitive to a change in temperature at point A or point B?

solution The two adjacent level curves are closer to the level curve of A than the corresponding two adjacent level
curves are to the level curve of B. This suggests that water density is more sensitive to a change in temperature at A than
at B.

In Exercises 44–47, refer to Figure 29.

i

B

iii

D

C

A

ii 400

500

0 1 2 km
Contour interval = 20 m

540

FIGURE 29

Find the change in elevation from A and B.
45. Estimate the average rate of change from A and B and from A to C.

solution The change in elevation from A to B is 140 m. The scale shows that AB is approximately 2000 m. Therefore,

Average ROC from A to B = 140

2000
≈ 0.07.

The change in elevation from A to C is obtained by multiplying the number of level curves between A and C, which is 8,
by the contour interval 20 meters, giving 8 · 20 = 160 m. Using the scale, we approximate the distance AC by 3000 m.
Therefore,

Average ROC from A to C = 160

3000
≈ 0.0533.

Estimate the average rate of change from A to points i, ii, and iii.
47. Sketch the path of steepest ascent beginning at D.

solution Starting at D, we draw a path that everywhere along the way points on the steepest direction, that is, moves
as straight as possible from one level curve to the next to end at the point C.

Further Insights and Challenges

The function f (x, t) = t−1/2e−x2/t , whose graph is shown in Figure 30, models the temperature along a metal
bar after an intense burst of heat is applied at its center point.

(a) Sketch the vertical traces at times t = 1, 2, 3. What do these traces tell us about the way heat diffuses through
the bar?

(b) Sketch the vertical traces x = c for c = ±0.2, ±0.4. Describe how temperature varies in time at points near the
center.

49. Let f (x, y) = x√
x2 + y2

for (x, y) �= 0. Write f as a function f (r, θ) in polar coordinates, and use this to find the

level curves of f .

solution In polar coordinates x = r cos θ and r =
√

x2 + y2. Hence,

f (r, θ) = r cos θ

r
= cos θ.

y
x

z

The level curves are the curves cos θ = c in the rθ -plane, for |c| ≤ 1. For −1 < c < 1, c �= 0, the level curves cos θ = c

are the two rays θ = cos−1 c and θ = − cos−1 c.
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y

z

x

For c = 0, the level curve cos θ = 0 is the y-axis; for c = 1 the level curve cos θ = 1 is the nonnegative x-axis.

y

z

x

For c = −1, the level curve cos θ = −1 is the negative x-axis.

14.2 Limits and Continuity in Several Variables (LT Section 15.2)

Preliminary Questions
1. What is the difference between D(P, r) and D∗(P, r)?

solution D(P, r) is the open disk of radius r and center (a, b). It consists of all points distanced less than r from P ,
hence D(P, r) includes the point P . D∗(P, r) consists of all points in D(P, r) other than P itself.

2. Suppose that f (x, y) is continuous at (2, 3) and that f (2, y) = y3 for y �= 3. What is the value f (2, 3)?

solution f (x, y) is continuous at (2, 3), hence the following holds:

f (2, 3) = lim
(x,y)→(2,3)

f (x, y)

Since the limit exists, we may compute it by approaching (2, 3) along the vertical line x = 2. This gives

f (2, 3) = lim
(x,y)→(2,3)

f (x, y) = lim
y→3

f (2, y) = lim
y→3

y3 = 33 = 27

We conclude that f (2, 3) = 27.

3. Suppose that Q(x, y) is a function such that 1/Q(x, y) is continuous for all (x, y). Which of the following statements
are true?

(a) Q(x, y) is continuous for all (x, y).

(b) Q(x, y) is continuous for (x, y) �= (0, 0).

(c) Q(x, y) �= 0 for all (x, y).

solution All three statements are true. Let f (x, y) = 1
Q(x,y)

. Hence Q(x, y) = 1
f (x,y)

.

(a) Since f is continuous, Q is continuous whenever f (x, y) �= 0. But by the definition of f it is never zero, therefore
Q is continuous at all (x, y).

(b) Q is continuous everywhere including at (0, 0).
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(c) Since f (x, y) = 1
Q(x,y)

is continuous, the denominator is never zero, that is, Q(x, y) �= 0 for all (x, y).

Moreover, there are no points where Q(x, y) = 0. (The equality Q(x, y) = (0, 0) is meaningless since the range of Q

consists of real numbers.)

4. Suppose that f (x, 0) = 3 for all x �= 0 and f (0, y) = 5 for all y �= 0. What can you conclude about
lim

(x,y)→(0,0)
f (x, y)?

solution We show that the limit lim(x,y)→(0,0) f (x, y) does not exist. Indeed, if the limit exists, it may be computed
by approaching (0, 0) along the x-axis or along the y-axis. We compute these two limits:

lim
(x,y)→(0,0)

along y=0

f (x, y) = lim
x→0

f (x, 0) = lim
x→0

3 = 3

lim
(x,y)→(0,0)

along x=0

f (x, y) = lim
y→0

f (0, y) = lim
y→0

5 = 5

Since the limits are different,f (x, y)does not approach one limit as (x, y) → (0, 0), hence the limit lim(x,y)→(0,0) f (x, y)

does not exist.

Exercises
In Exercises 1–8, evaluate the limit using continuity

1. lim
(x,y)→(1,2)

(x2 + y)

solution Since the function x2 + y is continuous, we evaluate the limit by substitution:

lim
(x,y)→(1,2)

(x2 + y) = 12 + 2 = 3

lim
(x,y)→( 4

9 , 2
9 )

x

y

3. lim
(x,y)→(2,−1)

(xy − 3x2y3)

solution The function xy − 3x2y3 is continuous everywhere because it is a polynomial, hence we compute the limit
by substitution:

lim
(x,y)→(2,−1)

(xy − 3x2y3) = 2(−1) − 3(4)(−1)3 = −2 + 12 = 10

lim
(x,y)→(−2,1)

2x2

4x + y

5. lim
(x,y)→( π

4 ,0)
tan x cos y

solution We use the continuity of tan x cos y at the point
(
π
4 , 0
)

to evaluate the limit by substitution:

lim
(x,y)→( π4 ,0

) tan x cos y = tan
π

4
cos 0 = 1 · 1 = 1

lim
(x,y)→(2,3)

tan−1(x2 − y)7. lim
(x,y)→(1,1)

ex2 − e−y2

x + y

solution The function is the quotient of two continuous functions, and the denominator is not zero at the point (1, 1).
Therefore, the function is continuous at this point, and we may compute the limit by substitution:

lim
(x,y)→(1,1)

ex2 − e−y2

x + y
= e12 − e−12

1 + 1
= e − 1

e

2
= 1

2
(e − e−1)

lim
(x,y)→(1,0)

ln(x − y)In Exercises 9–12, assume that

lim
(x,y)→(2,5)

f (x, y) = 3, lim
(x,y)→(2,5)

g(x, y) = 7

9. lim
(x,y)→(2,5)

(
g(x, y) − 2f (x, y)

)
solution

lim
(x,y)→(2,5)

(
g(x, y) − 2f (x, y)

) = 7 − 2(3) = 1

lim
(x,y)→(2,5)

f (x, y)2g(x, y)
11. lim

(x,y)→(2,5)
ef (x,y)2−g(x,y)

solution

lim
(x,y)→(2,5)

ef (x,y)2−g(x,y) = e32−7 = e2
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lim
(x,y)→(2,5)

f (x, y)

f (x, y) + g(x, y)

13. Does lim
(x,y)→(0,0)

y2

x2 + y2
exist? Explain.

solution This limit does not exist. Consider the following approaches to the point (x, y) = (0, 0) - first along the line
x = 0 and second, along the line y = x.

First along the line x = 0 we calculate:

lim
(x,y)→(0,0)

y2

x2 + y2
= lim

y→0

y2

02 + y2
= lim

y→0
1 = 1

Second, along the line y = x we calculate:

lim
(x,y)→(0,0)

y2

x2 + y2
= lim

x→0

x2

x2 + x2
= lim

x→0

1

2
= 1

2

Since these two limits are not equal, the limit in question, lim(x,y)→(0,0)
y2

x2+y2 does not exist.

Let f (x, y) = xy/(x2 + y2). Show that f (x, y) approaches zero as (x, y) approaches the origin along the x- and
y-axes. Then prove that lim

(x,y)→(0,0)
f (x, y) does not exist by showing that the limit along the line y = x is nonzero.

15. Prove that

lim
(x,y)→(0,0)

x

x2 + y2

does not exist by considering the limit along the x-axis.

solution Compute this limit approaching (x, y) = (0, 0) along the x-axis (y = 0):

lim
(x,y)→(0,0)

x

x2 + y2
= lim

x→0

x

x2 + 02
= lim

x→0

1

x

This limit is known not to exist (it gets arbitrarily large from the right and arbitrarily small from the left), therefore the
limit in question, lim(x,y)→(0,0)

x
x2+y2 , also does not exist.

Let f (x, y) = x3/(x2 + y2) and g(x, y) = x2/(x2 + y2). Using polar coordinates, prove that

lim
(x,y)→(0,0)

f (x, y) = 0

and that lim
(x,y)→(0,0)

g(x, y) does not exist. Hint: Show that g(x, y) = cos2 θ and observe that cos θ can take on any

value between −1 and 1 as (x, y) → (0, 0).

17. Use the Squeeze Theorem to evaluate

lim
(x,y)→(4,0)

(x2 − 16) cos

(
1

(x − 4)2 + y2

)

solution Consider the following inequalities:

−1 ≤ cos

(
1

(x − 4)2 + y2

)
≤ 1

Then for x such that x ≥ 4 then x2 − 16 ≥ 0 and we have:

(−1)(x2 − 16) ≤ (x2 − 16) cos

(
1

(x − 4)2 + y2

)
≤ (x2 − 16)

lim
(x,y)→(4,0)

(−1)(x2 − 16) ≤ lim
(x,y)→(4,0)

(x2 − 16) cos

(
1

(x − 4)2 + y2

)
≤ lim

(x,y)→(4,0)
(x2 − 16)

Then the two limits at the ends of the inequality are clearly equal to 0, by the Squeeze Theorem.
Now, if x < 4, then x2 − 16 < 0 and we have:

(x2 − 16) ≤ (x2 − 16) cos

(
1

(x − 4)2 + y2

)
≤ (−1)(x2 − 16)

lim
(x,y)→(4,0)

(x2 − 16) ≤ lim
(x,y)→(4,0)

(x2 − 16) cos

(
1

(x − 4)2 + y2

)
≤ lim

(x,y)→(4,0)
(−1)(x2 − 16)

Then the two limits at the ends of the inequality are clearly equal to 0, by the Squeeze Theorem.
Thus we can conclude

lim
(x,y)→(4,0)

(x2 − 16) cos

(
1

(x − 4)2 + y2

)
= 0

Evaluate lim
(x,y)→(0,0)

tan x sin

(
1

|x| + |y|
)

.
In Exercises 19–32, evaluate the limit or determine that it does not exist.

19. lim
(z,w)→(−2,1)

z4 cos(πw)

ez+w

solution This function is continuous everywhere since the denominator is never equal to 0, therefore, we will evaluate
the limit by substitution:

lim
(z,w)→(−2,1)

z4 cos(πw)

ez+w
= (−2)4 cos(π)

e−2+1
= 16(−1)

e−1
= −16e



May 17, 2011

348 C H A P T E R 14 DIFFERENTIATION IN SEVERAL VARIABLES (LT CHAPTER 15)

lim
(z,w)→(−1,2)

(z2w − 9z)21. lim
(x,y)→(4,2)

y − 2√
x2 − 4

solution The function is continuous at the point (4, 2), since it is the quotient of two continuous functions and the
denominator is not zero at (4, 2). We compute the limit by substitution:

lim
(x,y)→(4,2)

y − 2√
x2 − 4

= 2 − 2√
42 − 4

= 0√
12

= 0

lim
(x,y)→(0,0)

x2 + y2

1 + y2

23. lim
(x,y)→(3,4)

1√
x2 + y2

solution The function
1√

x2 + y2
is continuous at the point (3, 4) since it is the quotient of two continuous functions

and the denominator is not zero at (3, 4). We compute the limit by substitution:

lim
(x,y)→(3,4)

1√
x2 + y2

= 1√
9 + 16

= 1

5

lim
(x,y)→(0,0)

xy√
x2 + y2

25. lim
(x,y)→(1,−3)

ex−y ln(x − y)

solution This function ex−y ln(x − y) is continuous at the point (1, −3) since it is the product of two continuous
functions. We can compute the limit by substitution:

lim
(x,y)→(1,−3)

ex−y ln(x − y) = e1+3 ln(1 + 3) = e4 ln 4

lim
(x,y)→(0,0)

|x|
|x| + |y|

27. lim
(x,y)→(−3,−2)

(x2y3 + 4xy)

solution The function x2y3 + 4xy is continuous everywhere because it is a polynomial. We can compute this limit
by substitution:

lim
(x,y)→(−3,−2)

(x2y3 + 4xy) = 9(−8) + 4(−3)(−2) = −72 + 24 = −48

lim
(x,y)→(2,1)

ex2−y229. lim
(x,y)→(0,0)

tan(x2 + y2) tan−1
(

1

x2 + y2

)
solution Consider the following inequalities:

−π

2
≤ tan−1

(
1

x2 + y2

)
≤ π

2

−π

2
· tan(x2 + y2) ≤ tan(x2 + y2) ·

(
1

x2 + y2

)
≤ π

2
tan(x2 + y2)

and then taking limits:

lim
(x,y)→(0,0)

−π

2
· tan(x2 + y2) ≤ lim

(x,y)→(0,0)
tan(x2 + y2) ·

(
1

x2 + y2

)
≤ lim

(x,y)→(0,0)

π

2
tan(x2 + y2)

Each of the limits on the endpoints of this inequality is equal to 0, thus we can conclude:

lim
(x,y)→(0,0)

tan(x2 + y2) ·
(

1

x2 + y2

)
= 0

lim
(x,y)→(0,0)

(x + y + 2)e−1/(x2+y2)31. lim
(x,y)→(0,0)

x2 + y2√
x2 + y2 + 1 − 1

solution We rewrite the function by dividing and multiplying it by the conjugate of
√

x2 + y2 + 1 − 1 and using the

identity (a − b)(a + b) = a2 − b2. This gives

x2 + y2√
x2 + y2 + 1 − 1

=
(x2 + y2)

(√
x2 + y2 + 1 + 1

)
(√

x2 + y2 + 1 − 1
) (√

x2 + y2 + 1 + 1
) =

(x2 + y2)
(√

x2 + y2 + 1 + 1
)

(
x2 + y2 + 1

)− 1

=
(x2 + y2)

(√
x2 + y2 + 1 + 1

)
x2 + y2

=
√

x2 + y2 + 1 + 1
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The resulting function is continuous, hence we may compute the limit by substitution. This gives

lim
(x,y)→(0,0)

x2 + y2√
x2 + y2 + 1 − 1

= lim
(x,y)→(0,0)

(√
x2 + y2 + 1 + 1

)
=
√

02 + 02 + 1 + 1 = 2

lim
(x,y)→(1,1)

x2 + y2 − 2

|x − 1| + |y − 1|
Hint: Rewrite the limit in terms of u = x − 1 and v = y − 1.

33. Let f (x, y) = x3 + y3

x2 + y2
.

(a) Show that

|x3| ≤ |x|(x2 + y2), |y3| ≤ |y|(x2 + y2)

(b) Show that |f (x, y)| ≤ |x| + |y|.
(c) Use the Squeeze Theorem to prove that lim

(x,y)→(0,0)
f (x, y) = 0.

solution

(a) Since |x|y2 ≥ 0, we have

|x3| ≤ |x3| + |x|y2 = |x|3 + |x|y2 = |x|(x2 + y2)

Similarly, since |y|x2 ≥ 0, we have

|y3| ≤ |y3| + |y|x2 = |y|3 + |y|x2 = |y|(x2 + y2)

(b) We use the triangle inequality to write

|f (x, y)| = |x3 + y3|
x2 + y2

≤ |x3| + |y3|
x2 + y2

We continue using the inequality in part (a):

|f (x, y)| ≤ |x|(x2 + y2) + |y|(x2 + y2)

x2 + y2
= (|x| + |y|)(x2 + y2)

x2 + y2
= |x| + |y|

That is,

|f (x, y)| ≤ |x| + |y|
(c) In part (b) we showed that

|f (x, y)| ≤ |x| + |y| (1)

Let ε > 0. Then if |x| < ε
2 and |y| < ε

2 , we have by (1)

|f (x, y) − 0| ≤ |x| + |y| <
ε

2
+ ε

2
= ε (2)

Notice that if x2 + y2 < ε2

4 , then x2 < ε2

4 and y2 < ε2

4 . Hence |x| < ε
2 and |y| < ε

2 , so (1) holds. In other words, using
D�
(
ε
2

)
to represent the punctured disc of radius ε/2 centered at the origin, we have

(x, y) ∈ D�
( ε

2

)
⇒ |x| <

ε

2

and

|y| <
ε

2
⇒ |f (x, y) − 0| < ε

We conclude by the limit definition that

lim
(x,y)→(0,0)

f (x, y) = 0

Let a, b ≥ 0. Show that lim
(x,y)→(0,0)

xayb

x2 + y2
= 0 if a + b > 2 and that the limit does not exist if a + b ≤ 2.

35. Figure 7 shows the contour maps of two functions. Explain why the limit lim
(x,y)→P

f (x, y) does not exist.

Does lim
(x,y)→Q

g(x, y) appear to exist in (B)? If so, what is its limit?
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12

6

0

18

24

30

(A) Contour map of f (x, y) (B) Contour map of g(x, y)

P

3−3

−1 1

5−5

Q

FIGURE 7

solution As (x, y) approaches arbitrarily close to P , the function f (x, y) takes the values ±1, ±3, and ±5. Therefore
f (x, y) does not approach one limit as (x, y) → P . Rather, the limit depends on the contour along which (x, y)

is approaching P . This implies that the limit lim(x,y)→P f (x, y) does not exist. In (B) the limit lim(x,y)→Q g(x, y)

appears to exist. If it exists, it must be 4, which is the level curve of Q.

Further Insights and Challenges

Evaluate lim
(x,y)→(0,2)

(1 + x)y/x .
37. Is the following function continuous?

f (x, y) =
{

x2 + y2 if x2 + y2 < 1

1 if x2 + y2 ≥ 1

solution f (x, y) is defined by a polynomial in the domain x2 + y2 < 1, hence f is continuous in this domain. In

the domain x2 + y2 > 1, f is a constant function, hence f is continuous in this domain also. Thus, we must examine
continuity at the points on the circle x2 + y2 = 1.

x
0

y

1
y2 + x2

We express f (x, y) using polar coordinates:

f (r, θ) =
{

r2 0 ≤ r < 1

1 r ≥ 1

Since lim
r→1− f (r, θ) = lim

r→1− r2 = 1 and lim
r→1+ f (r, θ) = lim

r→1+ 1 = 1, we have lim
r→1

f (r, θ) = 1. Therefore f (r, θ) is

continuous at r = 1, or f (x, y) is continuous on x2 + y2 = 1. We conclude that f is continuous everywhere on R2.

The function f (x, y) = sin(xy)/xy is defined for xy �= 0.

(a) Is it possible to extend the domain of f (x, y) to all of R2 so that the result is a continuous function?

(b) Use a computer algebra system to plot f (x, y). Does the result support your conclusion in (a)?

39. Prove that the function

f (x, y) =
⎧⎨
⎩

(2x − 1)(sin y)

xy
if xy �= 0

ln 2 if xy = 0

is continuous at (0, 0).

solution To solve this problem it is necessary to show that lim(x,y)→(0,0) f (x, y) = f (0, 0) = ln 2. Consider the
following:

lim
(x,y)→(0,0)

(2x − 1) sin y

xy
= lim

(x,y)→(0,0)

2x − 1

x
· sin y

y

=
(

lim
x→0

2x − 1

x

)(
lim
y→0

sin y

y

)

= lim
x→0

(ln 2)2x

1
· (1) = ln 2

(Using L’Hopital’s Rule on the limit in terms of x.) Thus since lim(x,y)→(0,0) f (x, y) = f (0, 0), we see that f (x, y) is
continuous at (0, 0).

Prove that if f (x) is continuous at x = a and g(y) is continuous at y = b, then F(x, y) = f (x)g(y) is continuous
at (a, b).
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41. The function f (x, y) = x2y/(x4 + y2) provides an interesting example where the limit as (x, y) → (0, 0)

does not exist, even though the limit along every line y = mx exists and is zero (Figure 8).
(a) Show that the limit along any line y = mx exists and is equal to 0.
(b) Calculate f (x, y) at the points (10−1, 10−2), (10−5, 10−10), (10−20, 10−40). Do not use a calculator.
(c) Show that lim

(x,y)→(0,0)
f (x, y) does not exist. Hint: Compute the limit along the parabola y = x2.

x

y

z

x

y

FIGURE 8 Graph of f (x, y) = x2y

x4 + y2
.

solution

(a) Substituting y = mx in f (x, y) = x2y

x4+y2 , we get

f (x, mx) = x2 · mx

x4 + (mx)2
= mx3

x2(x2 + m2)
= mx

x2 + m2

We compute the limit as x → 0 by substitution:

lim
x→0

f (x, mx) = lim
x→0

mx

x2 + m2
= m · 0

02 + m2
= 0

(b) We compute f (x, y) at the given points:

f (10−1, 10−2) = 10−2 · 10−2

10−4 + 10−4
= 10−4

2 · 10−4
= 1

2

f (10−5, 10−10) = 10−10 · 10−10

10−20 + 10−20
= 10−20

2 · 10−20
= 1

2

f (10−20, 10−40) = 10−40 · 10−40

10−80 + 10−80
= 10−80

2 · 10−80
= 1

2

(c) We compute the limit as (x, y) approaches the origin along the parabola y = x2 (by part (b), the limit appears to be
1
2 ). We substitute y = x2 in the function and compute the limit as x → 0. This gives

lim
(x,y)→0

along y=x2

f (x, y) = lim
x→0

f (x, x2) = lim
x→0

x2 · x2

x4 + (x2)
2

= lim
x→0

x4

2x4
= lim

x→0

1

2
= 1

2

However, in part (a), we showed that the limit along the lines y = mx is zero. Therefore f (x, y) does not approach one
limit as (x, y) → (0, 0), so the limit lim

(x,y)→(0,0)
f (x, y) does not exist.

14.3 Partial Derivatives (LT Section 15.3)

Preliminary Questions
1. Patricia derived the following incorrect formula by misapplying the Product Rule:

∂

∂x
(x2y2) = x2(2y) + y2(2x)

What was her mistake and what is the correct calculation?
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solution To compute the partial derivative with respect to x, we treat y as a constant. Therefore the Constant Multiple
Rule must be used rather than the Product Rule. The correct calculation is:

∂

∂x
(x2y2) = y2 ∂

∂x
(x2) = y2 · 2x = 2xy2.

2. Explain why it is not necessary to use the Quotient Rule to compute
∂

∂x

(
x + y

y + 1

)
. Should the Quotient Rule be used

to compute
∂

∂y

(
x + y

y + 1

)
?

solution In differentiating with respect to x, y is considered a constant. Therefore in this case the Constant Multiple
Rule can be used to obtain

∂

∂x

(
x + y

y + 1

)
= 1

y + 1

∂

∂x
(x + y) = 1

y + 1
· 1 = 1

y + 1
.

As for the second part, since y appears in both the numerator and the denominator, the Quotient Rule is indeed needed.

3. Which of the following partial derivatives should be evaluated without using the Quotient Rule?

(a)
∂

∂x

xy

y2 + 1
(b)

∂

∂y

xy

y2 + 1
(c)

∂

∂x

y2

y2 + 1

solution

(a) This partial derivative does not require use of the Quotient Rule, since the Constant Multiple Rule gives

∂

∂x

(
xy

y2 + 1

)
= y

y2 + 1

∂

∂x
(x) = y

y2 + 1
· 1 = y

y2 + 1
.

(b) This partial derivative requires use of the Quotient Rule.

(c) Since y is considered a constant in differentiating with respect to x, we do not need the Quotient Rule to state that
∂

∂x

(
y2

y2 + 1

)
= 0.

4. What is fx , where f (x, y, z) = (sin yz)ez3−z−1√y?

solution In differentiating with respect to x, we treat y and z as constants. Therefore, the whole expression for
f (x, y, z) is treated as constant, so the derivative is zero:

∂

∂x

(
sin yzez3−z−1√y

) = 0.

5. Assuming the hypotheses of Clairaut’s Theorem are satisfied, which of the following partial derivatives are equal to
fxxy?

(a) fxyx (b) fyyx (c) fxyy (d) fyxx

solution fxxy involves two differentiations with respect to x and one differentiation with respect to y. Therefore, if
f satisfies the assumptions of Clairaut’s Theorem, then

fxxy = fxyx = fyxx

Exercises
1. Use the limit definition of the partial derivative to verify the formulas

∂

∂x
xy2 = y2,

∂

∂y
xy2 = 2xy

solution Using the limit definition of the partial derivative, we have

∂

∂x
xy2 = lim

h→0

(x + h)y2 − xy2

h
= lim

h→0

xy2 + hy2 − xy2

h
= lim

h→0

hy2

h
= lim

h→0
y2 = y2

∂

∂y
xy2 = lim

k→0

x(y + k)2 − xy2

k
= lim

k→0

x(y2 + 2yk + k2) − xy2

k
= lim

k→0

xy2 + 2xyk + xk2 − xy2

k

= lim
k→0

k(2xy + xk)

k
= lim

k→0
(2xy + k) = 2xy + 0 = 2xy

Use the Product Rule to compute
∂

∂y
(x2 + y)(x + y4).
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3. Use the Quotient Rule to compute
∂

∂y

y

x + y
.

solution Using the Quotient Rule we obtain

∂

∂y

y

x + y
=

(x + y) ∂
∂y

(y) − y ∂
∂y

(x + y)

(x + y)2
= (x + y) · 1 − y · 1

(x + y)2
= x

(x + y)2

Use the Chain Rule to compute
∂

∂u
ln(u2 + uv).

5. Calculate fz(2, 3, 1), where f (x, y, z) = xyz.

solution We first find the partial derivative fz(x, y, z):

fz(x, y, z) = ∂

∂z
(xyz) = xy

Substituting the given point we get

fz(2, 3, 1) = 2 · 3 = 6

Explain the relation between the following two formulas (c is a constant).

d

dx
sin(cx) = c cos(cx),

∂

∂x
sin(xy) = y cos(xy)

7. The plane y = 1 intersects the surface z = x4 + 6xy − y4 in a certain curve. Find the slope of the tangent line to
this curve at the point P = (1, 1, 6).

solution The slope of the tangent line to the curve z = z(x, 1) = x4 + 6x − 1, obtained by intersecting the surface

z = x4 + 6xy − y4 with the plane y = 1, is the partial derivative ∂z
∂x

(1, 1).

∂z

∂x
= ∂

∂x
(x4 + 6xy − y4) = 4x3 + 6y

m = ∂z

∂x
(1, 1) = 4 · 13 + 6 · 1 = 10

Determine whether the partial derivatives ∂f/∂x and ∂f/∂y are positive or negative at the point P on the graph
in Figure 7.

In Exercises 9–12, refer to Figure 8.

x

y

−10

−10

−20
A

B
C

50
70

3050

420−2−4

4

2

0

−2

−4

70

30

−30

10

10

0

FIGURE 8 Contour map of f (x, y).

9. Estimate fx and fy at point A.

solution To estimate fx we move horizontally to the next level curve in the direction of growing x, to a point A′. The
change in f from A to A′ is the contour interval, �f = 40 − 30 = 10. The distance between A and A′ is approximately
�x ≈ 1.0. Hence,

fx(A) ≈ �f

�x
= 10

1.0
= 10

To estimate fy we move vertically from A to a point A′′ on the next level curve in the direction of growing y. The change
in f from A to A′′ is �f = 20 − 30 = −10. The distance between A and A′′ is �y ≈ 0.5. Hence,

fy(A) ≈ �f

�y
= −10

0.5
≈ −20.

Is fx positive or negative at B?
11. Starting at point B, in which compass direction (N, NE, SW, etc.) does f increase most rapidly?

solution The distances between adjacent level curves starting at B are the smallest along the line with slope −1,
upward. Therefore, f is increasing most rapidly in the direction of θ = 135◦ or in the NW direction.

At which of A, B, or C is fy smallest?In Exercises 13–40, compute the first-order partial derivatives.

13. z = x2 + y2

solution We compute zx(x, y) by treating y as a constant, and we compute zy(x, y) by treating x as a constant:

∂

∂x
(x2 + y2) = 2x; ∂

∂y
(x2 + y2) = 2y
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z = x4y315. z = x4y + xy−2

solution We obtain the following partial derivatives:

∂

∂x
(x4y + xy−2) = 4x3y + y−2

∂

∂y
(x4y + xy−2) = x4 + x · (−2y−3) = x4 − 2xy−3

V = πr2h
17. z = x

y

solution Treating y as a constant we have

∂

∂x

(
x

y

)
= 1

y

∂

∂x
(x) = 1

y
· 1 = 1

y

We now find the derivative zy(x, y), treating x as a constant:

∂

∂y

(
x

y

)
= x · ∂

∂y

(
1

y

)
= x · −1

y2
= −x

y2
.

z = x

x − y

19. z =
√

9 − x2 − y2

solution Differentiating with respect to x, treating y as a constant, and using the Chain Rule, we obtain

∂

∂x

(√
9 − x2 − y2

)
= 1

2
√

9 − x2 − y2

∂

∂x
(9 − x2 − y2) = −2x

2
√

9 − x2 − y2
= −x√

9 − x2 − y2

We now differentiate with respect to y, treating x as a constant:

∂

∂y

(√
9 − x2 − y2

)
= 1

2
√

9 − x2 − y2

∂

∂y
(9 − x2 − y2) = −2y

2
√

9 − x2 − y2
= −y√

9 − x2 − y2

z = x√
x2 + y2

21. z = (sin x)(sin y)

solution We obtain the following partial derivatives:

∂

∂x
(sin x sin y) = sin y

∂

∂x
sin x = sin y cos x

∂

∂y
(sin x sin y) = sin x

∂

∂y
sin y = sin x cos y

z = sin(u2v)
23. z = tan

x

y

solution By the Chain Rule,

d

dx
tan u = 1

cos2u

du

dx
and

d

dy
tan u = 1

cos2u

du

dy
.

(We could also say that the derivative of tan u is sec2 u, but of course sec2 u = 1/ cos2 u, so it really is the same thing.)
We apply this with u = x

y to obtain

∂

∂x
tan

(
x

y

)
= 1

cos2
(

x
y

) ∂

∂x

(
x

y

)
= 1

cos2
(

x
y

) · 1

y
= 1

ycos2
(

x
y

)
∂

∂y
tan

(
x

y

)
= 1

cos2
(

x
y

) ∂

∂y

(
x

y

)
= 1

cos2
(

x
y

) · −x

y2
= −x

y2cos2
(

x
y

)

S = tan−1(wz)
25. z = ln(x2 + y2)

solution Using the Chain Rule we have

∂z

∂x
= 1

x2 + y2

∂

∂x
(x2 + y2) = 1

x2 + y2
· 2x = 2x

x2 + y2

∂z

∂y
= 1

x2 + y2

∂

∂y
(x2 + y2) = 1

x2 + y2
· 2y = 2y

x2 + y2
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A = sin(4θ − 9t)
27. W = er+s

solution We use the Chain Rule to compute ∂W
∂r

and ∂W
∂s

:

∂W

∂r
= er+s · ∂

∂r
(r + s) = er+s · 1 = er+s

∂W

∂s
= er+s · ∂

∂s
(r + s) = er+s · 1 = er+s

Q = reθ
29. z = exy

solution We use the Chain Rule, d
dx

eu = eu du
dx

; d
dy

eu = eu du
dy

with u = xy to obtain

∂

∂x
exy = exy ∂

∂x
(xy) = exyy = yexy

∂

∂y
exy = exy ∂

∂y
(xy) = exyx = xexy

R = e−v2/k
31. z = e−x2−y2

solution We use the Chain Rule to find ∂z
∂x

and ∂z
∂y

:

∂z

∂x
= e−x2−y2 ∂

∂x
(−x2 − y2) = e−x2−y2 · (−2x) = −2xe−x2−y2

∂z

∂y
= e−x2−y2 ∂

∂y
(−x2 − y2) = e−x2−y2 · (−2y) = −2ye−x2−y2

P = e

√
y2+z233. U = e−rt

r

solution We have

∂U

∂r
= −te−rt · r − e−rt · 1

r2
= −(1 + rt)e−rt

r2

and also

∂U

∂t
= −re−rt

r
= −e−rt

z = yx35. z = sinh(x2y)

solution By the Chain Rule, d
dx

sinh u = cosh udu
dx

and d
dy

sinh u = cosh udu
dy

. We use the Chain Rule with u = x2y

to obtain

∂

∂x
sinh(x2y) = cosh(x2y)

∂

∂x
(x2y) = 2xy cosh(x2y)

∂

∂y
sinh(x2y) = cosh(x2y)

∂

∂y
(x2y) = x2 cosh(x2y)

z = cosh(t − cos x)
37. w = xy2z3

solution The partial derivatives of w are

∂w

∂x
= y2z3

∂w

∂y
= xz3 ∂

∂y
(y2) = xz3 · 2y = 2xz3y

∂w

∂z
= xy2 ∂

∂z
(z3) = xy2 · 3z2 = 3xy2z2
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w = x

y + z

39. Q = L

M
e−Lt/M

solution

∂Q

∂L
= ∂

∂L

(
L

M
e−Lt/M

)

= L

M
· e−Lt/M · (−t/M) + e−Lt/M · 1

M

= − Lt

M2
e−Lt/M + e−Lt/M

M

∂Q

∂M
= ∂

∂M

(
L

M
e−Lt/M

)

= L

M
· e−Lt/M · Lt

M2
+ e−Lt/M · −L

M2

= L2t

M3
e−Lt/M − L

M2
e−Lt/M

∂Q

∂t
= ∂

∂t

(
L

M
e−Lt/M

)

= − L2

M2
e−Lt/M

w = x

(x2 + y2 + z2)3/2

In Exercises 41–44, compute the given partial derivatives.

41. f (x, y) = 3x2y + 4x3y2 − 7xy5, fx(1, 2)

solution Differentiating with respect to x gives

fx(x, y) = 6xy + 12x2y2 − 7y5

Evaluating at (1, 2) gives

fx(1, 2) = 6 · 1 · 2 + 12·12 · 22 − 7 · 25 = −164.

f (x, y) = sin(x2 − y), fy(0, π)
43. g(u, v) = u ln(u + v), gu(1, 2)

solution Using the Product Rule and the Chain Rule we get

gu(u, v) = ∂

∂u
(u ln(u + v)) = 1 · ln(u + v) + u · 1

u + v
= ln(u + v) + u

u + v

At the point (1, 2) we have

gu(1, 2) = ln(1 + 2) + 1

1 + 2
= ln 3 + 1

3
.

h(x, z) = exz−x2z3
, hz(3, 0)

Exercises 45 and 46 refer to Example 5.

45. Calculate N for L = 0.4, R = 0.12, and d = 10, and use the linear approximation to estimate �N if d is increased
from 10 to 10.4.

solution From the example in the text we have

N =
(

2200R

Ld

)1.9

Calculating N for L = 0.4, R = 0.12, and d = 10 we have

N =
(

2200 · 0.12

0.4 · 10

)1.9
≈ 2865.058

then we will use the derivation

�N ≈ ∂N

∂d
�d
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since d is increasing from 10 to 10.4. We need to compute ∂N/∂d , with L and R constant:

∂N

∂d
= ∂

∂d

(
2200R

Ld

)1.9

=
(

2200R

L

)1.9 ∂

∂d
(d−1.9)

= −1.9

(
2200R

L

)1.9
d−2.9

we have first

∂N

∂d

∣∣∣∣
(L,R,d)=(0.4,0.12,10)

= −1.9

(
2200 · 0.12

0.4

)1.9
(10)−2.9 ≈ −544.361

Therefore we can conclude:

�N ≈ ∂N

∂d
�d ≈ (−544.361)(10.4 − 10) = −217.744

Estimate �N if (L, R, d) = (0.5, 0.15, 8) and R is increased from 0.15 to 0.17.
47. The heat index I is a measure of how hot it feels when the relative humidity is H (as a percentage) and the actual air
temperature is T (in degrees Fahrenheit). An approximate formula for the heat index that is valid for (T , H) near (90, 40)

is

I (T , H) = 45.33 + 0.6845T + 5.758H − 0.00365T 2

− 0.1565HT + 0.001HT 2

(a) Calculate I at (T , H) = (95, 50).

(b) Which partial derivative tells us the increase in I per degree increase in T when (T , H) = (95, 50). Calculate this
partial derivative.

solution

(a) Let us compute I when T = 95 and H = 50:

I (95, 50) = 45.33 + 0.6845(95) + 5.758(50) − 0.00365(95)2 − 0.1565(50)(95) + 0.001(50)(95)2

= 73.19125

(b) The partial derivative we are looking for here is ∂I/∂T :

∂I

∂T
= 0.6845 − 0.00730T − 0.1565H + 0.002HT

and evaluating we have:

∂I

∂T
(95, 50) = 0.6845 − 0.00730(95) − 0.1565(50) + 0.002(50)(95) = 1.666

The wind-chill temperature W measures how cold people feel (based on the rate of heat loss from exposed skin)
when the outside temperature is T ◦C (with T ≤ 10) and wind velocity is v m/s (with v ≥ 2):

W = 13.1267 + 0.6215T − 13.947v0.16 + 0.486T v0.16

Calculate ∂W/∂v at (T , v) = (−10, 15) and use this value to estimate �W if �v = 2.

49. The volume of a right-circular cone of radius r and height h is V = π
3 r2h. Suppose that r = h = 12 cm. What leads

to a greater increase in V , a 1-cm increase in r or a 1-cm increase in h? Argue using partial derivatives.

solution We obtain the following derivatives:

∂V

∂r
= ∂

∂r

(π
3

r2h
)

= πh

3

∂

∂r
r2 = πh

3
· 2r = 2πhr

3

∂V

∂h
= ∂

∂h

(π
3

r2h
)

= π

3
r2

An increase �r = 1 cm in r leads to an increase of ∂V
∂r

(12, 12) · 1 in the volume, and an increase �h = 1 cm in h leads

to an increase of ∂V
∂h

(12, 12) · 1 in V . We compute these values, using the partials computed. This gives

∂V

∂r
(12, 12) = 2πhr

3

∣∣∣∣
(12,12)

= 2π · 12 · 12

3
= 301.6

∂V

∂h
(12, 12) = π

3
· 122 = 150.8

We conclude that an increase of 1 cm in r leads to a greater increase in V than an increase of 1 cm in h.
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Use the linear approximation to estimate the percentage change in volume of a right-circular cone of radius r = 40
cm if the height is increased from 40 to 41 cm.

51. Calculate ∂W/∂E and ∂W/∂T , where W = e−E/kT , where k is a constant.

solution We use the Chain Rule

d

dE
eu = eu du

dE
and

d

dT
eu = eu du

dT

with u = − E
kT

, to obtain

∂W

∂E
= e−E/kT ∂

∂E

(
− E

kT

)
= e−E/kT

(
− 1

kT

)
= − 1

kT
e−E/kT

∂W

∂T
= e−E/kT ∂

∂T

(
− E

kT

)
= e−E/kT ·

(
−E

k

)
∂

∂T

(
1

T

)
= e−E/kT

(
−E

k

)(
− 1

T 2

)
= E

kT 2
e−E/kT

Calculate ∂P/∂T and ∂P/∂V , where pressure P , volume V , and temperature T are related by the ideal gas law,
PV = nRT (R and n are constants).

53. Use the contour map of f (x, y) in Figure 9 to explain the following statements.

(a) fy is larger at P than at Q, and fx is smaller (more negative) at P than at Q.
(b) fx(x, y) is decreasing as a function of y; that is, for any fixed value x = a, fx(a, y) is decreasing in y.

x

y

Q

P

20 16
14

10

8
6

4

FIGURE 9 Contour interval 2.

solution
(a) A vertical segment through P meet more level curves than a vertical segment of the same size through Q, so f is
increasing more rapidly in the y at P than at Q. Therefore, fy are both larger at P than at Q.

Similarly, a horizontal segment through P meet more level curves at P than at Q, but f is decreasing in the positive
x-direction, so f is decreasing more rapidly in the x-direction at P than at Q. Therefore, fx is more negative at P than
at Q.
(b) For any fixed value x = a, a horizontal segment meets fewer level curves as we move it vertically upward. This
indicates that fx(a, y) in a decreasing function of y.

Estimate the partial derivatives at P of the function whose contour map is shown in Figure 10.
55. Over most of the earth, a magnetic compass does not point to true (geographic) north; instead, it points at some angle
east or west of true north. The angle D between magnetic north and true north is called the magnetic declination. Use
Figure 11 to determine which of the following statements is true.

(a)
∂D

∂y

∣∣∣∣
A

>
∂D

∂y

∣∣∣∣
B

(b)
∂D

∂x

∣∣∣∣
C

> 0 (c)
∂D

∂y

∣∣∣∣
C

> 0

Note that the horizontal axis increases from right to left because of the way longitude is measured.

x

y

50°N

40°N

30°N

120°W 110°W 100°W 90°W 80°W 70°W

Magnetic Declination for the U.S. 2004

B

1015 0

10
0

C
A

FIGURE 11 Contour interval 1◦.

solution

(a) To estimate ∂D
∂y

∣∣
A

and ∂D
∂y

∣∣
B

, we move vertically from A and B to the points on the next level curve in the direction
of increasing y (upward). From A, we quickly come to a level curve corresponding to higher value of D; but from B,
moving vertically, there is hardly any change as we move along the curve. The statement is thus true.
(b) The derivative ∂D

∂x

∣∣
C

is estimated by �D
�x . Since x varies in the horizontal direction, we move horizontally from C

to a point on the next level curve in the direction of increasing x (leftwards). Since the value of D on this level curve is
greater than on the level curve of C, �D = 1. Also �x > 0, hence

∂D

∂x

∣∣∣∣
C

≈ �D

�x
= 1

�x
> 0.

The statement is correct.
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(c) Moving from C vertically upward (in the direction of increasing y), we come to a point on a level curve with a smaller
value of D. Therefore, �D = −1 and �y > 0, so we obtain

∂D

∂y

∣∣∣∣
C

≈ �D

�y
= −1

�y
< 0

Hence, the statement is false.

Refer to Table 1.

(a) Estimate ∂ρ/∂T and ∂ρ/∂S at the points (S, T ) = (34, 2) and (35, 10) by computing the average of left-hand
and right-hand difference quotients.

(b) For fixed salinity S = 33, is ρ concave up or concave down as a function of T ? Hint: Determine whether the

quotients �ρ/�T are increasing or decreasing. What can you conclude about the sign of ∂2ρ/∂T 2?

In Exercises 57–62, compute the derivatives indicated.

57. f (x, y) = 3x2y − 6xy4,
∂2f

∂x2
and

∂2f

∂y2

solution We first compute the partial derivatives ∂f
∂x

and ∂f
∂y

:

∂f

∂x
= 6xy − 6y4;

∂f

∂y
= 3x2 − 6x · 4y3 = 3x2 − 24xy3

We now differentiate ∂f
∂x

with respect to x and ∂f
∂y

with respect to y. We get

∂2f

∂x2
= ∂

∂x
fx = 6y;

∂2f

∂y2
= ∂

∂y
fy = −24x · 3y2 = −72xy2.

g(x, y) = xy

x − y
,

∂2g

∂x ∂y

59. h(u, v) = u

u + 4v
, hvv(u, v)

solution We first note

∂h

∂v
= −4u

(u + 4v)2

so thus

∂h2

∂v2
= ∂

∂v

( −4u

(u + 4v)2

)
= 32u

(u + 4v)3

h(x, y) = ln(x3 + y3), hxy(x, y)
61. f (x, y) = x ln(y2), fyy(2, 3)

solution We find fy using the Chain Rule:

fy = ∂

∂y
(x ln y2) = x

∂

∂y
ln y2 = x

1

y2
· 2y = 2x

y

We now differentiate fy with respect to y, obtaining

fyy(x, y) = ∂

∂y
fy = 2x

∂

∂y

(
1

y

)
= −2x

y2
.

The derivative at (2, 3) is thus

fyy(2, 3) = −2 · 2

32
= −4

9
.

g(x, y) = xe−xy , gxy(−3, 2)
63. Compute fxyxzy for

f (x, y, z) = y sin(xz) sin(x + z) + (x + z2) tan y + x tan

(
z + z−1

y − y−1

)

Hint: Use a well-chosen order of differentiation on each term.

solution At the points where the derivatives are continuous, the partial derivative fxyxzy may be performed in any
order. To simplify the computation we first consider f (x, y, z) as the sum of the following terms:

F(x, y, z) = y sin(xz) sin(x + z), G(x, y, z) = (x + z2) tan y, H(x, y, z) = x tan

(
z + z−1

y − y−1

)

so that

f (x, y, z) = F(x, y, z) + G(x, y, z) + H(x, y, z)
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We can differentiate each in any order. First, let us work with F(x, y, z) = y sin(xz) sin(x + z):

Fy(x, y, z) = ∂

∂y
(y sin(xz) sin(x + z)) = sin(xz) sin(x + z)

then

Fyy(x, y, z) = ∂

∂y
(Fy(x, y, z)) = 0

hence,

Fyyxxz(x, y, z) = 0

Next, let us work with G(x, y, z) = (x + z2) tan y:

Gx(x, y, z) = ∂

∂x
((x + z2) tan y) = tan y

then

Gxx(x, y, z) = ∂

∂x
(Gx(x, y, z)) = 0

Hence

Gxxyyz(x, y, z) = 0

Finally, let us work with H(x, y, z) = x tan

(
z + z−1

y − y−1

)

Hx(x, y, z) = ∂

∂x

(
x tan

(
z + z−1

y − y−1

))
= tan

(
z + z−1

y − y−1

)

then

Hxx(x, y, z) = ∂

∂x
(Hx(x, y, z)) = 0

hence,

Hxxyyz(x, y, z) = 0

Therefore, we can conclude that fxyxzy(x, y, z) = 0 + 0 + 0 = 0.

Let

f (x, y, u, v) = x2 + eyv

3y2 + ln(2 + u2)

What is the fastest way to show that fuvxyvu(x, y, u, v) = 0 for all (x, y, u, v)?

In Exercises 65–72, compute the derivative indicated.

65. f (u, v) = cos(u + v2), fuuv

solution Using the Chain Rule, we have

fu = ∂

∂u
cos(u + v2) = − sin(u + v2) · ∂

∂u
(u + v2) = − sin(u + v2)

fuu = ∂

∂u

(− sin(u + v2)
) = − cos(u + v2)

fuuv = ∂

∂v

(− cos(u + v2)
) = sin(u + v2) · ∂

∂v
(u + v2) = 2v sin(u + v2)

g(x, y, z) = x4y5z6, gxxyz
67. F(r, s, t) = r(s2 + t2), Frst

solution For F(r, s, t) = r(s2 + t2), we have

Fr = s2 + t2

Frs = 2s

Frst = 0

u(x, t) = t−1/2e−(x2/4t), uxx

69. F(θ, u, v) = sinh(uv + θ2), Fuuθ

solution We can compute:

Fu = v · cosh(uv + θ2)

Fuu = v2 · sinh(uv + θ2)

Fuuθ = 2θv2 cosh(uv + θ2)
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R(u, v, w) = u

v + w
, Ruvw

71. g(x, y, z) =
√

x2 + y2 + z2, gxyz

solution Differentiating with respect to x, using the Chain Rule, we get

gx = ∂

∂x

√
x2 + y2 + z2 = 1

2
√

x2 + y2 + z2

∂

∂x
(x2 + y2 + z2) = 1

2
√

x2 + y2 + z2
· 2x = x√

x2 + y2 + z2

We now differentiate gx with respect to y, using the Chain Rule. This gives

gxy = x
∂

∂y
(x2 + y2 + z2)

−1/2 = x ·
(

−1

2

)
(x2 + y2 + z2)

−3/2 · 2y = −xy

(x2 + y2 + z2)
3/2

Finally, we differentiate gxy with respect to z, obtaining

gxyz = −xy
∂

∂z
(x2 + y2 + z2)

−3/2 = −xy ·
(

−3

2

)
(x2 + y2 + z2)

−5/2 · 2z = 3xyz

(x2 + y2 + z2)
5/2

u(x, t) = sech2(x − t), uxxx
73. Find a function such that

∂f

∂x
= 2xy and

∂f

∂y
= x2.

solution The function f (x, y) = x2y satisfies ∂f
∂y

= x2 and ∂f
∂x

= 2xy.

Prove that there does not exist any function f (x, y) such that
∂f

∂x
= xy and

∂f

∂y
= x2. Hint: Show that f cannot

satisfy Clairaut’s Theorem.

75. Assume that fxy and fyx are continuous and that fyxx exists. Show that fxyx also exists and that fyxx = fxyx .

solution Since fxy and fyx are continuous, Clairaut’s Theorem implies that

fxy = fyx (1)

We are given that fyxx exists. Using (1) we get

fyxx = ∂

∂x

∂

∂x
fy = ∂

∂x
fyx = ∂

∂x
fxy = fxyx

Therefore, fxyx also exists and fyxx = fxyx .

Show that u(x, t) = sin(nx) e−n2t satisfies the heat equation for any constant n:

∂u

∂t
= ∂2u

∂x2

77. Find all values of A and B such that f (x, t) = eAx+Bt satisfies Eq. (3).

solution We compute the following partials, using the Chain Rule:

∂f

∂t
= ∂

∂t
(eAx+Bt ) = eAx+Bt ∂

∂t
(Ax + Bt) = BeAx+Bt

∂f

∂x
= ∂

∂x
(eAx+Bt ) = eAx+Bt ∂

∂x
(Ax + Bt) = AeAx+Bt

∂2f

∂x2
= ∂

∂x
(AeAx+Bt ) = A

∂

∂x
(eAx+Bt ) = AeAx+Bt ∂

∂x
(Ax + Bt) = A2eAx+Bt

Substituting these partials in the differential equation (3), we get

BeAx+Bt = A2eAx+Bt

We divide by the nonzero eAx+Bt to obtain

B = A2

We conclude that f (x, t) = eAx+Bt satisfies equation (5) if and only if B = A2, where A is arbitrary.

The function

f (x, t) = 1

2
√

πt
e−x2/4t

describes the temperature profile along a metal rod at time t > 0 when a burst of heat is applied at the origin (see
Example 11). A small bug sitting on the rod at distance x from the origin feels the temperature rise and fall as heat
diffuses through the bar. Show that the bug feels the maximum temperature at time t = 1

2x2.

In Exercises 79–82, the Laplace operator � is defined by �f = fxx + fyy . A function u(x, y) satisfying the Laplace
equation �u = 0 is called harmonic.

79. Show that the following functions are harmonic:

(a) u(x, y) = x (b) u(x, y) = ex cos y

(c) u(x, y) = tan−1 y

x
(d) u(x, y) = ln(x2 + y2)

solution
(a) We compute uxx and uyy for u(x, y) = x:

ux = ∂

∂x
(x) = 1; uxx = ∂

∂x
(1) = 0

uy = ∂

∂y
(x) = 0; uyy = ∂

∂y
(0) = 0

Since uxx + uyy = 0, u is harmonic.
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(b) We compute the partial derivatives of u(x, y) = ex cos y:

ux = ∂

∂x

(
ex cos y

) = cos y
∂

∂x
ex = (cos y)ex

uy = ∂

∂y

(
ex cos y

) = ex ∂

∂y
cos y = −ex sin y

uxx = ∂

∂x

(
(cos y)ex

) = cos y
∂

∂x
ex = (cos y)ex

uyy = ∂

∂y

(−ex sin y
) = −ex ∂

∂y
sin y = −ex cos y

Thus,

uxx + uyy = (cos y)ex − ex cos y = 0

Hence u(x, y) = ex cos y is harmonic.

(c) We compute the partial derivatives of u(x, y) = tan−1 y

x
using the Chain Rule and the formula

d

dt
tan−1 t = 1

1 + t2

We have

ux = ∂

∂x
tan−1 y

x
= 1

1 + (y/x)2

∂

∂x

y

x
= 1

1 + (y/x)2

(−y

x2

)
= − y

x2 + y2

uy = ∂

∂y
tan−1 y

x
= 1

1 + (y/x)2

∂

∂y

y

x
= 1

1 + (y/x)2

(
1

x

)
= x

x2 + y2

uxx = ∂

∂x

(
− y

x2 + y2

)
= 2xy

(x2 + y2)2

uyy = ∂

∂y

x

x2 + y2
= − 2xy

(x2 + y2)2

Therefore uxx + uxx = 0. This shows that u(x, y) = tan−1 y

x
is harmonic.

(d) We compute the partial derivatives of u(x, y) = ln
(
x2 + y2) using the Chain Rule:

ux = ∂

∂x
ln(x2 + y2) = 1

x2 + y2
· 2x = 2x

x2 + y2

uy = ∂

∂y
ln(x2 + y2) = 1

x2 + y2
· 2y = 2y

x2 + y2

We now find uxx and uyy using the Quotient Rule:

uxx = ∂

∂x

2x

x2 + y2
= 2(x2 + y2) − 2x · 2x

(x2 + y2)
2

= 2(y2 − x2)

(x2 + y2)
2

uyy = ∂

∂y

2y

x2 + y2
= 2(x2 + y2) − 2y · 2y

(x2 + y2)
2

= 2(x2 − y2)

(x2 + y2)
2

Thus,

uxx + uyy = 2(y2 − x2)

(x2 + y2)
2

+ 2(x2 − y2)

(x2 + y2)
2

= 0.

Therefore, u(x, y) = ln(x2 + y2) is harmonic.

Find all harmonic polynomials u(x, y) of degree three, that is, u(x, y) = ax3 + bx2y + cxy2 + dy3.
81. Show that if u(x, y) is harmonic, then the partial derivatives ∂u/∂x and ∂u/∂y are harmonic.

solution We assume that the second-order partials are continuous, hence the partial differentiation may be performed
in any order. By the given data, we have

uxx + uyy = 0 (1)

We must show that

(ux)xx + (ux)yy = 0 and (uy)xx + (uy)yy = 0
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We differentiate (1) with respect to x, obtaining

0 = (uxx)x + (uyy)x = uxxx + uxyy = (ux)xx + (ux)yy (2)

We differentiate (1) with respect to y:

0 = (uxx)y + (uyy)y = uxxy + uyyy = uyxx + uyyy = (uy)xx + (uy)yy (3)

Equalities (2) and (3) prove that ux and uy are harmonic.

Find all constants a, b such that u(x, y) = cos(ax)eby is harmonic.
83. Show that u(x, t) = sech2(x − t) satisfies the Korteweg–deVries equation (which arises in the study of water
waves):

4ut + uxxx + 12uux = 0

solution In Exercise 72 we found the following derivatives:

ux = −2 sech2(x − t) tanh(x − t)

uxxx = 16 sech4(x − t) tanh(x − t) − 8 sech2(x − t) tanh3(x − t)

Hence,

4ut + uxxx + 12uux = 8 sech2(x − t) tanh(x − t) + 16 sech4(x − t) tanh(x − t)

− 8 sech2(x − t) tanh3(x − t) − 24 sech4(x − t) tanh(x − t)

= 8 sech2(x − t)
{
tanh(x − t) − tanh3(x − t)

}− 8 sech4(x − t) tanh(x − t)

= 8 sech2(x − t) tanh(x − t)
{
1 − tanh2(x − t)

}− 8 sech4(x − t) tanh(x − t)

= 8 sech2(x − t) tanh(x − t)
{
sech2(x − t)

}− 8 sech4(x − t) tanh(x − t)

= 0

14.4 Differentiability and Tangent Planes (LT Section 15.4)

Preliminary Questions
1. How is the linearization of f (x, y) at (a, b) defined?

solution The linearization of f (x, y) at (a, b) is the linear function

L(x, y) = f (a, b) + fx(a, b)(x − a) + fy(a, b)(y − b)

This function is the equation of the tangent plane to the surface z = f (x, y) at
(
a, b, f (a, b)

)
.

2. Define local linearity for functions of two variables.

solution f (x, y) is locally linear at (a, b) if

f (x, y) − L(x, y) = ε(x, y)

√
(x − a)2 + (y − b)2

for all (x, y) in an open disk D containing (a, b), where ε(x, y) satisfies lim
(x,y)→(a,b)

ε(x, y) = 0.

In Exercises 3–5, assume that

f (2, 3) = 8, fx(2, 3) = 5, fy(2, 3) = 7

3. Which of (a)–(b) is the linearization of f at (2, 3)?

(a) L(x, y) = 8 + 5x + 7y

(b) L(x, y) = 8 + 5(x − 2) + 7(y − 3)

solution The linearization of f at (2, 3) is the following linear function:

L(x, y) = f (2, 3) + fx(2, 3)(x − 2) + fy(2, 3)(y − 3)

That is,

L(x, y) = 8 + 5(x − 2) + 7(y − 3) = −23 + 5x + 7y

The function in (b) is the correct answer.
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4. Estimate f (2, 3.1).

solution We use the linear approximation

f (a + h, b + k) ≈ f (a, b) + fx(a, b)h + fy(a, b)k

We let (a, b) = (2, 3), h = 0, k = 3.1 − 3 = 0.1. Then,

f (2, 3.1) ≈ f (2, 3) + fx(2, 3) · 0 + fy(2, 3) · 0.1 = 8 + 0 + 7 · 0.1 = 8.7

We get the estimation f (2, 3.1) ≈ 8.7.

5. Estimate �f at (2, 3) if �x = −0.3 and �y = 0.2.

solution The change in f can be estimated by the linear approximation as follows:

�f ≈ fx(a, b)�x + fy(a, b)�y

�f ≈ fx(2, 3) · (−0.3) + fy(2, 3) · 0.2

or

�f ≈ 5 · (−0.3) + 7 · 0.2 = −0.1

The estimated change is �f ≈ −0.1.

6. Which theorem allows us to conclude that f (x, y) = x3y8 is differentiable?

solution The function f (x, y) = x3y8 is a polynomial, hence fx(x, y) and fy(x, y) exist and are continuous.
Therefore the Criterion for Differentiability implies that f is differentiable everywhere.

Exercises
1. Use Eq. (2) to find an equation of the tangent plane to the graph of f (x, y) = 2x2 − 4xy2 at (−1, 2).

solution The equation of the tangent plane at the point (−1, 2, 18) is

z = f (−1, 2) + fx(−1, 2)(x + 1) + fy(−1, 2)(y − 2) (1)

We compute the function and its partial derivatives at the point (−1, 2):

f (x, y) = 2x2 − 4xy2 f (−1, 2) = 18

fx(x, y) = 4x − 4y2 ⇒ fx(−1, 2) = −20

fy(x, y) = −8xy fy(−1, 2) = 16

Substituting in (1) we obtain the following equation of the tangent plane:

z = 18 − 20(x + 1) + 16(y − 2) = −34 − 20x + 16y

That is,

z = −34 − 20x + 16y

Find the equation of the plane in Figure 9, which is tangent to the graph at (x, y) = (1, 0.8).In Exercises 3–10, find an equation of the tangent plane at the given point.

3. f (x, y) = x2y + xy3, (2, 1)

solution The equation of the tangent plane at (2, 1) is

z = f (2, 1) + fx(2, 1)(x − 2) + fy(2, 1)(y − 1) (1)

We compute the values of f and its partial derivatives at (2, 1):

f (x, y) = x2y + xy3 f (2, 1) = 6

fx(x, y) = 2xy + y3 ⇒ fx(2, 1) = 5

fy(x, y) = x2 + 3xy2 fy(2, 1) = 10

We now substitute these values in (1) to obtain the following equation of the tangent plane:

z = 6 + 5(x − 2) + 10(y − 1) = 5x + 10y − 14

That is,

z = 5x + 10y − 14.
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f (x, y) = x√
y

, (4, 4)
5. f (x, y) = x2 + y−2, (4, 1)

solution The equation of the tangent plane at (4, 1) is

z = f (4, 1) + fx(4, 1)(x − 4) + fy(4, 1)(y − 1) (1)

We compute the values of f and its partial derivatives at (4, 1):

f (x, y) = x2 + y−2 f (4, 1) = 17

fx(x, y) = 2x ⇒ fx(4, 1) = 8

fy(x, y) = −2y−3 fy(4, 1) = −2

Substituting in (1) we obtain the following equation of the tangent plane:

z = 17 + 8(x − 4) − 2(y − 1) = 8x − 2y − 13.

G(u, w) = sin(uw),
(
π
6 , 1
)7. F(r, s) = r2s−1/2 + s−3, (2, 1)

solution The equation of the tangent plane at (2, 1) is

z = f (2, 1) + fr (2, 1)(r − 2) + fs(2, 1)(s − 1) (1)

We compute f and its partial derivatives at (2, 1):

f (r, s) = r2s−1/2 + s−3 f (2, 1) = 5

fr (r, s) = 2rs−1/2 ⇒ fr (2, 1) = 4

fs(r, s) = −1

2
r2s−3/2 − 3s−4 fs(2, 1) = −5

We substitute these values in (1) to obtain the following equation of the tangent plane:

z = 5 + 4(r − 2) − 5(s − 1) = 4r − 5s + 2.

g(x, y) = ex/y , (2, 1)
9. f (x, y) = sech(x − y), (ln 4, ln 2)

solution The equation of the tangent plane at (ln 4, ln 2) is:

z = f (ln 4, ln 2) + fx(ln 4, ln 2)(x − ln 4) + fy(ln 4, ln 2)(y − ln 2)

We compute f and its partial derivatives at (ln 4, ln 2):

f (x, y) = sech(x − y), f (ln 4, ln 2) = sech(ln 2) = 4

5

fx(x, y) = − tanh(x − y) sech(x − y), fx(ln 4, ln 2) = − tanh(ln 2) sech(ln 2) = −12

25

fy(x, y) = tanh(x − y) sech(x − y), fy(ln 4, ln 2) = tanh(ln 2) sech(ln 2) = 12

25

We substitute these values in the tangent plane equation to obtain:

z = 4

5
− 12

25
(x − ln 4) + 12

25
(x − ln 2) = − 4

25
(3x − 3y − 5 − ln 8)

f (x, y) = ln(4x2 − y2), (1, 1)
11. Find the points on the graph of z = 3x2 − 4y2 at which the vector n = 〈3, 2, 2〉 is normal to the tangent plane.

solution The equation of the tangent plane at the point
(
a, b, f (a, b)

)
on the graph of z = f (x, y) is

z = f (a, b) + fx(a, b)(x − a) + fy(a, b)(y − b)

or

fx(a, b)(x − a) + fy(a, b)(y − b) − z + f (a, b) = 0

Therefore, the following vector is normal to the plane:

v = 〈fx(a, b), fy(a, b),−1
〉
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We compute the partial derivatives of the function f (x, y) = 3x2 − 4y2:

fx(x, y) = 6x ⇒ fx(a, b) = 6a

fy(x, y) = −8y ⇒ fy(a, b) = −8b

Therefore, the vector v = 〈6a, −8b, −1〉 is normal to the tangent plane at (a, b). Since we want n = 〈3, 2, 2〉 to be normal
to the plane, the vectors v and n must be parallel. That is, the following must hold:

6a

3
= −8b

2
= −1

2

which implies that a = − 1
4 and b = 1

8 . We compute the z-coordinate of the point:

z = 3 ·
(

−1

4

)2
− 4

(
1

8

)2
= 1

8

The point on the graph at which the vector n = 〈3, 2, 2〉 is normal to the tangent plane is
(
− 1

4 , 1
8 , 1

8

)
.

Find the points on the graph of z = xy3 + 8y−1 where the tangent plane is parallel to 2x + 7y + 2z = 0.
13. Find the linearization L(x, y) of f (x, y) = x2y3 at (a, b) = (2, 1). Use it to estimate f (2.01, 1.02) and f (1.97, 1.01)

and compare with values obtained using a calculator.

solution
(a) We compute the value of the function and its partial derivatives at (a, b) = (2, 1):

f (x, y) = x2y3 f (2, 1) = 4

fx(x, y) = 2xy3 ⇒ fx(2, 1) = 4

fy(x, y) = 3x2y2 fy(2, 1) = 12

The linear approximation is therefore

L(x, y) = f (2, 1) + fx(2, 1)(x − 2) + fy(2, 1)(y − 1)

L(x, y) = 4 + 4(x − 2) + 12(y − 1) = −16 + 4x + 12y

(b) For h = x − 2 and k = y − 1 we have the following form of the linear approximation at (a, b) = (2, 1):

L(x, y) = f (2, 1) + fx(2, 1)h + fy(2, 1)k = 4 + 4h + 12k

To approximate f (2.01, 1.02) we set h = 2.01 − 2 = 0.01, k = 1.02 − 1 = 0.02 to obtain

L(2.01, 1.02) = 4 + 4 · 0.01 + 12 · 0.02 = 4.28

The actual value is

f (2.01, 1.02) = 2.012 · 1.023 = 4.2874

To approximate f (1.97, 1.01) we set h = 1.97 − 2 = −0.03, k = 1.01 − 1 = 0.01 to obtain

L(1.97, 1.01) = 4 + 4 · (−0.03) + 12 · 0.01 = 4.

The actual value is

f (1.97, 1.01) = 1.972 · 1.013 = 3.998.

Write the linear approximation to f (x, y) = x(1 + y)−1 at (a, b) = (8, 1) in the form

f (a + h, b + k) ≈ f (a, b) + fx(a, b)h + fy(a, b)k

Use it to estimate 7.98
2.02 and compare with the value obtained using a calculator.

15. Let f (x, y) = x3y−4. Use Eq. (4) to estimate the change

�f = f (2.03, 0.9) − f (2, 1)

solution We compute the function and its partial derivatives at (a, b) = (2, 1):

f (x, y) = x3y−4 f (2, 1) = 8

fx(x, y) = 3x2y−4 ⇒ fx(2, 1) = 12

fy(x, y) = −4x3y−5 fy(2, 1) = −32

Also, �x = 2.03 − 2 = 0.03 and �y = 0.9 − 1 = −0.1. Therefore,

�f = f (2.03, 0.9) − f (2, 1) ≈ fx(2, 1)�x + fy�y = 12 · 0.03 + (−32) · (−0.1) = 3.56

�f ≈ 3.56
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Use the linear approximation to f (x, y) = √
x/y at (9, 4) to estimate

√
9.1/3.9.17. Use the linear approximation of f (x, y) = ex2+y at (0, 0) to estimate f (0.01, −0.02). Compare with the value

obtained using a calculator.

solution The linear approximation of f at the point (0, 0) is

f (h, k) ≈ f (0, 0) + fx(0, 0)h + fy(0, 0)k (1)

We first must compute f and its partial derivative at the point (0, 0). Using the Chain Rule we obtain

f (x, y) = ex2+y f (0, 0) = e0 = 1

fx(x, y) = 2xex2+y ⇒ fx(0, 0) = 2 · 0 · e0 = 0

fy(x, y) = ex2+y fy(0, 0) = e0 = 1

We substitute these values and h = 0.01, k = −0.02 in (1) to obtain

f (0.01, −0.02) ≈ 1 + 0 · 0.01 + 1 · (−0.02) = 0.98

The actual value is f (0.01, −0.02) = e0.012−0.02 ≈ 0.9803.

Let f (x, y) = x2/(y2 + 1). Use the linear approximation at an appropriate point (a, b) to estimate f (4.01, 0.98).
19. Find the linearization of f (x, y, z) = z

√
x + y at (8, 4, 5).

solution The linear approximation of f at the point (8, 4, 5) is:

f (x, y, z) ≈ f (8, 4, 5) + fx(8, 4, 5)(x − 8) + fy(8, 4, 5)(y − 4) + fz(8, 4, 5)(z − 5)

We compute the values of f and its partial derivatives at (8, 4, 5):

f (x, y, z) = z
√

x + y, f (8, 4, 5) = 5
√

12 = 10
√

3

fx(x, y, z) = z

2
√

x + y
, fx(8, 4, 5) = 5

2
√

12
= 5

4
√

3

fy(x, y, z) = z

2
√

x + y
, fy(8, 4, 5) = 5

2
√

12
= 5

4
√

3

fz(x, y, z) = √
x + y, fz(8, 4, 5) = √

12 = 4
√

3

Substituting these values we obtain the linearization:

f (x, y, z) ≈ 10
√

3 + 5

4
√

3
(x − 8) + 5

4
√

3
(y − 4) + 4

√
3(z − 5)

= 5

4
√

3
(x − 8) + 5

4
√

3
(y − 4) + 4

√
3z − 15

√
3

Find the linearization to f (x, y, z) = xy/z at the point (2, 1, 2). Use it to estimate f (2.05, 0.9, 2.01) and compare
with the value obtained from a calculator.

21. Estimate f (2.1, 3.8) assuming that

f (2, 4) = 5, fx(2, 4) = 0.3, fy(2, 4) = −0.2

solution We use the linear approximation of f at the point (2, 4), which is

f (2 + h, 4 + k) ≈ f (2, 4) + fx(2, 4)h + fy(2, 4)k

Substituting the given values and h = 0.1, k = −0.2 we obtain the following approximation:

f (2.1, 3.8) ≈ 5 + 0.3 · 0.1 + 0.2 · 0.2 = 5.07.

Estimate f (1.02, 0.01, −0.03) assuming that

f (1, 0, 0) = −3, fx(1, 0, 0) = −2,

fy(1, 0, 0) = 4, fz(1, 0, 0) = 2

In Exercises 23–28, use the linear approximation to estimate the value. Compare with the value given by a calculator.

23. (2.01)3(1.02)2

solution The number (2.01)3(1.02)2 is a value of the function f (x, y) = x3y2. We use the li(8, near approximation
at (2, 1), which is

f (2 + h, 1 + k) ≈ f (2, 1) + fx(2, 1)h + fy(2, 1)k (1)

We compute the value of the function and its partial derivatives at (2, 1):

f (x, y) = x3y2 f (2, 1) = 8

fx(x, y) = 3x2y2 ⇒ fx(2, 1) = 12

fy(x, y) = 2x3y fy(2, 1) = 16
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Substituting these values and h = 0.01, k = 0.02 in (1) gives the approximation

(2.01)3(1.02)2 ≈ 8 + 12 · 0.01 + 16 · 0.02 = 8.44

The value given by a calculator is 8.4487. The error is 0.0087 and the percentage error is

Percentage error ≈ 0.0087 · 100

8.4487
= 0.103%

4.1

7.9

25.
√

3.012 + 3.992

solution This is a value of the function f (x, y) =
√

x2 + y2. We use the linear approximation at the point (3, 4),
which is

f (3 + h, 4 + k) ≈ f (3, 4) + fx(3, 4)h + fy(3, 4)k (1)

Using the Chain Rule gives the following partial derivatives:

f (x, y) =
√

x2 + y2 f (3, 4) = 5

fx(x, y) = 2x

2
√

x2 + y2
= x√

x2 + y2
⇒ fx(3, 4) = 3

5

fy(x, y) = 2y

2
√

x2 + y2
= y√

x2 + y2
fy(3, 4) = 4

5

Substituting these values and h = 0.01, k = −0.01 in (1) gives the following approximation:√
3.012 + 3.992 ≈ 5 + 3

5
· 0.01 + 4

5
· (−0.01) = 4.998

The value given by a calculator is
√

3.012 + 3.992 ≈ 4.99802. The error is 0.00002 and the percentage error is at most

Percentage error ≈ 0.00002 · 100

4.99802
= 0.0004002%

0.982

2.013 + 1

27.
√

(1.9)(2.02)(4.05)

solution We use the linear approximation of the function f (x, y, z) = √
xyz at the point (2, 2, 4), which is

f (2 + h, 2 + k, 4 + l) ≈ f (2, 2, 4) + fx(2, 2, 4)h + fy(2, 2, 4)k + fz(2, 2, 4)l (1)

We compute the values of the function and its partial derivatives at (2, 2, 4):

f (x, y, z) = √
xyz f (2, 2, 4) = 4

fx(x, y, z) = yz

2
√

xyz
= 1

2

√
yz

x
⇒ fx(2, 2, 4) = 1

fy(x, y, z) = xz

2
√

xyz
= 1

2

√
xz

y
fy(2, 2, 4) = 1

fz(x, y, z) = xy

2
√

xyz
= 1

2

√
xy

z
fz(2, 2, 4) = 1

2

Substituting these values and h = −0.1, k = 0.02, l = 0.05 in (1) gives the following approximation:

√
(1.9)(2.02)(4.05) = 4 + 1 · (−0.1) + 1 · 0.02 + 1

2
(0.05) = 3.945

The value given by a calculator is: √
(1.9)(2.02)(4.05) ≈ 3.9426

8.01√
(1.99)(2.01)

29. Find an equation of the tangent plane to z = f (x, y) at P = (1, 2, 10) assuming that

f (1, 2) = 10, f (1.1, 2.01) = 10.3, f (1.04, 2.1) = 9.7

solution The equation of the tangent plane at the point (1, 2) is

z = f (1, 2) + fx(1, 2)(x − 1) + fy(1, 2)(y − 2)

z = 10 + fx(1, 2)(x − 1) + fy(1, 2)(y − 2) (1)
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Since the values of the partial derivatives at (1, 2) are not given, we approximate them as follows:

fx(1, 2) ≈ f (1.1, 2) − f (1, 2)

0.1
≈ f (1.1, 2.01) − f (1, 2)

0.1
= 3

fy(1, 2) ≈ f (1, 2.1) − f (1, 2)

0.1
≈ f (1.04, 2.1) − f (1, 2)

0.1
= −3

Substituting in (1) gives the following approximation to the equation of the tangent plane:

z = 10 + 3(x − 1) − 3(y − 2)

That is, z = 3x − 3y + 13.

Suppose that the plane tangent to z = f (x, y) at (−2, 3, 4) has equation 4x + 2y + z = 2. Estimate f (−2.1, 3.1).In Exercises 31–34, let I = W/H 2 denote the BMI described in Example 5.

31. A boy has weight W = 34 kg and height H = 1.3 m. Use the linear approximation to estimate the change in I if
(W, H) changes to (36, 1.32).

solution Let �I = I (36, 1.32) − I (34, 1.3) denote the change in I . Using the linear approximation of I at the point
(34, 1.3) we have

I (34 + h, 1.3 + k) − I (34, 1.3) ≈ ∂I

∂W
(34, 1.3)h + ∂I

∂H
(34, 1.3)k

For h = 2, k = 0.02 we obtain

�I ≈ ∂I

∂W
(34, 1.3) · 2 + ∂I

∂H
(34, 1.3) · 0.02 (1)

We compute the partial derivatives in (1):

∂I

∂W
= ∂

∂W

W

H 2
= 1

H 2
⇒ ∂I

∂W
(34, 1.3) = 0.5917

∂I

∂H
= W

∂

∂H
H−2 = W · (−2H−3) = −2W

H 3
⇒ ∂I

∂H
(34, 1.3) = −30.9513

Substituting the partial derivatives in (1) gives the following estimation of �I :

�I ≈ 0.5917 · 2 − 30.9513 · 0.02 = 0.5644

Suppose that (W, H) = (34, 1.3). Use the linear approximation to estimate the increase in H required to keep I

constant if W increases to 35.

33. (a) Show that �I ≈ 0 if �H/�W ≈ H/2W .
(b) Suppose that (W, H) = (25, 1.1). What increase in H will leave I (approximately) constant if W is increased by
1 kg?

solution
(a) The linear approximation implies that

�I ≈ ∂I

∂W
�W + ∂I

∂H
�H

Hence, �I ≈ 0 if

∂I

∂W
�W + ∂I

∂H
�H = 0 (1)

We compute the partial derivatives of I = W
H 2 :

∂I

∂W
= ∂

∂W

(
W

H 2

)
= 1

H 2

∂I

∂H
= W

∂

∂H
(H−2) = −2WH−3 = −2W

H 3

We substitute the partial derivatives in (1) to obtain

1

H 2
�W − 2W

H 3
�H = 0

Hence,

1

H 2
�W = 2W

H 3
�H

or

�H

�W
= 1

H 2
· H 3

2W
= H

2W
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(b) In part (a) we showed that if �H
�W

= H
2W

, then I remains approximately constant. We thus substitute W = 25,
H = 1.1, �W = 1, and solve for �H . This gives

�H

1
= 1.1

50
⇒ �H ≈ 0.022 meters.

That is, an increase of 0.022 meters in H will leave I approximately constant.

Estimate the change in height that will decrease I by 1 if (W, H) = (25, 1.1), assuming that W remains constant.35. A cylinder of radius r and height h has volume V = πr2h.

(a) Use the linear approximation to show that

�V

V
≈ 2�r

r
+ �h

h

(b) Estimate the percentage increase in V if r and h are each increased by 2%.

(c) The volume of a certain cylinder V is determined by measuring r and h. Which will lead to a greater error in V : a
1% error in r or a 1% error in h?

solution

(a) The linear approximation is

�V ≈ Vr�r + Vh�h (1)

We compute the partial derivatives of V = πr2h:

Vr = πh
∂

∂r
r2 = 2πhr

Vh = πr2 ∂

∂h
h = πr2

Substituting in (1) gives

�V ≈ 2πhr�r + πr2�h

We divide by V = πr2h to obtain

�V

V
≈ 2πhr�r

V
+ πr2�h

V
= 2πhr�r

πr2h
+ πr2�h

πr2h
= 2�r

r
+ �h

h

That is,

�V

V
≈ 2�r

r
+ �h

h

(b) The percentage increase in V is, by part (a),

�V

V
· 100 ≈ 2

�r

r
· 100 + �h

h
· 100

We are given that �r
r · 100 = 2 and �h

h
· 100 = 2, hence the percentage increase in V is

�V

V
· 100 = 2 · 2 + 2 = 6%

(c) The percentage error in V is

�V

V
· 100 = 2

�r

r
· 100 + �h

h
· 100

A 1% error in r implies that �r
r · 100 = 1. Assuming that there is no error in h, we get

�V

V
· 100 = 2 · 1 + 0 = 2%

A 1% in h implies that �h
h

· 100 = 1. Assuming that there is no error in r , we get

�V

V
· 100 = 0 + 1 = 1%

We conclude that a 1% error in r leads to a greater error in V than a 1% error in h.

Use the linear approximation to show that if I = xayb, then

�I

I
≈ a

�x

x
+ b

�y

y
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37. The monthly payment for a home loan is given by a function f (P, r, N), where P is the principal (initial size of the
loan), r the interest rate, and N is the length of the loan in months. Interest rates are expressed as a decimal: A 6% interest
rate is denoted by r = 0.06. If P = $100,000, r = 0.06, and N = 240 (a 20-year loan), then the monthly payment is
f (100,000, 0.06, 240) = 716.43. Furthermore, at these values, we have

∂f

∂P
= 0.0071,

∂f

∂r
= 5769,

∂f

∂N
= −1.5467

Estimate:

(a) The change in monthly payment per $1000 increase in loan principal.

(b) The change in monthly payment if the interest rate increases to r = 6.5% and r = 7%.

(c) The change in monthly payment if the length of the loan increases to 24 years.

solution

(a) The linear approximation to f (P, r, N) is

�f ≈ ∂f

∂P
�P + ∂f

∂r
�r + ∂f

∂N
�N

We are given that ∂f
∂P

= 0.0071, ∂f
∂r

= 5769, ∂f
∂N

= −1.5467, and �P = 1000. Assuming that �r = 0 and �N = 0,
we get

�f ≈ 0.0071 · 1000 = 7.1

The change in monthly payment per thousand dollar increase in loan principal is $7.1.

(b) By the given data, we have

�f ≈ 0.0071�P + 5769�r − 1.5467�N (1)

The interest rate 6.5% corresponds to r = 0.065, and the interest rate 7% corresponds to r = 0.07. In the first case
�r = 0.065 − 0.06 = 0.005 and in the second case �r = 0.07 − 0.06 = 0.01. Substituting in (1), assuming that
�P = 0 and �N = 0, gives

�f = 5769 · 0.005 = $28.845

�f = 5769 · 0.01 = $57.69

(c) We substitute �N = (24 − 20) · 12 = 48 months and �r = �N = 0 in (1) to obtain

�f ≈ −1.5467 · 48 = −74.2416

The monthly payment will be reduced by $74.2416.

Automobile traffic passes a point P on a road of width w ft at an average rate of R vehicles per second. Although
the arrival of automobiles is irregular, traffic engineers have found that the average waiting time T until there is a
gap in traffic of at least t seconds is approximately T = teRt seconds. A pedestrian walking at a speed of 3.5 ft/s
(5.1 mph) requires t = w/3.5 s to cross the road. Therefore, the average time the pedestrian will have to wait before
crossing is f (w, R) = (w/3.5)ewR/3.5 s.

(a) What is the pedestrian’s average waiting time if w = 25 ft and R = 0.2 vehicle per second?

(b) Use the linear approximation to estimate the increase in waiting time if w is increased to 27 ft.

(c) Estimate the waiting time if the width is increased to 27 ft and R decreases to 0.18.

(d) What is the rate of increase in waiting time per 1-ft increase in width when w = 30 ft and R = 0.3 vehicle per
second?

39. The volume V of a right-circular cylinder is computed using the values 3.5 m for diameter and 6.2 m for height. Use
the linear approximation to estimate the maximum error in V if each of these values has a possible error of at most 5%.
Recall that V = 1

3πr2h.

solution We denote by d and h the diameter and height of the cylinder, respectively. By the Formula for the Volume
of a Cylinder we have

V = π

(
d

2

)2
h = π

4
d2h

The linear approximation is

�V ≈ ∂V

∂d
�d + ∂V

∂h
�h (1)

We compute the partial derivatives at (d, h) = (3.5, 6.2):

∂V

∂d
(d, h) = π

4
h · 2d = π

2
hd

∂V

∂h
(d, h) = π

4
d2

⇒
∂V

∂d
(3.5, 6.2) ≈ 34.086

∂V

∂h
(3.5, 6.2) = 9.621

Substituting these derivatives in (1) gives

�V ≈ 34.086�d + 9.621�h (2)
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We are given that the errors in the measurements of d and h are at most 5%. Hence,

�d

3.5
= 0.05 ⇒ �d = 0.175

�h

6.2
= 0.05 ⇒ �h = 0.31

Substituting in (2) we obtain

�V ≈ 34.086 · 0.175 + 9.621 · 0.31 ≈ 8.948

The error in V is approximately 8.948 meters. The percentage error is at most

�V · 100

V
= 8.948 · 100

π
4 · 3.52 · 6.2

= 15%

Further Insights and Challenges

Show that if f (x, y) is differentiable at (a, b), then the function of one variable f (x, b) is differentiable at x = a.
Use this to prove that f (x, y) =

√
x2 + y2 is not differentiable at (0, 0).

41. This exercise shows directly (without using Theorem 1) that the function f (x, y) = 5x + 4y2 from Example 1 is
locally linear at (a, b) = (2, 1).

(a) Show that f (x, y) = L(x, y) + e(x, y) with e(x, y) = 4(y − 1)2.
(b) Show that

0 ≤ e(x, y)√
(x − 2)2 + (y − 1)2

≤ 4|y − 1|

(c) Verify that f (x, y) is locally linear.

solution According to Example 1,

L(x, y) = −4 + 5x + 8y

(a) We compute the difference:

f (x, y) − L(x, y) = (5x + 4y2) − (−4 + 5x + 8y)

= 4y2 − 8y + 4 = 4(y − 1)2

Therefore, f (x, y) = L(x, y) + 4(y − 1)2.
(b) For (x, y) �= (2, 1), we consider

e(x, y)√
(x − 2)2 + (y − 1)2

= 4(y − 1)2√
(x − 2)2 + (y − 1)2

The following inequality holds

4(y − 1)2√
(x − 2)2 + (y − 1)2

≤ 4(y − 1)2√
(y − 1)2

= 4|y − 1|

because we have made the denominator smaller.
(c) We have

f (x, y) = L(x, y) + e(x, y)

where

0 ≤ e(x, y)√
(x − 2)2 + (y − 1)2

≤ 4|y − 1|

We have lim
(x,y)→(2,1)

4|y − 1| = 0, and therefore

lim
(x,y)→(2,1)

e(x, y) = 0

by the Squeeze Theorem. This proves that f (x, y) is locally linear at (2, 1).

Show directly, as in Exercise 41, that f (x, y) = xy2 is differentiable at (0, 2).
43. Differentiability Implies Continuity Use the definition of differentiability to prove that if f is differentiable at
(a, b), then f is continuous at (a, b).

solution Suppose that f is differentiable at (a, b), then we know f is locally linear at (a, b), that is

f (x, y) = L(x, y) + e(x, y)
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where e(x, y) satisfies

lim
(x,y)→(a,b)

e(x, y)√
(x − a)2 + (y − b)2

= lim
(x,y)→(a,b)

E(x, y) = 0

and

L(x, y) = f (a, b) + fx(a, b)(x − a) + fy(a, b)(y − b)

We would like to show lim(x,y)→(a,b) f (x, y) = f (a, b), then f would be continuous at (a, b). Consider the following
computation:

lim
(x,y)→(a,b)

f (x, y) = lim
(x,y)→(a,b)

L(x, y) + e(x, y)

= lim
(x,y)→(a,b)

L(x, y) + E(x, y)

√
(x − a)2 + (y − b)2

= lim
(x,y)→(a,b)

f (a, b) + fx(a, b)(x − a) + fy(a, b)(y − b) + E(x, y)

√
(x − a)2 + (y − b)2

= f (a, b) + 0 + 0 + 0 = f (a, b)

Therefore we have shown that if f is differentiable at (a, b) then f is continuous at (a, b).

Let f (x) be a function of one variable defined near x = a. Given a number M , set

L(x) = f (a) + M(x − a), e(x) = f (x) − L(x)

Thus f (x) = L(x) + e(x). We say that f is locally linear at x = a if M can be chosen so that lim
x→a

e(x)

|x − a| = 0.

(a) Show that if f (x) is differentiable at x = a, then f (x) is locally linear with M = f ′(a).

(b) Show conversely that if f is locally linear at x = a, then f (x) is differentiable and M = f ′(a).

45. Assumptions Matter Define g(x, y) = 2xy(x + y)/(x2 + y2) for (x, y) �= 0 and g(0, 0) = 0. In this exercise,
we show that g(x, y) is continuous at (0, 0) and that gx(0, 0) and gy(0, 0) exist, but g(x, y) is not differentiable at (0, 0).

(a) Show using polar coordinates that g(x, y) is continuous at (0, 0).

(b) Use the limit definitions to show that gx(0, 0) and gy(0, 0) exist and that both are equal to zero.

(c) Show that the linearization of g(x, y) at (0, 0) is L(x, y) = 0.

(d) Show that if g(x, y) were locally linear at (0, 0), we would have lim
h→0

g(h, h)

h
= 0. Then observe that this is not the

case because g(h, h) = 2h. This shows that g(x, y) is not locally linear at (0, 0) and, hence, not differentiable at (0, 0).

solution

(a) We would like to show lim(x,y)→(0,0) g(x, y) = g(0, 0). Consider the following, using polar coordinates, x = r cos θ

and y = r sin θ :

lim
(x,y)→(0,0)

2xy(x + y)

x2 + y2
= lim

(r,θ)→(0,0)

2r2 cos θ sin θ(r cos θ + r sin θ)

r2 cos2 θ + r2 sin2 θ

= lim
(r,θ)→(0,0)

2r3 cos θ sin θ(cos θ + sin θ)

r2

= lim
(r,θ)→(0,0)

2r cos θ sin θ(cos θ + sin θ) = 0 = g(0, 0)

Therefore g(x, y) is continuous at (0, 0).

(b) Taking partial derivatives we have:

gx(x, y) = 2y2(y − x)2

(x2 + y2)2
, gy(x, y) = 2x2(x − y)2

(x2 + y2)2

But we need to use limit definitions for the partial derivatives. Consider the following:

gx(0, 0) = lim
h→0

g(h, 0) − g(0, 0)

h

= lim
h→0

1

h
(0 − 0) = 0

gy(0, 0) = lim
h→0

g(0, h) − g(0, 0)

h

= lim
h→0

1

h
(0 − 0) = 0

Thus both partial derivatives exist and gx(0, 0) = 0 and gy(0, 0) = 0.

(c) We know that the linearization of g will be:

g(x, y) ≈ g(0, 0) + gx(0, 0)(x − 0) + gy(0, 0)(y − 0)
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We are given that g(0, 0) = 0. In part (b) we know gx(0, 0) = 0 and gy(0, 0) = 0. Substituting in these values in the
linearization we have:

g(x, y) ≈ 0 + 0 + 0 = 0

(d) We know if g were locally linear at (0, 0), we would have:

lim
h→0

g(h, h)

h
= 0

However, we know:

g(h, h) = 2h2(2h)

2h2
= 2h,

g(h, h)

h
= 2h

h
= 2

This is a contradiction, g(x, y) is not locally linear at (0, 0) and hence, is not differentiable at (0, 0).

14.5 The Gradient and Directional Derivatives (LT Section 15.5)

Preliminary Questions
1. Which of the following is a possible value of the gradient ∇f of a function f (x, y) of two variables?

(a) 5 (b) 〈3, 4〉 (c) 〈3, 4, 5〉
solution The gradient of f (x, y) is a vector with two components, hence the possible value of the gradient ∇f =〈
∂f
∂x

,
∂f
∂y

〉
is (b).

2. True or false? A differentiable function increases at the rate ‖∇fP ‖ in the direction of ∇fP .

solution The statement is true. The value ‖∇fP ‖ is the rate of increase of f in the direction ∇fP .

3. Describe the two main geometric properties of the gradient ∇f .

solution The gradient of f points in the direction of maximum rate of increase of f and is normal to the level curve
(or surface) of f .

4. You are standing at a point where the temperature gradient vector is pointing in the northeast (NE) direction. In which
direction(s) should you walk to avoid a change in temperature?

(a) NE (b) NW (c) SE (d) SW

solution The rate of change of the temperature T at a point P in the direction of a unit vector u, is the directional
derivative DuT (P ), which is given by the formula

DuT (P ) = ‖∇fP ‖ cos θ

To avoid a change in temperature, we must choose the direction u so that DuT (P ) = 0, that is, cos θ = 0, so θ = π
2 or

θ = 3π
2 . Since the gradient at P is pointing NE, we should walk NW or SE to avoid a change in temperature. Thus, the

answer is (b) and (c).

EW

N

S

P

SE

NW NE

∇T(P)

5. What is the rate of change of f (x, y) at (0, 0) in the direction making an angle of 45◦ with the x-axis if ∇f (0, 0) =
〈2, 4〉?
solution By the formula for directional derivatives, and using the unit vector

〈
1/

√
2, 1/

√
2
〉
, we get 〈2, 4〉 ·〈

1/
√

2, 1/
√

2
〉 = 6/

√
2 = 3

√
2.

Exercises
1. Let f (x, y) = xy2 and c(t) = ( 12 t2, t3).

(a) Calculate ∇f and c′(t).
(b) Use the Chain Rule for Paths to evaluate

d

dt
f (c(t)) at t = 1 and t = −1.
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solution

(a) We compute the partial derivatives of f (x, y) = xy2:

∂f

∂x
= y2,

∂f

∂y
= 2xy

The gradient vector is thus

∇f =
〈
y2, 2xy

〉
.

Also,

c′(t) =
〈(

1

2
t2
)′

,
(
t3
)′〉 = 〈t, 3t2

〉

(b) Using the Chain Rule gives

d

dt
f (c(t)) = d

dt

(
1

2
t2 · t6
)

= d

dt

(
1

2
t8
)

= 4t7

Substituting x = 1
2 t2 and y = t3, we obtain

d

dt
f (c(t)) = t6 · t + 2 · 1

2
t2 · 3 · t3 · t2 = 4t7

At the point t = 1 and t = −1, we get

d

dt
(f (c(t)))

∣∣∣∣
t=1

= 4 · 17 = 4,
d

dt
(f (c(t)))

∣∣∣∣
t=−1

= 4 · (−1)7 = −4.

Let f (x, y) = exy and c(t) = (t3, 1 + t).

(a) Calculate ∇f and c′(t).
(b) Use the Chain Rule for Paths to calculate

d

dt
f (c(t)).

(c) Write out the composite f (c(t)) as a function of t and differentiate. Check that the result agrees with part (b).

3. Figure 14 shows the level curves of a function f (x, y) and a path c(t), traversed in the direction indicated. State

whether the derivative
d

dt
f (c(t)) is positive, negative, or zero at points A–D.

y

x

−4

0

4

8

−4 840

A 10

−10

−20

20
30

B
C

DD

0

FIGURE 14

solution At points A and D, the path is (temporarily) tangent to one of the contour lines, which means that along the

path c(t) the function f (x, y) is (temporarily) constant, and so the derivative d
dt

f (c(t)) is zero. At point B, the path is
moving from a higher contour (of −10) to a lower one (of −20), so the derivative is negative. At the point C, where the
path moves from the contour of −10 towards the contour of value 0, the derivative is positive.

Let f (x, y) = x2 + y2 and c(t) = (cos t, sin t).

(a) Find
d

dt
f (c(t)) without making any calculations. Explain.

(b) Verify your answer to (a) using the Chain Rule.

In Exercises 5–8, calculate the gradient.

5. f (x, y) = cos(x2 + y)

solution We find the partial derivatives using the Chain Rule:

∂f

∂x
= − sin

(
x2 + y
) ∂

∂x

(
x2 + y
)

= −2x sin
(
x2 + y
)

∂f

∂y
= − sin

(
x2 + y
) ∂

∂y

(
x2 + y
)

= − sin
(
x2 + y
)

The gradient vector is thus

∇f =
〈
∂f

∂x
,
∂f

∂y

〉
=
〈
−2x sin

(
x2 + y
)

, − sin
(
x2 + y
)〉

= − sin
(
x2 + y
)

〈2x, 1〉

g(x, y) = x

x2 + y2
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7. h(x, y, z) = xyz−3

solution We compute the partial derivatives of h(x, y, z) = xyz−3, obtaining

∂h

∂x
= yz−3,

∂h

∂y
= xz−3,

∂h

∂z
= xy ·

(
−3z−4

)
= −3xyz−4

The gradient vector is thus

∇h =
〈
∂h

∂x
,
∂h

∂y
,
∂h

∂z

〉
=
〈
yz−3, xz−3, −3xyz−4

〉
.

r(x, y, z, w) = xzeyw
In Exercises 9–20, use the Chain Rule to calculate

d

dt
f (c(t)).

9. f (x, y) = 3x − 7y, c(t) = (cos t, sin t), t = 0

solution By the Chain Rule for paths, we have

d

dt
f (c(t)) = ∇f c(t) · c′(t) (1)

We compute the gradient and the derivative c′(t):

∇f =
〈
∂f

∂x
,
∂f

∂y

〉
= 〈3, −7〉 , c′(t) = 〈− sin t, cos t〉

We determine these vectors at t = 0:

c′(0) = 〈− sin 0, cos 0〉 = 〈0, 1〉

and since the gradient is a constant vector, we have

∇f c(0) = ∇f(1,0) = 〈3, −7〉

Substituting these vectors in (1) gives

d

dt
f (c(t))

∣∣∣∣
t=0

= 〈3, −7〉 · 〈0, 1〉 = 0 − 7 = −7

f (x, y) = 3x − 7y, c(t) = (t2, t3), t = 2
11. f (x, y) = x2 − 3xy, c(t) = (cos t, sin t), t = 0

solution By the Chain Rule For Paths we have

d

dt
f (c(t)) = ∇f c(t) · c′(t) (1)

We compute the gradient and c′(t):

∇f =
〈
∂f

∂x
,
∂f

∂y

〉
= 〈2x − 3y, −3x〉

c′(t) = 〈− sin t, cos t〉

At the point t = 0 we have

c(0) = (cos 0, sin 0) = (1, 0)

c′(0) = 〈− sin 0, cos 0〉 = 〈0, 1〉

∇f

∣∣∣∣
c(0)

= ∇f(1,0) = 〈2 · 1 − 3 · 0, −3 · 1〉 = 〈2, −3〉

Substituting in (1) we obtain

d

dt
f (c(t))

∣∣∣∣
t=0

= 〈2, −3〉 · 〈0, 1〉 = −3

f (x, y) = x2 − 3xy, c(t) = (cos t, sin t), t = π
2
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13. f (x, y) = sin(xy), c(t) = (e2t , e3t ), t = 0

solution By the Chain Rule for Paths we have

d

dt
f (c(t)) = ∇f c(t) · c′(t) (1)

We compute the gradient and c′(t):

∇f =
〈
∂f

∂x
,
∂f

∂y

〉
= 〈y cos(xy), x cos(xy)〉

c′(t) =
〈
2e2t , 3e3t

〉
At the point t = 0 we have

c(0) =
(
e0, e0
)

= (1, 1)

c′(0) =
〈
2e0, 3e0

〉
= 〈2, 3〉

∇fc(0) = ∇f(1,1) = 〈cos 1, cos 1〉
Substituting the vectors in (1) we get

d

dt
f (c(t))

∣∣∣∣
t=0

= 〈cos 1, cos 1〉 · 〈2, 3〉 = 5 cos 1

f (x, y) = cos(y − x), c(t) = (et , e2t ), t = ln 3
15. f (x, y) = x − xy, c(t) = (t2, t2 − 4t), t = 4

solution We compute the gradient and c′(t):

∇f =
〈
∂f

∂x
,
∂f

∂y

〉
= 〈1 − y, −x〉

c′(t) = (2t, 2t − 4)

At the point t = 4 we have

c(4) =
(

42, 42 − 4 · 4
)

= (16, 0)

c′(4) = 〈2 · 4, 2 · 4 − 4〉 = 〈8, 4〉
∇fc(4) = ∇f(16,0) = 〈1 − 0, −16〉 = 〈1, −16〉

We now use the Chain Rule for Paths to compute the following derivative:

d

dt
f (c(t))

∣∣∣∣
t=4

= ∇fc(4) · c′(4) = 〈1, −16〉 · 〈8, 4〉 = 8 − 64 = −56

f (x, y) = xey , c(t) = (t2, t2 − 4t), t = 0
17. f (x, y) = ln x + ln y, c(t) = (cos t, t2), t = π

4

solution We compute the gradient and c′(t):

∇f =
〈
∂f

∂x
,
∂f

∂y

〉
=
〈

1

x
,

1

y

〉
c′(t) = 〈− sin t, 2t〉

At the point t = π
4 we have

c
(π

4

)
=
(

cos
π

4
,
(π

4

)2) =
(√

2

2
,
π2

16

)

c′ (π
4

)
=
〈
− sin

π

4
,

2π

4

〉
=
〈
−

√
2

2
,
π

2

〉

∇fc
(

π
4

) = ∇f(√
2

2 , π2
16

) =
〈√

2,
16

π2

〉
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Using the Chain Rule for Paths we obtain the following derivative:

d

dt
f (c(t))

∣∣∣∣
t= π

4

= ∇fc
(

π
4

) · c′ (π
4

)
=
〈√

2,
16

π2

〉
·
〈
−

√
2

2
,
π

2

〉
= −1 + 8

π
≈ 1.546

g(x, y, z) = xyez, c(t) = (t2, t3, t − 1), t = 1
19. g(x, y, z) = xyz−1, c(t) = (et , t, t2), t = 1

solution By the Chain Rule for Paths we have

d

dt
g (c(t)) = ∇gc(t) · c′(t) (1)

We compute the gradient and c′(t):

∇g =
〈
∂g

∂x
,
∂g

∂y
,
∂g

∂z

〉
=
〈
yz−1, xz−1, −xyz−2

〉
c′(t) = 〈et , 1, 2t

〉
At the point t = 1 we have

c(1) = (e, 1, 1)

c′(1) = 〈e, 1, 2〉
∇gc(1) = ∇g(e,1,1) = 〈1, e, −e〉

Substituting the vectors in (1) gives the following derivative:

d

dt
g (c(t))

∣∣∣∣
t=1

= 〈1, e, −e〉 · 〈e, 1, 2〉 = e + e − 2e = 0

g(x, y, z, w) = x + 2y + 3z + 5w, c(t) = (t2, t3, t, t−2), t = 1
In Exercises 21–30, calculate the directional derivative in the direction of v at the given point. Remember to normalize
the direction vector or use Eq. (4).

21. f (x, y) = x2 + y3, v = 〈4, 3〉, P = (1, 2)

solution We first normalize the direction vector v:

u = v
‖v‖ = 〈4, 3〉√

42 + 32
=
〈

4

5
,

3

5

〉

We compute the gradient of f (x, y) = x2 + y3 at the given point:

∇f =
〈
∂f

∂x
,
∂f

∂y

〉
=
〈
2x, 3y2

〉
⇒ ∇f(1,2) = 〈2, 12〉

Using the Theorem on Evaluating Directional Derivatives, we get

Duf (1, 2) = ∇f(1,2) · u = 〈2, 12〉 ·
〈

4

5
,

3

5

〉
= 8

5
+ 36

5
= 44

5
= 8.8

f (x, y) = x2y3, v = i + j, P = (−2, 1)
23. f (x, y) = x2y3, v = i + j, P = ( 16 , 3

)
solution We normalize v to obtain a unit vector u in the direction of v:

u = v
‖v‖ = 1√

2
(i + j) = 1√

2
i + 1√

2
j

We compute the gradient of f (x, y) = x2y3 at the point P :

∇f =
〈
∂f

∂x
,
∂f

∂y

〉
=
〈
2xy3, 3x2y2

〉
⇒ ∇f ( 1

6 ,3
) =
〈
2 · 1

6
· 33, 3 · 1

62
· 32
〉

=
〈
9,

3

4

〉
= 9i + 3

4
j

The directional derivative in the direction v is thus

Duf

(
1

6
, 3

)
= ∇f( 1

6 ,3
) · u =

(
9i + 3

4
j
)

·
(

1√
2

i + 1√
2

j
)

= 9√
2

+ 3

4
√

2
= 39

4
√

2
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f (x, y) = sin(x − y), v = 〈1, 1〉, P = (π2 , π
6

)25. f (x, y) = tan−1(xy), v = 〈1, 1〉, P = (3, 4)

solution We first normalize v to obtain a unit vector u in the direction v:

u = v
‖v‖ = 1√

2
〈1, 1〉

We compute the gradient of f (x, y) = tan−1(xy) at the point P = (3, 4):

∇f =
〈
∂f

∂x
,
∂f

∂y

〉
=
〈

y

1 + (xy)2
,

x

1 + (xy)2

〉
= 1

1 + x2y2
〈y, x〉

∇f(3,4) = 1

1 + 32 · 42
〈4, 3〉 = 1

145
〈4, 3〉

Therefore, the directional derivative in the direction v is

Duf (3, 4) = ∇f(3,4) · u = 1

145
〈4, 3〉 · 1√

2
〈1, 1〉 = 1

145
√

2
(4 + 3) = 7

145
√

2
= 7

√
2

290

f (x, y) = exy−y2
, v = 〈12, −5〉, P = (2, 2)

27. f (x, y) = ln(x2 + y2), v = 3i − 2j, P = (1, 0)

solution We normalize v to obtain a unit vector u in the direction v:

u = v
‖v‖ = 1√

32 + (−2)2
(3i − 2j) = 1√

13
(3i − 2j)

We compute the gradient of f (x, y) = ln
(
x2 + y2

)
at the point P = (1, 0):

∇f =
〈
∂f

∂x
,
∂f

∂y

〉
=
〈

2x

x2 + y2
,

2y

x2 + y2

〉
= 2

x2 + y2
〈x, y〉

∇f(1,0) = 2

12 + 02
〈1, 0〉 = 〈2, 0〉 = 2i

The directional derivative in the direction v is thus

Duf (1, 0) = ∇f(1,0) · u = 2i · 1√
13

(3i − 2j) = 6√
13

g(x, y, z) = z2 − xy2, v = 〈−1, 2, 2〉, P = (2, 1, 3)
29. g(x, y, z) = xe−yz, v = 〈1, 1, 1〉, P = (1, 2, 0)

solution We first compute a unit vector u in the direction v:

u = v
‖v‖ = 〈1, 1, 1〉√

12 + 12 + 12
= 1√

3
〈1, 1, 1〉

We find the gradient of f (x, y, z) = xe−yz at the point P = (1, 2, 0):

∇f =
〈
∂f

∂x
,
∂f

∂y
,
∂f

∂z

〉
= 〈e−yz, −xze−yz, −xye−yz

〉 = e−yz 〈1, −xz, −xy〉

∇f(1,2,0) = e0 〈1, 0, −2〉 = 〈1, 0, −2〉
The directional derivative in the direction v is thus

Duf (1, 2, 0) = ∇f(1,2,0) · u = 〈1, 0, −2〉 · 1√
3

〈1, 1, 1〉 = 1√
3
(1 + 0 − 2) = − 1√

3

g(x, y, z) = x ln(y + z), v = 2i − j + k, P = (2, e, e)
31. Find the directional derivative of f (x, y) = x2 + 4y2 at P = (3, 2) in the direction pointing to the origin.

solution The direction vector is v = →
PO= 〈−3, −2〉. A unit vector u in the direction v is obtained by normalizing v.

That is,

u = v
‖v‖ = 〈−3, −2〉√

32 + 22
= −1√

13
〈3, 2〉

We compute the gradient of f (x, y) = x2 + 4y2 at the point P = (3, 2):

∇f =
〈
∂f

∂x
,
∂f

∂y

〉
= 〈2x, 8y〉 ⇒ ∇f(3,2) = 〈6, 16〉
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The directional derivative is thus

Duf (3, 2) = ∇f(3,2) · u = 〈6, 16〉 · −1√
13

〈3, 2〉 = −50√
13

Find the directional derivative of f (x, y, z) = xy + z3 at P = (3, −2, −1) in the direction pointing to the origin.
33. A bug located at (3, 9, 4) begins walking in a straight line toward (5, 7, 3). At what rate is the bug’s temperature
changing if the temperature is T (x, y, z) = xey−z? Units are in meters and degrees Celsius.

solution The bug is walking in a straight line from the point P = (3, 9, 4) towards Q = (5, 7, 3), hence the rate of

change in the temperature is the directional derivative in the direction of v = −→
PQ. We first normalize v to obtain

v = →
PQ= 〈5 − 3, 7 − 9, 3 − 4〉 = 〈2, −2, −1〉

u = v
‖v‖ = 〈2, −2, −1〉√

4 + 4 + 1
= 1

3
〈2, −2, −1〉

We compute the gradient of T (x, y, z) = xey−z at P = (3, 9, 4):

∇T =
〈
∂T

∂x
,
∂T

∂y
,
∂T

∂z

〉
= 〈ey−z, xey−z, −xey−z

〉 = ey−z 〈1, x, −x〉

∇T(3,9,4) = e9−4 〈1, 3, −3〉 = e5 〈1, 3, −3〉
The rate of change of the bug’s temperature at the starting point P is the directional derivative

Duf (P ) = ∇T (3,9,4) · u = e5 〈1, 3, −3〉 · 1

3
〈2, −2, −1〉 = −e5

3
≈ −49.47

The answer is −49.47 degrees Celsius per meter.

The temperature at location (x, y) is T (x, y) = 20 + 0.1(x2 − xy) (degrees Celsius). Beginning at (200, 0) at
time t = 0 (seconds), a bug travels along a circle of radius 200 cm centered at the origin, at a speed of 3 cm/s. How
fast is the temperature changing at time t = π/3?

35. Suppose that ∇fP = 〈2, −4, 4〉. Is f increasing or decreasing at P in the direction v = 〈2, 1, 3〉?
solution We compute the derivative of f at P with respect to v:

Dvf (P ) = ∇fP · v = 〈2, −4, 4〉 · 〈2, 1, 3〉 = 4 − 4 + 12 = 12 > 0

Since the derivative is positive, f is increasing at P in the direction of v.

Let f (x, y) = xex2−y and P = (1, 1).

(a) Calculate ‖∇fP ‖.

(b) Find the rate of change of f in the direction ∇fP .

(c) Find the rate of change of f in the direction of a vector making an angle of 45◦ with ∇fP .

37. Let f (x, y, z) = sin(xy + z) and P = (0, −1, π). Calculate Duf (P ), where u is a unit vector making an angle
θ = 30◦ with ∇fP .

solution The directional derivative Duf (P ) is the following dot product:

Duf (P ) = ∇f P · u

Since u is a unit vector making an angle θ = 30◦ with ∇fP , we have by the properties of the dot product

Duf (P ) = ‖∇f P ‖ · ‖u‖ cos 30◦ =
√

3

2
‖∇f P ‖ (1)

We now must find the gradient at P and its length:

∇f =
〈
∂f

∂x
,
∂f

∂y
,
∂f

∂z

〉
= 〈y cos(xy + z), x cos(xy + z), cos(xy + z)〉 = cos(xy + z) 〈y, x, 1〉

∇f (0,−1,π) = cos π 〈−1, 0, 1〉 = −1 〈−1, 0, 1〉 = 〈1, 0, −1〉
Hence,

‖∇f (0,−1,π)‖ =
√

12 + 02 + (−1)2 = √
2

Substituting in (1) we get

Duf (P ) =
√

3

2

√
2 =

√
6

2
.

Let T (x, y) be the temperature at location (x, y). Assume that ∇T = 〈y − 4, x + 2y〉. Let c(t) = (t2, t) be a
path in the plane. Find the values of t such that

d

dt
T (c(t)) = 0

39. Find a vector normal to the surface x2 + y2 − z2 = 6 at P = (3, 1, 2).

solution The gradient ∇fP is normal to the level curve f (x, y, z) = x2 + y2 − z2 = 6 at P . We compute this vector:

fx(x, y, z) = 2x

fy(x, y, z) = 2y ⇒ ∇fP = ∇f(3,1,2) = 〈6, 2, −4〉
fz(x, y, z) = −2z

The vector 〈6, 2, −4〉 is normal to the surface x2 + y2 − z2 = 6 at P .
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Find a vector normal to the surface 3z3 + x2y − y2x = 1 at P = (1, −1, 1).
41. Find the two points on the ellipsoid

x2

4
+ y2

9
+ z2 = 1

where the tangent plane is normal to v = 〈1, 1, −2〉.

solution The gradient ∇fP is normal to the level surface f (x, y, z) = x2

4
+ y2

9
+ z2 = 1. If v = 〈1, 1, −2〉 is also

normal, then ∇fP and v are parallel, that is, ∇fP = kv for some constant k. This yields the equation

∇fP = 〈x

2
,

2y

9
, 2z〉 = k 〈1, 1, −2〉

Thus x = 2k, y = 9k/2, and z = −k. To determine k, substitute in the equation of the ellipsoid:

x2

4
+ y2

9
+ z2 = (2k)2

4
+ (9k/2)2

9
+ (−k)2 = 1

This yields k2 + 9
4k2 + k2 = 1 or k = ±2/

√
17. The two points are

(x, y, z) = (2k,
9

2
k, −k) = ±

(
4√
17

,
9√
17

, − 2√
17

)

In Exercises 42–45, find an equation of the tangent plane to the surface at the given point.

x2 + 3y2 + 4z2 = 20, P = (2, 2, 1)
43. xz + 2x2y + y2z3 = 11, P = (2, 1, 1)

solution The equation of the tangent plane at P is

∇fP · 〈x − 2, y − 1, z − 1〉 = 0 (1)

We compute the gradient of f (x, y, z) = xz + 2x2y + y2z3 at the point P = (2, 1, 1):

∇f =
〈
∂f

∂x
,
∂f

∂y
,
∂f

∂z

〉
=
〈
z + 4xy, 2x2 + 2yz3, x + 3y2z2

〉
At the point P we have

∇fP = 〈9, 10, 5〉
Substituting in (1) we obtain the following equation of the tangent plane:

〈9, 10, 5〉 · 〈x − 2, y − 1, z − 1〉 = 0

9(x − 2) + 10(y − 1) + 5(z − 1) = 0

or

9x + 10y + 5z = 33

x2 + z2ey−x = 13, P =
(

2, 3,
3√
e

)45. ln[1 + 4x2 + 9y4] − 0.1z2 = 0, P = (3, 1, 6.1876)

solution The equation of the tangent plane at P is

∇fP · (x − 3, y − 1, z − 6.1876) = 0 (1)

We compute the gradient of f (x, y, z) = ln(1 + 4x2 + 9y4) − 0.1z2 at the point P :

∇f =
〈
∂f

∂x
,
∂f

∂y
,
∂f

∂z

〉
=
〈

8x

1 + 4x2 + 9y4
,

36y3

1 + 4x2 + 9y4
, −0.2z

〉

At the point P = (3, 1, 6.1876) we have

∇fP =
〈

24

1 + 36 + 9
,

36

46
, −1.2375

〉
= 〈0.5217, 0.7826, −1.2375〉

We substitute in (1) to obtain the following equation of the tangent plane:

0.5217(x − 3) + 0.7826(y − 1) − 1.2375(z − 6.1876) = 0

or

0.5217x + 0.7826y − 1.2375z = −5.309
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Verify what is clear from Figure 15: Every tangent plane to the cone x2 + y2 − z2 = 0 passes through the origin.
47. Use a computer algebra system to produce a contour plot of f (x, y) = x2 − 3xy + y − y2 together with its
gradient vector field on the domain [−4, 4] × [−4, 4].
solution

x

y

4

2

−2

2

−4

4−2−4

Find a function f (x, y, z) such that ∇f is the constant vector 〈1, 3, 1〉.49. Find a function f (x, y, z) such that ∇f = 〈2x, 1, 2〉.
solution The following equality must hold:

∇f =
〈
∂f

∂x
,
∂f

∂y
,
∂f

∂z

〉
= 〈2x, 1, 2〉

Equating corresponding components gives

∂f

∂x
= 2x

∂f

∂y
= 1

∂f

∂z
= 2

One of the functions that satisfies these equalities is f (x, y, z) = x2 + y + 2z.

Find a function f (x, y, z) such that ∇f = 〈x, y2, z3〉.51. Find a function f (x, y, z) such that ∇f = 〈z, 2y, x〉.
solution f (x, y, z) = xz + y2 is a good choice.

Find a function f (x, y) such that ∇f = 〈y, x〉.53. Show that there does not exist a function f (x, y) such that ∇f = 〈y2, x
〉
. Hint: Use Clairaut’s Theorem fxy = fyx .

solution Suppose that for some differentiable function f (x, y),

∇f = 〈fx, fy

〉 = 〈y2, x
〉

That is, fx = y2 and fy = x. Therefore,

fxy = ∂

∂y
fx = ∂

∂y
y2 = 2y and fyx = ∂

∂x
fy = ∂

∂x
x = 1

Since fxy and fyx are both continuous, they must be equal by Clairaut’s Theorem. Since fxy �= fyx we conclude that
such a function f does not exist.

Let �f = f (a + h, b + k) − f (a, b) be the change in f at P = (a, b). Set �v = 〈h, k〉. Show that the linear
approximation can be written

�f ≈ ∇fP · �v

55. Use Eq. (8) to estimate

�f = f (3.53, 8.98) − f (3.5, 9)

assuming that ∇f(3.5,9) = 〈2, −1〉.
solution By Eq. (8),

�f ≈ ∇fP · �v

The vector �v is the following vector:

�v = 〈3.53 − 3.5, 8.98 − 9〉 = 〈0.03, −0.02〉
Hence,

�f ≈ ∇f (3,5,9) · �v = 〈2, −1〉 · 〈0.03, −0.02〉 = 0.08

Find a unit vector n that is normal to the surface z2 − 2x4 − y4 = 16 at P = (2, 2, 8) that points in the direction
of the xy-plane (in other words, if you travel in the direction of n, you will eventually cross the xy-plane).

57. Suppose, in the previous exercise, that a particle located at the point P = (2, 2, 8) travels toward the xy-plane in the
direction normal to the surface.

(a) Through which point Q on the xy-plane will the particle pass?
(b) Suppose the axes are calibrated in centimeters. Determine the path c(t) of the particle if it travels at a constant speed
of 8 cm/s. How long will it take the particle to reach Q?
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solution
(a) The particle travels along the line through P = (2, 2, 8) in the direction (4, 2, −1). The vector parametrization of
this line is

r(t) = 〈2, 2, 8〉 + t 〈4, 2, −1〉 = 〈2 + 4t, 2 + 2t, 8 − t〉 (1)

We must find the point where this line intersects the xy-plane. At this point the z-component is zero. Hence,

8 − t = 0 ⇒ t = 8

Substituting t = 8 in (1) we obtain

r(8) = 〈2 + 4 · 8, 2 + 2 · 8, 0〉 = 〈34, 18, 0〉
The particle will pass through the point Q = (34, 18, 0) on the xy-plane.
(b) If v is a direction vector of the line PQ, so that ‖v‖ = 8, the following parametrization of the line has constant
speed 8:

c(t) = 〈2, 2, 8〉 + tv

(This has speed 8 because ‖c′(t)‖ = ‖v‖ = 8). In the previous exercise, we found the unit vector n = 1√
21

〈4, 2, −1〉,
therefore we use the direction vector v = 8n = 8√

21
〈4, 2, −1〉, obtaining the following parametrization of the line:

c(t) = 〈2, 2, 8〉 + t · 8√
21

〈4, 2, −1〉 =
〈
2 + 32√

21
t, 2 + 16√

21
t, 8 − 8t√

21

〉

To find the time needed for the particle to reach Q if it travels along c(t), we first compute the distance PQ:

PQ =
√

(34 − 2)2 + (18 − 2)2 + (0 − 8)2 = √
1344 = 8

√
21

The time needed is thus

T = PQ

8
= 8

√
21

8
= √

21 ≈ 4.58 s

Let f (x, y) = tan−1 x

y
and u =

〈√
2

2
,

√
2

2

〉
.

(a) Calculate the gradient of f .

(b) Calculate Duf (1, 1) and Duf (
√

3, 1).

(c) Show that the lines y = mx for m �= 0 are level curves for f .

(d) Verify that ∇fP is orthogonal to the level curve through P for P = (x, y) �= (0, 0).

59. Suppose that the intersection of two surfaces F(x, y, z) = 0 and G(x, y, z) = 0 is a curve C, and let P be a
point on C. Explain why the vector v = ∇FP × ∇GP is a direction vector for the tangent line to C at P .

solution The gradient ∇FP is orthogonal to all the curves in the level surface F(x, y, z) = 0 passing through P .
Similarly, ∇GP is orthogonal to all the curves in the level surface G(x, y, z) = 0 passing through P . Therefore, both
∇FP and ∇GP are orthogonal to the intersection curve C at P , hence the cross product ∇FP × ∇GP is parallel to the
tangent line to C at P .

Let C be the curve of intersection of the spheres x2 + y2 + z2 = 3 and (x − 2)2 + (y − 2)2 + z2 = 3. Use the
result of Exercise 59 to find parametric equations of the tangent line to C at P = (1, 1, 1).

61. Let C be the curve obtained by intersecting the two surfaces x3 + 2xy + yz = 7 and 3x2 − yz = 1. Find the
parametric equations of the tangent line to C at P = (1, 2, 1).

solution The parametric equations of the tangent line to C at P = (1, 2, 1) are

x = 1 + at, y = 2 + bt, z = 1 + ct (1)

where v = 〈a, b, c〉 is a direction vector for the line. By Exercise 59, v may be chosen as the cross product:

v = ∇FP × ∇GP (2)

where F(x, y, z) = x3 + 2xy + yz and G(x, y, z) = 3x2 − yz. We compute the gradient vectors:

Fx(x, y, z) = 3x2 + 2y Fx(1, 2, 1) = 7

Fy(x, y, z) = 2x + z ⇒ Fy(1, 2, 1) = 3

Fz(x, y, z) = y Fz(1, 2, 1) = 2

⇒ ∇FP = 〈7, 3, 2〉

Gx(x, y, z) = 6x Gx(1, 2, 1) = 6

Gy(x, y, z) = −z ⇒ Gy(1, 2, 1) = −1

Gz(x, y, z) = −y Gz(1, 2, 1) = −2

⇒ ∇GP = 〈6, −1, −2〉

Hence,

v = 〈7, 3, 2〉 × 〈6, −1, −2〉 =
∣∣∣∣∣∣

i j k
7 3 2
6 −1 −2

∣∣∣∣∣∣ = −4i + 26j − 25k = 〈−4, 26, −25〉
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Therefore, v = 〈a, b, c〉 = 〈−4, 26, −25〉, so we obtain

a = −4, b = 26, c = −25.

Substituting in (1) gives the following parametric equations of the tangent line:

x = 1 − 4t, y = 2 + 26t, z = 1 − 25t.

Verify the linearity relations for gradients:

(a) ∇(f + g) = ∇f + ∇g

(b) ∇(cf ) = c∇f

63. Prove the Chain Rule for Gradients (Theorem 1).

solution We must show that if F(t) is a differentiable function of t and f (x, y, z) is differentiable, then

∇F (f (x, y, z)) = F ′ (f (x, y, z)) ∇f

Using the Chain Rule for partial derivatives we get

∇F (f (x, y, z)) =
〈

∂

∂x
F (f (x, y, z)) ,

∂

∂y
F (f (x, y, z)) ,

∂

∂z
F (f (x, y, z))

〉

=
〈
dF

dt
· ∂f

∂x
,
dF

dt
· ∂f

∂y
,
dF

dt
· ∂f

∂z

〉
= dF

dt

〈
∂f

∂x
,
∂f

∂y
,
∂f

∂z

〉
= F ′ (f (x, y, z)) ∇F

Prove the Product Rule for Gradients (Theorem 1).Further Insights and Challenges
65. Let u be a unit vector. Show that the directional derivative Duf is equal to the component of ∇f along u.

solution The component of ∇f along u is ∇f · u. By the Theorem on Evaluating Directional Derivatives, Duf =
∇f · u, which is the component of ∇f along u.

Let f (x, y) = (xy)1/3.

(a) Use the limit definition to show that fx(0, 0) = fy(0, 0) = 0.

(b) Use the limit definition to show that the directional derivative Duf (0, 0) does not exist for any unit vector u
other than i and j.

(c) Is f differentiable at (0, 0)?

67. Use the definition of differentiability to show that if f (x, y) is differentiable at (0, 0) and

f (0, 0) = fx(0, 0) = fy(0, 0) = 0

then

lim
(x,y)→(0,0)

f (x, y)√
x2 + y2

= 0 9

solution If f (x, y) is differentiable at (0, 0), then there exists a function ε(x, y) satisfying lim(x,y)→(0,0) ε(x, y) = 0
such that

f (x, y) = L(x, y) + ε(x, y)

√
x2 + y2 (1)

Since f (0, 0) = 0, the linear function L(x, y) is

L(x, y) = f (0, 0) + fx(0, 0)x + fy(0, 0)y = fx(0, 0)x + fy(0, 0)y

Substituting in (1) gives

f (x, y) = fx(0, 0)x + fy(0, 0)y + ε(x, y)

√
x2 + y2

Therefore,

lim
(x,y)→(0,0)

f (x, y) − fx(0, 0)x − fy(0, 0)y√
x2 + y2

= lim
(x,y)→(0,0)

ε(x, y) = 0

This exercise shows that there exists a function that is not differentiable at (0, 0) even though all directional
derivatives at (0, 0) exist. Define f (x, y) = x2y/(x2 + y2) for (x, y) �= 0 and f (0, 0) = 0.

(a) Use the limit definition to show that Dvf (0, 0) exists for all vectors v. Show that fx(0, 0) = fy(0, 0) = 0.

(b) Prove that f is not differentiable at (0, 0) by showing that Eq. (9) does not hold.

69. Prove that if f (x, y) is differentiable and ∇f(x,y) = 0 for all (x, y), then f is constant.

solution Since ∇f = 〈fx, fy

〉 = 〈0, 0〉 for all (x, y), we have

fx(x, y) = fy(x, y) = 0 for all (x, y) (1)

Let Q0 = (x0, y0) be a fixed point and let P = (x1, y1) be any other point. Let c(t) = 〈x(t), y(t)〉 be a parametric
equation of the line joining Q0 and P , with P = c(t1) and Q0 = c(t0). We define the following function:

F(t) = f (x(t), y(t))

F (t) is defined for all t , since f (x, y) is defined for all (x, y). By the Chain Rule we have

F ′(t) = fx (x(t), y(t))
dx

dt
+ fy (x(t), y(t))

dy

dt

Combining with (1) we get F ′(t) = 0 for all t . We conclude that F(t) = const. That is, f is constant on the line c(t). In
particular, f (P ) = f (Q0). Since P is any point, it follows that f (x, y) is a constant function.
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Prove the following Quotient Rule, where f, g are differentiable:

∇
(

f

g

)
= g∇f − f ∇g

g2

In Exercises 71–73, a path c(t) = (x(t), y(t)) follows the gradient of a function f (x, y) if the tangent vector c′(t) points
in the direction of ∇f for all t . In other words, c′(t) = k(t)∇fc(t) for some positive function k(t). Note that in this case,
c(t) crosses each level curve of f (x, y) at a right angle.

71. Show that if the path c(t) = (x(t), y(t)) follows the gradient of f (x, y), then

y′(t)
x′(t) = fy

fx

solution Since c(t) follows the gradient of f (x, y), we have

c′(t) = k(t)∇fc(t) = k(t)
〈
fx (c(t)) , fy (c(t))

〉
which implies that

x′(t) = k(t)fx (c(t)) and y′(t) = k(t)fy (c(t))

Hence,

y′(t)
x′(t) = k(t)fy (c(t))

k(t)fx (c(t))
= fy (c(t))

fx (c(t))

or in short notation,

y′(t)
x′(t) = fy

fx

Find a path of the form c(t) = (t, g(t)) passing through (1, 2) that follows the gradient of f (x, y) = 2x2 + 8y2

(Figure 16). Hint: Use Separation of Variables.

73. Find the curve y = g(x) passing through (0, 1) that crosses each level curve of f (x, y) = y sin x at a right
angle. If you have a computer algebra system, graph y = g(x) together with the level curves of f .

solution Using fx = y cos x, fy = sin x, and y(0) = 1, we get

dy

dx
= tan x

y
⇒ y(0) = 1

We solve the differential equation using separation of variables:

y dy = tan x dx∫
y dy =

∫
tan x dx

1

2
y2 = − ln | cos x| + k

y2 = −2 ln | cos x| + k = − ln
(

cos2 x
)

+ k

y = ±
√

− ln
(
cos2 x
)+ k

Since y(0) = 1 > 0, the appropriate sign is the positive sign. That is,

y =
√

− ln
(
cos2 x
)+ k (1)

We find the constant k by substituting x = 0, y = 1 and solve for k. This gives

1 =
√

− ln
(
cos2 0
)+ k = √− ln 1 + k = √

k

Hence,

k = 1

Substituting in (2) gives the following solution:

y =
√

1 − ln
(
cos2 x
)

(2)

The following figure shows the graph of the curve (3) together with some level curves of f .
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x
0

y

y sin x = c
c = 0.15

y = √1-ln (cos2x)

14.6 The Chain Rule (LT Section 15.6)

Preliminary Questions
1. Let f (x, y) = xy, where x = uv and y = u + v.

(a) What are the primary derivatives of f ?

(b) What are the independent variables?

solution

(a) The primary derivatives of f are ∂f
∂x

and ∂f
∂y

.

(b) The independent variables are u and v, on which x and y depend.

In Questions 2 and 3, suppose that f (u, v) = uev , where u = rs and v = r + s.

2. The composite function f (u, v) is equal to:

(a) rser+s (b) res (c) rsers

solution The composite function f (u, v) is obtained by replacing u and v in the formula for f (u, v) by the corre-
sponding functions u = rs and v = r + s. This gives

f
(
u(r, s), v(r, s)

) = u(r, s)ev(r,s) = rser+s

Answer (a) is the correct answer.

3. What is the value of f (u, v) at (r, s) = (1, 1)?

solution We compute u = rs and v = r + s at the point (r, s) = (1, 1):

u(1, 1) = 1 · 1 = 1; v(1, 1) = 1 + 1 = 2

Substituting in f (u, v) = uev , we get

f (u, v)

∣∣∣∣
(r,s)=(1,1)

= 1 · e2 = e2.

4. According to the Chain Rule, ∂f/∂r is equal to (choose the correct answer):

(a)
∂f

∂x

∂x

∂r
+ ∂f

∂x

∂x

∂s
(b)

∂f

∂x

∂x

∂r
+ ∂f

∂y

∂y

∂r
(c)

∂f

∂r

∂r

∂x
+ ∂f

∂s

∂s

∂x

solution For a function f (x, y) where x = x(r, s) and y = y(r, s), the Chain Rule states that the partial derivative
∂f
∂r

is as given in (b). That is,

∂f

∂x

∂x

∂r
+ ∂f

∂y

∂y

∂r

5. Suppose that x, y, z are functions of the independent variables u, v, w. Which of the following terms appear in the
Chain Rule expression for ∂f/∂w?

(a)
∂f

∂v

∂x

∂v
(b)

∂f

∂w

∂w

∂x
(c)

∂f

∂z

∂z

∂w

solution By the Chain Rule, the derivative ∂f
∂w

is

∂f

∂w
= ∂f

∂x

∂x

∂w
+ ∂f

∂y

∂y

∂w
+ ∂f

∂z

∂z

∂w

Therefore (c) is the only correct answer.
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6. With notation as in the previous question, does ∂x/∂v appear in the Chain Rule expression for ∂f/∂u?

solution The Chain Rule expression for ∂f
∂u

is

∂f

∂u
= ∂f

∂x

∂x

∂u
+ ∂f

∂y

∂y

∂u
+ ∂f

∂z

∂z

∂u

The derivative ∂x
∂v

does not appear in differentiating f with respect to the independent variable u.

Exercises
1. Let f (x, y, z) = x2y3 + z4 and x = s2, y = st2, and z = s2t .

(a) Calculate the primary derivatives
∂f

∂x
,
∂f

∂y
,
∂f

∂z
.

(b) Calculate
∂x

∂s
,
∂y

∂s
,
∂z

∂s
.

(c) Compute
∂f

∂s
using the Chain Rule:

∂f

∂s
= ∂f

∂x

∂x

∂s
+ ∂f

∂y

∂y

∂s
+ ∂f

∂z

∂z

∂s

Express the answer in terms of the independent variables s, t .

solution

(a) The primary derivatives of f (x, y, z) = x2y3 + z4 are

∂f

∂x
= 2xy3,

∂f

∂y
= 3x2y2,

∂f

∂z
= 4z3

(b) The partial derivatives of x, y, and z with respect to s are

∂x

∂s
= 2s,

∂y

∂s
= t2,

∂z

∂s
= 2st

(c) We use the Chain Rule and the partial derivatives computed in parts (a) and (b) to find the following derivative:

∂f

∂s
= ∂f

∂x

∂x

∂s
+ ∂f

∂y

∂y

∂s
+ ∂f

∂z

∂z

∂s
= 2xy3 · 2s + 3x2y2t2 + 4z3 · 2st = 4xy3s + 3x2y2t2 + 8z3st

To express the answer in terms of the independent variables s, t we substitute x = s2, y = st2, z = s2t . This gives

∂f

∂s
= 4s2(st2)

3
s + 3(s2)

2
(st2)

2
t2 + 8(s2t)

3
st = 4s6t6 + 3s6t6 + 8s7t4 = 7s6t6 + 8s7t4.

Let f (x, y) = x cos(y) and x = u2 + v2 and y = u − v.

(a) Calculate the primary derivatives
∂f

∂x
,
∂f

∂y
.

(b) Use the Chain Rule to calculate ∂f/∂v. Leave the answer in terms of both the dependent and the independent
variables.

(c) Determine (x, y) for (u, v) = (2, 1) and evaluate ∂f/∂v at (u, v) = (2, 1).

In Exercises 3–10, use the Chain Rule to calculate the partial derivatives. Express the answer in terms of the independent
variables.

3.
∂f

∂s
,
∂f

∂r
; f (x, y, z) = xy + z2, x = s2, y = 2rs, z = r2

solution We perform the following steps:

Step 1. Compute the primary derivatives. The primary derivatives of f (x, y, z) = xy + z2 are

∂f

∂x
= y,

∂f

∂y
= x,

∂f

∂z
= 2z

Step 2. Apply the Chain Rule. By the Chain Rule,

∂f

∂s
= ∂f

∂x
· ∂x

∂s
+ ∂f

∂y
· ∂y

∂s
+ ∂f

∂z
· ∂z

∂s
(1)

∂f

∂r
= ∂f

∂x
· ∂x

∂r
+ ∂f

∂y
· ∂y

∂r
+ ∂f

∂z
· ∂z

∂r
(2)

We compute the partial derivatives of x, y, z with respect to s and r:

∂x

∂s
= 2s,

∂y

∂s
= 2r,

∂z

∂s
= 0.

∂x

∂r
= 0,

∂y

∂r
= 2s,

∂z

∂r
= 2r.
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Substituting these derivatives and the primary derivatives computed in step 1 in (1) and (2), we get

∂f

∂s
= y · 2s + x · 2r + 2z · 0 = 2ys + 2xr

∂f

∂r
= y · 0 + x · 2s + 2z · 2r = 2xs + 4zr

Step 3. Express the answer in terms of r and s. We substitute x = s2, y = 2rs, and z = r2 in ∂f
∂s

and ∂f
∂r

in step 2, to
obtain

∂f

∂s
= 2rs · 2s + s2 · 2r = 4rs2 + 2rs2 = 6rs2.

∂f

∂r
= 2s2 · s + 4r2 · r = 2s3 + 4r3.

∂f

∂r
,
∂f

∂t
; f (x, y, z) = xy + z2, x = r + s − 2t , y = 3rt , z = s25.

∂g

∂u
,
∂g

∂v
; g(x, y) = cos(x − y), x = 3u − 5v, y = −7u + 15v

solution We use the following steps:

Step 1. Compute the primary derivatives. The primary derivatives of g(x, y) = cos(x − y) are:

∂g

∂x
= − sin(x − y),

∂g

∂y
= sin(x − y)

Step 2. Apply the Chain Rule. By the Chain Rule,

∂g

∂u
= ∂g

∂x

∂x

∂u
+ ∂g

∂y

∂y

∂u
= − sin(x − y)

∂x

∂u
+ sin(x − y)

∂y

∂u

∂g

∂v
= ∂g

∂x

∂x

∂v
+ ∂g

∂y

∂y

∂v
= − sin(x − y)

∂x

∂v
+ sin(x − y)

∂y

∂v

We compute the partial derivatives of x, y with respect to u and v:

∂x

∂u
= 3,

∂x

∂v
= −5

∂y

∂u
= −7,

∂y

∂v
= 15

substituting in the expressions above we have:

∂g

∂u
= − sin(x − y)(3) + sin(x − y)(−7) = −10 sin(x − y)

∂g

∂v
= − sin(x − y)(−5) + sin(x − y)(15) = 20 sin(x − y)

Step 3. Express the answer in terms of u and v. We substitute x = 3u − 5v and y = −7u + 15v in ∂g/∂u and ∂g/∂v

found in step 2. This gives:

∂g

∂u
= −10 sin(10u − 20v)

∂g

∂v
= 20 sin(10u − 20v)

∂R

∂u
,
∂R

∂v
; R(x, y) = (3x + 4y)5, x = u2, y = uv

7.
∂F

∂y
; F(u, v) = eu+v , u = x2, v = xy

solution We use the following steps:

Step 1. Compute the primary derivatives. The primary derivatives of F(u, v) = eu+v are

∂f

∂u
= eu+v,

∂f

∂v
= eu+v

Step 2. Apply the Chain Rule. By the Chain Rule,

∂F

∂y
= ∂F

∂u

∂u

∂y
+ ∂F

∂v

∂v

∂y
= eu+v ∂u

∂y
+ eu+v ∂v

∂y
= eu+v

(
∂u

∂y
+ ∂v

∂y

)
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We compute the partial derivatives of u and v with respect to y:

∂u

∂y
= 0,

∂v

∂y
= x

We substitute to obtain

∂F

∂y
= xeu+v (1)

Step 3. Express the answer in terms of x and y. We substitute u = x2, v = xy in (1) and (2), obtaining

∂F

∂y
= xex2+xy .

∂f

∂u
; f (x, y) = x2 + y2, x = eu+v , y = u + v

9.
∂h

∂t2
; h(x, y) = x

y
, x = t1t2, y = t2

1 t2

solution We use the following steps:

Step 1. Compute the primary derivatives. The primary derivatives of h(x, y) = x
y are

∂h

∂x
= 1

y
,

∂h

∂y
= − x

y2

Step 2. Apply the Chain Rule. By the Chain Rule,

∂h

∂t2
= ∂h

∂x

∂x

∂t2
+ ∂h

∂y

∂y

∂t2
= 1

y

∂x

∂t2
− x

y2

∂y

∂t2

We compute the partial derivatives of x and y with respect to t2:

∂x

∂t2
= t1,

∂y

∂t2
= t2

1

Hence,

∂h

∂t2
= t1

y
− x

y2
t2
1

Step 3. Express the answer in terms of t1 and t2. We substitute x = t1t2, y = t2
1 t2 in ∂h

∂t2
computed in step 2, to obtain

∂h

∂t2
= t1

t2
1 t2

− t1t2 · t2
1

(t2
1 t2)

2
= 1

t1t2
− 1

t1t2
= 0

Remark: Notice that h
(
x(t1, t2), y(t1, t2)

)= h(t1, t2) = t1t2
t2
1 t2

= 1
t1

. h(t1, t2) is independent of t2, hence ∂h
∂t2

= 0 (as

obtained in our computations).

∂f

∂θ
; f (x, y, z) = xy − z2, x = r cos θ , y = cos2 θ , z = r

In Exercises 11–16, use the Chain Rule to evaluate the partial derivative at the point specified.

11. ∂f/∂u and ∂f/∂v at (u, v) = (−1, −1), where f (x, y, z) = x3 + yz2, x = u2 + v, y = u + v2, z = uv.

solution The primary derivatives of f (x, y, z) = x3 + yz2 are

∂f

∂x
= 3x2,

∂f

∂y
= z2,

∂f

∂z
= 2yz

By the Chain Rule we have

∂f

∂u
= ∂f

∂x

∂x

∂u
+ ∂f

∂y

∂y

∂u
+ ∂f

∂z

∂z

∂u
= 3x2 ∂x

∂u
+ z2 ∂y

∂u
+ 2yz

∂z

∂u
(1)

∂f

∂v
= ∂f

∂x

∂x

∂v
+ ∂f

∂y

∂y

∂v
+ ∂f

∂z

∂z

∂v
= 3x2 ∂x

∂v
+ z2 ∂y

∂v
+ 2yz

∂z

∂v
(2)

We compute the partial derivatives of x, y, and z with respect to u and v:

∂x

∂u
= 2u,

∂y

∂u
= 1,

∂z

∂u
= v

∂x

∂v
= 1,

∂y

∂v
= 2v,

∂z

∂v
= u
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Substituting in (1) and (2) we get

∂f

∂u
= 6x2u + z2 + 2yzv (3)

∂f

∂v
= 3x2 + 2vz2 + 2yzu (4)

We determine (x, y, z) for (u, v) = (−1, −1):

x = (−1)2 − 1 = 0, y = −1 + (−1)2 = 0, z = (−1) · (−1) = 1.

Finally, we substitute (x, y, z) = (0, 0, 1) and (u, v) = (−1, −1) in (3), (4) to obtain the following derivatives:

∂f

∂u

∣∣∣∣
(u,v)=(−1,−1)

= 6 · 02 · (−1) + 12 + 2 · 0 · 1 · (−1) = 1

∂f

∂v

∣∣∣∣
(u,v)=(−1,−1)

= 3 · 02 + 2 · (−1) · 12 + 2 · 0 · 1 · (−1) = −2

∂f/∂s at (r, s) = (1, 0), where f (x, y) = ln(xy), x = 3r + 2s, y = 5r + 3s.13. ∂g/∂θ at (r, θ) = (2√
2, π

4

)
, where g(x, y) = 1/(x + y2), x = r sin θ , y = r cos θ .

solution We compute the primary derivatives of g(x, y) = 1
x+y2 :

∂g

∂x
= − 1

(x + y2)
2
,

∂g

∂y
= − 2y

(x + y2)
2

By the Chain Rule we have

∂g

∂θ
= ∂g

∂x

∂x

∂θ
+ ∂g

∂y

∂y

∂θ
= − 1

(x + y2)
2

∂x

∂θ
− 2y

(x + y2)
2

∂y

∂θ
= − 1

(x + y2)
2

(
∂x

∂θ
+ 2y

∂y

∂θ

)

We find the partial derivatives ∂x
∂θ

, ∂y
∂θ

:

∂x

∂θ
= r cos θ,

∂y

∂θ
= −r sin θ

Hence,

∂g

∂θ
= − r

(x + y2)
2
(cos θ − 2y sin θ) (1)

At the point (r, θ) = (2√
2, π

4

)
, we have x = 2

√
2 sin π

4 = 2 and y = 2
√

2 cos π
4 = 2. Substituting (r, θ) = (2√

2, π
4

)
and (x, y) = (2, 2) in (1) gives the following derivative:

∂g

∂θ

∣∣∣∣
(r,θ)=
(

2
√

2, π
4

) = −2
√

2

(2 + 22)
2

(
cos

π

4
− 4 sin

π

4

)
= −√

2

18

(
1√
2

− 4√
2

)
= 1

6
.

∂g/∂s at s = 4, where g(x, y) = x2 − y2, x = s2 + 1, y = 1 − 2s.
15. ∂g/∂u at (u, v) = (0, 1), where g(x, y) = x2 − y2, x = eu cos v, y = eu sin v.

solution The primary derivatives of g(x, y) = x2 − y2 are

∂g

∂x
= 2x,

∂g

∂y
= −2y

By the Chain Rule we have

∂g

∂u
= ∂g

∂x
· ∂x

∂u
+ ∂g

∂y
· ∂y

∂u
= 2x

∂x

∂u
− 2y

∂y

∂u
(1)

We find ∂x
∂u

and ∂y
∂u

:

∂x

∂u
= eu cos v,

∂y

∂u
= eu sin v

Substituting in (1) gives

∂g

∂u
= 2xeu cos v − 2yeu sin v = 2eu(x cos v − y sin v) (2)
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We determine (x, y) for (u, v) = (0, 1):

x = e0 cos 1 = cos 1, y = e0 sin 1 = sin 1

Finally, we substitute (u, v) = (0, 1) and (x, y) = (cos 1, sin 1) in (2) and use the identity cos2 α − sin2 α = cos 2α, to
obtain the following derivative:

∂g

∂u

∣∣∣∣
(u,v)=(0,1)

= 2e0
(

cos21 − sin2 1
)

= 2 · cos 2 · 1 = 2 cos 2

∂h

∂q
at (q, r) = (3, 2), where h(u, v) = uev , u = q3, v = qr2.

17. Jessica and Matthew are running toward the point P along the straight paths that make a fixed angle of θ (Figure
3). Suppose that Matthew runs with velocity va m/s and Jessica with velocity vb m/s. Let f (x, y) be the distance from
Matthew to Jessica when Matthew is x meters from P and Jessica is y meters from P .

(a) Show that f (x, y) =
√

x2 + y2 − 2xy cos θ .

(b) Assume that θ = π/3. Use the Chain Rule to determine the rate at which the distance between Matthew and Jessica
is changing when x = 30, y = 20, va = 4 m/s, and vb = 3 m/s.

A

B

x
va

vb
y

P

θ

FIGURE 3

solution
(a) This is a simple application of the Law of Cosines. Connect points A and B in the diagram to form a line segment
that we will call f . Then, the Law of Cosines says that f 2 = x2 + y2 − 2xy cos θ . By taking square roots, we find that
f =
√

x2 + y2 − 2xy cos θ .

(b) Using the chain rule,

df

dt
= ∂f

∂x

dx

dt
+ ∂f

∂y

dy

dt

so we get

df

dt
= (x − y cos θ)dx/dt√

x2 + y2 − 2xy cos θ
+ (y − x cos θ)dy/dt√

x2 + y2 − 2xy cos θ

and using x = 30, y = 20, and dx/dt = 4, dy/dt = 3, we get

df

dt
= 180 − 170 cos θ√

1300 − 1200 cos θ

The Law of Cosines states that c2 = a2 + b2 − 2ab cos θ , where a, b, c are the sides of a triangle and θ is the
angle opposite the side of length c.

(a) Compute ∂θ/∂a, ∂θ/∂b, and ∂θ/∂c using implicit differentiation.

(b) Suppose that a = 10, b = 16, c = 22. Estimate the change in θ if a and b are increased by 1 and c is increased
by 2.

19. Let u = u(x, y), and let (r, θ) be polar coordinates. Verify the relation

‖∇u‖2 = u2
r + 1

r2
u2
θ 8

Hint: Compute the right-hand side by expressing uθ and ur in terms of ux and uy .

solution By the Chain Rule we have

uθ = uxxθ + uyyθ (1)

ur = uxxr + uyyr (2)

Since x = r cos θ and y = r sin θ , the partial derivatives of x and y with respect to r and θ are

xθ = −r sin θ, yθ = r cos θ

xr = cos θ, yr = sin θ

Substituting in (1) and (2) gives

uθ = (−r sin θ)ux + (r cos θ)uy (3)

ur = (cos θ)ux + (sin θ)uy (4)
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We now solve these equations for ux and uy in terms of uθ and ur . Multiplying (3) by (− sin θ) and (4) by r cos θ and
adding the resulting equations gives

(− sin θ)uθ = (r sin2 θ)ux − (r cos θ sin θ)uy

+ r cos θur = (r cos2 θ)ux + (r cos θ sin θ)uy

(r cos θ)ur − (sin θ)uθ = rux

or

ux = (cos θ)ur − sin θ

r
uθ (5)

Similarly, we multiply (3) by cos θ and (4) by r sin θ and add the resulting equations. We get

(cos θ)uθ = (−r sin θ cos θ)ux +
(
r cos2 θ

)
uy

+ r sin θur = (r sin θ cos θ)ux + (r sin2 θ)uy

(cos θ)uθ + (r sin θ)ur = ruy

or

uy = (sin θ)ur + cos θ

r
uθ (6)

We now use (5) and (6) to compute ‖∇u‖2 in terms of ur and uθ . We get

‖∇u‖2 = u2
x + u2

y =
(

(cos θ)ur − sin θ

r
uθ

)2
+
(

(sin θ)ur + cos θ

r
uθ

)2

=
(

cos2 θ
)

u2
r − 2 cos θ sin θ

r
uruθ + sin2 θ

r2
u2
θ +
(

sin2 θ
)

u2
r + 2 sin θ cos θ

r
uruθ + cos2 θ

r2
u2
θ

=
(

cos2 θ + sin2 θ
)

u2
r + 1

r2

(
sin2θ + cos2 θ

)
u2
θ = u2

r + 1

r2
u2
θ

That is,

‖∇u‖2 = u2
r + 1

r2
u2
θ

Let u(r, θ) = r2 cos2 θ . Use Eq. (8) to compute ‖∇u‖2. Then compute ‖∇u‖2 directly by observing that u(x, y) =
x2, and compare.

21. Let x = s + t and y = s − t . Show that for any differentiable function f (x, y),

(
∂f

∂x

)2
−
(

∂f

∂y

)2
= ∂f

∂s

∂f

∂t

solution By the Chain Rule we have

∂f

∂s
= ∂f

∂x

∂x

∂s
+ ∂f

∂y

∂y

∂s
= ∂f

∂x
· 1 + ∂f

∂y
· 1 = ∂f

∂x
+ ∂f

∂y

∂f

∂t
= ∂f

∂x

∂x

∂t
+ ∂f

∂y

∂y

∂t
= ∂f

∂x
· 1 + ∂f

∂y
· (−1) = ∂f

∂x
− ∂f

∂y

Hence, using the algebraic identity (a + b)(a − b) = a2 − b2, we get

∂f

∂s
· ∂f

∂t
=
(

∂f

∂x
+ ∂f

∂y

)
·
(

∂f

∂x
− ∂f

∂y

)
=
(

∂f

∂x

)2
−
(

∂f

∂y

)2
.

Express the derivatives

∂f

∂ρ
,
∂f

∂θ
,
∂f

∂φ
in terms of

∂f

∂x
,
∂f

∂y
,
∂f

∂z

where (ρ, θ, φ) are spherical coordinates.

23. Suppose that z is defined implicitly as a function of x and y by the equation F(x, y, z) = xz2 + y2z + xy − 1 = 0.

(a) Calculate Fx, Fy, Fz.

(b) Use Eq. (7) to calculate
∂z

∂x
and

∂z

∂y
.

solution

(a) The partial derivatives of F are

Fx = z2 + y, Fy = 2yz + x, Fz = 2xz + y2
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(b) By Eq. (7) we have

∂z

∂x
= −Fx

Fz
= − z2 + y

2xz + y2

∂z

∂y
= −Fy

Fz
= − 2yz + x

2xz + y2

Calculate ∂z/∂x and ∂z/∂y at the points (3, 2, 1) and (3, 2, −1), where z is defined implicitly by the equation
z4 + z2x2 − y − 8 = 0.

In Exercises 25–30, calculate the partial derivative using implicit differentiation.

25.
∂z

∂x
, x2y + y2z + xz2 = 10

solution For F(x, y, z) = x2y + y2z + xz2 = 10 we have

∂z

∂x
= −Fx

Fz
(1)

We compute the partial derivatives of F :

Fx = 2xy + z2, Fz = y2 + 2xz

Substituting in (1) gives the following derivative:

∂z

∂x
= − 2xy + z2

2xz + y2

∂w

∂z
, x2w + w3 + wz2 + 3yz = 0

27.
∂z

∂y
, exy + sin(xz) + y = 0

solution We use Eq. (7):

∂z

∂y
= −Fy

Fz
(1)

The partial derivatives of F(x, y, z) = exy + sin(xz) + y are

Fy = xexy + 1, Fz = x cos(xz)

Substituting in (1), we get

∂z

∂y
= − xexy + 1

x cos(xz)

∂r

∂t
and

∂t

∂r
, r2 = te s/r29.

∂w

∂y
,

1

w2 + x2
+ 1

w2 + y2
= 1 at (x, y, w) = (1, 1, 1)

solution Using the formula obtained by implicit differentiation (Eq. (7)), we have

∂w

∂y
= − Fy

Fw
(1)

We find the partial derivatives of F(x, y, w) = 1
w2+x2 + 1

w2+y2 − 1:

Fy = − 2y

(w2 + y2)
2
, Fw = −2w

(w2 + x2)
2

− 2w

(w2 + y2)
2

We substitute in (1) to obtain

∂w

∂y
= −

−2y

(w2+y2)
2

−2w

(w2+x2)
2 − 2w

(w2+y2)
2

= − y(w2 + x2)
2

w(w2 + y2)
2 + w(w2 + x2)

2
= −y(w2 + x2)

2

w
(
(w2 + y2)

2 + (w2 + x2)
2)

∂U/∂T and ∂T /∂U , (T U − V )2 ln(W − UV ) = 1 at (T , U, V, W) = (1, 1, 2, 4)
31. Let r = 〈x, y, z〉 and er = r/‖r‖. Show that if a function f (x, y, z) = F(r) depends only on the distance from the
origin r = ‖r‖ =

√
x2 + y2 + z2, then

∇f = F ′(r)er 9

solution The gradient of f is the following vector:

∇f =
〈
∂f

∂x
,
∂f

∂y
,
∂f

∂z

〉
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We must express this vector in terms of r and r . Using the Chain Rule, we have

∂f

∂x
= F ′(r) ∂r

∂x
= F ′(r) · 2x

2
√

x2 + y2 + z2
= F ′(r) · x

r

∂f

∂y
= F ′(r) ∂r

∂y
= F ′(r) · 2y

2
√

x2 + y2 + z2
= F ′(r) · y

r

∂f

∂z
= F ′(r) ∂r

∂z
= F ′(r) · 2z

2
√

x2 + y2 + z2
= F ′(r) · z

r

Hence,

∇f =
〈
F ′(r) x

r
, F ′(r) y

r
, F ′(r) z

r

〉
= F ′(r)

r
〈x, y, z〉 = F ′(r) r

‖r‖ = F ′(r)er

Let f (x, y, z) = e−x2−y2−z2 = e−r2
, with r as in Exercise 31. Compute ∇f directly and using Eq. (9).33. Use Eq. (9) to compute ∇

(
1

r

)
.

solution To compute ∇( 1r ) using Eq. (9), we let F(r) = 1

r
:

F ′(r) = − 1

r2

We obtain

∇
(

1

r

)
= F ′(r)er = − 1

r2
· r
‖r‖ = − 1

r3
r

Use Eq. (9) to compute ∇(ln r).
35. Figure 4 shows the graph of the equation

F(x, y, z) = x2 + y2 − z2 − 12x − 8z − 4 = 0

(a) Use the quadratic formula to solve for z as a function of x and y. This gives two formulas, depending on the choice
of sign.
(b) Which formula defines the portion of the surface satisfying z ≥ −4? Which formula defines the portion satisfying
z ≤ −4?
(c) Calculate ∂z/∂x using the formula z = f (x, y) (for both choices of sign) and again via implicit differentiation. Verify
that the two answers agree.

z

z = −4

y

x

FIGURE 4 Graph of x2 + y2 − z2 − 12x − 8z − 4 = 0.

solution
(a) We rewrite F(x, y, z) = 0 as a quadratic equation in the variable z:

z2 + 8z +
(

4 + 12x − x2 − y2
)

= 0

We solve for z. The discriminant is

82 − 4
(

4 + 12x − x2 − y2
)

= 4x2 + 4y2 − 48x + 48 = 4
(
x2 + y2 − 12x + 12

)
Hence,

z1,2 =
−8 ±
√

4
(
x2 + y2 − 12x + 12

)
2

= −4 ±
√

x2 + y2 − 12x + 12

We obtain two functions:

z = −4 +
√

x2 + y2 − 12x + 12, z = −4 −
√

x2 + y2 − 12x + 12
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(b) The formula with the positive root defines the portion of the surface satisfying z ≥ −4, and the formula with the
negative root defines the portion satisfying z ≤ −4.

(c) Differentiating z = −4 +
√

x2 + y2 − 12x + 12 with respect to x, using the Chain Rule, gives

∂z

∂x
= 2x − 12

2
√

x2 + y2 − 12x + 12
= x − 6√

x2 + y2 − 12x + 12
(1)

Alternatively, using the formula for ∂z
∂x

obtained by implicit differentiation gives

∂z

∂x
= −Fx

Fz
(2)

We find the partial derivatives of F(x, y, z) = x2 + y2 − z2 − 12x − 8z − 4:

Fx = 2x − 12, Fz = −2z − 8

Substituting in (2) gives

∂z

∂x
= − 2x − 12

−2z − 8
= x − 6

z + 4

This result is the same as the result in (1), since z = −4 +
√

x2 + y2 − 12x + 12 implies that√
x2 + y2 − 12x + 12 = z + 4

For z = −4 −
√

x2 + y2 − 12x + 12, differentiating with respect to x gives

∂z

∂x
= − 2x − 12

2
√

x2 + y2 − 12x + 12
= x − 6

−
√

x2 + y2 − 12x + 12
= x − 6

z + 4

which is equal to −Fx
Fz

computed above.

For all x > 0, there is a unique value y = r(x) that solves the equation y3 + 4xy = 16.

(a) Show that dy/dx = −4y/(3y2 + 4x).

(b) Let g(x) = f (x, r(x)), where f (x, y) is a function satisfying

fx(1, 2) = 8, fy(1, 2) = 10

Use the Chain Rule to calculate g′(1). Note that r(1) = 2 because (x, y) = (1, 2) satisfies y3 + 4xy = 16.

37. The pressure P , volume V , and temperature T of a van der Waals gas with n molecules (n constant) are related by
the equation (

P + an2

V 2

)
(V − nb) = nRT

where a, b, and R are constant. Calculate ∂P/∂T and ∂V/∂P .

solution Let F be the following function:

F(P, V, T ) =
(

P + an2

V 2

)
(V − nb) − nRT

By Eq. (7),

∂P

∂T
= −

∂F
∂T
∂F
∂P

,
∂V

∂P
= −

∂F
∂P
∂F
∂V

(1)

We compute the partial derivatives of F :

∂F

∂P
= V − nb

∂F

∂T
= −nR

∂F

∂V
= −2an2V −3(V − nb) +

(
P + an2

V 2

)
= P + 2an3b

V 3
− an2

V 2

Substituting in (1) gives

∂P

∂T
= − −nR

V − nb
= nR

V − nb

∂V

∂P
= − V − nb

P + 2an3b
V 3 − an2

V 2

= nbV 3 − V 4

PV 3 + 2an3b − an2V
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When x, y, and z are related by an equation F(x, y, z) = 0, we sometimes write (∂z/∂x)y in place of ∂z/∂x to
indicate that in the differentiation, z is treated as a function of x with y held constant (and similarly for the other
variables).

(a) Use Eq. (7) to prove the cyclic relation(
∂z

∂x

)
y

(
∂x

∂y

)
z

(
∂y

∂z

)
x

= −1

(b) Verify Eq. (10) for F(x, y, z) = x + y + z = 0.

(c) Verify the cyclic relation for the variables P, V, T in the ideal gas law PV − nRT = 0 (n and R are constants).

39. Show that if f (x) is differentiable and c �= 0 is a constant, then u(x, t) = f (x − ct) satisfies the so-called advection
equation

∂u

∂t
+ c

∂u

∂x
= 0

solution For s = x − ct , we have u(x, t) = f (s). We use the Chain Rule to compute ∂u
∂t

and ∂u
∂x

:

∂u

∂t
= f ′(s) ∂s

∂t
= f ′(s) · (−c) = −cf ′(s) (1)

∂u

∂x
= f ′(s) ∂s

∂x
= f ′(s) · 1 = f ′(s) (2)

Equalities (1) and (2) imply that:

∂u

∂t
= −c

∂u

∂x
or

∂u

∂t
+ c

∂u

∂x
= 0

Further Insights and Challenges
In Exercises 40–43, a function f (x, y, z) is called homogeneous of degree n if f (λx, λy, λz) = λnf (x, y, z) for all
λ ∈ R.

Show that the following functions are homogeneous and determine their degree.

(a) f (x, y, z) = x2y + xyz (b) f (x, y, z) = 3x + 2y − 8z

(c) f (x, y, z) = ln

(
xy

z2

)
(d) f (x, y, z) = z4

41. Prove that if f (x, y, z) is homogeneous of degree n, then fx(x, y, z) is homogeneous of degree n − 1. Hint: Either
use the limit definition or apply the Chain Rule to f (λx, λy, λz).

solution We are given that f (λx, λy, λz) = λnf (x, y, z) for all λ, and we must show that fx(λx, λy, λz) =
λn−1fx(x, y, z). We use the limit definition of fx . Since for all λ �= 0, λh → 0 if and only if h → 0, we get

fx(λx, λy, λz) = lim
h→0

f (λx + λh, λy, λz) − f (λx, λy, λz)

λh
= lim

h→0

f (λ(x + h), λy, λz) − f (λx, λy, λz)

λh

= lim
h→0

λnf (x + h, y, z) − λnf (x, y, z)

λh
= lim

h→0

λn−1f (x + h, y, z) − λn−1f (x, y, z)

h

= λn−1 lim
h→0

f (x + h, y, z) − f (x, y, z)

h
= λn−1fx(x, y, z)

Alternatively, we prove this property using the Chain Rule. We use the Chain Rule to differentiate the following equality
with respect to x:

f (λx, λy, λz) = λnf (x, y, z)

We get

fx(λx, λy, λz) · ∂(λx)

∂x
+ fy(λx, λy, λz) · ∂(λy)

∂x
+ fz(λx, λy, λz) · ∂(λz)

∂x
= λnfx(x, y, z)

Since ∂(λy)
∂x

= ∂(λz)
∂x

= 0 and ∂(λx)
∂x

= λ, we obtain for λ �= 0,

λfx(λx, λy, λz) = λnfx(x, y, z) or fx(λx, λy, λz) = λn−1fx(x, y, z)

Prove that if f (x, y, z) is homogeneous of degree n, then

x
∂f

∂x
+ y

∂f

∂y
+ z

∂f

∂z
= nf

Hint: Let F(t) = f (tx, ty, tz) and calculate F ′(1) using the Chain Rule.

43. Verify Eq. (11) for the functions in Exercise 40.

solution Eq. (11) states that if f is homogeneous of degree n, then

x
∂f

∂x
+ y

∂f

∂y
+ z

∂f

∂z
= nf

(a) f (x, y, z) = x2y + xyz. f is homogeneous of degree n = 3. The partial derivatives of f are

∂f

∂x
= 2xy + yz,

∂f

∂y
= x2 + xz,

∂f

∂z
= xy

Hence,

x
∂f

∂x
+ y

∂f

∂y
+ z

∂f

∂z
= x(2xy + yz) + y(x2 + xz) + zxy = 3x2y + 3xyz = 3(x2y + xyz) = 3f (x, y, z)
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(b) f (x, y, z) = 3x + 2y − 8z. f is homogeneous of degree n = 1. We have

x
∂f

∂x
+ y

∂f

∂y
+ z

∂f

∂z
= x · 3 + y · 2 + z · (−8) = 3x + 2y − 8z = 1 · f (x, y, z)

(c) f (x, y, z) = ln
(

xy

z2

)
. f is homogeneous of degree n = 0. The partial derivatives of f are

∂f

∂x
=

y

z2

xy

z2

= 1

x
,

∂f

∂y
=

x
z2

xy

z2

= 1

y
,

∂f

∂z
= −2z−3xy

xyz−2
= −2

z

Hence,

x
∂f

∂x
+ y

∂f

∂y
+ z

∂f

∂z
= x · 1

x
+ y · 1

y
+ z ·
(

−2

z

)
= 0 = 0 · f (x, y, z)

(d) f (x, y, z) = z4. f is homogeneous of degree n = 4. We have

x
∂f

∂x
+ y

∂f

∂y
+ z

∂f

∂z
= x · 0 + y · 0 + z · 4z3 = 4z4 = 4f (x, y, z)

Suppose that x = g(t, s), y = h(t, s). Show that ftt is equal to

fxx

(
∂x

∂t

)2
+ 2fxy

(
∂x

∂t

)(
∂y

∂t

)
+ fyy

(
∂y

∂t

)2
+ fx

∂2x

∂t2
+ fy

∂2y

∂t2

45. Let r =
√

x2
1 + · · · + x2

n and let g(r) be a function of r . Prove the formulas

∂g

∂xi
= xi

r
gr ,

∂2g

∂x2
i

= x2
i

r2
grr + r2 − x2

i

r3
gr

solution By the Chain Rule, we have

∂g

∂xi
= g′(r) ∂r

∂xi
= gr · 2xi

2
√

x2
1 + · · · + x2

n

= gr
xi

r

We differentiate ∂g
∂xi

with respect to xi . Using the Product Rule we get

∂2g

∂xi
2

= ∂

∂xi
(gr ) · xi

r
+ gr

∂

∂xi

(xi

r

)
(1)

We use the Chain Rule to compute ∂
∂xi

(gr ):

∂

∂xi
(gr ) = d

dr
(gr ) · ∂r

∂xi
= grr · 2xi

2
√

x2
1 + · · · + x2

n

= grr · xi

r
(2)

We compute ∂
∂xi

· ( xi
r

)
using the Quotient Rule and the Chain Rule:

∂

∂xi
·
(xi

r

)
=

1 · r − xi · ∂r
∂xi

r2
= r − xi · xi

r

r2
= r2 − x2

i

r3
(3)

Substituting (2) and (3) in (1), we obtain

∂2g

∂xi
2

= grr · xi

r
· xi

r
+ gr

r2 − x2
i

r3
= x2

i

r2
grr + r2 − x2

i

r3
gr

Prove that if g(r) is a function of r as in Exercise 45, then

∂2g

∂x2
1

+ · · · + ∂2g

∂x2
n

= grr + n − 1

r
gr

In Exercises 47–51, the Laplace operator is defined by �f = fxx + fyy . A function f (x, y) satisfying the Laplace

equation �f = 0 is called harmonic. A function f (x, y) is called radial if f (x, y) = g(r), where r =
√

x2 + y2.

47. Use Eq. (12) to prove that in polar coordinates (r, θ),

�f = frr + 1

r2
fθθ + 1

r
fr 13

solution The polar coordinates are x = r cos θ , y = r sin θ . Hence,

∂x

∂θ
= −r sin θ,

∂y

∂θ
= r cos θ,

∂x

∂r
= cos θ,

∂y

∂r
= sin θ,

∂2x

∂θ2
= −r cos θ,

∂2y

∂θ2
= −r sin θ,

∂2x

∂r2
= ∂2y

∂r2
= 0
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By Eq. (12) we have

fθθ = fxx

(
∂x

∂θ

)2
+ fyy

(
∂y

∂θ

)2
+ 2fxy

(
∂x

∂θ

)(
∂y

∂θ

)
+ fx

∂2x

∂θ2
+ fy

∂2y

∂θ2

= fxx

(
r2 sin2 θ

)
+ fyy

(
r2 cos2 θ

)
−
(

2r2 sin θ cos θ
)

fxy − (r cos θ)fx − (r sin θ)fy (1)

and

frr = fxx

(
∂x

∂r

)2
+ fyy

(
∂y

∂r

)2
+ 2fxy

(
∂x

∂r

)(
∂y

∂r

)
+ fx

∂2x

∂r2
+ fy

∂2y

∂r2

= fxx

(
cos2 θ
)

+ fyy

(
sin2 θ
)

+ (2 cos θ sin θ)fxy (2)

fr = fx
∂x

∂r
+ fy

∂y

∂r
= fx(cos θ) + fy(sin θ) (3)

We now compute the right-hand side of the equality we need to prove. Using (1), (2), and (3), we obtain

frr + 1

r2
fθθ + 1

r
fr = fxx

(
cos2 θ
)

+ fyy

(
sin2 θ
)

+ (2 cos θ sin θ)fxy + fxx

(
sin2θ
)

+fyy

(
cos2 θ
)

− (2 sin θ cos θ)fxy − cos θ

r
fx − sin θ

r
fy + fx

cos θ

r
+ fy

sin θ

r

= fxx

(
cos2 θ + sin2 θ

)
+ fyy

(
sin2θ + cos2 θ

)
= fxx + fyy = �f

We thus showed that

�f = frr + 1

r2
fθθ + 1

r
fr

Use Eq. (13) to show that f (x, y) = ln r is harmonic.
49. Verify that f (x, y) = x and f (x, y) = y are harmonic using both the rectangular and polar expressions for �f .

solution We must show that �f = 0.

(a) Using the rectangular expression for �f :

�f = fxx + fyy

For f (x, y) = x we have fx = 1, fy = 0, hence, fxx = 0, fyy = 0. Therefore �f = fxx + fyy = 0 + 0 = 0. For
f (x, y) = y we have fy = 1, fx = 0, hence, fxx = 0, fyy = 0, and again, �f = fxx + fyy = 0 + 0 = 0.

(b) Using the polar expression for �f ,

�f = frr + 1

r2
fθθ + 1

r
fr (1)

Since x = r cos θ , we have f (r, θ) = x = r cos θ . Hence,

fr = cos θ, fθ = −r sin θ, frr = 0, fθθ = −r cos θ

We now show that �f = 0:

�f = frr + 1

r2
fθθ + 1

r
fr = 0 + 1

r2
· (−r cos θ) + 1

r
cos θ = 0

Similarly, since y = r sin θ , we have f (r, θ) = y = r sin θ . Hence,

fr = sin θ, fθ = r cos θ, frr = 0, fθθ = −r sin θ

Substituting in (1) gives

�f = 0 + 1

r2
(−r sin θ) + 1

r
sin θ = 0

Verify that f (x, y) = tan−1 y
x is harmonic using both the rectangular and polar expressions for �f .

51. Use the Product Rule to show that

frr + 1

r
fr = r−1 ∂

∂r

(
r
∂f

∂r

)

Use this formula to show that if f is a radial harmonic function, then rfr = C for some constant C. Conclude that
f (x, y) = C ln r + b for some constant b.
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solution We show that frr + 1
r fr = r−1 ∂

∂r

(
r

∂f
∂r

)
. We use the Product Rule to compute the following derivative:

∂

∂r

(
r
∂f

∂r

)
= 1 · ∂f

∂r
+ r

∂

∂r

(
∂f

∂r

)
= ∂f

∂r
+ r

∂2f

∂r2
= fr + rfrr = r

(
frr + 1

r
fr

)

Hence,

frr + 1

r
fr = r−1 ∂

∂r

(
r
∂f

∂r

)
(1)

Now, suppose that f (x, y) is a radial harmonic function. Since f is radial, f (x, y) = g(r), therefore fθθ = 0. Substituting
in the polar expressions for �f gives

�f = frr + 1

r2
fθθ + 1

r
fr = frr + 1

r
fr = 0

Combining with (1), we get

r−1 ∂

∂r

(
r
∂f

∂r

)
= 0 or

∂

∂r

(
r
∂f

∂r

)
= 0

yielding

r
∂f

∂r
= C ⇒ fr = C

r

We now integrate the two sides to obtain∫
fr dr =

∫
C

r
dr or f (r) = C ln r + b.

14.7 Optimization in Several Variables (LT Section 15.7)

Preliminary Questions
1. The functions f (x, y) = x2 + y2 and g(x, y) = x2 − y2 both have a critical point at (0, 0). How is the behavior of

the two functions at the critical point different?

solution Let f (x, y) = x2 + y2 and g(x, y) = x2 − y2. In the domain R2, the partial derivatives of f and g are

fx = 2x, fxx = 2, fy = 2y, fyy = 2, fxy = 0

gx = 2x, gxx = 2, gy = −2y, gyy = −2, gxy = 0

Therefore, fx = fy = 0 at (0, 0) and gx = gy = 0 at (0, 0). That is, the two functions have one critical point, which
is the origin. Since the discriminant of f is D = 4 > 0, fxx > 0, and the discriminant of g is D = −4 < 0, f has
a local minimum (which is also a global minimum) at the origin, whereas g has a saddle point there. Moreover, since
lim

y→∞ g(0, y) = −∞ and lim
x→∞ g(x, 0) = ∞, g does not have global extrema on the plane. Similarly, f does not have a

global maximum but does have a global minimum, which is f (0, 0) = 0.

2. Identify the points indicated in the contour maps as local minima, local maxima, saddle points, or neither (Figure 15).

0

1

1

1

2

3

6

10
−1 −1 0

−1

−2

−3
−3

−6

−10

−3

3

3

000

FIGURE 15

solution If f (P ) is a local minimum or maximum, then the nearby level curves are closed curves encircling P . In
Figure (C), f increases in all directions emanating from P and decreases in all directions emanating from Q. Hence, f

has a local minimum at P and local maximum at Q.
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2

6

10

−2

−6

−10

0

P Q

In Figure (A), the level curves through the point R consist of two intersecting lines that divide the neighborhood near R

into four regions. f is decreasing in some directions and increasing in other directions. Therefore, R is a saddle point.

0

1

1

−1
−1

−3

−3

3

3

1

R

Figure (A)

Point S in Figure (B) is neither a local extremum nor a saddle point of f .

1 30−1−3 S

Figure (B)

3. Let f (x, y) be a continuous function on a domain D in R2. Determine which of the following statements are true:

(a) If D is closed and bounded, then f takes on a maximum value on D.

(b) If D is neither closed nor bounded, then f does not take on a maximum value of D.

(c) f (x, y) need not have a maximum value on the domain D defined by 0 ≤ x ≤ 1, 0 ≤ y ≤ 1.

(d) A continuous function takes on neither a minimum nor a maximum value on the open quadrant

{(x, y) : x > 0, y > 0}

solution

(a) This statement is true. It follows by the Theorem on Existence of Global Extrema.

(b) The statement is false. Consider the constant function f (x, y) = 2 in the following domain:

x
1

y

D = {(x, y) : 0 < x ≤ 1, 0 ≤ y < ∞}
Obviously f is continuous and D is neither closed nor bounded. However, f takes on a maximum value (which is 2)
on D.
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(c) The domain D = {(x, y) : 0 ≤ x, y ≤ 1} is the following rectangle:

x
1

y

1

D = {(x, y) : 0 ≤ x, y ≤ 1}
D is closed and bounded, hence f takes on a maximum value on D. Thus the statement is false.
(d) The statement is false. The constant function f (x, y) = c takes on minimum and maximum values on the open
quadrant.

Exercises
1. Let P = (a, b) be a critical point of f (x, y) = x2 + y4 − 4xy.

(a) First use fx(x, y) = 0 to show that a = 2b. Then use fy(x, y) = 0 to show that P = (0, 0), (2
√

2,
√

2), or
(−2

√
2, −√

2).
(b) Referring to Figure 16, determine the local minima and saddle points of f (x, y) and find the absolute minimum value
of f (x, y).

x

z

y

FIGURE 16

solution
(a) We find the partial derivatives:

fx(x, y) = ∂

∂x

(
x2 + y4 − 4xy

)
= 2x − 4y

fy(x, y) = ∂

∂y

(
x2 + y4 − 4xy

)
= 4y3 − 4x

Since P = (a, b) is a critical point, fx(a, b) = 0. That is,

2a − 4b = 0 ⇒ a = 2b

Also fy(a, b) = 0, hence,

4b3 − 4a = 0 ⇒ a = b3

We obtain the following equations for the critical points (a, b):{
a = 2b

a = b3

Equating the two equations, we get

2b = b3

b3 − 2b = b(b2 − 2) = 0 ⇒
⎧⎨
⎩

b1 = 0
b2 = √

2
b3 = −√

2

Since a = 2b, we have a1 = 0, a2 = 2
√

2, a3 = −2
√

2. The critical points are thus

P1 = (0, 0), P2 =
(

2
√

2,
√

2
)

, P3 =
(
−2

√
2, −√

2
)
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(b) Referring to Figure 14, we see that P1 = (0, 0) is a saddle point and P2 =
(

2
√

2,
√

2
)

, P3 =
(
−2

√
2, −√

2
)

are

local minima. The absolute minimum value of f is −4.

Find the critical points of the functions

f (x, y) = x2 + 2y2 − 4y + 6x, g(x, y) = x2 − 12xy + y

Use the Second Derivative Test to determine the local minimum, local maximum, and saddle points. Match f (x, y)

and g(x, y) with their graphs in Figure 17.

3. Find the critical points of

f (x, y) = 8y4 + x2 + xy − 3y2 − y3

Use the contour map in Figure 18 to determine their nature (local minimum, local maximum, or saddle point).

0.1 0

−0.3
−0.2
−0.1

0.2
0.3

10

1

0

−1

−1

y

x

−0.1

−0.2

FIGURE 18 Contour map of f (x, y) = 8y4 + x2 + xy − 3y2 − y3.

solution The critical points are the solutions of fx = 0 and fy = 0. That is,

fx(x, y) = 2x + y = 0

fy(x, y) = 32y3 + x − 6y − 3y2 = 0

The first equation gives y = −2x. We substitute in the second equation and solve for x. This gives

32(−2x)3 + x − 6(−2x) − 3(−2x)2 = 0

−256x3 + 13x − 12x2 = 0

−x(256x2 + 12x − 13) = 0

Hence x = 0 or 256x2 + 12x − 13 = 0. Solving the quadratic,

x1,2 = −12 ±
√

122 − 4 · 256 · (−13)

512
= −12 ± 116

512
⇒ x = 13

64
or − 1

4

Substituting in y = −2x gives the y-coordinates of the critical points. The critical points are thus

(0, 0),

(
13

64
, −13

32

)
,

(
−1

4
,

1

2

)

We now use the contour map to determine the type of each critical point. The level curves through (0, 0) consist of two
intersecting lines that divide the neighborhood near (0, 0) into four regions. The function is decreasing in the y direction

and increasing in the x-direction. Therefore, (0, 0) is a saddle point. The level curves near the critical points
(

13
64 , − 13

32

)
and
(
− 1

4 , 1
2

)
are closed curves encircling the points, hence these are local minima or maxima. The graph shows that both(

13
64 , − 13

32

)
and
(
− 1

4 , 1
2

)
are local minima.

Use the contour map in Figure 19 to determine whether the critical points A, B, C, D are local minima, local
maxima, or saddle points.

5. Let f (x, y) = y2x − yx2 + xy.

(a) Show that the critical points (x, y) satisfy the equations

y(y − 2x + 1) = 0, x(2y − x + 1) = 0

(b) Show that f has three critical points where x = 0 or y = 0 (or both) and one critical point where x and y are nonzero.

(c) Use the Second Derivative Test to determine the nature of the critical points.

solution

(a) The critical points are the solutions of the two equations fx(x, y) = 0 and fy(x, y) = 0. That is,

fx(x, y) = y2 − 2yx + y = 0

fy(x, y) = 2yx − x2 + x = 0
⇒

y(y − 2x + 1) = 0

x(2y − x + 1) = 0
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(b) We find the critical points by solving the equations obtained in part (a):

y(y − 2x + 1) = 0 (1)

x(2y − x + 1) = 0 (2)

Equation (1) implies that y = 0 or y = 2x − 1. Substituting y = 0 in (2) and solving for x gives

x(−x + 1) = 0 ⇒ x = 0 or x = 1

We obtain the solutions (0, 0) and (1, 0). We now substitute y = 2x − 1 in (2) and solve for x. We get

x(4x − 2 − x + 1) = 0

x(3x − 1) = 0 ⇒ x = 0 or x = 1

3

We compute the y-coordinate, using y = 2x − 1:

y = 2 · 0 − 1 = −1

y = 2 · 1

3
− 1 = −1

3

We obtain the solutions (0, −1) and
(

1
3 , − 1

3

)
. To summarize, the critical points are (0, 0), (1, 0), (0, −1), and

(
1
3 , − 1

3

)
.

Three of the critical points have at least one zero coordinate, and one has two nonzero coordinates.
(c) We compute the second-order partial derivatives:

fxx(x, y) = ∂

∂x
(y2 − 2yx + y) = −2y

fyy(x, y) = ∂

∂y
(2yx − x2 + x) = 2x

fxy(x, y) = ∂

∂y
(y2 − 2yx + y) = 2y − 2x + 1

The discriminant is

D(x, y) = fxxfyy − f 2
xy = −2y · 2x − (2y − 2x + 1)2 = −4xy − (2y − 2x + 1)2

We now apply the Second Derivative Test. We first compute the discriminants at the critical points:

D(0, 0) = −1 < 0

D(1, 0) = −1 < 0

D(0, −1) = −1 < 0

D

(
1

3
, −1

3

)
= −4 · 1

3

(
−1

3

)
−
(

−2

3
− 2

3
+ 1

)2
= 1

3
> 0,

fxx

(
1

3
, −1

3

)
= −2 ·

(
−1

3

)
= 2

3
> 0

The Second Derivative Test implies that the points (0, 0), (1, 0), and (0, −1) are saddle points, and f
(

1
3 , − 1

3

)
is a local

minimum.

Show that f (x, y) =
√

x2 + y2 has one critical point P and that f is nondifferentiable at P . Does f take on a
minimum, maximum, or saddle point at P ?

In Exercises 7–23, find the critical points of the function. Then use the Second Derivative Test to determine whether they
are local minima, local maxima, or saddle points (or state that the test fails).

7. f (x, y) = x2 + y2 − xy + x

solution

Step 1. Find the critical points. We set the first-order partial derivatives of f (x, y) = x2 + y2 − xy + x equal to zero
and solve:

fx(x, y) = 2x − y + 1 = 0 (1)

fy(x, y) = 2y − x = 0 (2)

Equation (2) implies that x = 2y. Substituting in (1) and solving for y gives

2 · 2y − y + 1 = 0 ⇒ 3y = −1 ⇒ y = −1

3

The corresponding value of x is x = 2 ·
(
− 1

3

)
= − 2

3 . The critical point is
(
− 2

3 , − 1
3

)
.
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Step 2. Compute the Discriminant. We find the second-order partials:

fxx(x, y) = 2, fyy(x, y) = 2, fxy(x, y) = −1

The discriminant is

D(x, y) = fxxfyy − f 2
xy = 2 · 2 − (−1)2 = 3

Step 3. Applying the Second Derivative Test. We have

D

(
−2

3
, −1

3

)
= 3 > 0 and fxx

(
−2

3
, −1

3

)
= 2 > 0

The Second Derivative Test implies that f
(
− 2

3 , − 1
3

)
is a local minimum.

f (x, y) = x3 − xy + y39. f (x, y) = x3 + 2xy − 2y2 − 10x

solution

Step 1. Find the critical points. We set the first-order partial derivatives of f (x, y) = x3 + 2xy − 2y2 − 10x equal to
zero and solve:

fx(x, y) = 3x2 + 2y − 10 = 0 (1)

fy(x, y) = 2x − 4y = 0 (2)

Equation (2) implies that x = 2y. We substitute in (1) and solve for y. This gives

3 · (2y)2 + 2y − 10 = 0

12y2 + 2y − 10 = 0

6y2 + y − 5 = 0

y1,2 = −1 ± √
1 − 4 · 6 · (−5)

12
= −1 ± 11

12
⇒ y1 = −1 and y2 = 5

6

We find the x-coordinates using x = 2y:

x1 = 2 · (−1) = −2, x2 = 2 · 5

6
= 5

3

The critical points are thus (−2, −1) and
(

5
3 , 5

6

)
.

Step 2. Compute the Discriminant. We find the second-order partials:

fxx(x, y) = 6x, fyy(x, y) = −4, fxy(x, y) = 2

The discriminant is

D(x, y) = fxxfyy − f 2
xy = 6x · (−4) − 22 = −24x − 4

Step 3. Apply the Second Derivative Test. We have

D(−2, −1) = −24 · (−2) − 4 = 44 > 0,

fxx(−2, −1) = 6 · (−2) = −12 < 0

D

(
5

3
,

5

6

)
= −24 · 5

3
− 4 = −44 < 0

We conclude that f (−2, −1) is a local maximum and
(

5
3 , 5

6

)
is a saddle point.

f (x, y) = x3y + 12x2 − 8y
11. f (x, y) = 4x − 3x3 − 2xy2

solution

Step 1. Find the critical points. We set the first-order derivatives of f (x, y) = 4x − 3x3 − 2xy2 equal to zero and solve:

fx(x, y) = 4 − 9x2 − 2y2 = 0 (1)

fy(x, y) = −4xy = 0 (2)

Equation (2) implies that x = 0 or y = 0. If x = 0, then equation (1) gives

4 − 2y2 = 0 ⇒ y2 = 2 ⇒ y = √
2, y = −√

2
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If y = 0, then equation (1) gives

4 − 9x2 = 0 ⇒ 9x2 = 4 ⇒ x = 2

3
, x = −2

3

The critical points are therefore (
0,

√
2
)

,
(

0, −√
2
)

,

(
2

3
, 0

)
,

(
−2

3
, 0

)
Step 2. Compute the discriminant. The second-order partials are

fxx(x, y) = −18x, fyy(x, y) = −4x, fxy = −4y

The discriminant is thus

D(x, y) = fxxfyy − f 2
xy = −18x · (−4x) − (−4y)2 = 72x2 − 16y2

Step 3. Apply the Second Derivative Test. We have

D
(

0,
√

2
)

= −32 < 0

D
(

0, −√
2
)

= −32 < 0

D

(
2

3
, 0

)
= 72 · 4

9
= 32 > 0,

fxx

(
2

3
, 0

)
= −18 · 2

3
= −12 < 0

D

(
−2

3
, 0

)
= 72 · 4

9
= 32 > 0,

fxx

(
−2

3
, 0

)
= −18 ·

(
−2

3

)
= 12 > 0

The Second Derivative Test implies that the points
(

0, ±√
2
)

are the saddle points, f
(

2
3 , 0
)

is a local maximum, and

f
(
− 2

3 , 0
)

is a local minimum.

f (x, y) = x3 + y4 − 6x − 2y213. f (x, y) = x4 + y4 − 4xy

solution

Step 1. Find the critical points. We set the first-order derivatives of f (x, y) = x4 + y4 − 4xy equal to zero and solve:

fx(x, y) = 4x3 − 4y = 0, fy(x, y) = 4y3 − 4x = 0 (1)

Equation (1) implies that y = x3. Substituting in (2) and solving for x, we obtain

(x3)
3 − x = x9 − x = x(x8 − 1) = 0 ⇒ x = 0, x = 1, x = −1

The corresponding y coordinates are

y = 03 = 0, y = 13 = 1, y = (−1)3 = −1

The critical points are therefore

(0, 0), (1, 1), (−1,−1)

Step 2. Compute the discriminant. We find the second-order partials:

fxx(x, y) = 12x2, fyy(x, y) = 12y2, fxy(x, y) = −4

The discriminant is thus

D(x, y) = fxxfyy − f 2
xy = 12x2 · 12y2 − (−4)2 = 144x2y2 − 16

Step 3. Apply the Second Derivative Test. We have

D(0, 0) = −16 < 0

D(1, 1) = 144 − 16 = 128 > 0, fxx(1, 1) = 12 > 0

D(−1, −1) = 144 − 16 = 128 > 0, fxx(−1, −1) = 12 > 0

We conclude that (0, 0) is a saddle point, whereas f (1, 1) and f (−1, −1) are local minima.
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f (x, y) = ex2−y2+4y15. f (x, y) = xye−x2−y2

solution

Step 1. Find the critical points. We compute the partial derivatives of f (x, y) = xye−x2−y2
, using the Product Rule and

the Chain Rule:

fx(x, y, z) = y
(

1 · e−x2−y2 + xe−x2−y2 · (−2x)
)

= ye−x2−y2
(

1 − 2x2
)

fy(x, y, z) = x
(

1 · e−x2−y2 + ye−x2−y2 · (−2y)
)

= xe−x2−y2
(

1 − 2y2
)

We set the partial derivatives equal to zero and solve to find the critical points. This gives

ye−x2−y2
(

1 − 2x2
)

= 0

xe−x2−y2
(

1 − 2y2
)

= 0

Since e−x2−y2 �= 0, the first equation gives y = 0 or 1 − 2x2 = 0, that is, y = 0, x = 1√
2

, x = − 1√
2

. We substitute

each of these values in the second equation and solve to obtain

y = 0: xe−x2 = 0 ⇒ x = 0

x = 1√
2
: 1√

2
e− 1

2 −y2
(

1 − 2y2
)

= 0 ⇒ 1 − 2y2 = 0 ⇒ y = ± 1√
2

x = − 1√
2
: − 1√

2
e− 1

2 −y2
(

1 − 2y2
)

= 0 ⇒ 1 − 2y2 = 0 ⇒ y = ± 1√
2

We obtain the following critical points: (0, 0),

(
1√
2
,

1√
2

)
,

(
1√
2
, − 1√

2

)
,

(
− 1√

2
,

1√
2

)
,

(
− 1√

2
, − 1√

2

)

Step 2. Compute the second-order partials.

fxx(x, y) = y
∂

∂x

(
e−x2−y2

(
1 − 2x2

))
= y
(
e−x2−y2

(−2x)
(

1 − 2x2
)

+ e−x2−y2
(−4x)
)

= −2xye−x2−y2
(

3 − 2x2
)

fyy(x, y) = x
∂

∂y

(
e−x2−y2

(
1 − 2y2

))
= x
(
e−x2−y2

(−2y)
(

1 − 2y2
)

+ e−x2−y2
(−4y)
)

= −2yxe−x2−y2
(

3 − 2y2
)

fxy(x, y) = ∂

∂y
fx =
(

1 − 2x2
) ∂

∂y

(
ye−x2−y2

)
=
(

1 − 2x2
) (

1 · e−x2−y2 + ye−x2−y2
(−2y)
)

= e−x2−y2
(

1 − 2x2
) (

1 − 2y2
)

The discriminant is

D(x, y) = fxxfyy − f 2
xy

Step 3. Apply the Second Derivative Test. We construct the following table:

Critical Point fxx fyy fxy D Type
(0, 0) 0 0 1 −1 D < 0, saddle point(
1√
2
, 1√

2

)
− 2

e − 2
e 0 4

e2 D > 0, fxx < 0 local maximum(
1√
2
, − 1√

2

)
2
e

2
e 0 4

e2 D > 0, fxx > 0 local minimum(
− 1√

2
, 1√

2

)
2
e

2
e 0 4

e2 D > 0, fxx > 0 local minimum(
− 1√

2
, − 1√

2

)
− 2

e − 2
e 0 4

e2 D > 0, fxx < 0 local maximum

f (x, y) = ex − xey
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17. f (x, y) = sin(x + y) − cos x

solution
Step 1. Find the critical points. We set the first-order derivatives of f (x, y) = sin(x + y) − cos x equal to zero and solve:

fx(x, y) = cos(x + y) + sin x = 0

fy(x, y) = cos(x + y) = 0

First consider the second equation, cos(x + y) = 0 this is when

x + y = (2k + 1)π

2
→ y = (2k + 1)π

2
− x where k is an integer

Then setting the two equations equal to one another we gain sin x = 0 which are the values:

x = 0, ±π, ±2π, · · · = ±kπ where k is an integer.

Thus we have:

x = kπ and y = (2n + 1)π

2
where n, k are integers

Step 2. Compute the discriminant. We find the second-order partial derivatives:

fxx(x, y) = − sin(x + y) + cos x, fyy(x, y) = − sin(x + y), fxy(x, y) = − sin(x + y)

The discriminant is:

D(x, y) = fxxfyy − f 2
xy = (− sin(x + y) + cos x)(− sin(x + y)) − sin2(x + y) = − cos(x) sin(x + y)

Step 3. Apply the Second Derivative Test. We have

D =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

+1, if y = 4n + 3

2
π

−1, y = 4n + 1

2
π

Therefore, the points

(
kπ,

4n + 1

2
π

)
are saddle points since D < 0.

Since D > 0 for the points

(
kπ,

4n + 3

2
π

)
, we need to examine fxx . The results show:

fxx > 0 if k is even and fxx < 0 if k is odd

Thus: (
kπ,

4n + 3

2
π

)
are local minima if k is even

while (
kπ,

4n + 3

2
π

)
are local maxima if k is odd

f (x, y) = x ln(x + y)
19. f (x, y) = ln x + 2 ln y − x − 4y

solution
Step 1. Find the critical points. We set the first-order partials of f (x, y) = ln x + 2 ln y − x − 4y equal to zero and solve:

fx(x, y) = 1

x
− 1 = 0, fy(x, y) = 2

y
− 4 = 0

The first equation gives x = 1, and the second equation gives y = 1
2 . We obtain the critical point

(
1, 1

2

)
. Notice that fx

and fy do not exist if x = 0 or y = 0, respectively, but these are not critical points since they are not in the domain of f .

The critical point is thus
(

1, 1
2

)
.

Step 2. Compute the discriminant. We find the second-order partials:

fxx(x, y) = − 1

x2
, fyy(x, y) = − 2

y2
, fxy(x, y) = 0

The discriminant is

D(x, y) = fxxfyy − f 2
xy = 2

x2y2
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Step 3. Apply the Second Derivative Test. We have

D

(
1,

1

2

)
= 2

12 ·
(

1
2

)2 = 8 > 0, fxx

(
1,

1

2

)
= − 1

12
= −1 < 0

We conclude that f
(

1, 1
2

)
is a local maximum.

f (x, y) = (x + y) ln(x2 + y2)
21. f (x, y) = x − y2 − ln(x + y)

solution

Step 1. Find the critical points. We set the partial derivatives of f (x, y) = x − y2 − ln(x + y) equal to zero and solve.

fx(x, y) = 1 − 1

x + y
= 0, fy(x, y) = −2y − 1

x + y
= 0

The first equation implies that 1
x+y = 1. Substituting in the second equation gives

−2y − 1 = 0 ⇒ 2y = −1 ⇒ y = −1

2

We substitute y = − 1
2 in the first equation and solve for x:

1 − 1

x − 1
2

= 0 ⇒ x − 1

2
= 1 ⇒ x = 3

2

We obtain the critical point
(

3
2 , − 1

2

)
. Notice that although fx and fy do not exist where x + y = 0, these are not critical

points since f is not defined at these points.

Step 2. Compute the discriminant. We compute the second-order partial derivatives:

fxx(x, y) = ∂

∂x

(
1 − 1

x + y

)
= 1

(x + y)2

fyy(x, y) = ∂

∂y

(
−2y − 1

x + y

)
= −2 + 1

(x + y)2

fxy(x, y) = ∂

∂y

(
1 − 1

x + y

)
= 1

(x + y)2

The discriminant is

D(x, y) = fxxfyy − f 2
xy = 1

(x + y)2

(
−2 + 1

(x + y)2

)
− 1

(x + y)4
= −2

(x + y)2

Step 3. Apply the Second Derivative Test. We have

D

(
3

2
, −1

2

)
= −2(

3
2 − 1

2

)2 = −2 < 0

We conclude that
(

3
2 , − 1

2

)
is a saddle point.

f (x, y) = (x − y)ex2−y223. f (x, y) = (x + 3y)ey−x2

solution

Step 1. Find the critical points. We compute the partial derivatives of f (x, y) = (x + 3y)ey−x2
, using the Product Rule

and the Chain Rule:

fx(x, y) = 1 · ey−x2 + (x + 3y)ey−x2 · (−2x) = ey−x2
(

1 − 2x2 − 6xy
)

fy(x, y) = 3ey−x2 + (x + 3y)ey−x2 · 1 = ey−x2
(3 + x + 3y)

We set the partial derivatives equal to zero and solve to find the critical points:

ey−x2
(

1 − 2x2 − 6xy
)

= 0

ey−x2
(3 + x + 3y) = 0
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Since ey−x2 �= 0, we obtain the following equations:

1 − 2x2 − 6xy = 0

3 + x + 3y = 0

The second equation gives x = −3(1 + y). We substitute for x in the first equation and solve for y:

1 − 2 · 9(1 + y)2 + 18(1 + y)y = 0

1 − 18
(

1 + 2y + y2
)

+ 18
(
y + y2
)

= 0

−17 − 18y = 0 ⇒ y = −17

18
, x = −3

(
1 − 17

18

)
= −1

6

The critical point is
(
− 1

6 , − 17
18

)
.

Step 2. Compute the second-order partials.

fxx(x, y) = ∂

∂x
fx = ey−x2

(−2x)
(

1 − 2x2 − 6xy
)

+ ey−x2
(−4x − 6y) = 2ey−x2

(
2x3 + 6x2y − 3x − 3y

)
fyy(x, y) = ∂

∂y
fy = ey−x2

(3 + x + 3y) + ey−x2 · 3 = ey−x2
(6 + x + 3y)

fxy(x, y) = ∂

∂x
fy = ey−x2

(−2x)(3 + x + 3y) + ey−x2 · 1 = ey−x2
(

1 − 6xy − 2x2 − 6x
)

The discriminant is

D(x, y) = fxxfyy − f 2
xy

Step 3. Apply the Second Derivative Test. We obtain the following table:

Critical Point fxx fyy fxy D Type(
− 1

6 , − 17
18

)
2.4 1.13 0.38 2.57 D > 0, fxx > 0, local minimum

Show that f (x, y) = x2 has infinitely many critical points (as a function of two variables) and that the Second
Derivative Test fails for all of them. What is the minimum value of f ? Does f (x, y) have any local maxima?

25. Prove that the function f (x, y) = 1
3x3 + 2

3y3/2 − xy satisfies f (x, y) ≥ 0 for x ≥ 0 and y ≥ 0.

(a) First, verify that the set of critical points of f is the parabola y = x2 and that the Second Derivative Test fails for
these points.
(b) Show that for fixed b, the function g(x) = f (x, b) is concave up for x > 0 with a critical point at x = b1/2.
(c) Conclude that f (a, b) ≥ f (b1/2, b) = 0 for all a, b ≥ 0.

solution
(a) To find the critical points, we need the first-order partial derivatives, set them equal to zero and solve:

fx(x, y) = x2 − y = 0, fy(x, y) = y1/2 − x = 0

This gives us:

y = x2

as the solution set for the critical points.
Now to compute the discriminant, we need the second-order partials

fxx(x, y) = 2x, fyy(x, y) = 1

2
y−1/2, fxy(x, y) = −1

Thus the discriminant is

D(x, y) = x√
y

− 1

Since y = x2 is the solution set for the critical points we see:

D(x, y) = 1 − 1 = 0

Therefore the Second Derivative Test is inconclusive and fails us.
(b) If we fix a value b and consider g(x) = f (x, b) = 1

3x3 + 2
3b3/2 − bx to find the concavity, we see

g′(x) = x2 − b, g′′(x) = 2x

Then certainly, for x > 0, this function is concave up. The critical point will occur at the point when x2 − b = 0 or
x = b1/2.
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(c) Now, since for fixed b, we know that g(x) = f (x, b) is concave up if x > 0, and the critical point is x = b1/2.
Therefore

f (a, b) ≥ f (b1/2, b) = 0 for all b ≥ 0

Let f (x, y) = (x2 + y2)e−x2−y2
.

(a) Where does f take on its minimum value? Do not use calculus to answer this question.

(b) Verify that the set of critical points of f consists of the origin (0, 0) and the unit circle x2 + y2 = 1.

(c) The Second Derivative Test fails for points on the unit circle (this can be checked by some lengthy algebra).
Prove, however, that f takes on its maximum value on the unit circle by analyzing the function g(t) = te−t for
t > 0.

27. Use a computer algebra system to find a numerical approximation to the critical point of

f (x, y) = (1 − x + x2)ey2 + (1 − y + y2)ex2

Apply the Second Derivative Test to confirm that it corresponds to a local minimum as in Figure 20.

x

y

z

FIGURE 20 Plot of f (x, y) = (1 − x + x2)ey2 + (1 − y + y2)ex2
.

solution The critical points are the solutions of fx(x, y) = 0 and fy(x, y) = 0. We compute the partial derivatives:

fx(x, y) = (−1 + 2x)ey2 +
(

1 − y + y2
)

ex2 · 2x

fy(x, y) =
(

1 − x + x2
)

ey2 · 2y + (−1 + 2y)ex2

Hence, the critical points are the solutions of the following equations:

(2x − 1)ey2 + 2x
(

1 − y + y2
)

ex2 = 0

(2y − 1)ex2 + 2y
(

1 − x + x2
)

ey2 = 0

Using a CAS we obtain the following solution: x = y = 0.27788, which from the figure is a local minimum.

Which of the following domains are closed and which are bounded?

(a) {(x, y) ∈ R2 : x2 + y2 ≤ 1} (b) {(x, y) ∈ R2 : x2 + y2 < 1}
(c) {(x, y) ∈ R2 : x ≥ 0} (d) {(x, y) ∈ R2 : x > 0, y > 0}
(e) {(x, y) ∈ R2 : 1 ≤ x ≤ 4, 5 ≤ y ≤ 10} (f) {(x, y) ∈ R2 : x > 0, x2 + y2 ≤ 10}

In Exercises 29–32, determine the global extreme values of the function on the given set without using calculus.

29. f (x, y) = x + y, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

solution The sum x + y is maximum when x = 1 and y = 1, and it is minimum when x = 0 and y = 0. Therefore,
the global maximum of f on the given set is f (1, 1) = 1 + 1 = 2 and the global minimum is f (0, 0) = 0 + 0 = 0.

f (x, y) = 2x − y, 0 ≤ x ≤ 1, 0 ≤ y ≤ 331. f (x, y) = (x2 + y2 + 1)−1, 0 ≤ x ≤ 3, 0 ≤ y ≤ 5

solution f (x, y) = 1
x2+y2+1

is maximum when x2 and y2 are minimum, that is, when x = y = 0. f is minimum

when x2 and y2 are maximum, that is, when x = 3 and y = 5. Therefore, the global maximum of f on the given set is

f (0, 0) = (02 + 02 + 1)
−1 = 1, and the global minimum is f (3, 5) = (32 + 52 + 1)

−1 = 1
35 .

f (x, y) = e−x2−y2
, x2 + y2 ≤ 1

33. Assumptions Matter Show that f (x, y) = xy does not have a global minimum or a global maximum on the
domain

D = {(x, y) : 0 < x < 1, 0 < y < 1}
Explain why this does not contradict Theorem 3.

solution The largest and smallest values of f on the closed square 0 ≤ x, y ≤ 1 are f (1, 1) = 1 and f (0, 0) = 0.
However, on the open square 0 < x, y < 1, f can never attain these maximum and minimum values, since the boundary
(and in particular the points (1, 1) and (−1, −1)) are not included in the domain. This does not contradict Theorem 3
since the domain is open.

Find a continuous function that does not have a global maximum on the domain D = {(x, y) : x + y ≥ 0, x + y ≤
1}. Explain why this does not contradict Theorem 3.
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35. Find the maximum of

f (x, y) = x + y − x2 − y2 − xy

on the square, 0 ≤ x ≤ 2, 0 ≤ y ≤ 2 (Figure 21).

(a) First, locate the critical point of f in the square, and evaluate f at this point.

(b) On the bottom edge of the square, y = 0 and f (x, 0) = x − x2. Find the extreme values of f on the bottom edge.

(c) Find the extreme values of f on the remaining edges.

(d) Find the largest among the values computed in (a), (b), and (c).

f (x, 2) = −2 − x − x2

Edge y = 2

Edge x = 2

f (2, y) = −2 − y − y2

Edge x = 0

f (0, y) = y − y2

Edge y = 0

f (x, 0) = x − x2

x
2

y

2

FIGURE 21 The function f (x, y) = x + y − x2 − y2 − xy on the boundary segments of the square
0 ≤ x ≤ 2, 0 ≤ y ≤ 2.

solution

(a) To find the critical points, we look at the first-order partial derivatives set equal to zero and solve:

fx(x, y) = 1 − 2x − y = 0, fy(x, y) = 1 − 2y − x = 0

This gives y = 1 − 2x and x = 1 − 2y, solving simultaneously we see y = 1/3 and x = 1/3. The critical point is
(1/3, 1/3), subsequently, f (1/3, 1/3) = 1/3.

(b) To find the extreme points of f (x, 0) = x − x2 we take the first derivative and set it equal to zero and solve:

f ′(x, 0) = 1 − 2x = 0 → x = 1/2

Thus the extreme value on the bottom edge of the square is

f (1/2, 0) = 1/4

(c) Now to find the extreme values on the other edges of the square.
First, let us use x = 0: f (0, y) = y − y2. Taking the first derivative and setting equal to 0 gives us:

f ′(0, y) = 1 − 2y = 0, → y = 1/2

Therefore, the extreme value along x = 0 is f (0, 1/2) = 1/4.
Next, let us use y = 2: f (x, 2) = −x2 − x − 2. Take the first derivative and setting equal to 0 gives us:

f ′(x, 2) = −2x − 1 = 0, → x = −1/2

Therefore, the extreme value along y = 2 is f (−1/2, 2) = −7/4.
Finally, let us use x = 2: f (2, y) = −2 − y − y2. Take the first derivative and setting equal to 0 gives us:

f ′(2, y) = −1 − 2y = 0, → y = −1/2

Therefore, the extreme value along x = 2 is f (2, −1/2) = −7/4.

(d) Out of all the values we computed in parts (a), (b), and (c), 1/3 is the largest. This value occurs at the point (1/3, 1/3).

Find the maximum of f (x, y) = y2 + xy − x2 on the square 0 ≤ x ≤ 2, 0 ≤ y ≤ 2.In Exercises 37–43, determine the global extreme values of the function on the given domain.

37. f (x, y) = x3 − 2y, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

solution We use the following steps.

Step 1. Find the critical points. We set the first derivative equal to zero and solve:

fx(x, y) = 3x2 = 0, fy(x, y) = −2

The two equations have no solutions, hence there are no critical points.
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Step 2. Check the boundary. The extreme values occur either at the critical points or at a point on the boundary of the
domain. Since there are no critical points, the extreme values occur at boundary points. We consider each edge of the
square 0 ≤ x, y ≤ 1 separately.

The segment OA: On this segment y = 0, 0 ≤ x ≤ 1, and f takes the values f (x, 0) = x3. The minimum value is
f (0, 0) = 0 and the maximum value is f (1, 0) = 1.

x

y

A (1, 0)

B (1, 1)

D (0, 0)

C (0, 1)

The segment AB: On this segment x = 1, 0 ≤ y ≤ 1, and f takes the values f (1, y) = 1 − 2y. The minimum value
is f (1, 1) = 1 − 2 · 1 = −1 and the maximum value is f (1, 0) = 1 − 2 · 0 = 1.
The segment BC: On this segment y = 1, 0 ≤ x ≤ 1, and f takes the values f (x, 1) = x3 − 2. The minimum value
is f (0, 1) = 03 − 2 = −2 and the maximum value is f (1, 1) = 13 − 2 = −1.
The segment OC: On this segment x = 0, 0 ≤ y ≤ 1, and f takes the values f (0, y) = −2y. The minimum value is
f (0, 1) = −2 · 1 = −2 and the maximum value is f (0, 0) = −2 · 0 = 0.

Step 3. Conclusions. The values obtained in the previous steps are

f (0, 0) = 0, f (1, 0) = 1, f (1, 1) = −1, f (0, 1) = −2

The smallest value is f (0, 1) = −2 and it is the global minimum of f on the square. The global maximum is the largest
value f (1, 0) = 1.

f (x, y) = 5x − 3y, y ≥ x − 2, y ≥ −x − 2, y ≤ 339. f (x, y) = x2 + 2y2, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

solution The sum x2 + 2y2 is maximum at the point (1, 1), where x2 and y2 are maximum. It is minimum if
x = y = 0, that is, at the point (0, 0). Hence,

Global maximum = f (1, 1) = 12 + 2 · 12 = 3

Global minimum = f (0, 0) = 02 + 2 · 02 = 0

f (x, y) = x3 + x2y + 2y2, x, y ≥ 0, x + y ≤ 1
41. f (x, y) = x3 + y3 − 3xy, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

solution We use the following steps.

Step 1. Examine the critical points in the interior of the domain. We set the partial derivatives equal to zero and solve:

fx(x, y) = 3x2 − 3y = 0

fy(x, y) = 3y2 − 3x = 0

The first equation gives y = x2. We substitute in the second equation and solve for x:

3
(
x2
)2 − 3x = 0

3x4 − 3x = 3x
(
x3 − 1
)

= 0 ⇒ x = 0, y = 02 = 0

or x = 1, y = 12 = 1

The critical points (0, 0) and (1, 1) are not in the interior of the domain.

Step 2. Find the extreme values on the boundary. We consider each part of the boundary separately.

x

y

D(0, 1) C(1, 1)

B(1, 0)A(0, 0)



May 17, 2011

S E C T I O N 14.7 Optimization in Several Variables (LT SECTION 15.7) 413

The edge AB: On this edge, y = 0, 0 ≤ x ≤ 1, and f (x, 0) = x3. The maximum value is obtained at x = 1 and the
minimum value is obtained at x = 0. The corresponding extreme points are (1, 0) and (0, 0).

The edge BC: On this edge x = 1, 0 ≤ y ≤ 1, and f (1, y) = y3 − 3y + 1. The critical points are d
dy

(
y3 − 3y + 1

)
=

3y2 − 3 = 0, that is, y = ±1. The point in the given domain is y = 1. The candidates for extreme values are thus
y = 1 and y = 0, giving the points (1, 1) and (1, 0).
The edge DC: On this edge y = 1, 0 ≤ x ≤ 1, and f (x, 1) = x3 − 3x + 1. Replacing the values of x and y in the
previous solutions we get the points (1, 1) and (0, 1).
The edge AD: On this edge x = 0, 0 ≤ y ≤ 1, and f (0, y) = y3. Replacing the values of x and y obtained for the
edge AB, we get (0, 1) and (0, 0).

By Theorem 3, the extreme values occur either at a critical point in the interior of the square or at a point on the boundary
of the square. Since there are no critical points in the interior of the square, the candidates for extreme values are the
following points:

(0, 0), (1, 0), (1, 1), (0, 1)

We compute f (x, y) = x3 + y3 − 3xy at these points:

f (0, 0) = 03 + 03 − 3 · 0 = 0

f (1, 0) = 13 + 03 − 3 · 1 · 0 = 1

f (1, 1) = 13 + 13 − 3 · 1 · 1 = −1

f (0, 1) = 03 + 13 − 3 · 0 · 1 = 1

We conclude that in the given domain, the global maximum is f (1, 0) = f (0, 1) = 1 and the global minimum is
f (1, 1) = −1.

f (x, y) = x2 + y2 − 2x − 4y, x ≥ 0, 0 ≤ y ≤ 3, y ≥ x
43. f (x, y) = (4y2 − x2)e−x2−y2

, x2 + y2 ≤ 2

solution We use the following steps.

Step 1. Examine the critical points. We compute the partial derivatives of f (x, y) =
(

4y2 − x2
)

e−x2−y2
, set them

equal to zero and solve. This gives

fx(x, y) = −2xe−x2−y2 +
(

4y2 − x2
)

e−x2−y2 · (−2x) = −2xe−x2−y2
(

1 + 4y2 − x2
)

= 0

fy(x, y) = 8ye−x2−y2 +
(

4y2 − x2
)

e−x2−y2 · (−2y) = −2ye−x2−y2
(
−4 + 4y2 − x2

)
= 0

Since e−x2−y2 �= 0, the first equation gives x = 0 or x2 = 1 + 4y2. Substituting x = 0 in the second equation gives

−2ye−y2
(
−4 + 4y2

)
= 0.

Since e−y2 �= 0, we get

y
(
−1 + y2

)
= y(y − 1)(y + 1) = 0 ⇒ y = 0, y = 1, y = −1

We obtain the three points (0, 0), (0, −1), (0, 1). We now substitute x2 = 1 + 4y2 in the second equation and solve for y:

−2ye−1−5y2
(
−4 + 4y2 − 1 − 4y2

)
= 0

−2ye−1−5y2 · (−5) = 0 ⇒ y = 0

The corresponding values of x are obtained from

x2 = 1 + 4 · 02 = 1 ⇒ x = ±1

We obtain the solutions (1, 0) and (−1, 0). We conclude that the critical points are

(0, 0), (0,−1), (0, 1), (1, 0), and (−1, 0).

All of these points are in the interior x2 + y2 < 2 of the given disk.
Step 2. Check the boundary. The boundary is the circle x2 + y2 = 2. On this set y2 = 2 − x2, hence the function f (x, y)

takes the values

f (x, y)

∣∣∣∣
x2+y2=2

= g(x) =
(

4
(

2 − x2
)

− x2
)

e−2 =
(
−5x2 + 8

)
e−2

That is, g(x) = −5e−2x2 + 8e−2. We determine the interval of x. Since x2 + y2 = 2, we have 0 ≤ x2 ≤ 2 or
−√

2 ≤ x ≤ √
2.
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x

y

−

1.265−1.265

8e−2

22

We thus must find the extreme values of g(x) = −5e−2x2 + 8e−2 on the interval −√
2 ≤ x ≤ √

2. With the aid of the
graph of g(x), we conclude that the maximum value is g(0) = 8e−2 and the minimum value is

g
(
−√

2
)

= g
(√

2
)

= −5e−2
(
±√

2
)2 + 8e−2 = −10e−2 + 8e−2 = −2e−2 ≈ −0.271

We conclude that the points on the boundary with largest and smallest values of f are

f
(

0, ±√
2
)

= 8e−2 ≈ 1.083, f
(
±√

2, 0
)

= −2e−2 ≈ −0.271

Step 3. Conclusions. The extreme values either occur at the critical points or at the points on the boundary, found in step
2. We compare the values of f at these points:

f (0, 0) = 0

f (0, −1) = 4e−1 ≈ 1.472

f (0, 1) = 4e−1 ≈ 1.472

f (1, 0) = −e−1 ≈ −0.368

f (−1, 0) = −e−1 ≈ −0.368

f
(

0, ±√
2
)

≈ 1.083

f
(
±√

2, 0
)

≈ −0.271

We conclude that the global minimum is f (1, 0) = f (−1, 0) = −0.368 and the global maximum is f (0, −1) =
f (0, 1) = 1.472.

Find the maximum volume of a box inscribed in the tetrahedron bounded by the coordinate planes and the plane

x + 1

2
y + 1

3
z = 1

45. Find the maximum volume of the largest box of the type shown in Figure 22, with one corner at the origin and the
opposite corner at a point P = (x, y, z) on the paraboloid

z = 1 − x2

4
− y2

9
with x, y, z ≥ 0

x

y

1

P

z

FIGURE 22

solution To maximize the volume of a rectangular box, start with the relation V = xyz and using the paraboloid
equation we see

z = 1 − x2

4
− y2

9
⇒ V (x, y) = xy

(
1 − x2

4
− y2

9

)

Therefore we will consider

V (x, y) = xy − 1

4
x3y − 1

9
xy3

First to find the critical points, we take the first-order partial derivatives and set them equal to zero, and solve:

Vx(x, y) = y − 3

4
x2y − 1

9
y3, Vy(x, y) = x − 1

4
x3 − 1

3
xy2



May 17, 2011

S E C T I O N 14.7 Optimization in Several Variables (LT SECTION 15.7) 415

Using the equation Vy = 0 we see

x − 1

4
x3 − 1

3
xy2 = 0 ⇒ x = 0, y2 = 3 − 3

4
x2 ⇒ y =

√
3 − 3

4
x2

(Note here, we can ignore the value x = 0, since it produces a box having zero volume.)
Using this relation in the first equation, Vx = 0, we see:√

3 − 3

4
x2 − 3

4
x2

√
3 − 3

4
x2 − 1

9

(
3 − 3

4
x2
)3/2

= 0

Factoring we see: √
3 − 3

4
x2
[

1 − 3

4
x2 − 1

9

(
3 − 3

4
x2
)]

= 0

and thus

3 − 3

4
x2 = 0 ⇒ x2 = 4 ⇒ x = ±2

or

1 − 3

4
x2 − 1

3
+ 1

12
x2 = 0 ⇒ 2

3
− 2

3
x2 = 0 ⇒ x = ±1

Since the governing equation f (x, y) is a paraboloid, that is symmetric about the z-axis, we need only consider the point
when x = 2 or x = 1.

Therefore, since y =
√

3 − 3
4x2 and z = 1 − 1

4x2 − 1
9y2, we have, if x = 2

y =
√

3 − 3

4
· 4 = 0 ⇒ z = 1 − 1

4
· 4 − 1

9
· 0 = 0

This will give a box having zero volume - not a maximum volume at all.

Using x = 1, and y =
√

3 − 3
4x2, z = 1 − 1

4x2 − 1
9y2, we have

y =
√

3 − 3

4
= 3

2
, z = 1 − 1

4
· 12 − 1

9
· 9

4
= 1

2

Therefore, the box having maximum volume has dimensions, x = 1, y = 3/2, and z = 1/2 and maximum value for the
volume:

V = xyz = 1 · 3

2
· 1

2
= 3

4

Find the point on the plane

z = x + y + 1

closest to the point P = (1, 0, 0). Hint: Minimize the square of the distance.

47. Show that the sum of the squares of the distances from a point P = (c, d) to n fixed points (a1, b1), . . . ,(an, bn) is
minimized when c is the average of the x-coordinates ai and d is the average of the y-coordinates bi .

solution First we must form the sum of the squares of the distances from a point P(c, d) to n fixed points. For instance,
the square of the distance from (c, d) to (a1, b1) would be:

(c − a1)2 + (d − b1)2

using this pattern, the sum in question would be

S =
n∑

i=1

[(c − ai)
2 + (d − bi)

2

Using the methods discussed in this section of the text, we want to minimize the sum S. We will examine the first-order
partial derivatives with respect to c and d and set them equal to zero and solve:

Sc =
n∑

i=1

2(c − ai) = 0, Sd =
n∑

i=1

2(d − bi) = 0

Consider first the following:

n∑
i=1

2(c − ai) = 0 ⇒
n∑

i=1

(c − ai) = 0 ⇒
n∑

i=1

c −
n∑

i=1

ai = 0

Therefore
n∑

i=1

c =
n∑

i=1

ai ⇒ n · c =
n∑

i=1

ai ⇒ c = 1

n

n∑
i=1

ai



May 17, 2011

416 C H A P T E R 14 DIFFERENTIATION IN SEVERAL VARIABLES (LT CHAPTER 15)

Similarly we can examine Sd = 0 to see

n∑
i=1

2(d − bi) = 0 ⇒
n∑

i=1

(d − bi) = 0 ⇒
n∑

i=1

d −
n∑

i=1

bi = 0

and

n∑
i=1

d =
n∑

i=1

bi ⇒ n · d =
n∑

i=1

bi ⇒ d = 1

n

n∑
i=1

bi

Therefore, the sum is minimized when c is the average of the x-coordinates ai and d is the average of the y-coordinates bi .

Show that the rectangular box (including the top and bottom) with fixed volume V = 27 m3 and smallest possible
surface area is a cube (Figure 23).

49. Consider a rectangular box B that has a bottom and sides but no top and has minimal surface area among all
boxes with fixed volume V .

(a) Do you think B is a cube as in the solution to Exercise 48? If not, how would its shape differ from a cube?
(b) Find the dimensions of B and compare with your response to (a).

solution
(a) Each of the variables x and y is the length of a side of three faces (for example, x is the length of the front, back, and
bottom sides), whereas z is the length of a side of four faces.

y

x

z

Therefore, the variables x, y, and z do not have equal influence on the surface area. We expect that in the box B with
minimal surface area, z is smaller than 3√

V , which is the side of a cube with volume V (also we would expect x = y).
(b) We must find the dimensions of the box B, with fixed volume V and with smallest possible surface area, when the
top is not included.

Step 1. Find a function to be minimized. The surface area of the box with sides lengths x, y, z when the top is not included
is

S = 2xz + 2yz + xy (1)

y

x

z

To express the surface in terms of x and y only, we use the formula for the volume of the box, V = xyz, giving z = V
xy .

We substitute in (1) to obtain

S = 2x · V

xy
+ 2y · V

xy
+ xy = 2V

y
+ 2V

x
+ xy

That is,

S = 2V

y
+ 2V

x
+ xy.

Step 2. Determine the domain. The variables x, y denote lengths, hence they must be nonnegative. Moreover, S is not
defined for x = 0 or y = 0. Since there are no other limitations on the variables, the domain is

D = {(x, y) : x > 0, y > 0}
We must find the minimum value of S on D. Because this domain is neither closed nor bounded, we are not sure that a
minimum value exists. However, it can be proved (in like manner as in Exercise 48) that S does have a minimum value
on D. This value occurs at a critical point in D, hence we set the partial derivatives equal to zero and solve. This gives

Sx(x, y) = −2V

x2
+ y = 0

Sy(x, y) = −2V

y2
+ x = 0
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The first equation gives y = 2V
x2 . Substituting in the second equation yields

x − 2V

4V 2

x4

= x − x4

2V
= x

(
1 − x3

2V

)
= 0

The solutions are x = 0 and x = (2V )1/3. The solution x = 0 is not included in D, so the only solution is x = (2V )1/3.
We find the value of y using y = 2V

x2 :

y = 2V

(2V )2/3
= (2V )1/3

We conclude that the critical point, which is the point where the minimum value of S in D occurs, is
(
(2V )1/3, (2V )1/3

)
.

We find the corresponding value of z using z = V
xy . We get

z = V

(2V )1/3(2V )1/3
= V

22/3V 2/3
= V 1/3

22/3
=
(

V

4

)1/3

We conclude that the sizes of the box with minimum surface area are

width: x = (2V )1/3;
length: y = (2V )1/3;

height: z =
(

V
4

)1/3
.

We see that z is smaller than x and y as predicted.

Given n data points (x1, y1), . . . , (xn, yn), the linear least-squares fit is the linear function

f (x) = mx + b

that minimizes the sum of the squares (Figure 24):

E(m, b) =
n∑

j=1

(yj − f (xj ))2

Show that the minimum value of E occurs for m and b satisfying the two equations

m

⎛
⎝ n∑

j=1

xj

⎞
⎠+ bn =

n∑
j=1

yj

m

n∑
j=1

x2
j + b

n∑
j=1

xj =
n∑

j=1

xj yj

51. The power (in microwatts) of a laser is measured as a function of current (in milliamps). Find the linear least-squares
fit (Exercise 50) for the data points.

Current (mA) 1.0 1.1 1.2 1.3 1.4 1.5

Laser power (μW) 0.52 0.56 0.82 0.78 1.23 1.50

solution By Exercise 50, the coefficients of the linear least-square fit f (x) = mx + b are determined by the following
equations:

m

n∑
j=1

xj + bn =
n∑

j=1

yj

m

n∑
j=1

x2
j + b

n∑
j=1

xj =
n∑

j=1

xj · yj (1)

In our case there are n = 6 data points:

(x1, y1) = (1, 0.52), (x2, y2) = (1.1, 0.56),

(x3, y3) = (1.2, 0.82), (x4, y4) = (1.3, 0.78),

(x5, y5) = (1.4, 1.23), (x6, y6) = (1.5, 1.50).

We compute the sums in (1):

6∑
j=1

xj = 1 + 1.1 + 1.2 + 1.3 + 1.4 + 1.5 = 7.5

6∑
j=1

yj = 0.52 + 0.56 + 0.82 + 0.78 + 1.23 + 1.50 = 5.41

6∑
j=1

x2
j = 12 + 1.12 + 1.22 + 1.32 + 1.42 + 1.52 = 9.55

6∑
j=1

xj · yj = 1 · 0.52 + 1.1 · 0.56 + 1.2 · 0.82 + 1.3 · 0.78 + 1.4 · 1.23 + 1.5 · 1.50 = 7.106
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Substituting in (1) gives the following equations:

7.5m + 6b = 5.41

9.55m + 7.5b = 7.106 (2)

We multiply the first equation by 9.55 and the second by (−7.5), then add the resulting equations. This gives

71.625m + 57.3b = 51.6655
+ −71.625m − 56.25b = −53.295

1.05b = −1.6295

⇒ b = −1.5519

We now substitute b = −1.5519 in the first equation in (2) and solve for m:

7.5m + 6 · (−1.5519)=5.41

7.5m=14.7214
⇒ m = 1.9629

The linear least squares fit f (x) = mx + b is thus

f (x) = 1.9629x − 1.5519.

Let A = (a, b) be a fixed point in the plane, and let fA(P ) be the distance from A to the point P = (x, y). For
P �= A, let eAP be the unit vector pointing from A to P (Figure 25):

eAP =
−→
AP

‖−→AP ‖
Show that

∇fA(P ) = eAP

Further Insights and Challenges
53. In this exercise, we prove that for all x, y ≥ 0:

1

α
xα + 1

β
xβ ≥ xy

where α ≥ 1 and β ≥ 1 are numbers such that α−1 + β−1 = 1. To do this, we prove that the function

f (x, y) = α−1xα + β−1yβ − xy

satisfies f (x, y) ≥ 0 for all x, y ≥ 0.

(a) Show that the set of critical points of f (x, y) is the curve y = xα−1 (Figure 26). Note that this curve can also be
described as x = yβ−1. What is the value of f (x, y) at points on this curve?

(b) Verify that the Second Derivative Test fails. Show, however, that for fixed b > 0, the function g(x) = f (x, b) is
concave up with a critical point at x = bβ−1.

(c) Conclude that for all x > 0, f (x, b) ≥ f (bβ−1, b) = 0.

inc inc
b

x

y
y = xα−1

(bβ−1, b )

Critical points of f (x, y)

FIGURE 26 The critical points of f (x, y) = α−1xα + β−1yβ − xy form a curve y = xα−1.

solution We define the following function:

f (x, y) = 1

α
xα + 1

β
yβ − xy

Notice that f (0, 0) = 0.

(a) Determine the critical points for f (x, y) = f (x, y) = α−1xα + β−1yβ − xy. First, take the first-order partial
derivatives and set them equal to zero to solve:

fx = α−1 · αxα−1 − y = xα−1 − y = 0, fy = β−1 · βyβ−1 − x = yβ−1 − x = 0

This means that y = xα−1 and simultaneously x = yβ−1. Note here that we are guaranteed that the set of points satisfying
both equations is nonempty because 1/α + 1/β = 1.

Now to compute the value of f (x, y) at these points:

f (x, y) = f (x, xα−1) = α−1xα + β−1(xα−1)β − x(xα−1) =
(

1

α
− 1

)
xα + 1

β
xαβ−β
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But remember that α−1 + β−1 = 1 so we can say

1

α
+ 1

β
= 1, β + α = αβ

Using these relations we see:

f (x, y) = f (x, xα−1) =
(

1

α
− 1

)
xα + 1

β
xαβ−β = − 1

β
xα + 1

β
xα = 0

or similarly,

f (x, y) = f (yβ−1, y) = 1

α
yαβ−α +

(
1

β
− 1

)
yβ = 1

α
yβ − 1

α
yβ = 0

(b) Now computing the second-order partial derivatives we get

fxx = (α − 1)xα−2, fyy = (β − 1)yβ−2, fxy = −1

Therefore we can write the discriminant (while using the relations about α and β above):

D = fxxfyy − f 2
xy = (α − 1)(β − 1)xα−2yβ−2 − 1 = xα−2yβ−2 − 1

Evaluating this expression at the critical points when y = xα−1 we see

D(x, xα−1) = xα−2(xα−1)β−2 − 1 = xα−2xαβ−β−2α+2 − 1 = xα−2+αβ−β−2α+2 − 1 = x0 − 1 = 0

Thus the Second Derivative Test is inconclusive and fails.
Instead, if we fix b > 0, consider the function

g(x) = f (x, b) = 1

α
xα + 1

β
bβ − bx

Therefore, taking the first derivative and setting it equal to zero to solve, we see

g′(x) = xα−1 − b = 0 ⇒ b = xα−1

In order to solve this for x, note here that (α − 1)(β − 1) = 1 so then 1
α−1 = β − 1 and

b = xα−1 ⇒ x = b1/(α−1) ⇒ x = bβ−1

Since

g′′(x) = (α − 1)xα−2, α ≥ 1

then g′′(x) ≥ 0 for all x. Therefore, g(x) is concave up with critical point x = bβ−1.

(c) From our work in part (b), we can conclude, for all x > 0, then

f (x, b) ≥ f (bβ−1, b) = 0

The following problem was posed by Pierre de Fermat: Given three points A = (a1, a2), B = (b1, b2), and
C = (c1, c2) in the plane, find the point P = (x, y) that minimizes the sum of the distances

f (x, y) = AP + BP + CP

Let e, f , g be the unit vectors pointing from P to the points A, B, C as in Figure 27.

(a) Use Exercise 52 to show that the condition ∇f (P ) = 0 is equivalent to

e + f + g = 0

(b) Show that f (x, y) is differentiable except at points A, B, C. Conclude that the minimum of f (x, y) occurs either
at a point P satisfying Eq. (3) or at one of the points A, B, or C.

(c) Prove that Eq. (3) holds if and only if P is the Fermat point, defined as the point P for which the angles between
the segments AP , BP , CP are all 120◦ (Figure 27).

(d) Show that the Fermat point does not exist if one of the angles in �ABC is > 120◦. Where does the minimum
occur in this case?

14.8 Lagrange Multipliers: Optimizing with a Constraint (LT Section 15.8)

Preliminary Questions
1. Suppose that the maximum of f (x, y) subject to the constraint g(x, y) = 0 occurs at a point P = (a, b) such that

∇fP �= 0. Which of the following statements is true?

(a) ∇fP is tangent to g(x, y) = 0 at P .

(b) ∇fP is orthogonal to g(x, y) = 0 at P .

solution

(a) Since the maximum of f subject to the constraint occurs at P , it follows by Theorem 1 that ∇fP and ∇gP are
parallel vectors. The gradient ∇gP is orthogonal to g(x, y) = 0 at P , hence ∇fP is also orthogonal to this curve at P .
We conclude that statement (b) is false (yet the statement can be true if ∇fP = (0, 0)).

(b) This statement is true by the reasoning given in the previous part.
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2. Figure 9 shows a constraint g(x, y) = 0 and the level curves of a function f . In each case, determine whether f has
a local minimum, a local maximum, or neither at the labeled point.

4
3
2
1

1
2

3
4

A B

g(x, y) = 0 g(x, y) = 0

∇f ∇f

FIGURE 9

solution The level curve f (x, y) = 2 is tangent to the constraint curve at the point A.Aclose level curve that intersects
the constraint curve is f (x, y) = 1, hence we may assume that f has a local maximum 2 under the constraint at A. The
level curve f (x, y) = 3 is tangent to the constraint curve. However, in approaching B under the constraint, from one side
f is increasing and from the other side f is decreasing. Therefore, f (B) is neither local minimum nor local maximum of
f under the constraint.

3. On the contour map in Figure 10:

(a) Identify the points where ∇f = λ∇g for some scalar λ.

(b) Identify the minimum and maximum values of f (x, y) subject to g(x, y) = 0.

x

26 −2

2 6

g (x, y) = 0

Contour plot of f (x, y)
(contour interval 2)

−2−6

−6

y

FIGURE 10 Contour map of f (x, y); contour interval 2.

solution

(a) The gradient ∇g is orthogonal to the constraint curve g(x, y) = 0, and ∇f is orthogonal to the level curves of f .
These two vectors are parallel at the points where the level curve of f is tangent to the constraint curve. These are the
points A, B, C, D, E in the figure:

26 −2

2 6
g (x, y) = 0∇fA, ∇gA

A

E

C

D

B

−2−6

−6

(b) The minimum and maximum occur where the level curve of f is tangent to the constraint curve. The level curves
tangent to the constraint curve are

f (A) = −4, f (C) = 2, f (B) = 6, f (D) = −4, f (E) = 4

Therefore the global minimum of f under the constraint is −4 and the global maximum is 6.

Exercises
In this exercise set, use the method of Lagrange multipliers unless otherwise stated.

1. Find the extreme values of the function f (x, y) = 2x + 4y subject to the constraint g(x, y) = x2 + y2 − 5 = 0.

(a) Show that the Lagrange equation ∇f = λ∇g gives λx = 1 and λy = 2.

(b) Show that these equations imply λ �= 0 and y = 2x.
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(c) Use the constraint equation to determine the possible critical points (x, y).

(d) Evaluate f (x, y) at the critical points and determine the minimum and maximum values.

solution

(a) The Lagrange equations are determined by the equality ∇f = λ∇g. We find them:

∇f = 〈fx, fy

〉 = 〈2, 4〉 , ∇g = 〈gx, gy

〉 = 〈2x, 2y〉
Hence,

〈2, 4〉 = λ 〈2x, 2y〉
or

λ(2x) = 2

λ(2y) = 4
⇒

λx = 1

λy = 2

(b) The Lagrange equations in part (a) imply that λ �= 0. The first equation implies that x = 1
λ and the second equation

gives y = 2
λ . Therefore y = 2x.

(c) We substitute y = 2x in the constraint equation x2 + y2 − 5 = 0 and solve for x and y. This gives

x2 + (2x)2 − 5 = 0

5x2 = 5

x2 = 1 ⇒ x1 = −1, x2 = 1

Since y = 2x, we have y1 = 2x1 = −2, y2 = 2x2 = 2. The critical points are thus

(−1, −2) and (1, 2).

Extreme values can also occur at the points where ∇g = 〈2x, 2y〉 = 〈0, 0〉. However, (0, 0) is not on the constraint.

(d) We evaluate f (x, y) = 2x + 4y at the critical points, obtaining

f (−1, −2) = 2 · (−1) + 4 · (−2) = −10

f (1, 2) = 2 · 1 + 4 · 2 = 10

Since f is continuous and the graph of g = 0 is closed and bounded, global minimum and maximum points exist. So
according to Theorem 1, we conclude that the maximum of f (x, y) on the constraint is 10 and the minimum is −10.

Find the extreme values of f (x, y) = x2 + 2y2 subject to the constraint g(x, y) = 4x − 6y = 25.

(a) Show that the Lagrange equations yield 2x = 4λ, 4y = −6λ.

(b) Show that if x = 0 or y = 0, then the Lagrange equations give x = y = 0. Since (0, 0) does not satisfy the
constraint, you may assume that x and y are nonzero.

(c) Use the Lagrange equations to show that y = − 3
4x.

(d) Substitute in the constraint equation to show that there is a unique critical point P .

(e) Does P correspond to a minimum or maximum value of f ? Refer to Figure 11 to justify your answer. Hint: Do
the values of f (x, y) increase or decrease as (x, y) moves away from P along the line g(x, y) = 0?

3. Apply the method of Lagrange multipliers to the function f (x, y) = (x2 + 1)y subject to the constraint x2 + y2 = 5.
Hint: First show that y �= 0; then treat the cases x = 0 and x �= 0 separately.

solution We first write out the Lagrange Equations. We have ∇f =
〈
2xy, x2 + 1

〉
and ∇g = 〈2x, 2y〉. Hence, the

Lagrange Condition for ∇g �= 0 is

∇f = λ∇g〈
2xy, x2 + 1

〉
= λ 〈2x, 2y〉

We obtain the following equations:

2xy = λ(2x)

x2 + 1 = λ(2y)
⇒

2x(y − λ) = 0

x2 + 1 = 2λy
(1)

The second equation implies that y �= 0, since there is no real value of x such that x2 + 1 = 0. Likewise, λ �= 0. The
solutions of the first equation are x = 0 and y = λ.

Case 1: x = 0. Substituting x = 0 in the second equation gives 2λy = 1, or y = 1
2λ

. We substitute x = 0, y = 1
2λ

(recall that λ �= 0) in the constraint to obtain

02 + 1

4λ2
= 5 ⇒ 4λ2 = 1

5
⇒ λ = ± 1√

20
= ± 1

2
√

5

The corresponding values of y are

y = 1

2 · 1
2
√

5

= √
5 and y = 1

2 ·
(
− 1

2
√

5

) = −√
5
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We obtain the critical points: (
0,

√
5
)

and
(

0, −√
5
)

Case 2: x �= 0. Then the first equation in (1) implies y = λ. Substituting in the second equation gives

x2 + 1 = 2λ2 ⇒ x2 = 2λ2 − 1

We now substitute y = λ and x2 = 2λ2 − 1 in the constraint x2 + y2 = 5 to obtain

2λ2 − 1 + λ2 = 5

3λ2 = 6

λ2 = 2 ⇒ λ = ±√
2

The solution (x, y) are thus

λ = √
2: y = √

2, x = ±√
2 · 2 − 1 = ±√

3

λ = −√
2: y = −√

2, x = ±√
2 · 2 − 1 = ±√

3

We obtain the critical points:(√
3,

√
2
)

,
(
−√

3,
√

2
)

,
(√

3, −√
2
)

,
(
−√

3, −√
2
)

We conclude that the critical points are(
0,

√
5
)

,
(

0, −√
5
)

,
(√

3,
√

2
)

,
(
−√

3,
√

2
)

,
(√

3, −√
2
)

,
(
−√

3, −√
2
)

.

We now calculate f (x, y) =
(
x2 + 1
)

y at the critical points:

f
(

0,
√

5
)

= √
5 ≈ 2.24

f
(

0, −√
5
)

= −√
5 ≈ −2.24

f
(√

3,
√

2
)

= f
(
−√

3,
√

2
)

= 4
√

2 ≈ 5.66

f
(√

3, −√
2
)

= f
(
−√

3, −√
2
)

= −4
√

2 ≈ −5.66

Since the constraint gives a closed and bounded curve, f achieves a minimum and a maximum under it. We conclude
that the maximum of f (x, y) on the constraint is 4

√
2 and the minimum is −4

√
2.

In Exercises 4–13, find the minimum and maximum values of the function subject to the given constraint.

f (x, y) = 2x + 3y, x2 + y2 = 4
5. f (x, y) = x2 + y2, 2x + 3y = 6

solution We find the extreme values of f (x, y) = x2 + y2 under the constraint g(x, y) = 2x + 3y − 6 = 0.

Step 1. Write out the Lagrange Equations. The gradients of f and g are ∇f = 〈2x, 2y〉 and ∇g = 〈2, 3〉. The Lagrange
Condition is

∇f = λ∇g

〈2x, 2y〉 = λ 〈2, 3〉
We obtain the following equations:

2x = λ · 2

2y = λ · 3

Step 2. Solve for λ in terms of x and y. Notice that if x = 0, then the first equation gives λ = 0, therefore by the second
equation also y = 0. The point (0, 0) does not satisfy the constraint. Similarly, if y = 0 also x = 0. We therefore may
assume that x �= 0 and y �= 0 and obtain by the two equations:

λ = x and λ = 2

3
y.
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Step 3. Solve for x and y using the constraint. Equating the two expressions for λ gives

x = 2

3
y ⇒ y = 3

2
x

We substitute y = 3
2x in the constraint 2x + 3y = 6 and solve for x and y:

2x + 3 · 3

2
x = 6

13x = 12 ⇒ x = 12

13
, y = 3

2
· 12

13
= 18

13

We obtain the critical point
(

12
13 , 18

13

)
.

Step 4. Calculate f at the critical point. We evaluate f (x, y) = x2 + y2 at the critical point:

f

(
12

13
,

18

13

)
=
(

12

13

)2
+
(

18

13

)2
= 468

169
≈ 2.77

Rewriting the constraint as y = − 2
3x + 2, we see that as |x| → +∞ then so does |y|, and hence x2 + y2 is increasing

without bound on the constraint as |x| → ∞. We conclude that the value 468/169 is the minimum value of f under the
constraint, rather than the maximum value.

f (x, y) = 4x2 + 9y2, xy = 4
7. f (x, y) = xy, 4x2 + 9y2 = 32

solution We find the extreme values of f (x, y) = xy under the constraint g(x, y) = 4x2 + 9y2 − 32 = 0.

Step 1. Write out the Lagrange Equation. The gradient vectors are ∇f = 〈y, x〉 and ∇g = 〈8x, 18y〉, hence the Lagrange
Condition is

∇f = λ∇g

〈y, x〉 = λ 〈8x, 18y〉
We obtain the following equations:

y = λ(8x)

x = λ(18y)

Step 2. Solve for λ in terms of x and y. If x = 0, then the Lagrange equations also imply that y = 0 and vice versa. Since
the point (0, 0) does not satisfy the equation of the constraint, we may assume that x �= 0 and y �= 0. The two equations
give

λ = y

8x
and λ = x

18y

Step 3. Solve for x and y using the constraint. We equate the two expressions for λ to obtain

y

8x
= x

18y
⇒ 18y2 = 8x2 ⇒ y = ±2

3
x

We now substitute y = ± 2
3x in the equation of the constraint and solve for x and y:

4x2 + 9 ·
(

±2

3
x

)2
= 32

4x2 + 9 · 4x2

9
= 32

8x2 = 32 ⇒ x = −2, x = 2

We find y by the relation y = ± 2
3x:

y = 2

3
· (−2) = −4

3
, y = −2

3
· (−2) = 4

3
, y = 2

3
· 2 = 4

3
, y = −2

3
· 2 = −4

3

We obtain the following critical points:(
−2, −4

3

)
,

(
−2,

4

3

)
,

(
2,

4

3

)
,

(
2, −4

3

)
Extreme values can also occur at the point where ∇g = 〈8x, 18y〉 = 〈0, 0〉, that is, at the point (0, 0). However, the point
does not lie on the constraint.
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Step 4. Calculate f at the critical points. We evaluate f (x, y) = xy at the critical points:

f

(
−2, −4

3

)
= f

(
2,

4

3

)
= 8

3

f

(
−2,

4

3

)
= f

(
2, −4

3

)
= −8

3

Since f is continuous and the constraint is a closed and bounded set in R2 (an ellipse), f attains global extrema on the
constraint. We conclude that 8

3 is the maximum value and − 8
3 is the minimum value.

f (x, y) = x2y + x + y, xy = 4
9. f (x, y) = x2 + y2, x4 + y4 = 1

solution We find the extreme values of f (x, y) = x2 + y2 under the constraint g(x, y) = x4 + y4 − 1 = 0.

Step 1. Write out the Lagrange Equations. We have ∇f = 〈2x, 2y〉 and ∇g =
〈
4x3, 4y3

〉
, hence the Lagrange Condition

∇f = λ∇g gives

〈2x, 2y〉 = λ
〈
4x3, 4y3

〉
or

2x = λ
(

4x3
)

2y = λ
(

4y3
) ⇒

x = 2λx3

y = 2λy3
(1)

Step 2. Solve for λ in terms of x and y. We first assume that x �= 0 and y �= 0. Then the Lagrange equations give

λ = 1

2x2
and λ = 1

2y2

Step 3. Solve for x and y using the constraint. Equating the two expressions for λ gives

1

2x2
= 1

2y2
⇒ y2 = x2 ⇒ y = ±x

We now substitute y = ±x in the equation of the constraint x4 + y4 = 1 and solve for x and y:

x4 + (±x)4 = 1

2x4 = 1

x4 = 1

2
⇒ x = 1

21/4
, x = − 1

21/4

The corresponding values of y are obtained by the relation y = ±x. The critical points are thus(
1

21/4
,

1

21/4

)
,

(
1

21/4
, − 1

21/4

)
,

(
− 1

21/4
,

1

21/4

)
,

(
− 1

21/4
, − 1

21/4

)
(2)

We examine the case x = 0 or y = 0. Notice that the point (0, 0) does not satisfy the equation of the constraint, hence
either x = 0 or y = 0 can hold, but not both at the same time.

Case 1: x = 0. Substituting x = 0 in the constraint x4 + y4 = 1 gives y = ±1. We thus obtain the critical points

(0, −1), (0, 1) (3)

Case 2: y = 0. We may interchange x and y in the discussion in case 1, and obtain the critical points:

(−1, 0), (1, 0) (4)

Combining (2), (3), and (4) we conclude that the critical points are

A1 =
(

1

21/4
,

1

21/4

)
, A2 =

(
1

21/4
, − 1

21/4

)
, A3 =

(
− 1

21/4
,

1

21/4

)
,

A4 =
(

− 1

21/4
, − 1

21/4

)
, A5 = (0, −1), A6 = (0, 1), A7 = (−1, 0), A8 = (1, 0)

The point where ∇g =
〈
4x3, 4y3

〉
= 〈0, 0〉, that is, (0, 0), does not lie on the constraint.
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Step 4. Compute f at the critical points. We evaluate f (x, y) = x2 + y2 at the critical points:

f (A1) = f (A2) = f (A3) = f (A4) =
(

1

21/4

)2
+
(

1

21/4

)2
= 2

21/2
= √

2

f (A5) = f (A6) = f (A7) = f (A8) = 1

The constraint x4 + y4 = 1 is a closed and bounded set in R2 and f is continuous on this set, hence f has global extrema
on the constraint. We conclude that

√
2 is the maximum value and 1 is the minimum value.

f (x, y) = x2y4, x2 + 2y2 = 6
11. f (x, y, z) = 3x + 2y + 4z, x2 + 2y2 + 6z2 = 1

solution We find the extreme values of f (x, y, z) = 3x + 2y + 4z under the constraint g(x, y, z) = x2 + 2y2 +
6z2 − 1 = 0.

Step 1. Write out the Lagrange Equations. The gradient vectors are ∇f = 〈3, 2, 4〉 and ∇g = 〈2x, 4y, 12z〉, therefore
the Lagrange Condition ∇f = λ∇g is:

〈3, 2, 4〉 = λ 〈2x, 4y, 12z〉
The Lagrange equations are, thus:

3 = λ(2x)
3

2
= λx

2 = λ(4y) ⇒ 1

2
= λy

4 = λ(12z)
1

3
= λz

Step 2. Solve for λ in terms of x, y, and z. The Lagrange equations imply that x �= 0, y �= 0, and z �= 0. Solving for λ

we get

λ = 3

2x
, λ = 1

2y
, λ = 1

3z

Step 3. Solve for x, y, and z using the constraint. Equating the expressions for λ gives

3

2x
= 1

2y
= 1

3z
⇒ x = 9

2
z, y = 3

2
z

Substituting x = 9
2z and y = 3

2z in the equation of the constraint x2 + 2y2 + 6z2 = 1 and solving for z we get(
9

2
z

)2
+ 2

(
3

2
z

)2
+ 6z2 = 1

123

4
z2 = 1 ⇒ z1 = 2√

123
, z2 = − 2√

123

Using the relations x = 9
2z, y = 3

2z we get

x1 = 9

2
· 2√

123
= 9√

123
, y1 = 3

2
· 2√

123
= 3√

123
, z1 = 2√

123

x2 = 9

2
· −2√

123
= − 9√

123
, y2 = 3

2
· −2√

123
= − 3√

123
, z2 = − 2√

123

We obtain the following critical points:

p1 =
(

9√
123

,
3√
123

,
2√
123

)
and p2 =

(
− 9√

123
, − 3√

123
, − 2√

123

)
Critical points are also the points on the constraint where ∇g = 0. However, ∇g = 〈2x, 4y, 12z〉 = 〈0, 0, 0〉 only at the
origin, and this point does not lie on the constraint.
Step 4. Computing f at the critical points. We evaluate f (x, y, z) = 3x + 2y + 4z at the critical points:

f (p1) = 27√
123

+ 6√
123

+ 8√
123

= 41√
123

=
√

41

3
≈ 3.7

f (p2) = − 27√
123

− 6√
123

− 8√
123

= − 41√
123

= −
√

41

3
≈ −3.7

Since f is continuous and the constraint is closed and bounded in R3, f has global extrema under the constraint. We
conclude that the minimum value of f under the constraint is about −3.7 and the maximum value is about 3.7.
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f (x, y, z) = x2 − y − z, x2 − y2 + z = 0
13. f (x, y, z) = xy + 3xz + 2yz, 5x + 9y + z = 10

solution We show that f (x, y, z) = xy + 3xz + 2yz does not have minimum and maximum values subject to the
constraint g(x, y, z) = 5x + 9y + z − 10 = 0. First notice that the curve c1 : (x, x, 10 − 14x) lies on the surface of the
constraint since it satisfies the equation of the constraint. On c1 we have,

f (x, y, z) = f (x, x, 10 − 14x) = x2 + 3x(10 − 14x) + 2x(10 − 14x) = −69x2 + 50x

Since lim
x→∞
(
−69x2 + 50x

)
= −∞, f does not have minimum value on the constraint. Notice that the curve c2 :

(x, −x, 10 + 4x) also lies on the surface of the constraint. The values of f on c2 are

f (x, y, z) = f (x, −x, 10 + 4x) = −x2 + 3x(10 + 4x) − 2x(10 + 4x) = 3x2 + 10x

The limit lim
x→∞(3x2 + 10x) = ∞ implies that f does not have a maximum value subject to the constraint.

Let

f (x, y) = x3 + xy + y3, g(x, y) = x3 − xy + y3

(a) Show that there is a unique point P = (a, b) on g(x, y) = 1 where ∇fP = λ∇gP for some scalar λ.

(b) Refer to Figure 12 to determine whether f (P ) is a local minimum or a local maximum of f subject to the
constraint.

(c) Does Figure 12 suggest that f (P ) is a global extremum subject to the constraint?

15. Find the point (a, b) on the graph of y = ex where the value ab is as small as possible.

solution We must find the point where f (x, y) = xy has a minimum value subject to the constraint g(x, y) =
ex − y = 0.

Step 1. Write out the Lagrange Equations. Since ∇f = 〈y, x〉 and ∇g = 〈ex, −1
〉
, the Lagrange Condition ∇f = λ∇g

is

〈y, x〉 = λ
〈
ex, −1
〉

The Lagrange equations are thus

y = λex

x = −λ

Step 2. Solve for λ in terms of x and y. The Lagrange equations imply that

λ = ye−x and λ = −x

Step 3. Solve for x and y using the constraint. We equate the two expressions for λ to obtain

ye−x = −x ⇒ y = −xex

We now substitute y = −xex in the equation of the constraint and solve for x:

ex − (−xex) = 0

ex(1 + x) = 0

Since ex �= 0 for all x, we have x = −1. The corresponding value of y is determined by the relation y = −xex . That is,

y = −(−1)e−1 = e−1

We obtain the critical point

(−1, e−1)

Step 4. Calculate f at the critical point. We evaluate f (x, y) = xy at the critical point.

f (−1, e−1) = (−1) · e−1 = −e−1

We conclude (see Remark) that the minimum value of xy on the graph of y = ex is −e−1, and it is obtained for x = −1
and y = e−1.

Remark: Since the constraint is not bounded, we need to justify the existence of a minimum value. The values
f (x, y) = xy on the constraint y = ex are f (x, ex) = h(x) = xex . Since h(x) > 0 for x > 0, the minimum value (if it
exists) occurs at a point x < 0. Since

lim
x→−∞ xex = lim

x→−∞
x

e−x
= lim

x→−∞
1

−e−x
= lim

x→−∞ −ex = 0,

then for x < some negative number −R, we have |f (x) − 0| < 0.1, say. Thus, on the bounded region −R ≤ x ≤ 0, f

has a minimum value of −e−1 ≈ −0.37, and this is thus a global minimum (for all x).

Find the rectangular box of maximum volume if the sum of the lengths of the edges is 300 cm.17. The surface area of a right-circular cone of radius r and height h is S = πr
√

r2 + h2, and its volume is V = 1
3πr2h.

(a) Determine the ratio h/r for the cone with given surface area S and maximum volume V .
(b) What is the ratio h/r for a cone with given volume V and minimum surface area S?
(c) Does a cone with given volume V and maximum surface area exist?
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solution

(a) Let S0 denote a given surface area. We must find the ratio h
r for which the function V (r, h) = 1

3πr2h has maximum

value under the constraint S(r, h) = πr
√

r2 + h2 = π
√

r4 + h2r2 = S0.

Step 1. Write out the Lagrange Equation. We have

∇V = π

〈
2rh

3
,
r2

3

〉
and ∇S = π

〈
2r3 + h2r√
r4 + h2r2

,
hr2√

r4 + h2r2

〉

The Lagrange Condition ∇V = λ∇S gives the following equations:

2rh

3
= 2r3 + h2r√

r4 + h2r2
λ ⇒ 2h

3
= 2r2 + h2√

r4 + h2r2
λ

r2

3
= hr2√

r4 + h2r2
λ ⇒ 1

3
= h√

r4 + h2r2
λ

Step 2. Solve for λ in terms of r and h. These equations yield two expressions for λ that must be equal:

λ = 2h

3

√
r4 + h2r2

2r2 + h2
= 1

3h

√
r4 + h2r2

Step 3. Solve for r and h using the constraint. We have

2h

3

√
r4 + h2r2

2r2 + h2
= 1

3h

√
r4 + h2r2

2h
1

2r2 + h2
= 1

h

2h2 = 2r2 + h2 ⇒ h2 = 2r2 ⇒ h

r
= √

2

We substitute h2 = 2r2 in the constraint πr
√

r2 + h2 = S0 and solve for r . This gives

πr
√

r2 + 2r2 = S0

πr
√

3r2 = S0

√
3πr2 = S0 ⇒ r2 = S0√

3π
, h2 = 2r2 = 2S0√

3π

Extreme values can occur also at points on the constraint where ∇S =
〈

2r2+h2r√
r4+h2r2

, hr2√
r4+h2r2

〉
= 〈0, 0〉, that is, at

(r, h) = (0, h), h �= 0. However, since the radius of the cone is positive (r > 0), these points are irrelevant. We conclude
that for the cone with surface area S0 and maximum volume, the following holds:

h

r
= √

2, h =
√

2S0√
3π

, r =
√

S0√
3π

For the surface area S0 = 1 we get

h =
√

2√
3π

≈ 0.6, r =
√

1√
3π

= 0.43

(b) We now must find the ratio h
r that minimizes the function S(r, h) = πr

√
r2 + h2 under the constraint

V (r, h) = 1

3
πr2h = V0

Using the gradients computed in part (a), the Lagrange Condition ∇S = λ∇V gives the following equations:

2r3 + h2r√
r4 + h2r2

= λ
2rh

3

hr2√
r4 + h2r2

= λ
r2

3

⇒
2r2 + h2√
r4 + h2r2

= λ
2h

3

h√
r4 + h2r2

= λ

3
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These equations give

λ

3
= 1

2h

2r2 + h2√
r4 + h2r2

= h√
r4 + h2r2

We simplify and solve for h
r :

2r2 + h2

2h
= h

2r2 + h2 = 2h2

2r2 = h2 ⇒ h

r
= √

2

We conclude that the ratio h
r for a cone with a given volume and minimal surface area is

h

r
= √

2

(c) The constant V = 1 gives 1
3πr2h = 1 or h = 3

πr2 . As r → ∞, we have h → 0, therefore

lim
r→∞
h→0

S(r, h) = lim
r→∞
h→0

πr
√

r2 + h2 = ∞

That is, S does not have maximum value on the constraint, hence there is no cone of volume 1 and maximal surface area.

In Example 1, we found the maximum of f (x, y) = 2x + 5y on the ellipse (x/4)2 + (y/3)2 = 1. Solve this
problem again without using Lagrange multipliers. First, show that the ellipse is parametrized by x = 4 cos t ,
y = 3 sin t . Then find the maximum value of f (4 cos t, 3 sin t) using single-variable calculus. Is one method easier
than the other?

19. Find the point on the ellipse

x2 + 6y2 + 3xy = 40

with largest x-coordinate (Figure 13).

x

y

4

−4

84−8 −4

FIGURE 13 Graph of x2 + 6y2 + 3xy = 40

solution We need to maximize f (x, y) = x subject to the constraint

g(x, y) = x2 + 6y2 + 3xy = 40

Step 1. Write out the Lagrange Equations. The gradient vectors are ∇f = 〈1, 0〉 and ∇g = 〈2x + 3y, 12y + 3x〉, hence
the Lagrange Condition ∇f = λ∇g gives:

〈1, 0〉 = λ 〈2x + 3y, 12y + 3x〉
or

1 = λ(2x + 3y), 0 = λ(12y + 3x)

this yields

x = −4y

Step 2. Solve for x and y using the constraint.

x2 + 6y2 + 3xy = (−4y)2 + 6y2 + 3(−4y)y = (16 + 6 − 12)y2 = 10y2 = 40

so y = ±2. If y = 2 then x = −8 and if y = −2 then x = 8. The extreme points are (−8, 2) and (8, −2). We conclude
that the point with largest x-coordinate is P = (8, −2).

Find the maximum area of a rectangle inscribed in the ellipse (Figure 14):

x2

a2
+ y2

b2
= 1

21. Find the point (x0, y0) on the line 4x + 9y = 12 that is closest to the origin.

solution Since we are minimizing distance, we can minimize the square of the distance function without loss of
generality:

f (x, y) = (x − 0)2 + (y − 0)2 = x2 + y2

subject to the constraint g(x, y) = 4x + 9y − 12.
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Step 1. Write out the Lagrange Equations. The gradient vectors are ∇f = 〈2x, 2y〉 and ∇g = 〈4, 9〉, hence the Lagrange
Condition ∇f = λ∇g gives

〈2x, 2y〉 = λ 〈4, 9〉
or

2x = 4λ ⇒ x = 2λ, 2y = 9λ

Step 2. Solve for λ in terms of x and y. The Lagrange equations give the following two expressions for λ:

λ = x

2
, λ = 9

2
y

Equating these two

x

2
= 9

2
y ⇒ x = 9y

Step 3. Solve for x and y using the constraint. We are given 4x + 9y = 12, therefore we can write:

4(9y) + 9y = 12 ⇒ 45y = 12 ⇒ y = 12

45
= 4

15

Since x = 9y, then we conclude:

y = 4

15
x = 9 · 4

15
= 12

5

Step 4. Conclusions. Therefore the point closest to the origin lying on the plane 4x + 9y = 12 is the point (12/5, 4/15).

Show that the point (x0, y0) closest to the origin on the line ax + by = c has coordinates

x0 = ac

a2 + b2
, y0 = bc

a2 + b2

23. Find the maximum value of f (x, y) = xayb for x ≥ 0, y ≥ 0 on the line x + y = 1, where a, b > 0 are constants.

solution

Step 1. Write the Lagrange Equations. We must find the maximum value of f (x, y) = xayb under the constraints

g(x, y) = x + y − 1, x > 0, y > 0. The gradient vectors are ∇f =
〈
axa−1yb, bxayb−1

〉
and ∇g = λ 〈1, 1〉, hence the

Lagrange Condition∇f = λ∇g is 〈
axa−1yb, bxayb−1

〉
= λ 〈1, 1〉

We obtain the following equations:

axa−1yb = λ

bxayb−1 = λ
⇒ axa−1yb = bxayb−1

Step 2. Solve for x and y using the constraint. We solve the equation in step 1 for y in terms of x. This gives

axa−1yb = bxayb−1

ay = bx ⇒ y = b

a
x

We now substitute y = b
a x in the constraint x + y = 1 and solve for x:

x + b

a
x = 1

(a + b)x = a ⇒ x = a

a + b

We find y using the relation y = b
a x:

y = b

a
· a

a + b
= b

a + b

The critical point is thus (
a

a + b
,

b

a + b

)
(1)
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Step 3. Conclusions. We compute f (x, y) = xayb at the critical point:

f

(
a

a + b
,

b

a + b

)
=
(

a

a + b

)a( b

a + b

)b
= aabb

(a + b)a+b

Now, since f is continuous on the segment x + y = 1, x ≥ 0, y ≥ 0, which is a closed and bounded set in R2, then f

has minimum and maximum values on this segment. The minimum value is 0 (obtained at (0, 1) and (1, 0)), therefore
the critical point (1) corresponds to the maximum value. We conclude that the maximum value of xayb on x + y = 1,
x > 0, y > 0 is

aabb

(a + b)a+b

Show that the maximum value of f (x, y) = x2y3 on the unit circle is 6
25

√
3
5 .

25. Find the maximum value of f (x, y) = xayb for x ≥ 0, y ≥ 0 on the unit circle, where a, b > 0 are constants.

solution We must find the maximum value of f (x, y) = xayb (a, b > 0) subject to the constraint g(x, y) =
x2 + y2 = 1.

Step 1. Write out the Lagrange Equations. We have ∇f =
〈
axa−1yb, bxayb−1

〉
and ∇g = 〈2x, 2y〉. Therefore the

Lagrange Condition ∇f = λ∇g is 〈
axa−1yb, bxayb−1

〉
= λ 〈2x, 2y〉

or

axa−1yb = 2λx

bxayb−1 = 2λy
(1)

Step 2. Solve for λ in terms of x and y. If x = 0 or y = 0, f has the minimum value 0. We thus may assume that x > 0
and y > 0. The equations (1) imply that

λ = axa−2yb

2
, λ = bxayb−2

2

Step 3. Solve for x and y using the constraint. Equating the two expressions for λ and solving for y in terms of x gives

axa−2yb

2
= bxayb−2

2

axa−2yb = bxayb−2

ay2 = bx2

y2 = b

a
x2 ⇒ y =

√
b

a
x

We now substitute y =
√

b
a x in the constraint x2 + y2 = 1 and solve for x > 0. We obtain

x2 + b

a
x2 = 1

(a + b)x2 = a

x2 = a

a + b
⇒ x =

√
a

a + b

We find y using the relation y =
√

b
a x:

y =
√

b

a

√
a

a + b
=
√

ab

a(a + b)
=
√

b

a + b

We obtain the critical point: (√
a

a + b
,

√
b

a + b

)

Extreme points can also occur where ∇g = 0, that is, 〈2x, 2y〉 = 〈0, 0〉 or (x, y) = (0, 0). However, this point is not on
the constraint.
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Step 4. Conclusions. We compute f (x, y) = xayb at the critical point:

f

(√
a

a + b
,

√
b

a + b

)
=
(

a

a + b

)a/2( b

a + b

)b/2
= aa/2bb/2

(a + b)(a+b)/2
=
√

aabb

(a + b)a+b

The function f (x, y) = xayb is continuous on the set x2 + y2 = 1, x ≥ 0, y ≥ 0, which is a closed and bounded set
in R2, hence f has minimum and maximum values on the set. The minimum value is 0 (obtained at (0, 1) and (1, 0)),
hence the critical point that we found corresponds to the maximum value. We conclude that the maximum value of xayb

on x2 + y2 = 1, x > 0, y > 0 is √
aabb

(a + b)a+b
.

Find the maximum value of f (x, y, z) = xaybzc for x, y, z ≥ 0 on the unit sphere, where a, b, c > 0 are
constants.

27. Show that the minimum distance from the origin to a point on the plane ax + by + cz = d is

|d|√
a2 + b2 + c2

solution We want to minimize the distance P =
√

x2 + y2 + z2 subject to ax + by + cz = d. Since the square

function u2 is increasing for u ≥ 0, the square P 2 attains its minimum at the same point where the distance P attains
its minimum. Thus, we may minimize the function f (x, y, z) = x2 + y2 + z2 subject to the constraint g(x, y, z) =
ax + by + cz = d.

Step 1. Write out the Lagrange Equations. We have ∇f = 〈2x, 2y, 2z〉 and ∇g = 〈a, b, c〉, hence the Lagrange Condition
∇f = λ∇g gives the following equations:

2x = λa

2y = λb

2z = λc

Assume for now that a �= 0, b �= 0, c �= 0.

Step 2. Solve for λ in terms of x, y, and z. The Lagrange Equations imply that

λ = 2x

a
, λ = 2y

b
, λ = 2z

c

Step 3. Solve for x, y, and z using the constraint. Equating the expressions for λ give the following equations:

2x

a
= 2z

c

2y

b
= 2z

c

⇒
x = a

c
z

y = b

c
z

(1)

We now substitute x = a
c z and y = b

c z in the equation of the constraint ax + by + cz = d and solve for z. This gives

a
(a

c
z
)

+ b

(
b

c
z

)
+ cz = d

a2

c
z + b2

c
z + cz = d(

a2 + b2 + c2
)

z = dc

Since a2 + b2 + c2 �= 0, we get z = dc
a2+b2+c2 . We now use (1) to compute y and x:

x = a

c
· dc

a2 + b2 + c2
= ad

a2 + b2 + c2
, y = b

c
· dc

a2 + b2 + c2
= bd

a2 + b2 + c2

We obtain the critical point:

P =
(

ad

a2 + b2 + c2
,

bd

a2 + b2 + c2
,

dc

a2 + b2 + c2

)
(2)

Step 4. Conclusions. It is clear geometrically that f has a minimum value subject to the constraint, hence the minimum
value occurs at the point P . We conclude that the point P is the point on the plane closest to the origin. We now consider
the case where a = 0. We consider the planes ax + by + cz = d, where a �= 0 and a → 0. A continuous change in
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a causes a continuous change in the closest point P . Therefore, the point P closest to the origin in case of a = 0 can
be obtained by computing the limit of P in (2) as a → 0, that is, by substituting a = 0. Similar considerations hold for
b = 0 or c = 0. We conclude that the closest point P in (2) holds also for the planes with a = 0, b = 0, or c = 0 (but not
all of them 0). The distance P of that point to the origin is

P =
√√√√ (ad)2 + (bd)2 + (dc)2(

a2 + b2 + c2
)2 = |d|

√√√√ a2 + b2 + c2(
a2 + b2 + c2

)2 = |d|√
a2 + b2 + c2

Antonio has $5.00 to spend on a lunch consisting of hamburgers ($1.50 each) and French fries ($1.00 per order).
Antonio’s satisfaction from eating x1 hamburgers and x2 orders of French fries is measured by a function U(x1, x2) =√

x1x2. How much of each type of food should he purchase to maximize his satisfaction? (Assume that fractional
amounts of each food can be purchased.)

29. Let Q be the point on an ellipse closest to a given point P outside the ellipse. It was known to the Greek
mathematician Apollonius (third century bce) that PQ is perpendicular to the tangent to the ellipse at Q (Figure 15).
Explain in words why this conclusion is a consequence of the method of Lagrange multipliers. Hint: The circles centered
at P are level curves of the function to be minimized.

P

Q

FIGURE 15

solution Let P = (x0, y0). The distance d between the point P and a point Q = (x, y) on the ellipse is minimum

where the square d2 is minimum (since the square function u2 is increasing for u ≥ 0). Therefore, we want to minimize
the function

f (x, y, z) = (x − x0)2 + (y − y0)2 + (z − z0)2

subject to the constraint

g(x, y) = x2

a2
+ y2

b2
= 1

The method of Lagrange indicates that the solution Q is the point on the ellipse where ∇f = λ∇g, that is, the point on the
ellipse where the gradients ∇f and ∇g are parallel. Since the gradient is orthogonal to the level curves of the function,
∇g is orthogonal to the ellipse g(x, y) = 1, and ∇f is orthogonal to the level curve of f passing through Q. But this
level curve is a circle through Q centered at P , hence the parallel vectors ∇g and ∇f are orthogonal to the ellipse and to
the circle centered at P respectively. We conclude that the point Q is the point at which the tangent to the ellipse is also
the tangent to the circle through Q centered at P . That is, the tangent to the ellipse at Q is perpendicular to the radius
PQ of the circle.

In a contest, a runner starting at A must touch a point P along a river and then run to B in the shortest time
possible (Figure 16). The runner should choose the point P that minimizes the total length of the path.

(a) Define a function

f (x, y) = AP + PB, where P = (x, y)

Rephrase the runner’s problem as a constrained optimization problem, assuming that the river is given by an equation
g(x, y) = 0.

(b) Explain why the level curves of f (x, y) are ellipses.

(c) Use Lagrange multipliers to justify the following statement: The ellipse through the point P minimizing the
length of the path is tangent to the river.

(d) Identify the point on the river in Figure 16 for which the length is minimal.

In Exercises 31 and 32, let V be the volume of a can of radius r and height h, and let S be its surface area (including the
top and bottom).

31. Find r and h that minimize S subject to the constraint V = 54π .

solution We see that the surface area of the can is S = 2πrh + 2πr2 subject to V = 54π = πr2h. Let us write the

constraint as V (r, h) = πr2h − 54π and use Lagrange Multipliers to solve.

Step 1. Write out the Lagrange Equations. The gradient vectors are ∇S = 〈2πh + 4πr, 2πr〉 and ∇V =
〈
2πrh, πr2

〉
.

Then using ∇S = λ∇V , we see

〈2πh + 4πr, 2πr〉 = λ
〈
2πrh, πr2

〉
or

2πh + 4πr = 2πλrh, 2πr = λπr2

Consider the second equation, rewriting we have:

2πr − λπr2 = 0 ⇒ πr(2 − λr) = 0 ⇒ r = 0, λ = 2

r

We can ignore when r = 0 since it does not correspond to any point on the constraint curve 54π = πr2h.
Using the first equation, rewriting we have:

2πh + 4πr = 2πλrh ⇒ λ = 2πh + 4πr

2πrh
= h + 2r

rh
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Step 2. Solve for r, h using the constraint to determine the critical point.
Using the two derived equations for λ we have:

2

r
= h + 2r

rh
⇒ 2rh = hr + 2r2 r(2h − h − 2r) = 0 ⇒ h = 2r

Then using the constraint, 54π = πr2h we see:

54π = πr2(2r) ⇒ 54 = 2r3 ⇒ r3 = 27 ⇒ r = 3

Thus r = 3 and h = 2(3) = 6.

Step 3. Conclusions. The minimum surface area, given that the volume must be 54π is determined by a can having radius
r = 3 and height h = 6. We know this is the minimum surface area because surface area is an increasing function of r

and h.

Show that for both of the following two problems, P = (r, h) is a Lagrange critical point if h = 2r: Then use
the contour plots in Figure 17 to explain why S has a minimum for fixed V but no maximum and, similarly, V has a
maximum for fixed S but no minimum.

33. A plane with equation
x

a
+ y

b
+ z

c
= 1 (a, b, c > 0) together with the positive coordinate planes forms a tetrahedron

of volume V = 1
6abc (Figure 18). Find the minimum value of V among all planes passing through the point P = (1, 1, 1).

A = (a, 0, 0)

B = (0, b, 0)

C = (0, 0, c)

z

x

y

P

FIGURE 18

solution The plane is constrained to pass through the point P = (1, 1, 1), hence this point must satisfy the equation
of the plane. That is,

1

a
+ 1

b
+ 1

c
= 1

We thus must minimize the function V (a, b, c) = 1
6abc subject to the constraint g(a, b, c) = 1

a + 1
b

+ 1
c = 1, a > 0,

b > 0, c > 0.

Step 1. Write out the Lagrange Equations. We have ∇V =
〈

1
6bc, 1

6ac, 1
6ab
〉

and ∇g =
〈
− 1

a2 , − 1
b2 , − 1

c2

〉
, hence the

Lagrange Condition ∇V = λ∇g yields the following equations:

1

6
bc = − 1

a2
λ

1

6
ac = − 1

b2
λ

1

6
ab = − 1

c2
λ

Step 2. Solve for λ in terms of a, b, and c. The Lagrange equations imply that

λ = −bca2

6
, λ = −acb2

6
, λ = −abc2

6

Step 3. Solve for a, b, and c using the constraint. Equating the expressions for λ, we obtain the following equations:

bca2 = acb2

abc2 = acb2
⇒

abc(a − b) = 0

abc(c − b) = 0

Since a, b, c are positive numbers, we conclude that a = b and c = b. We now substitute a = b and c = b in the equation
of the constraint 1

a + 1
b

+ 1
c = 1 and solve for b. This gives

1

b
+ 1

b
+ 1

b
= 1

3

b
= 1 ⇒ b = 3

Therefore also a = b = 3 and c = b = 3. We obtain the critical point (3, 3, 3).
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Step 4. Conclusions. If V has a minimum value subject to the constraint then it occurs at the point (3, 3, 3). That is, the
plane that minimizes V is

x

3
+ y

3
+ z

3
= 1 or x + y + z = 3

Remark: Since the constraint is not bounded, we need to justify the existence of a minimum value of V = 1
6abc under

the constraint 1
a + 1

b
+ 1

c = 1. First notice that since a, b, c are nonnegative and the sum of their reciprocals is 1, none of
them can tend to zero. In fact, none of a, b, c can be less than 1. Therefore, if a → ∞, b → ∞, or c → ∞, then V → ∞.

This means that we can find a cube that includes the point
(

1
3 , 1

3 , 1
3

)
such that, on the part of the constraint that is outside

the cube, it holds that V > V
(

1
3 , 1

3 , 1
3

)
= 1

162 . On the part of the constraint inside the cube, V has a minimum value m,

since it is a closed and bounded set. Clearly m is the minimum of V on the whole constraint.

With the same set-up as in the previous problem, find the plane that minimizes V if the plane is constrained to
pass through a point P = (α, β, γ ) with α, β, γ > 0.

35. Show that the Lagrange equations for f (x, y) = x + y subject to the constraint g(x, y) = x + 2y = 0 have no
solution. What can you conclude about the minimum and maximum values of f subject to g = 0? Show this directly.

solution Using the methods of Lagrange we can write ∇f = λ∇g and see

〈1, 1〉 = λ 〈1, 2〉
Which gives us the equations:

1 = λ, 1 = 2λ

hence, λ = 1 or λ = 1/2. This is an inconsistent set of equations, thus the Lagrange method has no solution. What we
can conclude from this is that the maximum and minimum values of f subject to g = 0 does not exist. This means that
f (x, y) increases without an upper bound and decreases without a lower bound.

To show this directly, we can write y = −1/2x from the constraint equation and substitute it into f (x, y) =
f (x, −1/2x) = x − 1/2x = 1/2x. We know that y = 1/2x is a straight line having slope 1/2, increasing, with no
maximum nor minimum values.

Show that the Lagrange equations for f (x, y) = 2x + y subject to the constraint g(x, y) = x2 − y2 = 1 have
a solution but that f has no min or max on the constraint curve. Does this contradict Theorem 1?

37. Let L be the minimum length of a ladder that can reach over a fence of height h to a wall located a distance b behind
the wall.

(a) Use Lagrange multipliers to show that L = (h2/3 + b2/3)3/2 (Figure 19). Hint: Show that the problem amounts to
minimizing f (x, y) = (x + b)2 + (y + h)2 subject to y/b = h/x or xy = bh.

(b) Show that the value of L is also equal to the radius of the circle with center (−b, −h) that is tangent to the graph of
xy = bh.

Wall
Ladder

Fence

y

h

L
L

b x

x

xy = bh

(−b, −h)

y

FIGURE 19

solution
(a) We denote by x and y the lengths shown in the figure, and express the length l of the ladder in terms of x and y.

BC xo
b

h

A

D
y

E

Using the Pythagorean Theorem, we have

l =
√

OA
2 + OB

2 =
√

(y + h)2 + (x + b)2 (1)

Since the function u2 is increasing for u ≥ 0, l and l2 have their minimum values at the same point. Therefore, we may
minimize the function f (x, y) = l2(x, y), which is

f (x, y) = (x + b)2 + (y + h)2
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We now identify the constraint on the variables x and y. (Notice that h, b are constants while x and y are free to change).
Using proportional lengths in the similar triangles �AED and �DCB, we have

AE

DC
= ED

CB

That is,

y

h
= b

x
⇒ xy = bh

We thus must minimize f (x, y) = (x + b)2 + (y + h)2 subject to the constraint g(x, y) = xy = bh, x > 0, y > 0.

Step 1. Write out the Lagrange Equations. We have ∇f = 〈2(x + b), 2(y + h)〉 and ∇g = 〈y, x〉, hence the Lagrange
Condition ∇f = λ∇g gives the following equations:

2(x + b) = λy

2(y + h) = λx

Step 2. Solve for λ in terms of x and y. The equation of the constraint implies that y �= 0 and x �= 0. Therefore, the
Lagrange equations yield

λ = 2(x + b)

y
, λ = 2(y + h)

x

Step 3. Solve for x and y using the constraint. Equating the two expressions for λ gives

2(x + b)

y
= 2(y + h)

x

We simplify:

x(x + b) = y(y + h)

x2 + xb = y2 + yh

The equation of the constraint implies that y = bh
x . We substitute and solve for x > 0. This gives

x2 + xb =
(

bh

x

)2
+ bh

x
· h

x2 + xb = b2h2

x2
+ bh2

x

x4 + x3b = b2h2 + bh2x

x4 + bx3 − bh2x − b2h2 = 0

x3(x + b) − bh2(x + b) = 0(
x3 − bh2

)
(x + b) = 0

Since x > 0 and b > 0, also x + b > 0 and the solution is

x3 − bh2 = 0 ⇒ x = (bh2)
1/3

We compute y. Using the relation y = bh
x ,

y = bh

(bh2)
1/3

= bh

b1/3h2/3
= b2/3h1/3 = (b2h)

1/3

We obtain the solution

x =
(
bh2
)1/3

, y =
(
b2h
)1/3

(2)

Extreme values may also occur at the point on the constraint where ∇g = 0. However, ∇g = 〈y, x〉 = 〈0, 0〉 only at the
point (0, 0), which is not on the constraint.

Step 4. Conclusions. Notice that on the constraint y = bh
x or x = bh

y , as x → 0+ then y → ∞, and as x → ∞, then
y → 0+. Also, as y → 0+, x → ∞ and as y → ∞, x → 0+. In either case, f (x, y) is increasing without bound. Using
this property and the theorem on the existence of extreme values for a continuous function on a closed and bounded set
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(for a certain part of the constraint), one can show that f has a minimum value on the constraint. This minimum value
occurs at the point (2). We substitute this point in (1) to obtain the following minimum length L:

L =
√(

(b2h)
1/3 + h

)2 +
(
(bh2)

1/3 + b
)2

=
√

(b2h)
2/3 + 2h(b2h)

1/3 + h2 + (bh2)
2/3 + 2b(bh2)

1/3 + b2

=
√

b
4
3 h2/3 + 2h

4
3 b2/3 + h2 + b2/3h

4
3 + 2b

4
3 h2/3 + b2

=
√

3b
4
3 h2/3 + 3h

4
3 b2/3 + h2 + b2

=
√(

h2/3
)3 + 3
(
h2/3
)2

b2/3 + 3h2/3
(
b2/3
)2 + (b2/3

)3
Using the identity (α + β)3 = α3 + 3α2β + 3αβ2 + β3, we conclude that

L =
√(

h2/3 + b2/3
)3 =
(
h2/3 + b2/3

)3/2
.

(b) The Lagrange Condition states that the gradient vectors ∇fP and ∇gP are parallel (where P is the minimizing
point). The gradient ∇fP is orthogonal to the level curve of f passing through P , which is a circle through P centered
at (−b, −h). ∇gP is orthogonal to the level curve of g passing through P , which is the curve of the constraint xy = bh.
We conclude that the circle and the curve xy = bh, both being perpendicular to parallel vectors, are tangent at P . The
radius of the circle is the minimum value L, of f (x, y).

Find the maximum value of f (x, y, z) = xy + xz + yz − xyz subject to the constraint x + y + z = 1, for
x ≥ 0, y ≥ 0, z ≥ 0.

39. Find the point lying on the intersection of the plane x + 1
2y + 1

4z = 0 and the sphere x2 + y2 + z2 = 9 with the
largest z-coordinate.

solution We will use the method of Lagrange Multipliers with two constraints here. We want to maximize f (x, y, z) =
z subject to the two surfaces. Set the first constraint as g(x, y, z) = x + 1

2y + 1
4z = 0 and the second as h(x, y, z) =

x2 + y2 + z2 − 9 = 0.

Write out the Lagrange equations. We have ∇f = 〈0, 0, 1〉, ∇g =
〈
1, 1

2 , 1
4

〉
and ∇g = 〈2x, 2y, 2z〉, hence the

Lagrange condition, ∇f = λ∇g + μ∇h yields the following equations:

〈0, 0, 1〉 = λ

〈
1,

1

2
,

1

4

〉
+ μ 〈2x, 2y, 2z〉

and

0 = λ + 2μx, 0 = 1

2
λ + 2μy, 1 = 1

4
λ + 2μz

Hence, from the first two equations we see

λ = −2μx, λ = −4μy

Therefore

−2μx = −4μy ⇒ x = 2y

since μ �= 0. Using the first constraint equation x + 1
2y + 1

4z = 0 we have

2y + 1

2
y + 1

4
z = 0 ⇒ 5

2
y + 1

4
z = 0 ⇒ y = − 1

10
z

Finally, we can substitute y = −1/10z and x = 2y = −1/5z into the second constraint equation x2 + y2 + z2 = 9 to
see (

−1

5
z

)2
+
(

− 1

10
z

)2
+ z2 = 9 ⇒ 1

25
z2 + 1

100
z2 + z2 = 9 ⇒ 4z2 + z2 + 100z2 = 900

Hence

105z2 = 900 ⇒ z2 = 900

105
= 60

7
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Therefore z = ±
√

60
7 = ±2

√
15
7 . The two critical points are:

P

(
−2

5

√
15

7
, −1

5

√
15

7
, 2

√
15

7

)
, Q

(
2

5

√
15

7
,

1

5

√
15

7
, −2

√
15

7

)

The critical point with the largest z-coordinate (the maximum of f (x, y, z)) is P with z-coordinate 2
√

15
7 ≈ 2.928.

Find the maximum of f (x, y, z) = x + y + z subject to the two constraints x2 + y2 + z2 = 9 and 1
4x2 + 1

4y2 +
4z2 = 9.

41. The cylinder x2 + y2 = 1 intersects the plane x + z = 1 in an ellipse. Find the point on that ellipse that is farthest
from the origin.

solution We need to use Lagrange Multipliers with two constraints here. We want to maximize the square of the

distance from the origin f (x, y, z) = x2 + y2 + z2 subject to g(x, y, z) = x2 + y2 − 1 and h(x, y, z) = x + z − 1.
Taking the gradients we have ∇f = 〈2x, 2y, 2z〉, ∇g = 〈2x, 2y, 0〉, and ∇h = 〈1, 0, 1〉. Writing the Lagrange condition
∇f = λ∇g + μ∇h we have

〈2x, 2y, 2z〉 = λ 〈2x, 2y, 0〉 + μ 〈1, 0, 1〉
and

2x = 2λx + μ, 2y = 2λy, 2z = μ

Using the second equation we see:

2y − 2λy = 0 ⇒ 2y(λ − 1) = 0

Therefore, either λ = 1 or y = 0.
If λ = 1 then this implies μ = 0 and z = 0. Using the constraint x + z = 1 then x = 1, and using the constraint

x2 + y2 = 1, then y = 0. This gives the critical point

(1, 0, 0)

If y = 0, using the constraint x2 + y2 = 1, then x = ±1. If x = 1, then z = 0, if x = −1 then z = 2. This gives the
critical points

(1, 0, 0), (−1, 0, 2)

Now we examine f (x, y, z) = x2 + y2 + z2 at the two critical points for the maximum value:

f (1, 0, 0) = 1, f (−1, 0, 2) = 5

Thus, the point farthest from the origin on this ellipse is the point (−1, 0, 2) (at
√

5 units away).

Find the minimum and maximum of f (x, y, z) = y + 2z subject to two constraints, 2x + z = 4 and x2 + y2 = 1.
43. Find the minimum value of f (x, y, z) = x2 + y2 + z2 subject to two constraints, x + 2y + z = 3 and x − y = 4.

solution The constraint equations are

g(x, y, z) = x + 2y + z − 3 = 0, h(x, y) = x − y − 4 = 0

Step 1. Write out the Lagrange Equations. We have ∇f = 〈2x, 2y, 2z〉, ∇g = 〈1, 2, 1〉, and ∇h = 〈1, −1, 0〉, hence the
Lagrange Condition is

∇f = λ∇g + μ∇h

〈2x, 2y, 2z〉 = λ 〈1, 2, 1〉 + μ 〈1, −1, 0〉
= 〈λ + μ, 2λ − μ, λ〉

We obtain the following equations:

2x = λ + μ

2y = 2λ − μ

2z = λ

Step 2. Solve for λ and μ. The first equation gives λ = 2x − μ. Combining with the third equation we get

2z = 2x − μ (1)

The second equation gives μ = 2λ − 2y, combining with the third equation we get μ = 4z − 2y. Substituting in (1) we
obtain

2z = 2x − (4z − 2y) = 2x − 4z + 2y

6z = 2x + 2y ⇒ z = x + y

3
(2)
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Step 3. Solve for x, y, and z using the constraints. The constraints give x and y as functions of z:

x − y = 4 ⇒ y = x − 4

x + 2y + z = 3 ⇒ y = 3 − x − z

2

Combining the two equations we get

x − 4 = 3 − x − z

2

2x − 8 = 3 − x − z

3x = 11 − z ⇒ x = 11 − z

3

We find y using y = x − 4:

y = 11 − z

3
− 4 = −1 − z

3

We substitute x and y in (2) and solve for z:

z =
11−z

3 + −1−z
3

3
= 11 − z − 1 − z

9
= 10 − 2z

9

9z = 10 − 2z

11z = 10 ⇒ z = 10

11

We find x and y:

y = −1 − z

3
= −1 − 10

11
3

= −21

33
= − 7

11

x = 11 − z

3
= 11 − 10

11
3

= 111

33
= 37

11

We obtain the solution

P =
(

37

11
, − 7

11
,

10

11

)

Step 4. Calculate the critical values. We compute f (x, y, z) = z2 + y2 + z2 at the critical point:

f (P ) =
(

37

11

)2
+
(

− 7

11

)2
+
(

10

11

)2
= 1518

121
= 138

11
≈ 12.545

As x tends to infinity, so also does f (x, y, z) tend to ∞. Therefore f has no maximum value and the given critical point
P must produce a minimum. We conclude that the minimum value of f subject to the two constraints is f (P ) = 138

11 ≈
12.545.

Further Insights and Challenges

Suppose that both f (x, y) and the constraint function g(x, y) are linear. Use contour maps to explain why
f (x, y) does not have a maximum subject to g(x, y) = 0 unless g = af + b for some constants a, b.

45. Assumptions Matter Consider the problem of minimizing f (x, y) = x subject to g(x, y) = (x − 1)3 − y2 = 0.

(a) Show, without using calculus, that the minimum occurs at P = (1, 0).
(b) Show that the Lagrange condition ∇fP = λ∇gP is not satisfied for any value of λ.
(c) Does this contradict Theorem 1?

solution
(a) The equation of the constraint can be rewritten as

(x − 1)3 = y2 or x = y2/3 + 1

Therefore, at the points under the constraint, x ≥ 1, hence f (x, y) ≥ 1. Also at the point P = (1, 0) we have f (1, 0) = 1,
hence f (1, 0) = 1 is the minimum value of f under the constraint.

(b) We have ∇f = 〈1, 0〉 and ∇g =
〈
3(x − 1)2, −2y

〉
, hence the Lagrange Condition ∇f = λ∇g yields the following

equations:

1 = λ · 3(x − 1)2

0 = −2λy



May 17, 2011

S E C T I O N 14.8 Lagrange Multipliers: Optimizing with a Constraint (LT SECTION 15.8) 439

The first equation implies that λ �= 0 and x − 1 = ± 1√
3λ

. The second equation gives y = 0. Substituting in the equation

of the constraint gives

(x − 1)3 − y2 =
( ±1√

3λ

)3
− 02 = ±1

(3λ)3/2
�= 0

We conclude that the Lagrange Condition is not satisfied by any point under the constraint.

(c) Theorem 1 is not violated since at the point P = (1, 0), ∇g = 0, whereas the Theorem is valid for points where
∇gP �= 0.

Marginal Utility Goods 1 and 2 are available at dollar prices of p1 per unit of good 1 and p2 per unit of good
2. A utility function U(x1, x2) is a function representing the utility or benefit of consuming xj units of good j . The
marginal utility of the j th good is ∂U/∂xj , the rate of increase in utility per unit increase in the j th good. Prove the
following law of economics: Given a budget of L dollars, utility is maximized at the consumption level (a, b) where
the ratio of marginal utility is equal to the ratio of prices:

Marginal utility of good 1

Marginal utility of good 2
= Ux1(a, b)

Ux2(a, b)
= p1

p2

47. Consider the utility function U(x1, x2) = x1x2 with budget constraint p1x1 + p2x2 = c.

(a) Show that the maximum of U(x1, x2) subject to the budget constraint is equal to c2/(4p1p2).

(b) Calculate the value of the Lagrange multiplier λ occurring in (a).

(c) Prove the following interpretation: λ is the rate of increase in utility per unit increase in total budget c.

solution
(a) By the earlier exercise, the utility is maximized at a point where the following equality holds:

Ux1

Ux2

= p1

p2

Since Ux1 = x2 and Ux2 = x1, we get

x2

x1
= p1

p2
⇒ x2 = p1

p2
x1

We now substitute x2 in terms of x1 in the constraint p1x1 + p2x2 = c and solve for x1. This gives

p1x1 + p2 · p1

p2
x1 = c

2p1x1 = c ⇒ x1 = c

2p1

The corresponding value of x2 is computed by x2 = p1
p2

x1:

x2 = p1

p2
· c

2p1
= c

2p2

That is, U(x1, x2) is maximized at the consumption level x1 = c
2p1

, x2 = c
2p2

. The maximum value is

U

(
c

2p1
,

c

2p2

)
= c

2p1
· c

2p2
= c2

4p1p2

(b) The Lagrange condition ∇U = λ∇g for U(x1, x2) = x1x2 and g(x1, x2) = p1x1 + p2x2 − c = 0 is

〈x2, x1〉 = λ 〈p1, p2〉 (1)

or

x2 = λp1

x1 = λp2
⇒ λ = x2

p1
= x1

p2

In part (a) we showed that at the maximizing point x1 = c
2p1

, therefore the value of λ is

λ = x1

p2
= c

2p1p2

(c) We compute dU
dc

using the Chain Rule:

dU

dc
= ∂U

∂x1
x′

1(c) + ∂U

∂x2
x′

2(c) = x2x′
1(c) + x1x′

2(c) = 〈x2, x1〉 · 〈x′
1(c), x′

2(c)
〉

Substituting in (1) we get

dU

dc
= λ 〈p1, p2〉 · 〈x′

1(c), x′
2(c)
〉 = λ
(
p1x′

1(c) + p2x′
2(c)
)

(2)

We now use the Chain Rule to differentiate the equation of the constraint p1x1 + p2x2 = c with respect to c:

p1x′
1(c) + p2x′

2(c) = 1
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Substituting in (2), we get

dU

dc
= λ · 1 = λ

Using the approximation �U ≈ dU
dc

�c, we conclude that λ is the rate of increase in utility per unit increase of total
budget L.

This exercise shows that the multiplier λ may be interpreted as a rate of change in general. Assume that the
maximum of f (x, y) subject to g(x, y) = c occurs at a point P . Then P depends on the value of c, so we may write
P = (x(c), y(c)) and we have g(x(c), y(c)) = c.

(a) Show that

∇g(x(c), y(c)) · 〈x′(c), y′(c)
〉 = 1

Hint: Differentiate the equation g(x(c), y(c)) = c with respect to c using the Chain Rule.

(b) Use the Chain Rule and the Lagrange condition ∇fP = λ∇gP to show that

d

dc
f (x(c), y(c)) = λ

(c) Conclude that λ is the rate of increase in f per unit increase in the “budget level” c.

49. Let B > 0. Show that the maximum of

f (x1, . . . , xn) = x1x2 · · · xn

subject to the constraints x1 + · · · + xn = B and xj ≥ 0 for j = 1, . . . , n occurs for x1 = · · · = xn = B/n. Use this to
conclude that

(a1a2 · · · an)1/n ≤ a1 + · · · + an

n

for all positive numbers a1, . . . , an.

solution We first notice that the constraints x1 + · · · + xn = B and xj ≥ 0 for j = 1, . . . , n define a closed and
bounded set in the nth dimensional space, hence f (continuous, as a polynomial) has extreme values on this set. The
minimum value zero occurs where one of the coordinates is zero (for example, for n = 2 the constraint x1 + x2 = B,
x1 ≥ 0, x2 ≥ 0 is a triangle in the first quadrant). We need to maximize the function f (x1, . . . , xn) = x1x2 · · · xn subject
to the constraints g (x1, . . . , xn) = x1 + · · · + xn − B = 0, xj ≥ 0, j = 1, . . . , n.

Step 1. Write out the Lagrange Equations. The gradient vectors are

∇f = 〈x2x3 · · · xn, x1x3 · · · xn, . . . , x1x2 · · · xn−1
〉

∇g = 〈1, 1, . . . , 1〉
The Lagrange Condition ∇f = λ∇g yields the following equations:

x2x3 · · · xn = λ

x1x3 · · · xn = λ

x1x2 · · · xn−1 = λ

Step 2. Solving for x1, x2, . . . , xn using the constraint. The Lagrange equations imply the following equations:

x2x3 · · · xn = x1x2 · · · xn−1

x1x3 · · · xn = x1x2 · · · xn−1

x1x2x4 · · · xn = x1x2 · · · xn−1

...

x1x2 · · · xn−2xn = x1x2 · · · xn−1

We may assume that xj �= 0 for j = 1, . . . , n, since if one of the coordinates is zero, f has the minimum value zero. We
divide each equation by its right-hand side to obtain

xn

x1
= 1

xn

x2
= 1

xn

x3
= 1

...

xn

xn−1
= 1

⇒

x1 = xn

x2 = xn

x3 = xn

...

xn−1 = xn

Substituting in the constraint x1 + · · · + xn = B and solving for xn gives

xn + xn + · · · + xn︸ ︷︷ ︸
n

= B

nxn = B ⇒ xn = B

n

Hence x1 = · · · = xn = B
n .
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Step 3. Conclusions. The maximum value of f (x1, . . . , xn) = x1x2 · · · xn on the constraint x1 + · · · + xn = B, xj ≥ 0,

j = 1, . . . , n occurs at the point at which all coordinates are equal to B
n . The value of f at this point is

f

(
B

n
,
B

n
, . . . ,

B

n

)
=
(

B

n

)n
It follows that for any point (x1, . . . , xn) on the constraint, that is, for any point satisfying x1 + · · · + xn = B with xj

positive, the following holds:

f (x1, . . . , xn) ≤
(

B

n

)n
That is,

x1 · · · xn ≤
(

x1 + · · · + xn

n

)n
or

(x1 · · · xn)1/n ≤ x1 + · · · + xn

n
.

Let B > 0. Show that the maximum of f (x1, . . . , xn) = x1 + · · · + xn subject to x2
1 + · · · + x2

n = B2 is
√

nB.
Conclude that

|a1| + · · · + |an| ≤ √
n(a2

1 + · · · + a2
n)1/2

for all numbers a1, . . . , an.

51. Given constants E, E1, E2, E3, consider the maximum of

S(x1, x2, x3) = x1 ln x1 + x2 ln x2 + x3 ln x3

subject to two constraints:

x1 + x2 + x3 = N, E1x1 + E2x2 + E3x3 = E

Show that there is a constant μ such that xi = A−1eμEi for i = 1, 2, 3, where A = N−1(eμE1 + eμE2 + eμE3).

solution The constraints equations are

g (x1, x2, x3) = x1 + x2 + x3 − N = 0

h (x1, x2, x3) = E1x1 + E2x2 + E3x3 − E = 0

We first find the Lagrange equations. The gradient vectors are

∇S =
〈
ln x1 + x1 · 1

x1
, ln x2 + x2 · 1

x2
, ln x3 + x3 · 1

x3

〉
= 〈1 + ln x1, 1 + ln x2, 1 + ln x3〉

∇g = 〈1, 1, 1〉 , ∇h = 〈E1, E2, E3〉
The Lagrange Condition ∇f = λ∇g + μ∇h gives the following equation:

〈1 + ln x1, 1 + ln x2, 1 + ln x3〉 = λ 〈1, 1, 1〉 + μ 〈E1, E2, E3〉 = 〈λ + μE1, λ + μE2, λ + μE3〉
We obtain the Lagrange equations:

1 + ln x1 = λ + μE1

1 + ln x2 = λ + μE2

1 + ln x3 = λ + μE3

We subtract the third equation from the other equations to obtain

ln x1 − ln x3 = μ (E1 − E3)

ln x2 − ln x3 = μ (E2 − E3)

or

ln
x1

x3
= μ (E1 − E3)

ln
x2

x3
= μ (E2 − E3)

⇒
x1 = x3eμ(E1−E3)

x2 = x3eμ(E2−E3)
(1)

Substituting x1 and x2 in the equation of the constraint g(x1, x2, x3) = 0 and solving for x3 gives

x3eμ(E1−E3) + x3eμ(E2−E3) + x3 = N
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We multiply by eμE3 :

x3
(
eμE1 + eμE2 + eμE3

) = NeμE3

x3 = NeμE3

eμE1 + eμE2 + eμE3

Substituting in (1) we get

x1 = NeμE3

eμE1 + eμE2 + eμE3
· eμ(E1−E3) = NeμE1

eμE1 + eμE2 + eμE3

x2 = NeμE3

eμE1 + eμE2 + eμE3
· eμ(E2−E3) = NeμE2

eμE1 + eμE2 + eμE3

Letting A = eμE1+eμE2+eμE3
N

, we obtain

x1 = A−1eμE1 , x2 = A−1eμE2 , x3 = A−1eμE3

The value of μ is determined by the second constraint h(x1, x2, x3) = 0.

Boltzmann Distribution Generalize Exercise 51 to n variables: Show that there is a constant μ such that the
maximum of

S = x1 ln x1 + · · · + xn ln xn

subject to the constraints

x1 + · · · + xn = N, E1x1 + · · · + Enxn = E

occurs for xi = A−1eμEi , where

A = N−1(eμE1 + · · · + eμEn)

This result lies at the heart of statistical mechanics. It is used to determine the distribution of velocities of gas molecules
at temperature T ; xi is the number of molecules with kinetic energy Ei ; μ = −(kT )−1, where k is Boltzmann’s
constant. The quantity S is called the entropy.

CHAPTER REVIEW EXERCISES

1. Given f (x, y) =
√

x2 − y2

x + 3
:

(a) Sketch the domain of f .

(b) Calculate f (3, 1) and f (−5, −3).

(c) Find a point satisfying f (x, y) = 1.

solution

(a) f is defined where x2 − y2 ≥ 0 and x + 3 �= 0. We solve these two inequalities:

x2 − y2 ≥ 0 ⇒ x2 ≥ y2 ⇒ |x| ≥ |y|
x + 3 �= 0 ⇒ x �= −3

Therefore, the domain of f is the following set:

D = {(x, y) : |x| ≥ |y|, x �= −3}

x
−3

y

(b) To find f (3, 1) we substitute x = 3, y = 1 in f (x, y). We get

f (3, 1) =
√

32 − 12

3 + 3
=

√
8

6
=

√
2

3

Similarly, setting x = −5, y = −3, we get

f (−5, −3) =
√

(−5)2 − (−3)2

−5 + 3
=

√
16

−2
= −2.

(c) We must find a point (x, y) such that

f (x, y) =
√

x2 − y2

x + 3
= 1
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We choose, for instance, y = 1, substitute and solve for x. This gives√
x2 − 12

x + 3
= 1

√
x2 − 1 = x + 3

x2 − 1 = (x + 3)2 = x2 + 6x + 9

6x = −10 ⇒ x = −5

3

Thus, the point
(
− 5

3 , 1
)

satisfies f
(
− 5

3 , 1
)

= 1.

Find the domain and range of:

(a) f (x, y, z) = √
x − y + √

y − z

(b) f (x, y) = ln(4x2 − y)

3. Sketch the graph f (x, y) = x2 − y + 1 and describe its vertical and horizontal traces.

solution The graph is shown in the following figure.

x

y

z

The trace obtained by setting x = c is the line z = c2 − y + 1 or z = (c2 + 1) − y in the plane x = c. The trace obtained
by setting y = c is the parabola z = x2 − c + 1 in the plane y = c. The trace obtained by setting z = c is the parabola
y = x2 + 1 − c in the plane z = c.

Use a graphing utility to draw the graph of the function cos(x2 + y2)e1−xy in the domains [−1, 1] × [−1, 1],
[−2, 2] × [−2, 2], and [−3, 3] × [−3, 3], and explain its behavior.

5. Match the functions (a)–(d) with their graphs in Figure 1.

(a) f (x, y) = x2 + y

(b) f (x, y) = x2 + 4y2

(c) f (x, y) = sin(4xy)e−x2−y2

(d) f (x, y) = sin(4x)e−x2−y2

(A) (B)

z z

y

yx

x

(C) (D)

z

y

y

x

x

z

FIGURE 1

solution The function f = x2 + y matches picture (b), as can be seen by taking the x = 0 slice. The function

f = x2 + 4y2 matches picture (c), as can be seen by taking z = c slices (giving ellipses). Since sin(4xy)e−x2−y2
is

symmetric with respect to x and y, and so also is picture (d), we match sin(4xy)e−x2−y2
with (d). That leaves the third

function, sin(4x)e−x2−y2
, to match with picture (a).
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Referring to the contour map in Figure 2:

(a) Estimate the average rate of change of elevation from A to B and from A to D.

(b) Estimate the directional derivative at A in the direction of v.

(c) What are the signs of fx and fy at D?

(d) At which of the labeled points are both fx and fy negative?

7. Describe the level curves of:

(a) f (x, y) = e4x−y (b) f (x, y) = ln(4x − y)

(c) f (x, y) = 3x2 − 4y2 (d) f (x, y) = x + y2

solution

(a) The level curves of f (x, y) = e4x−y are the curves e4x−y = c in the xy-plane, where c > 0. Taking ln from both
sides we get 4x − y = ln c. Therefore, the level curves are the parallel lines of slope 4, 4x − y = ln c, c > 0, in the
xy-plane.

(b) The level curves of f (x, y) = ln(4x − y) are the curves ln(4x − y) = c in the xy-plane. We rewrite it as 4x − y = ec

to obtain the parallel lines of slope 4, with negative y-intercepts.

(c) The level curves of f (x, y) = 3x2 − 4y2 are the hyperbolas 3x2 − 4y2 = c in the xy plane.

(d) The level curves of f (x, y) = x + y2 are the curves x + y2 = c or x = c − y2 in the xy-plane. These are parabolas
whose axis is the x-axis.

Match each function (a)–(c) with its contour graph (i)–(iii) in Figure 3:

(a) f (x, y) = xy

(b) f (x, y) = exy

(c) f (x, y) = sin(xy)

In Exercises 9–14, evaluate the limit or state that it does not exist.

9. lim
(x,y)→(1,−3)

(xy + y2)

solution The function f (x, y) = xy + y2 is continuous everywhere because it is a polynomial, therefore we evaluate
the limit using substitution:

lim
(x,y)→(1,−3)

(
xy + y2

)
= 1 · (−3) + (−3)2 = 6

lim
(x,y)→(1,−3)

ln(3x + y)11. lim
(x,y)→(0,0)

xy + xy2

x2 + y2

solution We evaluate the limits as (x, y) approaches the origin along the lines y = x and y = 2x:

lim
(x,y)→(0,0)

along y=x

xy + xy2

x2 + y2
= lim

x→0

x · x + x · x2

x2 + x2
= lim

x→0

x2 + x3

2x2
= lim

x→0

1 + x

2
= 1

2

lim
x→(0,0)

along y=2x

xy + xy2

x2 + y2
= lim

x→0

x · 2x + x · (2x)2

x2 + (2x)2
= lim

x→0

2x2 + 4x3

5x2
= lim

x→0

2 + 4x

5
= 2

5

Since the two limits are different, f (x, y) does not approach one limit as (x, y) → (0, 0), therefore the limit does not
exist.

lim
(x,y)→(0,0)

x3y2 + x2y3

x4 + y4

13. lim
(x,y)→(1,−3)

(2x + y)e−x+y

solution The function f (x, y) = (2x + y)e−x+y is continuous, hence we evaluate the limit using substitution:

lim
(x,y)→(1,−3)

(2x + y)e−x+y = (2 · 1 − 3)e−1−3 = −e−4

lim
(x,y)→(0,2)

(ex − 1)(ey − 1)

x

15. Let

f (x, y) =
⎧⎨
⎩

(xy)p

x4 + y4
(x, y) �= (0, 0)

0 (x, y) = (0, 0)

Use polar coordinates to show that f (x, y) is continuous at all (x, y) if p > 2 but is discontinuous at (0, 0) if p ≤ 2.

solution We show using the polar coordinates x = r cos θ , y = r sin θ , that the limit of f (x, y) as (x, y) → (0, 0) is
zero for p > 2. This will prove that f is continuous at the origin. Since f is a rational function with nonzero denominator
for (x, y) �= (0, 0), f is continuous there. We have

lim
(x,y)→(0,0)

f (x, y) = lim
r→0+

(r cos θ)p(r sin θ)p

(r cos θ)4 + (r sin θ)4
= lim

r→0+
r2p(cos θ sin θ)p

r4
(

cos4 θ + sin4 θ
) (1)

= lim
r→0+

r2(p−2)(cos θ sin θ)p

cos4 θ + sin4 θ
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We use the following inequalities:∣∣∣cos4 θ sin4 θ

∣∣∣ ≤ 1

cos4 θ + sin4 θ =
(

cos2 θ + sin2θ
)2 − 2 cos2 θ sin2 θ = 1 − 1

2
· (2 cos θ sin θ)2

= 1 − 1

2
sin2 2θ ≥ 1 − 1

2
= 1

2

Therefore,

0 ≤
∣∣∣∣∣ r

2(p−2)(cos θ sin θ)p

cos4θ + sin4 θ

∣∣∣∣∣ ≤ r2(p−2) · 1
1
2

= 2r2(p−2)

Since p − 2 > 0, lim
r→0+ 2r2(p−2) = 0, hence by the Squeeze Theorem the limit in (1) is also zero. We conclude that f is

continuous for p > 2.
We now show that for p < 2 the limit of f (x, y) as (x, y) → (0, 0) does not exist. We compute the limit as (x, y)

approaches the origin along the line y = x.

lim
(x,y)→(0,0)

along y=x

f (x, y) = lim
x→0

(x2)
p

x4 + x4
= lim

x→0

x2p

2x4
= lim

x→0

x2(p−2)

2
= ∞

Therefore the limit of f (x, y) as (x, y) → (0, 0) does not exist for p < 2. We now show that the limit lim
(x,y)→(0,0)

x2y2

x4+y4

does not exist for p = 2 as well. We compute the limits along the line y = 0 and y = x:

lim
(x,y)→(0,0)

along y=0

x2y2

x4 + y4
= lim

x→0

x2 · 02

x4 + 04
= lim

x→0

0

x4
= 0

lim
(x,y)→(0,0)

along y=x

x2y2

x4 + y4
= lim

x→0

x2 · x2

x4 + x4
= lim

x→0

x4

2x4
= 1

2

Since the limits along two paths are different, f (x, y) does not approach one limit as (x, y) → (0, 0). We thus showed
that if p ≤ 2, the limit lim

(x,y)→(0,0)
f (x, y) does not exist, and f is not continuous at the origin for p ≤ 2.

Calculate fx(1, 3) and fy(1, 3) for f (x, y) =
√

7x + y2.
In Exercises 17–20, compute fx and fy .

17. f (x, y) = 2x + y2

solution To find fx we treat y as a constant, and to find fy we treat x as a constant. We get

fx = ∂

∂x

(
2x + y2

)
= ∂

∂x
(2x) + ∂

∂x

(
y2
)

= 2 + 0 = 2

fy = ∂

∂y

(
2x + y2

)
= ∂

∂y
(2x) + ∂

∂y

(
y2
)

= 0 + 2y = 2y

f (x, y) = 4xy3
19. f (x, y) = sin(xy)e−x−y

solution We compute fx , treating y as a constant and using the Product Rule and the Chain Rule. We get

fx = ∂

∂x

(
sin(xy)e−x−y

) = ∂

∂x
(sin(xy)) e−x−y + sin(xy)

∂

∂x
e−x−y

= cos(xy) · ye−x−y + sin(xy) · (−1)e−x−y = e−x−y (y cos(xy) − sin(xy))

We compute fy similarly, treating x as a constant. Notice that since f (y, x) = f (x, y), the partial derivative fy can be
obtained from fx by interchanging x and y. That is,

fy = e−x−y (x cos(yx) − sin(yx)) .

f (x, y) = ln(x2 + xy2)
21. Calculate fxxyz for f (x, y, z) = y sin(x + z).

solution We differentiate f twice with respect to x, once with respect to y, and finally with respect to z. This gives

fx = ∂

∂x
(y sin(x + z)) = y cos(x + z)

fxx = ∂

∂x
(y cos(x + z)) = −y sin(x + z)
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fxxy = ∂

∂y
(−y sin(x + z)) = − sin(x + z)

fxxyz = ∂

∂z
(− sin(x + z)) = − cos(x + z)

Fix c > 0. Show that for any constants α, β, the function u(t, x) = sin(αct + β) sin(αx) satisfies the wave
equation

∂2u

∂t2
= c2 ∂2u

∂x2

23. Find an equation of the tangent plane to the graph of f (x, y) = xy2 − xy + 3x3y at P = (1, 3).

solution The tangent plane has the equation

z = f (1, 3) + fx(1, 3)(x − 1) + fy(1, 3)(y − 3) (1)

We compute the partial derivatives of f (x, y) = xy2 − xy + 3x3y:

fx(x, y) = y2 − y + 9x2y

fy(x, y) = 2xy − x + 3x3
⇒

fx(1, 3) = 32 − 3 + 9 · 12 · 3 = 33

fy(1, 3) = 2 · 1 · 3 − 1 + 3 · 13 = 8

Also, f (1, 3) = 1 · 32 − 1 · 3 + 3 · 13 · 3 = 15. Substituting these values in (1), we obtain the following equation:

z = 15 + 33(x − 1) + 8(y − 3)

or

z = 33x + 8y − 42

Suppose that f (4, 4) = 3 and fx(4, 4) = fy(4, 4) = −1. Use the linear approximation to estimate f (4.1, 4) and
f (3.88, 4.03).

25. Use a linear approximation of f (x, y, z) =
√

x2 + y2 + z to estimate
√

7.12 + 4.92 + 69.5. Compare with a calcu-
lator value.

solution The function whose value we want to approximate is

f (x, y, z) =
√

x2 + y2 + z

We will use the linear approximation at the point (7, 5, 70). Recall that the linear approximation to a surface will be:

L(x, y, z) = f (7, 5, 70) + fx(7, 5, 70)(x − 7) + fy(7, 5, 70)(y − 5) + fz(7, 5, 70)(z − 70)

We compute the partial derivatives of f :

fx(x, y, z) = 2x

2
√

x2 + y2 + z
= x√

x2 + y2 + z
⇒ fx(7, 5, 70) = 7√

72 + 52 + 70
= 7

12

fy(x, y, z) = 2y

2
√

x2 + y2 + z
= y√

x2 + y2 + z
⇒ fy(7, 5, 70) = 5√

72 + 52 + 70
= 5

12

fz(x, y, z) = 1

2
√

x2 + y2 + z
⇒ fz(7, 5, 70) = 1

2
√

72 + 52 + 70
= 1

24

Also, f (7, 5, 70) =
√

72 + 52 + 70 = 12. Substituting the values in the linear approximation equation we obtain the
following approximation:

L(x, y, z) = 12 + 7

12
(x − 7) + 5

12
(y − 5) + 1

24
(z − 70)

Now we are ready to approximate
√

7.12 + 4.92 + 69.5. That is, using the linear approximation,

L(7.1, 4.9, 69.5) = 12 + 7

12
(7.1 − 7) + 5

12
(4.9 − 5) + 1

24
(69.5 − 70)

= 12 + 7

12
· 1

10
+ 5

12
· − 1

10
+ 1

24
· −1

2

= 12 + 7

120
− 5

120
− 1

48

= 2879

240
= 11.9958333

The value obtained using a calculator is 11.996667.

The plane z = 2x − y − 1 is tangent to the graph of z = f (x, y) at P = (5, 3).

(a) Determine f (5, 3), fx(5, 3), and fy(5, 3).

(b) Approximate f (5.2, 2.9).

27. Figure 4 shows the contour map of a function f (x, y) together with a path c(t) in the counterclockwise direction. The
points c(1), c(2), and c(3) are indicated on the path. Let g(t) = f (c(t)). Which of statements (i)–(iv) are true? Explain.

(i) g′(1) > 0.
(ii) g(t) has a local minimum for some 1 ≤ t ≤ 2.

(iii) g′(2) = 0.
(iv) g′(3) = 0.
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c(t)

c(3)

c(2)

4

4

2
0

0
0

2
−2

−2

−4

−6

−4

c(1)

FIGURE 4

solution (ii) and (iv) are true

Jason earns S(h, c) = 20h
(
1 + c

100

)1.5 dollars per month at a used car lot, where h is the number of hours worked
and c is the number of cars sold. He has already worked 160 hours and sold 69 cars. Right now Jason wants to go
home but wonders how much more he might earn if he stays another 10 minutes with a customer who is considering
buying a car. Use the linear approximation to estimate how much extra money Jason will earn if he sells his 70th car
during these 10 minutes.

In Exercises 29–32, compute
d

dt
f (c(t)) at the given value of t .

29. f (x, y) = x + ey , c(t) = (3t − 1, t2) at t = 2

solution By the Chain Rule for Paths we have

d

dt
f (c(t)) = ∇f · c′(t) (1)

We evaluate the gradient ∇f and c′(t):

c′(t) = 〈3, 2t〉
∇f = 〈fx, fy

〉 = 〈1, ey
〉 ⇒ ∇fc(t) =

〈
1, et2
〉

Substituting in (1) we get

d

dt
f (c(t)) =

〈
1, et2
〉
· 〈3, 2t〉 = 3 + 2tet2

At t = 2 we have

d

dt
f (c(t))

∣∣∣∣
t=2

= 3 + 2 · 2 · e22 = 3 + 4e4 ≈ 221.4.

f (x, y, z) = xz − y2, c(t) = (t, t3, 1 − t) at t = −2
31. f (x, y) = xe3y − ye3x , c(t) = (et , ln t) at t = 1

solution We use the Chain Rule for Paths:

d

dt
f (c(t)) = ∇f c(t) · c′(t) (1)

We find the ∇f at the point c(1) and compute c′(1). We get

∇f = 〈fx, fy

〉 = 〈e3y − 3ye3x, 3xe3y − e3x
〉

c(1) =
〈
e1, ln 1

〉
= 〈e, 0〉

∇fc(1) =
〈
e3·0 − 3 · 0e3e, 3ee3·0 − e3e

〉
=
〈
1, 3e − e3e

〉
(2)

c′(t) = d

dt

〈
et , ln t
〉 = 〈et , t−1

〉
⇒ c′(1) = 〈e, 1〉 (3)

Substituting (2) and (3) in (1) gives

d

dt
f (c(t))

∣∣∣∣
t=1

= ∇f c(1) · c′(1) =
〈
1, 3e − e3e

〉
· 〈e, 1〉 = e + 3e − e3e = 4e − e3e

f (x, y) = tan−1 y
x , c(t) = (cos t, sin t), t = π

3
In Exercises 33–36, compute the directional derivative at P in the direction of v.

33. f (x, y) = x3y4, P = (3, −1), v = 2i + j

solution We first normalize v to find a unit vector u in the direction of v:

u = v
‖v‖ = 2i + j√

22 + 12
= 2√

5
i + 1√

5
j
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We compute the directional derivative using the following equality:

Duf (3, −1) = ∇f (3,−1) · u

The gradient vector at the given point is the following vector:

∇f = 〈fx, fy

〉 = 〈3x2y4, 4x3y3
〉

⇒ ∇f(3,−1) = 〈27, −108〉

Hence,

Duf (3, −1) = 〈27, −108〉 ·
〈

2√
5
,

1√
5

〉
= 54√

5
− 108√

5
= − 54√

5

f (x, y, z) = zx − xy2, P = (1, 1, 1), v = 〈2, −1, 2〉35. f (x, y) = ex2+y2
, P =

(√
2

2
,

√
2

2

)
, v = 〈3, −4〉

solution We normalize v to obtain a vector u in the direction of v:

u = 〈3, −4〉√
32 + (−4)2

=
〈

3

5
, −4

5

〉

We use the following theorem:

Duf (P ) = ∇f P · u (1)

We find the gradient of f at the given point:

∇f = 〈fx, fy

〉 = 〈2xex2+y2
, 2yex2+y2

〉
= 2ex2+y2 〈x, y〉

Hence,

∇fP = 2e

(√
2

2

)2+(√
2

2

)2 〈√
2

2
,

√
2

2

〉
= e

√
2 〈1, 1〉

Substituting in (1) we get

Duf (P ) = √
2e 〈1, 1〉 ·

〈
3

5
, −4

5

〉
= √

2e

(
3

5
− 4

5

)
= −

√
2e

5

f (x, y, z) = sin(xy + z), P = (0, 0, 0), v = j + k37. Find the unit vector e at P = (0, 0, 1) pointing in the direction along which f (x, y, z) = xz + e−x2+y increases
most rapidly.

solution The gradient vector ∇fP points in the direction of maximum rate of increase of f . Therefore we need to

find a unit vector in the direction of ∇fP . We first find the gradient of f (x, y, z) = xz + e−x2+y :

∇f =
〈
∂f

∂x
,
∂f

∂y
,
∂f

∂z

〉
=
〈
z − 2xe−x2+y, e−x2+y, x

〉
At the point P = (0, 0, 1) we have

∇fP = 〈1, 1, 0〉 .

We normalize ∇fP to obtain the unit vector e at P pointing in the direction of maximum increase of f :

e = ∇fP

‖∇fP ‖ =
〈

1√
2
,

1√
2
, 0

〉
.

Find an equation of the tangent plane at P = (0, 3, −1) to the surface with equation

zex + ez+1 = xy + y − 3

39. Let n �= 0 be an integer and r an arbitrary constant. Show that the tangent plane to the surface xn + yn + zn = r at
P = (a, b, c) has equation

an−1x + bn−1y + cn−1z = r

solution The tangent plane to the surface, defined implicitly by F(x, y, z) = r at a point (a, b, c) on the surface, has
the following equation:

0 = Fx(a, b, c)(x − a) + Fy(a, b, c)(y − b) + Fz(a, b, c)(z − c) (1)
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The given surface is defined by the function F(x, y, z) = xn + yn + zn. We find the partial derivative of F at a point
P = (a, b, c) on the surface:

Fx(x, y, z) = nxn−1 Fx(a, b, c) = nan−1

Fy(x, y, z) = nyn−1 ⇒ Fy(a, b, c) = nbn−1

Fz(x, y, z) = nzn−1 Fz(a, b, c) = ncn−1

Substituting in (1) we get

nan−1(x − a) + nbn−1(y − b) + ncn−1(z − c) = 0

We divide by n and simplify:

an−1x − an + bn−1y − bn + cn−1z − cn = 0

an−1x + bn−1y + cn−1z = an + bn + cn (2)

The point P = (a, b, c) lies on the surface, hence it satisfies the equation of the surface. That is,

an + bn + cn = r

Substituting in (2) we obtain the following equation of the tangent plane:

an−1x + bn−1y + cn−1z = r

Let f (x, y) = (x − y)ex . Use the Chain Rule to calculate ∂f/∂u and ∂f/∂v (in terms of u and v), where x = u − v

and y = u + v.

41. Let f (x, y, z) = x2y + y2z. Use the Chain Rule to calculate ∂f/∂s and ∂f/∂t (in terms of s and t), where

x = s + t, y = st, z = 2s − t

solution We compute the Primary Derivatives:

∂f

∂x
= 2xy,

∂f

∂y
= x2 + 2yz,

∂f

∂z
= y2

Since ∂x
∂s

= 1, ∂y
∂s

= t , ∂z
∂s

= 2, ∂x
∂t

= 1, ∂y
∂t

= s, and ∂z
∂t

= −1, the Chain Rule gives

∂f

∂s
= ∂f

∂x

∂x

∂s
+ ∂f

∂y

∂y

∂s
+ ∂f

∂z

∂z

∂s
= 2xy · 1 +

(
x2 + 2yz

)
t + y2 · 2

= 2xy +
(
x2 + 2yz

)
t + 2y2

∂f

∂t
= ∂f

∂x

∂x

∂t
+ ∂f

∂y

∂y

∂t
+ ∂f

∂z

∂z

∂t
= 2xy · 1 +

(
x2 + 2yz

)
s + y2 · (−1)

= 2xy +
(
x2 + 2yz

)
s − y2

We now substitute x = s + t , y = st , and z = 2s − t to express the answer in terms of the independent variables s, t . We
get

∂f

∂s
= 2(s + t)st +

(
(s + t)2 + 2st (2s − t)

)
t + 2s2t2

= 2s2t + 2st2 +
(
s2 + 2st + t2 + 4s2t − 2st2

)
t + 2s2t2

= 3s2t + 4st2 + t3 − 2st3 + 6s2t2

∂f

∂t
= 2(s + t)st +

(
(s + t)2 + 2st (2s − t)

)
s − s2t2

= 2s2t + 2st2 +
(
s2 + 2st + t2 + 4s2t − 2st2

)
s − s2t2

= 4s2t + 3st2 + s3 + 4s3t − 3s2t2

Let P have spherical coordinates (ρ, θ, φ) = (2, π
4 , π

4

)
. Calculate ∂f

∂φ

∣∣∣
P

assuming that

fx(P ) = 4, fy(P ) = −3, fz(P ) = 8

Recall that x = ρ cos θ sin φ, y = ρ sin θ sin φ, z = ρ cos φ.

43. Let g(u, v) = f (u3 − v3, v3 − u3). Prove that

v2 ∂g

∂u
− u2 ∂g

∂v
= 0



May 17, 2011

450 C H A P T E R 14 DIFFERENTIATION IN SEVERAL VARIABLES (LT CHAPTER 15)

solution We are given the function f (x, y), where x = u3 − v3 and y = v3 − u3. Using the Chain Rule we have
the following derivatives:

∂g

∂u
= ∂f

∂x

∂x

∂u
+ ∂f

∂y

∂y

∂u

∂g

∂v
= ∂f

∂x

∂x

∂v
+ ∂f

∂y

∂y

∂v
(1)

We compute the following partial derivatives:

∂x

∂u
= 3u2,

∂y

∂u
= −3u2

∂x

∂v
= −3v2,

∂y

∂v
= 3v2

Substituting in (1) we obtain

∂g

∂u
= ∂f

∂x
· 3u2 + ∂f

∂y

(
−3u2
)

= 3u2
(

∂f

∂x
− ∂f

∂y

)
∂g

∂v
= ∂f

∂x

(
−3v2
)

+ ∂f

∂y

(
3v2
)

= −3v2
(

∂f

∂x
− ∂f

∂y

)

Therefore,

v2 ∂g

∂u
+ u2 ∂g

∂v
= 3u2v2

(
∂f

∂x
− ∂f

∂y

)
− 3u2v2

(
∂f

∂x
− ∂f

∂y

)
= 0

Let f (x, y) = g(u), where u = x2 + y2 and g(u) is differentiable. Prove that(
∂f

∂x

)2
+
(

∂f

∂y

)2
= 4u

(
dg

du

)2

45. Calculate ∂z/∂x, where xez + zey = x + y.

solution The function F(x, y, z) = xez + zey − x − y = 0 defines z implicitly as a function of x and y. Using
implicit differentiation, the partial derivative of z with respect to x is

∂z

∂x
= −Fx

Fz
(1)

We compute the partial derivatives Fx and Fz:

Fx = ez − 1

Fz = xez + ey

Substituting in (1) gives

∂z

∂x
= − ez − 1

xez + ey
.

Let f (x, y) = x4 − 2x2 + y2 − 6y.

(a) Find the critical points of f and use the Second Derivative Test to determine whether they are a local minima or
a local maxima.

(b) Find the minimum value of f without calculus by completing the square.

In Exercises 47–50, find the critical points of the function and analyze them using the Second Derivative Test.

47. f (x, y) = x4 − 4xy + 2y2

solution To find the critical points, we need the first-order partial derivatives and set them equal to zero to solve for
x and y:

fx(x, y) = 4x3 − 4y = 0, fy(x, y) = −4x + 4y = 0

Looking at the second equation we see x = y. Using this in the first equation, then

4x3 − 4x = 0 ⇒ 4x(x2 − 1) = 0 ⇒ x = 0, ±1

Therefore, our critical points are:

(0, 0), (1, 1), (−1,−1)

Now to find the discriminant, D, we need the second-order partial derivatives:

fxx(x, y) = 12x2, fyy(x, y) = 4, fxy(x, y) = −4

Hence,

D(x, y) = fxxfyy − f xy2 = 48x2 − 16 = 16(3x2 − 1)
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Analyzing our three critical points we see:

D(0, 0) = −16 < 0, D(1, 1) = 32 > 0, D(−1, −1) = 32 > 0

Since the discriminant for (0, 0) is negative, (0, 0) is a saddle point.
Looking at fxx(1, 1) = 12 > 0 and fxx(−1, −1) = 12 > 0 hence, the points (1, 1) and (−1, −1) are both local

minima.

f (x, y) = x3 + 2y3 − xy
49. f (x, y) = ex+y − xe2y

solution We find the critical point by setting the partial derivatives of f (x, y) = ex+y − xe2y equal to zero and
solve. This gives

fx(x, y) = ex+y − e2y = 0

fy(x, y) = ex+y − 2xe2y = 0

The first equation gives ex+y = e2y and the second equation gives ex+y = 2xe2y . Equating the two expressions, dividing
by the nonzero function e2y , and solving for x, we obtain

e2y = 2xe2y ⇒ 1 = 2x ⇒ x = 1

2

We now substitute x = 1
2 in the first equation and solve for y, to obtain

e
1
2 +y − e2y = 0 ⇒ e

1
2 +y = e2y ⇒ 1

2
+ y = 2y ⇒ y = 1

2

There is one critical point,
(

1
2 , 1

2

)
. We examine the critical point using the Second Derivative Test. We compute the

second derivatives at this point:

fxx(x, y) = ex+y ⇒ fxx

(
1

2
,

1

2

)
= e

1
2 + 1

2 = e

fyy(x, y) = ex+y − 4xe2y ⇒ fyy

(
1

2
,

1

2

)
= e

1
2 + 1

2 − 4 · 1

2
e2· 1

2 = −e

fxy(x, y) = ex+y − 2e2y ⇒ fxy

(
1

2
,

1

2

)
= e

1
2 + 1

2 − 2e2· 1
2 = −e

Therefore the discriminant at the critical point is

D

(
1

2
,

1

2

)
= fxxfyy − f 2

xy = e · (−e) − (−e)2 = −2e2 < 0

We conclude that
(

1
2 , 1

2

)
is a saddle point.

f (x, y) = sin(x + y) − 1

2
(x + y2)

51. Prove that f (x, y) = (x + 2y)exy has no critical points.

solution We find the critical points by setting the partial derivatives of f (x, y) = (x + 2y)exy equal to zero and
solving. We get

fx(x, y) = exy + (x + 2y)yexy = exy
(

1 + xy + 2y2
)

= 0

fy(x, y) = 2exy + (x + 2y)xexy = exy
(

2 + x2 + 2xy
)

= 0

We divide the two equations by the nonzero expression exy to obtain the following equations:

1 + xy + 2y2 = 0

2 + 2xy + x2 = 0

The first equation implies that xy = −1 − 2y2. Substituting in the second equation gives

2 + 2
(
−1 − 2y2

)
+ x2 = 0

2 − 2 − 4y2 + x2 = 0

x2 = 4y2 ⇒ x = 2y or x = −2y



May 17, 2011

452 C H A P T E R 14 DIFFERENTIATION IN SEVERAL VARIABLES (LT CHAPTER 15)

We substitute in the first equation and solve for y:

x = 2y x = −2y

1 + 2y2 + 2y2 = 0 1 − 2y2 + 2y2 = 0

1 + 4y2 = 0 1 = 0

y2 = − 1
4

In both cases there is no solution. We conclude that there are no solutions for fx = 0 and fy = 0, that is, there are no
critical points.

Find the global extrema of f (x, y) = x3 − xy − y2 + y on the square [0, 1] × [0, 1].53. Find the global extrema of f (x, y) = 2xy − x − y on the domain {y ≤ 4, y ≥ x2}.
solution The region is shown in the figure.

−2
x

20

y
A By = 4

y = x2

Step 1. Finding the critical points. We find the critical points in the interior of the domain by setting the partial derivatives
equal to zero and solving. We get

fx = 2y − 1 = 0

fy = 2x − 1 = 0 ⇒ x = 1

2
, y = 1

2

The critical point is
(

1
2 , 1

2

)
. (It lies in the interior of the domain since 1

2 < 4 and 1
2 >
(

1
2

)2
).

Step 2. Finding the global extrema on the boundary. We consider the two parts of the boundary separately.

The parabola y = x2, −2 ≤ x ≤ 2:

f (x, x2) = 2x3 − x2 − x

x

y

−2 20 1

8

−8

On this curve, f (x, x2) = 2 · x · x2 − x − x2 = 2x3 − x2 − x. Using calculus in one variable or the graph of the
function, we see that the minimum of f (x, x2) on the interval occurs at x = −2 and the maximum at x = 2. The
corresponding points are (−2, 4) and (2, 4).
The segment AB: On this segment y = 4, −2 ≤ x ≤ 2, hence f (x, 4) = 2 · x · 4 − x − 4 = 7x − 4. The maximum
value occurs at x = 2 and the minimum value at x = −2. The corresponding points on the segment AB are (−2, 4)

and (2, 4)

Step 3. Conclusions. Since the global extrema occur either at critical points in the interior of the domain or on the
boundary of the domain, the candidates for global extrema are the following points:(

1

2
,

1

2

)
, (−2, 4), (2, 4)

We compute the values of f = 2xy − x − y at these points:

f

(
1

2
,

1

2

)
= 2 · 1

2
· 1

2
− 1

2
− 1

2
= −1

2

f (−2, 4) = 2 · (−2) · 4 + 2 − 4 = −18

f (2, 4) = 2 · 2 · 4 − 2 − 4 = 10

We conclude that the global maximum is f (2, 4) = 10 and the global minimum is f (−2, 4) = −18.

Find the maximum of f (x, y, z) = xyz subject to the constraint g(x, y, z) = 2x + y + 4z = 1.
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55. Use Lagrange multipliers to find the minimum and maximum values of f (x, y) = 3x − 2y on the circle x2 + y2 = 4.

solution

Step 1. Write out the Lagrange Equations. The constraint curve is g(x, y) = x2 + y2 − 4 = 0, hence ∇g = 〈2x, 2y〉
and ∇f = 〈3, −2〉. The Lagrange Condition ∇f = λ∇g is thus 〈3, −2〉 = λ 〈2x, 2y〉. That is,

3 = λ · 2x

−2 = λ · 2y

Note that λ �= 0.

Step 2. Solve for x and y using the constraint. The Lagrange equations gives

3 = λ · 2x

− 2 = λ · 2y
⇒

x = 3

2λ

y = − 1

λ

(1)

We substitute x and y in the equation of the constraint and solve for λ. We get

(
3

2λ

)2
+
(

− 1

λ

)2
= 4

9

4λ2
+ 1

λ2
= 4

1

λ2
· 13

4
= 4 ⇒ λ =

√
13

4
or λ = −

√
13

4

Substituting in (1), we obtain the points

x = 6√
13

, y = − 4√
13

x = − 6√
13

, y = 4√
13

The critical points are thus

P1 =
(

6√
13

, − 4√
13

)

P2 =
(

− 6√
13

,
4√
13

)

Step 3. Calculate the value at the critical points. We find the value of f (x, y) = 3x − 2y at the critical points:

f (P1) = 3 · 6√
13

− 2 · −4√
13

= 26√
13

f (P2) = 3 · −6√
13

− 2 · 4√
13

= −26√
13

Thus, the maximum value of f on the circle is 26√
13

, and the minimum is − 26√
13

.

Find the minimum value of f (x, y) = xy subject to the constraint 5x − y = 4 in two ways: using Lagrange
multipliers and setting y = 5x − 4 in f (x, y).

57. Find the minimum and maximum values of f (x, y) = x2y on the ellipse 4x2 + 9y2 = 36.

solution We must find the minimum and maximum values of f (x, y) = x2y subject to the constraint g(x, y) =
4x2 + 9y2 − 36 = 0.

Step 1. Write out the Lagrange Equations. The gradient vectors are ∇f =
〈
2xy, x2

〉
and ∇g = 〈8x, 18y〉, hence the

Lagrange Condition ∇f = λ∇g gives 〈
2xy, x2

〉
= λ 〈8x, 18y〉 = 〈8λx, 18λy〉

We obtain the following Lagrange Equations:

2xy = 8λx

x2 = 18λy
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Step 2. Solve for λ in terms of x and y. If x = 0, the equation of the constraint implies that y = ±2. The points (0, 2) and
(0, −2) satisfy the Lagrange Equations for λ = 0. If x �= 0, the second Lagrange Equation implies that y �= 0. Therefore
the Lagrange Equations give

2xy = 8λx ⇒ λ = y

4

x2 = 18λy ⇒ λ = x2

18y

Step 3. Solve for x and y using the constraint. We equate the two expressions for λ to obtain

y

4
= x2

18y

18y2 = 4x2

We now substitute 4x2 = 18y2 in the equation of the constraint 4x2 + 9y2 = 36 and solve for y. This gives

18y2 + 9y2 = 36

27y2 = 36
⇒ y2 = 36

27
⇒ y1 = 2√

3
, y2 = − 2√

3

We find the x-coordinates using x2 = 9y2

2 :

x2 = 9y2

2

x2 = 9

2
· 4

3
= 6 ⇒ x1 = √

6, x2 = −√
6

We obtain the following critical points:

P1 = (0, 2), P2 = (0, −2), P3 =
(√

6,
2√
3

)

P4 =
(√

6, − 2√
3

)
, P5 =

(
−√

6,
2√
3

)
, P6 =

(
−√

6, − 2√
3

)

Step 4. Conclusions. We evaluate the function f (x, y) = x2y at the critical points:

f (P1) = 02 · 2 = 0

f (P2) = 02 · (−2) = 0

f (P3) = f (P5) = 6 · 2√
3

= 12√
3

f (P4) = f (P5) = 6 ·
(

− 2√
3

)
= − 12√

3

Since the min and max of f occur on the ellipse, it must occur at critical points. Thus, we conclude that the maximum
and minimum of f subject to the constraint are 12√

3
and − 12√

3
respectively.

Find the point in the first quadrant on the curve y = x + x−1 closest to the origin.
59. Find the extreme values of f (x, y, z) = x + 2y + 3z subject to the two constraints x + y + z = 1 and x2 + y2 +
z2 = 1.

solution We must find the extreme values of f (x, y, z) = x + 2y + 3z subject to the constraints g(x, y, z) =
x + y + z − 1 = 0 and h(x, y, z) = x2 + y2 + z2 − 1 = 0.

Step 1. Write out the Lagrange Equations. We have ∇f = 〈1, 2, 3〉, ∇g = 〈1, 1, 1〉, ∇h = 〈2x, 2y, 2z〉, hence the
Lagrange condition ∇f = λ∇g + μ∇h gives

〈1, 2, 3〉 = λ 〈1, 1, 1〉 + μ 〈2x, 2y, 2z〉 = 〈λ + 2μx, λ + 2μy, λ + 2μz〉
or

1 = λ + 2μx

2 = λ + 2μy

3 = λ + 2μz
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Step 2. Solve for λ and μ. The Lagrange Equations give

1 = λ + 2μx

2 = λ + 2μy

3 = λ + 2μz

⇒
λ=1 − 2μx

λ=2 − 2μy

λ=3 − 2μz

Equating the three expressions for λ, we get the following equations:

1 − 2μx = 2 − 2μy

1 − 2μx = 3 − 2μz
⇒

2μ(y − x) = 1

μ(z − x) = 2

The first equation implies that μ = 1
2(y−x)

, and the second implies that μ = 2
z−x . Equating the two expressions for μ,

we get

1

2(y − x)
= 2

z − x

z − x = 4y − 4x ⇒ z = 4y − 3x

Step 3. Solve for x, y, and z using the constraints. We substitute z = 4y − 3x in the equations of the constraints and
solve to find x and y. This gives

x + y + (4y − 3x) = 1

x2 + y2 + (4y − 3x)2 = 1
⇒ y = 1 + 2x

5

10x2 + 17y2 − 24xy = 1

Substituting in the second equation and solving for x, we get

y = 1 + 2x

5

10x2 + 17

(
1 + 2x

5

)2
− 24x · 1 + 2x

5
= 1

250x2 + 17(1 + 2x)2 − 120x (1 + 2x) = 25

39x2 − 26x − 4 = 0

x1,2 = 26 ± √
1300

78

⇒ x1 = 1

3
+ 5

√
13

39
≈ 0.8, x2 = 1

3
− 5

√
13

39
≈ −0.13

We find the y-coordinates using y = 1+2x
5 .

y1 = 1 + 2 · 0.8

5
= 0.52, y2 = 1 − 2 · 0.13

5
= 0.15

Finally, we find the z-coordinate using z = 4y − 3x:

z1 = 4 · 0.52 − 3 · 0.8 = −0.32, z2 = 4 · 0.15 + 3 · 0.13 = 0.99

We obtain the critical points:

P1 = (0.8, 0.52, −0.32), P2 = (−0.13, 0.15, 0.99)

.
Step 4. Conclusions. We evaluate the function f (x, y, z) = x + 2y + 3z at the critical points:

f (P1) = 0.8 + 2 · 0.52 − 3 · 0.32 = 0.88

f (P2) = −0.13 + 2 · 0.15 + 3 · 0.99 = 3.14 (1)

The two constraints determine the common points of the unit sphere x2 + y2 + z2 = 1 and the plane x + y + z = 1.
This set is a circle that is a closed and bounded set in R3. Therefore, f has a minimum and maximum values on this set.
These extrema are given in (1).

Find the minimum and maximum values of f (x, y, z) = x − z on the intersection of the cylinders x2 + y2 = 1
and x2 + z2 = 1 (Figure 5).
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61. Use Lagrange multipliers to find the dimensions of a cylindrical can with a bottom but no top, of fixed volume V

with minimum surface area.

solution We denote the radius of the cylinder by r and the height by h.

h

The volume of the cylinder is g = πr2h and the surface area is

f = 2πrh + 2πr2

We need to minimize f (r, h) = 2πrh + 2πr2 subject to the constraint g(r, h) = πr2h − V = 0.

Step 1. Write out the Lagrange Equations. We have ∇f = 〈2πh + 4πr, 2πr〉 = 2π 〈h + 2r, r〉 and ∇g =
〈
2πhr, πr2

〉
=

π
〈
2hr, r2

〉
, hence the Lagrange Condition ∇f = λ∇g is

2π 〈h + 2r, r〉 = πλ
〈
2hr, r2

〉
or

2 〈h + 2r, r〉 = λ
〈
2hr, r2

〉
We obtain the following equations:

2(h + 2r) = 2hrλ

2r = λr2
⇒

h + 2r = hrλ

2r = λr2

Step 2. Solve for λ in terms of r and h. The equation of the constraint implies that r �= 0 and h �= 0 (we assume that
V > 0). Therefore, the Lagrange equations give

λ = h + 2r

hr
= 1

r
+ 2

h
, λ = 2

r

Step 3. Solve for r and h using the constraint. Equating the two expressions for λ gives

1

r
+ 2

h
= 2

r

2

h
= 1

r
⇒ h = 2r

We substitute h = 2r in the equation of the constraint πr2h = V and solve for r . We obtain

πr2 · 2r = V

2πr3 = V ⇒ r =
(

V

2π

)1/3

We find h using the relation h = 2r:

h = 2

(
V

2π

)1/3

The critical point is h = 2
(

V
2π

)1/3
, r =
(

V
2π

)1/3
.

Step 4. Conclusions. On the constraint πr2h = V we have h = V
πr2 and r =

√
V
πh

, hence

f

(
r,

V

πr2

)
= 2πr · V

πr2
+ 2πr2 = 2V

r
+ 2πr2

f

(√
V

πh
, h

)
= 2π

√
V

πh
h + 2π · V

πh
= 2

√
πV

√
h + 2V

h
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We see that as h → 0+ or h → ∞, we have f (r, h) → ∞, and as r → 0+ or r → ∞, we have f (r, h) → ∞. Therefore,
f has a minimum value on the constraint, which occurs at the critical point. We evaluate f (r, h) = 2πrh + 2πr2 =
2π(rh + r2) at the critical point P :

f (P ) = 2π

((
V

2π

)1/3
· 2

(
V

2π

)1/3
+
(

V

2π

)2/3
)

= 2π

(
2

(
V

2π

)2/3
+
(

V

2π

)2/3
)

= 6π

(
V

2π

)2/3

We conclude that the minimum surface area is 6π
(

V
2π

)2/3
, and the dimensions of the corresponding cylinder are r =(

V
2π

)1/3
, h = 2

(
V
2π

)1/3
.

Find the dimensions of the box of maximum volume with its sides parallel to the coordinate planes that can be
inscribed in the ellipsoid (Figure 6) (x

a

)2 +
(y

b

)2 +
( z

c

)2 = 1

63. Given n nonzero numbers σ1, . . . , σn, show that the minimum value of

f (x1, . . . , xn) = x2
1σ 2

1 + · · · + x2
nσ 2

n

subject to x1 + · · · + xn = 1 is c, where c =
⎛
⎝ n∑

j=1

σ−2
j

⎞
⎠−1

.

solution We must minimize the functionf (x1, . . . , xn) = x2
1σ 2

1 + · · · + x2
nσ 2

n subject to the constraintg (x1, . . . , xn) =
x1 + · · · + xn − 1 = 0.

Step 1. Write out the Lagrange Equations. We have ∇f =
〈
2σ 2

1 x1, . . . , 2σ 2
n xn

〉
and ∇g = 〈1, . . . , 1〉, hence the Lagrange

Condition ∇f = λ∇g gives the following equations:

2σ 2
i xi = λ, i = 1, . . . , n

Step 2. Solve for x1, . . . , xn using the constraint. The Lagrange equations imply the following equations:

2σ 2
i xi = 2σ 2

n xn, xi = σ 2
n

σ 2
i

xn; i = 1, . . . , n − 1

We substitute these values in the equation of the constraint x1 + · · · + xn = 1 and solve for xn. This gives

σ 2
n

σ 2
1

xn + σ 2
n

σ 2
2

xn + · · · + σ 2
n

σ 2
n−1

xn + xn = 1

σ 2
n

(
1

σ 2
1

+ 1

σ 2
2

+ · · · + 1

σ 2
n−1

+ 1

σ 2
n

)
xn = 1

σ 2
n

⎛
⎝ n∑

j=1

σ−2
j

⎞
⎠ xn = 1

Denoting c =
(∑n

j=1 σ−2
j

)−1
, we get xn = c

σ 2
n

. Using xi = σ 2
n

σ 2
i

xn we get

xi = σ 2
n

σ 2
i

· c

σ 2
n

= c

σ 2
i

We obtain the following point:

P =
(

c

σ 2
1

,
c

σ 2
2

, . . . ,
c

σ 2
n

)

Step 3. Conclusions. As xi → ∞ or xi → −∞, for one or more i’s the function f (x1, . . . , xn) tends to ∞. f is
continuous since it is a polynomial, hence f has a minimum value on the constraint. This minimum occurs at the critical
point. We find it:

f (P ) =
n∑

j=1

σ 2
j

(
c

σ 2
j

)2

=
n∑

j=1

σ 2
j
c2

σ 4
j

= c2
n∑

j=1

σ−2
j

= c2 · c−1 = c
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15.1 Integration in Two Variables (LT Section 16.1)

Preliminary Questions
1. If S8,4 is a Riemann sum for a double integral over R = [1, 5] × [2, 10] using a regular partition, what is the area of

each subrectangle? How many subrectangles are there?

solution Since the partition is regular, all subrectangles have sides of length

�x = 5 − 1

8
= 1

2
, �y = 10 − 2

4
= 2

Therefore the area of each subrectangle is �A = �x�y = 1
2 · 2 = 1, and the number of subrectangles is 8 · 4 = 32.

2. Estimate the double integral of a continuous function f over the small rectangle R = [0.9, 1.1] × [1.9, 2.1] if
f (1, 2) = 4.

solution Since we are given the value of f at one point in R only, we can only use the approximation S11 for the
integral of f over R. For S11 we have one rectangle wi th sides

�x = 1.1 − 0.9 = 0.2, �y = 2.1 − 1.9 = 0.2

Hence, the area of the rectangle is �A = �x�y = 0.2 · 0.2 = 0.04. We obtain the following approximation:∫∫
R

f dA ≈ S1,1 = f (1, 2)�A = 4 · 0.04 = 0.16

3. What is the integral of the constant function f (x, y) = 5 over the rectangle [−2, 3] × [2, 4]?
solution The integral of f over the unit square R = [−2, 3] × [2, 4] is the volume of the box of base R and height
5. That is, ∫∫

R
5 dA = 5 · Area(R) = 5 · 5 · 2 = 50

4. What is the interpretation of
∫∫

R
f (x, y) dA if f (x, y) takes on both positive and negative values on R?

solution The double integral
∫∫

R
f (x, y) dA is the signed volume between the graph z = f (x, y) for (x, y) ∈ R,

and the xy-plane. The region below the xy-plane is treated as negative volume.

5. Which of (a) or (b) is equal to
∫ 2

1

∫ 5

4
f (x, y) dy dx?

(a)
∫ 2

1

∫ 5

4
f (x, y) dx dy (b)

∫ 5

4

∫ 2

1
f (x, y) dx dy

solution The integral
∫ 2

1
∫ 5

4 f (x, y) dy dx is written with dy preceding dx, therefore the integration is first with
respect to y over the interval 4 ≤ y ≤ 5, and then with respect to x over the interval 1 ≤ x ≤ 2. By Fubini’s Theorem, we
may replace the order of integration over the corresponding intervals. Therefore the given integral is equal to (b) rather
than to (a).

6. For which of the following functions is the double integral over the rectangle in Figure 15 equal to zero? Explain
your reasoning.

(a) f (x, y) = x2y (b) f (x, y) = xy2

(c) f (x, y) = sin x (d) f (x, y) = ex

x

y

−1 1

1

FIGURE 15

458
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solution The double integral is the signed volume of the region between the graph of f (x, y) and the xy-plane over
R. In (b) and (c) the function satisfies f (−x, y) = −f (x, y), hence the region below the xy-plane, where −1 ≤ x ≤ 0
cancels with the region above the xy-plane, where 0 ≤ x ≤ 1. Therefore, the double integral is zero. In (a) and (d), the
function f (x, y) is always positive on the rectangle, so the double integral is greater than zero.

Exercises
1. Compute the Riemann sum S4,3 to estimate the double integral of f (x, y) = xy over R = [1, 3] × [1, 2.5]. Use the

regular partition and upper-right vertices of the subrectangles as sample points.

solution The rectangle R and the subrectangles are shown in the following figure:

x

y

1 1.5 2 2.5 3

1

0

1.5

2

2.5
P13 P23 P33 P43

P12 P22 P32 P42

P11 P21 P31 P41

The subrectangles have sides of length

�x = 3 − 1

4
= 0.5, �y = 2.5 − 1

3
= 0.5 ⇒ �A = 0.5 · 0.5 = 0.25

The upper right vertices are the following points:

P11 = (1.5, 1.5)

P12 = (1.5, 2)

P13 = (1.5, 2.5)

P21 = (2, 1.5)

P22 = (2, 2)

P23 = (2, 2.5)

P31 = (2.5, 1.5)

P32 = (2.5, 2)

P33 = (2.5, 2.5)

P41 = (3, 1.5)

P42 = (3, 2)

P43 = (3, 2.5)

We compute f (x, y) = xy at these points:

f (P11) = 1.5 · 1.5 = 2.25
f (P21) = 2 · 1.5 = 3
f (P31) = 2.5 · 1.5 = 3.75
f (P41) = 3 · 1.5 = 4.5

f (P12) = 1.5 · 2 = 3
f (P22) = 2 · 2 = 4
f (P32) = 2.5 · 2 = 5
f (P42) = 3 · 2 = 6

f (P13) = 3.75
f (P23) = 5
f (P33) = 6.25
f (P43) = 7.5

Hence, S4,3 is the following sum:

S4,3 =
4∑

i=1

3∑
j=1

f (Pij )�A = 0.25(2.25 + 3 + 3.75 + 4.5 + 3 + 4 + 5 + 6 + 3.75 + 5 + 6.25 + 7.5) = 13.5

Compute the Riemann sum with N = M = 2 to estimate the integral of
√

x + y over R = [0, 1] × [0, 1]. Use
the regular partition and midpoints of the subrectangles as sample points.

In Exercises 3–6, compute the Riemann sums for the double integral
∫∫

R
f (x, y) dA, where R = [1, 4] × [1, 3], for

the grid and two choices of sample points shown in Figure 16.

x

y

1 2 3 4

3

2

1

x

y

10 0 2

(A) (B)

3 4

3

2

1

FIGURE 16

3. f (x, y) = 2x + y

solution The subrectangles have sides of length �x = 4−1
3 = 1 and �y = 3−1

2 = 1, and area �A = �x�y = 1.
We find the sample points in (A) and (B):

(A)

P11 = (1.5, 1.5) P21 = (2.5, 1.5) P31 = (3.5, 1.5)

P12 = (1.5, 2.5) P22 = (2.5, 2.5) P32 = (3.5, 2.5)
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x

y

1

(A)

2 3 4

4

2

3

1

0

P12 P22 P32

P11 P21 P31

(B)

P11 = (1.5, 1.5) P21 = (2, 1) P31 = (3.5, 1.5)

P21 = (2, 3) P22 = (2.5, 2.5) P23 = (4, 3)

x

y

1

(B)

2 3 4

4

2

3

1

0

P12

P22

P32

P11

P21

P31

The Riemann Sum S32 is the following estimation of the double integral:

∫∫
R

f (x, y) dA ≈ S32 =
3∑

i=1

2∑
j=1

f
(
Pij

)
�A =

3∑
i=1

2∑
j=1

f
(
Pij

)
We compute S32 for the two choices of sample points (A) and (B), and the following function:

f (x, y) = 2x + y

We compute f
(
Pij

)
for the sample points computed above:

(A)

f (P11) = f (1.5, 1.5) = 2 · 1.5 + 1.5 = 4.5

f (P21) = f (2.5, 1.5) = 2 · 2.5 + 1.5 = 6.5

f (P31) = f (3.5, 1.5) = 2 · 3.5 + 1.5 = 8.5

f (P12) = f (1.5, 2.5) = 2 · 1.5 + 2.5 = 5.5

f (P22) = f (2.5, 2.5) = 2 · 2.5 + 2.5 = 7.5

f (P32) = f (3.5, 2.5) = 2 · 3.5 + 2.5 = 9.5

Hence,

S32 =
3∑

i=1

2∑
j=1

f
(
Pij

)
�A = 4.5 + 6.5 + 8.5 + 5.5 + 7.5 + 9.5 = 42

(B)

f (P11) = f (1.5, 1.5) = 2 · 1.5 + 1.5 = 4.5

f (P21) = f (2, 1) = 2 · 2 + 1 = 5

f (P31) = f (3.5, 1.5) = 2 · 3.5 + 1.5 = 8.5

f (P21) = f (2, 3) = 2 · 2 + 3 = 7

f (P22) = f (2.5, 2.5) = 2 · 2.5 + 2.5 = 7.5

f (P23) = f (4, 3) = 2 · 4 + 3 = 11

Hence,

S32 =
3∑

i=1

2∑
j=1

f
(
Pij

)
�A = 4.5 + 5 + 8.5 + 7 + 7.5 + 11 = 43.5
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f (x, y) = 7
5. f (x, y) = 4x

solution We compute the values of f at the sample points:

(A)

f (P11) = f (1.5, 1.5) = 4 · 1.5 = 6

f (P21) = f (2.5, 1.5) = 4 · 2.5 = 10

f (P31) = f (3.5, 1.5) = 4 · 3.5 = 14

f (P12) = f (1.5, 2.5) = 4 · 1.5 = 6

f (P22) = f (2.5, 2.5) = 4 · 2.5 = 10

f (P32) = f (3.5, 2.5) = 4 · 3.5 = 14

�x = 4 − 1

3
= 1, �y = 3 − 1

2
= 1

Hence �A = �x · �y = 1 and we get

S32 =
3∑

i=1

2∑
j=1

f
(
Pij

)
�A = 6 + 10 + 14 + 6 + 10 + 14 = 60

(B)

f (P11) = f (1.5, 1.5) = 4 · 1.5 = 6

f (P21) = f (2, 1) = 4 · 2 = 8

f (P31) = f (3.5, 1.5) = 4 · 3.5 = 14

f (P12) = f (2, 3) = 4 · 2 = 8

f (P22) = f (2.5, 2.5) = 4 · 2.5 = 10

f (P32) = f (4, 3) = 4 · 4 = 16

�A = 1. Hence,

S32 =
3∑

i=1

2∑
j=1

f
(
Pij

)
�A = 6 + 8 + 14 + 8 + 10 + 16 = 62

f (x, y) = x − 2y7. Let R = [0, 1] × [0, 1]. Estimate
∫∫

R
(x + y) dA by computing two different Riemann sums, each with at least six

rectangles.

solution We define the following subrectangles and sample points:

x

y

1

1 
2

1 
2

2 
3

1 
3

1

0
x

y

1

2 
3
1 
3

1

0

P12

P12

P22

P22

P23

P32

P21 P11

P11

P31
P21

P13

The sample points defined in the two figures are:

(A)

P11 =
(

0, 1
2

)
P21 =

(
1
2 , 1

4

)
P31 = (1, 0)

P12 =
(

1
3 , 3

4

)
P22 =

(
1
2 , 1
)

P32 =
(

5
6 , 3

4

)
(B)

P11 =
(

1
2 , 1

3

)
P21 =

(
3
4 , 1

6

)
P12 =

(
0, 1

2

)
P22 =

(
1, 2

3

)
P13 =

(
1
4 , 5

6

)
P23 =

(
3
4 , 5

6

)
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We compute the values of f (x, y) = x + y at the sample points:

(A)

f (P11) = f

(
0,

1

2

)
= 0 + 1

2
= 1

2

f (P21) = f

(
1

2
,

1

4

)
= 1

2
+ 1

4
= 3

4

f (P31) = f (1, 0) = 1 + 0 = 1

f (P12) = f

(
1

3
,

3

4

)
= 1

3
+ 3

4
= 13

12

f (P22) = f

(
1

2
, 1

)
= 1

2
+ 1 = 3

2

f (P32) = f

(
5

6
,

3

4

)
= 5

6
+ 3

4
= 19

12

Each subrectangle has sides of length �x = 1
3 , �y = 1

2 and area �A = �x�y = 1
3 · 1

2 = 1
6 . We obtain the following

Riemann sum:

S32 =
3∑

i=1

2∑
j=1

f
(
Pij

)
�A = 1

6

(
1

2
+ 3

4
+ 1 + 13

12
+ 3

2
+ 19

12

)
= 77

72
≈ 1.069

(B)

f (P11) = f

(
1

2
,

1

3

)
= 1

2
+ 1

3
= 5

6

f (P21) = f

(
3

4
,

1

6

)
= 3

4
+ 1

6
= 11

12

f (P12) = f

(
0,

1

2

)
= 0 + 1

2
= 1

2

f (P22) = f

(
1,

2

3

)
= 1 + 2

3
= 5

3

f (P13) = f

(
1

4
,

5

6

)
= 1

4
+ 5

6
= 13

12

f (P23) = f

(
3

4
,

5

6

)
= 3

4
+ 5

6
= 19

12

Each subrectangle has sides of length �x = 1
2 , �y = 1

3 and area �A = �x�y = 1
2 · 1

3 = 1
6 . We obtain the following

Riemann sum:

S23 =
3∑

i=1

2∑
j=1

f
(
Pij

)
�A = 1

6

(
5

6
+ 11

12
+ 1

2
+ 5

3
+ 13

12
+ 19

12

)
= 79

72
≈ 1.097

Evaluate
∫∫

R
4 dA, where R = [2, 5] × [4, 7].9. Evaluate

∫∫
R

(15 − 3x) dA, where R = [0, 5] × [0, 3], and sketch the corresponding solid region (see Example 2).

solution This double integral is the volume V of the solid wedge underneath the graph of f (x, y) = 15 − 3x. The
triangular face of the wedge has area

A = 1

2
· 5 · 15 = 75

2

The volume of the wedge is equal to the area A times the length � = 3; that is

V = �A = 3

(
75

2

)
= 225

2

Evaluate
∫∫

R
(−5) dA, where R = [2, 5] × [4, 7].

11. The following table gives the approximate height at quarter-meter intervals of a mound of gravel. Estimate the volume
of the mound by computing the average of the two Riemann sums S4,3 with lower-left and upper-right vertices of the
subrectangles as sample points.
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0.75 0.1 0.2 0.2 0.15 0.1
0.5 0.2 0.3 0.5 0.4 0.2
0.25 0.15 0.2 0.4 0.3 0.2
0 0.1 0.15 0.2 0.15 0.1

y
x 0 0.25 0.5 0.75 1

solution Each subrectangle is a square of side 0.25, hence the area of each subrectangle is �A = 0.252 = 0.0625.
By the given data, the lower-left vertex sample points are:

f (P11) = f (0, 0) f (P12) = f (0, 0.25) f (P13) = f (0, 0.50)

f (P21) = f (0.25, 0) f (P22) = f (0.25, 0.25) f (P23) = f (0.25, 0.50)

f (P31) = f (0.50, 0) f (P32) = f (0.50, 0.25) f (P33) = f (0.50, 0.50)

f (P41) = f (0.75, 0) f (P42) = f (0.75, 0.25) f (P43) = f (0.75, 0.50)

The Riemann sum S4,3 that corresponds to these lower-left vertex sample points is the following sum:

S4,3 =
4∑

i=1

3∑
j=1

f
(
Pij

)
�A

= 0.0625(0.1 + 0.15 + 0.2 + 0.15 + 0.2 + 0.3 + 0.2 + 0.4 + 0.5 + 0.15 + 0.3 + 0.4) ≈ 0.190625

Now by the given data, the upper-right vertex sample points are:

f (P11) = f (0.25, 0.25) f (P12) = f (0.25, 0.50) f (P13) = f (0.25, 0.75)

f (P21) = f (0.50, 0.25) f (P22) = f (0.50, 0.50) f (P23) = f (0.50, 0.75)

f (P31) = f (0.75, 0.25) f (P32) = f (0.75, 0.50) f (P33) = f (0.75, 0.75)

f (P41) = f (1, 0.25) f (P42) = f (1, 0.50) f (P43) = f (1, 0.75)

The Riemann sum S′
43 that corresponds to these upper-right vertex sample points is the following sum:

S′
4,3 =

4∑
i=1

3∑
j=1

f
(
Pij

)
�A

= 0.0625(0.2 + 0.3 + 0.2 + 0.4 + 0.5 + 0.2 + 0.3 + 0.4 + 0.15 + 0.2 + 0.2 + 0.1) ≈ 0.196875

Taking the average of the two Riemann sums we have:

volume ≈ S4,3 + S′
4,3

2
= 0.190625 + 0.196875

2
= 0.19375

Use the following table to compute a Riemann sum S3,3 for f (x, y) on the square R = [0, 1.5] × [0.5, 2]. Use
the regular partition and sample points of your choosing.

13. Let SN,N be the Riemann sum for
∫ 1

0

∫ 1

0
ex3−y3

dy dx using the regular partition and the lower left-hand

vertex of each subrectangle as sample points. Use a computer algebra system to calculate SN,N for N = 25, 50, 100.

solution Using a computer algebra system, we compute SN,N to be 1.0731, 1.0783, and 1.0809.

Let SN,M be the Riemann sum for

∫ 4

0

∫ 2

0
ln(1 + x2 + y2) dy dx

using the regular partition and the upper right-hand vertex of each subrectangle as sample points. Use a computer
algebra system to calculate S2N,N for N = 25, 50, 100.

In Exercises 15–18, use symmetry to evaluate the double integral.

15.
∫∫

R
x3 dA, R = [−4, 4] × [0, 5]

solution The double integral is the signed volume of the region between the graph of f (x, y) = x3 and the xy-plane.
However, f (x, y) takes opposite values at (x, y) and (−x, y):

f (−x, y) = (−x)3 = −x3 = −f (x, y)

Because of symmetry, the (negative) signed volume of the region below the xy-plane where −4 ≤ x ≤ 0 cancels with
the (positive) signed volume of the region above the xy-plane where 0 ≤ x ≤ 4. The net result is∫∫

R
x3 dA = 0

∫∫
R

1 dA, R = [2, 4] × [−7, 7]17.
∫∫

R
sin x dA, R = [0, 2π ] × [0, 2π ]

solution Since sin(π + x) = − sin x, the region between the graph and the xy-plane where π ≤ x ≤ 2π , is below
the xy-plane, and it cancels with the region above the xy-plane where 0 ≤ x ≤ π . Hence,∫∫

R
sin x dA = 0
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∫∫
R

(2 + x2y) dA, R = [0, 1] × [−1, 1]
In Exercises 19–36, evaluate the iterated integral.

19.
∫ 3

1

∫ 2

0
x3y dy dx

solution We first compute the inner integral, treating x as a constant, then integrate the result with respect to x:

∫ 3

1

∫ 2

0
x3y dy dx =

∫ 3

1
x3 y2

2

∣∣∣∣2
y=0

dx =
∫ 3

1
x3

(
22

2
− 0

)
dx =

∫ 3

1
2x3 dx = x4

2

∣∣∣∣3
1

= 40

∫ 2

0

∫ 3

1
x3y dx dy

21.
∫ 9

4

∫ 8

−3
1 dx dy

solution ∫ 9

4

∫ 8

−3
1 dxdy =

∫ 9

4
1

(∫ 8

−3
1 dy

)
dx

=
∫ 9

4
1

(
y

∣∣∣∣8−3

)
dx

=
∫ 9

4
11 dx

= 11x

∣∣∣∣9
4

= 99 − 44 = 55∫ −1

−4

∫ 8

4
(−5) dx dy

23.
∫ 1

−1

∫ π

0
x2 sin y dy dx

solution We first evaluate the inner integral, treating x as a constant, then integrate the result with respect to x. This
gives ∫ 1

−1

∫ π

0
x2 sin y dy dx =

∫ 1

−1
x2(− cos y)

∣∣∣∣π
y=0

dx =
∫ 1

−1
x2(− cos π + cos 0) dx

=
∫ 1

−1
x2(1 + 1) dx =

∫ 1

−1
2x2 dx = 2

3
x3
∣∣∣∣1−1

= 2

3

(
13 − (−1)3

)
= 4

3

∫ 1

−1

∫ π

0
x2 sin y dx dy

25.
∫ 6

2

∫ 4

1
x2 dx dy

solution We use Iterated Integral of a Product Function to compute the integral as follows:

∫ 6

2

∫ 4

1
x2 dx dy =

∫ 6

2

∫ 4

1
x2 · 1 dx dy =

(∫ 4

1
x2 dx

)(∫ 6

2
1 dy

)
=
(

x3

3

∣∣∣∣4
1

)(
y

∣∣∣∣6
2

)

=
(

43

3
− 13

3

)
(6 − 2) = 21 · 4 = 84

∫ 6

2

∫ 4

1
y2 dx dy

27.
∫ 1

0

∫ 2

0
(x + 4y3) dx dy

solution We use additivity of the double integral to write

∫ 1

0

∫ 2

0

(
x + 4y3

)
dx dy =

∫ 1

0

∫ 2

0
x dx dy +

∫ 1

0

∫ 2

0
4y3 dx dy (1)

We now compute each of the double integrals using product of iterated integrals:

∫ 1

0

∫ 2

0
x dx dy =

(∫ 2

0
x dx

)(∫ 1

0
1 dy

)
=
(

1

2
x2
∣∣∣∣2
0

)(
y

∣∣∣∣1
0

)
= 2 · 1 = 2

∫ 1

0

∫ 2

0
4y3 dx dy =

(∫ 1

0
4y3 dy

)(∫ 2

0
1 dx

)
=
(

y4
∣∣∣∣1
0

)(
x

∣∣∣∣2
0

)
= 1 · 2 = 2
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Substituting in (1) gives

∫ 1

0

∫ 2

0
(x + 4y3) dx dy = 2 + 2 = 4.

∫ 2

0

∫ 2

0
(x2 − y2) dy dx

29.
∫ 4

0

∫ 9

0

√
x + 4y dx dy

solution We compute the inner integral, treating y as a constant. Then we evaluate the resulting integral with respect
to y:

∫ 4

0

∫ 9

0

√
x + 4y dx dy =

∫ 4

0

2

3
(x + 4y)3/2

∣∣∣∣9
x=0

dy =
∫ 4

0

2

3

(
(9 + 4y)3/2 − (4y)3/2

)
dy

= 2

3

(
2

5 · 4
(9 + 4y)5/2 − 2

5 · 4
(4y)5/2

) ∣∣∣∣4
0

= 1

15
(55 − 45) − 1

15
(35 − 0) ≈ 123.8667

∫ π/4

0

∫ π/2

π/4
cos(2x + y) dy dx

31.
∫ 2

1

∫ 4

0

dy dx

x + y

solution The inner integral is an iterated integral with respect to y. We evaluate it first and then compute the resulting
integral with respect to x. This gives

∫ 2

1

∫ 4

0

dy dx

x + y
=
∫ 2

1

(∫ 4

0

dy

x + y

)
dx =

∫ 2

1
ln(x + y)

∣∣∣∣4
y=0

dx =
∫ 2

1
(ln(x + 4) − ln x) dx

We use the integral formula: ∫
ln(x + a) dx = (x + a) (ln(x + a) − 1) + C

We get

∫ 2

1

∫ 4

0

dy dx

x + y
= (x + 4) (ln(x + 4) − 1) − x(ln x − 1)

∣∣∣∣2
1

= 6(ln 6 − 1) − 2(ln 2 − 1) − (5(ln 5 − 1) − (ln 1 − 1))

= 6 ln 6 − 2 ln 2 − 5 ln 5 ≈ 1.31

∫ 2

1

∫ 4

2
e3x−y dy dx

33.
∫ 4

0

∫ 5

0

dy dx√
x + y

solution

∫ 4

0

∫ 5

0

dy dx√
x + y

=
∫ 4

0

(∫ 5

0

dy√
x + y

)
dx

=
∫ 4

0

(
2
√

x + y

∣∣∣∣5
y=0

)
dx

= 2
∫ 4

0
(
√

x + 5 − √
x) dx

= 2

(
2

3
(x + 5)3/2 − 2

3
x3/2

) ∣∣∣∣4
0

= 2

(
2

3
· 27 − 2

3
· 8

)
− 2

(
2

3
· 53/2 − 0

)

= 36 − 32

3
− 20

3

√
5 = 76

3
− 20

3

√
5 ≈ 10.426
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∫ 8

0

∫ 2

1

x dx dy√
x2 + y

35.
∫ 2

1

∫ 3

1

ln(xy) dy dx

y

solution∫ 2

1

∫ 3

1

ln(xy) dy dx

y
=
∫ 2

1

(
1

2
[ln(xy)]2

∣∣∣∣3
1

)
dx

= 1

2

∫ 2

1
[ln(3x)]2 − [ln(x)]2 dx

= 1

2

∫ 2

1
[ln(3x)]2 dx − 1

2

∫ 2

1
[ln(x)]2 dx

= 1

2

[
x(ln 3x)2

∣∣∣∣2
1

− 2
∫ 2

1
ln(3x) dx

]
− 1

2

[
x(ln x)2

∣∣∣∣2
1

− 2
∫ 2

1
ln x dx

]

= 1

2

[
2(ln 6)2 − (ln 3)2

]
−
∫ 2

1
ln(3x) dx − 1

2

[
2(ln 2)2 − 0

]
+
∫ 2

1
ln x dx

= (ln 6)2 − 1

2
(ln 3)2 −

[
x ln(3x) − x

∣∣∣∣2
1

]
− (ln 2)2 +

[
x ln x − x

∣∣∣∣2
1

]

= (ln 6)2 − 1

2
(ln 3)2 − (ln 2)2 − (2 ln 6 − 2 − ln 3 + 1) + (2 ln 2 − 2 − 0 + 1)

= (ln 6)2 − 1

2
(ln 3)2 − (ln 2)2 − 2 ln 6 + ln 3 + 1 + 2 ln 2 − 2 + 1

= (ln 6)2 − 1

2
(ln 3)2 − (ln 2)2 − 2 ln 6 + ln 3 + 2 ln 2 ≈ 1.028

∫ 1

0

∫ 3

2

1

(x + 4y)3
dx dy

In Exercises 37–42, use Eq. (1) to evaluate the integral.

37.
∫∫

R
x

y
dA, R = [−2, 4] × [1, 3]

solution We compute the double integral as the product of two single integrals:∫∫
R

x

y
dA =

∫ 4

−2

∫ 3

1

x

y
dy dx =

∫ 4

−2
x dx ·

∫ 3

1

1

y
dy

=
(

1

2
x2
∣∣∣∣4−2

)(
ln y

∣∣∣∣3
1

)
= 1

2
(16 − 4) · (ln 3 − ln 1)

= 6 ln 3∫∫
R

x2y dA, R = [−1, 1] × [0, 2]39.
∫∫

R
cos x sin 2y dA, R = [0, π

2

]× [0, π
2

]
solution Since the integrand has the form f (x, y) = g(x)h(y), we may compute the double integral as the product
of two single integrals. That is,∫∫

R
cos x sin 2y dA =

∫ π/2

0

∫ π/2

0
cos x sin 2y dx dy =

(∫ π/2

0
cos x dx

)(∫ π/2

0
sin 2y dy

)

=
(

sin x

∣∣∣∣π/2

0

)(
−1

2
cos 2y

∣∣∣∣π/2

0

)
=
(

sin
π

2
− sin 0

)(
−1

2
cos π + 1

2
cos 0

)

= (1 − 0)

(
1

2
+ 1

2

)
= 1

∫∫
R

y

x + 1
dA, R = [0, 2] × [0, 4]41.

∫∫
R

ex sin y dA, R = [0, 2] × [0, π
4

]
solution We compute the double integral as the product of two single integrals. This can be done since the integrand
has the form f (x, y) = g(x)h(y). We get∫∫

R
ex sin y dA =

∫ π/4

0

∫ 2

0
ex sin y dx dy =

(∫ 2

0
ex dx

)(∫ π/4

0
sin y dy

)

=
(

ex

∣∣∣∣2
0

)(
− cos y

∣∣∣∣π/4

0

)
=
(
e2 − e0

) (
− cos

π

4
+ cos 0

)
=
(
e2 − 1

)(
1 −

√
2

2

)
≈ 1.87

∫∫
R

e3x+4y dA, R = [0, 1] × [1, 2]
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43. Let f (x, y) = mxy2, where m is a constant. Find a value of m such that
∫∫

R
f (x, y) dA = 1, where R =

[0, 1] × [0, 2].
solution Since f (x, y) = mxy2 is a product of a function of x and a function of y, we may compute the double
integral as the product of two single integrals. That is,

∫ 2

0

∫ 1

0
mxy2 dx dy = m

(∫ 1

0
x dx

)(∫ 2

0
y2 dy

)
(1)

We compute each integral:

∫ 1

0
x dx = 1

2
x2
∣∣∣∣1
0

= 1

2

(
12 − 02

)
= 1

2∫ 2

0
y2 dy = 1

3
y3
∣∣∣∣2
0

= 1

3

(
23 − 03

)
= 8

3

We substitute in (1), equate to 1 and solve the resulting equation for m. This gives

m · 1

2
· 8

3
= 1 ⇒ m = 3

4

Evaluate I =
∫ 3

1

∫ 1

0
yexy dy dx. You will need Integration by Parts and the formula

∫
ex(x−1 − x−2) dx = x−1ex + C

Then evaluate I again using Fubini’s Theorem to change the order of integration (that is, integrate first with respect
to x). Which method is easier?

45. Evaluate
∫ 1

0

∫ 1

0

y

1 + xy
dy dx. Hint: Change the order of integration.

solution Using Fubini’s Theorem we change the order of integration, integrating first with respect to x and then with
respect to y. This gives

∫ 1

0

∫ 1

0

y

1 + xy
dy dx =

∫ 1

0

(∫ 1

0

y

1 + xy
dx

)
dy =

∫ 1

0

(
y

∫ 1

0

dx

1 + xy

)
dy =

∫ 1

0
y · 1

y
ln(1 + xy)

∣∣∣∣1
x=0

dy

=
∫ 1

0
(ln(1 + y) − ln 1) dy =

∫ 1

0
ln(1 + y) dy = (1 + y) (ln(1 + y) − 1)

∣∣∣∣1
y=0

= 2(ln 2 − 1) − (ln 1 − 1) = 2 ln 2 − 1 ≈ 0.386

Calculate a Riemann sum S3,3 on the square R = [0, 3] × [0, 3] for the function f (x, y) whose contour plot is
shown in Figure 17. Choose sample points and use the plot to find the values of f (x, y) at these points.

47. Using Fubini’s Theorem, argue that the solid in Figure 18 has volume AL, where A is the area of the front
face of the solid.

z

x

y
ASide of area A

L

FIGURE 18

solution We denote by M the length of the other side of the rectangle in the basis of the solid. The volume of the solid
is the double integral of the function f (x, y) = g(x) over the rectangle

R = [0, M] × [0, L]

V =
∫∫

R
g(x) dA.

0

z

y

x

A

O

M

L

z = g(x)
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We use Fubini’s Theorem to write the double integral as iterated integral, and then compute the resulting integral as the
product of two single integrals. This gives

V =
∫∫

R
g(x) dA =

∫ L

0

∫ M

0
g(x) dx dy =

(∫ M

0
g(x) dx

)(∫ L

0
1 dy

)
=
(∫ M

0
g(x) dx

)
· L (1)

The integral
∫M

0 g(x)dx is the area A of the region under the graph of z = g(x) over the interval 0 ≤ x ≤ M . Substituting
in (1) gives the following volume of the solid:

V =
(∫ M

0
g(x)dx

)
· L = AL

Further Insights and Challenges

Prove the following extension of the Fundamental Theorem of Calculus to two variables: If
∂2F

∂x ∂y
= f (x, y),

then ∫∫
R

f (x, y) dA = F(b, d) − F(a, d) − F(b, c) + F(a, c)

where R = [a, b] × [c, d].

49. Let F(x, y) = x−1exy . Show that
∂2F

∂x ∂y
= yexy and use the result of Exercise 48 to evaluate

∫∫
R

yexy dA for the

rectangle R = [1, 3] × [0, 1].
solution Differentiating F(x, y) = x−1exy with respect to y gives

∂F

∂y
= ∂

∂y

(
x−1exy

)
= x−1xexy = exy

We now differentiate ∂F
∂y

with respect to x:

∂2F

∂x ∂y
= ∂

∂x

(
exy
) = yexy

In Exercise 48 we showed that∫ d

c

∫ b

a

∂2F

∂x ∂y
dx dy = F(b, d) − F(b, c) − F(a, d) + F(a, c)

Therefore, for F(x, y) = x−1exy = exy

x we obtain∫∫
R

yexy dA =
∫ 1

0

∫ 3

1
yexy dx dy = F(3, 1) − F(3, 0) − F(1, 1) + F(1, 0)

= e3

3
− e0

3
− e1

1
+ e0

1
= e3

3
− 1

3
− e + 1 = 4.644

Find a function F(x, y) satisfying
∂2F

∂x ∂y
= 6x2y and use the result of Exercise 48 to evaluate

∫∫
R

6x2y dA for

the rectangle R = [0, 1] × [0, 4].

51. In this exercise, we use double integration to evaluate the following improper integral for a > 0 a positive constant:

I (a) =
∫ ∞

0

e−x − e−ax

x
dx

(a) Use L’Hôpital’s Rule to show that f (x) = e−x − e−ax

x
, though not defined at x = 0, can be made continuous by

assigning the value f (0) = a − 1.
(b) Prove that |f (x)| ≤ e−x + e−ax for x > 1 (use the triangle inequality), and apply the Comparison Theorem to show
that I (a) converges.

(c) Show that I (a) =
∫ ∞

0

∫ a

1
e−xy dy dx.

(d) Prove, by interchanging the order of integration, that

I (a) = ln a − lim
T →∞

∫ a

1

e−Ty

y
dy 2

(e) Use the Comparison Theorem to show that the limit in Eq. (2) is zero. Hint: If a ≥ 1, show that e−Ty/y ≤ e−T for
y ≥ 1, and if a < 1, show that e−Ty/y ≤ e−aT /a for a ≤ y ≤ 1. Conclude that I (a) = ln a (Figure 19).

4

x

y

1 2

y = e−x − e−5x

x

FIGURE 19 The shaded region has area ln 5.
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solution

(a) The function f (x) = e−x−e−ax

x , f (0) = a − 1 is continuous if limx→0 f (x) = f (0) = a − 1. We verify this limit
using L’Hôpital’s Rule:

lim
x→0

e−x − e−ax

x
= lim

x→0

−e−x + ae−ax

1
= −1 + a = a − 1

Therefore, f is continuous.

(b) We now show that the following integral converges:

I (a) =
∫ ∞

0

e−x − e−ax

x
dx (a > 0)

Since e−x − e−ax < e−x + e−ax then also e−x−e−ax

x < e−x+e−ax

x for x > 0. Therefore, if x > 1 we have

e−x − e−ax

x
<

e−x + e−ax

x
< e−x + e−ax

That is, for x > 1,

f (x) < e−x + e−ax (1)

Also, since e−ax − e−x < e−ax + e−x we have for x > 1,

e−ax − e−x

x
<

e−ax + e−x

x
< e−ax + e−x

Thus, we get

−f (x) < e−x + e−ax (2)

Together with (1) we have

0 ≤ |f (x)| < e−x + e−ax (3)

We now show that the integral of the right hand-side converges:∫ ∞
0

(
e−x + e−ax

)
dx = lim

R→∞

∫ R

0

(
e−x + e−ax

)
dx

= lim
R→∞

(
−e−x − e−ax

a

∣∣∣∣R
x=0

)

= lim
R→∞

(
−e−R − e−aR

a
+ e0 + e0

a

)

= lim
R→∞

(
−e−R − e−aR

a
+ 1 + 1

a

)

= 1 + 1

a

Since the integral converges, we conclude by (3) and the Comparison Test for Improper Integrals that∫ ∞
0

e−x − e−ax

x
dx

also converges for a > 0.

(c) We compute the inner integral with respect to y:∫ a

1
e−xy dy = − 1

x
e−xy

∣∣∣∣a
y=1

= − 1

x

(
e−xa − e−x·1) = e−x − e−xa

x

Therefore, ∫ ∞
0

∫ a

1
e−xy dy dx =

∫ ∞
0

(∫ a

1
e−xy dy

)
dx =

∫ ∞
0

e−x − e−xa

x
dx = I (a)
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(d) By the definition of the improper integral,

I (a) = lim
T →∞

∫ T

0

∫ a

1
e−xy dy dx (4)

We compute the double integral. Using Fubini’s Theorem we may compute the iterated integral using reversed order of
integration. That is,

∫ T

0

∫ a

1
e−xy dy dx =

∫ a

1

∫ T

0
e−xy dx dy =

∫ a

1

(∫ T

0
e−xy dx

)
dy =

∫ a

1

(
− 1

y
e−xy

∣∣∣∣T
x=0

)
dy

=
∫ a

1

(
− 1

y

(
e−Ty − e−0·y)) dy =

∫ a

1

1 − e−Ty

y
dy =

∫ a

1

dy

y
−
∫ a

1

e−Ty

y
dy

= ln y

∣∣∣∣a
1

−
∫ a

1

e−Ty

y
dy = ln a − ln 1 −

∫ a

1

e−Ty

y
dy = ln a −

∫ a

1

e−Ty

y
dy

Combining with (4) we get

I (a) = ln a − lim
T →∞

∫ a

1

e−Ty

y
dy (5)

(e) We now show, using the Comparison Theorem, that

lim
T →∞

∫ a

1

e−Ty

y
dy = 0

We consider the following possible cases:

Case 1: a ≥ 1. Then in the interval of integration y ≥ 1. Also since T → ∞, we may assume that T > 0. Thus,

e−Ty

y
≤ e−T ·1

1
= e−T

Hence,

0 ≤
∫ a

1

e−Ty

y
dy ≤

∫ a

1
e−T dy = e−T (a − 1)

By the limit lim
T →∞ e−T (a − 1) = 0 and the Squeeze Theorem we conclude that,

lim
T →∞

∫ a

1

e−Ty

y
dy = 0

Case 2: 0 < a < 1. Then, ∫ a

1

e−Ty

y
dy = −

∫ 1

a

e−Ty

y
dy

and in the interval of integration a ≤ y ≤ 1, therefore

e−Ty

y
≤ e−T a

a

(the function e−Ty

y is decreasing). Hence,

0 ≤
∫ 1

a

e−Ty

y
dy ≤

∫ 1

a

e−T a

a
dy = (1 − a)

a
e−T a

By the limit lim
T →∞

1−a
a e−T a = 0 and the Squeeze Theorem we conclude also that

lim
T →∞

∫ a

1

e−Ty

y
= − lim

T →∞

∫ 1

a

e−Ty

y
= 0

We thus showed that for all a > 0, lim
T →∞

∫ a

1

e−Ty

y
= 0. Combining with Eq. (5) obtained in part (c), we find that

I (a) = ln a.
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15.2 Double Integrals over More General Regions (LT Section 16.2)

Preliminary Questions
1. Which of the following expressions do not make sense?

(a)
∫ 1

0

∫ x

1
f (x, y) dy dx (b)

∫ 1

0

∫ y

1
f (x, y) dy dx

(c)
∫ 1

0

∫ y

x
f (x, y) dy dx (d)

∫ 1

0

∫ 1

x
f (x, y) dy dx

solution

(a) This integral is the following iterated integral:

∫ 1

0

∫ x

1
f (x, y) dy dx =

∫ 1

0

(∫ x

1
f (x, y) dy

)
dx

The inner integral is a function of x and it is integrated with respect to x over the interval 0 ≤ x ≤ 1. The result is a
number. This integral makes sense.

(b) This integral is the same as

∫ 1

0

∫ y

1
f (x, y) dy dx =

∫ 1

0

(∫ y

1
f (x, y) dy

)
dx

The inner integral is an integral with respect to y, over the interval [1, y]. This does not make sense.

(c) This integral is the following iterated integral:

∫ 1

0

(∫ y

x
f (x, y)

)
dy dx

The inner integral is a function of x and y and it is integrated with respect to y over the interval x ≤ y ≤ y. This does not
make sense.

(d) This integral is the following iterated integral:

∫ 1

0

(∫ 1

x
f (x, y) dy

)
dx

The inner integral is a function of x and it is integrated with respect to x. This makes sense.

2. Draw a domain in the plane that is neither vertically nor horizontally simple.

solution The following region cannot be described in the form {a ≤ x ≤ b, α(x) ≤ y ≤ β(x)} nor in the form
{c ≤ y ≤ d, α(y) ≤ x ≤ β(y)}, hence it is neither vertically nor horizontally simple.

y

x

3. Which of the four regions in Figure 18 is the domain of integration for
∫ 0

−√
2/2

∫ √
1−x2

−x
f (x, y) dy dx?

x

y

1-1

/4
A D

B C

FIGURE 18
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solution The region B is defined by the inequalities

−x ≤ y ≤
√

1 − x2, −
√

2

2
≤ x ≤ 0

To compute
∫ 0

−√
2/2

∫ √
1−x2

−x
f (x, y) dy dx, we first integrate with respect to y over the interval −x ≤ y ≤

√
1 − x2,

and then with respect to x over −
√

2
2 ≤ x ≤ 0. That is, the domain of integration is B.

y

x

B

-
2
2

y = 1 − x2

y = −x

4. Let D be the unit disk. If the maximum value of f (x, y) on D is 4, then the largest possible value of
∫∫

D
f (x, y) dA

is (choose the correct answer):

(a) 4 (b) 4π (c)
4

π

solution The area of the unit disk is π and the maximum value of f (x, y) on this region is M = 4, therefore we have,∫∫
D

f (x, y) dx dy ≤ 4π

The correct answer is (b).

Exercises
1. Calculate the Riemann sum for f (x, y) = x − y and the shaded domain D in Figure 19 with two choices of sample

points, • and ◦. Which do you think is a better approximation to the integral of f over D? Why?

x

y

1 2 3

4

2

3

1

0

FIGURE 19

solution The subrectangles in Figure 17 have sides of length �x = �y = 1 and area �A = 1 · 1 = 1.

(a) Sample points •. There are six sample points that lie in the domain D. We compute the values of f (x, y) = x − y at
these points:

f (1, 1) = 0,

f (2, 1) = 1,

f (1, 2) = −1,

f (2, 2) = 0,

f (1, 3) = −2,

f (2, 3) = −1

The Riemann sum is

S3,4 = (0 − 1 − 2 + 1 + 0 − 1) · 1 = −3

(b) Sample points ◦. We compute the values of f (x, y) = x − y at the eight sample points that lie in D:

f (1.5, 0.5) = 1,

f (1.5, 3.5) = −2,

f (0.5, 1.5) = −1,

f (1.5, 1.5) = 0,

f (2.5, 1.5) = 1,

f (0.5, 2.5) = −2,

f (1.5, 2.5) = −1,

f (2.5, 2.5) = 0.

The corresponding Riemann sum is thus

S34 = (1 − 1 − 2 + 0 − 1 − 2 + 1 + 0) · 1 = −4.
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Approximate values of f (x, y) at sample points on a grid are given in Figure 20. Estimate
∫∫

D
f (x, y) dx dy

for the shaded domain by computing the Riemann sum with the given sample points.

3. Express the domain D in Figure 21 as both a vertically simple region and a horizontally simple region, and evaluate
the integral of f (x, y) = xy over D as an iterated integral in two ways.

x

y = 1 − x2

y

1

1

FIGURE 21

solution The domain D can be described as a vertically simple region as follows:

0 ≤ x ≤ 1, 0 ≤ y ≤ 1 − x2 (1)

Vertically simple region

x

y = 1 − x2

0 ≤ y ≤ 1 − x2

x = 0
y

1

1

x = 1

D

The domain D can also be described as a horizontally simple region. To do this, we must express x in terms of y, for
nonnegative values of x. This gives

y = 1 − x2 ⇒ x2 = 1 − y ⇒ x = √1 − y

Horizontally simple region

x

x = 1 − y

0 ≤ x ≤ 1 − y

y = 0

y = 1

y

1

1

D

Therefore, we can describe D by the following inequalities:

0 ≤ y ≤ 1, 0 ≤ x ≤ √1 − y (2)

We now compute the integral of f (x, y) = xy over D first using definition (1) and then using definition (2). We obtain

∫∫
D

xy dA =
∫ 1

0

∫ 1−x2

0
xy dy dx =

∫ 1

0

xy2

2

∣∣∣∣1−x2

y=0
dx =

∫ 1

0

x

2

(
(1 − x2)

2 − 02
)

dx =
∫ 1

0

x(1 − x2)
2

2
dx

= 1

2

∫ 1

0
(x − 2x3 + x5) dx = 1

2

(
x2

2
− x4

2
+ x6

6

) ∣∣∣∣1
0

= 1

2

(
1

2
− 1

2
+ 1

6

)
= 1

12

Using definition (2) gives

∫∫
D

xy dA =
∫ 1

0

∫ √
1−y

0
xy dx dy =

∫ 1

0

yx2

2

∣∣∣∣
√

1−y

x=0
dy =

∫ 1

0

y

2

((√
1 − y

)2 − 02
)

dy

=
∫ 1

0

y

2
(1 − y) dy =

∫ 1

0

(
y

2
− y2

2

)
dy = y2

4
− y3

6

∣∣∣∣1
0

= 1

4
− 1

6
= 1

12

The answers agree as expected.

Sketch the domain

D : 0 ≤ x ≤ 1, x2 ≤ y ≤ 4 − x2

and evaluate
∫∫

D
y dA as an iterated integral.
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In Exercises 5–7, compute the double integral of f (x, y) = x2y over the given shaded domain in Figure 22.

(A)

x
1 2 3 4

y

1
2

(B)

x
1 2 3 4

y

1
2

(C)

x
1 2 3 4

y

1
2

FIGURE 22

5. (A)

solution

x
1 2 3 4

y

1

2

We describe the domain D as a vertically simple region. We find the equation of the line connecting the points (0, 2) and
(4, 0).

y − 0 = 2 − 0

0 − 4
(x − 4) ⇒ y = −1

2
x + 2

Therefore the domain is described as a vertically simple region by the inequalities

0 ≤ x ≤ 4, −1

2
x + 2 ≤ y ≤ 2

We use Theorem 2 to evaluate the double integral:∫∫
D

x2y dA =
∫ 4

0

∫ 2

− x
2 +2

x2y dy dx =
∫ 4

0

x2y2

2

∣∣∣∣2
y=− x

2 +2
dx =

∫ 4

0

x2

2

(
22 −

(
−x

2
+ 2
)2
)

dx

=
∫ 4

0

(
x3 − x4

8

)
dx = x4

4
− x5

40

∣∣∣∣4
0

= 44

4
− 45

40
= 192

5
= 38.4

(B)
7. (C)

solution The domain in (C) is a horizontally simple region, described by the inequalities

0 ≤ y ≤ 2, y ≤ x ≤ 4

y ≤ x ≤ 4

x =
 y

x
1 2 3 4

y

1

2

Using Theorem 2 we obtain the following integral:∫∫
D

x2y dA =
∫ 2

0

∫ 4

y
x2y dx dy =

∫ 2

0

x3y

3

∣∣∣∣x=4

x=y

dy =
∫ 2

0

y

3

(
43 − y3

)
dy =

∫ 2

0

(
64y

3
− y4

3

)
dy

= 32

3
y2 − y5

15

∣∣∣∣2
0

= 32 · 22

3
− 25

15
= 608

15
≈ 40.53

Sketch the domain D defined by x + y ≤ 12, x ≥ 4, y ≥ 4 and compute
∫∫

D
ex+y dA.

9. Integrate f (x, y) = x over the region bounded by y = x2 and y = x + 2.

solution The domain of integration is shown in the following figure:

y = x + 2

y = x2

x

y

2

4

2−2
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To find the inequalities defining the domain as a vertically simple region we first must find the x-coordinates of the two
points where the line y = x + 2 and the parabola y = x2 intersect. That is,

x + 2 = x2 ⇒ x2 − x − 2 = (x − 2)(x + 1) = 0

⇒ x1 = −1, x2 = 2

We describe the domain by the following inequalities:

−1 ≤ x ≤ 2, x2 ≤ y ≤ x + 2

x

y

2

4

2−2

x2 ≤ y ≤ x + 2

We now evaluate the integral of f (x, y) = x over the vertically simple region D:

∫∫
D

x dA =
∫ 2

−1

∫ x+2

x2
x dy dx =

∫ 2

−1
xy

∣∣∣∣x+2

y=x2
dx =

∫ 2

−1
x
(
x + 2 − x2

)
dx

=
∫ 2

−1

(
x2 + 2x − x3

)
dx = x3

3
+ x2 − x4

4

∣∣∣∣2−1
=
(

8

3
+ 4 − 4

)
−
(

−1

3
+ 1 − 1

4

)
= 2

1

4

Sketch the region D between y = x2 and y = x(1 − x). Express D as a simple region and calculate the integral
of f (x, y) = 2y over D.

11. Evaluate
∫∫

D
y

x
dA, where D is the shaded part of the semicircle of radius 2 in Figure 23.

y

x
21

FIGURE 23 y =
√

4 − x2

solution The region is defined by the following inequalities:

1 ≤ x ≤ 2, 0 ≤ y ≤
√

4 − x2

Therefore, the double integral of f over D is:

∫∫
D

y

x
dA =

∫ 2

1

∫ √
4−x2

0

y

x
dy dx

=
∫ 2

1

1

x

⎛
⎝1

2
y2
∣∣∣∣
√

4−x2

0

⎞
⎠ dx

= 1

2

∫ 2

1

1

x
(4 − x2) dx

= 1

2

∫ 2

1

4

x
− x dx

= 1

2

(
4 ln |x| − 1

2
x2
) ∣∣∣∣2

1

= 1

2
(4 ln 2 − 2) − 1

2

(
0 − 1

2

)

= 2 ln 2 − 1 + 1

4
= 2 ln 2 − 3

4
≈ 0.636
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Calculate the double integral of f (x, y) = y2 over the rhombus R in Figure 24.
13. Calculate the double integral of f (x, y) = x + y over the domain D = {(x, y) : x2 + y2 ≤ 4, y ≥ 0}.
solution

2

x

y

2−2

0 ≤ y ≤ 4 − x2

The domain D

The semicircle can be described as a vertically simple region, by the following inequalities:

−2 ≤ x ≤ 2, 0 ≤ y ≤
√

4 − x2

We evaluate the double integral by the following iterated integral:

∫∫
D

(x + y) dA =
∫ 2

−2

∫ √
4−x2

0
(x + y) dy dx =

∫ 2

−2
xy + 1

2
y2
∣∣∣∣
√

4−x2

y=0
dx =

∫ 2

−2

(
x
√

4 − x2 + 1

2

(√
4 − x2

)2
)

dx

=
∫ 2

−2
x
√

4 − x2 dx + 1

2

∫ 2

−2
(4 − x2) dx =

∫ 2

−2
x
√

4 − x2 dx + 2x − x3

6

∣∣∣∣2
x=−2

=
∫ 2

−2
x
√

4 − x2 dx + 4 − 8

6
−
(

−4 − −8

6

)
=
∫ 2

−2
x
√

4 − x2 dx + 16

3

The integral of an odd function over an interval that is symmetric with respect to the origin is zero. Hence
∫ 2

−2
x
√

4 − x2 dx =
0, so we get ∫∫

D
(x + y) dA = 0 + 16

3
= 16

3
≈ 5.33

Integrate f (x, y) = (x + y + 1)−2 over the triangle with vertices (0, 0), (4, 0), and (0, 8).
15. Calculate the integral of f (x, y) = x over the region D bounded above by y = x(2 − x) and below by x = y(2 − y).
Hint: Apply the quadratic formula to the lower boundary curve to solve for y as a function of x.

solution The two graphs are symmetric with respect to the line y = x, thus their point of intersection is (1, 1). The
region D is shown in the following figure:

x

y

x = y(2 − y)

y = x(2 − x)

1 2

1

0

2

D

To find the inequalities defining the region D as a vertically simple region, we first must solve the lower boundary curve
for y in terms of x. We get

x = y(2 − y) = 2y − y2

y2 − 2y + x = 0

We solve the quadratic equation in y:

y = 1 ± √
1 − x

x

y

10

1

1 − x ≤ y ≤ x(2 − x)1 − 
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The domain D lies below the line y = 1, hence the appropriate solution is y = 1 − √
1 − x. We obtain the following

inequalities for D:

0 ≤ x ≤ 1, 1 − √
1 − x ≤ y ≤ x(2 − x)

We now evaluate the double integral of f (x, y) = x over D:∫∫
D

x dA =
∫ 1

0

∫ x(2−x)

1−√
1−x

x dy dx =
∫ 1

0
xy

∣∣∣∣x(2−x)

y=1−√
1−x

dx =
∫ 1

0

(
x2(2 − x) −

(
x − x

√
1 − x

))
dx

=
∫ 1

0

(
2x2 − x3 − x + x

√
1 − x

)
dx = 2x3

3
− x4

4
− x2

2

∣∣∣∣1
0

+
∫ 1

0
x
√

1 − x dx

= − 1

12
+
∫ 1

0
x
√

1 − x dx

Using the substitution u = √
1 − x it can be shown that

∫ 1

0
x
√

1 − x dx = 4

15
. Therefore we get

∫∫
D

x dA = − 1

12
+ 4

15
= 11

60

Integrate f (x, y) = x over the region bounded by y = x, y = 4x − x2, and y = 0 in two ways: as a vertically
simple region and as a horizontally simple region.

In Exercises 17–24, compute the double integral of f (x, y) over the domain D indicated.

17. f (x, y) = x2y; 1 ≤ x ≤ 3, x ≤ y ≤ 2x + 1

solution These inequalities describe D as a vertically simple region.

x

y

310

y = x

y = 2x + 1

x ≤ y ≤ 2x + 1

We compute the double integral of f (x, y) = x2y on D by the following iterated integral:∫∫
D

x2y dA =
∫ 3

1

∫ 2x+1

x
x2y dy dx =

∫ 3

1

x2y2

2

∣∣∣∣2x+1

y=x

dx =
∫ 3

1

x2

2

(
(2x + 1)2 − x2

)
dx

=
∫ 3

1

(
3

2
x4 + 2x3 + x2

2

)
dx = 3

10
x5 + x4

2
+ x3

6

∣∣∣∣3
1

= 3 · 35

10
+ 34

2
+ 33

6
−
(

3

10
+ 1

2
+ 1

6

)
= 1754

15
≈ 116.93

f (x, y) = 1; 0 ≤ x ≤ 1, 1 ≤ y ≤ ex19. f (x, y) = x; 0 ≤ x ≤ 1, 1 ≤ y ≤ ex2

solution We compute the double integral of f (x, y) = x over the vertically simple region D, as the following iterated
integral:

∫∫
D

x dA =
∫ 1

0

∫ ex2

1
x dy dx =

∫ 1

0
xy

∣∣∣∣e
x2

y=1
dx =

∫ 1

0

(
xex2 − x · 1

)
dx

=
∫ 1

0
xex2

dx −
∫ 1

0
x dx =

∫ 1

0
xex2

dx − x2

2

∣∣∣∣1
0

=
∫ 1

0
xex2

dx − 1

2
(1)

x

y

1

1

0

y = ex2

1 ≤ y ≤ ex2



May 19, 2011

478 C H A P T E R 15 MULTIPLE INTEGRATION (LT CHAPTER 16)

The resulting integral can be computed using the substitution u = x2. The value of this integral is∫ 1

0
xex2

dx = e − 1

2

Combining with (1) we get ∫∫
D

x dA = e − 1

2
− 1

2
= e − 2

2
≈ 0.359

f (x, y) = cos(2x + y); 1
2 ≤ x ≤ π

2 , 1 ≤ y ≤ 2x
21. f (x, y) = 2xy; bounded by x = y, x = y2

solution The intersection points of the graphs x = y and x = y2 are (0, 0) (1, 1). The horizontally simple region D
is shown in the figure:

x

y

x = y
x = y2

y2 ≤ x ≤ y

1

1

We compute the double integral of f (x, y) = 2xy over D, using Theorem 2. The limits of integration are determined by
the inequalities:

0 ≤ y ≤ 1, y2 ≤ x ≤ y.

Defining D, we get∫∫
D

2xy dA =
∫ 1

0

∫ y

y2
2xy dx dy =

∫ 1

0
x2y

∣∣∣∣y
x=y2

dy =
∫ 1

0
(y2 · y − y4 · y) dy

=
∫ 1

0
(y3 − y5) dy = y4

4
− y6

6

∣∣∣∣1
0

= 1

4
− 1

6
= 1

12

f (x, y) = sin x; bounded by x = 0, x = 1, y = cos x
23. f (x, y) = ex+y ; bounded by y = x − 1, y = 12 − x for 2 ≤ y ≤ 4

solution The horizontally simple region D is shown in the figure:

y
x = 12 − y x = y + 1

x
1083 5 6.5

4

2

5.5

0

y + 1 ≤ x ≤ 12 − y

We compute the double integral of f (x, y) = ex+y over D by evaluating the following iterated integral:∫∫
D

ex+y dA =
∫ 4

2

∫ 12−y

y+1
ex+y dx dy =

∫ 4

2
ex+y

∣∣∣∣12−y

x=y+1
dy =

∫ 4

2

(
e12−y+y − ey+1+y

)
dy

=
∫ 4

2

(
e12 − e2y+1

)
dy = e12 · y − 1

2
e2y+1

∣∣∣∣4
2

=
(

e12 · 4 − 1

2
e2·4+1

)
−
(

e12 · 2 − 1

2
e2·2+1

)

= 4e12 − 1

2
e9 − 2e12 + 1

2
e5 = 2e12 − 1

2
e9 + 1

2
e5 ≈ 321532.2

f (x, y) = (x + y)−1; bounded by y = x, y = 1, y = e, x = 0
In Exercises 25–28, sketch the domain of integration and express as an iterated integral in the opposite order.

25.
∫ 4

0

∫ 4

x
f (x, y) dy dx

solution The limits of integration correspond to the inequalities describing the following domain D:
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0 ≤ x ≤ 4, x ≤ y ≤ 4

x

y

y = x

x ≤ y ≤ 4

4

4

From the sketch of D we see that D can also be expressed as a horizontally simple region as follows:

0 ≤ y ≤ 4, 0 ≤ x ≤ y

x

y

x = y

0 ≤ x ≤ y

4

Therefore we can reverse the order of integration as follows:

∫ 4

0

∫ 4

x
f (x, y) dy dx =

∫ 4

0

∫ y

0
f (x, y) dx dy.

∫ 9

4

∫ 3

√
y

f (x, y) dx dy
27.

∫ 9

4

∫ √
y

2
f (x, y) dx dy

solution The limits of integration correspond to the following inequalities defining the horizontally simple region D:

4 ≤ y ≤ 9, 2 ≤ x ≤ √
y

x

y
x =    y

2

2 4 6 8

4

6

8

2 ≤ x ≤ y

The region D can also be expressed as a vertically simple region. We first need to write the equation of the curve x = √
y

in the form y = x2. The corresponding inequalities are

2 ≤ x ≤ 3, x2 ≤ y ≤ 9

x

y
y = x2

2

2 4 6 8

4

6

8

x2 ≤ y ≤ 9

We now can write the iterated integral with reversed order of integration:

∫ 9

4

∫ √
y

2
f (x, y) dx dy =

∫ 3

2

∫ 9

x2
f (x, y) dy dx.
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∫ 1

0

∫ e

ex
f (x, y) dy dx

29. Sketch the domain D corresponding to

∫ 4

0

∫ 2

√
y

√
4x2 + 5y dx dy

Then change the order of integration and evaluate.

solution The limits of integration correspond to the following inequalities describing the domain D:

0 ≤ y ≤ 4,
√

y ≤ x ≤ 2

The horizontally simple region D is shown in the figure:

y

x
2 41 3

2

4

1

3

0

x = y

 y ≤ x ≤ 2

The domain D can also be described as a vertically simple region. Rewriting the equation x = √
y in the form y = x2,

we define D by the following inequalities (see figure):

0 ≤ x ≤ 2, 0 ≤ y ≤ x2

y = x2

0 ≤ y ≤ x2

y

x
2 41 3

2

4

1

3

0

The corresponding iterated integral is

∫ 2

0

∫ x2

0

√
4x2 + 5y dy dx

We evaluate this integral:

∫ 2

0

∫ x2

0

√
4x2 + 5y dy dx =

∫ 2

0

(∫ x2

0

(
4x2 + 5y

)1/2
dy

)
dx

=
∫ 2

0

2

15

(
4x2 + 5y

)3/2
∣∣∣∣x

2

y=0
dx

=
∫ 2

0

(
2

15

(
4x2 + 5x2

)3/2 − 2

15

(
4x2 + 0

)3/2
)

dx

=
∫ 2

0

(
2

15

(
9x2
)3/2 − 2

15

(
4x2
)3/2

)
dx

=
∫ 2

0

18

5
x3 − 16

15
x3 dx

=
∫ 2

0

38

15
x3 dx

= 38

15
· x4

4

∣∣∣∣2
0

= 38

15
· 24

4
= 152

15
≈ 10.133
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Change the order of integration and evaluate∫ 1

0

∫ π/2

0
x cos(xy) dx dy

Explain the simplification achieved by changing the order.

31. Compute the integral of f (x, y) = (ln y)−1 over the domain D bounded by y = ex and y = e
√

x . Hint: Choose the
order of integration that enables you to evaluate the integral.

solution To express D as a horizontally simple region, we first must rewrite the equations of the curves y = ex and

y = e
√

x with x as a function of y. That is,

y = ex ⇒ x = ln y

y = e
√

x ⇒ √
x = ln y ⇒ x = ln2y

We obtain the following inequalities:

1 ≤ y ≤ e, ln2 y ≤ x ≤ ln y

x

y

1

2

e

0

y = ex

y = e x

x

y

1

2

0

x = ln y

x = ln2 y

ln2y  ≤ x ≤ ln y

Using Theorem 2, we compute the double integral of f (x, y) = (ln y)−1 over D as the following iterated integral:∫∫
D

(ln y)−1 dA =
∫ e

1

∫ ln y

ln2y
(ln y)−1 dx dy =

∫ e

1
(ln y)−1x

∣∣∣∣ln y

x=ln2y

dy =
∫ e

1
(ln y)−1

(
ln y − ln2y

)
dy

=
∫ e

1
(1 − ln y) dy =

∫ e

1
1 dy −

∫ e

1
ln y dy = y

∣∣∣∣e
1

− y(ln y − 1)

∣∣∣∣e
1

= (e − 1) − [e(0) − 1(−1)] = e − 2

Evaluate by changing the order of integration:
∫ 9

0

∫ √
y

0

x dx dy

(3x2 + y)1/2

In Exercises 33–36, sketch the domain of integration. Then change the order of integration and evaluate. Explain the
simplification achieved by changing the order.

33.
∫ 1

0

∫ 1

y

sin x

x
dx dy

solution The limits of integration correspond to the following inequalities:

0 ≤ y ≤ 1, y ≤ x ≤ 1

The horizontally simple region D is shown in the figure.

x

y

x = y

y ≤ x ≤ 1

1

1

We see that D can also be described as a vertically simple region, by the following inequalities:

0 ≤ x ≤ 1, 0 ≤ y ≤ x

x

y

y = x

0 ≤ y ≤ x

1

1
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We evaluate the corresponding iterated integral:

∫ 1

0

∫ x

0

sin x

x
dy dx =

∫ 1

0

sin x

x
y

∣∣∣∣x
y=0

dx =
∫ 1

0

sin x

x
(x − 0) dx =

∫ 1

0
sin x dx = − cos x

∣∣∣∣1
0

= 1 − cos 1 ≈ 0.46

Trying to integrate in reversed order we obtain a complicated integral in the inner integral. That is,

∫ 1

0

∫ 1

y

sin x

x
dx dy =

∫ 1

0

(∫ 1

y

sin x

x
dx

)
dy

Remark: f (x, y) = sin x
x is not continuous at the point (0, 0) in D. To make it continuous we need to define f (0, 0) = 1.

∫ 4

0

∫ 2

√
y

√
x3 + 1 dx dy

35.
∫ 1

0

∫ 1

y=x
xey3

dy dx

solution The limits of integration define a vertically simple region D by the following inequalities:

0 ≤ x ≤ 1, x ≤ y ≤ 1

This region can also be described as a horizontally simple region by the following inequalities (see figure):

x

y

y = x

x ≤ y ≤ 1

1

1

0 ≤ y ≤ 1, 0 ≤ x ≤ y

We thus can rewrite the given integral in reversed order of integration as follows:

∫ 1

0

∫ y

0
xey3

dx dy =
∫ 1

0

x2

2
ey3
∣∣∣∣y
x=0

dy =
∫ 1

0
ey3

(
y2

2
− 0

)
dy =

∫ 1

0

1

2
ey3

y2 dy

x

y

x = y

0 ≤ x ≤ y

1

1

We compute this integral using the substitution u = y3, du = 3y2 dy. This gives

∫ 1

0

∫ y

0
xey3

dx dy =
∫ 1

0

1

2
ey3

y2 dy =
∫ 1

0
eu · 1

6
du = eu

6

∣∣∣∣1
0

= e − 1

6
≈ 0.286

Trying to evaluate the double integral in the original order of integration, we find that the inner integral is impossible to
compute:

∫ 1

0

∫ 1

x
xey3

dy dx =
∫ 1

0

(∫ 1

x
xey3

dy

)
dx

∫ 1

0

∫ 1

y=x2/3
xey4

dy dx
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37. Sketch the domain D where 0 ≤ x ≤ 2, 0 ≤ y ≤ 2, and x or y is greater than 1. Then compute
∫∫

D
ex+y dA.

solution The domain D within the square 0 ≤ x, y ≤ 2 is shown in the figure.

y

x
1 2

D2

D1

D

1

2

0

We denote the unit square 0 ≤ x, y ≤ 1 and the square 0 ≤ x, y ≤ 2 by D1 and D2 respectively. Then D2 is the union of
D1 and D, and these two domains do not overlap except on the boundary of D1. Therefore, by properties of the double
integral, we have ∫∫

D2

ex+ydA =
∫∫

D1

ex+ydA +
∫∫

D
ex+ydA

Hence, ∫∫
D

ex+ydA =
∫∫

D2

ex+y dA −
∫∫

D1

ex+y dA =
∫ 2

0

∫ 2

0
ex+y dx dy −

∫ 1

0

∫ 1

0
ex+y dx dy

=
∫ 2

0
ex+y

∣∣∣∣2
x=0

dy −
∫ 1

0
ex+y

∣∣∣∣1
x=0

dy =
∫ 2

0
(e2+y − ey) dy −

∫ 1

0
(e1+y − ey) dy

= e2+y − ey

∣∣∣∣2
y=0

− (e1+y − ey)

∣∣∣∣1
y=0

= e4 − e2 − (e2 − e0) −
(
e2 − e − (e − e0)

)
= e4 − 3e2 + 2e ≈ 37.87

Calculate
∫∫

D
ex dA, where D is bounded by the lines y = x + 1, y = x, x = 0, and x = 1.

In Exercises 39–42, calculate the double integral of f (x, y) over the triangle indicated in Figure 25.

x
1 2 3 4 5

4
3
2
1

y

(A)

x
1 2 3 4 5

4
3
2
1

y

(B)

x
1 2 3 4 5

4
3
2
1

y

(C)

x
1 2 3 4 5

4
5 5

3
2
1

y

(D)

FIGURE 25

39. f (x, y) = ex2
, (A)

solution The equations of the lines OA and OB are y = 3
4x and y = 1

4x, respectively. Therefore, the triangle may
be expressed as a vertically simple region by the following inequalities:

0 ≤ x ≤ 4,
x

4
≤ y ≤ 3x

4

x

y

2

2 4

4
A

B

x ≤ y ≤    x1 
4

3 
4
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The double integral of f (x, y) = ex2
over the triangle is the following iterated integral:

∫ 4

0

∫ 3x/4

x/4
ex2

dy dx =
∫ 4

0
yex2

∣∣∣∣3x/4

y=x/4
dx

=
∫ 4

0
ex2
(

3x

4
− x

4

)
dx

= 1

2

∫ 4

0
xex2

dx

= 1

4
ex2
∣∣∣∣4
0

= 1

4
(e16 − 1)

f (x, y) = 1 − 2x, (B)41. f (x, y) = x

y2
, (C)

solution To find the inequalities defining the triangle as a horizontally simple region, we first find the inequalities of
the lines AB and BC:

x

y

2

2 4

4

A C

B

y − 1 ≤ x ≤ 7 − y

AB: y − 2 = 4 − 2

3 − 1
(x − 1) ⇒ y − 2 = x − 1 ⇒ x = y − 1

BC: y − 2 = 4 − 2

3 − 5
(x − 5) ⇒ y − 2 = 5 − x ⇒ x = 7 − y

We obtain the following inequalities for the triangle:

2 ≤ y ≤ 4, y − 1 ≤ x ≤ 7 − y

The double integral of f (x, y) = x
y2 over the triangle is the following iterated integral:

∫ 4

2

∫ 7−y

y−1

x

y2
dx dy =

∫ 4

2

x2

2y2

∣∣∣∣7−y

x=y−1
dy =

∫ 4

2

(7 − y)2 − (y − 1)2

2y2
dy =

∫ 4

2

(
24

y2
− 6

y

)
dy

= −24

y
− 6 ln y

∣∣∣∣4
2

= −24

4
− 6 ln 4 −

(
−24

2
− 6 ln 2

)
= 6 − 6 ln 2 = 1.84

f (x, y) = x + 1, (D)43. Calculate the double integral of f (x, y) = sin y

y
over the region D in Figure 26.

D

y y = x

2

1

x

x
2

y =

FIGURE 26

solution To describe D as a horizontally simple region, we rewrite the equations of the lines with x as a function of
y, that is, x = y and x = 2y. The inequalities for D are

1 ≤ y ≤ 2, y ≤ x ≤ 2y
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x

y

D

x = y

x = 2y

1

2

We now compute the double integral of f (x, y) = sin y
y over D by the following iterated integral:

∫∫
D

sin y

y
dA =

∫ 2

1

∫ 2y

y

sin y

y
dx dy =

∫ 2

1

sin y

y
x

∣∣∣∣2y

x=y

dy =
∫ 2

1

sin y

y
(2y − y) dy

=
∫ 2

1

sin y

y
· y dy =

∫ 2

1
sin y dy = − cos y

∣∣∣∣2
1

= cos 1 − cos 2 ≈ 0.956

Evaluate
∫∫

D
x dA for D in Figure 27.

45. Find the volume of the region bounded by z = 40 − 10y, z = 0, y = 0, y = 4 − x2.

solution The volume of the region is the double integral of f (x, y) = 40 − 10y over the domain D in the xy-plane

between the curves y = 0 and y = 4 − x2. This is a vertically simple region described by the inequalities:

−2 ≤ x ≤ 2, 0 ≤ y ≤ 4 − x2

We compute the double integral as the following iterated integral:

V =
∫∫

D
40 − 10y dA =

∫ 2

−2

∫ 4−x2

0
(40 − 10y) dy dx

=
∫ 2

−2

(
40y − 5y2

∣∣∣∣4−x2

0

)
dx

=
∫ 2

−2
40(4 − x2) − 5(4 − x2)2 dx =

∫ 2

−2
160 − 40x2 − 5(16 − 8x2 + x4) dx

=
∫ 2

−2
80 − 5x4 dx = 80x − x5

∣∣∣∣2−2

= (160 − 32) − (−160 + 32) = 256

Find the volume of the region enclosed by z = 1 − y2 and z = y2 − 1 for 0 ≤ x ≤ 2.
47. Calculate the average value of f (x, y) = ex+y on the square [0, 1] × [0, 1].
solution

y

x
1

1

0

D

Since the area of the square D is 1, the average value of f (x, y) = ex+y on D is the following value:

f = 1

Area(D)

∫∫
D

f (x, y) dA = 1

1

∫ 1

0

∫ 1

0
ex+y dx dy =

∫ 1

0
ex+y

∣∣∣∣1
x=0

dy =
∫ 1

0

(
e1+y − e0+y

)
dy

=
∫ 1

0

(
e1+y − ey

)
dy = e1+y − ey

∣∣∣∣1
0

=
(
e2 − e

)
−
(
e1 − e0

)
= e2 − 2e + 1 ≈ 2.95
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Calculate the average height above the x-axis of a point in the region 0 ≤ x ≤ 1, 0 ≤ y ≤ x2.
49. Find the average height of the “ceiling” in Figure 28 defined by z = y2 sin x for 0 ≤ x ≤ π , 0 ≤ y ≤ 1.

z

y

x

1

FIGURE 28

solution

y

x

1

0

D

The average height is

H = 1

Area(D)

∫∫
D

y2 sin x dA = 1

π · 1

∫ 1

0

∫ π

0
y2 sin x dx dy = 1

π

∫ 1

0
y2(− cos x)

∣∣∣∣π
x=0

dy

= 1

π

∫ 1

0
y2(− cos π + cos 0) dy = 1

π

∫ 1

0
2y2 dy = 1

π
· 2

3
y3
∣∣∣∣1
0

= 2

3π

Calculate the average value of the x-coordinate of a point on the semicircle x2 + y2 ≤ R2, x ≥ 0. What is the
average value of the y-coordinate?

51. What is the average value of the linear function

f (x, y) = mx + ny + p

on the ellipse
(x

a

)2 +
(y

b

)2 ≤ 1? Argue by symmetry rather than calculation.

solution The average value of the linear function f (x, y) = mx + ny + p over the ellipse D is

f = 1

Area(D)

∫∫
D

f (x, y) dA = 1

Area(D)

∫∫
D

(mx + ny + p) dA

= m · 1

Area(D)

∫∫
D

x dA︸ ︷︷ ︸
I1

+ n · 1

Area(D)

∫∫
D

y dA︸ ︷︷ ︸
I2

+ 1

Area(D)

∫∫
D

p dA (1)

I1 and I2 are the average values of the x and y coordinates of a point in the region enclosed by the ellipse. This region is
symmetric with respect to the y-axis, hence I1 = 0. It is also symmetric with respect to the x-axis, hence I2 = 0. We use
the formula ∫∫

D
p dA = p · Area(D)

to conclude by (1) that

f = m · 0 + n · 0 + 1

Area(D)
· p · Area(D) = p

Find the average square distance from the origin to a point in the domain D in Figure 29.53. Let D be the rectangle 0 ≤ x ≤ 2, − 1
8 ≤ y ≤ 1

8 , and let f (x, y) =
√

x3 + 1. Prove that∫∫
D

f (x, y) dA ≤ 3

2
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solution Recall that we can write ∫∫
D

f (x, y) dA ≤ M · Area(D)

where M is a constant such that f (x, y) ≤ M . We can see that Area(D) = 2(1/4) = 1/2. So it remains to show that
there is some constant M so that f (x, y) ≤ M . Consider the following:

x ≤ 2 ⇒ x3 + 1 ≤ 0 ⇒
√

x3 + 1 ≤ 3

Thus we can let M = 3. So then we have∫∫
D

f (x, y) dA ≤ M · Area(D) ⇒
∫∫

D

√
x3 + 1 dA ≤ 3 · 1

2
= 3

2

(a) Use the inequality 0 ≤ sin x ≤ x for x ≥ 0 to show that∫ 1

0

∫ 1

0
sin(xy) dx dy ≤ 1

4

(b) Use a computer algebra system to evaluate the double integral to three decimal places.

55. Prove the inequality
∫∫

D
dA

4 + x2 + y2
≤ π , where D is the disk x2 + y2 ≤ 4.

solution The function f (x, y) = 1
4+x2+y2 satisfies

f (x, y) = 1

4 + x2 + y2
≤ 1

4

Also, the area of the disk is

Area(D) = π · 22 = 4π

Therefore, by Theorem 3, we have ∫∫
D

dA

4 + x2 + y2
≤ 1

4
· 4π = π.

Let D be the domain bounded by y = x2 + 1 and y = 2. Prove the inequality

4

3
≤
∫∫

D
(x2 + y2)dA ≤ 20

3

57. Let f be the average of f (x, y) = xy2 on D = [0, 1] × [0, 4]. Find a point P ∈ D such that f (P ) = f (the existence
of such a point is guaranteed by the Mean Value Theorem for Double Integrals).

solution We first compute the average f of f (x, y) = xy2 on D.

x

D

y

4

0 1

f is

f = 1

Area(D)

∫∫
D

xy2 dA = 1

4 · 1

∫ 1

0

∫ 4

0
xy2 dy dx = 1

4

∫ 1

0

xy3

3

∣∣∣∣4
y=0

dx

= 1

4

∫ 1

0

(
x · 43

3
− x · 03

3

)
dx =

∫ 1

0

16x

3
dx = 8x2

3

∣∣∣∣1
0

= 8

3

We now must find a point P = (a, b) in D such that

f (P ) = ab2 = 8

3

We choose b = 2, obtaining

a · 22 = 8

3
⇒ a = 2

3

The point P =
(

2
3 , 2
)

in the rectangle D satisfies

f (P ) = f = 8

3

Verify the Mean Value Theorem for Double Integrals for f (x, y) = ex−y on the triangle bounded by y = 0,
x = 1, and y = x.
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In Exercises 59 and 60, use (11) to estimate the double integral.

59. The following table lists the areas of the subdomains Dj of the domain D in Figure 30 and the values of a function

f (x, y) at sample points Pj ∈ Dj . Estimate
∫∫

D
f (x, y) dA.

j 1 2 3 4 5 6

Area(Dj ) 1.2 1.1 1.4 0.6 1.2 0.8
f (Pj ) 9 9.1 9.3 9.1 8.9 8.8

Domain D

D1

D2

D3

D4

D5

D6

FIGURE 30

solution By Eq. (11) we have

∫∫
D

f (x, y) dA ≈
6∑

j=1

f
(
Pj

)
Area

(Dj

)

Substituting the data given in the table, we obtain∫∫
D

f (x, y) dA ≈ 9 · 1.2 + 9.1 · 1.1 + 9.3 · 1.4 + 9.1 · 0.6 + 8.9 · 1.2 + 8.8 · 0.8 = 57.01

Thus, ∫∫
D

f (x, y) dA ≈ 57.01

The domain D between the circles of radii 5 and 5.2 in the first quadrant in Figure 31 is divided into six subdomains
of angular width �θ = π

12 , and the values of a function f (x, y) at sample points are given. Compute the area of the

subdomains and estimate
∫∫

D
f (x, y) dA.

61. According to Eq. (3), the area of a domain D is equal to
∫∫

D
1 dA. Prove that if D is the region between two curves

y = g1(x) and y = g2(x) with g2(x) ≤ g1(x) for a ≤ x ≤ b, then∫∫
D

1 dA =
∫ b

a
(g1(x) − g2(x)) dx

solution The region D is defined by the inequalities

a ≤ x ≤ b, g1(x) ≤ y ≤ g2(x)

x

y

y = β(x)

y = α(x)

a b

We compute the double integral of f (x, y) = 1 on D, using Theorem 2, by evaluating the following iterated integral:

∫
D

1 dA =
∫ b

a

∫ g2(x)

g1(x)
1 dy dx =

∫ b

a

(∫ g2(x)

g1(x)
1 dy

)
dx =

∫ b

a
y

∣∣∣∣g2(x)

y=g1(x)

dx =
∫ b

a
(g2(x) − g1(x)) dx

Further Insights and Challenges

Let D be a closed connected domain and let P, Q ∈ D. The Intermediate Value Theorem (IVT) states that if f is
continuous on D, then f (x, y) takes on every value between f (P ) and f (Q) at some point in D.

(a) Show, by constructing a counterexample, that the IVT is false if D is not connected.

(b) Prove the IVT as follows: Let c(t) be a path such that c(0) = P and c(1) = Q (such a path exists because D is
connected). Apply the IVT in one variable to the composite function f (c(t)).

63. Use the fact that a continuous function on a closed domain D attains both a minimum value m and a maximum value
M , together with Theorem 3, to prove that the average value f lies between m and M . Then use the IVT in Exercise 62
to prove the Mean Value Theorem for Double Integrals.
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solution Suppose that f (x, y) is continuous and D is closed, bounded, and connected. By Theorem 3 in Chapter 15.7
(“Existence of Global Extrema”), f (x, y) takes on a minimum value (call it m) at some point (xm, ym) and a maximum
value (call it M) at some point (xM, yM) in the domain D. Now, by Theorem 3,

m Area(D) ≤
∫∫

D
f (x, y) dA ≤ M Area(D)

which can be restated as

m ≤ 1

Area(D)

∫∫
D

f (x, y) dA ≤ M

By the IVT in two variables (stated and proved in the previous problem), f (x, y) takes on every value between m

and M at some point in D. In particular, f must take on the value 1
Area(D)

∫∫
D f (x, y) dA at some point P . So,

f (P ) = 1
Area(D)

∫∫
D f (x, y) dA, which is rewritten as

f (P ) Area(D) =
∫∫

D
f (x, y) dA

Let f (y) be a function of y alone and set G(t) =
∫ t

0

∫ x

0
f (y) dy dx.

(a) Use the Fundamental Theorem of Calculus to prove that G′′(t) = f (t).

(b) Show, by changing the order in the double integral, that G(t) =
∫ t

0
(t − y)f (y) dy. This shows that the “second

antiderivative” of f (y) can be expressed as a single integral.

15.3 Triple Integrals (LT Section 16.3)

Preliminary Questions

1. Which of (a)–(c) is not equal to
∫ 1

0

∫ 4

3

∫ 7

6
f (x, y, z) dz dy dx?

(a)
∫ 7

6

∫ 1

0

∫ 4

3
f (x, y, z) dy dx dz

(b)
∫ 4

3

∫ 1

0

∫ 7

6
f (x, y, z) dz dx dy

(c)
∫ 1

0

∫ 4

3

∫ 7

6
f (x, y, z) dx dz dy

solution The given integral, I , is a triple integral of f over the box B = [0, 1] × [3, 4] × [6, 7]. In (a) the limits of
integration are 0 ≤ x ≤ 1, 3 ≤ y ≤ 4, 6 ≤ z ≤ 7, hence this integral is equal to I . In (b) the limits of integration are
0 ≤ x ≤ 1, 3 ≤ y ≤ 4, 6 ≤ z ≤ 7, hence it is also equal to I . In (c) the limits of integration are 6 ≤ x ≤ 7, 0 ≤ y ≤ 1,
3 ≤ z ≤ 4. This is the triple integral of f over the box [6, 7] × [0, 1] × [3, 4], which is different from B. Therefore, the
triple integral is usually unequal to I .

2. Which of the following is not a meaningful triple integral?

(a)
∫ 1

0

∫ x

0

∫ 2x+y

x+y
ex+y+z dz dy dx

(b)
∫ 1

0

∫ z

0

∫ 2x+y

x+y
ex+y+z dz dy dx

solution
(a) The limits of integration determine the following inequalities:

0 ≤ x ≤ 1, 0 ≤ y ≤ x, x + y ≤ z ≤ 2x + y

The integration is over the simple region W , which lies between the planes z = x + y and z = 2x + y over the domain
D1 = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ x} in the xy-plane.

x

y

y = x

1

10

D1

Thus, the integral represents a meaningful triple integral.
(b) Note that the inner integral is with respect to z, but then the middle integral has limits from 0 to z! This makes no
sense.
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3. Describe the projection of the region of integration W onto the xy-plane:

(a)
∫ 1

0

∫ x

0

∫ x2+y2

0
f (x, y, z) dz dy dx

(b)
∫ 1

0

∫ √
1−x2

0

∫ 4

2
f (x, y, z) dz dy dx

solution
(a) The region of integration is defined by the limits of integration, yielding the following inequalities:

0 ≤ x ≤ 1, 0 ≤ y ≤ x, 0 ≤ z ≤ x2 + y2

W is the region between the paraboloid z = x2 + y2 and the xy-plane which is above the triangle D =
{(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ x} in the xy-plane. This triangle is the projection of W onto the xy-plane.

x

y

y = x

1

10

D

(b) The inequalities determined by the limits of integration are

0 ≤ x ≤ 1, 0 ≤ y ≤
√

1 − x2, 2 ≤ z ≤ 4

This is the region between the planes z = 2 and z = 4, which is above the region D ={
(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤

√
1 − x2

}
in the xy-plane. The projection D of W onto the xy-plane is the part of the unit

disk in the first quadrant.

x

y

1

10

D

Exercises
In Exercises 1–8, evaluate

∫∫∫
B

f (x, y, z) dV for the specified function f and box B.

1. f (x, y, z) = z4; 2 ≤ x ≤ 8, 0 ≤ y ≤ 5, 0 ≤ z ≤ 1

solution We write the triple integral as an iterated integral and compute it to obtain

∫∫∫
B

z4 dV =
∫ 8

2

∫ 5

0

∫ 1

0
z4 dz dy dx =

∫ 8

2

∫ 5

0

(∫ 1

0
z4 dz

)
dy dx =

∫ 8

2

∫ 5

0

1

5
z5
∣∣∣∣1
z=0

dy dx

=
∫ 8

2

∫ 5

0

1

5
dy dx = 1

5

∫ 8

2

∫ 5

0
dy dx = 1

5
· 6 · 5 = 6

f (x, y, z) = xz2; [−2, 3] × [1, 3] × [1, 4]3. f (x, y, z) = xey−2z; 0 ≤ x ≤ 2, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1

solution We write the triple integral as an iterated integral. Since f (x, y, z) = xey · e−2z, we may evaluate the
iterated integral as the product of three single integrals. We get∫∫∫

B
xey−2z dV =

∫ 2

0

∫ 1

0

∫ 1

0
xey−2z dz dy dx =

(∫ 2

0
x dx

)(∫ 1

0
ey dy

)(∫ 1

0
e−2z dz

)

=
(

1

2
x2
∣∣∣∣2
0

)(
ey

∣∣∣∣1
0

)(
−1

2
e−2z

∣∣∣∣1
0

)
= 2(e − 1) · −1

2
(e−2 − 1) = (e − 1)(1 − e−2)
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f (x, y, z) = x

(y + z)2
; [0, 2] × [2, 4] × [−1, 1]

5. f (x, y, z) = (x − y)(y − z); [0, 1] × [0, 3] × [0, 3]

solution We write the triple integral as an iterated integral and evaluate the inner, middle, and outer integrals succes-
sively. This gives

∫∫∫
B

(x − y)(y − z) dV =
∫ 1

0

∫ 3

0

∫ 3

0
(x − y)(y − z) dz dy dx =

∫ 1

0

∫ 3

0

(∫ 3

0
(x − y)(y − z) dz

)
dy dx

=
∫ 1

0

∫ 3

0
(x − y)

(
yz − 1

2
z2
) ∣∣∣∣3

z=0
dy dx =

∫ 1

0

∫ 3

0
(x − y)

(
3y − 9

2

)
dy dx

=
∫ 1

0

∫ 3

0

((
3x + 9

2

)
y − 9

2
x − 3y2

)
dy dx =

∫ 1

0

(
3

2
x + 9

4

)
y2 − 9

2
xy − y3

∣∣∣∣3
y=0

dx

=
∫ 1

0

((
3

2
x + 9

4

)
· 9 − 9

2
x · 3 − 27

)
dx =

∫ 1

0
−27

4
dx = −27

4
= −6.75

f (x, y, z) = z

x
; 1 ≤ x ≤ 3, 0 ≤ y ≤ 2, 0 ≤ z ≤ 4

7. f (x, y, z) = (x + z)3; [0, a] × [0, b] × [0, c]

solution We write the triple integral as an iterated integral and evaluate it to obtain

∫∫∫
B

f (x, y, z) dV =
∫ a

0

∫ b

0

∫ c

0
(x + z)3 dz dy dx =

∫ a

0

∫ b

0

(x + z)4

4

∣∣∣∣c
z=0

dy dx

=
∫ a

0

∫ b

0

(
(x + c)4

4
− x4

4

)
dy dx =

∫ a

0

(x + c)4 − x4

4
y

∣∣∣∣b
y=0

dx

=
∫ a

0

b

4

[
(x + c)4 − x4

]
dx = b

4

[
(x + c)5

5
− x5

5

] ∣∣∣∣a
x=0

= b

4

(a + c)5 − a5 − c5

5
= b

20

[
(a + c)5 − a5 − c5

]

f (x, y, z) = (x + y − z)2; [0, a] × [0, b] × [0, c]In Exercises 9–14, evaluate
∫∫∫

W
f (x, y, z) dV for the function f and region W specified.

9. f (x, y, z) = x + y; W : y ≤ z ≤ x, 0 ≤ y ≤ x, 0 ≤ x ≤ 1

solution W is the region between the planes z = y and z = x lying over the triangle D in the xy-plane defined by
the inequalities 0 ≤ y ≤ x, 0 ≤ x ≤ 1.

x

y

y = x

1

10

D

We compute the integral, using Theorem 2, by evaluating the following iterated integral:

∫∫∫
W

(x + y) dV =
∫∫

D

(∫ x

y
(x + y) dz

)
dA =

∫∫
D

(x + y)z

∣∣∣∣x
z=y

dA =
∫∫

D
(x + y)(x − y) dA

=
∫∫

D

(
x2 − y2

)
dA =

∫ 1

0

∫ x

0

(
x2 − y2

)
dy dx =

∫ 1

0

(∫ x

0

(
x2 − y2

)
dy

)
dx

=
∫ 1

0
x2y − y3

3

∣∣∣∣x
y=0

dx =
∫ 1

0

2x3

3
dx = 2

12
x4
∣∣∣∣1
0

= 1

6
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f (x, y, z) = ex+y+z; W : 0 ≤ z ≤ 1, 0 ≤ y ≤ x, 0 ≤ x ≤ 1
11. f (x, y, z) = xyz; W : 0 ≤ z ≤ 1, 0 ≤ y ≤

√
1 − x2, 0 ≤ x ≤ 1

solution W is the region between the planes z = 0 and z = 1, lying over the part D of the disk in the first quadrant.

x

y

1

10

D

y =   1 −x2

Using Theorem 2, we compute the triple integral as the following iterated integral:

∫∫∫
W

xyz dV =
∫∫

D

(∫ 1

0
xyz dz

)
dA =

∫∫
D

xyz2

2

∣∣∣∣1
z=0

dA =
∫∫

D
xy

2
dA

=
∫ 1

0

⎛
⎝∫

√
1−x2

0

xy

2
dy

⎞
⎠ dx =

∫ 1

0

xy2

4

∣∣∣∣
√

1−x2

y=0
dx =

∫ 1

0

x(1 − x2)

4
dx

=
∫ 1

0

x − x3

4
dx = x2

8
− x4

16

∣∣∣∣1
0

= 1

8
− 1

16
= 1

16

f (x, y, z) = x; W : x2 + y2 ≤ z ≤ 4
13. f (x, y, z) = ez; W : x + y + z ≤ 1, x ≥ 0, y ≥ 0, z ≥ 0

solution Notice that W is the tetrahedron under the plane x + y + z = 1 above the first quadrant.

z

y

x

1

1

1

First, we must determine the projection D of W onto the xy-plane. The intersection of the plane x + y + z = 1 with the
xy-plane is obtained by solving

x + y + z = 1

z = 0
⇒ x + y = 1

Therefore, the projection D of W onto the xy-plane is the triangle enclosed by the line x + y = 1 and the positive axes.

y

x
1

1

0

D

x = 1 − y

The region W is the region between the planes z = 1 − x − y and z = 0, lying above the triangle D in the xy-plane. The
triple integral can be written as the following iterated integral:

∫∫∫
W

ez dV =
∫∫

D

(∫ 1−x−y

0
ez dz

)
dA =

∫∫
D

ez

∣∣∣∣1−x−y

z=0
dA

=
∫∫

D

(
e1−x−y − 1

)
dA
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=
∫ 1

0

(∫ 1−y

0

(
e1−x−y − 1

)
dx

)
dy =

∫ 1

0
−e1−x−y − x

∣∣∣∣1−y

x=0
dy

=
∫ 1

0
−e1−1+y−y − (1 − y) + e1−y dy

=
∫ 1

0
e1−y + y − 2 dy = −e1−y + 1

2
y2 − 2y

∣∣∣∣1
y=0

= −1 + 1

2
− 2 −

(
−e1

)
= e − 5

2

f (x, y, z) = z; W : x2 ≤ y ≤ 2, 0 ≤ x ≤ 1, x − y ≤ z ≤ x + y
15. Calculate the integral of f (x, y, z) = z over the region W in Figure 10 below the hemisphere of radius 3 and lying
over the triangle D in the xy-plane bounded by x = 1, y = 0, and x = y.

x

y

z

1

W

1

D

3

3

x2 + y2 + z2 = 9

FIGURE 10

solution

x

y

z

1

1

3

3

The upper surface is the hemisphere z =
√

9 − x2 − y2 and the lower surface is the xy-plane z = 0. The projection of V
onto the xy-plane is the triangle D shown in the figure.

y
y = x

x
1

1

0

D

We compute the triple integral as the following iterated integral:

∫∫∫
V

z dV =
∫∫

D

(∫ √
9−x2−y2

0
z dz

)
dA =

∫∫
D

z2

2

∣∣∣∣
√

9−x2−y2

0
dA =

∫∫
D

9 − x2 − y2

2
dA

=
∫ 1

0

(∫ x

0

9 − x2 − y2

2
dy

)
dx =

∫ 1

0

9y − x2y − y3

3
2

∣∣∣∣x
y=0

dx =
∫ 1

0

(
9x

2
− 2x3

3

)
dx

= 9x2

4
− x4

6

∣∣∣∣1
0

= 2
1

12
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Calculate the integral of f (x, y, z) = e2z over the tetrahedron W in Figure 11.
17. Integrate f (x, y, z) = x over the region in the first octant (x ≥ 0, y ≥ 0, z ≥ 0) above z = y2 and below
z = 8 − 2x2 − y2.

solution We first find the projection of the region W onto the xy-plane. We find the curve of intersection between the
upper and lower surfaces, by solving the following equation for x, y ≥ 0:

8 − 2x2 − y2 = y2 ⇒ y2 = 4 − x2 ⇒ y =
√

4 − x2, x ≥ 0

The projection D of W onto the xy-plane is the region bounded by the circle x2 + y2 = 4 and the positive axes.

x

D

y

20

2

y =   4 − x2 

We now compute the triple integral over W by evaluating the following iterated integral:

∫∫∫
W

x dV =
∫∫

D

(∫ 8−2x2−y2

y2
x dz

)
dA =

∫∫
D

xz

∣∣∣∣8−2x2−y2

z=y2
dA

=
∫∫

D
x(8 − 2x2 − y2 − y2) dA =

∫∫
D

8x − 2x3 − 2xy2 dA

=
∫ 2

0

∫ √
4−x2

0
8x − 2x3 − 2xy2 dy dx =

∫ 2

0
8xy − 2x3y − x2y2

∣∣∣∣
√

4−x2

y=0
dx

=
∫ 2

0
8x
√

4 − x2 dx −
∫ 2

0
2x3
√

4 − x2 dx −
∫ 2

0
x2(4 − x2) dx

= 8
∫ 2

0
x
√

4 − x2 dx − 2
∫ 2

0
x3
√

4 − x2 dx −
∫ 2

0
4x2 − x4 dx

The first and third integrals are easily computing using u-substitution and term by term integration, respectively. The
second integral requires a clever u-substitution, let u = 4 − x2, then du = −2x dx and x2 = 4 − u. Using this
information we see

−2
∫ 2

0
x3
√

4 − x2 dx = −2
∫ 2

0
x · x2

√
4 − x2 dx

=
∫ 0

u=4
(4 − u)

√
u du

=
∫ 0

4
4
√

u − u3/2 du

= 8

3
u3/2 − 2

5
u5/2

∣∣∣∣0
u=4

= −
(

64

3
− 64

5

)
= −128

15

Hence,

∫∫∫
W

x dV = 8
∫ 2

0
x
√

4 − x2 dx − 2
∫ 2

0
x3
√

4 − x2 dx −
∫ 2

0
4x2 − x4 dx

= 8
∫ 2

0
x
√

4 − x2 dx − 128

15
−
∫ 2

0
4x2 − x4 dx

= 8 · −1

3
(4 − x2)3/2

∣∣∣∣2
0

− 128

15
−
(

4

3
x3 − 1

5
x5
∣∣∣∣2
0

)

= −8

3
(0 − 8) − 128

15
−
(

32

3
− 32

5

)
= 128

15
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Compute the integral of f (x, y, z) = y2 over the region within the cylinder x2 + y2 = 4 where 0 ≤ z ≤ y.
19. Find the triple integral of the function z over the ramp in Figure 12. Here, z is the height above the ground.

3

4

1

FIGURE 12

solution We place the coordinate axes as shown in the figure:

3

4

y

1

x

z

A B

O

The upper surface is the plane passing through the points O = (0, 0, 0), A = (3, 0, 0), and B = (3, 4, 1). We find a
normal to this plane and then determine the equation of the plane. We get

−→
OA × −→

AB = 〈3, 0, 0〉 × 〈0, 4, 1〉 =
∣∣∣∣∣∣

i j k
3 0 0
0 4 1

∣∣∣∣∣∣ = −3j + 12k = 3 (−j + 4k)

The plane is orthogonal to the vector 〈0, −1, 4〉 and passes through the origin, hence the equation of the plane is

0 · x − y + 4z = 0 ⇒ z = y

4

The projection of the region of integration W onto the xy-plane is the rectangle D defined by

0 ≤ x ≤ 3, 0 ≤ y ≤ 4.

We now compute the triple integral of f over W , as the following iterated integral:

∫∫∫
W

z dV =
∫∫

D

(∫ y/4

0
z dz

)
dA =

∫∫
D

z2

2

∣∣∣∣y/4

z=0
dA =

∫∫
D

y2

32
dA =

∫ 4

0

(∫ 3

0

y2

32
dx

)
dy

=
∫ 4

0

y2x

32

∣∣∣∣3
x=0

dy =
∫ 4

0

3y2

32
dy = y3

32

∣∣∣∣4
0

= 43

32
= 2

Find the volume of the solid in R3 bounded by y = x2, x = y2, z = x + y + 5, and z = 0.
21. Find the volume of the solid in the octant x ≥ 0, y ≥ 0, z ≥ 0 bounded by x + y + z = 1 and x + y + 2z = 1.

solution The solid W is shown in the figure:

x

y

z

The upper and lower surfaces are the planes x + y + z = 1 (or z = 1 − x − y) and x + y + 2z = 1 (or z = 1−x−y
2 ),

respectively. The projection of W onto the xy-plane is the triangle enclosed by the line AB : y = 1 − x and the positive
x and y-axes.
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y

x
1

1

0

D

y = 1 − x

Using the volume of a solid as a triple integral, we have

Volume(W) =
∫∫∫

W
1 dV =

∫∫
D

(∫ 1−x−y

(1−x−y)/2
1 dz

)
dA =

∫∫
D

z

∣∣∣∣1−x−y

z=(1−x−y)/2
dA

=
∫∫

D

(
(1 − x − y) − 1 − x − y

2

)
dA =

∫∫
D

1 − x − y

2
dA

=
∫ 1

0

(∫ 1−x

0

1 − x − y

2
dy

)
dx =

∫ 1

0

y − xy − y2

2
2

∣∣∣∣1−x

y=0
dx

=
∫ 1

0

1 − x − x(1 − x) − (1−x)2

2
2

dx = 1

2

∫ 1

0

(
x2

2
− x + 1

2

)
dx

= 1

2

(
x3

6
− x2

2
+ 1

2
x

) ∣∣∣∣1
0

= 1

2

(
1

6
− 1

2
+ 1

2

)
= 1

12

Calculate
∫∫∫

W
y dV , where W is the region above z = x2 + y2 and below z = 5, and bounded by y = 0 and

y = 1.

23. Evaluate
∫∫∫

W
xz dV , where W is the domain bounded by the elliptic cylinder

x2

4
+ y2

9
= 1 and the sphere

x2 + y2 + z2 = 16 in the first octant x ≥ 0, y ≥ 0, z ≥ 0 (Figure 13).

z

x2 + y2 + z2 = 16 

y

x

(   )x
2 (   )y

3
2
 +

2
 = 1

FIGURE 13

solution

z

y

x

The upper surface is the sphere x2 + y2 + z2 = 16, or z =
√

16 − x2 − y2, and the lower surface is the xy-plane, z = 0.
The projection of W onto the xy-plane is the region in the first quadrant bounded by the ellipse (x/2)2 + (y/3)2 = 1, or

y = 3
2

√
4 − x2.
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y

x
21 3

3

2

1

0

D
y = 4 − x23

2

Therefore, the triple integral over W is equal to the following iterated integral:

∫∫∫
W

xz dV =
∫∫

D

(∫ √
16−x2−y2

0
xz dz

)
dA =

∫∫
D

1

2
xz2
∣∣∣∣
√

16−x2−y2

z=0
dA

= 1

2

∫∫
D

x(16 − x2 − y2) dA = 1

2

∫ 2

0

∫ 3
2

√
4−x2

0
16x − x3 − xy2 dy dx

= 1

2

∫ 2

0
16xy − x3y − 1

3
xy3
∣∣∣∣

3
2

√
4−x2

y=0

= 1

2

∫ 2

0
24x
√

4 − x2 − 3

2
x3
√

4 − x2 − 9

8
x(4 − x2)3/2 dx

= 12
∫ 2

0
x
√

4 − x2 dx − 3

4

∫ 2

0
x3
√

4 − x2 dx − 9

16

∫ 2

0
x(4 − x2)3/2 dx

The first and third integrals are simple u-substitution problems. For the second integral, let us use u = 4 − x2 and thus
du = −2x dx and x2 = 4 − u. Thus, we can write

−3

4

∫ 2

0
x3
√

4 − x2 dx = −3

4

∫ 2

0
x · x2

√
4 − x2 dx

= 3

8

∫ 0

u=4
(4 − u)

√
u du

= 3

8

∫ 0

4
4u1/2 − u3/2 du

= 3

8

(
8

3
u3/2 − 2

5
u5/2

∣∣∣∣0
u=4

)

= −3

8

(
64

3
− 64

5

)
= −16

5

Therefore we have:∫∫∫
W

xz dV = 12
∫ 2

0
x
√

4 − x2 dx − 3

4

∫ 2

0
x3
√

4 − x2 dx − 9

16

∫ 2

0
x(4 − x2)3/2

= 12
∫ 2

0
x
√

4 − x2 dx − 16

5
− 9

16

∫ 2

0
x(4 − x2)3/2 dx

= −6 · 2

3

(
(4 − x2)3/2

∣∣∣∣2
0

)
− 16

5
+ 9

32
· 2

5

(
(4 − x2)5/2

∣∣∣∣2
0

)

= −4 (0 − 8) − 16

5
+ 9

80
(0 − 32) = 126

5

Describe the domain of integration and evaluate:

∫ 3

0

∫ √
9−x2

0

∫ √
9−x2−y2

0
xy dz dy dx

25. Describe the domain of integration of the following integral:

∫ 2

−2

∫ √
4−z2

−
√

4−z2

∫ √
5−x2−z2

1
f (x, y, z) dy dx dz

solution The domain of integration of W is defined by the following inequalities:

−2 ≤ z ≤ 2, −
√

4 − z2 ≤ x ≤
√

4 − z2, 1 ≤ y ≤
√

5 − x2 − z2
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This region is bounded by the plane y = 1 and the sphere y2 = 5 − x2 − z2 or x2 + y2 + z2 = 5, lying over the disk
x2 + z2 ≤ 4 in the xz-plane. This is the central cylinder oriented along the y-axis of radius 2 inside a sphere of radius√

5.

Let W be the region below the paraboloid

x2 + y2 = z − 2

that lies above the part of the plane x + y + z = 1 in the first octant (x ≥ 0, y ≥ 0, z ≥ 0). Express∫∫∫
W

f (x, y, z) dV

as an iterated integral (for an arbitrary function f ).

27. In Example 5, we expressed a triple integral as an iterated integral in the three orders

dz dy dx, dx dz dy, and dy dz dx

Write this integral in the three other orders:

dz dx dy, dx dy dz, and dy dx dz

solution In Example 5 we considered the triple integral
∫∫∫

W
xyz2 dV , where W is the region bounded by

z = 4 − y2, z = 0, y = 2x, x = 0.

We now write the triple integral as an iterated integral in the orders dz dx dy, dx dy dz, and dy dx dz.

• dz dx dy: The upper surface z = 4 − y2 projects onto the xy-plane on the triangle defined by the lines y = 2,
y = 2x, and x = 0.

x

D
1

2

y

1

x = y
2

We express the line y = 2x as x = y
2 and write the triple integral as

∫∫∫
W

xyz2 dV =
∫∫

D

(∫ 4−y2

0
xyz2 dz

)
dA =

∫ 2

0

∫ y/2

0

∫ 4−y2

0
xyz2 dz dx dy

• dx dy dz: The projection of W onto the yz-plane is the domain T (see Example 5) defined by the inequalities

T : 0 ≤ y ≤ 2, 0 ≤ z ≤ 4 − y2

y

z

z = 4 − y2

2

This region can also be expressed as

0 ≤ z ≤ 4, 0 ≤ y ≤ √
4 − z

z

y

4
4 − zy =

4 − z0 ≤ y ≤

As explained in Example 5, the region W consists of all points lying between T and the “left-face” y = 2x, or
x = y

2 . Therefore, we obtain the following inequalities for W:

0 ≤ z ≤ 4, 0 ≤ y ≤ √
4 − z, 0 ≤ x ≤ 1

2
y
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This yields the following iterated integral:

∫∫∫
W

xyz2 dV =
∫∫

T

(∫ y/2

0
xyz2 dx

)
dA =

∫ 4

0

∫ √
4−z

0

∫ y/2

0
xyz2 dx dy dz

• dy dx dz: As explained in Example 5, the projection of W onto the xz-plane is determined by the inequalities

S : 0 ≤ x ≤ 1, 0 ≤ z ≤ 4 − 4x2

x

S

z

1

z = 4 − 4x2

This region can also be described if we write x as a function of z:

z = 4 − 4x2 ⇒ 4x2 = 4 − z ⇒ x =
√

1 − z

4

x

z

4

0 ≤ x ≤ z
4

1 −

This gives the following inequalities of S:

S : 0 ≤ z ≤ 4, 0 ≤ x ≤
√

1 − z

4

The upper surface z = 4 − y2 can be described by y = √
4 − z, hence the limits of y are 2x ≤ y ≤ √

4 − z. We
obtain the following iterated integral:

∫∫∫
W

xyz2 dV =
∫∫

S

(∫ √
4−z

2x
xyz2 dy

)
dA =

∫ 4

0

∫ √1− z
4

0

∫ √
4−z

2x
xyz2 dy dx dz

Let W be the region bounded by

y + z = 2, 2x = y, x = 0, and z = 0

(Figure 14). Express and evaluate the triple integral of f (x, y, z) = z by projecting W onto the:

(a) xy-plane (b) yz-plane (c) xz-plane

29. Let

W = {(x, y, z) :
√

x2 + y2 ≤ z ≤ 1
}

(see Figure 15). Express
∫∫∫

W
f (x, y, z) dV as an iterated integral in the order dz dy dx (for an arbitrary function f ).

y

x

z

z = x2 + y2

1

FIGURE 15
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solution To express the triple integral as an iterated integral in order dz dy dx, we must find the projection of W onto

the xy-plane. The upper circle is
√

x2 + y2 = 1 or x2 + y2 = 1, hence the projection of W onto the xy plane is the disk

D : x2 + y2 ≤ 1

x

y

x2 + y2 = 1

− 1 − x2 ≤ y ≤ 1 − x2

−1 1

The upper surface is the plane z = 1 and the lower surface is z =
√

x2 + y2, therefore the triple integral over W is equal
to the following iterated integral:

∫∫∫
W

f (x, y, z) dV =
∫∫

D

(∫ 1
√

x2+y2
f (x, y, z) dz

)
dA =

∫ 1

−1

∫ √
1−x2

−
√

1−x2

∫ 1
√

x2+y2
f (x, y, z) dz dy dx

Repeat Exercise 29 for the order dx dy dz.31. Let W be the region bounded by z = 1 − y2, y = x2, and the planes z = 0, y = 1. Calculate the volume of W as a
triple integral in the order dz dy dx.

solution dz dy dx:

The projection of W onto the xy-plane is the region D bounded by the curve y = x2 and the line y = 1. The region
W consists of all points lying between D and the cylinder z = 1 − y2.

1

1

−1

y

x

D y = x2

Therefore, W can be described by the following inequalities:

−1 ≤ x ≤ 1, x2 ≤ y ≤ 1, 0 ≤ z ≤ 1 − y2

−1

1
y

z

x

1

1

We use the formula for the volume as a triple integral, write the triple integral as an iterated integral, and compute it. We
obtain

Volume(W) =
∫∫∫

W
1 dV =

∫ 1

−1

∫ 1

x2

∫ 1−y2

0
1 dz dy dx =

∫ 1

−1

∫ 1

x2
z

∣∣∣∣1−y2

z=0
dy dx

=
∫ 1

−1

∫ 1

x2

(
1 − y2

)
dy dx =

∫ 1

−1
y − y3

3

∣∣∣∣1
y=x2

dx =
∫ 1

−1

(
1 − 1

3
−
(

x2 − x6

3

))
dx

= 2
∫ 1

0

(
x6

3
− x2 + 2

3

)
dx = 2

(
x7

21
− x3

3
+ 2x

3

) ∣∣∣∣1
0

= 2

(
1

21
− 1

3
+ 2

3

)
= 16

21

Calculate the volume of the region W in Exercise 31 as a triple integral in the following orders:

(a) dx dz dy (b) dy dz dx
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In Exercises 33–36, compute the average value of f (x, y, z) over the region W .

33. f (x, y, z) = xy sin(πz); W = [0, 1] × [0, 1] × [0, 1]
solution The volume of the cube is V = 1, hence the average of f over the cube is the following value:

f =
∫∫∫

W
xy sin(πz) dV =

∫ 1

0

∫ 1

0

∫ 1

0
xy sin(πz) dx dy dz

=
∫ 1

0

∫ 1

0

1

2
x2y sin(πz)

∣∣∣∣1
x=0

dy dz =
∫ 1

0

∫ 1

0

1

2
y sin(πz) dy dz

=
∫ 1

0

y2

4
sin(πz)

∣∣∣∣1
y=0

dz =
∫ 1

0

1

4
sin(πz) dz = − 1

4π
cos(πz)

∣∣∣∣1
0

= − 1

4π
(cos π − cos 0) = − 1

4π
(−1 − 1) = 1

2π

f (x, y, z) = xyz; W = [0, 1] × [0, 1] × [0, 1]35. f (x, y, z) = ey ; W : 0 ≤ y ≤ 1 − x2, 0 ≤ z ≤ x

solution First we must calculate the volume of W . We will use the symmetry of y = 1 − x2 to write:

V =
∫∫∫

W
1 dV = 2

∫ 1

0

∫ 1−x2

0

∫ x

0
1 dz dy dx

= 2
∫ 1

0

∫ 1−x2

0
z

∣∣∣∣x
z=0

dy dx = 2
∫ 1

0

∫ 1−x2

0
x dy dx

= 2
∫ 1

0
xy

∣∣∣∣1−x2

y=0
dx = 2

∫ 1

0
x(1 − x2) dx

= 2
∫ 1

0
x − x3 dx = x2 − 1

2
x4
∣∣∣∣1
0

= 1

2

Now we can compute the average value for f (x, y, z) = ey :

f = 1

V

∫∫∫
W

ey dV = 2 · 1

1/2

∫ 1

0

∫ 1−x2

0

∫ x

0
ey dz dy dx

= 4
∫ 1

0

∫ 1−x2

0
zey

∣∣∣∣x
z=0

dy dx = 4
∫ 1

0

∫ 1−x2

0
xey dy dx

= 4
∫ 1

0
xey

∣∣∣∣1−x2

y=0
dx = 4

∫ 1

0
xe1−x2 − x dx

= 4

(
−1

2
e1−x2 − 1

2
x2
) ∣∣∣∣1

0
=
(
−2e0 − 2

)
−
(
−2e1 − 0

)
= 2e − 4

f (x, y, z) = x2 + y2 + z2; W bounded by the planes 2y + z = 1, x = 0, x = 1, z = 0, and y = 0.In Exercises 37 and 38, let I =
∫ 1

0

∫ 1

0

∫ 1

0
f (x, y, z) dV and let SN,N,N be the Riemann sum approximation

SN,N,N = 1

N3

N∑
i=1

N∑
j=1

N∑
k=1

f

(
i

N
,

j

N
,

k

N

)

37. Calculate SN,N,N for f (x, y, z) = ex2−y−z for N = 10, 20, 30. Then evaluate I and find an N such that
SN,N,N approximates I to two decimal places.

solution Using a CAS, we get SN,N,N ≈ 0.561, 0.572, and 0.576 for N = 10, 20, and 30, respectively. We get
I ≈ 0.584, and using N = 100 we get SN,N,N ≈ 0.582, accurate to two decimal places.

Calculate SN,N,N for f (x, y, z) = sin(xyz) for N = 10, 20, 30. Then use a computer algebra system to
calculate I numerically and estimate the error |I − SN,N,N |.Further Insights and Challenges

39. Use Integration by Parts to verify Eq. (7).

solution If Cn = ∫ π/2
−π/2 cosn θ dθ , we use integration by parts to show that

Cn =
(

n − 1

n

)
Cn−2.
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We use integration by parts with u = cosn−1 θ and V ′ = cos θ . Hence, u′ = (n − 1) cosn−2 θ(− sin θ) and v = sin θ .
Thus,

Cn =
∫ π/2

−π/2
cosn θ dθ =

∫ π/2

−π/2
cosn−1 θ cos θ dθ = cosn−1 θ sin θ

∣∣∣∣π/2

θ=−π/2
+
∫ π/2

−π/2
(n − 1) cosn−2 θsin2θ dθ

= cosn−1 π

2
sin

π

2
− cosn+1

(
−π

2

)
sin
(
−π

2

)
+ (n − 1)

∫ π/2

−π/2
cosn−2 θ sin2θ dθ

= 0 + (n − 1)

∫ π/2

−π/2
cosn−2 θ

(
1 − cos2 θ

)
dθ = (n − 1)

∫ π/2

−π/2
cosn−2 θ dθ − (n − 1)

∫ π/2

−π/2
cosn θ dθ

= (n − 1)Cn−2 − (n − 1)Cn

We obtain the following equality:

Cn = (n − 1)Cn−2 − (n − 1)Cn

or

Cn + (n − 1)Cn = (n − 1)Cn−2

nCn = (n − 1)Cn−2

Cn = n − 1

n
Cn−2

Compute the volume An of the unit ball in Rn for n = 8, 9, 10. Show that Cn ≤ 1 for n ≥ 6 and use this to
prove that of all unit balls, the five-dimensional ball has the largest volume. Can you explain why An tends to 0 as
n → ∞?15.4 Integration in Polar, Cylindrical, and Spherical Coordinates

(LT Section 16.4)

Preliminary Questions
1. Which of the following represent the integral of f (x, y) = x2 + y2 over the unit circle?

(a)
∫ 1

0

∫ 2π

0
r2 dr dθ (b)

∫ 2π

0

∫ 1

0
r2 dr dθ

(c)
∫ 1

0

∫ 2π

0
r3 dr dθ (d)

∫ 2π

0

∫ 1

0
r3 dr dθ

solution The unit circle is described in polar coordinates by the inequalities

0 ≤ θ ≤ 2π, 0 ≤ r ≤ 1

Using double integral in polar coordinates, we have∫∫
D

f (x, y) dA =
∫ 2π

0

∫ 1

0

(
(r cos θ)2 + (r sin θ)2

)
r dr dθ =

∫ 2π

0

∫ 1

0
r2
(

cos2 θ + sin2 θ
)

r dr dθ

=
∫ 2π

0

∫ 1

0
r3 dr dθ

Therefore (d) is the correct answer.

2. What are the limits of integration in
∫∫∫

f (r, θ, z)r dr dθ dz if the integration extends over the following regions?

(a) x2 + y2 ≤ 4, −1 ≤ z ≤ 2

(b) Lower hemisphere of the sphere of radius 2, center at origin

solution
(a) This is a cylinder of radius 2. In the given region the z coordinate is changing between the values −1 and 2, and the
angle θ is changing between the values θ = 0 and 2π . Therefore the region is described by the inequalities

−1 ≤ z ≤ 2, 0 ≤ θ < 2π, 0 ≤ r ≤ 2

Using triple integral in cylindrical coordinates gives∫ 2

−1

∫ 2π

0

∫ 2

0
f (P ) r dr dθ dz



May 19, 2011

S E C T I O N 15.4 Integration in Polar, Cylindrical, and Spherical Coordinates (LT SECTION 16.4) 503

(b) The sphere of radius 2 is x2 + y2 + z2 = r2 + z2 = 4, or r =
√

4 − z2.

y
2

z

x

In the lower hemisphere we have −2 ≤ z ≤ 0 and 0 ≤ θ < 2π . Therefore, it has the description

−2 ≤ z ≤ 0, 0 ≤ θ < 2π, 0 ≤ r ≤
√

4 − z2

We obtain the following integral in cylindrical coordinates:

∫ 0

−2

∫ 2π

0

∫ √
4−z2

0
r dr dθ dz

3. What are the limits of integration in ∫∫∫
f (ρ, φ, θ)ρ2 sin φ dρ dφ dθ

if the integration extends over the following spherical regions centered at the origin?
(a) Sphere of radius 4
(b) Region between the spheres of radii 4 and 5
(c) Lower hemisphere of the sphere of radius 2

solution
(a) In the sphere of radius 4, θ varies from 0 to 2π , φ varies from 0 to π , and ρ varies from 0 to 4. Using triple integral
in spherical coordinates, we obtain the following integral:∫ 2π

0

∫ π

0

∫ 4

0
f (P )ρ2 sin φ dρ dφ dθ

(b) In the region between the spheres of radii 4 and 5, ρ varies from 4 to 5, φ varies from 0 to π , and θ varies from 0 to
2π . We obtain the following integral: ∫ 2π

0

∫ π

0

∫ 5

4
f (P )ρ2 sin φ dρ dφ dθ

(c) The inequalities in spherical coordinates for the lower hemisphere of radius 2 are

0 ≤ θ ≤ 2π,
π

2
≤ φ ≤ π, 0 ≤ ρ ≤ 2

Therefore we obtain the following integral:∫ 2π

0

∫ π

π/2

∫ 2

0
f (P )ρ2 sin φ dρ dφ dθ.

4. An ordinary rectangle of sides �x and �y has area �x �y, no matter where it is located in the plane. However, the
area of a polar rectangle of sides �r and �θ depends on its distance from the origin. How is this difference reflected in
the Change of Variables Formula for polar coordinates?

solution The area �A of a small polar rectangle is

�A = 1

2
(r + �r)2�θ − 1

2
r2�θ = r (�r�θ) + 1

2
(�r)2�θ ≈ r (�r�θ)

y

Δ

Δr

ΔA

x

r

The factor r , due to the distance of the polar rectangle from the origin, appears in dA = r dr dθ , in the Change of Variables
formula.
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Exercises
In Exercises 1–6, sketch the region D indicated and integrate f (x, y) over D using polar coordinates.

1. f (x, y) =
√

x2 + y2, x2 + y2 ≤ 2

solution The domain D is the disk of radius
√

2 shown in the figure:

x

y

2

The inequalities defining D in polar coordinates are

0 ≤ θ ≤ 2π, 0 ≤ r ≤ √
2

We describe f (x, y) =
√

x2 + y2 in polar coordinates:

f (x, y) =
√

x2 + y2 =
√

r2 = r

Using change of variables in polar coordinates, we get

∫∫
D

√
x2 + y2 dA =

∫ 2π

0

∫ √
2

0
r · r dr dθ =

∫ 2π

0

∫ √
2

0
r2 dr dθ =

∫ 2π

0

r3

3

∣∣∣∣
√

2

r=0
dθ

=
∫ 2π

0

(√
2
)3

3
dθ = 2

√
2

3
θ

∣∣∣∣2π

0
= 4

√
2π

3

f (x, y) = x2 + y2; 1 ≤ x2 + y2 ≤ 4
3. f (x, y) = xy; x ≥ 0, y ≥ 0, x2 + y2 ≤ 4

solution The domain D is the quarter circle of radius 2 in the first quadrant.

x

D

y

20

2

It is described by the inequalities

0 ≤ θ ≤ π

2
, 0 ≤ r ≤ 2

We write f in polar coordinates:

f (x, y) = xy = (r cos θ)(r sin θ) = r2 cos θ sin θ = 1

2
r2 sin 2θ

Using change of variables in polar coordinates gives∫∫
D

xy dA =
∫ π/2

0

∫ 2

0

(
1

2
r2 sin 2θ

)
r dr dθ =

∫ π/2

0

∫ 2

0

1

2
r3 sin 2θ dr dθ =

∫ π/2

0

1

2
· r4

4
sin 2θ

∣∣∣∣2
r=0

dθ

=
∫ π/2

0
2 sin 2θ dθ = − cos 2θ

∣∣∣∣π/2

0
= −(cos π − cos 0) = 2

f (x, y) = y(x2 + y2)3; y ≥ 0, x2 + y2 ≤ 1
5. f (x, y) = y(x2 + y2)−1; y ≥ 1

2 , x2 + y2 ≤ 1

solution The region D is the part of the unit circle lying above the line y = 1
2 .
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x

y

1

1 
2

(−     ,    )3
2

1 
2 (     ,    )3

2
1 
2

The angle α in the figure is

α = tan−1
1
2√
3

2

= tan−1 1√
3

= π

6

Therefore, θ varies between π
6 and π − π

6 = 5π
6 . The horizontal line y = 1

2 has polar equation r sin θ = 1
2 or r = 1

2 csc θ .

The circle of radius 1 centered at the origin has polar equation r = 1. Therefore, r varies between 1
2 csc θ and 1. The

inequalities describing D in polar coordinates are thus

π

6
≤ θ ≤ 5π

6
,

1

2
csc θ ≤ r ≤ 1

x

y

1

1 
2

csc    ≤ r ≤ 11 
2

We write f in polar coordinates:

f (x, y) = y(x2 + y2)
−1 = (r sin θ)(r2)

−1 = r−1 sin θ

Using change of variables in polar coordinates, we obtain∫∫
D

y(x2 + y2)
−1

dA =
∫ 5π/6

π/6

∫ 1

1
2 csc θ

r−1 sin θ r dr dθ =
∫ 5π/6

π/6

∫ 1

1
2 csc θ

sin θ dr dθ

=
∫ 5π/6

π/6
r sin θ

∣∣∣∣1
r= 1

2 csc θ

dθ =
∫ 5π/6

π/6

(
sin θ − 1

2
sin θ csc θ

)
dθ

=
∫ 5π/6

π/6

(
sin θ − 1

2

)
dθ = − cos θ − θ

2

∣∣∣∣5π/6

π/6
= − cos

5π

6
− 5π

12
−
(
− cos

π

6
− π

12

)

=
√

3

2
− π

3
+

√
3

2
= √

3 − π

3
≈ 0.685

f (x, y) = ex2+y2
; x2 + y2 ≤ R

In Exercises 7–14, sketch the region of integration and evaluate by changing to polar coordinates.

7.
∫ 2

−2

∫ √
4−x2

0
(x2 + y2) dy dx

solution The domain D is described by the inequalities

D : −2 ≤ x ≤ 2, 0 ≤ y ≤
√

4 − x2

That is, D is the semicircle x2 + y2 ≤ 4, 0 ≤ y.

x

D

y

2−2
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We describe D in polar coordinates:

D : 0 ≤ θ ≤ π, 0 ≤ r ≤ 2

The function f in polar coordinates is f (x, y) = x2 + y2 = r2. We use the Change of Variables Formula to write

∫ 2

−2

∫ √
4−x2

0

(
x2 + y2

)
dy dx =

∫ π

0

∫ 2

0
r2 · r dr dθ =

∫ π

0

∫ 2

0
r3 dr dθ =

∫ π

0

r4

4

∣∣∣∣2
r=0

dθ =
∫ π

0

24

4
dθ = 4π

∫ 3

0

∫ √
9−y2

0

√
x2 + y2 dx dy

9.
∫ 1/2

0

∫ √
1−x2

√
3x

x dy dx

solution The region of integration is described by the inequalities

0 ≤ x ≤ 1

2
,

√
3x ≤ y ≤

√
1 − x2

D is the circular sector shown in the figure.

x

D

y

0

1

1 
2

π 
3

3xy =

1 − x2y =

The ray y = √
3x in the first quadrant has the polar equation

r sin θ = √
3r cos θ ⇒ tan θ = √

3 ⇒ θ = π

3

Therefore, D lies in the angular sector π
3 ≤ θ ≤ π

2 . Also, the circle y =
√

1 − x2 has the polar equation r = 1, hence D
can be described by the inequalities

π

3
≤ θ ≤ π

2
, 0 ≤ r ≤ 1

We use change of variables to obtain

∫ 1/2

0

∫ √
1−x2

√
3x

x dy dx =
∫ π/2

π/3

∫ 1

0
r(cos θ)r dr dθ =

∫ π/2

π/3

∫ 1

0
r2 cos θ dr dθ =

∫ π/2

π/3

r3 cos θ

3

∣∣∣∣1
r=0

dθ

=
∫ π/2

π/3

cos θ

3
dθ = sin θ

3

∣∣∣∣π/2

π/3
= 1

3

(
sin

π

2
− sin

π

3

)
= 1

3

(
1 −

√
3

2

)
≈ 0.045

∫ 4

0

∫ √
16−x2

0
tan−1 y

x
dy dx

11.
∫ 5

0

∫ y

0
x dx dy

solution ∫ 5

0

∫ y

0
x dx dy =

∫ π/2

π/4

∫ 5/ sin θ

r=0
r2 cos θ dr dθ =

∫ π/2

π/4

1

3
r3 cos θ

∣∣∣∣5/ sin θ

r=0
dθ

= 1

3

∫ π/2

π/4

125

sin3 θ
cos θ dθ = 125

3

∫ π/2

π/4

cos θ

sin3 θ
dθ

= −125

6

1

sin2 θ

∣∣∣∣π/2

π/4
= −125

6
(1 − 2) = 125

6

∫ 2

0

∫ √
3x

x
y dy dx

13.
∫ 2

−1

∫ √
4−x2

0
(x2 + y2) dy dx

solution The domain D, shown in the figure, is described by the inequalities

−1 ≤ x ≤ 2, 0 ≤ y ≤
√

4 − x2



May 19, 2011

S E C T I O N 15.4 Integration in Polar, Cylindrical, and Spherical Coordinates (LT SECTION 16.4) 507

y = 4 − x2

D

x

y

2−1

We denote by D1 and D2 the triangle and the circular sections, respectively, shown in the figure.

A = (−1, 3)

x

y

2−1

2
3

D2
D1

By properties of integrals we have∫∫
D

(
x2 + y2

)
dA =

∫∫
D1

(
x2 + y2

)
dA +

∫∫
D2

(
x2 + y2

)
dA (1)

We compute each integral separately, starting with D1. The vertical line x = −1 has polar equation r cos θ = −1 or
r = − sec θ . The ray OA has polar equation θ = 2π

3 . Therefore D1 is described by

2π

3
≤ θ ≤ π, 0 ≤ r ≤ − sec θ

Using change of variables gives

∫∫
D1

(
x2 + y2

)
dA =

∫ π

2π/3

∫ − sec θ

0
r2 · r dr dθ =

∫ π

2π/3

∫ − sec θ

0
r3 dr dθ

=
∫ π

2π/3

r4

4

∣∣∣∣− sec θ

r=0
dθ =

∫ π

2π/3

sec4 θ

4
dθ = 1

4

∫ π

2π/3
sec4 θ dθ (2)

We compute the integral (we use substitution u = tan θ for the second integral):

∫ π

2π/3

1

cos4 θ
dθ =

∫ π

2π/3

sin2 θ + cos2 θ

cos4 θ
dθ =

∫ π

2π/3

dθ

cos2 θ
+
∫ π

2π/3
tan2 θ · 1

cos2 θ
dθ

= tan θ

∣∣∣∣π
θ=2π/3

+
∫ 0

−√
3
u2 du = tan π − tan

2π

3
+ u3

3

∣∣∣∣0−√
3

= √
3 + 3

√
3

3
= 2

√
3

Hence, by (2) we get

∫∫
D1

(
x2 + y2

)
dA =

√
3

2
(3)

D2 is described by the inequalities

0 ≤ θ ≤ 2π

3
, 0 ≤ r ≤ 2

Hence,

∫∫
D2

(
x2 + y2

)
dA =

∫ 2π/3

0

∫ 2

0
r2 · r dr dθ =

∫ 2π/3

0

∫ 2

0
r3 dr dθ

=
∫ 2π/3

0

r4

4

∣∣∣∣2
r=0

dθ =
∫ 2π/3

0
4 dθ = 4 · θ

∣∣∣∣2π/3

0
= 8π

3
(4)

Combining (1), (3) and (4) we obtain the following solution:

∫∫
D

(
x2 + y2

)
dA =

√
3

2
+ 8π

3
≈ 9.24

∫ 2

1

∫ √
2x−x2

0

1√
x2 + y2

dy dx
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In Exercises 15–20, calculate the integral over the given region by changing to polar coordinates.

15. f (x, y) = (x2 + y2)−2; x2 + y2 ≤ 2, x ≥ 1

solution The region D lies in the angular sector

−π

4
≤ θ ≤ π

4

x

y

(1, 1)

(−1, 1)

1

π
4

2

sec    ≤ r ≤ 2

The vertical line x = 1 has polar equation r cos θ = 1 or r = sec θ . The circle x2 + y2 = 2 has polar equation r = √
2.

Therefore, D has the following description:

−π

4
≤ θ ≤ π

4
, sec θ ≤ r ≤ √

2

The function in polar coordinates is

f (x, y) = (x2 + y2)
−2 = (r2)

−2 = r−4.

Using change of variables we obtain

∫∫
D

(
x2 + y2

)−2
dA =

∫ π/4

−π/4

∫ √
2

sec θ
r−4r dr dθ =

∫ π/4

−π/4

∫ √
2

sec θ
r−3 dr dθ =

∫ π/4

−π/4

r−2

−2

∣∣∣∣
√

2

sec θ

dθ

=
∫ π/4

−π/4

(
1

2sec2θ
− 1

4

)
dθ = 2

∫ π/4

0

(
1

2
cos2θ − 1

4

)
dθ

=
(

θ

2
+ sin 2θ

4

) ∣∣∣∣π/4

0
− θ

2

∣∣∣∣π/4

0
= π

8
+ 1

4
− π

8
= 1

4

f (x, y) = x; 2 ≤ x2 + y2 ≤ 4
17. f (x, y) = |xy|; x2 + y2 ≤ 1

solution The unit disk is described in polar coordinates by

D : 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 1

x

x2 + y2 ≤ 1

y

The function is f (x, y) = |xy| = |r cos θ · r sin θ | = 1
2 r2| sin 2θ |. Using change of variables we obtain

∫∫
D

|xy| dA =
∫ 2π

0

∫ 1

0

1

2
r2| sin 2θ | · r dr dθ =

∫ 2π

0

∫ 1

0

1

2
r3| sin 2θ | dr dθ

=
∫ 2π

0

r4

8
| sin 2θ |

∣∣∣∣1
r=0

dθ =
∫ 2π

0

1

8
| sin 2θ | dθ (1)
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The signs of sin 2θ in the interval of integration are

For 0 ≤ θ ≤ π
2 or π ≤ θ ≤ 3π

2 , sin 2θ ≥ 0, hence | sin 2θ | = sin 2θ .

For π
2 ≤ θ ≤ π or 3π

2 ≤ θ ≤ 2π , sin 2θ ≤ 0, hence | sin 2θ | = − sin 2θ .

Therefore, by (1) we get∫∫
D

|xy| dA =
∫ π/2

0

1

8
sin 2θ dθ −

∫ π

π/2

1

8
sin 2θ dθ +

∫ 3π/2

π

1

8
sin 2θ dθ −

∫ 2π

3π/2

1

8
sin 2θ dθ

= − 1

16
cos 2θ

∣∣∣∣π/2

0
+ 1

16
cos 2θ

∣∣∣∣π
π/2

− 1

16
cos 2θ

∣∣∣∣3π/2

π

+ 1

16
cos 2θ

∣∣∣∣2π

3π/2

= − 1

16
(cos π − 1) + 1

16
(cos 2π − cos π) − 1

16
(cos 3π − cos 2π) + 1

16
(cos 4π − cos 3π)

= 2

16
+ 2

16
+ 2

16
+ 2

16
= 1

2

That is, ∫∫
D

|xy| dA = 1

2

f (x, y) = (x2 + y2)−3/2; x2 + y2 ≤ 1, x + y ≥ 1
19. f (x, y) = x − y; x2 + y2 ≤ 1, x + y ≥ 1

solution As shown in Exercise 24, the region D is described by the following inequalities:

D : 0 ≤ θ ≤ π

2
,

1

cos θ + sin θ
≤ r ≤ 1

x

x + y = 1

x2 + y2 = 1

y

The function in polar coordinates is

f (x, y) = x − y = r cos θ − r sin θ = r(cos θ − sin θ)

Using the Change of Variables Formula we get∫∫
D

(x − y) dA =
∫ π/2

0

∫ 1

1
cos θ+sin θ

r(cos θ − sin θ)r dr dθ =
∫ π/2

0

∫ 1

1
cos θ+sin θ

r2(cos θ − sin θ) dr dθ

=
∫ π/2

0

r3(cos θ − sin θ)

3

∣∣∣∣1
r= 1

cos θ+sin θ

dθ =
∫ π/2

0

cos θ − sin θ

3

(
1 − 1

(cos θ + sin θ)3

)
dθ

=
∫ π/2

0

cos θ − sin θ

3
dθ − 1

3

∫ π/2

0

cos θ − sin θ

(cos θ + sin θ)3
dθ (1)

We compute the two integrals:∫ π/2

0

cos θ − sin θ

3
dθ = sin θ + cos θ

3

∣∣∣∣π/2

0
= (1 + 0) − (0 + 1)

3
= 0 (2)

To compute the second integral we will use u-substitution and let u = sin θ + cos θ :∫ π/2

0

cos θ − sin θ

(cos θ + sin θ)3
dθ =

∫ 1

u=1
u−3 du = 0 (3)

Combining (1), (2), and (3) we conclude that ∫∫
D

(x − y) dA = 0
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f (x, y) = y; x2 + y2 ≤ 1, (x − 1)2 + y2 ≤ 1
21. Find the volume of the wedge-shaped region (Figure 17) contained in the cylinder x2 + y2 = 9, bounded above by
the plane z = x and below by the xy-plane.

z = x

y

z

x

FIGURE 17

solution

Step 1. Express W in cylindrical coordinates. W is bounded above by the plane z = x and below by z = 0, therefore
0 ≤ z ≤ x, in particular x ≥ 0. Hence, W projects onto the semicircle D in the xy-plane of radius 3, where x ≥ 0.

x

D

y

3

3

In polar coordinates,

D : −π

2
≤ θ ≤ π

2
, 0 ≤ r ≤ 3

The upper surface is z = x = r cos θ and the lower surface is z = 0. Therefore,

W : −π

2
≤ θ ≤ π

2
, 0 ≤ r ≤ 3, 0 ≤ z ≤ r cos θ

Step 2. Set up an integral in cylindrical coordinates and evaluate. The volume of W is the triple integral
∫∫∫

W
1 dV .

Using change of variables in cylindrical coordinates gives

∫∫∫
W

1 dV =
∫ π/2

−π/2

∫ 3

0

∫ r cos θ

0
r dz dr dθ =

∫ π/2

−π/2

∫ 3

0
rz

∣∣∣∣r cos θ

z=0
dr dθ =

∫ π/2

−π/2

∫ 3

0
r2 cos θ dr dθ

=
∫ π/2

−π/2

r3

3
cos θ

∣∣∣∣3
r=0

dθ =
∫ π/2

−π/2
9 cos θ dθ = 9 sin θ

∣∣∣∣π/2

−π/2
= 9

(
sin

π

2
− sin

(
−π

2

))
= 18

Let W be the region above the sphere x2 + y2 + z2 = 6 and below the paraboloid z = 4 − x2 − y2.

(a) Show that the projection of W on the xy-plane is the disk x2 + y2 ≤ 2 (Figure 18).

(b) Compute the volume of W using polar coordinates.

23. Evaluate
∫∫

D

√
x2 + y2 dA, where D is the domain in Figure 19. Hint: Find the equation of the inner circle in polar

coordinates and treat the right and left parts of the region separately.

2
x

y

FIGURE 19
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solution We denote by D1 and D2 the regions enclosed by the circles x2 + y2 = 4 and (x − 1)2 + y2 = 1. Therefore,∫∫
D

√
x2 + y2 dx dy =

∫∫
D1

√
x2 + y2 dx dy −

∫∫
D2

√
x2 + y2 dx dy (1)

We compute the integrals on the right hand-side.

D1:

D1

−2

−2

2

2
x

y

x2 + y2 = 4

The circle x2 + y2 = 4 has polar equation r = 2, therefore D1 is determined by the following inequalities:

D1 : 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 2

The function in polar coordinates is f (x, y) =
√

x2 + y2 = r . Using change of variables in the integral gives

∫∫
D1

√
x2 + y2 dx dy =

∫ 2π

0

∫ 2

0
r · r dr dθ =

∫ 2π

0

∫ 2

0
r2 dr dθ =

∫ 2π

0

r3

3

∣∣∣∣2
r=0

dθ =
∫ 2π

0

8

3
dθ = 16π

3
(2)

D2:

D2
1 2

x

y

   ≤ r ≤ 2 cos

(x − 1)2 + y2 = 1

π 
2

−

π 
2

D2 lies in the angular sector −π
2 ≤ θ ≤ π

2 . We find the polar equation of the circle (x − 1)2 + y2 = 1:

(x − 1)2 + y2 = x2 − 2x + 1 + y2 = x2 + y2 − 2x + 1 = 1 ⇒ x2 + y2 = 2x

⇒ r2 = 2r cos θ

⇒ r = 2 cos θ

Thus, the domain D2 is defined by the following inequalities:

D2 : −π

2
≤ θ ≤ π

2
, 0 ≤ r ≤ 2 cos θ

We use the change of variables in the integral and integration table to obtain

∫∫
D2

√
x2 + y2 dx dy =

∫ π/2

−π/2

∫ 2 cos θ

0
r · r dr dθ =

∫ π/2

−π/2

∫ 2 cos θ

0
r2 dr dθ =

∫ π/2

−π/2

∫ 2 cos θ

0

r3

3

∣∣∣∣2 cos θ

r=0
dθ

=
∫ π/2

−π/2

8 cos3 θ

3
dθ = 2

∫ π/2

0

8 cos3 θ

3
dθ = 16

3

(
cos2 θ sin θ

3
+ 2

3
sin θ

) ∣∣∣∣π/2

θ=0

= 16

3
· 2

3
sin

π

2
= 32

9
(3)

Substituting (2) and (3) in (1), we obtain the following solution:∫∫
D

√
x2 + y2 dx dy = 16π

3
− 32

9
= 48π − 32

9
≈ 13.2.
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Remark: The integral can also be evaluated using the hint as the sum of∫
D∗

∫∫ √
x2 + y2 dA and

∫
D∗∗

∫∫ √
x2 + y2 dA

where D∗ is the left semicircle x2 + y2 = 4 and D∗ is the right part of D. Since

D∗: π

2
≤ θ ≤ 3π

2
, 0 ≤ r ≤ 2

D∗∗: −π

2
≤ θ ≤ π

2
, 2 cos θ ≤ r ≤ 2

D*

D**

1

1

−1

−1−2

−2

2

2
x

y

2 cos    ≤ r ≤ 2
≤ r ≤ 2

we get ∫∫
D

√
x2 + y2 dA =

∫ 3π/2

π/2

∫ 2

0
r2 dr dθ +

∫ π/2

−π/2

∫ 2

2 cos θ
r2 dr dθ

Obviously, computing the integrals leads to the same result.

Evaluate
∫∫

D
x

√
x2 + y2 dA, where D is the shaded region enclosed by the lemniscate curve r2 = sin 2θ in

Figure 20.

25. Let W be the region between the paraboloids z = x2 + y2 and z = 8 − x2 − y2.

(a) Describe W in cylindrical coordinates.

(b) Use cylindrical coordinates to compute the volume of W .

solution

(a)

y

z

x

The paraboloids z = x2 + y2 and z = 8 − (x2 + y2) have the polar equations z = r2 and z = 8 − r2, respectively. We
find the curve of intersection by solving

8 − r2 = r2 ⇒ 2r2 = 8 ⇒ r = 2

Therefore, the projection D of W onto the xy-plane is the region enclosed by the circle r = 2, and D has the following
description:

D : 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 2

The upper and lower boundaries of W are z = 8 − r2 and z = r2, respectively. Hence,

W : 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 2, r2 ≤ z ≤ 8 − r2

(b) Using change of variables in cylindrical coordinates, we get

Volume(W) =
∫∫∫

W
1 dV =

∫ 2π

0

∫ 2

0

∫ 8−r2

r2
r dz dr dθ =

∫ 2π

0

∫ 2

0
rz

∣∣∣∣8−r2

z=r2
dr dθ =

∫ 2π

0

∫ 2

0
r
(

8 − 2r2
)

dr dθ

=
∫ 2π

0

∫ 2

0

(
8r − 2r3

)
dr dθ =

∫ 2π

0
4r2 − r4

2

∣∣∣∣2
r=0

dθ =
∫ 2π

0
8 dθ = 16π
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Use cylindrical coordinates to calculate the integral of the function f (x, y, z) = z over the region above the disk
x2 + y2 = 1 in the xy-plane and below the surface z = 4 + x2 + y2.

In Exercises 27–32, use cylindrical coordinates to calculate
∫∫∫

W
f (x, y, z) dV for the given function and region.

27. f (x, y, z) = x2 + y2; x2 + y2 ≤ 9, 0 ≤ z ≤ 5

solution The projection of W onto the xy-plane is the region inside the circle x2 + y2 = 9. In polar coordinates,

D : 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 3

The upper and lower boundaries are the planes z = 5 and z = 0, respectively. Therefore, W has the following description
in cylindrical coordinates:

W : 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 3, 0 ≤ z ≤ 5

The integral in cylindrical coordinates is thus∫∫∫
W

(x2 + y2) dV =
∫ 2π

0

∫ 3

0

∫ 5

0
r2 · r dz dr dθ =

∫ 2π

0

∫ 3

0

∫ 5

0
r3 dz dr dθ

=
(∫ 2π

0
1 dθ

)(∫ 3

0
r3 dr

)(∫ 5

0
1 dz

)
= 2π · 5 · r4

4

∣∣∣∣3
0

= 5 · 34π

2
≈ 636.17

f (x, y, z) = xz; x2 + y2 ≤ 1, x ≥ 0, 0 ≤ z ≤ 2
29. f (x, y, z) = y; x2 + y2 ≤ 1, x ≥ 0, y ≥ 0, 0 ≤ z ≤ 2

solution

x

y

10

1

The projection of W onto the xy-plane is the quarter of the unit circle in the first quadrant. It is defined by the following
polar equations:

D : 0 ≤ θ ≤ π

2
, 0 ≤ r ≤ 1

The upper and lower boundaries of W are the planes z = 2 and z = 0, respectively; hence, W has the following definition:

W : 0 ≤ θ ≤ π

2
, 0 ≤ r ≤ 1, 0 ≤ z ≤ 2

The function is f (x, y, z) = y = r sin θ . The integral in cylindrical coordinates is thus∫∫∫
W

y dV =
∫ π/2

0

∫ 1

0

∫ 2

0
(r sin θ)r dz dr dθ =

∫ π/2

0

∫ 1

0

∫ 2

0
r2 sin θ dz dr dθ

=
(∫ π/2

0
sin θ dθ

)(∫ 1

0
r2 dr

)(∫ 2

0
1 dz

)
=
(

− cos θ

∣∣∣∣π/2

0

)(
r3

3

∣∣∣∣1
0

)(
z

∣∣∣∣2
0

)
= 1 · 1

3
· 2 = 2

3

f (x, y, z) = z
√

x2 + y2; x2 + y2 ≤ z ≤ 8 − (x2 + y2)
31. f (x, y, z) = z; x2 + y2 ≤ z ≤ 9

solution

y

z

9

3−3

x
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The upper boundary of W is the plane z = 9, and the lower boundary is z = x2 + y2 = r2. Therefore, r2 ≤ z ≤ 9. The
projection D onto the xy-plane is the circle x2 + y2 = 9 or r = 3. That is,

D : 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 3

The inequalities defining W in cylindrical coordinates are thus

W : 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 3, r2 ≤ z ≤ 9

Therefore, we obtain the following integral:

∫∫∫
W

z dV =
∫ 2π

0

∫ 3

0

∫ 9

r2
zr dz dr dθ =

∫ 2π

0

∫ 3

0

z2r

2

∣∣∣∣9
z=r2

dr dθ =
∫ 2π

0

∫ 3

0

r(81 − r4)

2
dr dθ

=
∫ 2π

0

∫ 3

0

81r − r5

2
dr dθ =

∫ 2π

0

81r2

4
− r6

12

∣∣∣∣3
0
dθ =

∫ 2π

0
121.5 dθ = 243π

f (x, y, z) = z; 0 ≤ z ≤ x2 + y2 ≤ 9
In Exercises 33–36, express the triple integral in cylindrical coordinates.

33.
∫ 1

−1

∫ y=
√

1−x2

y=−
√

1−x2

∫ 4

z=0
f (x, y, z) dz dy dx

solution The region of integration is determined by the limits of integration. That is,

W : −1 ≤ x ≤ 1, −
√

1 − x2 ≤ y ≤
√

1 − x2, 0 ≤ z ≤ 4

Therefore the projection of W onto the xy-plane is the disk x2 + y2 ≤ 1. This region has the following definition in polar
coordinates:

D : 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 1

D

x

y = 1 − x2

y = − 1 − x2

y

1−1

D

The upper and lower boundaries of W are the planes z = 4 and z = 0, respectively. Hence,

W : 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 1, 0 ≤ z ≤ 4

Using change of variables in cylindrical coordinates, we get the integral

∫ 2π

0

∫ 1

0

∫ 4

0
f (r cos θ, r sin θ, z)r dz dr dθ

∫ 1

0

∫ y=
√

1−x2

y=−
√

1−x2

∫ 4

z=0
f (x, y, z) dz dy dx

35.
∫ 1

−1

∫ y=
√

1−x2

y=0

∫ x2+y2

z=0
f (x, y, z) dz dy dx

solution The inequalities defining the region of integration are

W : −1 ≤ x ≤ 1, 0 ≤ y ≤
√

1 − x2, 0 ≤ z ≤ x2 + y2

y = 1 − x2

D

x

y

1−1

1
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The projection of W onto the xy-plane is the semicircle x2 + y2 = 1, where −1 ≤ x ≤ 1. This domain is defined by the
polar inequalities

D : 0 ≤ θ ≤ π, 0 ≤ r ≤ 1

The lower surface is z = 0 and upper surface is z = x2 + y2 = r2, hence W has the following description in cylindrical
coordinates:

W : 0 ≤ θ ≤ π, 0 ≤ r ≤ 1, 0 ≤ z ≤ r2

We obtain the following integral:

∫ π

0

∫ 1

0

∫ r2

0
f (r cos θ, r sin θ, z)r dz dr dθ

∫ 2

0

∫ y=
√

2x−x2

y=0

∫ √
x2+y2

z=0
f (x, y, z) dz dy dx

37. Find the equation of the right-circular cone in Figure 21 in cylindrical coordinates and compute its volume.

y

H

x

z

FIGURE 21

solution To find the equation of the surface we use proportion in similar triangles.

y

x

z

H

z

This gives

z

H
= r

R
⇒ z = H

R
r

The volume of the right circular cone is

V =
∫∫∫

W
1 dV

The projection of W onto the xy-plane is the region x2 + y2 ≤ R2, or in polar coordinates,

D : 0 ≤ θ ≤ 2π, 0 ≤ r ≤ R

x

y

D

R
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The upper and lower boundaries are the surfaces z = H and z = H
R

r , respectively. Hence W is determined by the
following cylindrical inequalities:

W : 0 ≤ θ ≤ 2π, 0 ≤ r ≤ R,
H

R
r ≤ z ≤ H

We compute the volume using the following integral:

V =
∫∫∫

W
1 dv =

∫ 2π

0

∫ R

0

∫ H

H
R

r
r dz dr dθ =

∫ 2π

0

∫ R

0
rz

∣∣∣∣H
z= Hr

R

dr dθ =
∫ 2π

0

∫ R

0
r

(
H − Hr

R

)
dr dθ

=
∫ 2π

0

∫ R

0

(
rH − r2H

R

)
dr dθ =

∫ 2π

0

r2H

2
− r3H

3R

∣∣∣∣R
r=0

dθ =
∫ 2π

0

R2H

6
dθ = R2H

6
· 2π = πR2H

3

Use cylindrical coordinates to integrate f (x, y, z) = z over the intersection of the hemisphere x2 + y2 + z2 = 4,
z ≥ 0, and the cylinder x2 + y2 = 1.

39. Use cylindrical coordinates to find the volume of a sphere of radius a from which a central cylinder of radius b has
been removed where 0 < b < a.

solution Firstly, the equation of the sphere having radius a is

x2 + y2 + z2 = a2 ⇒ r2 + z2 = a2

in cylindrical coordinates. Next, the equation of the cylinder with radius b that is being removed from the sphere is

x2 + y2 = b2 ⇒ r2 = b2 ⇒ r = b

in cylindrical coordinates. Thus the region that is remaining can be described by the following inequalities in cylindrical
coordinates:

0 ≤ θ ≤ 2π, b ≤ r ≤ a, −
√

a2 − r2 ≤ z ≤
√

a2 − r2

Thus the volume can be computed:

V =
∫∫∫

W
1 dV =

∫∫∫
W

r dz dr dθ

= 2
∫ 2π

0

∫ a

b

∫ √
a2−r2

0
r dz dr dθ

= 2
∫ 2π

0

∫ a

b
rz

∣∣∣∣
√

a2−r2

z=0
dr dθ

= 2
∫ 2

0
π

∫ a

b
r
√

a2 − r2 dr dθ

= 2
∫ 2π

0
−1

2
· 2

3

(
a2 − r2)3/2

∣∣∣∣a
r=b

dθ

= 2

3

∫ 2π

0

(
a2 − b2)3/2

dθ = 2

3

(
a2 − b2)3/2 · θ

∣∣∣∣2π

θ=0

= 4

3
π
(
a2 − b2)3/2

Find the volume of the region in Figure 22.In Exercises 41–46, use spherical coordinates to calculate the triple integral of f (x, y, z) over the given region.

41. f (x, y, z) = y; x2 + y2 + z2 ≤ 1, x, y, z ≤ 0

solution

x

D

y

−1

−1



May 19, 2011

S E C T I O N 15.4 Integration in Polar, Cylindrical, and Spherical Coordinates (LT SECTION 16.4) 517

The region inside the unit sphere in the octant x, y, z ≤ 0 is defined by the inequalities

W : π ≤ θ ≤ 3π

2
,

π

2
≤ φ ≤ π, 0 ≤ ρ ≤ 1

The function in spherical coordinates is f (x, y, z) = y = ρ sin θ sin φ. Using a triple integral in spherical coordinates,
we obtain∫∫∫

W
y dV =

∫ 3π/2

π

∫ π

π/2

∫ 1

0
(ρ sin θ sin φ)ρ2 sin φ dρ dφ dθ =

∫ 3π/2

π

∫ π

π/2

∫ 1

0
ρ3 sin θ sin2 φ dρ dφ dθ

=
(∫ 3π/2

π
sin θ dθ

)(∫ π

π/2
sin2 φ dφ

)(∫ 1

0
ρ3dρ

)
=
(

− cos θ

∣∣∣∣3π/2

π

)(
θ

2
− sin 2θ

4

∣∣∣∣π
π/2

)(
ρ4

4

∣∣∣∣1
0

)

= (−1) ·
(π

2
− π

4

)
· 1

4
= − π

16

f (x, y, z) = ρ−3; 2 ≤ x2 + y2 + z2 ≤ 4
43. f (x, y, z) = x2 + y2; ρ ≤ 1

solution W is the region inside the unit sphere, therefore it is described by the following inequalities:

W : 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π, 0 ≤ ρ ≤ 1

The function in spherical coordinates is

f (x, y, z) = x2 + y2 = (ρ cos θ sin φ)2 + (ρ sin θ sin φ)2

= ρ2 sin2 φ
(

cos2 θ + sin2 θ
)

= ρ2 sin2 φ

Using triple integrals in spherical coordinates we get∫∫∫
W

(x2 + y2) dV =
∫ 2π

0

∫ π

0

∫ 1

0
(ρ2 sin2 φ)ρ2 sin φ dρ dφ dθ

=
∫ 2π

0

∫ π

0

∫ 1

0
ρ4 sin3 φ dρ dφ dθ =

(∫ 2π

0
1 dθ

)(∫ π

0
sin3 φ dφ

)(∫ 1

0
ρ4dρ

)

=
(

θ

∣∣∣∣2π

0

)(
− sin2 θ cos θ

3
− 2

3
cos θ

∣∣∣∣π
0

)(
ρ5

5

∣∣∣∣1
0

)
= 2π ·

(
2

3
+ 2

3

)
· 1

5
= 8π

15

f (x, y, z) = 1; x2 + y2 + z2 ≤ 4z, z ≥
√

x2 + y245. f (x, y, z) =
√

x2 + y2 + z2; x2 + y2 + z2 ≤ 2z

solution We rewrite the inequality for the region using spherical coordinates:

ρ2 ≤ 2ρ cos φ ⇒ ρ ≤ 2 cos φ

Completing the square in x2 + y2 + z2 = 2z, we see that this is the equation of the sphere of radius 1 centered at (0, 0, 1).
That is,

x2 + y2 + z − 2z = 0

x2 + y2 + (z − 1)2 = 1

z

y

x

1

2

1

W is the region inside the sphere, hence θ varies from 0 to 2π , and φ varies from 0 to π
2 . The inequalities describing W

in spherical coordinates are thus

W : 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π

2
, 0 ≤ ρ ≤ 2 cos φ
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The function in spherical coordinates is

f (x, y, z) =
√

x2 + y2 + z2 = ρ.

We obtain the following integral:

I =
∫ 2π

0

∫ π/2

0

∫ 2 cos φ

0
ρ · ρ2 sin φ dρ dφ dθ =

∫ 2π

0

∫ π/2

0

∫ 2 cos φ

0
ρ3 sin φ dρ dφ dθ

=
∫ 2π

0

∫ π/2

0

ρ4 sin φ

4

∣∣∣∣2 cos φ

ρ=0
dφ dθ =

∫ 2π

0

∫ π/2

0

16 cos4 φ sin φ

4
dφ dθ

=
(∫ 2π

0
4 dθ

)(∫ π/2

0
cos4 φ sin φ dφ

)
= 8π

∫ π/2

0
cos4 φ sin φ dφ

We compute the integral using the substitution u = cos φ, du = − sin φ dφ. We obtain

I = 8π

∫ 0

1
u4(−du) = 8π

∫ 1

0
u4 du = 8π

u5

5

∣∣∣∣1
0

= 8π

5

f (x, y, z) = ρ; x2 + y2 + z2 ≤ 4, z ≤ 1, x ≥ 0
47. Use spherical coordinates to evaluate the triple integral of f (x, y, z) = z over the region

0 ≤ θ ≤ π

3
, 0 ≤ φ ≤ π

2
, 1 ≤ ρ ≤ 2

solution The function in spherical coordinates is f (x, y, z) = z = ρ cos φ. Using triple integral in spherical coordi-
nates gives

∫∫∫
W

z dV =
∫ π/3

0

∫ π/2

0

∫ 2

1
(ρ cos φ)ρ2 sin φ dρ dφ dθ =

∫ π/3

0

∫ π/2

0

∫ 2

1
ρ3 cos φ sin φ dρ dφ dθ

=
(∫ π/3

0
1 dθ

)(∫ π/2

0

1

2
sin 2φ dφ

)(∫ 2

1
ρ3dρ

)

= π

3
·
(

−1

4
cos 2φ

) ∣∣∣∣π/2

0
·
(

ρ4

4

∣∣∣∣2
1

)
= π

3
· 1

2
·
(

4 − 1

4

)
= 5

8
π

Find the volume of the region lying above the cone φ = φ0 and below the sphere ρ = R.
49. Calculate the integral of

f (x, y, z) = z(x2 + y2 + z2)−3/2

over the part of the ball x2 + y2 + z2 ≤ 16 defined by z ≥ 2.

solution

z

y

x

The equation of the sphere in spherical coordinates is ρ2 = 16 or ρ = 4.

x

y

D

4
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We write the equation of the plane z = 2 in spherical coordinates:

ρ cos φ = 2 ⇒ ρ = 2

cos φ

To compute the interval of φ, we must find the value of φ corresponding to ρ = 4 on the plane z = 2. We get

4 = 2

cos φ
⇒ cos φ = 1

2
⇒ φ = π

3

Therefore, φ is changing from 0 to π
3 , θ is changing from 0 to 2π , and ρ is changing from 2

cos φ to 4. We obtain the
following description for W:

W : 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π

3
,

2

cos φ
≤ ρ ≤ 4

The function is

f (x, y, z) = z(x2 + y2 + z2)
−3/2 = ρ cos φ · (ρ2)

−3/2 = ρ−2 cos φ

We use triple integrals in spherical coordinates to write∫∫∫
W

f (x, y, z) dV =
∫ 2π

0

∫ π/3

0

∫ 4

2/ cos φ
(ρ−2 cos φ)ρ2 sin φ dρ dφ dθ =

∫ 2π

0

∫ π/3

0

∫ 4

2/ cos φ

sin 2φ

2
dρ dφ dθ

=
∫ 2π

0

∫ π/3

0

sin 2φ

2
ρ

∣∣∣∣4
ρ= 2

cos φ

dφ dθ =
∫ 2π

0

∫ π/3

0

(
2 sin 2φ − sin 2φ

2
· 2

cos φ

)
dφ dθ

=
∫ 2π

0

∫ π/3

0
(2 sin 2φ − 2 sin φ) dφ dθ = 2π ·

(
− cos 2φ + 2 cos φ

∣∣∣∣π/3

φ=0

)

= 2π ·
(

− cos
2π

3
+ 2 cos

π

3
+ 1 − 2

)
= π

Calculate the volume of the cone in Figure 21 using spherical coordinates.51. Calculate the volume of the sphere x2 + y2 + z2 = a2, using both spherical and cylindrical coordinates.

solution Spherical coordinates: In the entire sphere of radius a, we have

W : 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π, 0 ≤ ρ ≤ a

Using triple integral in spherical coordinates we get

V =
∫∫∫

W
1 dV =

∫ 2π

0

∫ π

0

∫ a

0
ρ2 sin φ dρ dφ dθ =

(∫ a

0
ρ2dρ

)(∫ π

0
sin φ dφ

)(∫ 2π

0
1 dθ

)

=
(

ρ3

3

∣∣∣∣a
0

)(
− cos φ

∣∣∣∣π
0

)(
θ

∣∣∣∣2π

0

)
= a3

3
· 2 · 2π = 4πa3

3

Cylindrical coordinates: The projection of W onto the xy-plane is the circle of radius a, that is,

D : 0 ≤ θ ≤ 2π, 0 ≤ r ≤ a

The upper surface is z =
√

a2 − (x2 + y2) =
√

a2 − r2 and the lower surface is z = −
√

a2 − r2. Therefore, W has the
following description in cylindrical coordinates:

W : 0 ≤ θ ≤ 2π, 0 ≤ r ≤ a, −
√

a2 − r2 ≤ z ≤
√

a2 − r2

We obtain the following integral:

V =
∫ 2π

0

∫ a

0

∫ √
a2−r2

−
√

a2−r2
r dz dr dθ =

∫ 2π

0

∫ a

0
rz

∣∣∣∣
√

a2−r2

z=−
√

a2−r2
dr dθ =

∫ 2π

0

∫ a

0
2r
√

a2 − r2 dr dθ (1)

We compute the inner integral using the substitution u =
√

a2 − r2, du = − r
u dr . We get∫ a

0
2r
√

a2 − r2 dr =
∫ 0

a
−2u2 du =

∫ a

0
2u2 du = 2u3

3

∣∣∣∣a
0

= 2a3

3

Substituting in (1) gives

V =
∫ 2π

0

2a3

3
dθ = 2a3

3
θ

∣∣∣∣2π

0
= 2a3

3
· 2π = 4πa3

3
.

Let W be the region within the cylinder x2 + y2 = 2 between z = 0 and the cone z =
√

x2 + y2. Calculate the
integral of f (x, y, z) = x2 + y2 over W , using both spherical and cylindrical coordinates.
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53. Bell-Shaped Curve One of the key results in calculus is the computation of the area under the bell-shaped curve
(Figure 23):

I =
∫ ∞
−∞

e−x2
dx

This integral appears throughout engineering, physics, and statistics, and although e−x2
does not have an elementary

antiderivative, we can compute I using multiple integration.

(a) Show that I2 = J , where J is the improper double integral

J =
∫ ∞
−∞

∫ ∞
−∞

e−x2−y2
dx dy

Hint: Use Fubini’s Theorem and e−x2−y2 = e−x2
e−y2

.
(b) Evaluate J in polar coordinates.
(c) Prove that I = √

π .

21−2 −1
x

y

1

FIGURE 23 The bell-shaped curve y = e−x2
.

solution

(a) We must show that I2 = J . Firstly, consider the following:

I2 = I · I =
∫ ∞
−∞

e−x2
dx ·

∫ ∞
−∞

e−y2
dy =

∫ ∞
−∞

e−x2 · e−y2
dx dy =

∫ ∞
−∞

e−x2−y2
dx dy

This works because each integral after the first equals sign is independent of the other.
(b) The improper integral over the xy-plane can be computed as the limit as R → ∞ of the double integrals over the
disk. DR is defined by

DR : 0 ≤ θ ≤ 2π, 0 ≤ r ≤ R

x

y

R

DR

That is,

J = lim
R→∞

∫∫
DR

e−(x2+y2) dx dy (1)

We compute the double integral using polar coordinates. The function is f (x, y) = e−(x2+y2) = e−r2
, hence∫∫

DR
e−(x2+y2) dx dy =

∫ 2π

0

∫ R

0
e−r2

r dr dθ =
(∫ 2π

0
1 dθ

)(∫ R

0
e−r2

r dr

)
= 2π

∫ R

0
e−r2

r dr

We compute the integral using the substitution u = r2, du = 2r dr . We get

∫∫
DR

e−(x2+y2) dx dy = 2π

∫ R2

0
e−u du

2
= π

∫ R2

0
e−u du = π(−e−u)

∣∣∣∣R
2

0
= π(1 − e−R2

) (2)

Combining (1) and (2), we get

J = lim
R→∞

(
π
(
1 − e−R2)) = π
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On the other hand, using the Iterated Integral of a Product Function, we get

π = J =
∫ ∞
−∞

∫ ∞
−∞

e−x2−y2
dx dy =

∫ ∞
−∞

∫ ∞
−∞

e−x2 · e−y2
dx dy

=
(∫ ∞

−∞
e−x2

dx

)(∫ ∞
−∞

e−y2
dy

)
= I2

(c) That is,

I2 = π ⇒ I = √
π

Further Insights and Challenges

An Improper Multiple Integral Show that a triple integral of (x2 + y2 + z2 + 1)−2 over all of R3 is equal to

π2. This is an improper integral, so integrate first over ρ ≤ R and let R → ∞.

55. Prove the formula ∫∫
D

ln r dA = −π

2

where r =
√

x2 + y2 and D is the unit disk x2 + y2 ≤ 1. This is an improper integral since ln r is not defined at (0, 0),
so integrate first over the annulus a ≤ r ≤ 1 where 0 < a < 1, and let a → 0.

solution

ε

Dε

1

y

x

The improper integral I is computed by the limit as a → 0+ of the integrals over the annulus Da defined by

Da : 0 ≤ θ ≤ 2π, a ≤ r ≤ 1

Using double integrals in polar coordinates and integration by parts, we get

Ia =
∫ 2π

0

∫ 1

a
(ln r) · r dr dθ = 2π

∫ 1

a
r ln r dr = 2π

(
r2 ln r

2
− r2

4

∣∣∣∣1
a

)

= 2π

(
ln 1

2
− 1

4
− a2 ln a

2
+ a2

4

)
= π

2

(
a2 − 2a2 ln a − 1

)

We now compute the limit of Ia as a → 0+. We use L’Hôpital’s rule to obtain

I = lim
a→0+

π

2
(a2 − 2a2 ln a − 1) = −π

2
− π lim

a→0+ a2 ln a = −π

2
− π lim

a→0+
ln a

a−2

= −π

2
− π lim

a→0+
a−1

−2a−3
= −π

2
+ π

2
lim

a→0+ a2 = −π

2

Recall that the improper integral
∫ 1

0
x−a dx converges if and only if a < 1. For which values of a does∫∫

D
r−a dA converge, where r =

√
x2 + y2 and D is the unit disk x2 + y2 ≤ 1?

15.5 Applications of Multiple Integrals (LT Section 16.5)

Preliminary Questions
1. What is the mass density ρ(x, y, z) of a solid of volume 5 m3 with uniform mass density and total mass 25 kg?

solution Here, recall that

total mass =
∫∫∫

W
ρ(x, y, z) dV

Since we are told that the solid has volume 5, and ρ(x, y, z) is uniform (i.e. constant, let ρ(x, y, z) = ρ), we can write:

25 =
∫∫∫

W
ρ(x, y, z) dV = ρ · V (W) = 5ρ, ⇒ ρ = 5 kg/m3
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2. A domain D in R2 with uniform mass density is symmetric with respect to the y-axis. Which of the following are
true?

(a) xCM = 0 (b) yCM = 0 (c) Ix = 0 (d) Iy = 0

solution Here, the x-coordinate of the center of mass, xCM = 0 (a) since xCM = My

M
and My = ∫∫D xρ(x, y) dA.

Since ρ(x, y) = ρ(−x, y), then we see that (−x)ρ(−x, y) = −xρ(x, y) and My is an integral of an odd function over a
symmetric region, hence My = 0.

3. If p(x, y) is the joint probability density function of random variables X and Y , what does the double integral of
p(x, y) over [0, 1] × [0, 1] represent? What does the integral of p(x, y) over the triangle bounded by x = 0, y = 0, and
x + y = 1 represent?

solution The double integral of p(x, y) over [0, 1] × [0, 1] represents the probability that both X and Y are between
0 and 1. The integral of p(x, y) over the triangle bounded by x = 0, y = 0, and x + y = 1 represents the probability that
both X and Y are nonnegative and X + Y ≤ 1.

Exercises
1. Find the total mass of the square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 assuming a mass density of

ρ(x, y) = x2 + y2

solution

y

x
1

1

0

The total mass M is obtained by integrating the mass density ρ(x, y) = x2 + y2 over the square D in the xy-plane. This
gives

M =
∫∫

D
ρ(x, y) dA =

∫ 1

0

∫ 1

0

(
x2 + y2

)
dx dy =

∫ 1

0

x3

3
+ y2x

∣∣∣∣1
x=0

dy

=
∫ 1

0

(
1

3
+ y2 − 0

)
dy =

∫ 1

0

(
1

3
+ y2

)
dy = y

3
+ y3

3

∣∣∣∣1
0

= 1

3
+ 1

3
= 2

3

Calculate the total mass of a plate bounded by y = 0 and y = x−1 for 1 ≤ x ≤ 4 (in meters) assuming a mass
density of ρ(x, y) = y/x kg/m2.

3. Find the total charge in the region under the graph of y = 4e−x2/2 for 0 ≤ x ≤ 10 (in centimeters) assuming a
charge density of ρ(x, y) = 10−6xy coulombs per square centimeter.

solution The total charge C of the region is obtained by computing the double integral of charge density ρ(x, y) =
10−6xy over the region defined by the inequalities

0 ≤ x ≤ 10, 0 ≤ y ≤ 4e−x2/2

Therefore, we compute the double integral

C =
∫∫

D
ρ(x, y) dA =

∫ 10

0

∫ 4e−x2/2

0
10−6xy dy dx = 10−6

∫ 10

0

⎛
⎝1

2
xy2
∣∣∣∣4e−x2/2

y=0

⎞
⎠ dx

= 1

2
· 10−6

∫ 10

0
16xe−x2

dx = −4 · 10−6
∫ 10

0
e−x2

(−2x dx) = −4 · 10−6

(
e−x2

∣∣∣∣10

0

)

= −4 · 10−6
(
e−102 − 1

)
= 1

250,000

(
1 − e−100

)
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Find the total population within a 4-kilometer radius of the city center (located at the origin) assuming a population
density of ρ(x, y) = 2000(x2 + y2)−0.2 people per square kilometer.

5. Find the total population within the sector 2|x| ≤ y ≤ 8 assuming a population density of ρ(x, y) = 100e−0.1y

people per square kilometer.

solution The total population P of the region is obtained by computing the double integral of population density

ρ(x, y) = 100e−0.1y over the region defined by the inequality 2|x| ≤ y ≤ 8. This means the region can be split into two
vertically simple regions described by the inequalities:

0 ≤ x ≤ 4, 2x ≤ y ≤ 8

and

−4 ≤ x ≤ 4, −2x ≤ y ≤ 8

Now to compute the double integral:∫∫
D

ρ(x, y) dA =
∫∫

D1

ρ(x, y) dA +
∫∫

D2

ρ(x, y) dA

∫∫
D1

ρ(x, y) dA +
∫∫

D2

ρ(x, y) dA =
∫ 4

0

∫ 8

2x
100e−0.1y dy dx +

∫ 0

−4

∫ 8

−2x
100e−0.1y dy dx

=
∫ 4

0

100

−0.1
e−0.1y

∣∣∣∣8
y=2x

dx +
∫ 0

−4

100

−0.1
e−0.1y

∣∣∣∣8
y=−2x

dx

= −1000
∫ 4

0
e−0.8 − e−0.2x dx − 1000

∫ 0

−4
e−0.8 − e0.2x dx

= −1000

(
e−0.8x + 5e−0.2x

∣∣∣∣4
0

)
− 1000

(
e−0.8x − 5e0.2x

∣∣∣∣0−4

)

= −1000
(

4e−0.8 + 5e−0.8 − 5
)

− 1000
(
−5 + 4e−0.8 + 5e−0.8

)
= −1000

(
18e−0.8 − 10

)
≈ 1912

Find the total mass of the solid region W defined by x ≥ 0, y ≥ 0, x2 + y2 ≤ 4, and x ≤ z ≤ 32 − x (in
centimeters) assuming a mass density of ρ(x, y, z) = 6y g/cm3.

7. Calculate the total charge of the solid ball x2 + y2 + z2 ≤ 5 (in centimeters) assuming a charge density (in coulombs
per cubic centimeter) of

ρ(x, y, z) = (3 · 10−8)(x2 + y2 + z2)1/2

solution To calculate total charge, first we consider the solid ball in spherical coordinates:

x2 + y2 + z2 ≤ 5 ⇒ 0 ≤ ρ ≤ √
5, 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π

And the charge density function too, let us rename it R(x, y, z):

R(x, y, z) = (3 · 10−8)(x2 + y2 + z2)1/2 ⇒ R(ρ sin φ cos θ, ρ sin φ sin θ, ρ cos φ) = (3 · 10−8)ρ

Then integrating to compute the total charge we have:

∫ 2π

0

∫ π

0

∫ √
5

0
(3 · 10−8)ρ · ρ2 sin φ dρ dφ dθ = 3 · 10−8

∫ 2π

0

∫ π

0

∫ √
5

0
ρ3 sin φ dρ dφ dθ

= 3 · 10−8
∫ 2π

0

∫ π

0
sin φ

(
1

4
ρ4
∣∣∣∣
√

5

0

)
dφ dθ = 3 · 10−8 · 25

4

∫ 2π

0

∫ π

0
sin φ dφ dθ

= 3 · 10−8 · 25

4

∫ 2π

0
− cos φ

∣∣∣∣π
0

dθ = 3 · 10−8 · 25

4

∫ 2π

0
2 dθ = 3 · 10−8 · 25π

≈ 2.356 · 10−6

Compute the total mass of the plate in Figure 10 assuming a mass density of f (x, y) = x2/(x2 + y2) g/cm2.
9. Assume that the density of the atmosphere as a function of altitude h (in km) above sea level is ρ(h) = ae−bh

kg/km3, where a = 1.225 × 109 and b = 0.13. Calculate the total mass of the atmosphere contained in the cone-shaped
region

√
x2 + y2 ≤ h ≤ 3.

solution First we must consider the given cone in cylindrical coordinates:√
x2 + y2 ≤ z ≤ 3 ⇒ r ≤ z ≤ 3
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while

0 ≤ r ≤ 3, 0 ≤ θ ≤ 2π

And the density function as well:

ρ(x, y, z) = ae−bz ⇒ ρ(r cos θ, r sin θ, z) = ae−bz

Now to compute the total mass of the atmosphere in question:∫ θ=2π

0

∫ 3

r=0

∫ 3

z=r
ae−bz · r dz dr dθ =

∫ 2π

0

∫ 3

0

∫ 3

r
r(ae−bz) dz dr dθ

=
∫ 2π

0

∫ 3

0
r

(
−1

b
ae−bz

∣∣∣∣3
z=r

)
dr dθ

= −a

b

∫ 2π

0

∫ 3

0
re−3b − re−br dr dθ

= −a

b

∫ 2π

0

1

2
r2e−3b

∣∣∣∣3
0

−
(

−1

b
re−br − 1

b2
e−br

∣∣∣∣3
0

)
dθ

= −a

b
· 2π

(
9

2
e−3b + 3

b
e−3b + 1

b2
e−3b − 1

b2

)

Now, since a = 1.225 × 109 and b = 0.13 we have that the total mass is

−a

b
· 2π

(
9

2
e−3b + 3

b
e−3b + 1

b2
e−3b − 1

b2

)
≈ 2.593 × 1010

Calculate the total charge on a plate D in the shape of the ellipse with the polar equation

r2 =
(

1

6
sin2 θ + 1

9
cos2 θ

)−1

with the disk x2 + y2 ≤ 1 removed (Figure 11) assuming a charge density of ρ(r, θ) = 3r−4 C/cm2.

In Exercises 11–14, find the centroid of the given region.

11. Region bounded by y = 1 − x2 and y = 0

solution First we will compute the area of the region:

Area(D) =
∫ 1

−1

∫ 1−x2

0
dy dx =

∫ 1

−1
1 − x2 dx = x − 1

3
x3
∣∣∣∣1−1

= 1 − 1

3
−
(

−1 + 1

3

)
= 4

3

It is clear from symmetry that x = 0, and

y = 1

Area(D)

∫∫
D

y dA = 3

4

∫ 1

−1

∫ 1−x2

0
y dy dx

= 3

4

∫ 1

−1

1

2
y2
∣∣∣∣1−x2

0
dx = 3

8

∫ 1

−1
(1 − x2)2 dx

= 3

8

∫ 1

−1
1 − 2x2 + x4 dx = 3

8

(
x − 2

3
x3 + 1

5
x5
) ∣∣∣∣1−1

= 3

8

(
1 − 2

3
+ 1

5

)
− 3

8

(
−1 + 2

3
− 1

5

)
= 2

5

The centroid has coordinates (x, y) =
(

0,
2

5

)
.

Region bounded by y2 = x + 4 and x = 4
13. Quarter circle x2 + y2 ≤ R2, x ≥ 0, y ≥ 0

solution

x

D

y

R0

R
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The centroid P = (x, y) has the following coordinates:

x = 1

Area(D)

∫∫
D

x dA = 4

πR2

∫∫
D

x dA

y = 1

Area(D)

∫∫
D

y dA = 4

πR2

∫∫
D

y dA

We compute the integrals using polar coordinates. The domain D is described in polar coordinates by the inequalities

D : 0 ≤ θ ≤ π

2
, 0 ≤ r ≤ R

The functions are x = r cos θ and y = r sin θ , respectively. Using the Change of Variables Formula gives

x = 4

πR2

∫ π/2

0

∫ R

0
r cos θ · r dr dθ = 4

πR2

∫ π/2

0

∫ R

0
r2 cos θ dr dθ = 4

πR2

∫ π/2

0

r3 cos θ

3

∣∣∣∣R
r=0

dθ

= 4

πR2

∫ π/2

0

R3 cos θ

3
dθ = 4R

3π
sin θ

∣∣∣∣π/2

0
= 4R

3π

(
sin

π

2
− sin 0

)
= 4R

3π

And,

y = 4

πR2

∫ π/2

0

∫ R

0
r sin θ · r dr dθ = 4

πR2

∫ π/2

0

∫ R

0
r2 sin θ dr dθ = 4

πR2

∫ π/2

0

r3 sin θ

3

∣∣∣∣R
r=0

dθ

= 4

πR2

∫ π/2

0

R3 sin θ

3
dθ = 4R

3π
(− cos θ)

∣∣∣∣π/2

0
= 4R

3π

(
− cos

π

2
+ cos 0

)
= 4R

3π

Notice that we can use the symmetry of D with respect to x and y to conclude that y = x, and save the computation of

y. We obtain the centroid P =
(

4R
3π

, 4R
3π

)
.

Infinite lamina bounded by the x- and y-axes and the graph of y = e−x15. Use a computer algebra system to compute numerically the centroid of the shaded region in Figure 12

bounded by r2 = cos 2θ for x ≥ 0.

−1
x

y

r2 = cos 2θ

1

0.4

−0.4

FIGURE 12

solution Using symmetry, it is easy to see y = 0. Also, computing the area of the region,

Area = 2 · 1

2

∫ π/4

−π/4
r2 dθ =

∫ π/4

−π/4
cos 2θ dθ = 1

2
sin 2θ

∣∣∣∣π/4

−π/4
= 1

and we will compute x as

x = 1

A

∫∫
D

x dA =
∫ π/4

θ=−π/4

∫ √
cos 2θ

r=0
r cos θ · r dr dθ =

√
2

16
π ≈ 0.278

Therefore, we have that the centroid is (x, y) = (
√

2π/16, 0).

Show that the centroid of the sector in Figure 13 has y-coordinate

y =
(

2R

3

)(
sin θ

θ

)
In Exercises 17–19, find the centroid of the given solid region.

17. Hemisphere x2 + y2 + z2 ≤ R2, z ≥ 0

solution First we need to find the volume of the solid in question. It is a hemisphere, so using geometry, we have

Volume = 1

2
· 4

3
πR3 = 2πR3

3

The centroid is the point P with the following coordinates:

x = 1

V

∫∫∫
W

x dV, y = 1

V

∫∫∫
W

y dV, z = 1

V

∫∫∫
W

z dV
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By symmetry, it is clear that x = y = 0, and using spherical coordinates,

z = 1

V

∫∫∫
region

z dV = 3

2πR3

∫ 2π

0

∫ π/2

0

∫ R

0
ρ cos φ · ρ2 sin φ dρ dφ dθ

= 3

2πR3

∫ 2π

0

∫ π/2

0

∫ R

0
ρ3 cos φ sin φ dρ dφ dθ

= 3

2πR3

∫ 2π

0
1 dθ ·

∫ π/2

0
cos φ sin φ dφ ·

∫ R

0
ρ3 dρ

= 3

2πR3
· 2π

(
1

2
sin2 φ

∣∣∣∣π/2

0

)(
1

4
ρ4
∣∣∣∣R
0

)
= 3

2πR3
· 2π · 1

2
· 1

4
R4 = 3R

8

Therefore, the coordinates of the centroid of a hemisphere having radius R, are (0, 0, 3R/8).

Region bounded by the xy-plane, the cylinder x2 + y2 = R2, and the plane x/R + z/H = 1, where R > 0 and
H > 0

19. The “ice cream cone” region W bounded, in spherical coordinates, by the cone φ = π/3 and the sphere ρ = 2

solution First we must find the volume of this solid:

V =
∫ 2π

θ=0

∫ π/3

φ=0

∫ 2

ρ=0
ρ2 sin φ dρ dφ dθ

= 2π

(∫ π/3

0
sin φ dφ

)(∫ 2

0
ρ2 dρ

)
= 2π · 8

3

(
− cos φ

∣∣∣∣π/3

0

)

= 16π

3
· 1

2
= 8π

3

And now compute the coordinates of the centroid. By symmetry, it is clear that x = y = 0.

z = 1

V

∫∫∫
W

z dV = 3

8π

∫ 2π

θ=0

∫ π/3

φ=0

∫ 2

ρ=0
ρ cos φ · ρ2 sin φ dρ dφ dθ

= 3

8π

∫ 2π

0
dθ ·

∫ π/3

0
cos φ sin φ dφ ·

∫ 2

0
ρ3 dρ

= 3

8π
· 2π ·

(
1

2
sin2 φ

∣∣∣∣π/3

0

)(
1

4
ρ4
∣∣∣∣2
0

)
= 3

4

(
1

2
· 3

4

)
(4) = 9

8

The coordinates of the centroid are (0, 0, 9/8).

Show that the z-coordinate of the centroid of the tetrahedron bounded by the coordinate planes and the plane

x

a
+ y

b
+ z

c
= 1

in Figure 14 is z = c/4. Conclude by symmetry that the centroid is (a/4, b/4, c/4).

21. Find the centroid of the region W lying above the sphere x2 + y2 + z2 = 6 and below the paraboloid z = 4 − x2 − y2

(Figure 15).

z

z = 4 − x2 − y2

y

x

4

W

2

6
2

x2 + y2 + z2 = 6

FIGURE 15

solution The centroid is the point P with the following coordinates:

x = 1

V

∫∫∫
W

x dV, y = 1

V

∫∫∫
W

y dV, z = 1

V

∫∫∫
W

z dV

In a previous section we showed that the volume of the region is V = 1.54π . We also showed that D has the following
definition in cylindrical coordinates:

0 ≤ θ ≤ 2π, 0 ≤ r ≤ √
2,

√
6 − r2 ≤ z ≤ 4 − r2
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Using this information we compute the coordinates of the centroid by the following integrals:

x = 1

1.54π

∫ 2π

0

∫ √
2

0

∫ 4−r2

√
6−r2

(r cos θ)r dz dr dθ = 1

1.54π

∫ 2π

0

∫ √
2

0
r2 cos θz

∣∣∣∣4−r2

z=
√

6−r2
dr dθ

= 1

1.54π

∫ 2π

0

∫ √
2

0
r2 cos θ

(
4 − r2 −

√
6 − r2

)
dr dθ

= 1

1.54π

∫ 2π

0
cos θ

∫ √
2

0

(
4r2 − r4 − r2

√
6 − r2

)
dr dθ (1)

We denote the inner integral by a and compute the second integral to obtain

x = 1

1.54π

∫ 2π

0
cos θ · a dθ = 1

1.54π
a sin θ

∣∣∣∣2π

0
= 0

The value x = 0 is the result of the symmetry of W with respect to the yz-plane. Similarly, since W is symmetric with
respect to the xz-plane, the average value of the y-coordinate is zero.

y = 0:

x

z

y

We compute the z-coordinate of the centroid:

z = 1

1.54π

∫ 2π

0

∫ √
2

0

∫ 4−r2

√
6−r2

zr dz dr dθ = 1

1.54π

∫ 2π

0

∫ √
2

0

z2r

2

∣∣∣∣4−r2

z=
√

6−r2
dr dθ

= 1

1.54π

∫ 2π

0

∫ √
2

0

r

2

(
(4 − r2)

2 −
(√

6 − r2
)2
)

dr dθ

= 1

2 · 1.54π

∫ 2π

0

∫ √
2

0
(r5 − 7r3 + 10r) dr dθ

= 1

3.08π

∫ 2π

0

r6

6
− 7r4

4
+ 5r2

∣∣∣∣
√

2

r=0
dθ = 1

3.08π
· 13

3
· 2π ≈ 2.81

Therefore the centroid of W is

P = (0, 0, 2.81).

Let R > 0 and H > 0, and let W be the upper half of the ellipsoid x2 + y2 + (Rz/H)2 = R2 where z ≥ 0
(Figure 16). Find the centroid of W and show that it depends on the height H but not on the radius R.

In Exercises 23–26, find the center of mass of the region with the given mass density ρ.

23. Region bounded by y = 4 − x, x = 0, y = 0; ρ(x, y) = x

solution The mass of the region is

M =
∫ 4

0

∫ 4−x

0
x dy dx =

∫ 4

0
xy

∣∣∣∣4−x

0
dx =

∫ 4

0
4x − x2 dx = 2x2 − 1

3
x3
∣∣∣∣4
0

= 32 − 64

3
= 32

3

and we have

Mx =
∫ 4

0

∫ 4−x

0
yx dy dx =

∫ 4

0

1

2
xy2
∣∣∣∣4−x

0
dx = 1

2

∫ 4

0
16x − 8x2 + x3 dx

= 1

2

(
8x2 − 8

3
x3 + 1

4
x4
) ∣∣∣∣4

0
= 1

2

(
128 − 512

3
+ 64

)
= 32

3
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and

My =
∫ 4

0

∫ 4−x

0
x2 dy dx =

∫ 4

0
x2y

∣∣∣∣4−x

0
dx =

∫ 4

0
4x2 − x3 dx

=
(

4

3
x3 − 1

4
x4
) ∣∣∣∣4

0
= 256

3
− 64 = 64

3

and thus the center of mass is (
My

M
,
Mx

M

)
=
(

64

3
· 3

32
,

32

3
· 3

32

)
= (2, 1)

Region bounded by y2 = x + 4 and x = 0; ρ(x, y) = |y|
25. Region |x| + |y| ≤ 1; ρ(x, y) = (x + 1)(y + 1)

solution For x ≤ 0, the region is defined by −1 ≤ x ≤ 0 and −1 − x ≤ y ≤ 1 + x; for x ≥ 0, it is parameterized by
0 ≤ x ≤ 1 and −1 + x ≤ y ≤ 1 − x. The mass of the region is thus

M =
∫ 0

−1

∫ 1+x

−1−x
(x + 1)(y + 1) dy dx +

∫ 1

0

∫ 1−x

x−1
(x + 1)(y + 1) dy dx

= 1

2

(∫ 0

−1
(x + 1)(y + 1)2

∣∣∣∣1+x

y=−1−x

dx +
∫ 1

0
(x + 1)(y + 1)2

∣∣∣∣1−x

y=x−1
dx

)

= 1

2

(∫ 0

−1
(x + 1)((x + 2)2 − (−x)2) dx +

∫ 1

0
(x + 1)((2 − x)2 − x2) dx

)

= 1

2

(∫ 0

−1
4(x + 1)2 dx +

∫ 1

0
4(1 − x2) dx

)

= 2

((
1

3
(x + 1)3

) ∣∣∣∣0−1
+
(

x − 1

3
x3
) ∣∣∣∣1

0

)
= 2

(
1

3
+
(

1 − 1

3

))
= 2

We have

Mx =
∫ 0

−1

∫ 1+x

−1−x
y(x + 1)(y + 1) dy dx +

∫ 1

0

∫ 1−x

x−1
y(x + 1)(y + 1) dy dx

=
∫ 0

−1

∫ 1+x

−1−x
(x + 1)(y2 + y) dy dx +

∫ 1

0

∫ 1−x

x−1
(x + 1)(y2 + y) dy dx

=
∫ 0

−1
(x + 1)

(
1

3
y3 + 1

2
y2
) ∣∣∣∣1+x

y=−1−x

dx +
∫ 1

0
(x + 1)

(
1

3
y3 + 1

2
y2
) ∣∣∣∣1−x

y=x−1
dx

=
∫ 0

−1
(x + 1)

(
2

3
+ 2x + 2x2 + 2

3
x3
)

dx +
∫ 1

0
(x + 1)

(
2

3
− 2x + 2x2 − 2

3
x3
)

dx

=
∫ 0

−1

2

3
x4 + 8

3
x3 + 4x2 + 8

3
x + 2

3
dx +

∫ 1

0
−2

3
x4 + 4

3
x3 − 4

3
x + 2

3
dx

=
(

2

15
x5 + 2

3
x4 + 4

3
x3 + 4

3
x2 + 2

3
x

) ∣∣∣∣0−1
+
(

− 2

15
x5 + 1

3
x4 − 2

3
x3 + 2

3
x

) ∣∣∣∣1
0

= 2

15
+ 1

5
= 1

3

Since the region and the density function are symmetric in x and y, we must have also My = Mx = 1
3 . Then the center

of mass is (
My

M
,
Mx

M

)
=
(

1

3
· 1

2
,

1

3
· 1

2

)
=
(

1

6
,

1

6

)

Semicircle x2 + y2 ≤ R2, y ≥ 0; ρ(x, y) = y
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27. Find the z-coordinate of the center of mass of the first octant of the unit sphere with mass density ρ(x, y, z) = y

(Figure 17).

1
1

x

z

y

FIGURE 17

solution We use spherical coordinates:

x = ρ cos θ sin φ, y = ρ sin θ sin φ, z = ρ cos φ

dV = ρ2 sin φ dρ dφ dθ

The octant W is defined by 0 ≤ θ ≤ π
2 , 0 ≤ φ ≤ π

2 , 0 ≤ ρ ≤ 1, so we have

Mxy =
∫∫∫

W
z ρ(x, y, z) dV =

∫ π/2

θ=0

∫ π/2

φ=0

∫ 1

ρ=0
(ρ cos φ)(ρ sin θ sin φ) ρ2 sin φ dρ dφ dθ

=
( ∫ π/2

θ=0
sin θ dθ

)( ∫ π/2

φ=0
cos φ sin2 φ dφ

)( ∫ 1

ρ=0
ρ4 dρ

)

= (1)

(
1

3
sin3 φ

∣∣∣π/2

0

)(
1

5

)
= 1

15

The total mass M of W is equal to the integral of the mass density ρ(x, y, z):

M =
∫∫∫

W
ρ(x, y, z) dV =

∫ π/2

θ=0

∫ π/2

φ=0

∫ 1

ρ=0
(ρ sin θ sin φ) ρ2 sin φ dρ dφ dθ

=
( ∫ π/2

θ=0
sin θ dθ

)( ∫ π/2

φ=0
sin2 φ dφ

)( ∫ 1

ρ=0
ρ3 dρ

)
= (1)

(π

4

)
(

1

4
) = π

16

We conclude that

zCM = 1

M

∫∫∫
W

z ρ(x, y, z) dV = 1/15

π/16
= 16

15π
≈ 0.34

Find the center of mass of a cylinder of radius 2 and height 4 and mass density e−z, where z is the height above
the base.

29. Let R be the rectangle [−a, a] × [b, −b] with uniform density and total mass M . Calculate:
(a) The mass density ρ of R
(b) Ix and I0
(c) The radius of gyration about the x-axis

solution
(a) The mass density is simply the mass per unit area since the density is uniform; this is

M

4ab

(b) We have

Ix =
∫∫

R
y2ρ(x, y) dA = M

4ab

∫ a

−a

∫ b

−b
y2 dy dx = 2aM

4ab

∫ b

−b
y2 dy

= M

2b
· 1

3
y3
∣∣∣∣b−b

= 1

3
Mb2

and

I0 =
∫∫

R
(x2 + y2)ρ(x, y) dA = M

4ab

∫ a

−a

∫ b

−b
x2 + y2 dy dx = M

4ab

∫ a

−a
x2y + 1

3
y3
∣∣∣∣b−b

dx

= 2M

4ab

∫ a

−a
x2b + 1

3
b3 dx = M

2ab

(
b

3
x3 + b3

3
x

) ∣∣∣∣a−a

= M

2ab

(
2

3
ba3 + 2

3
b3a

)
= 1

3
M(a2 + b2)
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(c) The radius of gyration about the x-axis is defined to be

√
Ix

M
=
√

Mb2

3
· 1

M
= b√

3

Calculate Ix and I0 for the rectangle in Exercise 29 assuming a mass density of ρ(x, y) = x.31. Calculate I0 and Ix for the disk D defined by x2 + y2 ≤ 16 (in meters), with total mass 1000 kg and uniform mass
density. Hint: Calculate I0 first and observe that I0 = 2Ix . Express your answer in the correct units.

solution Note that the area of the disk is πr2 = 16π so that the mass density is

ρ(x, y) = 1000

16π
= 125

2π

Then using polar coordinates we have

I0 =
∫∫

D
(x2 + y2)

125

2π
dA = 125

2π

∫ 4

0

∫ 2π

0
r2 · r dθ dr = 125 · 1

4
r4
∣∣∣∣4
0

= 125 · 64 = 8000 kg-m2

Since both the region and the mass density are symmetric in x and y, we have Ix = Iy . But then I0 = Ix + Iy = 2Ix so
that

Ix = 4000 kg-m2

Calculate Ix and Iy for the half-disk x2 + y2 ≤ R2, x ≥ 0 (in meters), of total mass M kg and uniform mass
density.

In Exercises 33–36, let D be the triangular domain bounded by the coordinate axes and the line y = 3 − x, with mass
density ρ(x, y) = y. Compute the given quantities.

33. Total mass

solution The total mass is simply

∫∫
D

ρ(x, y) dA =
∫ 3

0

∫ 3−x

0
y dy dx = 1

2

∫ 3

0
y2
∣∣∣∣3−x

0
dx = 1

2

∫ 3

0
(3 − x)2 dx = −1

6
(3 − x)3

∣∣∣∣3
0

= 27

6
= 9

2

Center of Mass
35. Ix

solution

Ix =
∫∫

D
y2ρ(x, y) dA =

∫ 3

0

∫ 3−x

0
y3 dy dx = 1

4

∫ 3

0
(3 − x)4 dx

= − 1

20
(3 − x)5

∣∣∣∣3
0

= 1

20
35 = 243

20

I0In Exercises 37–40, let D be the domain between the line y = bx/a and the parabola y = bx2/a2 where a, b > 0.
Assume the mass density is ρ(x, y) = xy. Compute the given quantities.

37. Centroid

solution The curves intersect at x = 0 and at x = a. The area is

A =
∫∫

D
1 dA =

∫ a

0

∫ bx/a

bx2/a2
1 dy dx =

∫ a

0

bx

a
− bx2

a2
dx

=
(

bx2

2a
− bx3

3a2

) ∣∣∣∣a
0

= ab

2
− ab

3
= ab

6

Then

x = 1

A

∫∫
D

x dA = 6

ab

∫ a

0

∫ bx/a

bx2/a2
x dy dx = 6

ab

∫ a

0
x

(
bx

a
− bx2

a2

)
dx

= 6

ab

∫ a

0

b

a
x2 − b

a2
x3 dx = 6

ab

(
b

3a
a3 − b

4a2
a4
)

= 6

ab

(
a2b

3
− a2b

4

)
= a

2
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and

y = 1

A

∫∫
D

y dA = 6

ab

∫ a

0

∫ bx/a

bx2/a2
y dy dx = 6

2ab

∫ a

0
y2
∣∣∣∣bx/a

bx2/a2
dx

= 3

ab

∫ a

0

b2

a2
x2 − b2

a4
x4 dx = 3

ab

(
b2

3a2
x3 − b2

5a4
x5

) ∣∣∣∣a
0

= 3

ab

(
ab2

3
− ab2

5

)
= 2b

5

Center of Mass
39. Ix

solution The curves intersect at x = 0 and at x = a, so

Ix =
∫∫

D
y2ρ(x, y) dA =

∫ a

0

∫ bx/a

bx2/a2
xy3 dy dx = 1

4

∫ a

0
xy4
∣∣∣∣bx/a

bx2/a2
dx

= 1

4

∫ a

0
x

(
b4

a4
x4 − b4

a8
x8

)
dx = b4

4a8

∫ a

0
a4x5 − x9 dx

= b4

4a8

(
a4

6
x6 − 1

10
x10

) ∣∣∣∣a
0

= b4

4a8

(
a10

6
− a10

10

)
= a2b4

60

I0
41. Calculate the moment of inertia Ix of the disk D defined by x2 + y2 ≤ R2 (in meters) with total mass M kg. How
much kinetic energy (in joules) is required to rotate the disk about the x-axis with angular velocity 10 rad/s?

solution The area of the disk is πR2, so its mass density is

ρ(x, y) = M

πR2

We compute Ix using polar coordinates:

Ix =
∫∫

D
y2ρ(x, y) dA = M

πR2

∫ 2π

0

∫ R

0
(r sin θ)2r dr dθ = M

πR2

∫ 2π

0

∫ R

0
r3 sin2 θ dr dθ

= M

πR2

(∫ 2π

0
sin2 θ dθ

)(∫ R

0
r3 dr

)

= M

πR2
· π · R4

4
= 1

4
MR2

It follows that the kinetic energy required to rotate the disk about the x-axis with angular velocity 10 rad/s is

1

2
Ixω2 = 1

8
MR2 · 100 = 25

2
MR2 joules

Calculate the moment of inertia Iz of the box W = [−a, a] × [−a, a] × [0, H ] assuming that W has total mass
M .

43. Show that the moment of inertia of a sphere of radius R of total mass M with uniform mass density about any axis
passing through the center of the sphere is 2

5MR2. Note that the mass density of the sphere is ρ = M/
( 4

3πR3).
solution Since the sphere is symmetric under an arbitrary rotation, and since the mass density is uniform, it follows
that the moments of inertia of the sphere about all axes passing through its center are equal. Thus it suffices to prove the
result for an arbitrary axis; we choose the z-axis. Then, using spherical coordinates, we have

Iz =
∫∫∫

S
(x2 + y2)ρ(x, y, z) dA

= 3M

4πR3

∫ 2π

0

∫ π

0

∫ R

0
((r cos θ sin φ)2 + (r sin θ sin φ)2)r2 sin φ dr dθ dφ

= 3M

4πR3

∫ 2π

0

∫ π

0

∫ R

0
r4 sin3 φ dr dθ dφ = 3M

4πR3
· 2π

(∫ π

0
sin3 φ dφ

)(∫ R

0
r4 dr

)

= 3M

2R3
· 4

3
· 1

5
R5 = 2

5
MR2

Use the result of Exercise 43 to calculate the radius of gyration of a uniform sphere of radius R about any axis
through the center of the sphere.
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In Exercises 45 and 46, prove the formula for the right circular cylinder in Figure 18.

R

H

y

x

z

FIGURE 18

45. Iz = 1
2MR2

solution Assuming the cylinder has uniform mass density 1, and using cylindrical coordinates, we have

Iz =
∫∫∫

C
(x2 + y2)ρ(x, y, z) dA =

∫ R

0

∫ 2π

0

∫ H/2

−H/2
r2 · r dz dθ dr

= 2πH

∫ R

0
r3 dr = 1

2
πR4H

But the volume of the cylinder, which is equal to its mass, is πR2H , so that

Iz = 1

2
πR4H = 1

2
MR2

Ix = 1
4MR2 + 1

12MH 2
47. The yo-yo in Figure 19 is made up of two disks of radius r = 3 cm and an axle of radius b = 1 cm. Each disk has
mass M1 = 20 g, and the axle has mass M2 = 5 g.

(a) Use the result of Exercise 45 to calculate the moment of inertia I of the yo-yo with respect to the axis of symmetry.
Note that I is the sum of the moments of the three components of the yo-yo.

(b) The yo-yo is released and falls to the end of a 100-cm string, where it spins with angular velocity ω. The total mass of
the yo-yo is m = 45 g, so the potential energy lost is PE = mgh = (45)(980)100 g-cm2/s2. Find ω under the assumption
that one-third of this potential energy is converted into rotational kinetic energy.

Axle of radius b

r

FIGURE 19

solution

(a) If the figure is rotated by 90◦, it looks like three right circular cylinders oriented as in Exercise 45. The moment of
inertia of each of the disks around the axis of rotation is thus

1

2
MR2 = 1

2
· 20 · 32 = 90 g-cm2

and the moment of inertia of the axle around the axis of rotation is

1

2
MR2 = 1

2
· 5 · 12 = 5

2
g-cm2

Thus the total moment of inertia of the yo-yo around its axis of rotation is

2 · 90 + 5

2
= 182.5 g-cm2
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(b) If one third of the potential energy is converted to kinetic energy, then

1

3
· 45 · 980 · 100 = 1

2
· 182.5 · ω2 g-cm2

so that

ω =
√

2

3
· 45 · 980 · 100

182.5
≈ 127 radians/sec = 127

2π
≈ 20.2 rotations/sec

Calculate Iz for the solid region W inside the hyperboloid x2 + y2 = z2 + 1 between z = 0 and z = 1.
49. Calculate P(0 ≤ X ≤ 2; 1 ≤ Y ≤ 2), where X and Y have joint probability density function

p(x, y) =
{

1
72 (2xy + 2x + y) if 0 ≤ x ≤ 4 and 0 ≤ y ≤ 2

0 otherwise

solution The region 0 ≤ X ≤ 2; 1 ≤ Y ≤ 2 falls into the region where p(x, y) is defined by the first line of the given
formula, so that

P(0 ≤ X ≤ 2; 1 ≤ Y ≤ 2) =
∫ 2

0

∫ 2

1

1

72
(2xy + 2x + y) dy dx = 1

72

∫ 2

0

(
xy2 + 2xy + 1

2
y2
) ∣∣∣∣2

1
dx

= 1

72

∫ 2

0
5x + 3

2
dx = 1

72

(
5

2
x2 + 3

2
x

) ∣∣∣∣2
0

= 1

72
· 13 = 13

72
≈ 0.18

Calculate the probability that X + Y ≤ 2 for random variables with joint probability density function as in
Exercise 49.

51. The lifetime (in months) of two components in a certain device are random variables X and Y that have joint probability
distribution function

p(x, y) =
{

1
9216 (48 − 2x − y) if x ≥ 0, y ≥ 0, 2x + y ≤ 48

0 otherwise

Calculate the probability that both components function for at least 12 months without failing. Note that p(x, y) is nonzero
only within the triangle bounded by the coordinate axes and the line 2x + y = 48 shown in Figure 20.

2x + y = 48

x (months)
12 24

Region where x ≥ 12, y ≥ 12

and 2x + y ≤ 48

36

24

12

48

y (months)

FIGURE 20

solution Both components function for at least 12 months without failing if X + Y ≥ 12; however, we must also
have 2X + Y ≤ 48. Then the region of integration is the shaded triangle in the figure; the lower left corner of that triangle
is (12, 12). One of the remaining vertices is the intersection of x = 12 and 2x + y = 48; solving for y we have y = 24,
so the point is (12, 24). The other vertex is the intersection of y = 12 and 2x + y = 48; solving for x gives x = 18, so
the point is (18, 12). The region of integration is then 12 ≤ x ≤ 18 and 12 ≤ y ≤ 48 − 2x. Thus the probability is

P(X ≥ 12, Y ≥ 12) =
∫ 18

12

∫ 48−2x

12

1

9216
(48 − 2x − y) dy dx

= 1

9216

∫ 18

12

(
48y − 2xy − 1

2
y2
) ∣∣∣∣48−2x

12
dx

= 1

9216

∫ 18

12
1800 − 96x − 2x(36 − 2x) − 1

2
(48 − 2x)2 dx

= 1

9216

(
1800x − 48x2 − 36x2 + 4

3
x3 + 1

12
(48 − 2x)3

) ∣∣∣∣18

12

= 144

9216
= 1

64
= .015625
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Find a constant C such that

p(x, y) =
{
Cxy if 0 ≤ x and 0 ≤ y ≤ 1 − x

0 otherwise

is a joint probability density function. Then calculate

(a) P
(
X ≤ 1

2 ; Y ≤ 1
4

)
(b) P(X ≥ Y )

53. Find a constant C such that

p(x, y) =
{
Cy if 0 ≤ x ≤ 1 and x2 ≤ y ≤ x

0 otherwise

is a joint probability density function. Then calculate the probability that Y ≥ X3/2.

solution p(x, y) is a joint probability density function if

1 =
∫ 1

0

∫ x

x2
p(x, y) dy dx =

∫ 1

0

∫ x

x2
Cy dy dx

= C

2

∫ 1

0
y2
∣∣∣∣x
x2

dx = C

2

∫ 1

0
x2 − x4 dx = C

15

so that we must have C = 15. Now, for 0 ≤ x ≤ 1 we have x2 ≤ x3/2 ≤ x, so that

P(Y ≥ X3/2) =
∫ 1

0

∫ x

x3/2
15y dy dx = 15

2

∫ 1

0
y2
∣∣∣∣x
x3/2

dx

= 15

2

∫ 1

0
x2 − x3 dx = 15

2

(
1

3
− 1

4

)
= 15

24
= 5

8
= 0.375

Numbers X and Y between 0 and 1 are chosen randomly. The joint probability density is p(x, y) = 1 if 0 ≤ x ≤ 1
and 0 ≤ y ≤ 1, and p(x, y) = 0 otherwise. Calculate the probability P that the product XY is at least 1

2 .

55. According to quantum mechanics, the x- and y-coordinates of a particle confined to the region R = [0, 1] × [0, 1]
are random variables with joint probability density function

p(x, y) =
{
C sin2(2π�x) sin2(2πny) if (x, y) ∈ R
0 otherwise

The integers � and n determine the energy of the particle, and C is a constant.

(a) Find the constant C.

(b) Calculate the probability that a particle with � = 2, n = 3 lies in the region
[
0, 1

4

]× [0, 1
8

]
.

solution
(a) We have

∫ 1

0

∫ 1

0
C sin2(2π�x) sin2(2πny) dx dy = C

(∫ 1

0
sin2(2π�x)2 dx

)(∫ 1

0
sin2(2πny)2 dy

)

Now, since � is an integer, using the substitution u = 2π�x, du = 2π� dx, we have∫ 1

0
sin2(2π�x) dx = 1

2π�

∫ 2π�

0
sin2 u du = 1

2π�

(
1

2
u − 1

2
sin u cos u

) ∣∣∣∣2π�

0

= 1

2π�

(
π� − 1

2
sin(2π�) cos(2π�) + 1

2
sin 0 cos 0

)
= 1

2

and the same is true of
∫ 1

0 sin2(2πny) dy. Thus the value of the entire integral is C 1
2 · 1

2 = C
4 . In order for this to be a

joint probability density function, then, we must have C = 4.

(b) We compute

∫ 1/4

0

∫ 1/8

0
4 sin2(2π · 2x) sin2(2π · 3y) dy dx = 4

(∫ 1/4

0
sin2(4πx) dx

)(∫ 1/8

0
sin2(6πy) dy

)

= 4

(
1

4π

∫ π

0
sin2 u du

)(
1

6π

∫ 3π/4

0
sin2 v dv

)

= 4

(
1

4π
· π

2

)(
1

6π
·
(

3π

8
+ 1

4

))

= 4

(
1

8

)(
1

16
+ 1

24π

)
= 1

32
+ 1

48π
≈ 0.03788

The wave function for the 1s state of an electron in the hydrogen atom is

ψ1s(ρ) = 1√
πa3

0

e−ρ/a0

where a0 is the Bohr radius. The probability of finding the electron in a region W of R3 is equal to∫∫∫
W

p(x, y, z) dV

where in spherical coordinates

57. According to Coulomb’s Law, the force between two electric charges of magnitude q1 and q2 separated by

a distance r is kq1q2/r2 (k is a negative constant). Let F be the net force on a charged particle P of charge Q coulombs
located d centimeters above the center of a circular disk of radius R with a uniform charge distribution of density ρ C/m2

(Figure 21). By symmetry, F acts in the vertical direction.
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(a) Let R be a small polar rectangle of size �r × �θ located at distance r . Show that R exerts a force on P whose
vertical component is (

kρQd

(r2 + d2)3/2

)
r �r �θ

(b) Explain why F is equal to the following double integral, and evaluate:

F = kρQd

∫ 2π

0

∫ R

0

r dr dθ

(r2 + d2)3/2

R

d
Charged plate

Δr

Δ

P

FIGURE 21

solution
(a) The area of the small polar rectangle R is

�A = 1

2
(r + �r)2�θ − 1

2
r2�θ = r(�r�θ) + 1

2
�r2�θ ≈ r(�r�θ)

Therefore, the charge on R is q1 = ρr(�r�θ). The distance between P and R is, by the Pythagorean Law,
√

r2 + d2.

r2 + d2 d

Δr
rΔ

P

ΔA

Therefore, the magnitude of the force between P and R is

kq1q2(√
r2 + d2

)2
= k (ρr�r�θ) Q

r2 + d2
= kρQ

r2 + d2
r�r�θ

The vertical component of this force is obtained by multiplying the force by cos α = d√
r2+d2

. That is,

Fvert = kρQ

r2 + d2
· d√

r2 + d2
r�r�θ = kρQd

(r2 + d2)
3/2

r�r�θ

(b) Since F acts in the vertical direction, it is approximated by the Riemann sum of the forces Fvert in part (a), over the
polar rectangles. This Riemann sum approximates F in higher precision if we let �θ → 0 and �r → 0. The result is the
double integral of kρQd

(r2+d2)
3/2 over the disk. The disk is determined by 0 ≤ θ ≤ 2π and 0 ≤ r ≤ R. Therefore we get

F =
∫ R

0

∫ 2π

0

kρQd

(r2 + d2)3/2
r dr dθ = 2πkρQd

∫ R

0

∫ 2π

0

r dr dθ

(r2 + d2)3/2

Using the u-substitution of u = r2 + d2, du = 2r dr , we continue

F = 2πkρQd

∫ R

0

r dr

(r2 + d2)3/2
= 2πkρQd · 1

2

∫ R2+d2

d2
u−3/2 du = −πkρQdu−1/2

∣∣∣∣R
2+d2

d2

= πkρQd

(
1

d
− 1√

R2 + d2

)

Let D be the annular region

−π

2
≤ θ ≤ π

2
, a ≤ r ≤ b
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Further Insights and Challenges
59. Let D be the domain in Figure 22. Assume that D is symmetric with respect to the y-axis; that is, both g1(x) and
g2(x) are even functions.

(a) Prove that the centroid lies on the y-axis—that is, that x = 0.
(b) Show that if the mass density satisfies ρ(−x, y) = ρ(x, y), then My = 0 and xCM = 0.

y = g2(x)

y = g1(x)

x
a−a

y

FIGURE 22

solution
(a) Assume D has area A. Then the x coordinate of the centroid is

x = 1

A

∫∫
D

x dA = 1

A

∫ a

−a

∫ g2(x)

g1(x)
x dy dx = 1

A

∫ a

−a
x(g2(x) − g1(x)) dx

Since g1 and g2 are both even functions, x(g2(x) − g1(x)) is an odd function, so its integral over a region symmetric
about the x-axis is zero. Thus x = 0.
(b) Let R(x, y) be an antiderivative of ρ(x, y) with respect to y, i.e. R(x, y) = ∫ ρ(x, y) dy. Note that

R(−x, y) =
∫

ρ(−x, y) dy =
∫

ρ(x, y) dy = R(x, y)

so that R is an even function with respect to x. Now, we have

My

∫∫
D

xρ(x, y) dA =
∫ a

−a

∫ g2(x)

g1(x)
xρ(x, y) dy dx =

∫ a

−a
x(R(x, g2(x)) − R(x, g1(x)) dx

Since g1, g2, and R are all even functions of x, we have

R(−x, g2(−x)) − R(−x, g1(−x)) = R(−x, g2(x)) − R(−x, g1(x)) = R(x, g2(x)) − R(x, g1(x))

so that the second factor in the integrand is an even function of x. But x is an odd function of x, so their product is odd.
It follows that the integral over the range −a ≤ x ≤ a is zero. Thus My = xCM = 0.

Pappus’s Theorem Let A be the area of the region D between two graphs y = g1(x) and y = g2(x) over the
interval [a, b], where g2(x) ≥ g1(x) ≥ 0. Prove Pappus’s Theorem: The volume of the solid obtained by revolving
D about the x-axis is V = 2πAy, where y is the y-coordinate of the centroid of D (the average of the y-coordinate).
Hint: Show that

Ay =
∫ b

x=a

∫ g2(x)

y=g1(x)
y dy dx

61. Use Pappus’s Theorem in Exercise 60 to show that the torus obtained by revolving a circle of radius b centered at
(0, a) about the x-axis (where b < a) has volume V = 2π2ab2.

solution The centroid of the circle is obviously at the center, (0, a), and the area of the circle is πb2, so that by Pappus’
theorem,

V = 2ππb2a = 2πab2

Use Pappus’s Theorem to compute y for the upper half of the disk x2 + y2 ≤ a2, y ≥ 0. Hint: The disk revolved
about the x-axis is a sphere.

63. Parallel-Axis Theorem Let W be a region in R3 with center of mass at the origin. Let Iz be the moment of inertia
of W about the z-axis, and let Ih be the moment of inertia about the vertical axis through a point P = (a, b, 0), where

h =
√

a2 + b2. By definition,

Ih =
∫∫∫

W
((x − a)2 + (y − b)2)ρ(x, y, z) dV

Prove the Parallel-Axis Theorem: Ih = Iz + Mh2.

solution We have

Ih − Iz =
∫∫∫

W
((x − a)2 + (y − b)2)ρ(x, y, z) dV −

∫∫∫
W

(x2 + y2)ρ(x, y, z) dV

=
∫∫∫

W
(−2ax + a2 − 2by + b2)ρ(x, y, z) dV

= (a2 + b2)

∫∫∫
W

ρ(x, y, z) dV − 2a

∫∫∫
W

xρ(x, y, z) dV − 2b

∫∫∫
W

yρ(x, y, z) dV

= (a2 + b2)M − 2aMyz − 2bMxz = Mh2

since the last two terms are zero because the center of mass of W is at the origin.

Let W be a cylinder of radius 10 cm and height 20 cm, with total mass M = 500 g. Use the Parallel-Axis Theorem
(Exercise 63) and the result of Exercise 45 to calculate the moment of inertia of W about an axis that is parallel to
and at a distance of 30 cm from the cylinder’s axis of symmetry.
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15.6 Change of Variables (LT Section 16.6)

Preliminary Questions
1. Which of the following maps is linear?

(a) (uv, v) (b) (u + v, u) (c) (3, eu)

solution
(a) This map is not linear since it does not satisfy the linearity property:


(2u, 2v) = (2u · 2v, 2v) = (4uv, 2v) = 2(2uv, v)

2
(u, v) = 2(uv, v) ⇒ 
(2u, 2v) �= 2
(u, v)

(b) This map is linear since it has the form 
(u, v) = (Au + Cv, Bu + Dv) where A = C = 1, B = 1, D = 0.
(c) This map is not linear since it does not satisfy the linearity properties. For example,


(2u, 2v) = (3, e2u)

2
(u, v) = 2(3, eu)
⇒ 
(2u, 2v) �= 2
(u, v)

2. Suppose that 
 is a linear map such that 
(2, 0) = (4, 0) and 
(0, 3) = (−3, 9). Find the images of:

(a) 
(1, 0) (b) 
(1, 1) (c) 
(2, 1)

solution We denote the linear map by 
(u, v) = (Au + Cv, Bu + Dv). By the given information we have


(2, 0) = (A · 2 + C · 0, B · 2 + D · 0) = (2A, 2B) = (4, 0)


(0, 3) = (A · 0 + C · 3, B · 0 + D · 3) = (3C, 3D) = (−3, 9)

Therefore,

2A = 4

2B = 0

3C = −3

3D = 9

⇒ A = 2, B = 0, C = −1, D = 3

The linear map is thus


(u, v) = (2u − v, 3v)

We now compute the images:

(a) 
(1, 0) = (2 · 1 − 0, 3 · 0) = (2, 0)

(b) 
(1, 1) = (2 · 1 − 1, 3 · 1) = (1, 3)

(c) 
(2, 1) = (2 · 2 − 1, 3 · 1) = (3, 3)

3. What is the area of 
(R) if R is a rectangle of area 9 and 
 is a mapping whose Jacobian has constant value 4?

solution

v

u

y

x

ΦD0 = R D = Φ(R)

The areas of D0 = 
(R) and D = R are the following integrals:

Area(R) = 9 =
∫∫

D0

1 du dv

Area(
(R)) =
∫∫

D
1 dx dy

Using the Change of Variables Formula, we have

Area (
(R)) =
∫∫

D
1 dx dy =

∫∫
D0

1|Jac
| du dv =
∫∫

D0

4 du dv = 4
∫∫

D0

1 du dv = 4 · 9 = 36

The area of 
(R) is 36.
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4. Estimate the area of 
(R), where R = [1, 1.2] × [3, 3.1] and 
 is a mapping such that Jac(
)(1, 3) = 3.

solution

v

u

y

x

Φ
R

Φ(R)

3.1

3

1 1.2

We use the following estimation:

Area (
(R)) ≈ |Jac (
) (P )|Area(R)

The area of the rectangle R is

Area(R) = 0.2 · 0.1 = 0.02

We choose the sample point P = (1, 3) in R to obtain the following estimation:

Area (
(R)) ≈ |Jac (
) (1, 3)|Area(R) = 3 · 0.02 = 0.06

Exercises
1. Determine the image under 
(u, v) = (2u, u + v) of the following sets:

(a) The u- and v-axes

(b) The rectangle R = [0, 5] × [0, 7]
(c) The line segment joining (1, 2) and (5, 3)

(d) The triangle with vertices (0, 1), (1, 0), and (1, 1)

solution

(a) The image of the u-axis is obtained by substituting v = 0 in 
(u, v) = (2u, u + v). That is,


(u, 0) = (2u, u + 0) = (2u, u).

The image of the u-axis is the set of points (x, y) = (2u, u), which is the line y = 1
2x in the xy-plane. The image of the

v-axis is obtained by substituting u = 0 in 
(u, v) = (2u, u + v). That is,


(0, v) = (0, 0 + v) = (0, v).

Therefore, the image of the v-axis is the set (x, y) = (0, v), which is the vertical line x = 0 (the y-axis).

(b) Since 
 is a linear map, the segment through points P and Q is mapped to the segment through 
(P ) and 
(Q).
We thus must find the images of the vertices of R:


(0, 0) = (2 · 0, 0 + 0) = (0, 0)


(5, 0) = (2 · 5, 5 + 0) = (10, 5)


(5, 7) = (2 · 5, 5 + 7) = (10, 12)


(0, 7) = (2 · 0, 0 + 7) = (0, 7)

v

u

R

(0, 7)

(0, 0) (5, 0)

(5, 7)
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The image of R is the parallelogram with vertices (0, 0), (10, 5), (10, 12), and (0, 7) in the xy-plane.

y

x

(0, 7)

(0, 0)

(10, 5)

(10, 12)

(c) We compute the images of the endpoints of the segment:


(1, 2) = (2 · 1, 1 + 2) = (2, 3)


(5, 3) = (2 · 5, 5 + 3) = (10, 8)

v

u
(1, 2)

(5, 3)

y

x

(10, 8)

(2, 3)

The image is the segment in the xy-plane joining the points (2, 3) and (10, 8).

(d) Since 
 is linear, the image of the triangle is the triangle whose vertices are the images of the vertices of the triangle.
We compute these images:


(0, 1) = (2 · 0, 0 + 1) = (0, 1)


(1, 0) = (2 · 1, 1 + 0) = (2, 1)


(1, 1) = (2 · 1, 1 + 1) = (2, 2)

Therefore the image is the triangle in the xy-plane whose vertices are at the points (0, 1), (2, 1), and (2, 2).

Describe [in the form y = f (x)] the images of the lines u = c and v = c under the mapping 
(u, v) =
(u/v, u2 − v2).

3. Let 
(u, v) = (u2, v). Is 
 one-to-one? If not, determine a domain on which 
 is one-to-one. Find the image under

 of:

(a) The u- and v-axes

(b) The rectangle R = [−1, 1] × [−1, 1]
(c) The line segment joining (0, 0) and (1, 1)

(d) The triangle with vertices (0, 0), (0, 1), and (1, 1)

solution 
 is not one-to-one since for any u �= 0, (u, v) and (−u, v) are two different points with the same image.
However, 
 is one-to-one on the domain {(u, v) : u ≥ 0} and on the domain {(u, v) : u ≤ 0}.
(a) The image of the u-axis is the set of the points

(x, y) = 
(u, 0) = (u2, 0) ⇒ x = u2, y = 0

That is, the positive x-axis, including the origin. The image of the v-axis is the set of the following points:

(x, y) = 
(0, v) = (02, v) = (0, v) ⇒ x = 0, y = v

That is, the line x = 0, which is the y-axis.

(b) The rectangle R is defined by

|u| ≤ 1, |v| ≤ 1

v

u

R

C1

−1

−1 1

BA

D
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Since x = u2 and y = v, we have u = ±√
x and v = y (depending on our choice of domain). Therefore, the inequalities

for x and y are

| ± √
x| ≤ 1, |y| ≤ 1

or

0 ≤ x ≤ 1 and − 1 ≤ y ≤ 1.

We conclude that the image of R in the xy-plane is the rectangle [0, 1] × [−1, 1].
y

x

1

−1 Φ(R)

1

(c) The line segment joining the points (0, 0) and (1, 1) in the uv-plane is defined by

0 ≤ u ≤ 1, v = u.

Substituting u = √
x and v = y, we get

0 ≤ √
x ≤ 1, y = √

x

or

0 ≤ x ≤ 1, y = √
x

v

u

(1, 1)

(0, 0)

y

x

Φ

The image is the curve y = √
x for 0 ≤ x ≤ 1.

(d) We identify the image of the sides of the triangle OAB.

The image of OA: This segment is defined by u = 0 and 0 ≤ v ≤ 1. That is,

±√
x = 0 and 0 ≤ y ≤ 1

or

x = 0, 0 ≤ y ≤ 1.

v

u

B = (1, 1)
A = (0, 1)

This is the segment joining the points (0, 0) and (0, 1) in the xy-plane.
The image of AB: This segment is defined by 0 ≤ u ≤ 1 and v = 1. That is,

0 ≤ √
x ≤ 1, y = 1

or

0 ≤ x ≤ 1, y = 1.

This is the segment joining the points (0, 1) and (1, 1) in the xy-plane.
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The image of OB: In part (c) we showed that the image of the segment is the curve y = √
x, 0 ≤ x ≤ 1.

Therefore, the image of the triangle is the region shown in the figure:

(1, 1)

(0, 0)

(0, 1)

y

x

y = x

Let 
(u, v) = (eu, eu+v).

(a) Is 
 one-to-one? What is the image of 
?

(b) Describe the images of the vertical lines u = c and the horizontal lines v = c.

In Exercises 5–12, let 
(u, v) = (2u + v, 5u + 3v) be a map from the uv-plane to the xy-plane.

5. Show that the image of the horizontal line v = c is the line y = 5
2x + 1

2 c. What is the image (in slope-intercept form)
of the vertical line u = c?

solution The image of the horizontal line v = c is the set of the following points:

(x, y) = 
(u, c) = (2u + c, 5u + 3c) ⇒ x = 2u + c, y = 5u + 3c

The first equation implies u = x−c
2 . Substituting in the second equation gives

y = 5
(x − c)

2
+ 3c = 5x

2
+ c

2

Therefore, the image of the line v = c is the line y = 5x
2 + c

2 in the xy-plane.
The image of the vertical line u = c is the set of the following points:

(x, y) = 
(c, v) = (2c + v, 5c + 3v) ⇒ x = 2c + v, y = 5c + 3v

By the first equation, v = x − 2c. Substituting in the second equation gives

y = 5c + 3(x − 2c) = 5c + 3x − 6c = 3x − c

Therefore, the image of the line u = c is the line y = 3x − c in the xy-plane.

Describe the image of the line through the points (u, v) = (1, 1) and (u, v) = (1, −1) under 
 in slope-intercept
form.

7. Describe the image of the line v = 4u under 
 in slope-intercept form.

solution We choose any two points on the line v = 4u, for example (u, v) = (1, 4) and (u, v) = (0, 0). By a property
of linear maps, the image of the line v = 4u under the linear map 
(u, v) = (2u + v, 5u + 3v) is the line in the xy-plane
through the points 
(1, 4) and 
(0, 0). We find these points:


(0, 0) = (2 · 0 + 0, 5 · 0 + 3 · 0) = (0, 0)


(1, 4) = (2 · 1 + 4, 5 · 1 + 3 · 4) = (6, 17)

We now find the slope-intercept equation of the line in the xy-plane through the points (0, 0) and (6, 17):

y − 0 = 17 − 0

6 − 0
(x − 0) ⇒ y = 17

6
x

Show that 
 maps the line v = mu to the line of slope (5 + 3m)/(2 + m) through the origin in the xy-plane.
9. Show that the inverse of 
 is


−1(x, y) = (3x − y, −5x + 2y)

Hint: Show that 
(
−1(x, y)) = (x, y) and 
−1(
(u, v)) = (u, v).

solution By the definition of the inverse map, we must show that the given maps 
−1(x, y) = (3x − y, −5x + 2y)

and 
(u, v) = (2u + v, 5u + 3v) satisfy 

(

−1(x, y)

)
= (x, y) and 
−1 (
(u, v)) = (u, v). We have



(

−1(x, y)

)
= 
(3x − y, −5x + 2y) = (2(3x − y) + (−5x + 2y), 5(3x − y) + 3(−5x + 2y)) = (x, y)


−1 (
(u, v)) = 
−1(2u + v, 5u + 3v) = (3(2u + v) − (5u + 3v), −5(2u + v) + 2(5u + 3v)) = (u, v)

We conclude that 
−1 is the inverse of 
.
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Use the inverse in Exercise 9 to find:

(a) A point in the uv-plane mapping to (2, 1)

(b) A segment in the uv-plane mapping to the segment joining (−2, 1) and (3, 4)

11. Calculate Jac(
) = ∂(x, y)

∂(u, v)
.

solution The Jacobian of the linear mapping 
(u, v) = (2u + v, 5u + 3v) is the following determinant:

Jac(
) = ∂(x, y)

∂(u, v)
=
∣∣∣∣ 2 1

5 3

∣∣∣∣ = 2 · 3 − 5 · 1 = 1

Calculate Jac(
−1) = ∂(u, v)

∂(x, y)
.

In Exercises 13–18, compute the Jacobian (at the point, if indicated).

13. 
(u, v) = (3u + 4v, u − 2v)

solution Using the Jacobian of linear mappings we get

Jac(
) = ∂(x, y)

∂(u, v)
=
∣∣∣∣ 3 4

1 −2

∣∣∣∣ = 3 · (−2) − 1 · 4 = −10


(r, s) = (rs, r + s)
15. 
(r, t) = (r sin t, r − cos t), (r, t) = (1, π)

solution We have x = r sin t and y = r − cos t . Therefore,

Jac(
) = ∂(x, y)

∂(r, t)
=

∣∣∣∣∣∣∣∣
∂x

∂r

∂x

∂t

∂y

∂r

∂y

∂t

∣∣∣∣∣∣∣∣ =
∣∣∣∣ sin t r cos t

1 sin t

∣∣∣∣ = sin2 t − r cos t

At the point (r, t) = (1, π) we get

Jac(
)(1, π) = sin2 π − 1 · cos π = 0 − 1 · (−1) = 1


(u, v) = (v ln u, u2v−1), (u, v) = (1, 2)
17. 
(r, θ) = (r cos θ, r sin θ), (r, θ) = (4, π

6

)
solution Since x = r cos θ and y = r sin θ , the Jacobian of 
 is the following determinant:

Jac(
) = ∂(x, y)

∂(r, θ)
=

∣∣∣∣∣∣∣∣
∂x

∂r

∂x

∂θ

∂y

∂r

∂y

∂θ

∣∣∣∣∣∣∣∣ =
∣∣∣∣ cos θ −r sin θ

sin θ r cos θ

∣∣∣∣
= r cos2 θ + r sin2 θ = r(cos2 θ + sin2 θ) = r · 1 = r

At the point (r, θ) = (4, π/6) we get:

Jac(
)(4, π/6) = 4


(u, v) = (uev, eu)
19. Find a linear mapping 
 that maps [0, 1] × [0, 1] to the parallelogram in the xy-plane spanned by the vectors 〈2, 3〉
and 〈4, 1〉.
solution

v

u

y

x

Φ

(0, 0) (1, 0)

(4, 1)

(0, 1)
(2, 3)

We denote the linear map by


(u, v) = (Au + Cv, Bu + Dv) (1)

The image of the unit square R = [0, 1] × [0, 1] under the linear map is the parallelogram whose vertices are the images
of the vertices of R. Two of vertices of the given parallelogram are (2, 3) and (4, 1). To find A, B, C, and D it suffices
to determine four equations. Therefore, we ask that (notice that for linear maps 
(0, 0) = (0, 0))


(0, 1) = (2, 3), 
(1, 0) = (4, 1)
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We substitute in (1) and solve for A, B, C, and D:

(A · 0 + C · 1, B · 0 + D · 1) = (C, D) = (2, 3)

(A · 1 + C · 0, B · 1 + D · 0) = (A, B) = (4, 1)
⇒

C = 2, D = 3

A = 4, B = 1

Substituting in (1) we obtain the following map:


(u, v) = (4u + 2v, u + 3v).

Find a linear mapping 
 that maps [0, 1] × [0, 1] to the parallelogram in the xy-plane spanned by the vectors
〈−2, 5〉 and 〈1, 7〉.

21. Let D be the parallelogram in Figure 13. Apply the Change of Variables Formula to the map 
(u, v) = (5u + 3v, u +
4v) to evaluate

∫∫
D

xy dx dy as an integral over D0 = [0, 1] × [0, 1].

y

x

D

(5, 1)

(3, 4)

FIGURE 13

solution

v

u

D
D0

y

x

Φ

1

(5, 1)

1

(3, 4)

We express f (x, y) = xy in terms of u and v. Since x = 5u + 3v and y = u + 4v, we have

f (x, y) = xy = (5u + 3v)(u + 4v) = 5u2 + 12v2 + 23uv

The Jacobian of the linear map 
(u, v) = (5u + 3v, u + 4v) is

Jac(
) = ∂(x, y)

∂(u, v)
=
∣∣∣∣ 5 3

1 4

∣∣∣∣ = 20 − 3 = 17

Applying the Change of Variables Formula we get∫∫
D

xy dA =
∫∫

D0

f (x, y)

∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ du dv =
∫ 1

0

∫ 1

0
(5u2 + 12v2 + 23uv) · 17 du dv

= 17
∫ 1

0

5u3

3
+ 12v2u + 23u2v

2

∣∣∣∣1
u=0

dv = 17
∫ 1

0

(
5

3
+ 12v2 + 23v

2

)
dv

= 17

(
5v

3
+ 4v3 + 23v2

4

∣∣∣∣1
0

)
= 17

(
5

3
+ 4 + 23

4

)
= 2329

12
≈ 194.08

Let 
(u, v) = (u − uv, uv).

(a) Show that the image of the horizontal line v = c is y = c

1 − c
x if c �= 1, and is the y-axis if c = 1.

(b) Determine the images of vertical lines in the uv-plane.

(c) Compute the Jacobian of 
.

(d) Observe that by the formula for the area of a triangle, the region D in Figure 14 has area 1
2 (b2 − a2). Compute

this area again, using the Change of Variables Formula applied to 
.

(e) Calculate
∫∫

D
xy dx dy.

23. Let 
(u, v) = (3u + v, u − 2v). Use the Jacobian to determine the area of 
(R) for:

(a) R = [0, 3] × [0, 5] (b) R = [2, 5] × [1, 7]
solution The Jacobian of the linear map 
(u, v) = (3u + v, u − 2v) is the following determinant:

Jac
 = ∂(x, y)

∂(u, v)
=
∣∣∣∣ 3 1

1 −2

∣∣∣∣ = −6 − 1 = −7

By properties of linear maps, we have

Area (
(R)) = |Jac
|Area(R) = 7 · Area(R)
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(a) The area of the rectangle R = [0, 3] × [0, 5] is 3 · 5 = 15, therefore the area of 
(R) is

Area (
(R)) = 7 · 15 = 105

(b) The area of the rectangle R = [2, 5] × [1, 7] is 3 · 6 = 18 hence the area of 
(R) is

Area (
(R)) = 7 · 18 = 126.

Find a linear map T that maps [0, 1] × [0, 1] to the parallelogram P in the xy-plane with vertices (0, 0), (2, 2),
(1, 4), (3, 6). Then calculate the double integral of e2x−y over P via change of variables.

25. With 
 as in Example 3, use the Change of Variables Formula to compute the area of the image of [1, 4] × [1, 4].
solution Let R represent the rectangle [1, 4] × [1, 4]. We proceed as follows. Jac(
) is easily calculated as

Jac(T ) = ∂(x, y)

∂(u, v)
=
∣∣∣∣ 1/v −u/v2

v u

∣∣∣∣ = 2u/v

Now, the area is given by the Change of Variables Formula as∫∫

(R)

1 dA =
∫∫

R
1|Jac(
)| du dv =

∫∫
R

1|2u/v| du dv =
∫ 4

1

∫ 4

1
2u/v du dv

=
∫ 4

1
2u du ·

∫ 4

1

1

v
dv = (16 − 1)(ln 4 − ln 1) = 15 ln 4

In Exercises 26–28, let R0 = [0, 1] × [0, 1] be the unit square. The translate of a map 
0(u, v) = (φ(u, v), ψ(u, v)) is
a map


(u, v) = (a + φ(u, v), b + ψ(u, v))

where a, b are constants. Observe that the map 
0 in Figure 15 maps R0 to the parallelogram P0 and that the translate


1(u, v) = (2 + 4u + 2v, 1 + u + 3v)

maps R0 to P1.

u

1

1

(4, 1)

(6, 4)
(2, 3)

(6, 2)

(2, 1)

(8, 5)
(4, 4)

x

y

G0(u, v) = (4u + 2v, u + 3v)

u

1

1
x

y

G1(u, v) = (2 + 4u + 2v, 1 + u + 3v)

(3, 2)
(−1, 1)

(1, 4)

x

y

(6, 3)

(2, 2)

(4, 5)

x

y

0

0

2

0

1

3

v

v

FIGURE 15

Find translates 
2 and 
3 of the mapping 
0 in Figure 15 that map the unit square R0 to the parallelograms P2
and P3.

27. Sketch the parallelogram P with vertices (1, 1), (2, 4), (3, 6), (4, 9) and find the translate of a linear mapping that
maps R0 to P .

solution The parallelogram P is shown in the figure:

P

y

x

(4, 9)

(3, 6)

(1, 1)

(2, 4)
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We first translate the parallelogram P one unit to the left and one unit downward to obtain a parallelogram P0 with a
vertex at the origin.

v

u

R0

P0

y

x

Φ0

(0, 0) (1, 0)

(2, 5)

(0, 1)

(1, 3)

We find a linear map 
0(u, v) = (Au + Cv, Bu + Dv) that maps R0 to P0:


0(0, 1) = (1, 3) ⇒ (C, D) = (1, 3) ⇒ C = 1, D = 3


0(1, 0) = (2, 5) ⇒ (A, B) = (2, 5) ⇒ A = 2, B = 5

Therefore,

0(u, v) = (2u + v, 5u + 3v)

Now we can determine the translate 
 of 
0 that maps R0 to P . Since P is obtained by translating P0 one unit upward
and one unit to the right, the map 
 is the following translate of 
0:


(u, v) = (1 + 2u + v, 1 + 5u + 3v)

Find the translate of a linear mapping that maps R0 to the parallelogram spanned by the vectors 〈3, 9〉 and 〈−4, 6〉
based at (4, 2).

29. Let D = 
(R), where 
(u, v) = (u2, u + v) and R = [1, 2] × [0, 6]. Calculate
∫∫

D
y dx dy. Note: It is not

necessary to describe D.

solution
v

u

y

x

Φ
R

Φ(R)

6

1 2

Changing variables, we have ∫∫
D

y dA =
∫∫

R
(u + v)

∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ du dv (1)

We compute the Jacobian of 
. Since x = u2 and y = u + v, we have

∂(x, y)

∂(u, v)
=

∣∣∣∣∣∣∣∣
∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v

∣∣∣∣∣∣∣∣ =
∣∣∣∣ 2u 0

1 1

∣∣∣∣ = 2u

We substitute in (1) and compute the resulting integral:∫∫
D

y dA =
∫ 6

0

∫ 2

1
(u + v) · 2u du dv =

∫ 6

0

∫ 2

1
(2u2 + 2uv) du dv =

∫ 6

0

2u3

3
+ u2v

∣∣∣∣2
u=1

dv

=
∫ 6

0

((
16

3
+ 4v

)
−
(

2

3
+ v

))
dv =

∫ 6

0

(
3v + 14

3

)
dv = 3

2
v2 + 14

3
v

∣∣∣∣6
0

= 82

Let D be the image of R = [1, 4] × [1, 4] under the map 
(u, v) = (u2/v, v2/u).

(a) Compute Jac(
).

(b) Sketch D.

(c) Use the Change of Variables Formula to compute Area(D) and
∫∫

D
f (x, y) dx dy, where f (x, y) = x + y.

31. Compute
∫∫

D
(x + 3y) dx dy, where D is the shaded region in Figure 16. Hint: Use the map 
(u, v) = (u − 2v, v).

6 10

x + 2y = 10

x + 2y = 6

1

3

5

y

x

FIGURE 16
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solution The boundary of D is defined by the lines x + 2y = 6, x + 2y = 10, y = 1, and y = 3.

y

x
x + 2y = 6

x + 2y = 10

D2

4

4 8

Therefore, D is mapped to a rectangle D0 in the uv-plane under the map

u = x + 2y, v = y (1)

or

(u, v) = 
−1(x, y) = (x + 2y, y)

Since D is defined by the inequalities 6 ≤ x + 2y ≤ 10 and 1 ≤ y ≤ 3, the corresponding domain in the uv-plane is the
rectangle

D0 : 6 ≤ u ≤ 10, 1 ≤ v ≤ 3

y

x

D
2

4

4 8

y

x

D0
2

4

4 8

Φ

To find 
(u, v) we must solve the equations (1) for x and y in terms of u and v. We obtain

u = x + 2y

v = y
⇒ x = u − 2v

y = v
⇒ 
(u, v) = (u − 2v, v)

We compute the Jacobian of the linear mapping 
:

Jac(
) = ∂(x, y)

∂(u, v)
=
∣∣∣∣ 1 −2

0 1

∣∣∣∣ = 1 · 1 + 2 · 0 = 1

The function f (x, y) = x + 3y expressed in terms of the new variables u and v is

f (x, y) = u − 2v + 3v = u + v

We now use the Change of Variables Formula to compute the required integral. We get

∫∫
D

f (x, y) dx dy =
∫∫

D0

(u + v)

∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ du dv =
∫ 3

1

∫ 10

6
(u + v) · 1 du dv

=
∫ 3

1

u2

2
+ vu

∣∣∣∣10

u=6
dv =

∫ 3

1
((50 + 10v) − (18 + 6v)) dv

=
∫ 3

1
(32 + 4v) dv = 32v + 2v2

∣∣∣∣3
1

= (96 + 18) − (32 + 2) = 80

Use the map 
(u, v) =
(

u

v + 1
,

uv

v + 1

)
to compute

∫∫
D

(x + y) dx dy

where D is the shaded region in Figure 17.

33. Show that T (u, v) = (u2 − v2, 2uv) maps the triangle D0 = {(u, v) : 0 ≤ v ≤ u ≤ 1} to the domain D bounded by
x = 0, y = 0, and y2 = 4 − 4x. Use T to evaluate∫∫

D

√
x2 + y2 dx dy
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solution We show that the boundary of D0 is mapped to the boundary of D.

y

x

D

2

1

v

u

D0

1

T y2 = 4 − 4xv = u

We have

x = u2 − v2 and y = 2uv

The line v = u is mapped to the following set:

(x, y) = (u2 − u2, 2u2) = (0, 2u2) ⇒ x = 0, y ≥ 0

That is, the image of the line u = v is the positive y-axis. The line v = 0 is mapped to the following set:

(x, y) = (u2, 0) ⇒ x = u2, y = 0 ⇒ y = 0, x ≥ 0

Thus, the line v = 0 is mapped to the positive x-axis. We now show that the vertical line u = 1 is mapped to the curve
y2 + 4x = 4. The image of the line u = 1 is the following set:

(x, y) = (1 − v2, 2v) ⇒ x = 1 − v2, y = 2v

We substitute v = y
2 in the equation x = 1 − v2 to obtain

x = 1 −
(y

2

)2 = 1 − y2

4
⇒ 4x = 4 − y2 ⇒ y2 + 4x = 4

Since the boundary of D0 is mapped to the boundary of D, we conclude that the domain D0 is mapped by T to the domain

D in the xy-plane. We now compute the integral
∫∫

D

√
x2 + y2 dx dy. We express the function f (x, y) =

√
x2 + y2

in terms of the new variables u and v:

f (x, y) =
√

(u2 − v2)
2 + (2uv)2 =

√
u4 − 2u2v2 + v4 + 4u2v2

=
√

u4 + 2u2v2 + v4 =
√

(u2 + v2)
2 = u2 + v2

We compute the Jacobian of T :

Jac(T ) = ∂(x, y)

∂(u, v)
=

∣∣∣∣∣∣∣∣
∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v

∣∣∣∣∣∣∣∣ =
∣∣∣∣ 2u −2v

2v 2u

∣∣∣∣ = 4u2 + 4v2 = 4(u2 + v2)

v

u

D0

1

0 ≤ v ≤ u

Using the Change of Variables Formula gives∫∫
D

√
x2 + y2 dx dy =

∫∫
D0

(u2 + v2) · 4(u2 + v2) du dv = 4
∫ 1

0

∫ u

0
(u4 + 2u2v2 + v4) dv du

= 4
∫ 1

0
u4v + 2

3
u2v3 + v5

5

∣∣∣∣u
v=0

du = 4
∫ 1

0

(
u5 + 2

3
u5 + u5

5

)
du

= 4
∫ 1

0

28

15
u5 du = 112

15
· u6

6

∣∣∣∣1
0

= 56

45

Find a mapping 
 that maps the disk u2 + v2 ≤ 1 onto the interior of the ellipse
(x

a

)2 +
(y

b

)2 ≤ 1. Then use

the Change of Variables Formula to prove that the area of the ellipse is πab.
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35. Calculate
∫∫

D
e9x2+4y2

dx dy, where D is the interior of the ellipse
(x

2

)2 +
(y

3

)2 ≤ 1.

solution We define a map that maps the unit disk u2 + v2 ≤ 1 onto the interior of the ellipse. That is,

x = 2u, y = 3v ⇒ 
(u, v) = (2u, 3v)

Since
(
x
2

)2 + ( y3 )2 ≤ 1 if and only if u2 + v2 ≤ 1, 
 is the map we need.

v

u

y

x
D0

D

1 2

3

u2 + v2 ≤ 1

Φ

2
 +       

2
 ≤ 1(    )x 

2 (    )y 
3

We express the function f (x, y) = e9x2+4y2
in terms of u and v:

f (x, y) = e9(2u)2+4(3v)2 = e36u2+36v2 = e36(u2+v2)

We compute the Jacobian of 
:

Jac(
) =

∣∣∣∣∣∣∣∣
∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v

∣∣∣∣∣∣∣∣ =
∣∣∣∣ 2 0

0 3

∣∣∣∣ = 6

Using the Change of Variables Formula gives∫∫
D

e9x2+4y2
dA =

∫∫
D0

e36(u2+v2) · 6 du dv

We compute the integral using polar coordinates u = r cos θ , v = r sin θ :

∫∫
D

e9x2+4y2
dA =

∫ 2π

0

∫ 1

0
6e36r2 · r dr dθ =

(
6
∫ 2π

0
dθ

)(∫ 1

0
e36r2

r dr

)

= 12π
e36r2

72

∣∣∣∣1
r=0

= 12π(e36 − 1)

72
= π(e36 − 1)

6

Compute the area of the region enclosed by the ellipse x2 + 2xy + 2y2 − 4y = 8 as an integral in the variables
u = x + y, v = y − 2.

37. Sketch the domain D bounded by y = x2, y = 1
2x2, and y = x. Use a change of variables with the map x = uv,

y = u2 to calculate ∫∫
D

y−1 dx dy

This is an improper integral since f (x, y) = y−1 is undefined at (0, 0), but it becomes proper after changing variables.

solution The domain D is shown in the figure.

y

x

y = x

y = x2

D

y =    x21 
2

We must identify the domain D0 in the uv-plane. Notice that 
 is one-to-one, where u ≥ 0 (or u ≤ 0), since in D, x ≥ 0,
so it also follows by x = uv that v ≥ 0. Therefore, we search the domain D0 in the first quadrant of the uv-plane. To do
this, we examine the curves that are mapped to the curves defining the boundary of D. We examine each curve separately.
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y = x2: Since x = uv and y = u2 we get

u2 = (uv)2 ⇒ 1 = v2 ⇒ v = 1

y = 1
2x2:

u2 = 1

2
(uv)2 ⇒ 1 = 1

2
v2 ⇒ v2 = 2 ⇒ v = √

2

y = x: u2 = uv ⇒ v = u. The region D0 is the region in the first quadrant of the uv-plane enclosed by the
curves v = 1, v = √

2, and v = u.

v

u

u = v

D0

2

1

We now use change of variables to compute the integral
∫∫

D
y−1 dx dy. The function in terms of the new variables is

f (x, y) = u−2. We compute the Jacobian of 
(u, v) = (x, y) = (uv, u2):

Jac(
) =

∣∣∣∣∣∣∣∣
∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v

∣∣∣∣∣∣∣∣ =
∣∣∣∣ v u

2u 0

∣∣∣∣ = −2u2

Using the Change of Variables Formula gives

∫∫
D

y−1 dx dy =
∫∫

D0

u−2 · 2u2 du dv =
∫ √

2

1

∫ v

0
2 du dv =

∫ √
2

1
2u

∣∣∣∣v
u=0

dv =
∫ √

2

1
2v dv = v2

∣∣∣∣
√

2

1
= 2 − 1 = 1

Find an appropriate change of variables to evaluate∫∫
R

(x + y)2ex2−y2
dx dy

where R is the square with vertices (1, 0), (0, 1), (−1, 0), (0, −1).

39. Let 
 be the inverse of the map F(x, y) = (xy, x2y) from the xy-plane to the uv-plane. Let D be the domain in
Figure 18. Show, by applying the Change of Variables Formula to the inverse 
 = F−1, that∫∫

D
exy dx dy =

∫ 20

10

∫ 40

20
euv−1 dv du

and evaluate this result. Hint: See Example 8.

x2y = 20

1

10

20

x2y = 40

xy = 20

xy = 10

32 4

y

x
65

FIGURE 18

solution The domain D is defined by the inequalities

D : 10 ≤ xy ≤ 20, 20 ≤ x2y ≤ 40

x2y = 20

1

x2y = 40

xy = 20

xy = 10

2 4

y

x

D

Since u = xy and v = x2y, the image D0 of D (in the uv-plane) under F is the rectangle

D0 : 10 ≤ u ≤ 20, 20 ≤ v ≤ 40



May 19, 2011

550 C H A P T E R 15 MULTIPLE INTEGRATION (LT CHAPTER 16)

v

u

D0 = T(D)

40

20

10 20

The function expressed in the new variables is

f (x, y) = exy = eu

To find the Jacobian of the inverse 
 of F , we use the formula for the Jacobian of the inverse mapping. That is,

∂(x, y)

∂(u, v)
=
(

∂(u, v)

∂(x, y)

)−1

We find the Jacobian of F . Since u = xy and v = x2y, we have

Jac(F ) =

∣∣∣∣∣∣∣∣
∂u

∂x

∂u

∂y

∂v

∂x

∂v

∂y

∣∣∣∣∣∣∣∣ =
∣∣∣∣ y x

2xy x2

∣∣∣∣ = yx2 − 2x2y = −x2y

Hence,

Jac(
) = − 1

x2y

We now compute the double integral
∫∫

D
exy dA using the Change of Variables Formula. Since y > 0 in D, we have

|Jac(
)| = | − 1
x2y

| = 1
x2y

= v−1. Therefore,

∫∫
D

exy dA =
∫∫

D0

euv−1 dv du =
∫ 20

10

∫ 40

20
euv−1 dv du =

(∫ 20

10
eu du

)(∫ 40

20
v−1 dv

)

= eu

∣∣∣∣20

10
· ln v

∣∣∣∣40

20
= (e20 − e10) (ln(40) − ln(20)) = (e20 − e10) ln 2

Sketch the domain

D = {(x, y) : 1 ≤ x + y ≤ 4, −4 ≤ y − 2x ≤ 1}
(a) Let F be the map u = x + y, v = y − 2x from the xy-plane to the uv-plane, and let 
 be its inverse. Use
Eq. (14) to compute Jac(
).

(b) Compute
∫∫

D
ex+y dx dy using the Change of Variables Formula with the map 
. Hint: It is not necessary to

solve for 
 explicitly.

41. Let I =
∫∫

D
(x2 − y2) dx dy, where

D = {(x, y) : 2 ≤ xy ≤ 4, 0 ≤ x − y ≤ 3, x ≥ 0, y ≥ 0}
(a) Show that the mapping u = xy, v = x − y maps D to the rectangle R = [2, 4] × [0, 3].
(b) Compute ∂(x, y)/∂(u, v) by first computing ∂(u, v)/∂(x, y).
(c) Use the Change of Variables Formula to show that I is equal to the integral of f (u, v) = v over R and evaluate.

solution
(a) The domain D is defined by the inequalities

D : 2 ≤ xy ≤ 4, 0 ≤ x − y ≤ 3, x ≥ 0, y ≥ 0

y

x

xy = 4

xy = 2

x − y = 3

x − y = 0

D

Since u = xy and v = x − y, the image of D under this mapping is the rectangle defined by

D0 : 2 ≤ u ≤ 4, 0 ≤ v ≤ 3

That is, D0 = [2, 4] × [0, 3].
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(b) We compute the Jacobian ∂(u,v)
∂(x,y)

and then use the formula for the Jacobian of the inverse mapping to compute ∂(x,y)
∂(u,v)

.
Since u = xy and v = x − y, we have

∂(u, v)

∂(x, y)
=

∣∣∣∣∣∣∣∣
∂u

∂x

∂u

∂y

∂v

∂x

∂v

∂y

∣∣∣∣∣∣∣∣ =
∣∣∣∣ y x

1 −1

∣∣∣∣ = −y − x = −(x + y)

Therefore,
∂(x, y)

∂(u, v)
=
(

∂(u, v)

∂(x, y)

)−1
= − 1

x + y

(c) In D, x ≥ 0 and y ≥ 0, hence
∣∣∣ ∂(x,y)
∂(u,v)

∣∣∣ = 1
x+y . Using the change of variable formula gives:

I =
∫∫

D0

(x2 − y2) · 1

x + y
du dv =

∫∫
D0

(x − y) du dv =
∫ 3

0

∫ 4

2
v du dv

=
(∫ 3

0
v dv

)(∫ 4

2
du

)
=
(

v2

2

∣∣∣∣3
0

)(
u

∣∣∣∣4
2

)
= 9

2
· 2 = 9

Derive formula (5) in Section 15.4 for integration in cylindrical coordinates from the general Change of Variables
Formula.

43. Derive formula (9) in Section 15.4 for integration in spherical coordinates from the general Change of Variables
Formula.

solution The spherical coordinates are

x = ρ cos θ sin φ, y = ρ sin θ sin φ, z = ρ cos φ

Suppose that a region W in the (x, y, z)-plane is the image of a region W0 in the (θ, φ, ρ)-space defined by:

W0 : θ1 ≤ θ ≤ θ2, φ1 ≤ φ ≤ φ2, ρ1(θ, φ) ≤ ρ ≤ ρ2(θ, φ) (1)

Then, by the Change of Variables Formula, we have∫∫∫
W

f (x, y, z) =
∫∫∫

W0

f (ρ cos θ sin φ, ρ sin θ sin φ, ρ cos φ) =
∣∣∣∣ ∂(x, y, z)

∂(θ, φ, ρ)

∣∣∣∣ dρ dφ dθ (2)

We compute the Jacobian:

∂(x, y, z)

∂(θ, φ, ρ)
=

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂x

∂θ

∂x

∂φ

∂x

∂ρ

∂y

∂θ

∂y

∂φ

∂y

∂ρ

∂z

∂θ

∂z

∂φ

∂z

∂ρ

∣∣∣∣∣∣∣∣∣∣∣∣∣
=
∣∣∣∣∣∣

−ρ sin θ sin φ ρ cos θ cos φ cos θ sin φ

ρ cos θ sin φ ρ sin θ cos φ sin θ sin φ

0 −ρ sin φ cos φ

∣∣∣∣∣∣

= −ρ sin θ sin φ

∣∣∣∣ ρ sin θ cos φ sin θ sin φ

−ρ sin φ cos φ

∣∣∣∣− ρ cos θ cos φ

∣∣∣∣ ρ cos θ sin φ sin θ sin φ

0 cos φ

∣∣∣∣
+ cos θ sin φ

∣∣∣∣ ρ cos θ sin φ ρ sin θ cos φ

0 −ρ sin φ

∣∣∣∣
= −ρ sin θ sin φ(ρ sin θ cos2 φ + ρ sin θ sin2 φ) − ρ cos θ cos φ(ρ cos θ cos φ sin φ − 0)

+ cos θ sin φ(−ρ2 cos θ sin2 φ − 0)

= −ρ2 sin2 θ sin φ(cos2 φ + sin2 φ) − ρ2 cos2 θ cos2 φ sin φ − ρ2 cos2 θ sin3 φ

= −ρ2 sin2 θ sin φ − ρ2 cos2 θ cos2 φ sin φ − ρ2 cos2 θ sin3 φ

= −ρ2 sin φ(sin2 θ + cos2 θ cos2 φ + cos2 θ sin2 φ)

= −ρ2 sin φ
(

sin2 θ + cos2 θ(cos2 φ + sin2 φ)
)

= −ρ2 sin φ(sin2 θ + cos2 θ) = −ρ2 sin φ

Since 0 ≤ φ ≤ π , we have sin φ ≥ 0. Therefore,∣∣∣∣ ∂(x, y, z)

∂ (θ, φ, ρ)

∣∣∣∣ = ρ2 sin φ (3)

Combining (1), (2), and (3) gives∫∫∫
W

f (x, y, z) dv =
∫ θ2

θ1

∫ φ2

φ1

∫ ρ2(θ,φ)

ρ1(θ,φ)
f (ρ cos θ sin φ, ρ sin θ sin φ, ρ cos φ)ρ2 sin φ dρ dφ dθ

Use the Change of Variables Formula in three variables to prove that the volume of the ellipsoid
(x

a

)2 +
(y

b

)2 +( z

c

)2 = 1 is equal to abc × the volume of the unit sphere.
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Further Insights and Challenges
45. Use the map

x = sin u

cos v
, y = sin v

cos u

to evaluate the integral ∫ 1

0

∫ 1

0

dx dy

1 − x2y2

This is an improper integral since the integrand is infinite if x = ±1, y = ±1, but applying the Change of Variables
Formula shows that the result is finite.

solution We express the function f (x, y) = 1
1−x2y2 in terms of the new variables u and v:

1 − x2y2 = 1 − sin2 u

cos2 v

sin2 v

cos2 u
= 1 −

(
sin u

cos u

)2
·
(

sin v

cos v

)2
= 1 − tan2 u tan2 v

Hence,

f (x, y) = 1

1 − tan2 u tan2 v

We compute the Jacobian of the mapping:

∂(x, y)

∂(u, v)
=

∣∣∣∣∣∣∣∣
∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣

cos u

cos v

sin u sin v

cos2 v

sin v sin u

cos2 u

cos v

cos u

∣∣∣∣∣∣∣∣ =
cos u

cos v
· cos v

cos u
− sin u sin v

cos2 v
· sin v sin u

cos2 u

= 1 − sin2 u

cos2 u
· sin2 v

cos2 v
= 1 − tan2 u tan2 v

Now, since 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1, we have 0 ≤ sin u
cos v · sin v

cos u ≤ 1 or 0 ≤ tan u tan v ≤ 1. Therefore, 0 ≤
tan2 u tan2 v ≤ 1, hence ∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ = 1 − tan2 u tan2 v

We now identify a domain D0 in the uv-plane that is mapped by 
 onto D and 
 is one-to-one on D0.

y

x

D

(1, 0)

(0, 1)

We examine each segment on the boundary of D separately.

y = 0:

sin v

cos u
= 0 ⇒ sin v = 0 ⇒ v = πk

x = 0:

sin u

cos v
= 0 ⇒ sin u = 0 ⇒ u = πk

y = 1:

sin v

cos u
= 1 ⇒ sin v = cos u ⇒ v + u = π

2
+ 2πk or v − u = π

2
+ 2πk (1)

x = 1:

sin u

cos v
= 1 ⇒ sin u = cos v ⇒ v + u = π

2
+ 2πk or u − v = π

2
+ 2πk (2)
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One of the possible regions D0 is obtained by choosing k = 0 in all solutions. We get

v = 0, u = 0,
(
v + u = π

2
or v − u = π

2

)
,
(
u + v = π

2
or u − v = π

2

)
The corresponding regions are:

v

u

I

π 
2

π 
2

π 
2

v + u =

v

u

II

π 
2

π 
2

v − u =

π 
2

−

v

u

III

π 
2

π 
2

u − v =

π 
2

−

In II, x = sin u
cos v < 0 and in III y = sin v

cos u < 0, therefore these regions are not mapped to the unit square in the xy-plane.
The appropriate region is I.

v

u

D0

π 
2

π 
2

0

We now use the Change of Variables Formula and the result obtained previously to obtain the following integral:∫ 1

0

∫ 1

0

dx dy

1 − x2y2
=
∫∫

D0

1

1 − tan2 u tan2 v
· (1 − tan2 u tan2 v) du dv

=
∫∫

D0

1 du dv = Area(D0) =
π
2 · π

2
2

= π2

8

Verify properties (1) and (2) for linear functions and show that any map satisfying these two properties is linear.47. Let P and Q be points in R2. Show that a linear map 
(u, v) = (Au + Cv, Bu + Dv) maps the segment joining P

and Q to the segment joining 
(P ) to 
(Q). Hint: The segment joining P and Q has parametrization

(1 − t)
−→
OP + t

−−→
OQ for 0 ≤ t ≤ 1

solution First let P(x0, y0) and Q(x1, y1) so that we see if

r(0) = −→
OP = (x0, y0), r(1) = −−→

OQ = (x1, y1)

Then using the linear map we see:


(x0, y0) = (Ax0 + Cy0, Bx0 + Dy0) = 
(P )

and


(x1, y1) = (Ax1 + Cy1, Bx1 + Dy1) = 
(Q)

Hence this linear map take the endpoints P and Q to the new endpoints 
(P ) and 
(Q). Now to determine the line
segment mapping, consider the following:


(r(t)) = 
((1 − t)
−→
OP + t

−−→
OQ) = 
((1 − t)x0 + tx1, (1 − t)y0 + ty1)

= (A((1 − t)x0 + tx1) + C((1 − t)y0 + ty1), B((1 − t)x0 + tx1 + D((1 − t)y0 + ty1))

= ((1 − t)Ax0 + t (Ax1) + (1 − t)Cy0 + t (Cy1), (1 − t)Bx0 + t (Bx1) + (1 − t)Dy0 + t (Dy1))

= ((1 − t)(Ax0 + Cy0) + t (Ax1 + Cy1), (1 − t)(Bx0 + Dy0) + t (Bx1 + Dy1))

= (1 − t)(Ax0 + Cy0, Bx0 + Dy0) + t (Ax1 + Cy1, Bx1 + Dy1)

= (1 − t)
(P ) + t
(Q)

This is a parameterization for the line segment joining 
(P ) and 
(Q). Therefore, the linear map maps the line segment
joining P and Q to the line segment joining 
(P ) and 
(Q).

Let 
 be a linear map. Prove Eq. (6) in the following steps.

(a) For any set D in the uv-plane and any vector u, let D + u be the set obtained by translating all points in D by u.
By linearity, 
 maps D + u to the translate 
(D) + 
(u) [Figure 19(C)]. Therefore, if Eq. (6) holds for D, it also
holds for D + u.

(b) In the text we verified Eq (6) for the unit rectangle Use linearity to show that Eq (6) also holds for all rectangles
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49. The product of 2 × 2 matrices A and B is the matrix AB defined by(
a b

c d

)
︸ ︷︷ ︸

A

(
a′ b′
c′ d ′

)
︸ ︷︷ ︸

B

=
(

aa′ + bc′ ab′ + bd ′
ca′ + dc′ cb′ + dd ′

)
︸ ︷︷ ︸

AB

The (i, j)-entry of A is the dot product of the ith row of A and the j th column of B. Prove that det(AB) = det(A) det(B).

solution The determinants of A and B are

det(A) =
∣∣∣∣ a b

c d

∣∣∣∣ = ad − bc,

det(B) =
∣∣∣∣ a′ b′

c′ d ′
∣∣∣∣ = a′d ′ − b′c′ (1)

We now compute the determinant of AB:

det(AB) =
∣∣∣∣ aa′ + bc′ ab′ + bd ′

ca′ + dc′ cb′ + dd ′
∣∣∣∣ = (aa′ + bc′)(cb′ + dd ′) − (ab′ + bd ′)(ca′ + dc′)

= aa′cb′ + aa′dd ′ + bc′cb′ + bc′dd ′ − ab′ca′ − ab′dc′ − bd ′ca′ − bd ′dc′

= (aa′dd ′ − bd ′ca′) + (bc′cb′ − ab′dc′) = a′d ′(ad − bc) − b′c′(ad − bc)

= (ad − bc)(a′d ′ − b′c′) (2)

We combine (1) and (2) to conclude

det(AB) = det(A) det(B).

Let 
1 : D1 → D2 and 
2 : D2 → D3 be C1 maps, and let 
2 ◦ 
1 : D1 → D3 be the composite map. Use
the Multivariable Chain Rule and Exercise 49 to show that

Jac(
2 ◦ 
1) = Jac(
2)Jac(
1)

51. Use Exercise 50 to prove that

Jac(
−1) = Jac(
)−1

Hint: Verify that Jac(I ) = 1, where I is the identity map I (u, v) = (u, v).

solution Since 
−1 (
(u, v)) = (u, v), we have (
−1 ◦ 
)(u, v) = (u, v). Therefore, 
−1 ◦ 
 = I . Using Exercise
50, we have

Jac(I ) = Jac(
−1 ◦ 
) = Jac(
−1)Jac(
) (1)

The Jacobian of the linear map I (u, v) = (u, v) = (1 · u + 0 · v, 0 · u + 1 · v) is

Jac(I ) =
∣∣∣∣ 1 0

0 1

∣∣∣∣ = 1 · 1 − 0 · 0 = 1

Substituting in (1) gives

1 = Jac(
−1)Jac(
)

or

Jac(
−1) = (Jac(
))−1.

Let (x, y) be the centroid of a domain D. For λ > 0, let λD be the dilate of D, defined by

λD = {(λx, λy) : (x, y) ∈ D}
Use the Change of Variables Formula to prove that the centroid of λD is (λx, λy).

CHAPTER REVIEW EXERCISES

1. Calculate the Riemann sum S2,3 for
∫ 4

1

∫ 6

2
x2y dx dy using two choices of sample points:

(a) Lower-left vertex

(b) Midpoint of rectangle

Then calculate the exact value of the double integral.

solution
(a) The rectangle [2, 6] × [1, 3] is divided into 2 × 3 subrectangles. The lower-left vertices of the subrectangles are

P11 = (2, 1) P21 = (2, 2) P31 = (2, 3)

P12 = (3, 1) P22 = (3, 2) P32 = (3, 3)
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Also �x = 6−2
2 = 2, �y = 4−1

3 = 1, hence �A = 2 · 1 = 2. The Riemann sum S3,4 is the following sum:

S2,3 = 2
(

22 · 1 + 22 · 2 + 22 · 3 + 32 · 1 + 32 · 2 + 32 · 3
)

= 2 (4 + 8 + 12 + 9 + 18 + 27) = 156

(b) The midpoints of the subrectangles are

P11 = (3, 3/2) P21 = (3, 5/2) P31 = (3, 7/2)

P12 = (5, 3/2) P22 = (5, 5/2) P32 = (5, 7/2)

Also �x = 2, �y = 1, hence �A = 2 · 1 = 2. The Riemann sum S2,3 is

S2,3 = 2

(
32 · 3

2
+ 32 · 5

2
+ 32 · 7

2
+ 52 · 3

2
+ 52 · 5

2
+ 52 · 7

2

)

= 2

(
27

2
+ 45

2
+ 63

2
+ 75

2
+ 125

2
+ 175

2

)
= 510

We compute the exact value of the double integral, using an iterated integral of a product function. We get∫ 4

1

∫ 6

2
x2y dx dy =

(∫ 4

1
y dy

)(∫ 6

2
x2 dx

)
=
(

y2

2

∣∣∣∣4
1

)(
x3

3

∣∣∣∣6
2

)

= 16 − 1

2
· 216 − 8

3
= 3120

6
= 520

Let SN,N be the Riemann sum for
∫ 1

0

∫ 1

0
cos(xy) dx dy using midpoints as sample points.

(a) Calculate S4,4.

(b) Use a computer algebra system to calculate SN,N for N = 10, 50, 100.

3. Let D be the shaded domain in Figure 1.

D

x
0.5 1 1.5 2

0.5

1

1.5

2

y

FIGURE 1

Estimate
∫∫

D
xy dA by the Riemann sum whose sample points are the midpoints of the squares in the grid.

solution The subrectangles have sides of length �x = �y = 0.5 and area �A = 0.52 = 0.25. Of sixteen sample
points only ten lie in D. The sample points that lie in D are

(0.75, 0.75), (0.75, 1.25), (0.75, 1.75), (1.25, 0.25), (1.25, 0.75),

(1.25, 1.25), (1.25, 1.75), (1.75, 0.25), (1.75, 0.75), (1.75, 1.25)

D

x
0.5 1 1.5 2

0.25 0.75 1.25 1.75

0.5

1

1.5

2

0.25

0.75

1.25

1.75

y

The Riemann sum S44 is thus

S44 = 0.25 (f (0.75, 0.75) + f (0.75, 1.25) + f (0.75, 1.75) + f (1.25, 0.25) + f (1.25, 0.75)

+ f (1.25, 1.25) + f (1.25, 1.75) + f (1.75, 0.25) + f (1.75, 0.75) + f (1.75, 1.25))

= 0.25
(

0.752 + 0.75 · 1.25 + 0.75 · 1.75 + 1.25 · 0.25 + 1.25 · 0.75 + 1.252

+ 1.25 · 1.75 + 1.75 · 0.25 + 1.75 · 0.75 + 1.75 · 1.25)

= 0.25 · 11.75 = 2.9375
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Explain the following:

(a)
∫ 1

−1

∫ 1

−1
sin(xy) dx dy = 0 (b)

∫ 1

−1

∫ 1

−1
cos(xy) dx dy > 0

In Exercises 5–8, evaluate the iterated integral.

5.
∫ 2

0

∫ 5

3
y(x − y) dx dy

solution First we evaluate the inner integral treating y as a constant:

∫ 5

3
y(x − y) dx = y

(
x2

2
− yx

) ∣∣∣∣5
x=3

= y

((
25

2
− 5y

)
−
(

9

2
− 3y

))
= y(8 − 2y) = 8y − 2y2

Now we integrate this result with respect to y:

∫ 2

0
(8y − 2y2) dy = 4y2 − 2

3
y3
∣∣∣∣2
0

= 16 − 16

3
= 32

3

Therefore, ∫ 2

0

∫ 5

3
y(x − y) dx dy = 32

3
.

∫ 0

1/2

∫ π/6

0
e2y sin 3x dx dy

7.
∫ π/3

0

∫ π/6

0
sin(x + y) dx dy

solution We compute the inner integral treating y as a constant:

∫ π/6

0
sin(x + y) dx = − cos(x + y)

∣∣∣∣π/6

x=0
= − cos

(π

6
+ y
)

+ cos y = cos y − cos
(
y + π

6

)
We now integrate the result with respect to y:

∫ π/3

0

∫ π/6

0
sin(x + y) dx dy =

∫ π/3

0

(
cos y − cos

(
y + π

6

))
dy = sin y − sin

(
y + π

6

) ∣∣∣∣π/3

0

= sin
π

3
− sin

(π

3
+ π

6

)
−
(

sin 0 − sin
π

6

)
=

√
3

2
− 1 + 1

2
=

√
3 − 1

2

∫ 2

1

∫ 2

1

y dx dy

x + y2
In Exercises 9–14, sketch the domain D and calculate

∫∫
D

f (x, y) dA.

9. D = {0 ≤ x ≤ 4, 0 ≤ y ≤ x}, f (x, y) = cos y

solution The domain D is shown in the figure:

x

D

y

y = x

4

2

42

We compute the double integral, considering D as a vertically simple region. We describe D by the inequalities

0 ≤ x ≤ 4, 0 ≤ y ≤ x.

We now write the double integral as an iterated integral and compute:∫∫
D

cos y dA =
∫ 4

0

∫ x

0
cos y dy dx =

∫ 4

0
sin y

∣∣∣∣x
y=0

dx

=
∫ 4

0
(sin x − sin 0)dx =

∫ 4

0
sin x dx = − cos x

∣∣∣∣4
0

= 1 − cos 4

D = {0 ≤ x ≤ 2, 0 ≤ y ≤ 2x − x2}, f (x, y) = √
xy
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11. D = {0 ≤ x ≤ 1, 1 − x ≤ y ≤ 2 − x}, f (x, y) = ex+2y

solution

x

y

y = 2 − x

1 − x ≤ y ≤ 2 − x

y = 1 − x

1

D is a vertically simple region, hence the double integral over D is the following iterated integral:∫∫
D

ex+2y dA =
∫ 1

0

∫ 2−x

1−x
ex+2y dy dx =

∫ 1

0

1

2
ex+2y

∣∣∣∣2−x

y=1−x

dx =
∫ 1

0

(
1

2
ex+2(2−x) − 1

2
ex+2(1−x)

)
dx

=
∫ 1

0

(
1

2
e4−x − 1

2
e2−x

)
dx = −1

2
e4−x + 1

2
e2−x

∣∣∣∣1
0

= −1

2
e3 + 1

2
e + 1

2
e4 − 1

2
e2

= 1

2
e(e3 − e2 − e + 1) = 1

2
e(e + 1)(e − 1)2

D = {1 ≤ x ≤ 2, 0 ≤ y ≤ 1/x}, f (x, y) = cos(xy)
13. D = {0 ≤ y ≤ 1, 0.5y2 ≤ x ≤ y2}, f (x, y) = ye1+x

solution

x

y

0.5y2 ≤ x ≤ y2

1

The region is horizontally simple, hence the double integral is equal to the following iterated integral:∫∫
D

ye1+x dA =
∫ 1

0

∫ y2

0.5y2
ye1+x dx dy =

∫ 1

0
ye1+x

∣∣∣∣y
2

x=0.5y2
dy

=
∫ 1

0
y
(
e1+y2 − e1+0.5y2

)
dy =

∫ 1

0
ye1+y2

dy −
∫ 1

0
ye1+0.5y2

dy

We compute the integrals using the substitutions u = 1 + y2, du = 2y dy, and v = 1 + 0.5y2, dv = y dy, respectively.
We get ∫∫

D
ye1+x dA = 1

2

∫ 2

1
eu du −

∫ 1.5

1
evdv = 1

2
eu

∣∣∣∣2
1

− ev

∣∣∣∣1.5

1
= 1

2
(e2 − e) − (e3/2 − e)

= 1

2
e2 + 1

2
e − e3/2 = 0.5(e2 − 2e1.5 + e)

D = {1 ≤ y ≤ e, y ≤ x ≤ 2y}, f (x, y) = ln(x + y)15. Express
∫ 3

−3

∫ 9−x2

0
f (x, y) dy dx as an iterated integral in the order dx dy.

solution The limits of integration correspond to the inequalities describing the domain D:

−3 ≤ x ≤ 3, 0 ≤ y ≤ 9 − x2.

A quick sketch verifies that this is the region under the upper part of the parabola y = 9 − x2, that is, the part that is above
the x-axis. Therefore, the double integral can be rewritten as the following sum:∫ 3

−3

∫ 9−x2

0
f (x, y) dy dx =

∫ 9

0

∫ √
9−y

−√
9−y

f (x, y) dx dy
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Let W be the region bounded by the planes y = z, 2y + z = 3, and z = 0 for 0 ≤ x ≤ 4.

(a) Express the triple integral
∫∫∫

W
f (x, y, z) dV as an iterated integral in the order dy dz dx (project W onto the

yz-plane).

(b) Evaluate the triple integral for f (x, y, z) = 1.

(c) Compute the volume of W using geometry and check that the result coincides with the answer to (b).

17. Let D be the domain between y = x and y = √
x. Calculate

∫∫
D

xy dA as an iterated integral in the order dx dy

and dy dx.

solution In the order dx dy: The inequalities describing D as a horizontally simple region are obtained by first

rewriting the equations of the curves with x as a function of y, that is, x = y and x = y2, respectively. The points of
intersection are found solving the equation

y = y2 ⇒ y(1 − y) = 0 ⇒ y = 0, y = 1

We obtain the following inequalities for D (see figure):

D : 0 ≤ y ≤ 1, y2 ≤ x ≤ y

x

y

1

1

0

y2 ≤ x ≤ y

We now compute the double integral as the following iterated integral:

∫∫
D

xy dA =
∫ 1

0

∫ y

y2
xy dx dy =

∫ 1

0

x2y

2

∣∣∣∣x=y

x=y2
dy =

∫ 1

0

(
y · y2

2
− y4 · y

2

)
dy

=
∫ 1

0

(
y3

2
− y5

2

)
dy = y4

8
− y6

12

∣∣∣∣1
0

= 1

8
− 1

12
= 1

24

In the order dy dx: D is described as a vertically simple region by the following inequalities (see figure):

D : 0 ≤ x ≤ 1, x ≤ y ≤ √
x

x

y

1

1

0

x ≤ y ≤ x

The corresponding iterated integral is

∫∫
D

xy dA =
∫ 1

0

∫ √
x

x
xy dy dx =

∫ 1

0

xy2

2

∣∣∣∣
√

x

y=x

dx =
∫ 1

0

(
x · x

2
− x · x2

2

)
dx

=
∫ 1

0

(
x2

2
− x3

2

)
dx = x3

6
− x4

8

∣∣∣∣1
0

= 1

6
− 1

8
= 1

24

Find the double integral of f (x, y) = x3y over the region between the curves y = x2 and y = x(1 − x).19. Change the order of integration and evaluate
∫ 9

0

∫ √
y

0

x dx dy

(x2 + y)1/2
.

solution The region here is described by the inequalities:

0 ≤ x ≤ √
y, 0 ≤ y ≤ 9

This region can also be described by writing these inequalities:

0 ≤ x ≤ 3, x2 ≤ y ≤ 9
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Hence, changing the order of integration and evaluating we get:

∫ 9

0

∫ √
y

0

x√
x2 + y

dx dy =
∫ 3

0

∫ 9

x2

x√
x2 + y

dy dx =
∫ 3

0
x

(
2
√

x2 + y

∣∣∣∣9
x2

)
dx

= 2
∫ 3

0
x
√

x2 + 9 − x
√

x2 + x2 dx = 2
∫ 3

0
x
√

x2 + 9 − x2
√

2 dx

= 2

(
1

3
(x2 + 9)3/2 −

√
2

3
x3
∣∣∣∣3
0

)

= 2

3
· 183/2 − 2

√
2

3
· 27 − 2 · 1

3
· 93/2

= 36
√

2 − 18
√

2 − 18 = 18
√

2 − 18

Verify directly that ∫ 3

2

∫ 2

0

dy dx

1 + x − y
=
∫ 2

0

∫ 3

2

dx dy

1 + x − y

21. Prove the formula ∫ 1

0

∫ y

0
f (x) dx dy =

∫ 1

0
(1 − x)f (x) dx

Then use it to calculate
∫ 1

0

∫ y

0

sin x

1 − x
dx dy.

solution The region of integration of the double integral
∫ 1

0
∫ y

0 f (x) dx dy is described as horizontally simple by the
inequalities

0 ≤ y ≤ 1, 0 ≤ x ≤ y

x

y

1

1

0

y = x

0 ≤ x ≤ y

The region can also be described as a vertically simple region, by the inequalities

0 ≤ x ≤ 1, x ≤ y ≤ 1

x

y

1

1

0

y = x

x ≤ y ≤ 1

Therefore,

∫ 1

0

∫ y

0
f (x) dx dy =

∫ 1

0

∫ 1

x
f (x) dy dx =

∫ 1

0
f (x)y

∣∣∣∣1
y=x

dx =
∫ 1

0
f (x)(1 − x) dx

We use the formula with f (x) = sin x
1−x

. We get

∫ 1

0

∫ y

0

sin x

1 − x
dx dy =

∫ 1

0
(1 − x) · sin x

1 − x
dx =

∫ 1

0
sin x dx = − cos x

∣∣∣∣1
0

= 1 − cos 1

Rewrite
∫ 1

0

∫ √
1−y2

−√
1−y2

y dx dy

(1 + x2 + y2)
2

by interchanging the order of integration, and evaluate.
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23. Use cylindrical coordinates to compute the volume of the region defined by 4 − x2 − y2 ≤ z ≤ 10 − 4x2 − 4y2.

solution

y

z

We first find the projection of W onto the xy-plane. The intersection curve of the upper and lower boundaries of W is
obtained by solving

10 − 4x2 − 4y2 = 4 − x2 − y2

6 = 3(x2 + y2) ⇒ x2 + y2 = 2

Therefore, the projection of W onto the xy-plane is the circle x2 + y2 ≤ 2. The upper surface is z = 10 − 4(x2 + y2)

or z = 10 − 4r2 and the lower surface is z = 4 − (x2 + y2) = 4 − r2. Therefore, the inequalities for W in cylindrical
coordinates are

0 ≤ θ ≤ 2π, 0 ≤ r ≤ √
2, 4 − r2 ≤ z ≤ 10 − 4r2

We use the volume as a triple integral and change of variables in cylindrical coordinates to write

V = Volume(W) =
∫∫∫

W
1 dV =

∫ 2π

0

∫ √
2

0

∫ 10−4r2

4−r2
r dz dr dθ =

∫ 2π

0

∫ √
2

0
rz

∣∣∣∣10−4r2

z=4−r2
dr dθ

=
∫ 2π

0

∫ √
2

0
r
(

10 − 4r2 −
(

4 − r2
))

dr dθ =
∫ 2π

0

∫ √
2

0

(
6r − 3r3

)
dr dθ

=
∫ 2π

0
3r2 − 3

4
r4
∣∣∣∣
√

2

r=0
dθ =

∫ 2π

0
(6 − 3) dθ = 6π

Evaluate
∫∫

D
x dA, where D is the shaded domain in Figure 2.

25. Find the volume of the region between the graph of the function f (x, y) = 1 − (x2 + y2) and the xy-plane.

solution

2

−2

x y

z

2

1

0

−2

−1

2

1

0

−1

−1
−2

1
0

The intersection of the surface z = 1 − (x2 + y2) with the xy-plane is obtained by setting z = 0. That is, 1 − (x2 + y2) = 0
or x2 + y2 = 1. Therefore, the projection of the solid onto the xy-plane is the disk x2 + y2 ≤ 1. We describe the disk as
a vertically simple region:

D : −1 ≤ x ≤ 1, −
√

1 − x2 ≤ y ≤
√

1 − x2

x

− 1 − x2 ≤ y ≤ 1 − x2
y

1−1

D
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The volume V is the double integral of z = 1 − (x2 + y2) over D. That is,

V =
∫∫

D

(
1 − (x2 + y2)

)
dA =

∫ 2π

0

∫ 1

0
(1 − r2) r dr dθ = 2π

∫ 1

0
(r − r3) dr = π/2

Evaluate
∫ 3

0

∫ 4

1

∫ 4

2
(x3 + y2 + z) dx dy dz.

27. Calculate
∫∫∫

B
(xy + z) dV , where

B = {0 ≤ x ≤ 2, 0 ≤ y ≤ 1, 1 ≤ z ≤ 3
}

as an iterated integral in two different ways.

solution The triple integral over the box may be evaluated in any order. For instance,

∫∫∫
B

(xy + z) dV =
∫ 2

0

∫ 1

0

∫ 3

1
(xy + z) dz dy dx =

∫ 1

0

∫ 2

0

∫ 3

1
(xy + z) dz dx dy

=
∫ 3

1

∫ 2

0

∫ 1

0
(xy + z) dy dx dz

We compute the integral in two of the possible orders:

∫∫∫
B

(xy + z) dV =
∫ 2

0

∫ 1

0

∫ 3

1
(xy + z) dz dy dx =

∫ 2

0

∫ 1

0
xyz + z2

2

∣∣∣∣3
z=1

dy dx

=
∫ 2

0

∫ 1

0

((
3xy + 9

2

)
−
(

xy + 1

2

))
dy dx =

∫ 2

0

∫ 1

0
(2xy + 4) dy dx

=
∫ 2

0
xy2 + 4y

∣∣∣∣1
y=0

dx =
∫ 2

0
(x + 4) dx = x2

2
+ 4x

∣∣∣∣2
0

= 4

2
+ 8 = 10

∫∫∫
B

(xy + z) dV =
∫ 1

0

∫ 2

0

∫ 3

1
(xy + z) dz dx dy =

∫ 1

0

∫ 2

0
xyz + z2

2

∣∣∣∣3
z=1

dx dy

=
∫ 1

0

∫ 2

0

((
3xy + 9

2

)
−
(

xy + 1

2

))
dx dy =

∫ 1

0

∫ 2

0
(2xy + 4) dx dy

=
∫ 1

0
x2y + 4x

∣∣∣∣2
x=0

dy =
∫ 1

0
(4y + 8) dy = 2y2 + 8y

∣∣∣∣1
0

= 2 + 8 = 10

Calculate
∫∫∫

W
xyz dV , where

W = {0 ≤ x ≤ 1, x ≤ y ≤ 1, x ≤ z ≤ x + y
}

29. Evaluate I =
∫ 1

−1

∫ √
1−x2

0

∫ 1

0
(x + y + z) dz dy dx.

solution We compute the triple integral:

I1 =
∫ 1

−1

∫ √
1−x2

0

∫ 1

0
(x + y + z) dz dy dx =

∫ 1

−1

∫ √
1−x2

0
(x + y)z + z2

2

∣∣∣∣1
y=0

dy dx

=
∫ 1

−1

∫ √
1−x2

0

(
x + y + 1

2

)
dy dx =

∫ 1

−1

(
x + 1

2

)
y + y2

2

∣∣∣∣
√

1−x2

y=0
dx

=
∫ 1

−1

(
x + 1

2

)√
1 − x2 + 1 − x2

2
dx =

∫ 1

−1
x
√

1 − x2 dx +
∫ 1

−1

1

2

√
1 − x2 dx +

∫ 1

−1

1 − x2

2
dx (1)

The first integral is zero since the integrand is an odd function. Therefore, using Integration Formulas we get

I1 =
∫ 1

0

√
1 − x2 dx +

∫ 1

0
(1 − x2) dx = x

2

√
1 − x2 + 1

2
sin−1 x

∣∣∣∣1
0

+
(

x − x3

3

) ∣∣∣∣1
0

= 1

2
sin−1 1 + 2

3
= π

4
+ 2

3

Describe a region whose volume is equal to:

(a)
∫ 2π

0

∫ π/2

0

∫ 9

4
ρ2 sin φ dρ dφ dθ

1 π/4 2
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31. Find the volume of the solid contained in the cylinder x2 + y2 = 1 below the curve z = (x + y)2 and above the
curve z = −(x − y)2.

solution

y

z

x

We rewrite the equations of the surfaces using cylindrical coordinates:

z = (x + y)2 = x2 + y2 + 2xy = r2 + 2(r cos θ)(r sin θ) = r2(1 + sin 2θ)

z = −(x − y)2 = −(x2 + y2 − 2xy) = −(r2 − 2r2 cos θ sin θ) = −r2(1 − sin 2θ)

The projection of the solid onto the xy-plane is the unit disk. Therefore, the solid is described by the following inequalities:

W : 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 1, −r2(1 − sin 2θ) ≤ z ≤ r2(1 + sin 2θ)

Expressing the volume as a triple integral and converting the triple integral to cylindrical coordinates, we get

V = Volume(W) =
∫∫∫

W
1 dv =

∫ 2π

0

∫ 1

0

∫ r2(1+sin 2θ)

−r2(1−sin 2θ)
r dz dr dθ

=
∫ 2π

0

∫ 1

0
rz

∣∣∣∣r
2(1+sin 2θ)

z=−r2(1−sin 2θ)

dr dθ =
∫ 2π

0

∫ 1

0
r
(
r2(1 + sin 2θ) + r2(1 − sin 2θ)

)
dr dθ

=
∫ 2π

0

∫ 1

0
r3 · 2 dr dθ =

(∫ 2π

0
2dθ

)(∫ 1

0
r3 dr

)
= 4π · r4

4

∣∣∣∣1
0

= π

Use polar coordinates to evaluate
∫∫

D
x dA, where D is the shaded region between the two circles of radius 1 in

Figure 3.

33. Use polar coordinates to calculate
∫∫

D

√
x2 + y2 dA, where D is the region in the first quadrant bounded by the

spiral r = θ , the circle r = 1, and the x-axis.

solution The region of integration, shown in the figure, has the following description in polar coordinates:

D : 0 ≤ θ ≤ 1, θ ≤ r ≤ 1

x

y

The function is f (x, y) =
√

x2 + y2 = r . We convert the double integral to polar coordinates and compute to obtain∫∫
D

√
x2 + y2 dA =

∫ 1

0

∫ 1

θ
r · r dr dθ =

∫ 1

0

∫ 1

θ
r2 dr dθ =

∫ 1

0

r3

3

∣∣∣∣1
r=θ

dθ

=
∫ 1

0

(
1

3
− θ3

3

)
dθ = θ

3
− θ4

12

∣∣∣∣1
0

= 1

3
− 1

12
= 1

4

Calculate
∫∫

D
sin(x2 + y2) dA, where

D =
{π

2
≤ x2 + y2 ≤ π

}
35. Express in cylindrical coordinates and evaluate:

∫ 1

0

∫ √
1−x2

0

∫ √
x2+y2

0
z dz dy dx
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solution We evaluate the integral by converting it to cylindrical coordinates. The projection of the region of integration
onto the xy-plane, as defined by the limits of integration, is

D : 0 ≤ x ≤ 1, 0 ≤ y ≤
√

1 − x2

x

D

y

1

That is, D is the part of the disk x2 + y2 ≤ 1 in the first quadrant. The inequalities defining D in polar coordinates are

D : 0 ≤ θ ≤ π

2
, 0 ≤ r ≤ 1

The upper surface is z =
√

x2 + y2 = r and the lower surface is z = 0. Therefore, the inequalities defining the region of
integration in cylindrical coordinates are

W : 0 ≤ θ ≤ π

2
, 0 ≤ r ≤ 1, 0 ≤ z ≤ r

Converting the double integral to cylindrical coordinates gives

I =
∫ π/2

0

∫ 1

0

∫ r

0
zr dz dr dθ =

∫ π/2

0

∫ 1

0

z2r

2

∣∣∣∣r
z=0

dr dθ =
∫ π/2

0

∫ 1

0

r3

2
dr dθ

=
(∫ π/2

0
dθ

)(∫ 1

0

r3

2
dr

)
= π

2
· r4

8

∣∣∣∣1
0

= π

16

Use spherical coordinates to calculate the triple integral of f (x, y, z) = x2 + y2 + z2 over the region

1 ≤ x2 + y2 + z2 ≤ 4

37. Convert to spherical coordinates and evaluate:

∫ 2

−2

∫ √
4−x2

−
√

4−x2

∫ √
4−x2−y2

0
e−(x2+y2+z2)

3/2
dz dy dx

solution The region of integration as defined by the limits of integration is

W : −2 ≤ x ≤ 2, −
√

4 − x2 ≤ y ≤
√

4 − x2, 0 ≤ z ≤
√

4 − x2 − y2

That is, W is the region enclosed by the sphere x2 + y2 + z2 = 4 and the xy-plane. We see that the region of integration
is the upper half-ball x2 + y2 + z2 ≤ 4, hence the inequalities defining W in spherical coordinates are

W : 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π

2
, 0 ≤ ρ ≤ 2

x

D

y

2−2

4 − x2y =

4 − x2y = −

The function is f (x, y, z) = e−(x2+y2+z2)
3/2 = e−(ρ2)

3/2 = e−ρ3
, therefore the integral in spherical coordinates is

I =
∫ 2π

0

∫ π/2

0

∫ 2

0
e−ρ3

ρ2 sin φ dρ dφ dθ =
(∫ 2π

0
dθ

)(∫ π/2

0
sin φ dφ

)(∫ 2

0
e−ρ3

ρ2dρ

)

= 2π

(
− cos φ

∣∣∣∣π/2

0

)∫ 2

0
e−ρ3

ρ2dρ = 2π

∫ 2

0
e−ρ3

ρ2dρ
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We compute the integral using the substitution u = ρ3, du = 3ρ2dρ. We get

I = 2π

∫ 8

0
e−u du

3
= 2π

3
(−e−u)

∣∣∣∣8
0

= 2π

3
(−e−8 + 1) =

2π
(
−1 + e8

)
3e8

Find the average value of f (x, y, z) = xy2z3 on the box [0, 1] × [0, 2] × [0, 3].39. Let W be the ball of radius R in R3 centered at the origin, and let P = (0, 0, R) be the North Pole. Let dP (x, y, z)

be the distance from P to (x, y, z). Show that the average value of dP over the sphere W is equal to d = 6R/5. Hint:
Show that

d = 1
4
3πR3

∫ 2π

θ=0

∫ R

ρ=0

∫ π

φ=0
ρ2 sin φ

√
R2 + ρ2 − 2ρR cos φ dφ dρ dθ

and evaluate.

solution We know that the volume of the ball is 4
3πR3.

In spherical coordinates, the distance from P to a point on the ball is√
(x − 0)2 + (y − 0)2 + (z − R)2 =

√
ρ2 sin2 φ cos2 θ + ρ2 sin2 φ sin2 θ + (ρ cos φ − R)2

=
√

ρ2 sin2 φ(cos2 θ + sin2 θ) + ρ2 cos2 φ − 2ρR cos φ + R2

=
√

ρ2 sin2 φ + ρ2 cos2 φ − 2ρR cos φ + R2

=
√

ρ2(sin2 φ + cos2 φ) − 2ρR cos φ + R2

=
√

R2 + ρ2 − 2ρR cos φ

Now, to write the average value of dP we have:

dP = 1
4
3πR3

∫ 2π

θ=0

∫ R

ρ=0

∫ π

φ=0
ρ2 sin φ

√
R2 + ρ2 − 2ρR cos φ dφ dρ dθ

Using substitution, and the fact that 0 ≤ ρ ≤ R,∫ π

φ=0
sin φ

√
R2 + ρ2 − 2ρR cos φ dφ = 2ρ

3R
(R2 + ρ2 − 2ρR cos φ)3/2

∣∣∣π
0

= 2ρ

3R

(
(R + ρ3) − (R − ρ)3

)
= 2ρ

3R
(ρ3 + 3R2ρ)

Now integrate with respect to θ and ρ:

dP = 1
4
3πR3

∫ 2π

0

∫ R

0
ρ2 · 2ρ

3R
(ρ3 + 3R2ρ) dρ dθ

= 3

4πR3
· 2

3R

∫ 2π

0

∫ R

0
ρ3(ρ3 + 3R2ρ) dρ dθ

= 1

2πR4

∫ 2π

0

∫ R

0
ρ6 + 3R2ρ4 dρ dθ

= 1

2πR4

∫ 2π

0

1

7
ρ7 + 3

5
R2ρ5

∣∣∣∣R
0

dθ

= 1

2πR4

∫ 2π

0

1

7
R7 + 3

5
R7 dθ

= 1

2πR4

(
26

35
R7
)

· 2π = 26

35
R3

to get 8πR4/5. Dividing by the volume of the sphere gives us 6R/5
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Express the average value of f (x, y) = exy over the ellipse
x2

2
+ y2 = 1 as an iterated integral, and evaluate

numerically using a computer algebra system.

41. Use cylindrical coordinates to find the mass of the solid bounded by z = 8 − x2 − y2 and z = x2 + y2, assuming a
mass density of f (x, y, z) = (x2 + y2)1/2.

solution The mass of the solid W is the following integral:

M =
∫∫∫

W
(x2 + y2)

1/2
dV

x

z

y

The projection of W on the xy-plane is obtained by equating the equations of the two surfaces:

8 − x2 − y2 = x2 + y2

2(x2 + y2) = 8
⇒ x2 + y2 = 4

We conclude that the projection is the disk D : x2 + y2 ≤ 4.

x

D

y

2

Therefore, W is described by

W : x2 + y2 ≤ z ≤ 8 − (x2 + y2), (x, y) ∈ D

Thus,

M =
∫∫

D

∫ 8−(x2+y2)

x2+y2
(x2 + y2)

1/2
dz dx dy

We convert the integral to cylindrical coordinates. The inequalities for W are

0 ≤ r ≤ 2, 0 ≤ θ ≤ 2π, r2 ≤ z ≤ 8 − r2.

Also, (x2 + y2)
1/2 = r , hence we obtain the following integral:

M =
∫ 2

0

∫ 2π

0

∫ 8−r2

r2
r · r dz dθ dr =

∫ 2

0

∫ 2π

0

∫ 8−r2

r2
r2 dz dθ dr =

∫ 2

0

∫ 2π

0
r2z

∣∣∣∣8−r2

z=r2
dθ dr

=
∫ 2

0

∫ 2π

0
r2(8 − r2 − r2) dθ dr =

∫ 2

0

∫ 2π

0
(8r2 − 2r4) dθ dr =

(∫ 2π

0
1 dθ

)(∫ 2

0
(8r2 − 2r4) dr

)

= 2π

(
8r3

3
− 2

5
r5
∣∣∣∣2
0

)
= 256

15
π ≈ 53.62
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Let W be the portion of the half-cylinder x2 + y2 ≤ 4, x ≥ 0 such that 0 ≤ z ≤ 3y. Use cylindrical coordinates
to compute the mass of W if the mass density is ρ(x, y, z) = z2.

43. Use cylindrical coordinates to find the mass of a cylinder of radius 4 and height 10 if the mass density at a point is
equal to the square of the distance from the cylinder’s central axis.

solution

z

y

x

4

10

The mass density is ρ(x, y, z) = x2 + y2 = r2, hence the mass of the cylinder is

M =
∫∫∫

W
(x2 + y2) dV

The region W is described using cylindrical coordinates by the following inequalities:

W : 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 4, 0 ≤ z ≤ 10

D

−4
x

y

4

4

−4

Thus,

M =
∫∫∫

W
(x2 + y2) dV =

∫ 2π

0

∫ 4

0

∫ 10

0
r2 · r dz dr dθ =

∫ 2π

0

∫ 4

0

∫ 10

0
r3 dz dr dθ =

∫ 2π

0

∫ 4

0
r3z

∣∣∣∣10

z=0
dr dθ

=
∫ 2π

0

∫ 4

0
r3 · 10 dr dθ =

∫ 2π

0

10r4

4

∣∣∣∣4
r=0

dθ =
∫ 2π

0
640 dθ = 640 · 2π = 1280π

Find the centroid of the region W bounded, in spherical coordinates, by φ = φ0 and the sphere ρ = R.45. Find the centroid of the solid bounded by the xy-plane, the cylinder x2 + y2 = R2, and the plane x/R + z/H = 1.

solution First to find the volume of this solid. The first equation lends itself well to cylindrical coordinates:

x2 + y2 = R2 ⇒ r = R, 0 ≤ θ ≤ 2π

and
x

R
+ z

H
= 1 ⇒ z = H

(
1 − x

R

)
= H

(
1 − r cos θ

R

)
The volume is:

V olume =
∫ 2π

0

∫ R

0

∫ H(1−r cos θ/R)

0
1 dz dr dθ

=
∫ 2π

0

∫ R

0
H

(
1 − r cos θ

R

)
dr dθ

= H

∫ 2π

0
r − 1

2
· r2 cos θ

R

∣∣∣∣R
r=0

dθ

= H

∫ 2π

0
R − 1

2
R cos θ dθ

= H

(
Rθ − 1

2
R sin θ

∣∣∣∣2π

0

)

= 2πHR
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Now to compute the coordinates of the centroid:

x = 1

V

∫∫∫
W

x dV = 1

2πHR

∫ 2π

0

∫ R

0

∫ H(1−r cos θ/R)

0
r cos θ dz dr dθ

= 1

2πHR

∫ 2π

0

∫ R

0
r cos θ · z

∣∣∣∣H(1−r cos θ/R)

0
dr dθ

= H

2πHR

∫ 2π

0

∫ R

0
r cos θ

(
1 − r cos θ

R

)
dr dθ

= 1

2πR

∫ 2π

0

∫ R

0
r cos θ − 1

R
r2 cos2 θ dr dθ

= 1

2πR

∫ 2π

0

1

2
r2 cos θ − 1

3R
r3 cos2 θ

∣∣∣∣R
0

dθ

= 1

2πR

∫ 2π

0

1

2
R2 cos θ − R2

6
(1 + cos 2θ) dθ

= 1

2πR

(
1

2
R2 sin θ − R2

6

(
θ + 1

2
sin 2θ

) ∣∣∣∣2π

0

)
= 1

2πR
· −R2

6
(2π) = −R

6

y = 1

V

∫∫∫
W

y dV = 1

2πHR

∫ 2π

0

∫ R

0

∫ H(1−r cos θ/R)

0
r sin θ dz dr dθ

= 1

2πHR

∫ 2π

0

∫ R

0
r sin θ · z

∣∣∣∣H(1−r cos θ/R)

0
dr dθ

= H

2πHR

∫ 2π

0

∫ R

0
r sin θ

(
1 − r cos θ

R

)
dr dθ

= 1

2πR

∫ 2π

0

∫ R

0
r sin θ − 1

R
r2 sin θ cos θ dr dθ

= 1

2πR

∫ 2π

0

1

2
r2 sin θ − 1

3R
r3 sin θ cos θ

∣∣∣∣R
0

dθ

= 1

2πR

∫ 2π

0

1

2
R2 sin θ − R2

3
sin θ cos θ dθ

= 1

2πR

(
−1

2
R2 cos θ − R2

6
sin2 θ

∣∣∣∣2π

0

)
= 0

z = 1

V

∫∫∫
W

z dV = 1

2πHR

∫ 2π

0

∫ R

0

∫ H(1−r cos θ/R)

0
z dz dr dθ

= 1

2πHR

∫ 2π

0

∫ R

0

1

2
z2
∣∣∣∣H(1−r cos θ/R)

0
dr dθ

= H 2

4πHR

∫ 2π

0

∫ R

0

(
1 − r cos θ

R

)2
dr dθ

= H

4πR

∫ 2π

0

∫ R

0
1 − 2r cos θ

R
+ r2 cos2 θ

R2
dr dθ

= H

4πR

∫ 2π

0
r − r2 cos θ

R
+ r3 cos2 θ

3R2

∣∣∣∣R
0

dθ

= H

4πR

∫ 2π

0
R − R cos θ + 1

6
R(1 + cos 2θ) dθ

= H

4πR

(
Rθ − R sin θ + 1

6
R

(
θ + 1

2
sin 2θ

) ∣∣∣∣2π

0

)

= H

4πR

(
2πR + 1

3
πR

)
= H

4πR
· 7πR

3
= 7

12
H

The coordinates of the centroid are (−R/6, 0, 7H/12).
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Using cylindrical coordinates, prove that the centroid of a right circular cone of height h and radius R is located
at height h

4 on the central axis.

47. Find the centroid of solid (A) in Figure 4 defined by x2 + y2 ≤ R2, 0 ≤ z ≤ H , and π
6 ≤ θ ≤ 2π , where θ is the

polar angle of (x, y).

1

(A) (B)

R

H 2

1

π

6

FIGURE 4

solution Since the mass distribution is uniform, we may assume that ρ(x, y, z) = 1, hence the center of mass is

xCM = 1

V

∫∫∫
W

x dV, yCM = 1

V

∫∫∫
W

y dV, zCM = 1

V

∫∫∫
W

z dV

The inequalities describing W in cylindrical coordinates are

W : 0 ≤ θ ≤ π

6
, 0 ≤ r ≤ R, 0 ≤ z ≤ H

x
R

y

6

The entire cylinder has a total volume πR2H . The region W has the fraction (2π − π
6 )/(2π) of this total volume, so

V = (2π − π
6 )

2π
(πR2H) = 11πR2H

12

We use cylindrical coordinates to compute the triple integrals:

xCM = 1

V

∫ 2π

π/6

∫ R

0

∫ H

0
(r cos θ)r dz dr dθ = 12

11πR2H

(∫ 2π

π/6
cos θ dθ

)(∫ R

0
r2 dr

)(∫ H

0
dz

)

= 12

11πR2H

(
−1

2

)(
R3

3

)
(H) = − 2R

11π

yCM = 1

V

∫ 2π

π/6

∫ R

0

∫ H

0
(r sin θ)r dzdrdθ = 12

11πR2H

(∫ 2π

π/6
sin θ dθ

)(∫ R

0
r2 dr

)(∫ H

0
dz

)

= 12

11πR2H

(
−2 + √

3

2

)(
R3

3

)
(H) = 2R

11π
(
√

3 − 2)

zCM = 1

V

∫ 2π

π/6

∫ R

0

∫ H

0
zr dz dr dθ = 12

11πR2H

(∫ 2π

π/6
dθ

)(∫ R

0
r dr

)(∫ H

0
z dz

)

= 12

11πR2H

(
11π

6

)(
R2

2

)(
H 2

2

)
= H

2

Therefore, the center of mass is the following point:(
− 2R

11π
,

2R

11π
(
√

3 − 2),
H

2

)

Calculate the coordinate yCM of the centroid of solid (B) in Figure 4 defined by x2 + y2 ≤ 1 and 0 ≤ z ≤ 1
2y + 3

2 .
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49. Find the center of mass of the cylinder x2 + y2 = 1 for 0 ≤ z ≤ 1, assuming a mass density of ρ(x, y, z) = z.

solution By symmetry, we can note that the center of mass lies on the z-axis.

z

y

x

The coordinates of the center of mass are defined as,

xCM =
∫∫∫

W x
(
x2 + y2

)
dV

M

yCM =
∫∫∫

W y
(
x2 + y2

)
dV

M
(1)

zCM =
∫∫∫

W z
(
x2 + y2

)
dV

M

where M is the total mass of W . The cylinder W is defined by the inequalities

−1 ≤ x ≤ 1, −
√

1 − x2 ≤ y ≤
√

1 − x2, 0 ≤ z ≤ 1

D

x

− 1 − x2 ≤ y ≤ 1 − x2
y

1−1

D

We compute the total mass of W:

M =
∫∫∫

W
z dV =

∫ 1

−1

∫ √
1−x2

−
√

1−x2

∫ 1

0
z dz dy dx =

∫ 1

−1

∫ √
1−x2

−
√

1−x2

1

2
z2
∣∣∣∣1
z=0

dy dx

= 1

2

∫ 1

−1

∫ √
1−x2

−
√

1−x2
1 dy dx =

∫ 1

−1

∫ √
1−x2

0
1 dy dx =

∫ 1

−1
y

∣∣∣∣
√

1−x2

y=0
dx

=
∫ 1

−1

√
1 − x2 dx

This integral is the area of a half of the unit circle, hence the total mass is∫ 1

−1

√
1 − x2 dx = π

2
= M

We now compute the numerators in (1). Using (2), we get

∫∫∫
W

xz dV =
∫ 1

−1

∫ √
1−x2

−
√

1−x2

∫ 1

0
xz dz dy dx =

∫ 1

−1

∫ √
1−x2

−
√

1−x2

1

2
xz2
∣∣∣∣1
z=0

dy dx

= 2
∫ 1

−1

∫ √
1−x2

0

1

2
x dy dx =

∫ 1

−1
xy

∣∣∣∣
√

1−x2

y=0
dx

=
∫ 1

−1
x
√

1 − x2 dx = −2

3
(1 − x2)3/2

∣∣∣∣1−1
= 0 (2)
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Now to compute the next numerator:

∫∫∫
W

yz dV =
∫ 1

−1

∫ √
1−x2

−
√

1−x2

∫ 1

0
yz dz dy dx =

∫ 1

−1

∫ √
1−x2

−
√

1−x2

1

2
yz2
∣∣∣∣1
z=0

dy dx

= 2
∫ 1

−1

∫ √
1−x2

0

1

2
y dy dx =

∫ 1

−1

1

2
y2
∣∣∣∣
√

1−x2

y=0
dx

=
∫ 1

−1
(1 − x2) dx =

(
x − x3

) ∣∣∣∣1−1
= 0 (3)

Thus far we have: ∫∫∫
W

yz dV =
∫∫∫

W
xz dV = 0 (4)

We compute the numerator of zCM in (1):

∫∫∫
W

z · z dV =
∫ 1

−1

∫ √
1−x2

−
√

1−x2

∫ 1

0
z2 dz dy dx =

∫ 1

−1

∫ √
1−x2

−
√

1−x2

1

3
z3
∣∣∣∣1
z=0

dy dx

=
∫ 1

−1

∫ √
1−x2

−
√

1−x2

1

3
dy dx =

∫ 1

−1

∫ √
1−x2

0

2

3
dy dx

=
∫ 1

−1

2

3
y

∣∣∣∣
√

1−x2

0
dx

= 2

3

∫ 1

−1

√
1 − x2 dx

This is 2/3 times half of the area of the circle, centered at the origin, having radius 1, so the integral is 1/3π .
Finally, we substitute M = π

2 and the computed integrals for (1) to obtain the following solution:

(xCM, yCM, zCM) =
(

0, 0,

π
3
π
2

)
=
(

0, 0,
2

3

)
.

Find the center of mass of the sector of central angle 2θ0 (symmetric with respect to the y-axis) in Figure 5,
assuming that the mass density is ρ(x, y) = x2.

51. Find the center of mass of the first octant of the ball x2 + y2 + z2 = 1, assuming a mass density of ρ(x, y, z) = x.

solution

(a) The solid is the part of the unit sphere in the first octant. The inequalities defining the projection of the solid onto the
xy-plane are

D : 0 ≤ y ≤ 1, 0 ≤ x ≤
√

1 − y2

x

y

1

1

1 − y20 ≤ x ≤

W is the region bounded by D and the sphere z =
√

1 − x2 − y2, hence W is defined by the inequalities

W : 0 ≤ y ≤ 1, 0 ≤ x ≤
√

1 − y2, 0 ≤ z ≤
√

1 − x2 − y2 (1)

We first must compute the mass of the solid. Using the mass as a triple integral, we have

M =
∫ 1

0

∫ √
1−y2

0

∫ √
1−x2−y2

0
x dz dx dy =

∫ 1

0

∫ √
1−y2

0
xz

∣∣∣∣
√

1−x2−y2

z=0
dx dy

=
∫ 1

0

∫ √
1−y2

0
x

√
1 − x2 − y2 dx dy
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We compute the inner integral using the substitution u =
√

1 − x2 − y2, du = − x
u dx, or x dx = −u du. We get

∫ √
1−y2

0
x

√
1 − x2 − y2 dx =

∫ 0
√

1−y2
u(−u du) =

∫ √
1−y2

0
u2 du = u3

3

∣∣∣∣
√

1−y2

0
= (1 − y2)

3/2

3
(2)

We substitute in (2) and compute the resulting integral substituting y = sin t , dy = cos t dt :

M =
∫ 1

0

(1 − y2)
3/2

3
dy = 1

3

∫ π/2

0
(1 − sin2 t)

3/2
cos t dt = 1

3

∫ π/2

0
cos4 t dt

= 1

3

(
cos3 t sin t

4
+ 3

4

(
t

2
+ sin 2t

4

) ∣∣∣∣π/2

0

)
= 1

4
· π

4
= π

16

That is, M = π
16 . We now find the coordinates of the center of mass. To compute xCM we use the definition of D as a

vertically simple region to obtain a simpler integral. That is, we write the inequalities for W as

W : 0 ≤ x ≤ 1, 0 ≤ y ≤
√

1 − x2, 0 ≤ z ≤
√

1 − x2 − y2 (3)

Thus,

xCM = 1

M

∫∫∫
W

xρ dV = 16

π

∫ 1

0

∫ √
1−x2

0

∫ √
1−x2−y2

0
x2 dz dy dx = 16

π

∫ 1

0

∫ √
1−x2

0
x2z

∣∣∣∣
√

1−x2−y2

z=0
dy dx

= 16

π

∫ 1

0

∫ √
1−x2

0
x2
√

1 − x2 − y2 dy dx = 16

π

∫ 1

0
x2

⎛
⎝∫

√
1−x2

0

√
1 − x2 − y2 dy

⎞
⎠ dx (4)

We compute the inner integral using Integration Formulas:

∫ √
1−x2

0

√
1 − x2 − y2 dy = y

2

√
1 − x2 − y2 + 1 − x2

2
sin−1 y√

1 − x2

∣∣∣∣
√

1−x2

y=0

= 1 − x2

2
sin−1 1 = 1 − x2

2
· π

2
= π

4
(1 − x2)

Substituting in (4) gives

xCM = 16

π

∫ 1

0
x2 · π

4
(1 − x2) dx = 4

∫ 1

0
(x2 − x4) dx = 4

(
x3

3
− x5

5

) ∣∣∣∣1
0

= 4

(
1

3
− 1

5

)
= 8

15

(b) We compute the y-coordinate of the center of mass, using (1):

yCM = 1

M

∫∫∫
W

yρ dV = 16

π

∫ 1

0

∫ √
1−y2

0

∫ √
1−x2−y2

0
yx dz dx dy = 16

π

∫ 1

0

∫ √
1−y2

0
yxz

∣∣∣∣
√

1−x2−y2

z=0
dx dy

= 16

π

∫ 1

0

∫ √
1−y2

0
yx

√
1 − x2 − y2 dx dy = 16

π

∫ 1

0
y

(∫ √
1−y2

0
x

√
1 − x2 − y2 dx

)
dy

The inner integral was computed in (2), therefore,

yCM = 16

π

∫ 1

0
y · (1 − y2)

3/2

3
dy = 16

3π

∫ 1

0
y(1 − y2)

3/2
dy

We compute the integral using the substitution u = 1 − y2, du = −2y dy. We get

yCM = 16

3π

∫ 0

1
u3/2 ·

(
−du

2

)
= 8

3π

∫ 1

0
u3/2 du = 8

3π
· 2

5
· u5/2

∣∣∣∣1
0

= 16

15π

Finally we find the z-coordinate of the center of mass, using (1):

zCM = 1

M

∫∫∫
W

zρ dV = 16

π

∫ 1

0

∫ √
1−y2

0

∫ √
1−x2−y2

0
zx dz dx dy = 16

π

∫ 1

0

∫ √
1−y2

0

z2x

2

∣∣∣∣
√

1−x2−y2

z=0
dx dy

= 16

π

∫ 1

0

∫ √
1−y2

0

x

2
(1 − x2 − y2) dx dy = 8

π

∫ 1

0

∫ √
1−y2

0
(x − x3 − xy2) dx dy
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= 8

π

∫ 1

0

x2

2
− x4

4
− x2y2

2

∣∣∣∣
√

1−y2

x=0
dy = 8

π

∫ 1

0

(
1 − y2

2
− (1 − y2)

2

4
− (1 − y2)y2

2

)
dy

= 2

π

∫ 1

0
(y4 − 2y2 + 1) dy = 2

π

(
y5

5
− 2y3

3
+ y

) ∣∣∣∣1
y=0

= 2

π

(
1

5
− 2

3
+ 1

)
= 16

15π

The center mass is the following point:

P =
(

8

15
,

16

15π
,

16

15π

)
.

Find a constant C such that

p(x, y) =
{
C(4x − y + 3) if 0 ≤ x ≤ 2 and 0 ≤ y ≤ 3
0 otherwise

is a probability distribution and calculate P(X ≤ 1; Y ≤ 2).

53. Calculate P(3X + 2Y ≥ 6) for the probability density in Exercise 52.

solution Previously we found p(x, y) = 1
33 (4x − y + 3). Then using P(3X + 2Y ≥ 6) we want to find 1 − P(3X +

2Y ≤ 6). Hence we need to integrate the following:

P(3X + 2Y ≤ 6) =
∫ 2

x=0

∫ 3−3/2x

y=0

1

33
(4x − y + 3) dy dx

= 1

33

∫ 2

0
4xy − 1

2
y2 + 3y

∣∣∣∣3−3/2x

0
dx

= 1

33

∫ 2

0
4x

(
3 − 3

2
x

)
− 1

2

(
3 − 3

2
x

)2
+ 3

(
3 − 3

2
x

)
dx

= 1

33

∫ 2

0
−57

8
x2 + 12x + 9

2
dx

= 1

33

(
−57

24
x3 + 6x2 + 9

2
x

) ∣∣∣∣2
0

= 1

33
(−19 + 24 + 9) = 14

33

Thus we have:

P(3X + 2Y ≥ 6) = 1 − P(3X + 2Y ≤ 6) = 1 − 14

33
= 19

33

The lifetimes X and Y (in years) of two machine components have joint probability density

p(x, y) =
{

6
125 (5 − x − y) if 0 ≤ x ≤ 5 − y and 0 ≤ y ≤ 5

0 otherwise

What is the probability that both components are still functioning after 2 years?

55. An insurance company issues two kinds of policies A and B. Let X be the time until the next claim of type A is filed,
and let Y be the time (in days) until the next claim of type B is filed. The random variables have joint probability density

p(x, y) = 12e−4x−3y

Find the probability that X ≤ Y .

solution We must compute

P(X ≤ Y ) =
∫ ∞
x=0

∫ ∞
y=x

p(x, y) dy dx

Now evaluating we get:

P(X ≤ Y ) =
∫ ∞
x=0

∫ ∞
y=x

12e−4x−3y dy dx = 12
∫ ∞

0

∫ ∞
x

e−4xe−3y dy dx

= 12
∫ ∞

0
e−4x

(
−1

3
e−3y

) ∣∣∣∣∞
x

dx = −4
∫ ∞

0
e−4x

(
lim

t→∞ e−3t − e−3x

)
dx

= 4
∫ ∞

0
e−4x · e−3x dx = 4

∫ ∞
0

e−7x dx

= −4

7

(
e−7x

) ∣∣∣∣∞
0

= −4

7
lim

t→∞
(
e−7t − 1

)
= 4

7

Compute the Jacobian of the map


(r, s) = (er cosh(s), er sinh(s)
)

57. Find a linear mapping 
(u, v) that maps the unit square to the parallelogram in the xy-plane spanned by the vectors
〈3, −1〉 and 〈1, 4〉. Then, use the Jacobian to find the area of the image of the rectangle R = [0, 4] × [0, 3] under 
.

solution We denote the linear map by

G(u, v) = (Au + Cv, Bu + Dv) (1)
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Φ

(0, 0) (1, 0)

(0, 1)

u

(1, 4)

x

y

(3, −1)

(0, 0)

The image of the unit square is the quadrangle whose vertices are the images of the vertices of the square. Therefore we
ask that

G(0, 0) = (A · 0 + C · 0, B · 0 + D · 0) = (0, 0)

G(1, 0) = (A · 1 + C · 0, B · 1 + D · 0) = (3, −1)

G(0, 1) = (A · 0 + C · 1, B · 0 + D · 1) = (1, 4)

⇒
(0, 0) = (0, 0)

(A, B) = (3,−1)

(C, D) = (1, 4)

These equations imply that A = 3, B = −1, C = 1, and D = 4. Substituting in (1) we obtain the following map:

G(u, v) = (3u + v, −u + 4v)

The area of the rectangle R = [0, 4] × [0, 3] is 4 · 3 = 12, therefore the transformed area is

Area = |Jac(G)| · 12

The Jacobian of the linear map G is

Jac (G) =
∣∣∣∣ A C

B D

∣∣∣∣ =
∣∣∣∣ 3 1

−1 4

∣∣∣∣ = 12 − (−1) = 13

Therefore,

Area = 13 · 12 = 156.

Use the map


(u, v) =
(

u + v

2
,
u − v

2

)

to compute
∫∫

R
(
(x − y) sin(x + y)

)2
dx dy, where R is the square with vertices (π, 0), (2π, π), (π, 2π), and

(0, π).

59. Let D be the shaded region in Figure 6, and let F be the map

u = y + x2, v = y − x3

(a) Show that F maps D to a rectangle R in the uv-plane.
(b) Apply Eq. (7) in Section 15.6 with P = (1, 7) to estimate Area(D).

D

x

y

y = 9 − x2

y = 8 − x2

y = x3 + 6 y = x3 + 5

1

9
8
7
6
5

P = (1, 7)

FIGURE 6

solution

(a) Note that the appropriate map should be u = y + x2 rather than u = −y + x2. We examine the images of the
boundary curves of D under the map (u, v) = 
(x, y) = (x2 + y, y − x3). The curves y = x3 + 6 and y = x3 + 5 can
be rewritten as y − x3 = 6 and y − x3 = 5. Since v = y − x3, these curves are mapped to the horizontal lines v = 6
and v = 5, respectively. The curves y = 8 − x2 and y = 9 − x2 can be rewritten as y + x2 = 8 and y + x2 = 9. Since
u = y + x2, these curves are mapped to the vertical lines u = 8 and u = 9, respectively. We conclude that D is mapped
to the rectangle R = [8, 9] × [5, 6] in the (u, v)-plane.

u
98

6
5

R
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(b) We use Eq. (5) in section 16.5, where this time 
 is a mapping from the (x, y)-plane to the (u, v)-plane, and P = (1, 7)

is a point in D:

Area
(D) ≈ |Jac(
)(P )|Area(D)

Φ

P

u

R

x

y

D

Here, Area
(D) = Area(R) = 12 = 1, therefore we get

1 ≈ |Jac(
)(P )|Area(D)

or

Area(D) ≈ |Jac(
)(P )|−1 (1)

We compute the Jacobian of 
(x, y) = (u, v) = (y + x2, y − x3) at P = (1, 7):

Jac(
) =

∣∣∣∣∣∣∣∣
∂u

∂x

∂u

∂y

∂v

∂x

∂v

∂y

∣∣∣∣∣∣∣∣ =
∣∣∣∣ 2x 1

−3x2 1

∣∣∣∣ = 2x + 3x2 ⇒ Jac(
)(P ) = 2 · 1 + 3 · 72 = 149

Combining with (1) gives

Area(D) ≈ (149)−1 = 1

149
.

Calculate the integral of f (x, y) = e3x−2y over the parallelogram in Figure 7.
61. Sketch the region D bounded by the curves y = 2/x, y = 1/(2x), y = 2x, y = x/2 in the first quadrant. Let F be
the map u = xy, v = y/x from the xy-plane to the uv-plane.

(a) Find the image of D under F .

(b) Let 
 = F−1. Show that |Jac(
)| = 1

2|v| .

(c) Apply the Change of Variables Formula to prove the formula∫∫
D

f
(y

x

)
dx dy = 3

4

∫ 2

1/2

f (v) dv

v

(d) Apply (c) to evaluate
∫∫

D
yey/x

x
dx dy.

solution

(a) The region D is shown in the figure:

D

x

y
y = 2x

1 2

1

2
y = x

2

y = 1
2x

y = 2
x

We rewrite the equations of the boundary curves as xy = 2, xy = 1
2 , y

x = 2, and y
x = 1

2 . These curves are mapped by


 to the lines u = 2, u = 1
2 , v = 2, and v = 1

2 . Therefore, the image of D is the rectangle R =
[

1
2 , 2
]

×
[

1
2 , 2
]

in the

(u, v)-plane.
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R

u
2

2

1
2

1
2

(b) We use the Jacobian of the inverse map:

Jac(F−1) = (Jac(F ))−1

We compute the Jacobian of F(x, y) = (u, v) = (xy,
y
x

)
:

Jac(F ) =

∣∣∣∣∣∣∣∣
∂u

∂x

∂u

∂y

∂v

∂x

∂v

∂y

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣

y x

− y

x2

1

x

∣∣∣∣∣∣ =
y

x
+ yx

x2
= 2y

x
= 2v

(Note that everything is positive, so we don’t need absolute values!) Thus,

Jac(F−1) = (Jac(F ))−1 = 1

2v
= 1

|2v| .

(c) The general change of variables formula is∫∫
D

f (x, y) dA =
∫∫

R
f (x(u, v), y(u, v)) |Jac(F−1)(u, v)| du dv

Here, f
( y
x

) = f (v), R =
[

1
2 , 2
]

×
[

1
2 , 2
]

in the (u, v)-plane and |Jac(F−1)(u, v)| = | 1
2v

| = 1
2v

(v > 0 in R).

Therefore, we have∫∫
D

f
(y

x

)
dA =

∫ 2

1/2

∫ 2

1/2
f (v) · 1

2v
du dv =

(∫ 2

1/2
1 du

)(∫ 2

1/2

f (v)

2v
dv

)
= 3

4

∫ 2

1/2

f (v)

v
dv

(d) We use part (c) with f
( y
x

) = y
x · ey/x . We have f (v) = v · ev , hence

∫∫
D

yey/x

x
dx dy = 3

4

∫ 2

1/2

vev

v
dv = 3

4

∫ 2

1/2
ev dv = 3

4
ev

∣∣∣∣2
1/2

= 3

4
(e2 − e1/2) = 3

4

(
e2 − √

e
)
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16.1 Vector Fields (LT Section 17.1)

Preliminary Questions
1. Which of the following is a unit vector field in the plane?

(a) F = 〈y, x〉

(b) F =
〈

y√
x2 + y2

,
x√

x2 + y2

〉

(c) F =
〈

y

x2 + y2
,

x

x2 + y2

〉
solution

(a) The length of the vector 〈y, x〉 is

‖〈y, x〉‖ =
√

y2 + x2

This value is not 1 for all points, hence it is not a unit vector field.

(b) We have

∥∥∥∥∥
〈

y√
x2 + y2

,
x√

x2 + y2

〉∥∥∥∥∥ =
√√√√(

y√
x2 + y2

)2

+
(

x√
x2 + y2

)2

=
√

y2

x2 + y2
+ x2

x2 + y2
=

√
y2 + x2

x2 + y2
= 1

Hence the field is a unit vector field, for (x, y) �= (0, 0).

(c) We compute the length of the vector:

∥∥∥∥
〈

y

x2 + y2
,

x

x2 + y2

〉∥∥∥∥ =
√(

y

x2 + y2

)2
+

(
x

x2 + y2

)2
=

√√√√ y2 + x2(
x2 + y2

)2
=

√
1

x2 + y2

Since the length is not identically 1, the field is not a unit vector field.

2. Sketch an example of a nonconstant vector field in the plane in which each vector is parallel to 〈1, 1〉.
solution The non-constant vector 〈x, x〉 is parallel to the vector 〈1, 1〉.

y

x

3. Show that the vector field F = 〈−z, 0, x〉 is orthogonal to the position vector
−→
OP at each point P . Give an example

of another vector field with this property.

solution The position vector at P = (x, y, z) is 〈x, y, z〉. We must show that the following dot product is zero:

〈x, y, z〉 · 〈−z, 0, x〉 = x · (−z) + y · 0 + z · x = 0

576
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Therefore, the vector field F = 〈−z, 0, x〉 is orthogonal to the position vector. Another vector field with this property is
F = 〈0, −z, y〉, since

〈0, −z, y〉 · 〈x, y, z〉 = 0 · x + (−z) · y + y · z = 0

4. Give an example of a potential function for 〈yz, xz, xy〉 other than f (x, y, z) = xyz.

solution Since any two potential functions of a gradient vector field differ by a constant, a potential function for the
given field other than V (x, y, z) = xyz is, for instance, V1(x, y, z) = xyz + 1.

Exercises
1. Compute and sketch the vector assigned to the points P = (1, 2) and Q = (−1, −1) by the vector field F = 〈

x2, x
〉
.

solution The vector assigned to P = (1, 2) is obtained by substituting x = 1 in F, that is,

F(1, 2) = 〈12, 1〉 = 〈1, 1〉
Similarly,

F(−1, −1) = 〈
(−1)2, −1

〉 = 〈1, −1〉

x
1

1

−1

y

F(P) = 〈1, 1〉

F(Q) = 〈1, −1〉

Compute and sketch the vector assigned to the points P = (1, 2) and Q = (−1, −1) by the vector field F =
〈−y, x〉.

3. Compute and sketch the vector assigned to the points P = (0, 1, 1) and Q = (2, 1, 0) by the vector field F =〈
xy, z2, x

〉
.

solution To find the vector assigned to the point P = (0, 1, 1), we substitute x = 0, y = 1, z = 1 in F = 〈xy, z2, x〉.
We get

F(P ) = 〈0 · 1, 12, 0〉 = 〈0, 1, 0〉
Similarly, F(Q) is obtained by substituting x = 2, y = 1, z = 0 in F. That is,

F(Q) = 〈2 · 1, 02, 2〉 = 〈2, 0, 2〉

F(P) = 〈0, 1, 0〉F(Q) = 〈2, 0, 2〉

y

x

z

Compute the vector assigned to the points P = (1, 1, 0) and Q = (2, 1, 2) by the vector fields er ,
er

r
, and

er

r2
.

In Exercises 5–12, sketch the following planar vector fields by drawing the vectors attached to points with integer
coordinates in the rectangle −3 ≤ x ≤ 3, −3 ≤ y ≤ 3. Instead of drawing the vectors with their true lengths, scale them
if necessary to avoid overlap.

5. F = 〈1, 0〉
solution The constant vector field 〈1, 0〉 is shown in the figure:

−2

−1

−3

1

2

3

y

x
−2−3 −1 1 2 3
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F = 〈1, 1〉7. F = xi

solution The vector field F(x, y) = xi = (x, 0) is sketched in the following figure:

y

x

F = yi
9. F = 〈0, x〉

solution We sketch the vector field F(x, y) = 〈0, x〉:
y

x

F = x2i + yj11. F =
〈

x

x2 + y2
,

y

x2 + y2

〉
solution

y

x

F =
〈

−y√
x2 + y2

,
x√

x2 + y2

〉In Exercises 13–16, match each of the following planar vector fields with the corresponding plot in Figure 10.

x

y

(B)

(C) (D)

−2 20

2

0

(A)

−2

x

y

−2 20

2

0

−2

x

y

−2 20

2

0

−2

x

y

−2 20

2

0

−2

FIGURE 10
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13. F = 〈2, x〉
solution The x coordinate of the vector field 〈2, x〉 is always 2. This matches only with Plot (D).

F = 〈2x + 2, y〉15. F = 〈y, cos x〉
solution We compute the images of the point (0, 2), for instance, and identify the corresponding graph accordingly:

F(x, y) = 〈y, cos x〉 ⇒ F(0, 2) = 〈2, 1〉 ⇒ Plot(B)

F = 〈x + y, x − y〉In Exercises 17–20, match each three-dimensional vector field with the corresponding plot in Figure 11.

(A) (B)

(C) (D)

FIGURE 11

17. F = 〈1, 1, 1〉
solution The constant vector field 〈1, 1, 1〉 is shown in plot (C).

F = 〈x, 0, z〉19. F = 〈x, y, z〉
solution 〈x, y, z〉 is shown in plot (B). Note that the vectors are pointing away from the origin and are of increasing
magnitude.

F = er
21. Find (by inspection) a potential function for F = 〈x, 0〉 and prove that G = 〈y, 0〉 is not conservative.

solution For f (x, y) = 1
2x2 we have ∇f = 〈x, 0〉.

∂G1

∂y
= 1 �= ∂G2

∂x
= 0

Thus G is not conservative.

Prove that F = 〈yz, xz, y〉 is not conservative.In Exercises 23–26, find a potential function for the vector field F by inspection.

23. F = 〈x, y〉
solution We must find a function ϕ(x, y) such that ∂ϕ

∂x
= x and ∂ϕ

∂y
= y. We choose the following function:

ϕ(x, y) = 1

2
x2 + 1

2
y2.

F = 〈
yexy, xexy

〉25. F = 〈
yz2, xz2, 2xyz

〉
solution We choose a function ϕ(x, y, z) such that

∂ϕ

∂x
= yz2,

∂ϕ

∂y
= xz2,

∂ϕ

∂z
= xyz

The function ϕ(x, y, z) = xyz2 is a potential function for the given field.

F = 〈
2xzex2

, 0, ex2 〉
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27. Find potential functions for F = er

r3
and G = er

r4
in R3. Hint: See Example 6.

solution We use the gradient of r , ∇r = er , and the Chain Rule for Gradients to write

∇
(

−1

2
r−2

)
= r−3∇r = r−3er = er

r3
= F

∇
(

−1

3
r−3

)
= r−4∇r = r−4er = er

r4
= G

Therefore ϕ1(r) = − 1
2r2 and ϕ2(r) = − 1

3r3 are potential functions for F and G, respectively.

Show that F = 〈3, 1, 2〉 is conservative. Then prove more generally that any constant vector field F = 〈a, b, c〉 is
conservative.

29. Let ϕ = ln r , where r =
√

x2 + y2. Express ∇ϕ in terms of the unit radial vector er in R2.

solution Since r = (x2 + y2 + z2)
1/2

, we have ϕ = ln (x2 + y2 + z2)
1/2 = 1

2 ln(x2 + y2 + z2). We compute the
partial derivatives:

∂ϕ

∂x
= 1

2

2x

x2 + y2 + z2
= x

r2

∂ϕ

∂y
= 1

2

2y

x2 + y2 + z2
= y

r2

∂ϕ

∂z
= 1

2

2z

x2 + y2 + z2
= z

r2

Therefore, the gradient of ϕ is the following vector:

∇ϕ =
〈
∂ϕ

∂x
,
∂ϕ

∂y
,
∂ϕ

∂z

〉
=

〈
x

r2
,

y

r2
,

z

r2

〉
= 1

r

〈x
r
,
y

r
,
z

r

〉
= er

r

For P = (a, b), we define the unit radial vector field based at P :

eP = 〈x − a, y − b〉√
(x − a)2 + (y − b)2

(a) Verify that eP is a unit vector field.

(b) Calculate eP (1, 1) for P = (3, 2).

(c) Find a potential function for eP .

31. Which of (A) or (B) in Figure 12 is the contour plot of a potential function for the vector field F? Recall that the
gradient vectors are perpendicular to the level curves.

(A) (B)

y

x x

x

y

y

FIGURE 12

solution By the equality ∇ϕ = F and since the gradient vectors are perpendicular to the level curves, it follows that
the vectors F are perpendicular to the corresponding level curves of ϕ. This property is satisfied in (B) and not satisfied
in (A). Therefore (B) is the contour plot of ϕ.

Which of (A) or (B) in Figure 13 is the contour plot of a potential function for the vector field F?
33. Match each of these descriptions with a vector field in Figure 14:

(a) The gravitational field created by two planets of equal mass located at P and Q.

(b) The electrostatic field created by two equal and opposite charges located at P and Q (representing the force on a
negative test charge; opposite charges attract and like charges repel).
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(C)

(A) (B)

QPQP

P Q

FIGURE 14

solution
(a) There will be an equilibrium point half way between the two planets. The vector field should pull objects near one
planet toward that planet. (C)
(b) A test charge at the midpoint between the two charges will be drawn by one, and repelled by the other. Therefore no
equilibrium. (B)

In this exercise, we show that the vector field F in Figure 15 is not conservative. Explain the following statements:

(a) If a potential function V for F exists, then the level curves of V must be vertical lines.

(b) If a potential function V for F exists, then the level curves of V must grow farther apart as y increases.

(c) Explain why (a) and (b) are incompatible, and hence V cannot exist.

Further Insights and Challenges
35. Show that any vector field of the form

F = 〈f (x), g(y), h(z)〉
has a potential function. Assume that f , g, and h are continuous.

solution Let F(x), G(y), and H(z) be antiderivatives of f (x), g(y), and h(z), respectively. That is, F ′(x) = f (x),
G′(y) = g(y), and H ′(y) = h(z). We define the function

ϕ(x, y, z) = F(x) + G(y) + H(z)

Then,

∂ϕ

∂x
= F ′(x) = f (x),

∂ϕ

∂x
= G′(y) = g(y),

∂ϕ

∂z
= H ′(z) = h(z)

Therefore, ∇ϕ = F, or ϕ is a potential function for F.

Let D be a disk in R2. This exercise shows that if

∇V (x, y) = 0

for all (x, y) in D, then V is constant. Consider points P = (a, b), Q = (c, d) and R = (c, b) as in Figure 16.

(a) Use single-variable calculus to show that V is constant along the segments PR and RQ.

(b) Conclude that V (P ) = V (Q) for any two points P, Q ∈ D.

16.2 Line Integrals (LT Section 17.2)

Preliminary Questions
1. What is the line integral of the constant function f (x, y, z) = 10 over a curve C of length 5?

solution Since the length of C is the line integral
∫
C 1 ds = 5, we have∫

C
10 ds = 10

∫
C

1 ds = 10 · 5 = 50

2. Which of the following have a zero line integral over the vertical segment from (0, 0) to (0, 1)?

(a) f (x, y) = x (b) f (x, y) = y

(c) F = 〈x, 0〉 (d) F = 〈y, 0〉
(e) F = 〈0, x〉 (f) F = 〈0, y〉
solution The vertical segment from (0, 0) to (0, 1) has the parametrization

c(t) = (0, t), 0 ≤ t ≤ 1

Therefore, c′(t) = 〈0, 1〉 and ‖c′(t)‖ = 1. The line integrals are thus computed by∫
C

f (x, y) ds =
∫ 1

0
f (c(t)) ‖c′(t)‖ dt (1)

∫
C

F · ds =
∫ 1

0
F (c(t)) · c′(t) dt (2)
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(a) We have f (c(t)) = x = 0. Therefore by (1) the line integral is zero.

(b) By (1), the line integral is ∫
C

f (x, y) ds =
∫ 1

0
t · 1 dt = 1

2
t2

∣∣∣∣1
0

= 1

2
�= 0

(c) This vector line integral is computed using (2). Since F (c(t)) = 〈x, 0〉 = 〈0, 0〉, the vector line integral is zero.

(d) By (2) we have ∫
C

F · ds =
∫ 1

0
〈t, 0〉 · 〈0, 1〉 dt =

∫ 1

0
0 dt = 0

(e) The vector integral is computed using (2). Since F (c(t)) = 〈0, x〉 = 〈0, 0〉, the line integral is zero.

(f) For this vector field we have∫
C

F · ds =
∫ 1

0
F (c(t)) · c′(t) dt =

∫ 1

0
〈0, t〉 · 〈0, 1〉 dt =

∫ 1

0
t dt = t2

2

∣∣∣∣1
0

= 1

2
�= 0

So, we conclude that (a), (c), (d), and (e) have an integral of zero.

3. State whether each statement is true or false. If the statement is false, give the correct statement.

(a) The scalar line integral does not depend on how you parametrize the curve.

(b) If you reverse the orientation of the curve, neither the vector line integral nor the scalar line integral changes sign.

solution
(a) True: It can be shown that any two parametrizations of the curve yield the same value for the scalar line integral,
hence the statement is true.

(b) False: For the definition of the scalar line integral, there is no need to specify a direction along the path, hence
reversing the orientation of the curve does not change the sign of the integral. However, reversing the orientation of the
curve changes the sign of the vector line integral.

4. Suppose that C has length 5. What is the value of
∫
C

F · ds if:

(a) F(P ) is normal to C at all points P on C?

(b) F(P ) is a unit vector pointing in the negative direction along the curve?

solution
(a) The vector line integral is the integral of the tangential component of the vector field along the curve. Since F(P ) is
normal to C at all points P on C, the tangential component is zero, hence the line integral

∫
C F · ds is zero.

(b) In this case we have

F(P ) · T(P ) = T(P ) · T(P ) = ‖T(P )‖2 = 1

Therefore, ∫
C

F · ds =
∫
C
(F · T) ds =

∫
C

1 ds = Length of C = 5.

Exercises
1. Let f (x, y, z) = x + yz, and let C be the line segment from P = (0, 0, 0) to (6, 2, 2).

(a) Calculate f (c(t)) and ds = ‖c′(t)‖ dt for the parametrization c(t) = (6t, 2t, 2t) for 0 ≤ t ≤ 1.

(b) Evaluate
∫
C

f (x, y, z) ds.

solution
(a) We substitute x = 6t , y = 2t , z = 2t in the function f (x, y, z) = x + yz to find f (c(t)):

f (c(t)) = 6t + (2t)(2t) = 6t + 4t2

We differentiate the vector c(t) and compute the length of the derivative vector:

c′(t) = d

dt
〈6t, 2t, 2t〉 = 〈6, 2, 2〉 ⇒ c′(t) =

√
62 + 22 + 22 = √

44 = 2
√

11

Hence,

ds = ‖c′(t)‖ dt = 2
√

11 dt
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(b) Computing the scalar line integral, we obtain∫
C

f (x, y, z) ds =
∫ 1

0
f (c(t)) ‖c′(t)‖ dt =

∫ 1

0
(6t + 4t2) · 2

√
11 dt

= 2
√

11

(
3t2 + 4

3
t3

) ∣∣∣∣1
0

= 2
√

11

(
3 + 4

3

)
= 26

√
11

3

Repeat Exercise 1 with the parametrization c(t) = (3t2, t2, t2) for 0 ≤ t ≤ √
2.

3. Let F = 〈
y2, x2〉

, and let C be the curve y = x−1 for 1 ≤ x ≤ 2, oriented from left to right.

(a) Calculate F(c(t)) and ds = c′(t) dt for the parametrization of C given by c(t) = (t, t−1).

(b) Calculate the dot product F(c(t)) · c′(t) dt and evaluate
∫
C

F · ds.

solution

(a) We calculate F (c(t)) by substituting x = t , y = t−1 in F =
〈
y2, x2

〉
. We get

F(c(t)) = 〈
(t−1)

2
, t2〉 = 〈

t−2, t2〉
We compute c′(t):

c′(t) = d

dt

〈
t, t−1〉 = 〈

1, −t−2〉 ⇒ ds = 〈
1, −t−2〉

dt

x
1 2

y

(b) We compute the dot product:

F(c(t)) · c′(t) = 〈
t−2, t2〉 · 〈

1, −t−2〉 = t−2 · 1 + t2 · (−t−2) = t−2 − 1

Computing the vector line integral, we obtain∫
C

F · ds =
∫ 2

1
F (c(t)) · c′(t) dt =

∫ 2

1
(t−2 − 1) dt = −t−1 − t

∣∣∣∣2
1

=
(

−1

2
− 2

)
− (−1 − 1) = −1

2

Let F = 〈
z2, x, y

〉
and let C be the path c(t) = 〈

3 + 5t2, 3 − t2, t
〉

for 0 ≤ t ≤ 2.

(a) Calculate F(c(t)) and ds = c′(t) dt .

(b) Calculate the dot product F(c(t)) · c′(t) dt and evaluate
∫
C

F · ds.

In Exercises 5–8, compute the integral of the scalar function or vector field over c(t) = (cos t, sin t, t) for 0 ≤ t ≤ π .

5. f (x, y, z) = x2 + y2 + z2

solution

Step 1. Compute ‖c′(t)‖. We differentiate c(t):

c′(t) = d

dt
〈cos t, sin t, t〉 = 〈− sin t, cos t, 1〉

Hence,

‖c′(t)‖ =
√

(− sin t)2 + cos2 t + 12 =
√

sin2 t + cos2 t + 1 = √
2

ds = ‖c′(t)‖ dt = √
2 dt

Step 2. Write out f (c(t)). We substitute x = cos t , y = sin t , z = t in f (x, y, z) = x2 + y2 + z2 to obtain

f (c(t)) = cos2 t + sin2 t + t2 = 1 + t2

Step 3. Compute the line integral. Using the Theorem on Scalar Line Integrals we obtain

∫
C
(x2 + y2 + z2) ds =

∫ π

0
f (c(t)) ‖c′(t)‖ dt =

∫ π

0
(1 + t2)

√
2 dt = √

2

(
t + t3

3

) ∣∣∣∣π
0

= √
2

(
π + π3

3

)
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f (x, y, z) = xy + z
7. F = 〈x, y, z〉

solution

Step 1. Calculate the integrand. We write out the vectors:

c(t) = (cos t, sin t, t)

F (c(t)) = 〈x, y, z〉 = 〈cos t, sin t, t〉
c′(t) = 〈− sin t, cos t, 1〉

The integrand is the dot product:

F (c(t)) · c′(t) = 〈cos t, sin t, t〉 · 〈− sin t, cos t, 1〉 = − cos t sin t + sin t cos t + t = t

Step 2. Evaluate the integral. We use the Theorem on Vector Line Integrals to evaluate the integral:∫
C

F ds =
∫ π

0
F (c(t)) · c′(t) dt =

∫ π

0
t dt = 1

2
t2

∣∣∣∣π
0

= π2

2

F = 〈
xy, 2, z3〉

In Exercises 9–16, compute
∫
C

f ds for the curve specified.

9. f (x, y) = √
1 + 9xy, y = x3 for 0 ≤ x ≤ 1

solution The curve is parametrized by c(t) =
(
t, t3

)
for 0 ≤ t ≤ 1

Step 1. Compute ‖c′(t)‖. We have

c′(t) = d

dt

〈
t, t3

〉
=

〈
1, 3t2

〉
⇒ ‖c′(t)‖ =

√
1 + 9t4

Step 2. Write out f (c(t)). We substitute x = t , y = t3 in f (x, y) = √
1 + 9xy to obtain

f (c(t)) =
√

1 + 9t · t3 =
√

1 + 9t4

Step 3. Compute the line integral. We use the Theorem on Scalar Line Integrals to write∫
C

f (x, y) ds =
∫ 1

0
f (c(t)) ‖c′(t)‖ dt =

∫ 1

0

√
1 + 9t4

√
1 + 9t4 dt =

∫ 1

0

(
1 + 9t4

)
dt

= t + 9t5

5

∣∣∣∣1
0

= 14

5
= 2.8

f (x, y) = y3

x7 , y = 1
4x4 for 1 ≤ x ≤ 2

11. f (x, y, z) = z2, c(t) = (2t, 3t, 4t) for 0 ≤ t ≤ 2

solution

Step 1. Compute ‖c′(t)‖ We have

c′(t) = d

dt
〈2t, 3t, 4t〉 = 〈2, 3, 4〉 ⇒ ‖c′(t)‖ =

√
22 + 32 + 42 = √

29

Step 2. Write out f (c(t)) We substitute z = 4t in f (x, y, z) = z2 to obtain:

f (c(t)) = 16t2

Step 3. Compute the line integral. By the Theorem on Scalar Line Integrals we have

∫
C

f (x, y, z) ds =
∫ 2

0
f (c(t)) ‖c′(t)‖ dt =

∫ 2

0
16t2 · √

29 dt = √
29 · 16

3
t3

∣∣∣∣2
0

= 128
√

29

3
≈ 229.8

f (x, y, z) = 3x − 2y + z, c(t) = (2 + t, 2 − t, 2t)

for −2 ≤ t ≤ 1

13. f (x, y, z) = xez2
, piecewise linear path from (0, 0, 1) to (0, 2, 0) to (1, 1, 1)

solution Let C1 be the segment joining the points (0, 0, 1) and (0, 2, 0) and C2 be the segment joining the points
(0, 2, 0) and (1, 1, 1). We parametrize C1 and C2 by the following parametrization:

C1 : c1(t) = (0, 2t, 1 − t), 0 ≤ t ≤ 1

C2 : c2(t) = (t, 2 − t, t), 0 ≤ t ≤ 1
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For C = C1 + C1 we have ∫
C

f (x, y, z) ds =
∫
C1

f (x, y, z) ds +
∫
C2

f (x, y, z) ds (1)

We compute the integrals on the right hand side.

• The integral over C1: We have

c′
1(t) = d

dt
〈0, 2t, 1 − t〉 = 〈0, 2, −1〉 ⇒ ‖c′

1(t)‖ = √
0 + 4 + 1 = √

5

f (c(t)) = xez2 = 0 · e(1−t)2 = 0

Hence, ∫
C1

f (x, y, z) ds =
∫ 1

0
f (c1(t)) ‖c′

1(t)‖ dt =
∫ 1

0
0 dt = 0 (2)

• The integral over C2: We have

c′
2(t) = d

dt
〈t, 2 − t, t〉 = 〈1, −1, 1〉 ⇒ ‖c′

2(t)‖ = √
1 + 1 + 1 = √

3

f (c2(t)) = xez2 = tet2

Hence, ∫
C2

f (x, y, z) ds =
∫ 1

0
tet2√

3 dt (3)

Using the substitution u = t2 we find that∫
C2

f (x, y, z) ds =
∫ 1

0

√
3

2
eu du =

√
3

2
(e − 1) ≈ 1.488

Hence, ∫
C

f (x, y, z) ds ≈ 1.488

f (x, y, z) = x2z, c(t) = (et ,
√

2t, e−t ) for 0 ≤ t ≤ 1
15. f (x, y, z) = 2x2 + 8z, c(t) = (et , t2, t), 0 ≤ t ≤ 1

solution
Step 1. Compute ‖c′(t)‖.

c′(t) = d

dt

〈
et , t2, t

〉
= 〈

et , 2t, 1
〉 ⇒ ‖c′(t)‖ =

√
e2t + 4t2 + 1

Step 2. Write out f (c(t)). We substitute x = et , y = t2, z = t in f (x, y, z) = 2x2 + 8z to obtain:

f (c(t)) = 2e2t + 8t

Step 3. Compute the line integral. We have∫
C

f (x, y, z) ds =
∫ 1

0
f (c(t)) ‖c′(t)‖ dt =

∫ 1

0
(2e2t + 8t)

√
e2t + 4t2 + 1 dt

We compute the integral using the substitution u = e2t + 4t2 + 1, du = 2e2t + 8t dt . We get:∫
C

f (x, y, z) ds =
∫ e2+5

2
u1/2 du = 2

3
u3/2

∣∣∣∣e
2+5

2
= 2

3

(
(e2 + 5)

3/2 − 23/2
)

f (x, y, z) = 6xz − 2y2, c(t) =
(

t,
t2
√

2
,
t3

3

)
, 0 ≤ t ≤ 2

17. Calculate
∫
C

1 ds, where the curve C is parametrized by c(t) = (4t, −3t, 12t) for 2 ≤ t ≤ 5. What does this integral

represent?

solution Compute ‖c′(t)‖.

c′(t) = d

dt
< 4t, −3t, 12t >=< 4, −3, 12 > ⇒ ‖c′(t)‖ =

√
42 + (−3)2 + (12)2 = 13

Compute the line integral. We have∫
C

1 ds =
∫ 5

2
‖c′(t)‖ dt =

∫ 5

2
13 dt = 13(5 − 2) = 39

This represents the distance from the point (8, −6, 24) to the point (20, −15, 60).



May 20, 2011

586 C H A P T E R 16 LINE AND SURFACE INTEGRALS (LT CHAPTER 17)

Calculate
∫
C

1 ds, where the curve C is parametrized by c(t) = (et ,
√

2t, e−t ) for 0 ≤ t ≤ 2.In Exercises 19–26, compute
∫
C

F · ds for the oriented curve specified.

19. F = 〈
x2, xy

〉
, line segment from (0, 0) to (2, 2)

solution The oriented line segment is parametrized by

c(t) = (t, t), t varies from 0 to 2.

Therefore,

F (c(t)) =
〈
x2, xy

〉
=

〈
t2, t · t

〉
=

〈
t2, t2

〉
c′(t) = d

dt
〈t, t〉 = 〈1, 1〉

The integrand is the dot product:

F (c(t)) · c′(t) =
〈
t2, t2

〉
· 〈1, 1〉 = t2 + t2 = 2t2

We now use the Theorem on vector line integral to compute
∫
C F · ds:∫

C
F · ds =

∫ 2

0
F (c(t)) · c′(t) dt =

∫ 2

0
2t2 dt = 2t3

3

∣∣∣∣2
0

= 16

3

F = 〈4, y〉, quarter circle x2 + y2 = 1 with x ≤ 0, y ≤ 0, oriented counterclockwise
21. F = 〈

x2, xy
〉
, part of circle x2 + y2 = 9 with x ≤ 0, y ≥ 0, oriented clockwise

solution

3
x

y

The oriented path is parametrized by

c(t) = (−3 cos t, 3 sin t); t is changing from 0 to
π

2
.

Note: c(0) = (−3, 0) and c
(
π
2

) = (0, 3). cos t and sin t are both positive in this range, so x = −3 cos t ≤ 0 and
y = 3 sin t ≥ 0. We compute the integrand:

F (c(t)) =
〈
x2, xy

〉
=

〈
9 cos2 t, −9 cos t sin t

〉
c′(t) = 〈3 sin t, 3 cos t〉

F (c(t)) · c′(t) =
〈
9 cos2 t, −9 cos t sin t

〉
· 〈3 sin t, 3 cos t〉 = 27 cos2 t sin t − 27 cos2 t sin t = 0

Hence, ∫
C

F · ds =
∫ π

2

0
F (c(t)) · c′(t) dt =

∫ π
2

0
0 dt = 0

F = 〈
ey−x, e2x

〉
, piecewise linear path from (1, 1) to (2, 2) to (0, 2)

23. F = 〈
3zy−1, 4x, −y

〉
, c(t) = (et , et , t) for −1 ≤ t ≤ 1

solution
Step 1. Calculate the integrand. We write out the vectors and compute the integrand:

c(t) = (
et , et , t

)
F (c(t)) =

〈
3zy−1, 4x, −y

〉
= 〈

3te−t , 4et , −et
〉

c′(t) = 〈
et , et , 1

〉
The integrand is the dot product:

F (c(t)) · c′(t) = 〈
3te−t , 4et , −et

〉 · 〈
et , et , 1

〉 = 3te−t · et + 4et · et − et · 1 = 3t + 4e2t − et
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Step 2. Evaluate the integral. The vector line integral is:∫
C

F · ds =
∫ 1

−1
F (c(t)) · c′(t) dt =

∫ 1

−1

(
3t + 4e2t − et

)
dt = 0 +

∫ 1

−1

(
4e2t − et

)
dt = 2e2t − et

∣∣∣∣1−1

=
(

2e2 − e
)

−
(

2e−2 − e−1
)

= 2
(
e2 − e−2

)
−

(
e − e−1

)
≈ 12.157

F =
〈 −y

(x2 + y2)2
,

x

(x2 + y2)2

〉
, circle of radius R with center at the origin oriented counterclockwise

25. F =
〈

1

y3 + 1
,

1

z + 1
, 1

〉
, c(t) = (t3, 2, t2) for 0 ≤ t ≤ 1

solution
Step 1. Calculate the integrand. We have

c(t) =
(
t3, 2, t2

)
F (c(t)) =

〈
1

y3 + 1
,

1

z + 1
, 1

〉
=

〈
1

23 + 1
,

1

t2 + 1
, 1

〉
=

〈
1

9
,

1

t2 + 1
, 1

〉

c′(t) =
〈
3t2, 0, 2t

〉
Hence,

F (c(t)) · c′(t) =
〈

1

9
,

1

t2 + 1
, 1

〉
·
〈
3t2, 0, 2t

〉
= 3t2

9
+ 0 + 2t

Step 2. Evaluate the integral. Using the Theorem on vector line integrals we obtain:∫
C

F · ds =
∫ 1

0
F (c(t)) · c′(t) dt =

∫ 1

0

t2

3
dt +

∫ 1

0
2t dt

= t3

9

∣∣∣∣1
0

+ t2
∣∣∣∣1
0

= 10

9

F =
〈
z3, yz, x

〉
, quarter of the circle of radius 2 in the yz-plane with center at the origin where y ≥ 0 and z ≥ 0,

oriented clockwise when viewed from the positive x-axis

In Exercises 27–32, evaluate the line integral.

27.
∫
C

y dx − x dy, parabola y = x2 for 0 ≤ x ≤ 2

solution
Step 1. Calculate the integrand.

c(t) = (t, t2)

F (c(t)) = 〈y, −x〉 =
〈
t2, −t

〉
c′(t) = 〈1, 2t〉

The integrand is the dot product

F (c(t)) · c′(t) =
〈
t2, −t

〉
· 〈1, 2t〉 = t2 − 2t2 = −t2

Step 2. ∫
C

y dx − x dy =
∫ 2

0
−t2 dt = − t3

3

∣∣∣∣2
0

= −8

3

∫
C

y dx + z dy + x dz, c(t) = (2 + t−1, t3, t2) for 0 ≤ t ≤ 1
29.

∫
C
(x − y) dx + (y − z) dy + z dz, line segment from (0, 0, 0) to (1, 4, 4)

solution The oriented line segment from (0, 0, 0) to (1, 4, 4) has the parametrization:

c(t) = (t, 4t, 4t), 0 ≤ t ≤ 1

Step 1. Calculate the integrand. We have

F (c(t)) = 〈x − y, y − z, z〉 = 〈t − 4t, 4t − 4t, 4t〉 = 〈−3t, 0, 4t〉

c′(t) = d

dt
〈t, 4t, 4t〉 = 〈1, 4, 4〉
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The integrand is the dot product:

F (c(t)) · c′(t) = 〈−3t, 0, 4t〉 · 〈1, 4, 4〉 = −3t · 1 + 0 · 4 + 4t · 4 = 13t

Step 2. Evaluate the integral. The vector line integral is:∫
C

F · ds =
∫ 1

0
F (c(t)) · c′(t) dt =

∫ 1

0
13t dt = 13

2
t2

∣∣∣∣1
0

= 6.5

∫
C

z dx + x2 dy + y dz, c(t) = (cos t, tan t, t) for 0 ≤ t ≤ π
4

31.
∫
C

−y dx + x dy

x2 + y2
, segment from (1, 0) to (0, 1).

solution
Step 1. Calculate the integrand.

c(t) = (1 − t, t) (0 ≤ t ≤ 1)

F (c(t)) = 1

x2 + y2
〈−y, x〉 = 1

(1 − t)2 + t2
〈−t, 1 − t〉

c′(t) = 〈−1, 1〉
The integrand is the dot product

F (c(t)) · c′(t) = 1

(1 − t)2 + t2
〈−t, 1 − t〉 · 〈−1, 1〉 = t + 1 − t

(1 − t)2 + t2
= 1

2t2 − 2t + 1

Step 2. ∫
C

−y dx + x dy

x2 + y2
=

∫ 1

0

dt

2t2 − 2t + 1
= 1

2

∫ 1

0

dt(
t − 1

2

)2 + 1
4

We use the trigonometric substitution t = 1
2 + 1

2 tan θ ⇒ dt = 1
2 sec2 θ dθ .

= 1

2

∫ π
4

− π
4

1
2 sec2 θ dθ

1
4 (tan2 θ + 1)

=
∫ π

4

− π
4

dθ = π

2

∫
C

y2 dx + z2 dy + (1 − x2) dz, quarter of the circle of radius 1 in the xz-plane with center at the origin in the

quadrant x ≥ 0, z ≤ 0, oriented counterclockwise when viewed from the positive y-axis.

33. Let f (x, y, z) = x−1yz, and let C be the curve parametrized by c(t) = (ln t, t, t2) for 2 ≤ t ≤ 4. Use a

computer algebra system to calculate
∫
C

f (x, y, z) ds to four decimal places.

solution Note that c′(t) = 〈1/t, 1, 2t〉, so ‖c′(t)‖ =
√

1/t2 + 1 + 4t2. Our line integral is∫ 4

2
f (ln t, t, t2)

√
1/t2 + 1 + 4t2 dt,

which we calculate to be 339.5587.

Use a CAS to calculate
∫
C
〈
ex−y, ex+y

〉 · ds to four decimal places, whereC is the curvey = sin x for 0 ≤ x ≤ π ,

oriented from left to right.

In Exercises 35 and 36, calculate the line integral of F = 〈
ez, ex−y, ey

〉
over the given path.

35. The blue path from P to Q in Figure 14

P = (0, 0, 0)

(0, 0, 1)

(0, 1, 1)

Q = (−1, 1, 1)

FIGURE 14

solution

C1

C2

C3

P = (0, 0, 0)

R = (0, 0, 1)

S = (0, 1, 1)

Q = (−1, 1, 1)
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Let C1, C2, C3 denote the oriented segments from P to R, from R to S and S to Q respectively. These paths have the
following parametrizations (see figure):

C1 : c1(t) = (0, 0, t) 0 ≤ t ≤ 1

C2 : c2(t) = (0, t, 1) 0 ≤ t ≤ 1

C3 : c3(t) = (−t, 1, 1) 0 ≤ t ≤ 1

⇒
c′

1(t) = 〈0, 0, 1〉
c′

2(t) = 〈0, 1, 0〉
c′

3(t) = 〈−1, 0, 0〉
Since C = C1 + C2 + C3 we have ∫

C
F · ds =

∫
C1

F · ds +
∫
C2

F · ds +
∫
C3

F · ds (1)

We compute each integral on the right hand side separately.∫
C1

F · ds =
∫ 1

0
F (c1(t)) · c′

1(t) dt =
∫ 1

0

〈
et , e0−0, e0

〉
· 〈0, 0, 1〉 dt =

∫ 1

0
1 dt = 1

∫
C2

F · ds =
∫ 1

0
F (c2(t)) · c′

2(t) dt =
∫ 1

0

〈
e1, e0−t , et

〉
· 〈0, 1, 0〉 dt =

∫ 1

0
e−t dt = −e−t

∣∣∣∣1
0

= 1 − e−1

∫
C3

F · ds =
∫ 1

0
F (c3(t)) · c′

3(t) dt =
∫ 1

0

〈
e1, et−1, e1

〉
· 〈−1, 0, 0〉 dt =

∫ 1

0
−e dt = −e

Substituting these integrals in (1) gives∫
C

F · ds = 1 + (1 − e−1) − e = 2 − e−1 − e

The closed path ABCA in Figure 15In Exercises 37 and 38, C is the path from P to Q in Figure 16 that traces C1, C2, and C3 in the orientation indicated,
and F is a vector field such that ∫

C
F · ds = 5,

∫
C1

F · ds = 8,

∫
C3

F · ds = 8

x

y

P

Q

C1

C3

C2

FIGURE 16

37. Determine:

(a)
∫
−C3

F · ds (b)
∫
C2

F · ds (c)
∫
−C1−C3

F · ds

solution

x

y

P

Q

C1

C3

C2

(a) If the orientation of the path is reversed, the line integral changes sign, thus:∫
−C3

F · ds = −
∫
C3

F · ds = −8
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(b) By additivity of line integrals, we have∫
C

F · ds =
∫
C1

F · ds +
∫
C2

F · ds +
∫
C3

F · ds

Substituting the given values we obtain

5 = 8 +
∫
C2

F · ds + 8

or ∫
C2

F · ds = 5 − 16 = −11

(c) Using properties of line integrals gives∫
−C1−C3

F · ds =
∫
−C1

F · ds +
∫
−C3

F · ds = −
∫
C1

F · ds −
∫
C3

F · ds = −8 − 8 = −16

Find the value of
∫
C′

F · ds, where C′ is the path that traverses the loop C2 four times in the clockwise direction.
39. The values of a function f (x, y, z) and vector field F(x, y, z) are given at six sample points along the path ABC in
Figure 17. Estimate the line integrals of f and F along ABC.

Point f (x, y, z) F(x, y, z)(
1, 1

6 , 0
)

3 〈1, 0, 2〉(
1, 1

2 , 0
)

3.3 〈1, 1, 3〉(
1, 5

6 , 0
)

3.6 〈2, 1, 5〉(
1, 1, 1

6

)
4.2 〈3, 2, 4〉(

1, 1, 1
2

)
4.5 〈3, 3, 3〉(

1, 1, 5
6

)
4.2 〈5, 3, 3〉

A = (1, 0, 0)

B = (1, 1, 0)

C = (1, 1, 1)

z

y

x

FIGURE 17

solution

A = (1, 0, 0)

P1 = (1, 1/6, 0) P3 = (1, 5/6, 0)

P6 = (1, 1, 5/6)

P4 = (1, 1, 1/6)

P5 = (1, 1, 1/2)

P2 = (1, 1/2, 0)

2/6 2/6
4/6

4/6
B = (1, 1, 0)

C = (1, 1, 1)

z

y

x

We write the integrals as sum of integrals and estimate each integral by a Riemann Sum. That is,

∫
ABC

f (x, y, z) ds =
∫
AB

f (x, y, z) ds +
∫
BC

f (x, y, z) ds ≈
3∑

i=1

f (Pi) �si +
6∑

i=4

f (Pi)�si (1)

∫
ABC

F · ds =
∫
AB

F · ds +
∫
BC

F · ds =
∫
AB

(F · T)ds +
∫
BC

(F · T)ds

On AB, the unit tangent vector is T = 〈0, 1, 0〉, hence F · T = F2. On BC, the unit tangent vector is T = 〈0, 0, 1〉, hence
F · T = F3. Therefore,

∫
ABC

F ds =
∫
AB

F1 ds +
∫
BC

F3 ds ≈
3∑

i=1

F1 (Pi) �si +
6∑

i=4

F3 (Pi) �si (2)
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We consider the partitions of AB and BC to three subarcs with equal length �si = 1
3 , therefore (1) and (2) give∫

ABC
f (x, y, z) ds ≈ 1

3
(f (P1) + f (P2) + f (P3) + f (P4) + f (P5) + f (P6))

∫
ABC

F ds ≈ 1

3
(F2 (P1) + F2 (P2) + F2 (P3) + F3 (P4) + F3 (P5) + F3 (P6))

We now substitute the values of the functions at the sample points to obtain the following approximations:∫
ABC

f (x, y, z) ds ≈ 1

3
(3 + 3.3 + 3.6 + 4.2 + 4.5 + 4.2) = 7.6

∫
ABC

F · ds ≈ 1

3
(0 + 1 + 1 + 4 + 3 + 3) = 4

Estimate the line integrals of f (x, y) and F(x, y) along the quarter circle (oriented counterclockwise) in Figure
18 using the values at the three sample points along each path.

Point f (x, y) F(x, y)

A 1 〈1, 2〉
B −2 〈1, 3〉
C 4 〈−2, 4〉

41. Determine whether the line integrals of the vector fields around the circle (oriented counterclockwise) in Figure 19
are positive, negative, or zero.

(A) (B)

(C)

FIGURE 19

solution The vector line integral of F is the integral of the tangential component of F along the curve. The positive
direction of a curve is counterclockwise.

T

T

T

For the vector field in (A), the line integral around the circle is zero because the contribution of the negative tangential
components from the upper part of the circle is the same as the contribution of the positive tangential components from
the lower part. For the vector in (B) the contribution of the negative tangential component appear to dominate over the
positive contribution, hence the line integral is negative. In (C), the vector field is orthogonal to the unit tangent vector at
each point, hence the line integral is zero.

Determine whether the line integrals of the vector fields along the oriented curves in Figure 20 are positive or
negative.

43. Calculate the total mass of a circular piece of wire of radius 4 cm centered at the origin whose mass density is
ρ(x, y) = x2 g/cm.

solution The total mass is the following integral:

M =
∫
C

x2 ds

We use the following parametrization of the wire:

c(t) = (4 cos t, 4 sin t), 0 ≤ t ≤ 2π
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Hence,

c′(t) = 〈−4 sin t, 4 cos t〉 ⇒ ‖c′(t)‖ =
√

(−4 sin t)2 + (4 cos t)2 = 4

We compute the line integral using the Theorem on Scalar Line Integrals. We get

M =
∫ 2π

0
ρ (c(t)) ‖c′(t)‖ dt =

∫ 2π

0
(4 cos t)2 · 4 dt

= 64
∫ 2π

0
cos2 t dt = 64

(
t

2
+ sin 2t

4

) ∣∣∣∣2π

0
= 64 · 2π

2
= 64πg

Calculate the total mass of a metal tube in the helical shape c(t) = (cos t, sin t, t2) (distance in centimeters) for
0 ≤ t ≤ 2π if the mass density is ρ(x, y, z) = √

z g/cm.

45. Find the total charge on the curve y = x4/3 for 1 ≤ x ≤ 8 (in cm) assuming a charge density of ρ(x, y) = x/y (in
units of 10−6 C/cm).

solution We parametrize the curve by c(t) = (t, t
4
3 ) (1 ≤ t ≤ 8). Then

c′(t) =
〈
1,

4

3
t

1
3

〉
⇒ ‖c′(t)‖ =

√
1 + 16

9
t

2
3

ρ(c(t)) = x

y
= t

t
4
3

Therefore the total charge will be

∫
C

x

y
ds =

∫ 8

1

t

t
4
3

√
1 + 16

9
t

2
3 dt =

∫ 8

1

√
1 + 16

9
t

2
3 t− 1

3 dt

Using the substitution u = 1 + 16
9 t

2
3 ⇒ du = 32

27 t− 1
3 dt , we calculate the total charge as

∫ 73
9

25
9

√
u

27

32
du = 27

32
· 2

3
u

3
2

∣∣∣∣
73
9

25
9

= 1

48

(
73

3
2 − 25

3
2

)
≈ 10.39

Thus the total charge is 10.39 × 10−6 C.

Find the total charge on the curve c(t) = (sin t, cos t, sin2 t) in centimeters for 0 ≤ t ≤ π
8 assuming a charge

density of ρ(x, y, z) = xy(y2 − z) (in units of 10−6 C/cm). Thus the total charge is 0.0698 × 10−6 C.

In Exercises 47–50, use Eq. (6) to compute the electric potential V (P ) at the point P for the given charge density (in
units of 10−6 C).

47. Calculate V (P ) at P = (0, 0, 12) if the electric charge is distributed along the quarter circle of radius 4 centered at
the origin with charge density ρ(x, y, z) = xy.

solution We parametrize the curve by c(t) = (4 cos t, 4 sin t, 0), (0 ≤ t ≤ π
2 ). Then c′(t) = (−4 sin t, 4 cos t, 0) ⇒

‖c′(t)‖ = 4. The distance from the point (0, 0, 12) to c(t) is

rP (t) =
√

(0 − 4 cos t)2 + (0 − 4 sin t)2 + (12 − 0)2 = √
16 + 144 = 4

√
10

while the charge density along the curve is

ρ(c(t)) = xy = 4 cos t 4 sin t = 16 sin t cos t = 8 sin 2t

Therefore

V (P ) = k

∫
C

ρ

rP
ds = k

∫ π
2

0

8 sin 2t

4
√

10
4 dt = 8k√

10
· − cos 2t

2

∣∣∣∣
π
2

0

= 4k√
10

(− cos π + cos 0) = 8k√
10

Thus the electric potential is 8k√
10

× 10−6 C ≈ 22743.1 volts

Calculate V (P ) at the origin P = (0, 0) if the negative charge is distributed along y = x2 for 1 ≤ x ≤ 2 with

charge density ρ(x, y) = −y
√

x2 + 1.

49. Calculate V (P ) at P = (2, 0, 2) if the negative charge is distributed along the y-axis for 1 ≤ y ≤ 3 with charge
density ρ(x, y, z) = −y.

solution A parametrization for the curve is c(t) = (0, t, 0) (1 ≤ t ≤ 3). Then c′(t) = 〈0, 1, 0〉 ⇒ ‖c′(t)‖ = 1,
and the charge density along the curve is ρ(c(t)) = −y = −t . The distance from the origin to c(t) is

rP (t) =
√

(2 − 0)2 + (0 − t)2 + (2 − 0)2 =
√

8 + t2
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Therefore,

V (P ) = k

∫
C

ρ

rP
ds = k

∫ 3

1

−t√
8 + t2

· 1 dt

Using the substitution u = 8 + t2 ⇒ du = 2t dt , we have

V (P ) = −k

∫ 17

9
u− 1

2
1

2
du = −k

2
· 2u

1
2

∣∣∣∣17

9
= −k

2

(
17

1
2 − 9

1
2

)

Thus the electric potential is − k
2

(
17

1
2 − 9

1
2

)
× 10−6 C ≈ −10097 volts

Calculate V (P ) at the origin P = (0, 0) if the electric charge is distributed along y = x−1 for 1
2 ≤ x ≤ 2 with

charge density ρ(x, y) = x3y. Thus the electric potential is 15k
8 × 10−6 C ≈ 16856 volts

51. Calculate the work done by a field F = 〈x + y, x − y〉 when an object moves from (0, 0) to (1, 1) along each of the
paths y = x2 and x = y2.

solution We calculate the work done by F = 〈x + y, x − y〉 along the path y = x2 from (0, 0) to (1, 1). We use the
parametrization:

c1(t) = (t, t2), 0 ≤ t ≤ 1

We have

F (c1(t)) =
〈
t + t2, t − t2

〉
c′

1(t) = 〈1, 2t〉
F (c(t)) · c′(t) =

〈
t + t2, t − t2

〉
· 〈1, 2t〉 = t + t2 + 2t2 − 2t3 = −2t3 + 3t2 + t

The work is the following line integral:

W =
∫
C1

F · ds =
∫ 1

0
F (c1(t)) · c′

1(t) dt =
∫ 1

0

(
−2t3 + 3t2 + t

)
dt = −1

2
t4 + t3 + 1

2
t2

∣∣∣∣1
0

= 1

We now compute the work along the path x = y2. We parametrize the path by:

c2(t) = (t2, t), 0 ≤ t ≤ 1

Then

F (c2(t)) =
〈
t2 + t, t2 − t

〉
c′

2(t) = 〈2t, 1〉
F (c2(t)) · c′

2(t) =
〈
t2 + t, t2 − t

〉
· 〈2t, 1〉 = 2t3 + 2t2 + t2 − t = 2t3 + 3t2 − t

The work is the line integral

W =
∫
C2

F · ds =
∫ 1

0
F (c2(t)) · c′

2(t) dt =
∫ 1

0

(
2t3 + 3t2 − t

)
dt = 1

2
t4 + t3 − 1

2
t2

∣∣∣∣1
0

= 1

2
+ 1 − 1

2
= 1

We obtain the same work along the two paths.

Calculate the work done by the force field F = 〈x, y, z〉 along the path (cos t, sin t, t) for 0 ≤ t ≤ 3π .
53. Figure 21 shows a force field F.

(a) Over which of the two paths, ADC or ABC, does F perform less work?

(b) If you have to work against F to move an object from C to A, which of the paths, CBA or CDA, requires less work?

x

y

A

B

D

C

FIGURE 21
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solution

(a) Since x is constant on AB and DC, F(x, y) = 〈x, x〉 is also constant on these segments.

a1 a2
x

y

A

B

l l

l

l

D

C

Let a1 and a2 denote the constant values of x on the segments AB and DC respectively, and l denote the lengths of these
segments. By Exercise 55 we have∫

AB
F · ds = 〈a1, a1〉 · 〈0, l〉 = a1 · 0 + a1 · l = a1l

∫
DC

F · ds = 〈a2, a2〉 · 〈0, l〉 = a2 · 0 + a2 · l = a2l

Since a1 < a2 we have
∫
AB F · ds <

∫
DC F · ds.

(b) We compute the integral over BC. This segment is parametrized by:

c(t) = (a1 + lt, b) , 0 ≤ t ≤ 1.

Hence,

F (c(t)) = 〈x, x〉 = 〈a1 + lt, a1 + lt〉 , c′(t) = 〈l, 0〉
F (c(t)) · c′(t) = 〈a1 + lt, a1 + lt〉 · 〈l, 0〉 = a1l + l2t

Thus, ∫
BC

F · ds =
∫ 1

0

(
a1l + l2t

)
dt = a1lt + l2t2

2

∣∣∣∣1
t=0

= a1l + l2

2

We see that the line integral does not depend on b, therefore,∫
AD

F · ds =
∫
BC

F · ds (1)

In part (a) we showed that: ∫
AB

F · ds <

∫
DC

F · ds (2)

Combining (1) and (2) gives:∫
ABC

F · ds =
∫
AB

F · ds +
∫
BC

F · ds <

∫
DC

F · ds +
∫
AD

F · ds =
∫
ADC

F · ds

Verify that the work performed along the segment PQ by the constant vector field F = 〈2, −1, 4〉 is equal to

F · −→
PQ in these cases:

(a) P = (0, 0, 0), Q = (4, 3, 5)

(b) P = (3, 2, 3), Q = (4, 8, 12)

55. Show that work performed by a constant force field F over any path C from P to Q is equal to F · −→
PQ.

solution We denote by c(t) = (x(t), y(t), c(t)), t0 ≤ t ≤ t1 a parametrization of the oriented path from P to Q (then
c (t0) = P and c (t1) = Q). Let F = 〈a, b, c〉 be a constant vector field. Then,

F (c(t)) · c′(t) = 〈a, b, c〉 · 〈
x′(t), y′(t), z′(t)

〉 = ax′(t) + by′(t) + cz′(t)
The vector line integral is, thus,∫

C
F · ds =

∫ t1

t0

F (c(t)) · c′(t) dt =
∫ t1

t0

(
ax′(t) + by′(t) + cz′(t)

)
dt

= a

∫ t1

t0

x′(t) dt + b

∫ t1

t0

y′(t) dt + c

∫ t1

t0

z′(t) dt = ax(t)
∣∣t1
t=t0

+ by(t)

∣∣∣∣t1
t=t0

+ cz(t)

∣∣∣∣t1
t=t0

= a (x (t1) − x (t0)) + b (y (t1) − y (t0)) + c (z (t1) − z (t0))

= 〈a, b, c〉 · 〈x (t1) − x (t0) , y (t1) − y (t0) , z (t1) − z (t0)〉
Since P = 〈x (t0) , y (t0) , z (t0)〉 and Q = 〈x (t1) , y (t1) , z (t1)〉 we conclude that,∫

C
F · ds = 〈a, b, c〉 · −→

PQ = F · −→
PQ.
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Note that a curve C in polar form r = f (θ) is parametrized by c(θ) = (f (θ) cos θ, f (θ) sin θ)) because the x-
and y-coordinates are given by x = r cos θ and y = r sin θ .

(a) Show that ‖c′(θ)‖ =
√

f (θ)2 + f ′(θ)2.

(b) Evaluate
∫
C

(x − y)2 ds, where C is the semicircle in Figure 22 with polar equation r = 2 cos θ , 0 ≤ θ ≤ π
2 .

57. Charge is distributed along the spiral with polar equation r = θ for 0 ≤ θ ≤ 2π . The charge density is ρ(r, θ) = r

(assume distance is in centimeters and charge in units of 10−6 C/cm). Use the result of Exercise 56(a) to compute the
total charge.

solution Following Exercise 56(a), f (θ) = θ , and f ′(θ) = 1. Thus ‖c′(θ)‖ =
√

θ2 + 1. The total charge will be

∫
C

ρ ds =
∫ 2π

0
θ
√

θ2 + 1 dθ

Substituting u = θ2 + 1 ⇒ du = 2θ dθ , we have

∫
C

ρ ds =
∫ 4π2+1

1

√
u

1

2
du = 1

2
· 2

3
u

3
2

∣∣∣∣4π2+1

1

= 1

2

(
(4π2 + 1)

3
2 − 1

)
≈ 85.5

Thus the total charge is 85.5 × 10−6 C.

In Exercises 58–61, let F be the vortex field (so-called because it swirls around the origin as in Figure 23):

F =
〈 −y

x2 + y2
,

x

x2 + y2

〉

x

y

FIGURE 23 Vortex field F =
〈 −y

x2 + y2
,

x

x2 + y2

〉
.

Calculate I =
∫
C

F · ds, where C is the circle of radius 2 centered at the origin. Verify that I changes sign when

C is oriented in the clockwise direction.

59. Show that the value of
∫
CR

F · ds, where CR is the circle of radius R centered at the origin and oriented counterclock-

wise, does not depend on R.

solution We parametrize CR by:

c(t) = (R cos t, R sin t), 0 ≤ t < 2π.

x
R

y

Step 1. Calculate the integrand:

F (c(t)) =
〈
− y

x2 + y2
,

x

x2 + y2

〉
=

〈
−R sin t

R2
,
R cos t

R2

〉
= 1

R
〈− sin t, cos t〉

c′(t) = d

dt
〈R cos t, R sin t〉 = 〈−R sin t, R cos t〉 = R 〈− sin t, cos t〉

The integrand is the dot product:

F (c(t)) · c′(t) = 1

R
〈− sin t, cos t〉 · R 〈− sin t, cos t〉 = sin2 t + cos2 t = 1

Step 2. Evaluate the integral. ∫
C

F · ds =
∫ 2π

0
F (c(t)) · c′(t) dt =

∫ 2π

0
1 dt = 2π
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Let a > 0, b < c. Show that the integral of F along the segment [Figure 24(A)] from P = (a, b) to Q = (a, c) is
equal to the angle � POQ.

61. LetC be a curve in polar form r = f (θ) for θ1 ≤ θ ≤ θ2 [Figure 24(B)], parametrized by c(θ) = (f (θ) cos θ, f (θ) sin θ))

as in Exercise 56.

(a) Show that the vortex field in polar coordinates is written F = r−1 〈− sin θ, cos θ〉.
(b) Show that F · c′(θ) dθ = dθ .

(c) Show that
∫
C

F · ds = θ2 − θ1.

solution

(a) Letting x = r cos(θ) and y = r sin(θ) we have

F =
〈 −y

x2 + y2
,

x

x2 + y2

〉
=

〈 −r sin(θ)

(r cos(θ))2 + (r sin(θ))2
,

r cos(θ)

(r cos(θ))2 + (r sin(θ))2

〉

= r

r2

〈 − sin(θ)

cos2(θ) + sin2(θ)
,

cos(θ)

cos2(θ) + sin2(θ)

〉
= r−1 〈− sin θ, cos θ〉

(b) From the solution to Exercise 56(a) we have

c′(θ) = 〈
f ′(θ) cos(θ) − f (θ) sin(θ), f ′(θ) sin(θ) + f (θ) cos(θ)

〉
Substituting r = f (θ) into the previous part, we have

F · c′(θ) dθ = 1

f (θ)
〈− sin(θ), cos(θ)〉 · 〈

f ′(θ) cos(θ) − f (θ) sin(θ), f ′(θ) sin(θ) + f (θ) cos(θ)
〉
dθ

= 1

f (θ)
(−f ′(θ) sin(θ) cos(θ) + f (θ) sin2(θ) + f ′(θ) cos(θ) sin(θ) + f (θ) cos2(θ)) dθ

= 1

f (θ)
f (θ)(sin2(θ) + cos2(θ)) dθ = dθ

(c)

∫
C

F · ds =
∫ θ2

θ1

F · c′(θ) dθ =
∫ θ2

θ1

dθ = θ2 − θ1

In Exercises 62–65, use Eq. (10) to calculate the flux of the vector field across the curve specified.

F = 〈−y, x〉; upper half of the unit circle, oriented clockwise63. F =
〈
x2, y2

〉
; segment from (3, 0) to (0, 3), oriented upward

solution The curve is parametrized by c(t) = (3 − t, t) (0 ≤ t ≤ 3) ⇒ c′(t) = 〈−1, 1〉. Then

F(c(t)) =
〈
x2, y2

〉
=

〈
(3 − t)2, t2

〉
Therefore the flux is ∫

C
F1 dy − F2 dx =

∫ 3

0
(3 − t)2(1) − (t2)(−1) dt

=
∫ 3

0
2t2 − 6t + 9 dt = 2t3

3
− 3t2 + 9t

∣∣∣∣3
0

= 18

v =
〈

x + 1

(x + 1)2 + y2
,

y

(x + 1)2 + y2

〉
; segment 1 ≤ y ≤ 4 along the y-axis, oriented upward

65. v = 〈
ey, 2x − 1

〉
; parabola y = x2 for 0 ≤ x ≤ 1, oriented left to right

solution The curve is parametrized by c(t) = (t, t2) (0 ≤ t ≤ 1) ⇒ c′(t) = 〈1, 2t〉. Then

v(c(t)) = 〈
ey, 2x − 1

〉 =
〈
et2

, 2t − 1
〉

Therefore the flux is∫
C

v1 dy − v2 dx =
∫ 1

0

(
et2

)
(2t) − (2t − 1)(1) dt = et2 − t2 + t

∣∣∣∣1
0

= e − 1

Let I =
∫
C

f (x, y, z) ds. Assume that f (x, y, z) ≥ m for some number m and all points (x, y, z) on C. Which

of the following conclusions is correct? Explain.

(a) I ≥ m
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Further Insights and Challenges
67. Let F = 〈x, 0〉. Prove that if C is any path from (a, b) to (c, d), then∫

C
F · ds = 1

2
(c2 − a2)

solution

(a, b)

(c, d)

C

We denote the parametrization of the path by,

c(t) = (x(t), y(t)) , t0 ≤ t ≤ t1, c (t0) = (a, b), c (t1) = (c, d)

By the Theorem on vector line integrals we have,∫
c

F · ds =
∫ t1

t0

F (c(t)) · c′(t) dt =
∫ t1

t0

〈x(t), 0〉 · 〈
x′(t), y′(t)

〉
dt =

∫ t1

t0

x(t)x′(t) dt

We use the hint to compute the integral, obtaining∫
c

F · ds = 1

2
x(t)2

∣∣∣∣t1
t0

= 1

2

(
x(t1)2 − x(t0)2

)
= 1

2

(
c2 − a2

)
Proof of the hint: By the Chain Rule for differentiation we have

d

dt
f 2(t) = 2f (t)f ′(t) ⇒ f (t)f ′(t) = 1

2

d

dt
f 2(t)

Applying the Fundamental Theorem of calculus we obtain∫ t1

t0

f (t)f ′(t) dt = 1

2

∫ t1

t0

d

dt

(
f 2(t)

)
dt = 1

2

(
f 2 (t1) − f 2 (t0)

)
Alternatively we can evaluate the integral

∫
f (t)f ′(t) dt using the substitution u = f (t), du = f ′(t) dt . We get∫

f (t)f ′(t) dt =
∫

u du = 1

2
u2 + c = 1

2
f 2(t) + c.

Let F = 〈y, x〉. Prove that if C is any path from (a, b) to (c, d), then∫
C

F · ds = cd − ab

69. We wish to define the average value Av(f ) of a continuous function f along a curve C of length L. Divide C into N

consecutive arcs C1, . . . , CN , each of length L/N , and let Pi be a sample point in Ci (Figure 25). The sum

1

N

∑
i=1

f (Pi)

may be considered an approximation to Av(f ), so we define

Av(f ) = lim
N→∞

1

N

∑
i=1

f (Pi)

Prove that

Av(f ) = 1

L

∫
C

f (x, y, z) ds 11

Hint: Show that
L

N

∑
i=1

f (Pi) is a Riemann sum approximation to the line integral of f along C.

x

y

P1
P2

Pi Ci

PN

Curve C

FIGURE 25
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solution The Riemann sum approximation to the line integral is:

N∑
i=1

f (Pi) �Si

If the consecutive arcs C1, ..., C2 have equal lengths L
N

, the corresponding Riemann sum is,

N∑
i=1

f (Pi) · L

N
= L

N

N∑
i=1

f (Pi)

We let N → ∞,

∫
C

f (x, y, z) ds = lim
N→∞

L

N

N∑
i=1

f (Pi) = L lim
N→∞

1

N

N∑
i=1

f (Pi) = LAv(f )

That is,

Av(f ) = 1

L

∫
C

f (x, y, z) ds.

Use Eq. (11) to calculate the average value of f (x, y) = x − y along the segment from P = (2, 1) to Q = (5, 5).71. Use Eq. (11) to calculate the average value of f (x, y) = x along the curve y = x2 for 0 ≤ x ≤ 1.

solution The average value is

Av(f ) = 1

L

∫
c
x ds (1)

We parametrize the curve by the parametrization,

c(t) =
(
t, t2

)
, 0 ≤ t ≤ 1.

Hence,

c′(t) = 〈1, 2t〉 ⇒ ‖c′(t)‖ =
√

1 + 4t2

We first must calculate the length of the path. That is,

L =
∫

c
‖c′(t)‖ dt =

∫ 1

0

√
1 + 4t2 dt = 1

2
t
√

1 + 4t2 + 1

4
ln

(
2t +

√
1 + 4t2

) ∣∣∣∣1
0

=
√

5

2
+ 1

4
ln

(
2 + √

5
)

=
2
√

5 + ln
(

2 + √
5
)

4

We compute the line integral in (1): ∫
c
x ds =

∫ 1

0
t‖c′(t)‖ dt =

∫ 1

0
t
√

1 + 4t2 dt

We compute the integral using the substitution u = 1 + 4t2, du = 8t dt .∫
c
x ds =

∫ 1

0

√
1 + 4t2 · t dt =

∫ 5

1
u1/2 · du

8

= 1

8
· 2

3
u

3
2

∣∣∣∣5
1

= 1

12

(
5

3
2 − 1

)
Combining gives the following solution:

Av(f ) = 4

2
√

5 + ln
(

2 + √
5
) · 5

3
2 − 1

12
= 5

√
5 − 1(

6
√

5 + 3 ln
(

2 + √
5
))

The temperature (in degrees centigrade) at a point P on a circular wire of radius 2 cm centered at the origin is
equal to the square of the distance from P to P0 = (2, 0). Compute the average temperature along the wire.

73. The value of a scalar line integral does not depend on the choice of parametrization (because it is defined without
reference to a parametrization). Prove this directly. That is, suppose that c1(t) and c(t) are two parametrizations such that
c1(t) = c(ϕ(t)), where ϕ(t) is an increasing function. Use the Change of Variables Formula to verify that∫ d

c
f (c1(t))‖c′

1(t)‖ dt =
∫ b

a
f (c(t))‖c′(t)‖ dt

where a = ϕ(c) and b = ϕ(d).
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solution We compute the integral
∫ b
a f (c(t)) ‖c′(t)‖ dt using the substitution t = ϕ(u), a = ϕ(c), b = ϕ(d). We

get: ∫ b

a
f (c1(t)) ‖c′(t)‖ dt =

∫ ϕ−1(b)

ϕ−1(a)
f (c (ϕ(t))) ‖c′ (ϕ(t)) ‖ϕ′(u) du (1)

Since ϕ is an increasing function, ϕ′(u) > 0 for all u, therefore:∥∥c′ (ϕ(u))
∥∥ ϕ′(u) = ∥∥c′ (ϕ(u)) ϕ′(u)

∥∥ (2)

By the Chain Rule for vector valued functions, we have,

d

du
c (ϕ(u)) = ϕ′(u)c′ (ϕ(u)) (3)

Combining (2) and (3) gives:

∥∥c′ (ϕ(u))
∥∥ ϕ′(u) =

∥∥∥∥ d

du
c (ϕ(u))

∥∥∥∥ =
∥∥∥∥ d

du
c1(u)

∥∥∥∥ = ‖c′
1(u)‖ (4)

We substitute (4) in (1) to obtain:∫ b

a
f (c(t)) ‖c′(t)‖ dt =

∫ d

c
f (c1(u)) ‖c′

1(u)‖ du =
∫ d

c
f (c1(t)) ‖c′

1(t)‖ dt

The last step is simply replacing the dummy variable of integration u by t .

16.3 Conservative Vector Fields (LT Section 17.3)

Preliminary Questions
1. The following statement is false. If F is a gradient vector field, then the line integral of F along every curve is zero.

Which single word must be added to make it true?

solution The missing word is “closed” (curve). The line integral of a gradient vector field along every closed curve
is zero.

2. Which of the following statements are true for all vector fields, and which are true only for conservative vector fields?

(a) The line integral along a path from P to Q does not depend on which path is chosen.
(b) The line integral over an oriented curve C does not depend on how C is parametrized.
(c) The line integral around a closed curve is zero.
(d) The line integral changes sign if the orientation is reversed.
(e) The line integral is equal to the difference of a potential function at the two endpoints.
(f) The line integral is equal to the integral of the tangential component along the curve.
(g) The cross-partials of the components are equal.

solution
(a) This statement is true only for conservative vector fields.
(b) This statement is true for all vector fields.
(c) This statement holds only for conservative vector fields.
(d) This is a property of all vector fields.
(e) Only conservative vector fields have a potential function, and the line integral is computed by using the potential
function as stated.
(f) All vector fields’ line integrals share this property.
(g) The cross-partial of the components of a conservative field are equal. For other fields, the cross-partial of the compo-
nents may or may not equal.

3. Let F be a vector field on an open, connected domain D. Which of the following statements are always true, and
which are true under additional hypotheses on D?

(a) If F has a potential function, then F is conservative.
(b) If F is conservative, then the cross-partials of F are equal.
(c) If the cross-partials of F are equal, then F is conservative.

solution
(a) This statement is always true, since every gradient vector field is conservative.
(b) If F is conservative on a connected domain D, then F has a potential function D and consequently the cross partials
of F are equal in D.
(c) If the cross partials of F are equal in a simply-connected region D, then F is a gradient vector field in D.
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4. Let C, D, and E be the oriented curves in Figure 16 and let F = ∇V be a gradient vector field such that
∫
C

F · ds = 4.

What are the values of the following integrals?

(a)
∫
D

F · ds (b)
∫
E

F · ds

x

y

P

C

D

E

Q

FIGURE 16

solution Since F is a gradient vector field the integrals over closed paths are zero. Therefore, by the equivalent
conditions for path independence we have:

(a)
∫
D F · ds = ∫

C F · ds = 4

(b)
∫
E F · ds = ∫

−C F · ds = − ∫
C F · ds = −4

Exercises
1. Let V (x, y, z) = xy sin(yz) and F = ∇V . Evaluate

∫
c

F · ds, where c is any path from (0, 0, 0) to (1, 1, π).

solution By the Fundamental Theorem for Gradient Vector Fields, we have:∫
c
∇V · ds = V (1, 1, π) − V (0, 0, 0) = 1 · 1 sin π − 0 = 0

Let F = 〈
x−1z, y−1z, log(xy)

〉
.

(a) Verify that F = ∇V , where V (x, y, z) = z ln(xy).

(b) Evaluate
∫

c
F · ds, where c(t) = 〈

et , e2t , t2〉
for 1 ≤ t ≤ 3.

(c) Evaluate
∫

c
F · ds for any path c from P = ( 1

2 , 4, 2) to Q = (2, 2, 3) contained in the region x > 0, y > 0.

(d) Why is it necessary to specify that the path lie in the region where x and y are positive?

In Exercises 3–6, verify that F = ∇V and evaluate the line integral of F over the given path.

3. F = 〈3, 6y〉, V (x, y, z) = 3x + 3y2; c(t) = (t, 2t−1) for 1 ≤ t ≤ 4

solution The gradient of V = 3x + 3y2 is:

∇V =
〈
∂V

∂x
,
∂V

∂y

〉
= 〈3, 6y〉 = F

Using the Fundamental Theorem for Gradient Vector Fields, we have:∫
c

F · ds = V (c(4)) − V (c(1)) = V

(
4,

1

2

)
− V (1, 2) =

(
3 · 4 + 3 · 1

4

)
− (3 · 1 + 3 · 4) = −9

4

F = 〈
cos y, −x sin y

〉
, V (x, y) = x cos y; upper half of the unit circle centered at the origin, oriented counter-

clockwise

5. F = yezi + xezj + xyezk, V (x, y, z) = xyez; c(t) = (t2, t3, t − 1) for 1 ≤ t ≤ 2

solution We verify that F is the gradient of V :

∇V =
〈
∂V

∂x
,
∂V

∂y
,
∂V

∂z

〉
= 〈

yez, xez, xyez
〉 = F

We use the Fundamental Theorem for Gradient Vectors with the initial point c(1) = (1, 1, 0) and terminal point c(2) =
(4, 8, 1), to obtain: ∫

c
F · ds = V (4, 8, 1) − V (1, 1, 0) = 32e − 1

F = z

x
i + j + ln xk, V (x, y, z) = y + z ln x;

circle (x − 4)2 + y2 = 1 in the clockwise direction

In Exercises 7–16, find a potential function for F or determine that F is not conservative.

7. F = 〈z, 1, x〉
solution We check whether the vector field F = 〈z, 1, x〉 satisfies the cross partials condition:

∂F1

∂y
= ∂

∂y
(z) = 0

∂F2

∂x
= ∂

∂x
(1) = 0

⇒ ∂F1

∂y
= ∂F2

∂x
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∂F2

∂z
= ∂

∂z
(1) = 0

∂F3

∂y
= ∂

∂y
(x) = 0

⇒ ∂F2

∂z
= ∂F3

∂y

∂F3

∂x
= ∂

∂x
(x) = 1

∂F1

∂z
= ∂

∂z
(z) = 1

⇒ ∂F3

∂x
= ∂F1

∂z

F satisfies the cross partials condition everywhere. Hence, F is conservative. We find a potential function V (x, y, z).

Step 1. Use the condition ∂V
∂x

= F1. V is an antiderivative of F1 = z when y and z are fixed, therefore:

V (x, y, z) =
∫

z dx = zx + g(y, z) (1)

Step 2. Use the condition ∂V
∂y

= F2. By (1) we have:

∂

∂y
(zx + g(y, z)) = 1

gy(y, z) = 1

Integrating with respect to y, while holding z fixed, gives:

g(y, z) =
∫

1 dy = y + h(z)

We substitute in (1) to obtain:

V (x, y, z) = zx + y + h(z) (2)

Step 3. Use the condition ∂V
∂z

= F3. Using (2) we get:

∂

∂z
(zx + y + h(z)) = x

x + h′(z) = x

h′(z) = 0 ⇒ h(z) = c

Substituting in (2) gives the following potential functions:

V (x, y, z) = zx + y + c.

One of the potential functions is obtained by choosing c = 0:

V (x, y, z) = zx + y

F = xj + yk9. F = y2i + (2xy + ez)j + yezk

solution We examine whether F satisfies the cross partials condition:

∂F1

∂y
= ∂

∂y

(
y2

)
= 2y

∂F2

∂x
= ∂

∂x

(
2xy + ez

) = 2y

⇒ ∂F1

∂y
= ∂F2

∂x

∂F2

∂z
= ∂

∂z

(
2xy + ez

) = ez

∂F3

∂y
= ∂

∂y

(
yez

) = ez

⇒ ∂F2

∂z
= ∂F3

∂y

∂F3

∂x
= ∂

∂x

(
yez

) = 0

∂F1

∂z
= ∂

∂z

(
y2

)
= 0

⇒ ∂F3

∂x
= ∂F1

∂z

We see that F satisfies the cross partials condition everywhere, hence F is conservative. We find a potential function
for F.
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Step 1. Use the condition ∂V
∂x

= F1. V is an antiderivative of F1 = y2 when y and z are fixed. Hence:

V (x, y, z) =
∫

y2 dx = y2x + g(y, z) (1)

Step 2. Use the condition ∂V
∂y

= F2. By (1) we have:

∂

∂y

(
y2x + g(y, z)

)
= 2xy + ez

2yx + gy(y, z) = 2xy + ez ⇒ gy(y, z) = ez

We integrate with respect to y, holding z fixed:

g(y, z) =
∫

ez dy = ezy + h(z)

Substituting in (1) gives:

V (x, y, z) = y2x + ezy + h(z) (2)

Step 3. Use the condition ∂V
∂z

= F3. By (2), we get:

∂

∂z

(
y2x + ezy + h(z)

)
= yez

ezy + h′(z) = yez ⇒ h′(z) = 0

Therefore h(z) = c. Substituting in (2) we get:

V (x, y, z) = y2x + ezy + c

The potential function corresponding to c = 0 is:

V (x, y, z) = y2x + ezy.

F = 〈
y, x, z3〉11. F = 〈

cos(xz), sin(yz), xy sin z
〉

solution Since ∂F2
∂z

= ∂
∂z

(sin(yz)) = y cos(yz) and ∂F3
∂y

= ∂
∂y

(xy sin z) = x sin z, we have ∂F2
∂z

�= ∂F3
∂y

. The cross
partials condition is not satisfied, therefore the vector field is not conservative.

F = 〈
cos z, 2y, −x sin z

〉13. F = 〈
z sec2 x, z, y + tan x

〉
solution

Step 1. Use the condition ∂V
∂x

= F1. V (x, y, z) is an antiderivative of F1 = z sec2 x when y and z are fixed, therefore:

V (x, y, z) =
∫

z sec2 x dx = z tan x + g(y, z) (1)

Step 2. Use the condition ∂V
∂y

= F2. Using (1) we get:

∂

∂y
(z tan x + g(y, z)) = z

gy(y, z) = z

We integrate with respect to y, holding z fixed:

g(y, z) =
∫

z dy = yz + h(z)

Substituting in (1) gives
V (x, y, z) = z tan x + yz + h(z) (2)

Step 3. Use the condition ∂V
∂z

= F3. By (2) we have

∂

∂z
(z tan x + yz + h(z)) = y + tan x

tan x + y + h′(z) = y + tan x

h′(z) = 0 ⇒ h(z) = c

Substituting in (2) we obtain the general potential function:

V (x, y, z) = z tan x + yz + c

Choosing c = 0 gives the potential function:

V (x, y, z) = z tan x + yz
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F = 〈
ex(z + 1), − cos y, ex

〉15. F = 〈
2xy + 5, x2 − 4z, −4y

〉
solution We find a potential function V (x, y, z) for F, using the following steps.

Step 1. Use the condition ∂V
∂x

= F1. V is an antiderivative of F1 = 2xy + 5 when y and z are fixed, therefore,

V (x, y, z) =
∫

(2xy + 5) dx = x2y + 5x + g(y, z) (1)

Step 2. Use the condition ∂V
∂y

= F2. We have,

∂

∂y

(
x2y + 5x + g(y, z)

)
= x2 − 4z

x2 + gy(y, z) = x2 − 4z ⇒ gy(y, z) = −4z

We integrate with respect to y, holding z fixed:

g(y, z) =
∫

−4z dy = −4zy + h(z)

Combining with (1) gives:

V (x, y, z) = x2y + 5x − 4zy + h(z) (2)

Step 3. Use the condition ∂V
∂z

= F3. We have,

∂

∂z

(
x2y + 5x − 4zy + h(z)

)
= −4y

−4y + h′(z) = −4y

h′(z) = 0 ⇒ h(z) = c

Substituting in (2) we obtain the general potential function:

V (x, y, z) = x2y + 5x − 4zy + c

To compute the line integral we need one of the potential functions. We choose c = 0 to obtain the function,

V (x, y, z) = x2y + 5x − 4zy

F = 〈
yzexy, xzexy − z, exy − y

〉17. Evaluate ∫
c

2xyz dx + x2z dy + x2y dz

over the path c(t) = (t2, sin(πt/4), et2−2t ) for 0 ≤ t ≤ 2.

solution A potential function is

V (x, y, z) = x2yz

The path begins at c(0) = (0, 0, 1) and ends at c(2) = (4, 1, 1) so the line integral is

V (4, 1, 1) − V (0, 0, 1) = 16 − 0 = 16

Evaluate ∮
C

sin x dx + z cos y dy + sin y dz

where C is the ellipse 4x2 + 9y2 = 36, oriented clockwise.

19. A vector field F and contour lines of a potential function for F are shown in Figure 17. Calculate the common value

of
∫
C

F · ds for the curves shown in Figure 17 oriented in the direction from P to Q.

x

y

1

3

5

7

99

77

55

Q

P

FIGURE 17

solution ∫
C

F · ds =
∫
C

∇V · ds = V (Q) − V (P ) = 8 − 2 = 6
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Give a reason why the vector field F in Figure 18 is not conservative.
21. Calculate the work expended when a particle is moved from O to Q along segments OP and PQ in Figure 19 in the
presence of the force field F = 〈

x2, y2〉
. How much work is expended moving in a complete circuit around the square?

x

y

O

R = (0, 1) Q = (1, 1)

P = (1, 0)

FIGURE 19

solution

x

y

O

R = (0, 1) Q = (1, 1)

P = (1, 0)

Since ∂F1
∂y

= ∂
∂y

(x2) = 0 and ∂F2
∂x

= ∂
∂x

(y2) = 0, we have ∂F1
∂y

= ∂F2
∂x

. That is, F satisfies the cross partials condition,

therefore F is conservative. We choose the function x3

3 + y3

3 , such that F is the gradient of the function. The potential

energy is, thus, V = − x3

3 − y3

3 . The work done against F is computed by the Fundamental Theorem for Gradient vectors:

Work against F = −
∫
C

F · ds = V (Q) − V (O) = V (1, 1) − V (0) = −2

3
− 0 = −2

3

(The negative sign is to be expected, as our force field is actually helping us move along OP and OQ. The line integral
of a conservative field along a closed curve is zero, therefore the integral of F along the complete square is zero, and we
get:

W = −
∫

OPQR

F · ds = 0

Let F =
〈

1

x
,
−1

y

〉
. Calculate the work against F required to move an object from (1, 1) to (3, 4) along any path

in the first quadrant.

23. Compute the work W against the earth’s gravitational field required to move a satellite of mass m = 1000 kg along
any path from an orbit of altitude 4000 km to an orbit of altitude 6000 km.

solution Work against gravity is calculated with the integral

W = −
∫
C

mF · ds = 1000
∫
C

∇V · ds = 1000(V (r2) − V (r1))

Since r1 and r2 are measured from the center of the earth,

r1 = 4 × 106 + 6.4 × 106 = 10.4 × 106 meters

r2 = 6 × 106 + 6.4 × 106 = 12.4 × 106 meters

V (r) = −k

r
⇒ W = −1000k

106

(
1

12.4
− 1

10.4

)
≈ 6.2 × 109 J

An electric dipole with dipole moment p = 4 × 10−5 C-m sets up an electric field (in newtons per coulomb)

F(x, y, z) = kp

r5

〈
3xz, 3yz, 2z2 − x2 − y2

〉
where r = (x2 + y2 + z2)1/2 with distance in meters and k = 8.99 × 109 N-m2/C2. Calculate the work against F
required to move a particle of charge q = 0.01 C from (1, −5, 0) to (3, 4, 4). Note: The force on q is qF newtons.

25. On the surface of the earth, the gravitational field (with z as vertical coordinate measured in meters) is F = 〈0, 0, −g〉.
(a) Find a potential function for F.

(b) Beginning at rest, a ball of mass m = 2 kg moves under the influence of gravity (without friction) along a path from
P = (3, 2, 400) to Q = (−21, 40, 50). Find the ball’s velocity when it reaches Q.

solution
(a) By inspection F = −∇V for V (x, y, z) = gz.

(b) The force of gravity is mF = 〈0, 0, −mg〉, therefore mF = −∇V for V (x, y, z) = mgz. The work performed moving
the ball from P to Q is the line integral of mF over the path. Since mF is conservative, the energy is independent of the
path connecting the two points. Using the Fundamental Theorem for Gradient Vector Fields we have:

W = −
∫

c
mF · ds = V (−21, 40, 50) − V (3, 2, 400) = 2 · 9.8(50 − 400) = −6860 joules
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By conservation of energy, the kinetic energy of the ball will be 6860 joules, so

mv2

2
= 6860 ⇒ v =

√
2 · 6860

2
≈ 82.8 m/s

An electron at rest at P = (5, 3, 7) moves along a path ending at Q = (1, 1, 1) under the influence of the electric
field (in newtons per coulomb)

F(x, y, z) = 400(x2 + z2)−1 〈x, 0, z〉
(a) Find a potential function for F.

(b) What is the electron’s speed at point Q? Use Conservation of Energy and the value qe/me = −1.76 × 1011

C/kg, where qe and me are the charge and mass on the electron, respectively.

27. Let F =
〈 −y

x2 + y2
,

x

x2 + y2

〉
be the vortex field. Determine

∫
c

F · ds for each of the paths in Figure 20.

(A)

y

x

(D)

y

x

(E)

y

x

(B)

y

x

(C)

y

x

FIGURE 20

solution Since the cross partials of F are equal, F has the property,∫
c

F · ds = 2πn

where c is a closed curve not passing through the origin, and n is the number of times c winds around the origin (n is
negative if n winds in the clockwise direction). We use this property to compute the line integrals of F over the paths in
Figure 18:

(A) The path (A) winds around the origin one time in the counterclockwise direction hence the line integral is 2π · 1 = 2π .

(B) The point (B) winds around the origin one time in the counterclockwise direction hence the line integral is 2π · 1 = 2π .

(C) The path (C) does not encounter the origin, hence the line integral is 2π · 0 = 0. Notice that there exists a simply
connected domain D, not including the origin, so that the path c and the region inside c are in D. Therefore, Theorem 4
applies in D and F is a gradient vector in D. Consequently, the line integral of F over c is zero.

c

x

y

D

(D) This path winds around the origin one time in the clockwise direction, hence
∫

c F · ds = 2π · (−1) = −2π .

(E) The path winds around the origin twice in the counterclockwise direction, hence the line integral is 2π · 2 = 4π .

The vector field F =
〈

x

x2 + y2
,

y

x2 + y2

〉
is defined on the domain D = {(x, y) �= (0, 0)}.

(a) Is D simply-connected?

(b) Show that F satisfies the cross-partial condition. Does this guarantee that F is conservative?

(c) Show that F is conservative on D by finding a potential function.

(d) Do these results contradict Theorem 4?

Further Insights and Challenges
29. Suppose that F is defined on R3 and that

∮
c

F · ds = 0 for all closed paths c in R3. Prove:

(a) F is path-independent; that is, for any two paths c1 and c2 in D with the same initial and terminal points,∫
c1

F · ds =
∫

c2

F · ds

(b) F is conservative.
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solution
(a) Choose two distinct points P and Q, and let c1 and c2 be paths from P to Q. We construct a path from P to P by
first using c1 to reach Q, then using c2 with its orientation reversed to return to P . (This reversed path is designated −c2.)
Such a closed path c can be represented as a difference c = c1 − c2. (See figure below)

P

Q

c2

c1

c

The closed loop c is represented as c1 − c2.

Thus, ∮
c

F · ds =
∫

c1

F · ds +
∫
−c2

F · ds

=
∫

c1

F · ds −
∫

c2

F · ds

Since the problem states that the integral around any closed path is zero, we have∫
c1

F · ds −
∫

c2

F · ds = 0 ⇒
∫

c1

F · ds =
∫

c2

F · ds

(b) Since F is defined for all of R
3, it is certainly defined in a simply connected domain D. Since we have just established

that F is also path independent, F is conservative by Theorem 2.

16.4 Parametrized Surfaces and Surface Integrals (LT Section 17.4)

Preliminary Questions
1. What is the surface integral of the function f (x, y, z) = 10 over a surface of total area 5?

solution Using Surface Integral and Surface Area we have:∫∫
S

f (x, y, z) dS =
∫∫

D
f (�(u, v)) ‖n(u, v)‖ du dv =

∫∫
D

10‖n(u, v)‖ du dv

= 10
∫∫

D
‖n(u, v)‖ du dv = 10 Area(S) = 10 · 5 = 50

2. What interpretation can we give to the length ‖n‖ of the normal vector for a parametrization G(u, v)?

solution The approximation:

Area
(
Sij

) ≈ ‖n
(
uij , vij

) ‖Area
(
Rij

)
tells that ‖n‖ is a distortion factor that indicates how much the area of a small rectangle Rij is altered under the map φ.

Φ

u
ui

j

ui + 0.01

j + 0.02

Rij
Sij

3. A parametrization maps a rectangle of size 0.01 × 0.02 in the uv-plane onto a small patch S of a surface. Estimate
Area(S) if Tu × Tv = 〈1, 2, 2〉 at a sample point in the rectangle.

solution We use the estimation

Area(S) ≈ ‖n(u, v)‖Area(R)

where n(u, v) = Tu × Tv at a sample point in R. We get:

Area(S) ≈ ‖ 〈1, 2, 2〉 ‖ · 0.01 · 0.02 =
√

12 + 22 + 22 · 0.0002 = 0.0006
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Φ

u
u u + 0.01

 + 0.02

R S

4. A small surface S is divided into three small pieces, each of area 0.2. Estimate
∫∫

S
f (x, y, z) dS if f (x, y, z) takes

the values 0.9, 1, and 1.1 at sample points in these three pieces.

solution We use the approximation obtained by the Riemann Sum:∫∫
S

f (x, y, z) dS ≈
∑
ij

f
(
Pij

)
Area

(
Sij

) = 0.9 · 0.2 + 1 · 0.2 + 1.1 · 0.2 = 0.6

5. A surface S has a parametrization whose domain is the square 0 ≤ u, v ≤ 2 such that ‖n(u, v)‖ = 5 for all (u, v).
What is Area(S)?

solution Writing the surface area as a surface integral where D is the square [0, 2] × [0, 2] in the uv-plane, we have:

Area(S) =
∫∫

D
‖n(u, v)‖ du dv =

∫∫
D

5 du dv = 5
∫∫

D
1 du dv = 5Area(D) = 5 · 22 = 20

6. What is the outward-pointing unit normal to the sphere of radius 3 centered at the origin at P = (2, 2, 1)?

solution The outward-pointing normal to the sphere of radius R = 3 centered at the origin is the following vector:

〈cos θ sin φ, sin θ sin φ, cos φ〉 (1)

2

1

2P = (2, 2, 1)

z

y

x

We compute the values in (1) corresponding to P = (2, 2, 1): x = y = 2, z = 1 hence 0 ≤ θ ≤ π
2 and 0 < φ < π

2 . We
get:

cos φ = z

ρ
= 1

3
⇒ sin φ =

√
1 −

(
1

3

)2
= 2

√
2

3

cos θ = x

ρ sin φ
= 2

3 · 2
√

2
3

= 1√
2

⇒ sin θ =
√

1 − 1

2
= 1√

2

Substituting in (1) we get the following unit normal:〈
1√
2

· 2
√

2

3
,

1√
2

· 2
√

2

3
,

1

3

〉
=

〈
2

3
,

2

3
,

1

3

〉

Exercises
1. Match each parametrization with the corresponding surface in Figure 16.

(a) (u, cos v, sin v)

(b) (u, u + v, v)

(c) (u, v3, v)

(d) (cos u sin v, 3 cos u sin v, cos v)

(e) (u, u(2 + cos v), u(2 + sin v))
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(i) (ii) (iii)

x

y

z

x
y

z

x y

(iv) (v)

x
y

z

z

x

z

y

FIGURE 16

solution (a) = (v), because the y and z coordinates describe a circle with fixed radius.
(b) = (iii), because the coordinates are all linear in u and v.
(c) = (i), because the parametrization gives y = z3.
(d) = (iv), an ellipsoid.
(e) = (ii), because the y and z coordinates describe a circle with varying radius.

Show that G(r, θ) = (r cos θ, r sin θ, 1 − r2) parametrizes the paraboloid z = 1 − x2 − y2. Describe the grid
curves of this parametrization.

3. Show that G(u, v) = (2u + 1, u − v, 3u + v) parametrizes the plane 2x − y − z = 2. Then:

(a) Calculate Tu, Tv , and n(u, v).

(b) Find the area of S = G(D), where D = {(u, v) : 0 ≤ u ≤ 2, 0 ≤ v ≤ 1}.
(c) Express f (x, y, z) = yz in terms of u and v, and evaluate

∫∫
S

f (x, y, z) dS.

solution We show that x = 2u + 1, y = u − v, and z = 3u + v satisfy the equation of the plane,

2x − y − z = 2(2u + 1) − (u − v) − (3u + v) = 4u + 2 − u + v − 3u − v = 2

Moreover, for any x, y, z satisfying 2x − y − z = z, there are values of u and v such that x = 2u + 1, y = u − v, and
z = 3u + v, since the following equations can be solved for u and v:

x = 2u + 1

y = u − v

z = 3u + v

2x − y − z = 2

⇒ u = x − 1

2
, v = x − 1

2
− y

We conclude that �(u, v) parametrizes the whole plane 2x − y − z = 2.

(a) The tangent vectors Tu and Tv are:

Tu = ∂φ

∂u
= ∂

∂u
(2u + 1, u − v, 3u + v) = 〈2, 1, 3〉

Tv = ∂φ

∂v
= ∂

∂v
(2u + 1, u − v, 3u + v) = 〈0, −1, 1〉

The normal vector is the following cross product:

n(u, v) = Tu × Tv =
∣∣∣∣∣∣

i j k
2 1 3
0 −1 1

∣∣∣∣∣∣ =
∣∣∣∣ 1 3

−1 1

∣∣∣∣ i −
∣∣∣∣ 2 3

0 1

∣∣∣∣ j +
∣∣∣∣ 2 1

0 −1

∣∣∣∣ k

= 4i − 2j − 2k = 〈4, −2, −2〉
(b) That area of S = �(D) is the following surface integral:

Area(S) =
∫∫

D
‖n(u, v)‖ du dv =

∫∫
D

‖ 〈4, −2, −2〉 ‖ du dv = √
24

∫∫
D

1 du dv

= √
24 Area(D) = √

24 · 2 · 1 = 4
√

6

(c) We express f (x, y, z) = yz in terms of the parameters u and v:

f (φ(u, v)) = (u − v)(3u + v) = 3u2 − 2uv − v2
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Using the Theorem on Surface Integrals we have:∫∫
S

f (x, y, z) dS =
∫∫

D
f (φ(u, v)) ‖n(u, v)‖ du dv =

∫∫
D

(
3u2 − 2uv − v2

)
‖ 〈4, −2, −2〉 ‖ du dv

= √
24

∫ 1

0

∫ 2

0

(
3u2 − 2uv − v2

)
du dv = √

24
∫ 1

0

(
u3 − u2v − v2u

) ∣∣∣∣2
u=0

dv

= √
24

∫ 1

0

(
8 − 4v − 2v2

)
dv = √

24

(
8v − 2v2 − 2

3
v3

) ∣∣∣∣1
0

= 32
√

6

3

Let S = G(D), where D = {(u, v) : u2 + v2 ≤ 1, u ≥ 0, v ≥ 0} and G is as defined in Exercise 3.

(a) Calculate the surface area of S.

(b) Evaluate
∫∫

S
(x − y) dS. Hint: Use polar coordinates.

5. Let G(x, y) = (x, y, xy).
(a) Calculate Tx , Ty , and n(x, y).
(b) Let S be the part of the surface with parameter domain D = {(x, y) : x2 + y2 ≤ 1, x ≥ 0, y ≥ 0}. Verify the
following formula and evaluate using polar coordinates:∫∫

S
1 dS =

∫∫
D

√
1 + x2 + y2 dx dy

(c) Verify the following formula and evaluate:∫∫
S

z dS =
∫ π/2

0

∫ 1

0
(sin θ cos θ)r3

√
1 + r2 dr dθ

solution
(a) The tangent vectors are:

Tx = ∂φ

∂x
= ∂

∂x
(x, y, xy) = 〈1, 0, y〉

Ty = ∂φ

∂y
= ∂

∂y
(x, y, xy) = 〈0, 1, x〉

The normal vector is the cross product:

n(x, y) = Tx × Ty =
∣∣∣∣∣∣

i j k
1 0 y

0 1 x

∣∣∣∣∣∣ =
∣∣∣∣ 0 y

1 x

∣∣∣∣ i −
∣∣∣∣ 1 y

0 x

∣∣∣∣ j +
∣∣∣∣ 1 0

0 1

∣∣∣∣ k

= −yi − xj + k = 〈−y, −x, 1〉
(b) Using the Theorem on evaluating surface integrals we have:∫∫

S
1 dS =

∫∫
D

‖n(x, y)‖ dx dy =
∫∫

D
‖ 〈−y, −x, 1〉 ‖ dx dy =

∫∫
D

√
y2 + x2 + 1 dx dy

x
10

1

y

D

We convert the integral to polar coordinates x = r cos θ , y = r sin θ . The new region of integration is:

0 ≤ r ≤ 1, 0 ≤ θ ≤ π

2
.

We get: ∫∫
S

1 dS =
∫ π/2

0

∫ 1

0

√
r2 + 1 · r dr dθ =

∫ π/2

0

(∫ 1

0

√
r2 + 1 · r dr

)
dθ

=
∫ π/2

0

(∫ 2

1

√
u

2
du

)
dθ =

∫ π/2

0

2
√

2 − 1

3
dθ =

(
2
√

2 − 1
)

π

6

(c) The function z expressed in terms of the parameters x, y is f (�(x, y)) = xy. Therefore,∫∫
S

z dS =
∫∫

D
xy · ‖n(x, y)‖ dx dy =

∫∫
D

xy

√
1 + x2 + y2 dx dy
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We compute the double integral by converting it to polar coordinates. We get:∫∫
S

z dS =
∫ π/2

0

∫ 1

0
(r cos θ)(r sin θ)

√
1 + r2 · r dr dθ =

∫ π/2

0

∫ 1

0
(sin θ cos θ)r3

√
1 + r2 dr dθ

=
(∫ π/2

0
(sin θ cos θ) dθ

) (∫ 1

0
r3

√
1 + r2 dr

)
(1)

We compute each integral in (1). Using the substitution u = 1 + r2, du = 2r dr we get:

∫ 1

0
r3

√
1 + r2 dr =

∫ 1

0
r2

√
1 + r2 · r dr =

∫ 2

1

(
u3/2 − u1/2

) du

2
= u5/2

5
− u3/2

3

∣∣∣∣2
1

=
2

(√
2 + 1

)
15

Also, ∫ π/2

0
sin θ cos θ dθ =

∫ π/2

0

sin 2θ

2
dθ = −cos 2θ

4

∣∣∣∣π/2

0
= 1

2

We substitute the integrals in (1) to obtain the following solution:

∫∫
S

z dS = 1

2
·

2
(√

2 + 1
)

15
=

√
2 + 1

15

A surface S has a parametrization G(u, v) whose domain D is the square in Figure 17. Suppose that G has the
following normal vectors:

n(A) = 〈2, 1, 0〉 , n(B) = 〈1, 3, 0〉
n(C) = 〈3, 0, 1〉 , n(D) = 〈2, 0, 1〉

Estimate
∫∫

S
f (x, y, z) dS, where f is a function such that f (G(u, v)) = u + v.

In Exercises 7–10, calculate Tu, Tv , and n(u, v) for the parametrized surface at the given point. Then find the equation
of the tangent plane to the surface at that point.

7. G(u, v) = (2u + v, u − 4v, 3u); u = 1, v = 4

solution The tangent vectors are the following vectors,

Tu = ∂�

∂u
= ∂

∂u
(2u + v, u − 4v, 3u) = 〈2, 1, 3〉

Tv = ∂�

∂v
= ∂

∂v
(2u + v, u − 4v, 3u) = 〈1, −4, 0〉

The normal is the cross product:

n(u, v) = Tu × Tv =
∣∣∣∣∣∣

i j k
2 1 3
1 −4 0

∣∣∣∣∣∣ =
∣∣∣∣ 1 3

−4 0

∣∣∣∣ i −
∣∣∣∣ 2 3

1 0

∣∣∣∣ j +
∣∣∣∣ 2 1

1 −4

∣∣∣∣ k

= 12i + 3j − 9k = 3 〈4, 1, −3〉
The equation of the plane passing through the point P : �(1, 4) = (6, −15, 3) with the normal vector 〈4, 1, −3〉 is:

〈x − 6, y + 15, z − 3〉 · 〈4, 1, −3〉 = 0

or

4(x − 6) + y + 15 − 3(z − 3) = 0

4x + y − 3z = 0

G(u, v) = (u2 − v2, u + v, u − v); u = 2, v = 3
9. G(θ, φ) = (cos θ sin φ, sin θ sin φ, cos φ); θ = π

2 , φ = π
4

solution We compute the tangent vectors:

Tθ = ∂�

∂θ
= ∂

∂θ
(cos θ sin φ, sin θ sin φ, cos φ) = 〈− sin θ sin φ, cos θ sin φ, 0〉

Tφ = ∂�

∂φ
= ∂

∂φ
(cos θ sin φ, sin θ sin φ, cos φ) = 〈cos θ cos φ, sin θ cos φ, − sin φ〉

The normal vector is the cross product:

n(θ, φ) = Tθ × Tφ =
∣∣∣∣∣∣

i j k
− sin θ sin φ cos θ sin φ 0
cos θ cos φ sin θ cos φ − sin φ

∣∣∣∣∣∣
=

(
− cos θ sin2 φ

)
i −

(
sin θ sin2 φ

)
j +

(
− sin2 θ sin φ cos φ − cos2 θ cos φ sin φ

)
k

= −
(

cos θ sin2 φ
)

i −
(

sin θ sin2 φ
)

j − (sin φ cos φ)k
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The tangency point and the normal at this point are,

P = �
(π

2
,
π

4

)
=

(
cos

π

2
sin

π

4
, sin

π

2
sin

π

4
, cos

π

4

)
=

(
0,

√
2

2
,

√
2

2

)

n
(π

2
,
π

4

)
= −1

2
j − 1

2
k = −1

2
(j + k) = −1

2
〈0, 1, 1〉

The equation of the plane orthogonal to the vector 〈0, 1, 1〉 and passing through P =
(

0,

√
2

2 ,

√
2

2

)
is:

〈
x, y −

√
2

2
, z −

√
2

2

〉
· 〈0, 1, 1〉 = 0

or

y −
√

2

2
+ z −

√
2

2
= 0

y + z = √
2

G(r, θ) = (r cos θ, r sin θ, 1 − r2); r = 1
2 , θ = π

4

11. Use the normal vector computed in Exercise 8 to estimate the area of the small patch of the surface G(u, v) =
(u2 − v2, u + v, u − v) defined by

2 ≤ u ≤ 2.1, 3 ≤ v ≤ 3.2

solution We denote the rectangle D = {(u, v) : 2 ≤ u ≤ 2.1, 3 ≤ v ≤ 3.2}. Using the sample point corresponding
to u = 2, v = 3 we obtain the following estimation for the area of S = �(D):

Area(S) ≈ ‖n(2, 3)‖Area(D) = ‖n(2, 3)‖ · 0.1 · 0.2 = 0.02‖n(2, 3)‖ (1)

In Exercise 8 we found that n(2, 3) = 2 〈−1, −1, 5〉. Therefore,

‖n(2, 3)‖ = 2
√

12 + 12 + 52 = 2
√

27

Substituting in (1) gives the following estimation:

Area(S) ≈ 0.02 · 2 · √
27 ≈ 0.2078.

Sketch the small patch of the sphere whose spherical coordinates satisfy

π

2
− 0.15 ≤ θ ≤ π

2
+ 0.15,

π

4
− 0.1 ≤ φ ≤ π

4
+ 0.1

Use the normal vector computed in Exercise 9 to estimate its area.

In Exercises 13–26, calculate
∫∫

S
f (x, y, z) dS for the given surface and function.

13. G(u, v) = (u cos v, u sin v, u), 0 ≤ u ≤ 1, 0 ≤ v ≤ 1; f (x, y, z) = z(x2 + y2)

solution
Step 1. Compute the tangent and normal vectors. We have:

Tu = ∂�

∂u
= ∂

∂u
(u cos v, u sin v, u) = 〈cos v, sin v, 1〉

Tv = ∂�

∂v
= ∂

∂v
(u cos v, u sin v, u) = 〈−u sin v, u cos v, 0〉

The normal vector is the cross product:

n = Tu × Tv =
∣∣∣∣∣∣

i j k
cos v sin v 1

−u sin v u cos v 0

∣∣∣∣∣∣
= (−u cos v)i − (u sin v)j +

(
u cos2 v + u sin2 v

)
k

= (−u cos v)i − (u sin v)j + uk = 〈−u cos v, −u sin v, u〉
We compute the length of n:

‖n‖ =
√

(−u cos v)2 + (−u sin v)2 + u2 =
√

u2
(

cos2 v + sin2 v + 1
)

=
√

u2 · 2 = √
2|u| = √

2u

Notice that in the region of integration u ≥ 0, therefore |u| = u.

Step 2. Calculate the surface integral. We express the function f (x, y, z) = z
(
x2 + y2

)
in terms of the parameters u, v:

f (�, (u, v)) = u
(
u2 cos2 v + u2 sin2 v

)
= u · u2 = u3
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We obtain the following integral:∫∫
S

f (x, y, z) dS =
∫ 1

0

∫ 1

0
f (�, (u, v)) ‖n‖ du dv =

∫ 1

0

∫ 1

0
u3 · √

2u du dv

=
(∫ 1

0

√
2 dv

) (∫ 1

0
u4 du

)
= √

2 · u5

5

∣∣∣∣∣
1

0

=
√

2

5

G(r, θ) = (r cos θ, r sin θ, θ), 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π ; f (x, y, z) =
√

x2 + y2
15. y = 9 − z2, 0 ≤ x ≤ 3, 0 ≤ z ≤ 3; f (x, y, z) = z

solution We use the formula for the surface integral over a graph y = g(x, z):∫∫
S

f (x, y, z) dS =
∫∫

D
f (x, g(x, z), z)

√
1 + g2

x + g2
z dx dz (1)

Since y = g(x, z) = 9 − z2, we have gx = 0, gz = −2z, hence:√
1 + g2

x + g2
z =

√
1 + 4z2

f (x, g(x, z), z) = z

The domain of integration is the square [0, 3] × [0, 3] in the xz-plane. By (1) we get:

∫∫
S

f (x, y, z) dS =
∫ 3

0

∫ 3

0
z
√

1 + 4z2 dz dx =
(∫ 3

0
1 dx

) (∫ 3

0
z
√

1 + 4z2 dz

)
= 3

∫ 3

0
z
√

1 + 4z2 dz

We use the substitution u = 1 + 4z2, du = 8z dz to compute the integral. This gives:∫∫
S

f (x, y, z) dS = 3
∫ 3

0
z
√

1 + 4z2 dz = 3
∫ 37

1

u1/2

8
du = 37

√
37 − 1

4
≈ 56

y = 9 − z2, 0 ≤ x ≤ z ≤ 3; f (x, y, z) = 1
17. x2 + y2 + z2 = 1, x, y, z ≥ 0; f (x, y, z) = x2.

solution The octant of the unit sphere centered at the origin, where x, y, z ≥ 0 has the following parametrization in
spherical coordinates:

�(θ, φ) = (cos θ sin φ, sin θ sin φ, cos φ), 0 ≤ θ ≤ π

2
, 0 ≤ φ ≤ π

2

The length of the normal vector is:

‖n‖ = sin φ

The function x2 expressed in terms of the parameters is cos2 θ sin2 φ. Using the theorem on computing surface integrals
we obtain,∫∫

S
x2 dS =

∫ π/2

0

∫ π/2

0

(
cos2 θ sin2 φ

)
(sin φ) dφ dθ =

∫ π/2

0

∫ π/2

0
cos2 θ sin3 φ dφ dθ

=
(∫ π/2

0
cos2 θ dθ

) (∫ π/2

0
sin3 φ dφ

)
=

(
θ

2
+ sin 2θ

4

) ∣∣∣∣π/2

θ=0
·
(

− sin2 φ cos φ

3
− 2

3
cos φ

) ∣∣∣∣π/2

φ=0

= π

4
· 2

3
= π

6

z = 4 − x2 − y2, 0 ≤ z ≤ 3; f (x, y, z) = x2/(4 − z)
19. x2 + y2 = 4, 0 ≤ z ≤ 4; f (x, y, z) = e−z

solution The cylinder has the following parametrization in cylindrical coordinates:

�(θ, z) = (2 cos θ, 2 sin θ, z), 0 ≤ θ ≤ 2π, 0 ≤ z ≤ 4

Step 1. Compute the tangent and normal vectors. The tangent vectors are the partial derivatives:

Tθ = ∂�

∂θ
= ∂

∂θ
(2 cos θ, 2 sin θ, z) = 〈−2 sin θ, 2 cos θ, 0〉

Tz = ∂

∂z
(2 cos θ, 2 sin θ, z) = 〈0, 0, 1〉
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The normal vector is their cross product:

n(θ, z) = Tθ × Tz =
∣∣∣∣∣∣

i j k
−2 sin θ 2 cos θ 0

0 0 1

∣∣∣∣∣∣ = (2 cos θ)i + (2 sin θ)j = 〈2 cos θ, 2 sin θ, 0〉

The length of the normal vector is thus

‖n(θ, z)‖ =
√

(2 cos θ)2 + (2 sin θ)2 + 0 =
√

4
(

cos2 θ + sin2 θ
)

= √
4 = 2

Step 2. Calculate the surface integral. The surface integral equals the following double integral:∫∫
S

f (x, y, z) dS =
∫∫

D
f (�(θ, z)) ‖n‖ dθ dz =

∫ 2π

0

∫ 4

0
e−z · 2 dθ dz

=
(∫ 2π

0
2 dθ

) (∫ 4

0
e−z dz

)
= 4π · (−e−z

) ∣∣∣∣4
0

= 4π
(

1 − e−4
)

G(u, v) = (u, v3, u + v), 0 ≤ u ≤ 1, 0 ≤ v ≤ 1; f (x, y, z) = y
21. Part of the plane x + y + z = 1, where x, y, z ≥ 0; f (x, y, z) = z

solution We let z = g(x, y) = 1 − x − y and use the formula for the surface integral over the graph of z = g(x, y),
where D is the parameter domain in the xy-plane. That is:∫∫

S
f (x, y, z) dS =

∫∫
D

f (x, y, g(x, y))

√
1 + g2

x + g2
y dx dy (1)

We have, gx = −1 and gy = −1 therefore:√
1 + g2

x + g2
y =

√
1 + (−1)2 + (−1)2 = √

3

We express the function f (x, y, z) = z in terms of the parameters x and y:

f (x, y, g(x, y)) = z = 1 − x − y

The domain of integration is the triangle D in the xy-plane shown in the figure.

z

y

x

S: x + y + z = 1, x ≥ 0, y ≥ 0, z ≥ 0
x

1

1

0

y

x + y = 1

D

By (1) we get:

∫∫
S

f (x, y, z) dS =
∫ 1

0

∫ 1−y

0
(1 − x − y)

√
3 dx dy = √

3
∫ 1

0
x − x2

2
− yx

∣∣∣∣1−y

x=0
dy

= √
3

∫ 1

0

(
(1 − y)2 − (1 − y)2

2

)
dy =

√
3

2

∫ 1

0

(
1 − 2y + y2

)
dy

=
√

3

2

(
y − y2 + y3

3

) ∣∣∣∣1
0

=
√

3

6

Part of the plane x + y + z = 0 contained in the cylinder x2 + y2 = 1; f (x, y, z) = z223. x2 + y2 + z2 = 4, 1 ≤ z ≤ 2; f (x, y, z) = z2(x2 + y2 + z2)−1

solution We use spherical coordinates to parametrize the cap S.

�(θ, φ) = (2 cos θ sin φ, 2 sin θ sin φ, 2 cos φ)

D : 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ φ0
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The angle φ0 is determined by cos φ0 = 1
2 , that is, φ0 = π

3 . The length of the normal vector in spherical coordinates is:

‖n‖ = R2 sin φ = 4 sin φ

We express the function f (x, y, z) = z2
(
x2 + y2 + z2

)−1
in terms of the parameters:

f (�(θ, φ)) = (2 cos φ)24−1 = cos2 φ

Using the theorem on computing the surface integral we get:∫∫
S

f (x, y, z) dS =
∫∫

D
f (�(θ, φ)) ‖n‖ dφ dθ =

∫ 2π

0

∫ π/3

0

(
cos2 φ

)
· 4 sin φ dφ dθ

=
(∫ 2π

0
4 dθ

) (∫ π/3

0
cos2 φ sin φ dφ

)
= 8π

(
−cos φ

3

) ∣∣∣∣π/3

0

= 8π

3

(
−

(
1

2

)3
− (−1)

)
= 8π

3
· 7

8
= 7π

3

x2 + y2 + z2 = 4, 0 ≤ y ≤ 1; f (x, y, z) = y
25. Part of the surface z = x3, where 0 ≤ x ≤ 1, 0 ≤ y ≤ 1; f (x, y, z) = z

solution Use the formula for the surface integral over the graph of z = g(x, y). We have, gx = 3x2 and gy = 0
therefore:

‖n‖ =
√

1 + g2
x + g2

y =
√

1 + (3x2)2 + (0)2 =
√

1 + 9x4

The integral then is ∫∫
S

z dS =
∫ 1

0

∫ 1

0
x3

√
1 + 9x4 dx dy =

(∫ 1

0
dy

) (∫ 1

0
x3

√
1 + 9x4 dx

)

Substituting u = 1 + 9x4, du = 36x3 dx

= 1 ·
∫ 10

1
u

1
2
du

36
= 1

36
· 2

3
· u

3
2

∣∣∣∣10

1
= 1

54
(10

√
10 − 1)

Part of the unit sphere centered at the origin, where x ≥ 0 and |y| ≤ x; f (x, y, z) = x
27. A surface S has a parametrization G(u, v) with domain 0 ≤ u ≤ 2, 0 ≤ v ≤ 4 such that the following partial
derivatives are constant:

∂G

∂u
= 〈2, 0, 1〉 ,

∂G

∂v
= 〈4, 0, 3〉

What is the surface area of S?

solution Since the partial derivatives are constant, the normal vector is also constant. We find it by computing the
cross product:

n = Tu × Tv = ∂�

∂u
× ∂�

∂v
=

∣∣∣∣∣∣
i j k
2 0 1
4 0 3

∣∣∣∣∣∣ = −2j = 〈0, −2, 0〉 ⇒ ‖n‖ = 2

We denote the rectangle D = {(u, v) : 0 ≤ u ≤ 2, 0 ≤ v ≤ 4}, and use the surface area to compute the area of S = �(D).
We obtain:

Area(S) =
∫∫

D
‖n‖ du dv =

∫∫
D

2 du dv = 2
∫∫

D
1 du dv = 2 · Area(D) = 2 · 2 · 4 = 16

Let S be the sphere of radius R centered at the origin. Explain using symmetry:∫∫
S

x2 dS =
∫∫

S
y2 dS =

∫∫
S

z2 dS

Then show that
∫∫

S
x2 dS = 4

3
πR4 by adding the integrals.

29. Calculate
∫∫

S
(xy + ez) dS, where S is the triangle in Figure 18 with vertices (0, 0, 3), (1, 0, 2), and (0, 4, 1).

z

yx

(0, 0, 3)

(1, 0, 2)

(0, 4, 1)

1
4

FIGURE 18
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solution We find the equation of the plane through the points A = (0, 0, 3), B = (0, 4, 1) and C = (1, 0, 2).

z

y

x

A = (0, 0, 3)

C = (1, 0, 2)
B = (0, 4, 1)

1

4

A normal to the plane is the cross product:

−→
AB × −→

AC = 〈0, 4, −2〉 × 〈1, 0, −1〉 =
∣∣∣∣∣∣

i j k
0 4 −2
1 0 −1

∣∣∣∣∣∣ = −4i − 2j − 4k = −2 〈2, 1, 2〉

The equation of the plane passing through A = (0, 0, 3) and perpendicular to the vector 〈2, 1, 2〉 is:

〈x − 0, y − 0, z − 3〉 · 〈2, 1, 2〉 = 0

2x + y + 2(z − 3) = 0

2x + y + 2z = 6

or

z = g(x, y) = −x − 1

2
y + 3

We compute the surface integral of f (x, y, z) = xy + ez over the triangle ABC using the formula for the surface integral
over a graph. The parameter domain D is the projection of the triangle ABC onto the xy-plane (see figure).

y = − 4x + 42

2

(0, 4)

(1, 0)
x

y

D

O

We have: ∫∫
S

f (x, y, z) dS =
∫∫

D
f

(
x, y, g(x, y)

)√
1 + g2

x + g2
z dx dy (1)

We compute the functions in the integrand. Since z = g(x, y) = −x − y
2 + 3, we have:

gx = −1, gy = −1

2
⇒

√
1 + g2

x + g2
z =

√
1 + (−1)2 +

(
−1

2

)2
= 3

2

f
(
x, y, g(x, y, z)

) = xy + ez = xy + e−x− y
2 +3

Substituting in (1) gives:∫∫
S

f (x, y, z) dS =
∫ 1

0

∫ −4x+4

0

(
xy + e−x−y/2+3

)
· 3

2
dy dx =

∫ 1

0

3xy2

4
− 3e−x−y/2+3

∣∣∣∣−4x+4

y=0
dx

=
∫ 1

0

(
3x(−4x + 4)2

4
− 3e−x−(−4x+4)/2+3 + 3e−x+3

)
dx

=
∫ 1

0

(
12x3 − 24x2 + 12x − 3ex+1 + 3e−x+3

)
dx = 3x4 − 8x3 + 6x2 − 3ex+1 − 3e−x+3

∣∣∣∣1
0

= (1 − 3e2 − 3e2) − (−3e − 3e3) = 3e3 − 6e2 + 3e + 1 ≈ 25.08

Use spherical coordinates to compute the surface area of a sphere of radius R.
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31. Use cylindrical coordinates to compute the surface area of a sphere of radius R.

solution As z = ±
√

R2 − (x2 + y2) we may parametrize the upper hemisphere by the map

G(r, θ) = (r cos θ, r sin θ,
√

R2 − r2)

To compute the surface area of the hemisphere S, we first must find the tangent vectors and the normal vector. That is,

Tr = ∂G

∂r
= ∂

∂r

〈
r cos θ, r sin θ,

√
R2 − r2

〉
=

〈
cos θ, sin θ, − r√

R2 − r2

〉

Tθ = ∂G

∂θ
= ∂

∂θ

〈
r cos θ, r sin θ,

√
R2 − r2

〉
= 〈−r sin θ, r cos θ, 0〉

The normal vector is the cross product:

n = Tr × Tθ =

∣∣∣∣∣∣∣
i j k

cos θ sin θ −r√
R2−r2

−r sin θ r cos θ 0

∣∣∣∣∣∣∣
=

(
r2 cos θ√
R2 − r2

)
i +

(
r2 sin θ√
R2 − r2

)
j +

(
r cos2 θ + r sin2 θ

)
k

=
(

r2 cos θ√
R2 − r2

)
i +

(
r2 sin θ√
R2 − r2

)
j + rk

The length of the normal vector is thus

‖n‖ =
√

r4 cos2 θ

R2 − r2
+ r4 sin2 θ

R2 − r2
+ r2 =

√
r4

R2 − r2

(
cos2 θ + sin2 θ

)
+ r2 =

√
r4

R2 − r2
+ r2 = rR√

R2 − r2

We now compute the surface area as the following surface integral:

Area(S) =
∫∫

D
‖n‖ dr dθ =

∫ 2π

0

∫ R

0

rR√
R2 − r2

dr dθ

=
(∫ 2π

0
R dθ

) (∫ R

0

r√
R2 − r2

dr

)
= 2πR

∫ R

0

r√
R2 − r2

dr

We compute the integral using the substitution t = R2 − r2, dt = −2r dr . We get:

Area(S) = 2πR

∫ 0

R2

−1

2t1/2
dt = 2πR2

The area of the entire sphere is twice this or 4πR2.

Let S be the surface with parametrization

G(u, v) = (
(3 + sin v) cos u, (3 + sin v) sin u, v

)
for 0 ≤ u ≤ 2π , 0 ≤ v ≤ 2π . Using a computer algebra system:

(a) Plot S from several different viewpoints. Is S best described as a “vase that holds water” or a “bottomless vase”?

(b) Calculate the normal vector n(u, v).

(c) Calculate the surface area of S to four decimal places.

33. Let S be the surface z = ln(5 − x2 − y2) for 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. Using a computer algebra system:

(a) Calculate the surface area of S to four decimal places.

(b) Calculate
∫∫

S
x2y3 dS to four decimal places.

solution

(a) Using that zx = −2x/(5 − x2 − y2) and zy = −2y/(5 − x2 − y2), we calculate ‖n‖ to be

‖n‖ =
√

1 + (zx)2 + (zy)2 =
√

(5 − x2 − y2)2 + 4x2 + 4y2

5 − x2 − y2

Thus, the surface area is

Area(S) =
∫ 1

0

∫ 1

0

√
(5 − x2 − y2)2 + 4x2 + 4y2

5 − x2 − y2
dx dy ≈ 1.078

(b) We calculate
∫∫

S
x2y3 dS as follows:

∫∫
S

x2y3 dS =
∫ 1

0

∫ 1

0
x2y3

√
(5 − x2 − y2)2 + 4x2 + 4y2

5 − x2 − y2
dx dy ≈ 0.09814
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Find the area of the portion of the plane 2x + 3y + 4z = 28 lying above the rectangle 1 ≤ x ≤ 3, 2 ≤ y ≤ 5 in
the xy-plane.

35. What is the area of the portion of the plane 2x + 3y + 4z = 28 lying above the domain D in the xy-plane in Figure
19 if Area(D) = 5?

D

x

y

FIGURE 19

solution We rewrite the equation of the plane as:

z = g(x, y) = −x

2
− 3

4
y + 7

Hence:

√
1 + g2

x + g2
y =

√
1 +

(
−1

2

)2
+

(
−3

4

)2
=

√
29

4

We use the integral for surface area and the surface integral over a graph to write:

Area(S) =
∫∫

S
1 dS =

∫∫
D

√
1 + g2

x + g2
y dx dy =

∫∫
D

√
29

4
dx dy

=
√

29

4

∫∫
D

1 dx dy =
√

29

4
Area(D) =

√
29

4
· 5 = 5

√
29

4
≈ 6.73

Find the surface area of the part of the cone x2 + y2 = z2 between the planes z = 2 and z = 5.
37. Find the surface area of the portion S of the cone z2 = x2 + y2, where z ≥ 0, contained within the cylinder
y2 + z2 ≤ 1.

solution We rewrite the equation of the cone as x = ±
√

z2 − y2. The projection of the cone onto the yz-plane is
obtained by setting x = 0 in the equation of the cone, that is,

x = 0 =
√

z2 − y2 ⇒ z = ±y

Since on S, z ≥ 0, we get z = |y|. We conclude that the projection of the upper part of the cone x2 + y2 = z2 onto the
yz-plane is the region between the lines z = y and z = −y on the upper part of the yz-plane. Therefore, the projection
D of S onto the yz-plane is the region shown in the figure:

y

z

z = yz = −y

2

1

2

1−

D

y2 + z2 = 1 z = 1 − y2

There are two identical portions of the surface parametrized by this region—one for x ≥ 0, and one for x ≤ 0. Therefore
the area of S is twice the integral over the domain D:

Area(S) =
∫∫

S
dS = 2

∫∫
D

√
1 + g2

y + g2
z dy dz

We compute the integral using a surface integral over a graph. Since x = g(y, z) = ±
√

z2 − y2 we have,

gz = ± z√
z2 − y2

, gy = ± y√
z2 − y2

Hence, (notice that z ≥ 0 on S):

√
1 + g2

y + g2
z =

√
1 + z2

z2 − y2
+ y2

z2 − y2
=

√
2z2

z2 − y2
= z

√
2√

z2 − y2
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We obtain the following integral:

Area(S) = 2
∫∫

D

√
1 + g2

y + g2
z dy dz = 2

∫∫
D

z
√

2√
z2 − y2

dz dy

Using symmetry gives:

Area(S) = 4
∫ 1/(

√
2)

0

∫ √
1−y2

y

z
√

2√
z2 − y2

dz dy = 4
√

2
∫ 1/(

√
2)

0

(∫ √
1−y2

y

z dz√
z2 − y2

)
dy (1)

We compute the inner integral using the substitution u =
√

z2 − y2, du = z
u dz. We get:

∫ √
1−y2

y

z dz√
z2 − y2

=
∫ √

1−y2

0

u du

u
=

∫ √
1−2y2

0
du =

√
1 − 2y2

We substitute in (1) and compute the resulting integral using the substitution t = √
2y. We get:

Area(S) = 4
√

2
∫ 1/(

√
2)

0

√
1 − 2y2 dy = 4

√
2

∫ 1

0

√
1 − t2 dt√

2
= 4

∫ 1

0

√
1 − t2 dt = 4 · π

4
= π

Calculate the integral of ze2x+y over the surface of the box in Figure 20.39. Calculate
∫∫

G
x2z dS, where G is the cylinder (including the top and bottom) x2 + y2 = 4, 0 ≤ z ≤ 3.

solution We calculate the surface integral for each of the three surfaces. We begin with the bottom.

S1 : φ(x, y) = (x, y, 0)∫∫
S1

x2z dS1 =
∫∫

D
x2(0)‖n1‖ dx dy = 0

Then the top

S2 : φ(x, y) = (x, y, 3)

Tx = 〈1, 0, 0〉 , Ty 〈0, 1, 0〉 ⇒ n2 = 〈0, 0, 1〉∫∫
S2

x2z dS2 =
∫∫

D
x2(3)‖n2‖ dx dy = 3

∫∫
D

x2 dx dy

The domain, D, is the disk of radius 2. Changing to polar coordinates,

= 3
∫ 2π

0

∫ 2

0
(r cos θ)2 r dr dθ = 3

∫ 2π

0
cos2 θ dθ ·

∫ 2

0
r3 dr

= 3

(
1

2
+ sin 2θ

2

) ∣∣∣∣2π

0
· r4

4

∣∣∣∣2
0

= 12π

Finally the side,

S3 : φ(r, θ) = (2 cos θ, 2 sin θ, z)

Tθ = 〈−2 sin θ, 2 cos θ, 0〉 , Tz 〈0, 0, 1〉
⇒ n3 = 〈2 cos θ, 2 sin θ, 0〉 ⇒ ‖n3‖ = 2

∫∫
S3

x2z dS2 =
∫ 2π

0

∫ 3

0
(2 cos θ)2 z 2 dz dθ

= 8
∫ 2π

0
cos2 θ dθ ·

∫ 3

0
z dz = 8

(
1

2
+ sin 2θ

2

) ∣∣∣∣2π

0
· z2

2

∣∣∣∣3
0

= 36π

The total surface integral is thus ∫∫
G

x2z dS = 0 + 12π + 36π = 48π
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Let S be the portion of the sphere x2 + y2 + z2 = 9, where 1 ≤ x2 + y2 ≤ 4 and z ≥ 0 (Figure 21). Find a
parametrization of S in polar coordinates and use it to compute:

(a) The area of S (b)
∫∫

S
z−1 dS

41. Prove a famous result of Archimedes: The surface area of the portion of the sphere of radius R between two horizontal
planes z = a and z = b is equal to the surface area of the corresponding portion of the circumscribed cylinder (Fig-
ure 22).

a

b

z
R

FIGURE 22

solution We compute the area of the portion of the sphere between the planes a and b. The portion S1 of the sphere
has the parametrization,

�(θ, φ) = (r cos θ sin φ, r sin θ sin φ, r cos φ)

where,

D1 : 0 ≤ θ ≤ 2π, φ0 ≤ φ ≤ φ1

If we assume 0 < a < b, then the angles φ0 and φ1 are determined by,

cos φ0 = b

r
⇒ φ0 = cos−1 b

r

cos φ1 = a

r
⇒ φ1 = cos−1 a

r

rb ra

f0

f1

The length of the normal vector is ‖n‖ = r2 sin φ. We obtain the following integral:

Area (S1) =
∫∫

D1

‖n‖dφ dθ =
∫ 2π

0

∫ φ1

φ0

r2 sin φ dφ dθ =
(∫ 2π

0
r2dφ

) (∫ φ2

φ1

sin φ dφ

)

= 2πr2

(
− cos φ

∣∣∣∣cos−1 a
r

φ=cos−1 b
r

)
= 2πr2

(
−a

r
+ b

r

)
= 2πr(b − a)

The area of the part S2 of the cylinder of radius r between the planes z = a and z = b is:

Area (S2) = 2πr · (b − a)

We see that the two areas are equal:

Area (S1) = Area (S2)

Further Insights and Challenges

Surfaces of Revolution Let S be the surface formed by rotating the region under the graph z = g(y) in the
yz-plane for c ≤ y ≤ d about the z-axis, where c ≥ 0 (Figure 23).

(a) Show that the circle generated by rotating a point (0, a, b) about the z-axis is parametrized by

(a cos θ, a sin θ, b), 0 ≤ θ ≤ 2π

(b) Show that S is parametrized by

G(y, θ) = (y cos θ, y sin θ, g(y))

for c ≤ y ≤ d, 0 ≤ θ ≤ 2π .

(c) Use Eq. (13) to prove the formula

Area(S) = 2π

∫ d

c
y

√
1 + g′(y)2 dy

43. Use Eq. (14) to compute the surface area of z = 4 − y2 for 0 ≤ y ≤ 2 rotated about the z-axis.

solution Since g(y) = 4 − y2, we have g′(y) = −2y. By Eq. (14) we obtain the following integral,

Area(S) = 2π

∫ 2

0
|y|

√
1 + (−2y)2 dy = 2π

∫ 2

0
y ·

√
1 + 4y2 dy

We compute the integral using the substitution u = 1 + 4y2, du = 8y dy. We get:

Area(S) = 2π

∫ 17

1
u1/2 · du

8
= 2π

2

3
· u3/2

8

∣∣∣∣17

1
= π

6

(
17

√
17 − 1

)
≈ 36.18
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Describe the upper half of the cone x2 + y2 = z2 for 0 ≤ z ≤ d as a surface of revolution (Figure 2) and use
Eq. (14) to compute its surface area.

45. Area of a Torus Let T be the torus obtained by rotating the circle in the yz-plane of radius a centered at (0, b, 0)

about the z-axis (Figure 24). We assume that b > a > 0.
(a) Use Eq. (14) to show that

Area(T) = 4π

∫ b+a

b−a

ay√
a2 − (b − y)2

dy

z

y

x

z

y

x

b

b − a
b + a

FIGURE 24 The torus obtained by rotating a circle of radius a.

(b) Show that Area(T) = 4π2ab.

solution
(a) Using symmetry, the area of the surface obtained by rotating the upper part of the circle is half the area of the torus.

z

y

x

b

b − a
b + a

The rotated graph is z = g(y) =
√

a2 − (y − b)2, b − a ≤ y ≤ b + a. So, we have,

g′(y) = −2(y − b)

2
√

a2 − (y − b)2
= − y − b√

a2 − (y − b)2

√
1 + g′(y)2 =

√
1 + (y − b)2

a2 − (y − b)2
=

√
a2 − (y − b)2 + (y − b)2

a2 − (y − b)2
= a√

a2 − (y − b)2

We now use symmetry and Eq. (14) to obtain the following area of the torus (we assume that b − a > 0, hence y > 0):

Area (T) = 2 · 2π

∫ b+a

b−a
|y|

√
1 + g′(y)2 dy = 4π

∫ b+a

b−a

ay√
a2 − (y − b)2

dy (1)

(b) We compute the integral using the substitution u = y−b
a , du = 1

a dy. We get:∫ b+a

b−a

ay√
a2 − (y − b)2

dy =
∫ 1

−1

a2u + ab√
a2 − a2u2

a du =
∫ 1

−1

a2u + ab√
1 − u2

du =
∫ 1

−1

a2u√
1 − u2

du +
∫ 1

−1

ab√
1 − u2

du

The first integral is zero since the integrand is an odd function. We get:∫ b+a

b−a

ay√
a2 − (y − b)2

dy = 2
∫ 1

0

ab√
1 − u2

du = 2ab sin−1 u

∣∣∣∣1
0

= 2ab
(π

2
− 0

)
= πab

Substituting in (1) gives the following area:

Area (T) = 4π · πab = 4π2ab

Pappus’s Theorem (also called Guldin’s Rule) states that the area of a surface of revolution S is equal to the
length L of the generating curve times the distance traversed by the center of mass. Use Eq. (14) to prove Pappus’s
Theorem. If C is the graph z = g(y) for c ≤ y ≤ d, then the center of mass is defined as the point (y, z) with

y = 1

L

∫
C

y ds, z = 1

L

∫
C

z ds

47. Compute the surface area of the torus in Exercise 45 using Pappus’s Theorem.

solution The generating curve is the circle of radius a in the (y, z)-plane centered at the point (0, b, 0). The length of
the generating curve is L = πa.

2πb

L = 2πb

z

y

x

b
b − a

b + a
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The center of mass of the circle is at the center (y, z) = (b, 0), and it traverses a circle of radius b centered at the origin.
Therefore, the center of mass makes a distance of 2πb. Using Pappus’ Theorem, the area of the torus is:

L · 2πa = 2πa · 2πb = 4π2ab.

Potential Due to a Uniform Sphere Let S be a hollow sphere of radius R with center at the origin with a

uniform mass distribution of total mass m [since S has surface area 4πR2, the mass density is ρ = m/(4πR2)]. The
gravitational potential V (P ) due to S at a point P = (a, b, c) is equal to

−G

∫∫
S

ρ dS√
(x − a)2 + (y − b)2 + (z − c)2

(a) Use symmetry to conclude that the potential depends only on the distance r from P to the center of the sphere.
Therefore, it suffices to compute V (P ) for a point P = (0, 0, r) on the z-axis (with r �= R).

(b) Use spherical coordinates to show that V (0, 0, r) is equal to

−Gm

4π

∫ π

0

∫ 2π

0

sin φ dθ dφ√
R2 + r2 − 2Rr cos φ

(c) Use the substitution u = R2 + r2 − 2Rr cos φ to show that

V (0, 0, r) = −mG

2Rr

(|R + r| − |R − r|)
(d) Verify Eq. (12) for V .

49. Calculate the gravitational potential V for a hemisphere of radius R with uniform mass distribution.

solution In Exercise 48(b) we expressed the potential ϕ for a sphere of radius R. To find the potential for a hemisphere
of radius R, we need only to modify the limits of the angle φ to 0 ≤ φ ≤ π

2 . This gives the following integral:

ϕ(0, 0, r) = ϕ(r) = −Gm

4π

∫ π/2

0

∫ 2π

0

sin φ dθ dφ√
R2 + r2 − 2Rr cos φ

= −Gm

4π
· 2π

∫ π/2

0

sin φ dφ√
R2 + r2 − 2Rr cos φ

= −Gm

2

∫ π/2

0

sin φ dφ√
R2 + r2 − 2Rr cos φ

We compute the integral using the substitution u = R2 + r2 − 2Rr cos φ, du = 2Rr sin φ dφ. We obtain:

ϕ(r) = −Gm

2

∫ R2+r2

(R−r)2

du
2Rr√

u
= − Gm

4Rr

∫ R2+r2

(R−r)2
u−1/2 du = − Gm

4Rr
· 2u1/2

∣∣∣∣R
2+r2

u=(R−r)2

= − Gm

2Rr

((
R2 + r2

)1/2 −
(
(R − r)2

)1/2
)

= − Gm

2Rr

(√
R2 + r2 − |R − r|

)

The surface of a cylinder of radius R and length L has a uniform mass distribution ρ (the top and bottom of
the cylinder are excluded). Use Eq. (11) to find the gravitational potential at a point P located along the axis of the
cylinder.

51. Let S be the part of the graph z = g(x, y) lying over a domain D in the xy-plane. Let φ = φ(x, y) be the angle
between the normal to S and the vertical. Prove the formula

Area(S) =
∫∫

D
dA

| cos φ|
solution

y

x

(x, y, g(x, y))

f  = f (x, y)

z

D

S

n

Using the Surface Integral over a Graph we have:

Area(S) =
∫∫

S
1 dS =

∫∫
D

√
1 + g2

x + g2
y dA (1)

In parametrizing the surface by φ(x, y) = (x, y, g(x, y)), (x, y) = D, we have:

Tx = ∂�

∂x
= 〈1, 0, gx〉

Ty = ∂�

∂y
= 〈

0, 1, gy

〉
Hence,

n = Tx × Ty =
∣∣∣∣∣∣

i j k
1 0 gx

0 1 gy

∣∣∣∣∣∣ = −gx i − gy j + k = 〈−gx, −gy, 1
〉

‖n‖ =
√

g2
x + g2

y + 1

nk

−k
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There are two adjacent angles between the normal n and the vertical, and the cosines of these angles are opposite numbers.
Therefore we take the absolute value of cos φ to obtain a positive value for Area(S). Using the Formula for the cosine of
the angle between two vectors we get:

| cos φ| = |n · k|
‖n‖‖k‖ = | 〈−gx, −gy, 1

〉 · 〈0, 0, 1〉 |√
1 + g2

x + g2
y · 1

= 1√
1 + g2

x + g2
y

Substituting in (1) we get:

Area(S) =
∫∫

D
dA

| cos φ|

16.5 Surface Integrals of Vector Fields (LT Section 17.5)

Preliminary Questions
1. Let F be a vector field and G(u, v) a parametrization of a surface S, and set n = Tu × Tv . Which of the following

is the normal component of F?

(a) F · n (b) F · en

solution The normal component of F is F · en rather than F · n.

2. The vector surface integral
∫∫

S
F · dS is equal to the scalar surface integral of the function (choose the correct

answer):

(a) ‖F‖
(b) F · n, where n is a normal vector

(c) F · en, where en is the unit normal vector

solution The vector surface integral
∫∫

S F · dS is defined as the scalar surface integral of the normal component of F
on the oriented surface. That is,

∫∫
S F · dS = ∫∫

S (F · en) dS as stated in (c).

3.
∫∫

S
F · dS is zero if (choose the correct answer):

(a) F is tangent to S at every point.

(b) F is perpendicular to S at every point.

solution Since
∫∫

S F · dS is equal to the scalar surface integral of the normal component of F on S, this integral is
zero when the normal component is zero at every point, that is, when F is tangent to S at every point as stated in (a).

4. If F(P ) = en(P ) at each point on S, then
∫∫

S
F · dS is equal to (choose the correct answer):

(a) Zero (b) Area(S) (c) Neither

solution If F(P ) = en(P ) at each point on S, then,:∫∫
S

F · dS =
∫∫

S
(en · en) dS =

∫∫
S

‖en‖2 dS =
∫∫

S
1 dS = Area(S)

Therefore, (b) is the correct answer.

5. Let S be the disk x2 + y2 ≤ 1 in the xy-plane oriented with normal in the positive z-direction. Determine
∫∫

S
F · dS

for each of the following vector constant fields:

(a) F = 〈1, 0, 0〉 (b) F = 〈0, 0, 1〉 (c) F = 〈1, 1, 1〉
solution The unit normal vector to the oriented disk is en = 〈0, 0, 1〉.
(a) Since F · en = 〈1, 0, 0〉 · 〈0, 0, 1〉 = 0, F is perpendicular to the unit normal vector at every point on S, therefore∫∫

S F · dS = 0.

(b) Since F = en at every point on S, we have:∫∫
S

F · dS =
∫∫

S
(en · en) dS =

∫∫
S

‖en‖2 dS =
∫∫

S
1 dS = Area(S) = π

(c) For F = 〈1, 1, 1〉 we have:∫∫
S

F · dS =
∫∫

S
(F · en) dS =

∫∫
S

〈1, 1, 1〉 · 〈0, 0, 1〉 dS =
∫∫

S
1 dS = Area(S) = π
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6. Estimate
∫∫

S
F · dS, where S is a tiny oriented surface of area 0.05 and the value of F at a sample point in S is a

vector of length 2 making an angle π
4 with the normal to the surface.

solution

en F

π
4

P

S

Since S is a tiny surface, we may assume that the dot product F · en on S is equal to the dot product at the sample point.
This gives the following approximation:∫∫

S
F · dS =

∫∫
S

(F · en) dS ≈
∫∫

S
(F(P ) · en(P )) dS = F(P ) · en(P )

∫∫
S

1dS = F(P ) · enArea(S)

That is, ∫∫
S

F · dS ≈ F(P ) · en(P )Area(S) (1)

We are given that Area(S) = 0.05. We compute the dot product:

F(P ) · en(P ) = ‖F(P )‖‖en(P )‖ cos
π

4
= 2 · 1 · 1√

2
= √

2

Combining with (1) gives the following estimation:∫∫
S

F · dS ≈ 0.05
√

2 ≈ 0.0707.

s

7. A small surface S is divided into three pieces of area 0.2. Estimate
∫∫

S
F · dS if F is a unit vector field making

angles of 85◦, 90◦, and 95◦ with the normal at sample points in these three pieces.

solution

F

F
F

en

enen

P1

S1

S2

S3

P2
P3

We estimate the vector surface integral by the following sum:∫∫
S

F · dS = F (P1) · en (P1) Area (S1) + F (P2) · en (P2) Area (S2) + F (P3) · en (P3) Area (S3)

= 0.2 (F (P1) · en (P1) + F (P2) · en (P2) + F (P3) · en (P3))

We compute the dot product. Since F and en are unit vectors, we have:

F (P1) · en (P1) = cos 85◦ ≈ 0.0872

F (P2) · en (P2) = cos 90◦ = 0

F (P3) · en (P3) = cos 95◦ ≈ −0.0872

Substituting gives the following estimation:∫∫
S

F · dS ≈ 0.2(0.0872 + 0 − 0.0872) = 0.
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Exercises
1. Let F = 〈z, 0, y〉 and let S be the oriented surface parametrized by G(u, v) = (u2 − v, u, v2) for 0 ≤ u ≤ 2,

−1 ≤ v ≤ 4. Calculate:

(a) n and F · n as functions of u and v

(b) The normal component of F to the surface at P = (3, 2, 1) = G(2, 1)

(c)
∫∫

S
F · dS

solution
(a) The tangent vectors are,

Tu = ∂G

∂u
= ∂

∂u

(
u2 − v, u, v2

)
= 〈2u, 1, 0〉

Tv = ∂G

∂v
= ∂

∂v

(
u2 − v, u, v2

)
= 〈−1, 0, 2v〉

The normal vector is their cross product:

n = Tu × Tv =
∣∣∣∣∣∣

i j k
2u 1 0
−1 0 2v

∣∣∣∣∣∣ = vi − 4uvj + k = 〈2v, −4uv, 1〉

We write F = 〈z, 0, y〉 in terms of the parameters x = u2 − v, y = u, z = v2 and then compute F · n:

F (�(u, v)) = 〈z, 0, y〉 =
〈
v2, 0, u

〉
F (�(u, v)) · n(u, v) =

〈
v2, 0, u

〉
· 〈2v, −4uv, 1〉

= 2v3 + u

(b) At the point P = (3, 2, 1) = �(2, 1) we have:

F(P ) = 〈1, 0, 2〉
n(P ) = 〈2, −8, 1〉

en(P ) = n(P )

‖n(P )‖ = 〈2, −8, 1〉√
4 + 64 + 1

= 1√
69

〈2, −8, 1〉

Hence, the normal component of F to the surface at P is the dot product:

F(P ) · en(P ) = 〈1, 0, 2〉 · 1√
69

〈2, −8, 1〉 = 4√
69

(c) Using the definition of the vector surface integral and the dot product in part (a), we have:∫∫
S

F · dS =
∫∫

D
F (φ(u, v)) · n(u, v) du dv =

∫ 2

0

∫ 4

−1

(
2v3 + u

)
dv du

=
∫ 2

0

2v4

4
+ uv

∣∣∣∣4
v=−1

du

=
∫ 2

0

(
128 − 1

2

)
+ (4 − (−1))u du

=
∫ 2

0

255

2
+ 5u du = 255u

2
+ 5u2

2

∣∣∣∣2
0

= 265

Let F = 〈y, −x, x2 + y2〉 and let S be the portion of the paraboloid z = x2 + y2 where x2 + y2 ≤ 3.

(a) Show that if S is parametrized in polar variables x = r cos θ , y = r sin θ , then F · n = r3.

(b) Show that
∫∫

S
F · dS =

∫ 2π

0

∫ √
3

0
r3 dr dθ and evaluate.

3. Let S be the unit square in the xy-plane shown in Figure 14, oriented with the normal pointing in the positive
z-direction. Estimate ∫∫

S
F · dS

where F is a vector field whose values at the labeled points are

F(A) = 〈2, 6, 4〉, F(B) = 〈1, 1, 7〉
F(C) = 〈3, 3, −3〉, F(D) = 〈0, 1, 8〉
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x

y

A B

C D

1

1

FIGURE 14

solution The unit normal vector to S is en = 〈0, 0, 1〉. We estimate the vector surface integral
∫∫

S F · dS using the
division and sample points given in Figure 14.

x

y

A B

C D

1

1

Each subsquare has area 1
4 , therefore we obtain the following estimation:∫∫

S
F · dS ≈ (F(A) · en + F(B) · en + F(C) · en + F(D) · en) · 1

4

= (〈2, 6, 4〉 · 〈0, 0, 1〉 + 〈1, 1, 7〉 · 〈0, 0, 1〉 + 〈3, 3, −3〉 · 〈0, 0, 1〉 + 〈0, 1, 8〉 · 〈0, 0, 1〉) · 1

4

= (4 + 7 − 3 + 8) · 1

4
= 4

Suppose that S is a surface in R3 with a parametrization G whose domain D is the square in Figure 14. The values
of a function f , a vector field F, and the normal vector n = Tu × Tv at G(P ) are given for the four sample points
in D in the following table. Estimate the surface integrals of f and F over S.

Point
P in D f F n

A 3 〈2, 6, 4〉 〈1, 1, 1〉
B 1 〈1, 1, 7〉 〈1, 1, 0〉
C 2 〈3, 3, −3〉 〈1, 0, −1〉
D 5 〈0, 1, 8〉 〈2, 1, 0〉

In Exercises 5–17, compute
∫∫

S
F · dS for the given oriented surface.

5. F = 〈y, z, x〉, plane 3x − 4y + z = 1, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, upward-pointing normal

solution We rewrite the equation of the plane as z = 1 − 3x + 4y, and parametrize the plane by:

�(x, y) = (x, y, 1 − 3x + 4y)

Here, the parameter domain is the square D = {(x, y) : 0 ≤ x, y ≤ 1} in the xy-plane.

Step 1. Compute the tangent and normal vectors.

Tx = ∂�

∂x
= ∂

∂x
(x, y, 1 − 3x + 4y) = 〈1, 0, −3〉

Ty = ∂�

∂y
= ∂

∂y
(x, y, 1 − 3x + 4y) = 〈0, 1, 4〉

Tx × Ty =
∣∣∣∣∣∣

i j k
1 0 −3
0 1 4

∣∣∣∣∣∣ = 3i − 4j + k = 〈3, −4, 1〉

Since the plane is oriented with upward pointing normal, the normal vector n is:

n = 〈3, −4, 1〉
Step 2. Evaluate the dot product F · n. We write F in terms of the parameters:

F (�(x, y)) = 〈y, z, x〉 = 〈y, 1 − 3x + 4y, x〉
The dot product F · n is thus

F (�(x, y)) · n = 〈y, 1 − 3x + 4y, x〉 · 〈3, −4, 1〉 = 3y − 4(1 − 3x + 4y) + x = 13x − 13y − 4

Step 3. Evaluate the surface integral. The surface integral is equal to the following double integral:∫∫
S

F · dS =
∫∫

D
F (�(x, y)) · n(x, y) dx dy =

∫ 1

0

∫ 1

0
(13x − 13y − 4) dx dy

=
∫ 1

0

13x2

2
− 13yx − 4x

∣∣∣∣1
x=0

dy =
∫ 1

0

(
13

2
− 13y − 4

)
dy = 5y

2
− 13y2

2

∣∣∣∣1
0

= −4



May 20, 2011

626 C H A P T E R 16 LINE AND SURFACE INTEGRALS (LT CHAPTER 17)

F = 〈
ez, z, x

〉
, G(r, s) = (rs, r + s, r), 0 ≤ r ≤ 1, 0 ≤ s ≤ 1, oriented by Tr × Ts

7. F = 〈
0, 3, x

〉
, part of sphere x2 + y2 + z2 = 9, where x ≥ 0, y ≥ 0, z ≥ 0 outward-pointing normal

solution We parametrize the octant S by:

�(θ, φ) = (3 cos θ sin φ, 3 sin θ sin φ, 3 cos φ), 0 ≤ θ ≤ π

2
, 0 ≤ φ ≤ π

2

Step 1. Compute the normal vector. As seen in the text, the normal vector that points to the outside of the sphere is:

n = Tφ × Tθ = 9 sin φ 〈cos θ sin φ, sin θ sin φ, cos φ〉

For 0 ≤ θ ≤ π
2 , 0 ≤ φ ≤ π

2 , all trigonometric functions are positive. Therefore all components of n are positive, so n
points to the outside of the sphere.

y

x

z

Step 2. Evaluate the dot product F · n. We express the vector field in terms of the parameters:

F (�(θ, φ)) = 〈0, 3, x〉 = 〈0, 3, 3 cos θ sin φ〉

Hence:

F (�(θ, φ)) · n(θ, φ) = 〈0, 3, 3 cos θ sin φ〉 · 9 sin φ 〈cos θ sin φ, sin θ sin φ, cos φ〉
= 27 sin θ sin2 φ + 27 cos θ sin2 φ cos φ

Step 3. Evaluate the surface integral. The surface integral is equal to the following double integral:∫∫
S

F · dS =
∫∫

D
F (�(θ, φ)) · n(θ, φ) dθ dφ

=
∫ π

2

0

∫ π
2

0

(
27 sin θ sin2 φ + 27 cos θ sin2 φ cos φ

)
dθ dφ

= 27

(∫ π
2

0
sin θ dθ ·

∫ π
2

0
sin2 φ dφ +

∫ π
2

0
cos θ dθ ·

∫ π
2

0
sin2 φ cos φ dφ

)

= 27

(
− cos θ

∣∣∣∣
π
2

0
·
(

φ

2
− sin 2φ

4

) ∣∣∣∣
π
2

0
+ sin θ

∣∣∣∣
π
2

0
· sin3 φ

3

∣∣∣∣
π
2

0

)

= 27

(
π

4
· 1 + 1

3
· 1

)
= 27

12
(3π + 4)

F = 〈x, y, z〉, part of sphere x2 + y2 + z2 = 1, where
1

2
≤ z ≤

√
3

2
, inward-pointing normal

9. F = 〈z, z, x〉, z = 9 − x2 − y2, x ≥ 0, y ≥ 0, z ≥ 0 upward-pointing normal

solution

Step 1. Find a parametrization. We use x and y as parameters and parametrize the surface by:

�(x, y) =
(
x, y, 9 − x2 − y2

)
The parameter domain D is determined by the conditions z = 9 − x2 − y2 ≥ 0 ⇒ x2 + y2 ≤ 9 and x, y ≥ 0. That is:

D =
{
(x, y) : x2 + y2 ≤ 9, x, y ≥ 0

}
D is the portion of the disk of radius 3 in the first quadrant.
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Step 2. Compute the tangent and normal vectors. We have:

Tx = ∂�

∂x
= ∂

∂x

(
x, y, 9 − x2 − y2

)
= 〈1, 0, −2x〉

Ty = ∂�

∂y
= ∂

∂y

(
x, y, 9 − x2 − y2

)
= 〈0, 1, −2y〉

We compute the cross product of the tangent vectors:

Tx × Ty =
∣∣∣∣∣∣

i j k
1 0 −2x

0 1 −2y

∣∣∣∣∣∣ = (2x)i + (2y)j + k = 〈2x, 2y, 1〉

Since the z-component is positive, the vector points upward, and we have:

n = 〈2x, 2y, 1〉

Step 3. Evaluate the dot product F · n. We first express the vector field in terms of the parameters x and y, by setting
z = 9 − x2 − y2. We get:

F (�(x, y)) = 〈z, z, x〉 =
〈
9 − x2 − y2, 9 − x2 − y2, x

〉

We now compute the dot product:

F (�(x, y)) · n(x, y) =
〈
9 − x2 − y2, 9 − x2 − y2, x

〉
· 〈2x, 2y, 1〉

= 2x(9 − x2 − y2) + 2y(9 − x2 − y2) + x

= 19x + 18y − 2xy(x2 + y2)

Step 4. Evaluate the surface integral.

D

x

y

3

The surface integral is equal to the following double integral:

∫∫
S

F · dS =
∫∫

D
F (�(x, y)) · n(x, y) dx dy =

∫∫
D

(
19x + 18y − 2xy(x2 + y2)

)
dx dy

We convert the integral to polar coordinates and use the identity sin 2θ = 2 cos θ sin θ to obtain:

∫∫
S

F · dS =
∫ 3

0

∫ π/2

0

(
19r cos θ + 18r sin θ − 2r2 cos θ sin θ

)
r dθ dr

=
(∫ 3

0
r2 dr

)
·
(∫ π/2

0
19 cos θ + 18 sin θ dθ

)
+

(∫ 3

0
−r3 dr

)
·
(∫ π/2

0
sin 2θ dθ

)

=
(

r3

3

∣∣∣∣3
0

)
·
(

19 sin θ − 18 cos θ

∣∣∣∣π/2

0

)
+

(
− r4

4

∣∣∣∣3
0

)
·
(

−1

2
cos 2θ

∣∣∣∣π/2

0

)

= 9 · 37 − 81

4
· (1) = 312.75
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F = 〈sin y, sin z, yz〉, rectangle 0 ≤ y ≤ 2, 0 ≤ z ≤ 3 in the (y, z)-plane, normal pointing in negative
x-direction

11. F = y2i + 2j − xk, portion of the plane x + y + z = 1 in the octant x, y, z ≥ 0, upward-pointing normal

solution

1
1

1

z

y

x

S
n

We parametrize the surface by:

�(x, y) = (x, y, 1 − x − y),

using the parameter domain D shown in the figure.

D

x

y

1

1

0

Step 1. Compute the tangent and normal vectors. We have:

Tx = ∂�

∂x
= ∂

∂x
(x, y, 1 − x − y) = 〈1, 0, −1〉

Ty = ∂�

∂y
= ∂

∂y
(x, y, 1 − y) = 〈0, 1, −1〉

n = Tx × Ty =
∣∣∣∣∣∣

i j k
1 0 −1
0 1 −1

∣∣∣∣∣∣ = i + j + k = 〈1, 1, 1〉

Note that n points upward.
Step 2. Evaluate the dot product F · n.

D

x

y

10

0 ≤ x ≤ 1 − y

1

We compute the dot product:

F (�(x, y)) · n =
〈
y2, 2, −x

〉
· 〈1, 1, 1〉 = y2 + 2 − x

Step 3. Evaluate the surface integral. The surface integral is equal to the following double integral:∫∫
S

F · dS =
∫∫

D
F (�(x, y)) · n dx dy =

∫ 1

0

∫ 1−y

0

(
y2 + 2 − x

)
dx dy =

∫ 1

0
y2x + 2x − x2

2

∣∣∣∣1−y

x=0
dy

=
∫ 1

0

(
y2(1 − y) + 2(1 − y) − (1 − y)2

2

)
dy =

∫ 1

0

(
y2 − y3 + 2(1 − y) − (y − 1)2

2

)
dy

= y3

3
− y4

4
− (1 − y)2 − (y − 1)3

6

∣∣∣∣1
0

=
(

1

3
− 1

4

)
+

(
1 − 1

6

)
= 11

12
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F = 〈
x, y, ez

〉
, cylinder x2 + y2 = 4, 1 ≤ z ≤ 5, outward-pointing normal

13. F = 〈
xz, yz, z−1〉

, disk of radius 3 at height 4 parallel to the xy-plane, upward-pointing normal

solution

3
4

z

y

x

n

We parametrize the surface S by:

�(θ, r) = (r cos θ, r sin θ, 4)

with the parameter domain:

D = {(θ, r) : 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 3}
Step 1. Compute the tangent and normal vectors. We have:

Tθ = ∂�

∂θ
= ∂

∂θ
(r cos θ, r sin θ, 4) = 〈−r sin θ, r cos θ, 0〉

Tr = ∂�

∂r
= ∂

∂r
(r cos θ, r sin θ, 4) = 〈cos θ, sin θ, 0〉

Tθ × Tr =
∣∣∣∣∣∣

i j k
−r sin θ r cos θ 0

cos θ sin θ 0

∣∣∣∣∣∣ =
(
−r sin2 θ − r cos2θ

)
k = −rk = 〈0, 0, −r〉

Since the orientation of S is with an upward pointing normal, the z-coordinate of n must be positive. Hence:

n = 〈0, 0, r〉
Step 2. Evaluate the dot product F · n. We first express F in terms of the parameters:

F (�(θ, r)) =
〈
xz, yz, z−1

〉
=

〈
r cos θ · 4, r sin θ · 4, 4−1

〉
=

〈
4r cos θ, 4r sin θ,

1

4

〉
We now compute the dot product:

F (�(θ, r)) · n(θ, r) =
〈
4r cos θ, 4r sin θ,

1

4

〉
· 〈0, 0, r〉 = r

4

Step 3. Evaluate the surface integral. The surface integral is equal to the following double integral:∫∫
S

F · dS =
∫∫

D
F (�(θ, r)) · n(θ, r) dr dθ =

∫ 2π

0

∫ 3

0

r

4
dr dθ = 2π

∫ 3

0

r

4
dr = 2π · r2

8

∣∣∣∣3
0

= 9π

4

F = 〈xy, y, 0〉, cone z2 = x2 + y2, x2 + y2 ≤ 4, z ≥ 0, downward-pointing normal
15. F = 〈

0, 0, ey+z
〉
, boundary of unit cube 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1, outward-pointing normal

solution

y

x

z

O

G

A

B

C

E

F
D

We denote the faces of the cube by:

S1 = Face OABC S2 = Face DGEF S3 = Face ABGF

S4 = Face OCDE S5 = Face BCDG S6 = Face OAFE
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• On S1

�1(x, y) = (x, y, 0)

and n1 = 〈0, 0, −1〉. Thus,

F (�1(x, y)) · n1 = 〈
0, 0, ey

〉 · 〈0, 0, −1〉 = −ey

• On S2

�2(x, y) = (x, y, 1)

and n2 = 〈0, 0, 1〉. Thus,

F (�2(x, y)) · n2 =
〈
0, 0, ey+1

〉
· 〈0, 0, 1〉 = ey+1

• On any other surface Si , 3 ≤ i ≤ 6, we have

F (�1(x, y)) · ni = 0,

because the z-component of ni = 0 and the x, y components of F equal 0. Thus,∫∫
S

F · dS =
∫∫

S1

F · dS +
∫∫

S2

F · dS =
∫ 1

0

∫ 1

0
−ey dx dy +

∫ 1

0

∫ 1

0
ey+1 dx dy

=
∫ 1

0

∫ 1

0

(
ey+1 − ey

)
dx dy =

∫ 1

0

(
ey+1 − ey

)
dy

=
∫ 1

0
ey(e − 1) dy = (e − 1)ey

∣∣∣∣1
0

= (e − 1)2

F = 〈
0, 0, z2〉

, G(u, v) = (u cos v, u sin v, v), 0 ≤ u ≤ 1, 0 ≤ v ≤ 2π , upward-pointing normal
17. F = 〈y, z, 0〉, G(u, v) = (u3 − v, u + v, v2), 0 ≤ u ≤ 2, 0 ≤ v ≤ 3, downward-pointing normal

solution
Step 1. Compute the tangent and normal vectors. We have,

Tu = ∂�

∂u
= ∂

∂u

(
u3 − v, u + v, v2

)
=

〈
3u2, 1, 0

〉

Tv = ∂�

∂v
= ∂

∂v

(
u3 − v, u + v, v2

)
= 〈−1, 1, 2v〉

Tu × Tv =
∣∣∣∣∣∣

i j k
3u2 1 0
−1 1 2v

∣∣∣∣∣∣ = (2v)i −
(

6u2v
)

j +
(

3u2 + 1
)

k =
〈
2v, −6u2v, 3u2 + 1

〉

Since the normal is pointing downward, the z-coordinate is negative, hence,

n =
〈
−2v, 6u2v, −3u2 − 1

〉
Step 2. Evaluate the dot product F · n. We first express F in terms of the parameters:

F (�(u, v)) = 〈y, z, 0〉 =
〈
u + v, v2, 0

〉
We compute the dot product:

F (�(u, v)) · n(u, v) =
〈
u + v, v2, 0

〉
·
〈
−2v, 6u2v, −3u2 − 1

〉

= −2v(u + v) + 6u2v · v2 + 0 = −2vu − 2v2 + 6u2v3

Step 3. Evaluate the surface integral. The surface integral is equal to the following double integral:∫∫
S

F · dS =
∫∫

D
F (�(u, v)) · n(u, v) du dv =

∫ 3

0

∫ 2

0

(
−2uv − 2v2 + 6u2v3

)
du dv

=
∫ 3

0
−u2v − 2v2u + 2u3v3

∣∣∣∣2
u=0

dv =
∫ 3

0

(
16v3 − 4v2 − 4v

)
dv = 4v4 − 4

3
v3 − 2v2

∣∣∣∣3
0

= 270
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Let S be the oriented half-cylinder in Figure 15. In (a)–(f), determine whether
∫∫

S
F · dS is positive, negative,

or zero. Explain your reasoning.

(a) F = i (b) F = j

(c) F = k (d) F = yi

(e) F = −yj (f) F = xj

19. Let er = 〈x/r, y/r, z/r〉 be the unit radial vector, where r =
√

x2 + y2 + z2. Calculate the integral of F = e−rer
over:

(a) The upper hemisphere of x2 + y2 + z2 = 9, outward-pointing normal.
(b) The octant x ≥ 0, y ≥ 0, z ≥ 0 of the unit sphere centered at the origin.

solution
(a) We parametrize the upper-hemisphere by,

� : x = 3 cos θ sin φ, y = 3 sin θ sin φ, z = 3 cos φ

with the parameter domain:

D =
{
(θ, φ) : 0 ≤ θ < 2π, 0 ≤ φ <

π

2

}
The outward pointing normal is (see Eq. (4) in Section 16.4):

n = 9 sin φer

We compute the dot product F · n on the sphere. On the sphere r = 3, hence,

F · n = e−r er · n = e−3er · 9 sin φ er = 9e−3 sin φ er · er = 9 e−3 sin φ

We obtain the following integral:∫∫
S

F · dS =
∫∫

D
(F · n) dφ dθ =

∫ 2π

0

∫ π/2

0
9e−3 sin φ dφ dθ

= 18πe−3
∫ π/2

0
sin φ dφ = 18πe−3

(
− cos φ

∣∣∣∣π/2

0

)
= 18πe−3

(b) We parametrize the first octant of the sphere by,

� : x = cos θ sin φ, y = sin θ sin φ, z = cos φ

with the parameter domain:

D =
{
(θ, φ) : 0 ≤ θ <

π

2
, 0 ≤ φ <

π

2

}
The outward pointing normal is (as seen above):

n = 1 sin φer

We compute the dot product F · n on the sphere. On the sphere r = 1, hence,

F · n = e−r er · n = e−1er · sin φ er = e−1 sin φ er · er = e−1 sin φ

We obtain the following integral:∫∫
S

F · dS =
∫∫

D
(F · n) dφ dθ =

∫ π/2

0

∫ π/2

0
e−1 sin φ dφ dθ

= π

2
e−1

∫ π/2

0
sin φ dφ = π

2
e−1

(
− cos φ

∣∣∣∣π/2

0

)
= π

2
e−1

Show that the flux of F = er

r2
through a sphere centered at the origin does not depend on the radius of the sphere.

21. The electric field due to a point charge located at the origin in R3 is E = k
er

r2
, where r =

√
x2 + y2 + z2 and k is a

constant. Calculate the flux of E through the disk D of radius 2 parallel to the xy-plane with center (0, 0, 3).

solution Let r =
√

x2 + y2 + z2 and r̂ =
√

x2 + y2. We parametrize the disc by:

�(r̂, θ) = (r̂ cos θ, r̂ sin θ, 3)

Tr̂ = ∂�

∂r̂
= 〈cos θ, sin θ, 0〉

Tθ = ∂�

∂θ
= 〈−r̂ sin θ, r̂ cos θ, 0

〉

n = Tr̂ × Tθ =
∣∣∣∣∣∣

i j k
cos θ sin θ 0

−r̂ sin θ r̂ cos θ 0

∣∣∣∣∣∣ = 〈
0, 0, r̂

〉
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Now,

E · n = k
er

r2
· 〈

0, 0, r̂
〉 = kr̂

r3
〈x, y, z〉 · 〈0, 0, 1〉 = zkr̂

r3

Since on the disk z = 3, we get:

E · n = 3k
r̂

r3
and r =

√
r̂2 + 9

so E · n = 3k r̂(√
r̂2+9

)3 .

∫∫
D

E · dS =
∫ 2π

0

∫ 2

0

3kr̂

(r̂2 + 9)3/2
dr̂ dθ = 6πk

∫ 2

0

r̂

(r̂2 + 9)3/2
dr̂

Substituting u = r̂2 + 9 and 1
2 du = r̂ dr̂ , we get:

∫∫
D

E · dS = 3πk

∫ 13

9

du

u3/2
= −6πku−1/2

∣∣∣∣13

9
=

(
2 − 6√

13

)
πk

Let S be the ellipsoid
(x

4

)2 +
(y

3

)2 +
( z

2

)2 = 1. Calculate the flux of F = zi over the portion of S where

x, y, z ≤ 0 with upward-pointing normal. Hint: Parametrize S using a modified form of spherical coordinates (θ, φ).

23. Let v = zk be the velocity field (in meters per second) of a fluid in R3. Calculate the flow rate (in cubic meters per
second) through the upper hemisphere (z ≥ 0) of the sphere x2 + y2 + z2 = 1.

solution We use the spherical coordinates:

x = cos θ sin φ, y = sin θ sin φ, z = cos φ

with the parameter domain

0 ≤ θ < 2π, 0 ≤ φ ≤ π

2

The normal vector is (see Eq. (4) in Section 16.4):

n = Tφ × Tθ = sin φ 〈cos θ sin φ, sin θ sin φ, cos φ〉
We express the function in terms of the parameters:

v = 〈0, 0, z〉 = 〈0, 0, cos φ〉
Hence,

v · n = 〈0, 0, cos φ〉 · sin φ 〈cos θ sin φ, sin θ sin φ, cos φ〉 = sin φ cos2 φ

The flow rate of the fluid through the upper hemisphere S is equal to the flux of the velocity vector through S. That is,∫∫
S

v · dS =
∫ π

2

0

∫ 2π

0
sin φ cos2 φ dθ dφ

=
∫ 2π

0
dθ ·

∫ π
2

0
sin φ cos2 φ dφ = 2π · − cos3 φ

3

∣∣∣∣
π
2

0

= 2π

3
m3/s

Calculate the flow rate of a fluid with velocity field v = 〈
x, y, x2y

〉
(in m/s) through the portion of the ellipse(x

2

)2 +
(y

3

)2 = 1 in the xy-plane, where x, y ≥ 0, oriented with the normal in the positive z-direction.

In Exercises 25–26, let T be the triangular region with vertices (1, 0, 0), (0, 1, 0), and (0, 0, 1) oriented with upward-
pointing normal vector (Figure 16). Assume distances are in meters.

v = 2k

(1, 0, 0)

(0, 1, 0)

(0, 0, 1)

z

y

x

FIGURE 16
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25. A fluid flows with constant velocity field v = 2k (m/s). Calculate:

(a) The flow rate through T
(b) The flow rate through the projection of T onto the xy-plane [the triangle with vertices (0, 0, 0), (1, 0, 0), and (0, 1, 0)]

solution

x

y

T
(1, 0, 0)

(0, 1, 0)

(0, 0, 1)

z

y

x (1, 0, 0)(0, 0, 0)

(0, 1, 0)

D

The equation of the plane through the three vertices is x + y + z = 1, hence the upward pointing normal vector is:

n = 〈1, 1, 1〉
and the unit normal is:

en =
〈

1√
3
,

1√
3
,

1√
3

〉
We compute the dot product v · en:

v · en = 〈0, 0, 2〉 ·
〈

1√
3
,

1√
3
,

1√
3

〉
= 2√

3

The flow rate through T is equal to the flux of v through T . That is,∫∫
S

v · dS =
∫∫

S
(v · en) dS =

∫∫
S

2√
3

dS = 2√
3

∫∫
S

1 dS = 2√
3

· Area(S)

The area of the equilateral triangle T is

(√
2
)2·√3

4 =
√

3
2 . Therefore,∫∫

S
v · dS = 2√

3
·
√

3

2
= 1

Let D denote the projection of T onto the xy-plane. Then the upward pointing normal is n = 〈0, 0, 1〉. We compute the
dot product v · n:

v · n = 〈0, 0, 2〉 · 〈0, 0, 1〉 = 2

The flow rate through D is equal to the flux of v through D. That is,∫∫
D

v · dS =
∫∫

D
(v · n) dS =

∫∫
D

2 dS = 2
∫∫

D
1 dS = 2 · Area(D) = 2 · 1 · 1

2
= 1

Calculate the flow rate through T if v = −j m/s.
27. Prove that if S is the part of a graph z = g(x, y) lying over a domain D in the xy-plane, then∫∫

S
F · dS =

∫∫
D

(
−F1

∂g

∂x
− F2

∂g

∂y
+ F3

)
dx dy

solution
Step 1. Find a parametrization. We parametrize the surface by

�(x, y) = (x, y, g(x, y)) , (x, y) ∈ D
Step 2. Compute the tangent and normal vectors. We have,

Tx = ∂�

∂x
= ∂

∂x
(x, y, g(x, y)) =

〈
1, 0,

∂g

∂x

〉

Ty = ∂�

∂y
= ∂

∂y
(x, y, g(x, y)) =

〈
0, 1,

∂g

∂y

〉

n = Tx × Ty =

∣∣∣∣∣∣∣
i j k
1 0 ∂g

∂x

0 1 ∂g
∂y

∣∣∣∣∣∣∣ = − ∂g

∂x
i − ∂g

∂x
j + k =

〈
− ∂g

∂x
, −∂g

∂y
, 1

〉
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Step 3. Evaluate the dot product F · n.

F · n = 〈F1, F2, F3〉 ·
〈
− ∂g

∂x
, −∂g

∂y
, 1

〉
= −F1

∂g

∂x
− F2

∂g

∂y
+ F3

Step 4. Evaluate the surface integral. The surface integral is equal to the following double integral:∫∫
S

F · dS =
∫∫

D
(F · n) dx dy =

∫∫
D

(
−F1

∂g

∂x
− F2

∂g

∂y
+ F3

)
dx dy

In Exercises 28–29, a varying current i(t) flows through a long straight wire in the xy-plane as in Example 5. The current

produces a magnetic field B whose magnitude at a distance r from the wire is B = μ0i

2πr
T, where μ0 = 4π · 10−7 T-m/A.

Furthermore, B points into the page at points P in the xy-plane.

Assume that i(t) = t (12 − t) A (t in seconds). Calculate the flux �(t), at time t , of B through a rectangle of
dimensions L × H = 3 × 2 m whose top and bottom edges are parallel to the wire and whose bottom edge is located
d = 0.5 m above the wire, similar to Figure 13(B). Then use Faraday’s Law to determine the voltage drop around
the rectangular loop (the boundary of the rectangle) at time t .

29. Assume that i = 10e−0.1t A (t in seconds). Calculate the flux �(t), at time t , of B through the isosceles triangle of
base 12 cm and height 6 cm whose bottom edge is 3 cm from the wire, as in Figure 17. Assume the triangle is oriented
with normal vector pointing out of the page. Use Faraday’s Law to determine the voltage drop around the triangular loop
(the boundary of the triangle) at time t .

Volt meter

Triangular wire

B

B
P

i

r

3

12

6

B

FIGURE 17

solution The magnetic field is B = −μ0i
2πr

k and the unit normal on the triangle points out of the page, hence n = en = k.

−6
x

y

P = (x, y)

R

i

Triangular
wire

Loop C

6

3

9

Also, the distance from a point P = (x, y) in R to the wire is r = y. Hence:

B · n = −μ0i

2πy
k · k = −μ0i

2πy

The flux �(t) of B through R is the following integral:

�(t) =
∫∫

R
B · n dx dy = −μ0i

2π

∫∫
R

1

y
dx dy

y

y = 9 − x

3

6

(6, 3)

9

x

0 ≤ x ≤ 9 − y

Using symmetry we have:

�(t) = −μ0i

π

∫ 9

3

∫ 9−y

0

1

y
dx dy = −μ0i

π

∫ 9

3

x

y

∣∣∣∣9−y

x=0
dy = −μ0i

π

∫ 9

3

9 − y

y
dy

= −μ0i

π

∫ 9

3

(
9

y
− 1

)
dy = −μ0i

π

(
9 ln y − y

∣∣∣∣9
y=3

)
= −μ0i

π
((9 ln 9 − 9) − (9 ln 3 − 3))

= −μ0i

π
(9 ln 3 − 6) = −4π · 10−7

π
(9 ln 3 − 6)i = −1.56 · 10−6i = −1.56 · 10−5 · e−0.1t
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Using Faraday’s Law, the voltage drop around the triangular loop C (oriented counterclockwise):∫
C

E · dS = −dφ

dt
= − d

dt

(
−1.56 · 10−5 · e−0.1t

)
= −1.56 · 10−6 · e−0.1t Volts

Further Insights and Challenges

A point mass m is located at the origin. Let Q be the flux of the gravitational field F = −Gm
er

r2
through the

cylinder x2 + y2 = R2 for a ≤ z ≤ b, including the top and bottom (Figure 18). Show that Q = −4πGm if
a < 0 < b (m lies inside the cylinder) and Q = 0 if 0 < a < b (m lies outside the cylinder).

In Exercises 31 and 32, let S be the surface with parametrization

G(u, v) =
((

1 + v cos
u

2

)
cos u,

(
1 + v cos

u

2

)
sin u, v sin

u

2

)
for 0 ≤ u ≤ 2π , − 1

2 ≤ v ≤ 1
2 .

31. Use a computer algebra system.

(a) Plot S and confirm visually that S is a Möbius strip.
(b) The intersection of S with the xy-plane is the unit circle G(u, 0) = (cos u, sin u, 0). Verify that the normal vector
along this circle is

n(u, 0) =
〈
cos u sin

u

2
, sin u sin

u

2
, − cos

u

2

〉
(c) As u varies from 0 to 2π , the point G(u, 0) moves once around the unit circle, beginning and ending at G(0, 0) =
G(2π, 0) = (1, 0, 0). Verify that n(u, 0) is a unit vector that varies continuously but that n(2π, 0) = −n(0, 0). This shows
that S is not orientable—that is, it is not possible to choose a nonzero normal vector at each point on S in a continuously
varying manner (if it were possible, the unit normal vector would return to itself rather than to its negative when carried
around the circle).

solution
(a) We use a computer algebra system to graph the plot of S, and it is indeed a Möbius strip.
(b) To find the normal vector along the unit circle, we use our computer to first find the cross product ∂n

∂u
× ∂n

∂v
and

simplify, we get the very ugly expression

n(u, v) = ∂n
∂u

× ∂n
∂v

=
〈

1

2

(
−v cos

(u

2

)
+ 2 cos u + v cos

(
3u

2

))
sin

(u

2

)
,

1

4

(
v + 2 cos

(u

2

)
+ 2v cos(u) − 2 cos

(
3u

2

)
− v cos(2u)

)
,

− cos
(u

2

) (
1 + v cos

(u

2

))〉
(Different computer algebra systems may produce different simplifications.) When we replace v with 0 and simplify, we
find that:

n(u, 0) =
〈
cos u sin

u

2
,

1

2

(
cos

u

2
− cos

3u

2

)
, − cos

u

2

〉
This is almost, but not quite, what we want. Let’s examine that middle term a bit more.

1

2

(
cos

u

2
− cos

3u

2

)
= 1

2

(
cos

u

2
− (cos u cos

u

2
− sin u sin

u

2
)
)

= 1

2

(
cos

u

2
(1 − cos u) + sin u sin

u

2

)

= 1

2

(
cos

u

2
· 2 sin2 u

2
+ sin u sin

u

2

)
= 1

2
sin

u

2

(
2 sin

u

2
cos

u

2
+ sin u

)
= 1

2
sin

u

2
(sin u + sin u) = sin u sin

u

2

which is what we expect. Thus, we see that

n(u, 0) =
〈
cos u sin

u

2
, sin u sin

u

2
, − cos

u

2

〉
(c) To verify that n(u, 0) is a unit vector, we note that

‖n(u, 0)‖ =
√(

cos u sin
u

2

)2 +
(

sin u sin
u

2

)2 +
(

cos
u

2

)2

=
√

cos2 u sin2 u

2
+ sin2 u sin2 u

2
+ cos2 u

2
=

√
sin2 u

2
+ cos2 u

2
= √

1 = 1

It is clear that n(u, 0) varies continuously with u, as each of its three components are non-constant continuous functions
of u. Finally, we note that n(0, 0) = 〈0, 0, −1〉 but n(2π, 0) = 〈0, 0, 1〉, so indeed n(2π, 0) = −n(0, 0).

We cannot integrate vector fields over S because S is not orientable, but it is possible to integrate functions
over S. Using a computer algebra system:

(a) Verify that

‖n(u v)‖2 1 + 3
v2 + 2v cos

u + 1
v2 cos u
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CHAPTER REVIEW EXERCISES

1. Compute the vector assigned to the point P = (−3, 5) by the vector field:

(a) F = 〈xy, y − x〉
(b) F = 〈4, 8〉
(c) F = 〈

3x+y, log2(x + y)
〉

solution
(a) Substituting x = −3, y = 5 in F = 〈xy, y − x〉 we obtain:

F = 〈−3 · 5, 5 − (−3)〉 = 〈−15, 8〉
(b) The constant vector field F = 〈4, 8〉 assigns the vector 〈4, 8〉 to all the vectors. Thus:

F(−3, 5) = 〈4, 8〉
(c) Substituting x = −3, y = 5 in F = 〈

3x+y, log2(x + y)
〉

we obtain

F =
〈
3−3+5, log2(−3 + 5)

〉
=

〈
32, log2(2)

〉
= 〈9, 1〉

Find a vector field F in the plane such that ‖F(x, y)‖ = 1 and F(x, y) is orthogonal to G(x, y) = 〈x, y〉 for all
x, y.

In Exercises 3–6, sketch the vector field.

3. F(x, y) = 〈y, 1〉
solution Notice that the vector field is constant along horizontal lines.

F = 〈y, 1〉

y

x

F(x, y) = 〈4, 1〉5. ∇V , where V (x, y) = x2 − y

solution The gradient of V (x, y) = x2 − y is the following vector:

F(x, y) =
〈
∂V

∂x
,
∂V

∂y

〉
= 〈2x, −1〉

This vector is sketched in the following figure:

∇j  = 〈2x, −1〉

y

x

F(x, y) =
〈

4y√
x2 + 4y2

,
−x√

x2 + 16y2

〉

Hint: Show that F is a unit vector field tangent to the family of ellipses x2 + 4y2 = c2.

In Exercises 7–15, determine whether the vector field is conservative, and if so, find a potential function.

7. F(x, y) = 〈
x2y, y2x

〉
solution If F is conservative, the cross partials must be equal. We compute the cross partials:

∂F1

∂y
= ∂

∂y

(
x2y

)
= x2

∂F2

∂x
= ∂

∂x

(
y2x

)
= y2

Since the cross-partials are not equal, F is not conservative.
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F(x, y) = 〈
4x3y5, 5x4y4〉9. F(x, y, z) = 〈

sin x, ey, z
〉

solution We examine the cross partials of F. Since F1 = sin x, F2 = ey , F3 = z we have:

∂F1

∂y
= 0

∂F2

∂z
= 0

∂F3

∂x
= 0

∂F2

∂x
= 0

∂F3

∂y
= 0

∂F1

∂z
= 0

⇒ ∂F1

∂y
= ∂F2

∂x
,

∂F2

∂z
= ∂F3

∂y
,

∂F3

∂x
= ∂F1

∂z

Since the cross partials are equal, F is conservative. We denote the potential field by V (x, y, z). So we have:

Vx = sin x Vy = ey Vz = z

By integrating we get:

V (x, y, z) =
∫

sin x dx = − cos x + C(y, z)

Vy = Cy = ey ⇒ C(y, z) = ey + D(z)

V (x, y, z) = − cos x + ey + D(z)

Vz = Dz = z ⇒ D(z) = z2

2

We conclude that V (x, y, z) = − cos x + ey + z2

2 . Indeed:

∇V =
〈
∂V

∂x
,
∂V

∂y
,
∂V

∂z

〉
= 〈

sin x, ey, z
〉 = F

F(x, y, z) = 〈
2, 4, ez

〉11. F(x, y, z) = 〈
xyz, 1

2x2z, 2z2y
〉

solution No. We show that the cross partials for x and z are not equal. Since the equality of the cross partials is a
necessary condition for a field to be a gradient vector field, we conclude that F is not a gradient field. We have:

∂F1

∂z
= ∂

∂z
(xyz) = xy

∂F3

∂x
= ∂

∂x
(2z2y) = 0

⇒ ∂F1

∂z
�= ∂F3

∂x

Therefore the cross partials condition is not satisfied, hence F is not a gradient vector field.

F(x, y) = 〈
y4x3, x4y3〉13. F(x, y, z) =

〈
y

1 + x2
, tan−1 x, 2z

〉
solution We examine the cross partials of F. Since F1 = y

1+x2 , F2 = tan−1 x, F3 = 2z we have:

∂F1

∂y
= 1

1 + x2

∂F2

∂x
= 1

1 + x2

⇒ ∂F1

∂y
= ∂F2

∂x

∂F2

∂z
= 0

∂F3

∂y
= 0

⇒ ∂F2

∂z
= ∂F3

∂y

∂F3

∂x
= 0

∂F1

∂z
= 0

⇒ ∂F3

∂x
= ∂F1

∂z

Since the cross partials are equal, F is conservative. We denote the potential function by V (x, y, z). We have:

Vx = y

1 + x2
, Vy = tan−1(x), Vz = 2z

By integrating we get:

V (x, y, z) =
∫

y

1 + x2
dx = y tan−1(x) + c(y, z)

Vy = tan−1(x) + cy(y, z) = tan−1(x) ⇒ cy(y, z) = 0 ⇒ c(y, z) = c(z)
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Hence V (x, y, z) = y tan−1(x) + c(z). Vz = c′(z) = 2z ⇒ c(z) = z2. We conclude that V (x, y, z) = y tan−1(x) + z2.
Indeed:

∇V =
〈
∂V

∂x
,
∂V

∂y
,
∂V

∂z

〉
=

〈
y

1 + x2
, tan−1 x, 2z

〉
= F

F(x, y, z) =
〈

2xy

x2 + z
, ln(x2 + z),

y

x2 + z

〉15. F(x, y, z) = 〈
xe2x, ye2z, ze2y

〉
solution We have:

∂F3

∂y
= ∂

∂y

(
ze2y

)
= 2ze2y

∂F2

∂z
= ∂

∂z

(
ye2z

)
= 2ye2y

Since ∂F3
∂y

�= ∂F2
∂z

, the cross-partials condition is not satisfied , hence F is not conservative.

Find a conservative vector field of the form F = 〈g(y), h(x)〉 such that F(0, 0) = 〈1, 1〉, where g(y) and h(x) are
differentiable functions. Determine all such vector fields.

In Exercises 17–20, compute the line integral
∫
C

f (x, y) ds for the given function and path or curve.

17. f (x, y) = xy, the path c(t) = (t, 2t − 1) for 0 ≤ t ≤ 1

solution
Step 1. Compute ds = ‖c′(t)‖ dt . We differentiate c(t) = (t, 2t − 1) and compute the length of the derivative vector:

c′(t) = 〈1, 2〉 ⇒ ‖c′(t)‖ =
√

12 + 22 = √
5

Hence,

ds = ‖c′(t)‖ dt = √
5 dt

Step 2. Write out f (c(t)) and evaluate the line integral. We have:

f (c(t)) = xy = t (2t − 1) = 2t2 − t

Using the Theorem on Scalar Line Integral we have:∫
C

f (x, y) ds =
∫ 1

0
f (c(t)) ‖c′(t)‖ dt =

∫ 1

0

(
2t2 − t

) √
5 dt = √

5

(
2

3
t3 − 1

2
t2

) ∣∣∣∣1
0

= √
5

(
2

3
− 1

2

)
=

√
5

6

f (x, y) = x − y, the unit semicircle x2 + y2 = 1, y ≥ 019. f (x, y, z) = ex − y

2
√

2z
, the path c(t) = (

ln t,
√

2t, 1
2 t2)

for 1 ≤ t ≤ 2

solution
Step 1. Compute ds = ‖c′(t)‖ dt . We have:

c′(t) = d

dt

〈
ln t,

√
2t,

1

2
t2

〉
=

〈
1

t
,
√

2, t

〉

‖c′(t)‖ =
√(

1

t

)2
+

(√
2
)2 + t2 =

√
1

t2
+ 2 + t2 =

√(
1

t
+ t

)2
= 1

t
+ t

Hence:

ds = ‖c′(t)‖ dt =
(

t + 1

t

)
dt

Step 2. Write out f (c(t)) and evaluate the integral.

f (c(t)) = ex − y

2
√

2z
= eln t −

√
2t

2
√

2 · 1
2 t2

= t − 1

t

We use the Theorem on Scalar Line Integrals to compute the line integral:∫
C

f (x, y) ds =
∫ 2

1
f (c(t)) ‖c′(t)‖ dt =

∫ 2

1

(
t − 1

t

) (
t + 1

t

)
dt

=
∫ 2

1

(
t2 − 1

t2

)
dt = t3

3
+ 1

t

∣∣∣∣∣
2

1

=
(

8

3
+ 1

2

)
−

(
1

3
+ 1

)
= 11

6
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f (x, y, z) = x + 2y + z, the helix c(t) = (cos t, sin t, t) for −1 ≤ t ≤ 3
21. Find the total mass of an L-shaped rod consisting of the segments (2t, 2) and (2, 2 − 2t) for 0 ≤ t ≤ 1 (length in
centimeters) with mass density ρ(x, y) = x2y g/cm.

solution

A = (0, 2)

C = (2, 0)

B = (2, 2)

x

y

The total mass of the rod is the following sum:

M =
∫
AB

x2y ds +
∫
BC

x2y ds (1)

The segment AB is parametrized by c1(t) = (2t, 2), 0 ≤ t ≤ 1. Hence

c′
1(t) = 〈2, 0〉 , ‖c′

1(t)‖ = 2

and

f (c1(t)) = x2y = (2t)2 · 2 = 8t2.

The segment BC is parametrized by c2(t) = (2, 2 − 2t), 0 ≤ t ≤ 1. Hence

c′
2(t) = 〈0, −2〉 , ‖c′

2(t)‖ = 2

and

f (c2(t)) = x2y = 22(2 − 2t) = 8 − 8t.

Using these values, the Theorem on Scalar Line Integrals and (1) we get:

M =
∫ 1

0
8t2 · 2 dt +

∫ 1

0
(8 − 8t) · 2 dt = 16t3

3

∣∣∣∣1
0

+ 16t − 8t2
∣∣∣∣1
0

= 40

3
= 13

1

3

Calculate F = ∇V , where V (x, y, z) = xyez, and compute
∫
C

F · ds, where:

(a) C is any curve from (1, 1, 0) to (3, e, −1).

(b) C is the boundary of the square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 oriented counterclockwise.

23. Calculate
∫
C1

y dx + x2y dy, where C1 is the oriented curve in Figure 1(A).

x

y

3

(A)

−3
C1

x

y

3

(B)

−3 C2

FIGURE 1

solution We compute the line integral as the sum of the line integrals over the segments AO, OB and the circular
arc BA.

x
B

A

y

3

3

0

The vector field is F =
〈
y, x2y

〉
. We have:

∫
C1

F · ds =
∫
AO

F · ds +
∫
OB

F · ds +
∫

arc BA
F · ds (1)

We compute each integral separately.



May 20, 2011

640 C H A P T E R 16 LINE AND SURFACE INTEGRALS (LT CHAPTER 17)

• The line integral over AO. The segment AO is parametrized by c(t) = (0, −t), −3 ≤ t ≤ 0 . Hence:

F (c(t)) =
〈
y, x2y

〉
= 〈−t, 0〉

c′(t) = 〈0, −1〉
F (c(t)) · c′(t) = 〈−t, 0〉 · 〈0, −1〉 = 0

Therefore: ∫
AO

F · ds =
∫ 0

−3
F (c(t)) · c′(t) dt = 0 (2)

• The line integral over OB. We parametrize the segment OB by c(t) = (t, 0), 0 ≤ t ≤ 3 . Hence:

F (c(t)) =
〈
y, x2y

〉
= 〈0, 0〉

c′(t) = 〈1, 0〉
F (c(t)) · c′(t) = 0

Therefore: ∫
OB

F · ds =
∫ 3

0
F (c(t)) · c′(t) dt = 0 (3)

• The line integral over the circular arc BA. We parametrize the circular arc by c(t) = (3 cos t, 3 sin t), 0 ≤ t ≤ π
2 .

Then c′(t) = 〈−3 sin t, 3 cos t〉 and F (c(t)) =
〈
y, x2y

〉
=

〈
3 sin t, 27 cos2 t sin t

〉
. We compute the dot product:

F (c(t)) · c′(t) =
〈
3 sin t, 27 cos2 t sin t

〉
· 〈−3 sin t, 3 cos t〉 = −9 sin2 t + 81 cos3 t sin t

We obtain the integral: ∫
arc BA

F · ds =
∫ π/2

0
−9 sin2 t + 81 cos3 t sin t dt

= −9

(
t

2
− sin 2t

4

)
− 81

(
cos4 t

4

) ∣∣∣∣π/2

0

= −9π

4
+ 81

4
= 81 − 9π

4

Combining (1), (2), (3), and (4) gives:∫
C1

F · ds = 0 + 0 + 81 − 9π

4
≈ 13.18

Let F(x, y) = 〈
9y − y3, e

√
y(x2 − 3x)

〉
and let C2 be the oriented curve in Figure 1(B).

(a) Show that F is not conservative.

(b) Show that
∫
C2

F · ds = 0 without explicitly computing the integral. Hint: Show that F is orthogonal to the edges

along the square.

In Exercises 25–28, compute the line integral
∫

c
F · ds for the given vector field and path.

25. F(x, y) =
〈

2y

x2 + 4y2
,

x

x2 + 4y2

〉
,

the path c(t) =
(

cos t, 1
2 sin t

)
for 0 ≤ t ≤ 2π

solution
Step 1. Calculate the integrand F (c(t)) · c′(t).

c(t) =
(

cos t,
1

2
sin t

)

F (c(t)) =
〈

2y

x2 + 4y2
,

x

x2 + 4y2

〉
=

〈
2 · 1

2 · sin t

cos2 t + 4 · 1
4 sin2 t

,
cos t

cos2t + 4 · 1
4 sin2 t

〉

=
〈

sin t

cos2 t + sin2t
,

cos t

cos2 t + sin2 t

〉
= 〈sin t, cos t〉

c′(t) =
〈
− sin t,

1

2
cos t

〉
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The integrand is the dot product:

F (c(t)) · c′(t) = 〈sin t, cos t〉 ·
〈
− sin t,

1

2
cos t

〉
= − sin2 t + 1

2
cos2 t = 1

2
cos 2t − 1

2
sin2 t

Step 2. Evaluate the line integral.∫
C

F · ds =
∫ 2π

0
F (c(t)) · c′(t) dt =

∫ 2π

0

(
1

2
cos 2t − 1

2
sin2 t

)
dt = sin 2t

4
− t

4
+ sin 2t

8

∣∣∣∣2π

0
= −π

2

F(x, y) = 〈
2xy, x2 + y2〉

, the part of the unit circle in the first quadrant oriented counterclockwise.
27. F(x, y) = 〈

x2y, y2z, z2x
〉
, the path c(t) = (

e−t , e−2t , e−3t
)

for 0 ≤ t < ∞
solution
Step 1. Calculate the integrand F (c(t)) · c′(t).

c(t) =
(
e−t , e−2t , e−3t

)
c′(t) =

〈
e−t , −2e−2t , −3e−3t

〉
F (c(t)) =

〈
x2y, y2z, z2x

〉
=

〈
e−2t · e−2t , e−4t · e−3t , e−6t · e−t

〉
=

〈
e−4t , e−7t , e−7t

〉
The integrand is the dot product:

F (c(t)) · c′(t) =
〈
e−4t , e−7t , e−7t

〉
·
〈
e−t , −2e−2t , −3e−3t

〉
= −e−5t − 2e−9t − 3e−10t

Step 2. Evaluate the line integral.∫
C

F · ds =
∫ ∞

0
F (c(t)) · c′(t) dt =

∫ ∞
0

(
−e−5t − 2e−9t − 3e−10t

)
dt

= lim
R→∞

(
1

5
e−5R + 2

9
e−9R + 3

10
e−10R

)
−

(
1

5
+ 2

9
+ 3

10

)
= 0 − 13

18
= −13

18

F = ∇V , where V (x, y, z) = 4x2 ln(1 + y4 + z2), the path c(t) = (
t3, ln(1 + t2), et

)
for 0 ≤ t ≤ 129. Consider the line integrals

∫
c

F · ds for the vector fields F and paths c in Figure 2. Which two of the line integrals

appear to have a value of zero? Which of the other two appears to have a negative value?

(C)

x

P

P
Q

Q

y

(D)

x

y

(A)

x

y

(B)

x

y

C

FIGURE 2

solution In (A), the line integral around the ellipse appears to be positive, because the negative tangential components
from the lower part of the curve appears to be smaller than the positive contribution of the tangential components from
the upper part.

In (B), the line integral around the ellipse appears to be zero, since F is orthogonal to the ellipse at all points except
for two points where the tangential components of F cancel each other.

In (C), F is orthogonal to the path, hence the tangential component is zero at all points on the curve. Therefore the line
integral

∫
C F · ds is zero.

In (D), the direction of F is opposite to the direction of the curve. Therefore the dot product F · T is negative at each
point along the curve, resulting in a negative line integral.

Calculate the work required to move an object from P = (1, 1, 1) to Q = (3, −4, −2) against the force field
F(x, y, z) = −12r−4 〈x, y, z〉 (distance in meters, force in newtons), where r =

√
x2 + y2 + z2. Hint: Find a

potential function for F.
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31. Find constants a, b, c such that

G(u, v) = (u + av, bu + v, 2u − c)

parametrizes the plane 3x − 4y + z = 5. Calculate Tu, Tv , and n(u, v).

solution We substitute x = u + av, y = bu + v and z = 2u − c in the equation of the plane 3x − 4y + z = 5, to
obtain:

5 = 3x − 4y + z = 3(u + av) − 4(bu + v) + 2u − c = (5 − 4b)u + (3a − 4)v − c

or

(5 − 4b)u + (3a − 4)v − (5 + c) = 0

This equation must be satisfied for all u and v, therefore the following must hold:

5 − 4b = 0 b = 5

4

3a − 4 = 0 ⇒ a = 4

3

5 + c = 0 c = −5

We obtain the following parametrization for the plane 3x − 4y + z = 5:

φ(u, v) =
(

u + 4

3
v,

5

4
u + v, 2u + 5

)

We compute the tangent vectors Tu and Tv :

Tu = ∂φ

∂u
=

〈
1,

5

4
, 2

〉
; Tv = ∂φ

∂v
=

〈
4

3
, 1, 0

〉

The normal vector is their cross product:

n = Tu × Tv =
∣∣∣∣∣∣

i j k
1 5

4 2
4
3 1 0

∣∣∣∣∣∣ =
∣∣∣∣ 5

4 2
1 0

∣∣∣∣ i −
∣∣∣∣ 1 2

4
3 0

∣∣∣∣ j +
∣∣∣∣∣ 1 5

4
4
3 1

∣∣∣∣∣ k

= −2i + 8

3
j +

(
1 − 5

3

)
k =

〈
−2,

8

3
, −2

3

〉

Calculate the integral of f (x, y, z) = ez over the portion of the plane x + 2y + 2z = 3, where x, y, z ≥ 0.
33. Let S be the surface parametrized by

G(u, v) =
(

2u sin
v

2
, 2u cos

v

2
, 3v

)
for 0 ≤ u ≤ 1 and 0 ≤ v ≤ 2π .

(a) Calculate the tangent vectors Tu and Tv and the normal vector n(u, v) at P = G(1, π
3 ).

(b) Find the equation of the tangent plane at P .

(c) Compute the surface area of S.

solution
(a) The tangent vectors are the partial derivatives:

Tu = ∂G

∂u
= ∂

∂u

〈
2u sin

v

2
, 2u cos

v

2
, 3v

〉
=

〈
2 sin

v

2
, 2 cos

v

2
, 0

〉
Tv = ∂G

∂v
= ∂

∂v

〈
2u sin

v

2
, 2u cos

v

2
, 3v

〉
=

〈
u cos

v

2
, −u sin

v

2
, 3

〉
The normal vector is their cross-product:

n = Tu × Tv =
∣∣∣∣∣∣

i j k
2 sin v

2 2 cos v
2 0

u cos v
2 −u sin v

2 3

∣∣∣∣∣∣ =
∣∣∣∣ 2 cos v

2 0
−u sin v

2 3

∣∣∣∣ i −
∣∣∣∣ 2 sin v

2 0
u cos v

2 3

∣∣∣∣ j +
∣∣∣∣ 2 sin v

2 2 cos v
2

u cos v
2 −u sin v

2

∣∣∣∣ k

=
(

6 cos
v

2

)
i −

(
6 sin

v

2

)
j +

(
−2u sin2 v

2
− 2u cos2 v

2

)
k

=
(

6 cos
v

2

)
i −

(
6 sin

v

2

)
j − 2uk =

〈
6 cos

v

2
, −6 sin

v

2
, −2u

〉
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At the point P = G
(
1, π

3

)
, u = 1 and v = π

3 . The tangents and the normal vector at this point are,

Tu

(
1,

π

3

)
=

〈
2 sin

π

6
, 2 cos

π

6
, 0

〉
=

〈
1,

√
3, 0

〉

Tv

(
1,

π

3

)
=

〈
1 · cos

π

6
, −1 · sin

π

6
, 3

〉
=

〈√
3

2
, −1

2
, 3

〉

n
(

1,
π

3

)
=

〈
6 cos

π

6
, −6 sin

π

6
, −2 · 1

〉
=

〈
3
√

3, −3, −2
〉

(b) A normal to the plane is n
(
1, π

3

) =
〈
3
√

3, −3, −2
〉

found in part (a). We find the tangency point:

P = φ
(

1,
π

3

)
=

(
2 · 1 sin

π

6
, 2 · 1 cos

π

6
, 3 · π

3

)
=

(
1,

√
3, π

)
The equation of the tangent plane is, thus,〈

x − 1, y − √
3, z − π

〉
·
〈
3
√

3, −3, −2
〉
= 0

or

3
√

3(x − 1) − 3
(
y − √

3
)

− 2(z − π) = 0

3
√

3x − 3y − 2z + 2π = 0

(c) In part (a) we found the normal vector:

n =
〈
6 cos

v

2
, −6 sin

v

2
, −2u

〉
We compute the length of n:

‖n‖ =
√

36 cos2 v

2
+ 36 sin2 v

2
+ 4u2 =

√
36 + 4u2 = 2

√
9 + u2

Using the Integral for the Surface Area we get:

Area(S) =
∫∫

D
‖n(u, v)‖ du dv =

∫ 2π

0

∫ 1

0
2
√

9 + u2 du dv = 4π

∫ 1

0

√
9 + u2 du

= 4π

(
u

2

√
u2 + 9 + 9

2
ln

(
u +

√
9 + u2

) ∣∣∣∣1
u=0

)
= 4π

(
1

2

√
10 + 9

2
ln

(
1 + √

10
)

− 9

2
ln 3

)

= 2
√

10π + 18π ln
(

1 + √
10

)
− 18π ln 3 = 2

√
10π + 18π ln

1 + √
10

3
≈ 38.4

Plot the surface with parametrization

G(u, v) = (u + 4v, 2u − v, 5uv)

for −1 ≤ v ≤ 1, −1 ≤ u ≤ 1. Express the surface area as a double integral and use a computer algebra system to
compute the area numerically.

35. Express the surface area of the surface z = 10 − x2 − y2 for −1 ≤ x ≤ 1, −3 ≤ y ≤ 3 as a double integral.
Evaluate the integral numerically using a CAS.

solution We use the Surface Integral over a graph. Let g(x, y) = 10 − x2 − y2. Then gx = −2x, gy = −2y hence√
1 + gx

2 + gy
2 =

√
1 + 4x2 + 4y2. The area at the surface is the following integral which we compute using a CAS:

Area(S) =
∫∫

D

√
1 + gx

2 + gy
2 dx dy =

∫ 3

−3

∫ 1

−1

√
1 + 4x2 + 4y2 dx dy ≈ 41.8525

Evaluate
∫∫

S
x2y dS, where S is the surface z = √

3x + y2, −1 ≤ x ≤ 1, 0 ≤ y ≤ 1.
37. Calculate

∫∫
S

(
x2 + y2

)
e−z dS, where S is the cylinder with equation x2 + y2 = 9 for 0 ≤ z ≤ 10.

solution We parametrize the cylinder S by,

G(θ, z) = (3 cos θ, 3 sin θ, z)

with the parameter domain:

0 ≤ θ ≤ 2π, 0 ≤ z ≤ 10.

We compute the tangent and normal vectors:

Tθ = ∂φ

∂θ
= ∂

∂θ
〈3 cos θ, 3 sin θ, z〉 = 〈−3 sin θ, 3 cos θ, 0〉

Tz = ∂φ

∂θ
= ∂

∂θ
〈3 cos θ, 3 sin θ, z〉 = 〈0, 0, 1〉
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The normal vector is their cross product:

n = Tθ × Tz =
∣∣∣∣∣∣

i j k
−3 sin θ 3 cos θ 0

0 0 1

∣∣∣∣∣∣ =
∣∣∣∣ 3 cos θ 0

0 1

∣∣∣∣ i −
∣∣∣∣ −3 sin θ 0

0 1

∣∣∣∣ j +
∣∣∣∣ −3 sin θ 3 cos θ

0 0

∣∣∣∣ k

= (3 cos θ)i + (3 sin θ)j = 3 〈cos θ, sin θ, 0〉
We compute the length of the normal vector:

‖n‖ = 3
√

cos2 θ + sin2 θ + 0 = 3

We now express the function f (x, y, z) =
(
x2 + y2

)
e−z in terms of the parameters:

f (φ(θ, z)) =
(
x2 + y2

)
e−z =

(
9 cos2 θ + 9 sin2 θ

)
e−z = 9e−z

Using the Theorem on Surface Integrals, we obtain:∫∫
S

(
x2 + y2

)
e−zdS =

∫ 10

0

∫ 2π

0
9e−z3 dθ dz = 27 · 2π

∫ 10

0
e−zdz = 54π

(−e−z
) ∣∣∣∣10

z=0

= 54π
(
−e−10 + 1

)
≈ 54π

Let S be the upper hemisphere x2 + y2 + z2 = 1, z ≥ 0. For each of the functions (a)–(d), determine whether∫∫
S

f dS is positive, zero, or negative (without evaluating the integral). Explain your reasoning.

(a) f (x, y, z) = y3 (b) f (x, y, z) = z3

(c) f (x, y, z) = xyz (d) f (x, y, z) = z2 − 2

39. Let S be a small patch of surface with a parametrization G(u, v) for 0 ≤ u ≤ 0.1, 0 ≤ v ≤ 0.1 such that the normal
vector n(u, v) for (u, v) = (0, 0) is n = 〈2, −2, 4〉. Use Eq. (3) in Section 16.4 to estimate the surface area of S.

solution

n(0, 0)

y

Φ

P = Φ(0, 0)

u
0.1(0, 0)

0.1
S

R

x

We use Eq. (3) in section 16.4 with
(
uij , vij

) = (0, 0), Rij = R = [0, 0.1] × [0, 0.1] in the (u, v)-plane and Sij = S =
G(R), in the (x, y)-plane to obtain the following estimation for the area of S:

Area(S) ≈ ‖n(0, 0)‖Area(R)

That is:

Area(S) ≈ ‖ 〈2, −2, 4〉 ‖0.12 =
√

22 + (−2)2 + 42 · (0.1)2 = 0.02
√

6 ≈ 0.049

The upper half of the sphere x2 + y2 + z2 = 9 has parametrization G(r, θ) = (r cos θ, r sin θ,
√

9 − r2) in
cylindrical coordinates (Figure 3).

(a) Calculate the normal vector n = Tr × Tθ at the point G
(
2, π

3

)
.

(b) Use Eq. (3) in Section 16.4 to estimate the surface area of G(R), where R is the small domain defined by

2 ≤ r ≤ 2.1,
π

3
≤ θ ≤ π

3
+ 0.05

In Exercises 41–46, compute
∫∫

S
F · dS for the given oriented surface or parametrized surface.

41. F(x, y, z) = 〈
y, x, exz

〉
, x2 + y2 = 9, x ≥ 0, y ≥ 0, −3 ≤ z ≤ 3, outward-pointing normal

solution The part of the cylinder is parametrized by:

G(θ, z) = (3 cos θ, 3 sin θ, z), 0 ≤ θ ≤ π

2
, −3 ≤ z ≤ 3

z

y

x

3 3

−3
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Step 1. Compute the tangent and normal vectors.

Tθ = ∂G

∂θ
= ∂

∂θ
〈3 cos θ, 3 sin θ, z〉 = 〈−3 sin θ, 3 cos θ, 0〉

Tz = ∂G

∂z
= ∂

∂z
〈3 cos θ, 3 sin θ, z〉 = 〈0, 0, 1〉

We compute the cross product:

Tθ × Tz = ((−3 sin θ)i + (3 cos θ)j) × k = (3 sin θ)j + (3 cos θ)i = 〈3 cos θ, 3 sin θ, 0〉
The outward pointing normal is (when θ = 0, the x-component must be positive):

n = 〈3 cos θ, 3 sin θ, 0〉
Step 2. Evaluate the dot product F · n. We write F(x, y, z) = 〈

y, x, exz
〉

in terms of the parameters by substituting
x = 3 cos θ , y = 3 sin θ . We get:

F (G(θ, z)) =
〈
3 sin θ, 3 cos θ, e3z cos θ

〉
Hence:

F (G(θ, z)) · n =
〈
3 sin θ, 3 cos θ, e3z cos θ

〉
· 〈3 cos θ, 3 sin θ, 0〉

= 18 sin θ cos θ

Step 3. Evaluate the surface integral. The surface integral is equal to the following double integral (we use the trigono-
metric identities sin θ cos θ = sin 2θ

2 and sin2 2θ = 1
2 (1 − cos 4θ)):

∫∫
S

F · dS =
∫ π/2

0

∫ 3

−3
F (G(θ, z)) · n(θ, z) dz dθ =

∫ π/2

0

∫ 3

−3
18 sin θ cos θ dθ

= 18
∫ π/2

0

sin 2θ

2
dθ ·

∫ 3

−3
dz = −9

cos 2θ

2

∣∣∣∣π/2

0
· z

∣∣∣∣3−3

= −9

2
(−1 − 1) · (3 − (−3)) = 54

F(x, y, z) = 〈−y, z,−x〉, G(u, v) = (u + 3v, v − 2u, 2v + 5), 0 ≤ u ≤ 1, 0 ≤ v ≤ 1, upward-pointing
normal

43. F(x, y, z) = 〈
0, 0, x2 + y2〉

, x2 + y2 + z2 = 4, z ≥ 0, outward-pointing normal

solution The upper hemisphere is parametrized by:

G(θ, φ) = (2 cos θ sin φ, 2 sin θ sin φ, 2 cos φ), 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π

2

As seen in Section 17.4, since 0 ≤ φ ≤ π
2 then the outward-pointing normal is:

n = 4 sin φ 〈cos θ sin φ, sin θ sin φ, cos φ〉
We express F in terms of the parameters:

F (G(θ, φ)) =
〈
0, 0, x2 + y2

〉
=

〈
0, 0, 4 sin2 φ

(
cos2 θ + sin2 θ

)〉
=

〈
0, 0, 4 sin2 φ

〉
The dot product F · n is thus

F (G(θ, φ)) · n(θ, φ) = 16 sin3 φ cos φ

We obtain the following integral:∫∫
S

F · ds =
∫∫

D
F (G(θ, φ)) · n(θ, φ) dθ dφ

=
∫ π/2

0

∫ 2π

0
16 sin3 φ cos φ dθ dφ = 16

∫ 2π

0
dθ ·

∫ π/2

0
sin3 φ cos φ dφ

= 16 · 2π · sin4 φ

4

∣∣∣∣π/2

0
= 8π
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F(x, y, z) = 〈
z, 0, z2〉

, G(u, v) = (v cosh u, v sinh u, v), 0 ≤ u ≤ 1, 0 ≤ v ≤ 1, upward-pointing normal
45. F(x, y, z) = 〈

0, 0, xzexy
〉
, z = xy, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, upward-pointing normal

solution We parametrize the surface by:

G(x, y) = (x, y, xy)

Where the parameter domain is the square:

D = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}
Step 1. Compute the tangent and normal vectors.

Tx = ∂G

∂x
= ∂

∂x
〈x, y, xy〉 = 〈1, 0, y〉

Ty = ∂G

∂y
= ∂

∂y
〈x, y, xy〉 = 〈0, 1, x〉

Tx × Ty =
∣∣∣∣∣∣

i j k
1 0 y

0 1 x

∣∣∣∣∣∣ =
∣∣∣∣ 0 y

1 x

∣∣∣∣ i −
∣∣∣∣ 1 y

0 x

∣∣∣∣ j +
∣∣∣∣ 1 0

0 1

∣∣∣∣ k = −yi − xj + k = 〈−y, −x, 1〉

Since the normal points upwards, the z-coordinate is positive. Therefore the normal vector is:

n = 〈−y, −x, 1〉
Step 2. Evaluate the dot product F · n. We express F in terms of x and y:

F (G(x, y)) = 〈
0, 0, xzexy

〉 = 〈
0, 0, x(xy)exy

〉 =
〈
0, 0, x2yexy

〉
Hence:

F (G(x, y)) · n(x, y) =
〈
0, 0, x2yexy

〉
· 〈−y, −x, 1〉 = x2yexy

Step 3. Evaluate the surface integral. The surface integral is equal to the following double integral:∫∫
S

F · ds =
∫∫

D
F (G(x, y)) · n(x, y) dx dy

=
∫ 1

0

∫ 1

0
x2yexy dy dx =

∫ 1

0
x2

(∫ 1

0
yexy dy

)
dx (1)

We evaluate the inner integral using integration by parts:∫ 1

0
yexy dy = y

x
exy

∣∣1
y=0 −

∫ 1

0

1

x
exy dy = ex

x
− 1

x2
exy

∣∣∣∣1
y=0

= ex

x
− 1

x2

(
ex − 1

)
Substituting this integral in (1) gives:∫∫

S

F · ds =
∫ 1

0

(
xex − (

ex − 1
))

dx =
∫ 1

0
xex dx −

∫ 1

0

(
ex − 1

)
dx

=
∫ 1

0
xex dx − (

ex − x
) ∣∣∣∣1

0
=

∫ 1

0
xex dx − (e − 2)

Using integration by parts we have:∫∫
S

F · dS = xex − ex

∣∣∣∣1
0

− (e − 2) = 1 − (e − 2) = 3 − e

F(x, y, z) = 〈0, 0, z〉, 3x2 + 2y2 + z2 = 1, z ≥ 0,
upward-pointing normal

47. Calculate the total charge on the cylinder

x2 + y2 = R2, 0 ≤ z ≤ H

if the charge density in cylindrical coordinates is ρ(θ, z) = Kz2 cos2 θ , where K is a constant.

solution The total change on the surface S is
∫∫

S ρ dS. We parametrize the surface by,

G(θ, z) = (R cos θ, R sin θ, Hz)

with the parameter domain,

0 ≤ θ ≤ 2π, 0 ≤ z ≤ 1.
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We compute the tangent and normal vectors:

Tθ = ∂G

∂θ
= ∂

∂θ
〈R cos θ, R sin θ, Hz〉 = 〈−R sin θ, R cos θ, 0〉

Tz = ∂G

∂z
= ∂

∂z
〈R cos θ, R sin θ, Hz〉 = 〈0, 0, H 〉

The normal vector is their cross product:

n = Tθ × Tz =
∣∣∣∣∣∣

i j k
−R sin θ R cos θ 0

0 0 H

∣∣∣∣∣∣
=

∣∣∣∣ R cos θ 0
0 H

∣∣∣∣ i −
∣∣∣∣ −R sin θ 0

0 H

∣∣∣∣ j +
∣∣∣∣ −R sin θ R cos θ

0 0

∣∣∣∣ k

= (RH cos θ)i + (RH sin θ)j = RH 〈cos θ, sin θ, 0〉

We find the length of n:

‖n‖ = RH

√
cos2 θ + sin2 θ = RH

We compute ρ (G(θ, z)):

ρ (G(θ, z)) = K(Hz)2 cos2 θ = KH 2z2cos2θ

Using the Theorem on Surface Integrals we obtain:

∫∫
S

ρ · dS =
∫∫

D
ρ (G(θ, z)) · ‖n(θ, z)‖ dz dθ =

∫ 2π

0

∫ 1

0
KH 2z2 cos2 θ · HR dz dθ

=
(∫ 1

0
KH 3Rz2dz

) (∫ 2π

0
cos2 θ dθ

)
=

(
KH 3Rz3

3

∣∣∣∣1
0

) (
θ

2
+ sin 2θ

4

∣∣∣∣2π

0

)

= KH 3R

3
· π = π

3
KH 3R

Find the flow rate of a fluid with velocity field v = 〈2x, y, xy〉 m/s across the part of the cylinder x2 + y2 = 9
where x ≥ 0, y ≥ 0, and 0 ≤ z ≤ 4 (distance in meters).

49. With v as in Exercise 48, calculate the flow rate across the part of the elliptic cylinder
x2

4
+ y2 = 1 where x ≥ 0, y ≥ 0,

and 0 ≤ z ≤ 4.

solution The flow rate of a fluid with velocity field v = 〈2x, y, xy〉 through the elliptic cylinder S is the surface
integral: ∫∫

S
v · dS (1)

1
2

z

y

x

To compute this integral, we parametrize S by,

G(θ, z) = (2 cos θ, sin θ, z), 0 ≤ θ ≤ π

2
, 0 ≤ z ≤ 4

x

y

0 ≤ θ ≤ π/2
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Step 1. Compute the tangent and normal vectors.

Tθ = ∂G

∂θ
= ∂

∂θ
〈2 cos θ, sin θ, z〉 = 〈−2 sin θ, cos θ, 0〉

Tz = ∂G

∂z
= ∂

∂z
〈2 cos θ, sin θ, z〉 = 〈0, 0, 1〉

n = Tθ × Tz =
∣∣∣∣∣∣

i j k
−2 sin θ cos θ 0

0 0 1

∣∣∣∣∣∣ = (cos θ)i + (2 sin θ)j = 〈cos θ, 2 sin θ, 0〉

Step 2. Compute the dot product v · n

v (G(θ, z)) · n = 〈4 cos θ, sin θ, 2 cos θ sin θ〉 · 〈cos θ, 2 sin θ, 0〉 = 4 cos2 θ + 2 sin2 θ

= 2 cos2 θ + 2
(

cos2 θ + sin2 θ
)

= 2 cos2 θ + 2

Step 3. Evaluate the flux of v. The flux of v in (1) is equal to the following double integral (we use the equality
2 cos2 θ = 1 + cos 2θ in our calculation):∫∫

S
v · dS =

∫∫
D

v (G(θ, z)) · n dθ dz =
∫ 4

0

∫ π/2

0

(
2 cos2 θ + 2

)
dθ dz

= 4
∫ π/2

0

(
2 cos2 θ + 2

)
dθ = 4

∫ π/2

0
(3 + cos 2θ) dθ = 4

(
3θ + sin 2θ

2

∣∣∣∣π/2

θ=0

)
= 6π

Calculate the flux of the vector field E(x, y, z) = 〈0, 0, x〉 through the part of the ellipsoid

4x2 + 9y2 + z2 = 36

where z ≥ 3, x ≥ 0, y ≥ 0. Hint: Use the parametrization

G(r, θ) = (
3r cos θ, 2r sin θ, 6

√
1 − r2

)
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17 FUNDAMENTAL THEOREMS
OF VECTOR ANALYSIS

17.1 Green’s Theorem (LT Section 18.1)

Preliminary Questions
1. Which vector field F is being integrated in the line integral

∮
x2 dy − ey dx?

solution The line integral can be rewritten as
∮ −ey dx + x2 dy. This is the line integral of F =

〈
−ey, x2

〉
along the

curve.

2. Draw a domain in the shape of an ellipse and indicate with an arrow the boundary orientation of the boundary curve.
Do the same for the annulus (the region between two concentric circles).

solution The orientation on C is counterclockwise, meaning that the region enclosed by C lies to the left in travers-
ing C.

C

For the annulus, the inner boundary is oriented clockwise and the outer boundary is oriented counterclockwise. The region
between the circles lies to the left while traversing each circle.

3. The circulation of a conservative vector field around a closed curve is zero. Is this fact consistent with Green’s
Theorem? Explain.

solution Green’s Theorem asserts that∫
C

F · ds =
∫
C

P dx + Q dy =
∫∫

D

(
∂Q

∂x
− ∂P

∂y

)
dA (1)

If F is conservative, the cross partials are equal, that is,

∂P

∂y
= ∂Q

∂x
⇒ ∂Q

∂x
− ∂P

∂y
= 0 (2)

Combining (1) and (2) we obtain
∫
C F · ds = 0. That is, Green’s Theorem implies that the integral of a conservative vector

field around a simple closed curve is zero.

4. Indicate which of the following vector fields possess the following property: For every simple closed curve C,
∫
C

F · ds

is equal to the area enclosed by C.

(a) F = 〈−y, 0〉 (b) F = 〈x, y〉 (c) F = 〈
sin(x2), x + ey2 〉

solution By Green’s Theorem, ∫
C

F · ds =
∫∫

D

(
∂Q

∂x
− ∂P

∂y

)
dx dy (1)

D

C

649
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(a) Here, P = −y and Q = 0, hence ∂Q
∂x

− ∂P
∂y

= 0 − (−1) = 1. Therefore, by (1),∫
C

F · ds =
∫∫

D
1 dx dy = Area(D)

(b) We have P = x and Q = y, therefore ∂Q
∂x

− ∂P
∂y

= 0 − 0 = 0. By (1) we get∫
C

F · ds =
∫∫

D
0 dx dy = 0 �= Area(D)

(c) In this vector field we have P = sin(x2) and Q = x + ey2
. Therefore,

∂Q

∂x
− ∂P

∂y
= 1 − 0 = 1.

By (1) we obtain ∫
C

F · ds =
∫∫

D
1 dx dy = Area(D).

Exercises
1. Verify Green’s Theorem for the line integral

∮
C

xy dx + y dy, where C is the unit circle, oriented counterclockwise.

solution
Step 1. Evaluate the line integral. We use the parametrization γ (θ) = 〈cos θ, sin θ〉, 0 ≤ θ ≤ 2π of the unit circle. Then

dx = − sin θ dθ, dy = cos θ dθ

and

xy dx + y dy = cos θ sin θ(− sin θ dθ) + sin θ cos θ dθ =
(
− cos θ sin2 θ + sin θ cos θ

)
dθ

The line integral is thus∫
C

xy dx + y dy =
∫ 2π

0

(
− cos θ sin2 θ + sin θ cos θ

)
dθ

=
∫ 2π

0
− cos θ sin2 θ dθ +

∫ 2π

0
sin θ cos θ dθ = − sin3 θ

3

∣∣∣∣2π

0
− cos 2θ

4

∣∣∣∣2π

0
= 0 (1)

x

y

C

D

Step 2. Evaluate the double integral. Since P = xy and Q = y, we have

∂Q

∂x
− ∂P

∂y
= 0 − x = −x

We compute the double integral in Green’s Theorem:∫∫
D

(
∂Q

∂x
− ∂P

∂y

)
dx dy =

∫∫
D

−x dx dy = −
∫∫

D
x dx dy

The integral of x over the disk D is zero, since by symmetry the positive and negative values of x cancel each other.
Therefore, ∫∫

D

(
∂Q

∂x
− ∂P

∂y

)
dx dy = 0 (2)

Step 3. Compare. The line integral in (1) is equal to the double integral in (2), as stated in Green’s Theorem.



May 20, 2011

S E C T I O N 17.1 Green’s Theorem (LT SECTION 18.1) 651

Let I =
∮
C

F · ds, where F = 〈
y + sin x2, x2 + ey2 〉

and C is the circle of radius 4 centered at the origin.

(a) Which is easier, evaluating I directly or using Green’s Theorem?

(b) Evaluate I using the easier method.

In Exercises 3–10, use Green’s Theorem to evaluate the line integral. Orient the curve counterclockwise unless otherwise
indicated.

3.
∮
C

y2 dx + x2 dy, where C is the boundary of the unit square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

solution

1

1

x

y

C

D

We have P = y2 and Q = x2, therefore

∂Q

∂x
− ∂P

∂y
= 2x − 2y

Using Green’s Theorem we obtain∫
C

y2 dx + x2 dy =
∫∫

D
∂Q

∂x
− ∂P

∂y
dA =

∫∫
D

(2x − 2y) dx dy = 2
∫∫

D
x dx dy − 2

∫∫
D

y dx dy

By symmetry, the positive and negative values of x cancel each other in the first integral, so this integral is zero. The
second double integral is zero by similar reasoning. Therefore,∫

C
y2 dx + x2 dy = 0 − 0 = 0

∮
C

e2x+y dx + e−y dy, where C is the triangle with vertices (0, 0), (1, 0), and (1, 1)
5.

∮
C

x2 y dx, where C is the unit circle centered at the origin

solution

x

y

C

D

In this function P = x2y and Q = 0. Therefore,

∂Q

∂x
− ∂P

∂y
= 0 − x2 = −x2

We obtain the following integral:

I =
∫
C

x2y dx =
∫∫

D

(
∂Q

∂x
− ∂P

∂y

)
dA =

∫∫
D

−x2 dA

We convert the integral to polar coordinates. This gives

I =
∫ 2π

0

∫ 1

0
−r2 cos2 θ · r dr dθ =

∫ 2π

0

∫ 1

0
−r3 cos2 θ dr dθ

=
(∫ 2π

0
cos2 θ dθ

)(∫ 1

0
−r3 dr

)
=
(

θ

2
+ sin 2θ

4

∣∣∣∣2π

θ=0

)(
− r4

4

∣∣∣∣1
r=0

)
= π ·

(
−1

4

)
= −π

4

∮
C

F · ds, where F = 〈
x + y, x2 − y

〉
and C is the boundary of the region enclosed by y = x2 and y = √

x for

0 ≤ x ≤ 1
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7.
∮
C

F · ds, where F = 〈
x2, x2〉 and C consists of the arcs y = x2 and y = x for 0 ≤ x ≤ 1

solution By Green’s Theorem,

I =
∫
C

F · ds =
∫∫

D

(
∂Q

∂x
− ∂P

∂y

)
dA

10
x

y

D

C

y = x2

y = x

We have P = Q = x2, therefore

∂Q

∂x
− ∂P

∂y
= 2x − 0 = 2x

Hence,

I =
∫∫

D
2x dA =

∫ 1

0

∫ x

x2
2x dy dx =

∫ 1

0
2xy

∣∣∣∣x
y=x2

dx =
∫ 1

0
2x(x − x2) dx =

∫ 1

0
(2x2 − 2x3) dx

= 2

3
x3 − 1

2
x4
∣∣∣∣1
0

= 2

3
− 1

2
= 1

6

∮
C
(ln x + y) dx − x2 dy, where C is the rectangle with vertices (1, 1), (3, 1), (1, 4), and (3, 4)

9. The line integral of F = 〈
ex+y, ex−y

〉
along the curve (oriented clockwise) consisting of the line segments by joining

the points (0, 0), (2, 2), (4, 2), (2, 0), and back to (0, 0) (note the orientation).

solution Consider F = 〈
ex+y, ex−y

〉
. Here, P = ex+y and Q = ex−y , hence

∂Q

∂x
− ∂P

∂y
= ex−y − ex+y = ex(e−y − ey).

2

x

y

x = y
x = y + 2

Using Green’s Theorem we obtain

∫
C

F · ds =
∫∫

D
ex(e−y − ey) dx dy =

∫ 2

0

∫ y+2

y
ex(e−y − ey) dx dy =

∫ 2

0
ex(e−y − ey)

∣∣∣∣y+2

x=y

dy

=
∫ 2

0
(ey+2 − ey)(e−y − ey) dy =

∫ 2

0
(e2 − 1)(1 − e2y) dy = (e2 − 1)

(
y − e2y

2

) ∣∣∣∣2
y=0

= (e2 − 1)

(
2 − e4

2
−
(

−1

2

))
= (e2 − 1)(5 − e4)

2

∫
C

xy dx + (x2 + x) dy, where C is the path in Figure 16
11. Let F = 〈

2xey, x + x2ey
〉

and let C be the quarter-circle path from A to B in Figure 17. Evaluate I =
∮
C

F · ds as

follows:

(a) Find a function V (x, y) such that F = G + ∇V , where G = 〈0, x〉.
(b) Show that the line integrals of G along the segments OA and OB are zero.

(c) Evaluate I . Hint: Use Green’s Theorem to show that

I = V (B) − V (A) + 4π
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O

B = (0, 4)

A = (4, 0)
x

y

FIGURE 17

solution
(a) We need to find a potential function V (x, y) for the difference

F − G =
〈
2xey, x + x2ey

〉
− 〈0, x〉 =

〈
2xey, x2ey

〉
We let V (x, y) = x2ey .
(b) We use the parametrizations AO : 〈t, 0〉, 0 ≤ t ≤ 4 and OB : 〈0, t〉, 0 ≤ t ≤ 4 to evaluate the integrals of G = 〈0, x〉.
We get ∫

OA
G · ds =

∫ 4

0
〈0, t〉 · 〈1, 0〉 dt =

∫ 4

0
0 dt = 0

∫
OB

G · ds =
∫ 4

0
〈0, 0〉 · 〈0, 1〉 dt =

∫ 4

0
0 dt = 0

O

B = (0, 4)

A = (4, 0)
x

y

(c) Since F − G = ∇V , we have∫
C
(F − G) · ds = V (B) − V (A) =

∫
C

F · ds −
∫
C

G · ds = I −
∫
C

G · ds

That is,

I = V (B) − V (A) +
∫
C

G · ds (1)

To compute the line integral on the right-hand side, we rewrite it as∫
C

G · ds =
∫
BO+OA+C

G · ds −
∫
BO

G · ds −
∫
OA

G · ds

Using part (b) we may write ∫
C

G · ds =
∫
BO+OA+C

G · ds (2)

We now use Green’s Theorem. Since G = 〈0, x〉, we have P = 0 and Q = x, hence ∂Q
∂x

− ∂P
∂y

= 1 − 0 = 1. Thus,

∫
BO+OA+C

G · ds =
∫∫

D
1 dA = Area(D) = π · 42

4
= 4π (3)

Combining (1), (2), and (3), we obtain

I = V (B) − V (A) + 4π

Since V (x, y) = x2ey , we conclude that

I = V (0, 4) − V (4, 0) + 4π = 0 − 42e0 + 4π = 4π − 16.

C

O

B = (0, 4)

A = (4, 0)
x

y

D
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Compute the line integral of F = 〈
x3, 4x

〉
along the path from A to B in Figure 18. To save work, use Green’s

Theorem to relate this line integral to the line integral along the vertical path from B to A.

13. Evaluate I =
∫
C
(sin x + y) dx + (3x + y) dy for the nonclosed path ABCD in Figure 19. Use the method of Exer-

cise 12.

(2, 2)

(2, 4)

x

y

D = (0, 6)

A = (0, 0)

FIGURE 19

solution

C

B = (2, 2)

C = (2, 4)

x

y

D = (0, 6)

A = (0, 0)

D

Let F = 〈sin x + y, 3x + y〉, hence P = sin x + y and Q = 3x + y. We denote by C1 the closed path determined by C
and the segment DA. Then by Green’s Theorem,∫

C1

P dx + Q dy =
∫∫

D

(
∂Q

∂x
− ∂P

∂y

)
dA =

∫∫
D

(3 − 1) dA = 2
∫∫

D
dA = 2 Area(D) (1)

The area of D is the area of the trapezoid ABCD, that is,

Area(D) =
(
BC + AD

)
h

2
= (2 + 6) · 2

2
= 8.

x

y

h

D = (0, 6)

A = (0, 0)
B = (2, 2)

C = (2, 4)

Combining with (1) we get ∫
C1

P dx + Q dy = 2 · 8 = 16

Using properties of line integrals, we have∫
C

P dx + Q dy +
∫
DA

P dx + Q dy = 16 (2)

We compute the line integral over DA, using the parametrization

DA : x = 0, y = t, t varies from 6 to 0.

We get ∫
DA

P dx + Q dy =
∫ 0

6
F(0, t) · d

dt
〈0, t〉 dt =

∫ 0

6
〈sin 0 + t, 3 · 0 + t〉 · 〈0, 1〉 dt

=
∫ 0

6
〈t, t〉 · 〈0, 1〉 dt =

∫ 0

6
t dt = t2

2

∣∣∣∣0
t=6

= −18

We substitute in (2) and solve for the required integral:∫
C

P dx + Q dy − 18 = 16 or
∫
C

P dx + Q dy = 34.
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Show that if C is a simple closed curve, then∮
C

−y dx =
∮
C

x dy

and both integrals are equal to the area enclosed by C.

In Exercises 15–18, use Eq. (6) to calculate the area of the given region.

15. The circle of radius 3 centered at the origin

solution By Eq. (6), we have

A = 1

2

∫
C

x dy − y dx

We parametrize the circle by x = 3 cos θ , y = 3 sin θ , hence,

x dy − y dx = 3 cos θ · 3 cos θ dθ − 3 sin θ(−3 sin θ) dθ = (9 cos2 θ + 9 sin2 θ) dθ = 9 dθ

Therefore,

A = 1

2

∫
C

x dy − y dx = 1

2

∫ 2π

0
9 dθ = 9

2
· 2π = 9π.

The triangle with vertices (0, 0), (1, 0), and (1, 1)
17. The region between the x-axis and the cycloid parametrized by c(t) = (t − sin t, 1 − cos t) for 0 ≤ t ≤ 2π (Fig-
ure 20)

x

y

1

2

2

FIGURE 20 Cycloid.

solution By Eq. (6), the area is the following integral:

A = 1

2

∫
C

x dy − y dx

where C is the closed curve determined by the segment OA and the cycloid �.

x
O

y

1

Γ

A = (2  , 0)

Therefore,

A = 1

2

∫
OA

x dy − y dx + 1

2

∫
�

x dy − y dx (1)

We compute the two integrals. The segment OA is parametrized by 〈t, 0〉, t = 0 to t = 2π . Hence, x = t and y = 0.
Therefore,

x dy − y dx = t · 0 dt − 0 · dt = 0∫
OA

x dy − y dx = 0 (2)

On � we have x = t − sin t and y = 1 − cos t , therefore

x dy − y dx = (t − sin t) sin t dt − (1 − cos t)(1 − cos t) dt

= (t sin t − sin2 t − 1 + 2 cos t − cos2 t) dt = (t sin t + 2 cos t − 2) dt

Hence, ∫
�

x dy − y dx =
∫ 0

2π
(t sin t + 2 cos t − 2) dt =

∫ 2π

0
(2 − 2 cos t − t sin t) dt

= 2t − 2 sin t + t cos t − sin t

∣∣∣∣2π

0
= 2t − 3 sin t + t cos t

∣∣∣∣2π

0
= 6π (3)

Substituting (2) and (3) in (1) we get

A = 1

2
· 0 + 1

2
· 6π = 3π.



May 20, 2011

656 C H A P T E R 17 FUNDAMENTAL THEOREMS OF VECTOR ANALYSIS (LT CHAPTER 18)

The region between the graph of y = x2 and the x-axis for 0 ≤ x ≤ 2
19. Let x3 + y3 = 3xy be the folium of Descartes (Figure 21).

x

y

2

−2

2−2

FIGURE 21 Folium of Descartes.

(a) Show that the folium has a parametrization in terms of t = y/x given by

x = 3t

1 + t3
, y = 3t2

1 + t3
(−∞ < t < ∞) (t �= −1)

(b) Show that

x dy − y dx = 9t2

(1 + t3)2
dt

Hint: By the Quotient Rule,

x2 d
(y

x

)
= x dy − y dx

(c) Find the area of the loop of the folium.

solution

(a) We show that x = 3t
1+t3 , y = 3t2

1+t3 satisfy the equation x3 + y3 − 3xy = 0 of the folium:

x3 + y3 − 3xy =
(

3t

1 + t3

)3
+
(

3t2

1 + t3

)3

− 3 · 3t

1 + t3
· 3t2

1 + t3

= 27t3 + 27t6

(1 + t3)
3

− 27t3(1 + t3)

(1 + t3)
3

=
27t3

(
1 + t3 − (1 + t3)

)
(1 + t3)

3
= 0

(1 + t3)
3

= 0

This proves that the curve parametrized by x = 3t
1+t3 , y = 3t2

1+t3 lies on the folium of Descartes. This parametrization
parametrizes the whole folium since the two equations can be solved for t in terms of x and y. That is,

x = 3t

1 + t3

y = 3t2

1 + t3

⇒ t = y

x

A glance at the graph of the folium shows that any line y = tx, with slope t , intersects the folium exactly once. Thus,
there is a one-to-one relationship between the values of t and the points on the graph.

(b) We differentiate the two sides of t = y
x with respect to t . Using the Quotient Rule gives

1 = x
dy
dt

− y dx
dt

x2

or

x
dy

dt
− y

dx

dt
= x2 =

(
3t

1 + t3

)2

This equality can be written in the form

x dy − y dx = 9t2

(1 + t3)
2

dt

(c) We use the formula for the area enclosed by a closed curve and the result of part (b) to find the required area. That is,

A = 1

2

∫
C

x dy − y dx = 1

2

∫ ∞
0

9t2

(1 + t3)
2

dt
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From our earlier discussion on the parametrization of the folium, we see that the loop is traced when the parameter
t is increasing along the interval 0 ≤ t < ∞. We compute the improper integral using the substitution u = 1 + t3,
du = 3t2 dt . This gives

A = 1

2
lim

R→∞

∫ R

0

9t2

(1 + t3)
2

dt = 1

2
lim

R→∞

∫ 1+R3

1

3 du

u2
= 3

2
lim

R→∞ − 1

u

∣∣∣∣1+R3

u=1

= 3

2
lim

R→∞

(
1 − 1

1 + R3

)
= 3

2
(1 − 0) = 3

2

C

x

y

2

−2

2t = 0

t = ∞

−2

Find a parametrization of the lemniscate (x2 + y2)2 = xy (see Figure 22) by using t = y/x as a parameter (see
Exercise 19). Then use Eq. (6) to find the area of one loop of the lemniscate.

21. The Centroid via Boundary Measurements The centroid (see Section 15.5) of a domain D enclosed by a simple
closed curve C is the point with coordinates (x, y) = (My/M, Mx/M), where M is the area of D and the moments are
defined by

Mx =
∫∫

D
y dA, My =

∫∫
D

x dA

Show that Mx =
∮
C

xy dy. Find a similar expression for My .

solution Consider the moment Mx = ∫∫
D y dA, we know from Green’s Theorem:∫∫

D

(
∂F2

∂x
− ∂F1

∂y

)
dA =

∮
C

F1dx + F2dy

So then we need

∂F2

dx
− ∂F1

∂y
= y

If we set F2 = xy and F1 = 0, then ∂F2
dx

− ∂F1
∂y

= y and

Mx =
∫∫

D
y dA =

∮
C

xy dy

Similarly, consider the moment My = ∫∫
D x dA. We will now use Green’s Theorem, stated above. Here we need

∂F2

dx
− ∂F1

∂y
= x

If we set F1 = −xy and F2 = 0 then ∂F2
∂x

− ∂F1
∂y

= x and

My =
∫∫

D
x dA =

∮
C

−xy dx

Use the result of Exercise 21 to compute the moments of the semicircle x2 + y2 = R2, y ≥ 0 as line integrals.
Verify that the centroid is (0, 4R/(3π)).

23. Let CR be the circle of radius R centered at the origin. Use the general form of Green’s Theorem to determine
∮
C2

F · ds,

where F is a vector field such that
∮
C1

F · ds = 9 and
∂F2

∂x
− ∂F1

∂y
= x2 + y2 for (x, y) in the annulus 1 ≤ x2 + y2 ≤ 4.

solution We use Green’s Theorem for the annulus D between the circles C1 and C2 oriented as shown in the figure.

x

y

D

C(8)

C(3)

3 8
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That is, ∫
C2

F · ds −
∫
C1

F · ds =
∫∫

D

(
∂F2

∂x
− ∂F1

∂y

)
dx dy

Substituting the given information, we get∫
C2

F · ds − 9 =
∫∫

D
(x2 + y2) dx dy

or ∫
C2

F · ds = 9 +
∫∫

D
(x2 + y2) dx dy

We compute the double integral by converting it to polar coordinates:

∫
C2

F · ds = 9 +
∫ 2π

0

∫ 2

1
r2 · r dr dθ = 9 + 2π

∫ 2

1
r3 dr = 9 + 2π · r4

4

∣∣∣∣2
1

= 9 + 2π

(
24 − 14

4

)
= 9 + 15π

2

Referring to Figure 23, suppose that
∮
C2

F · ds = 12. Use Green’s Theorem to determine
∫
C1

F · ds, assuming

that
∂F2

∂x
− ∂F1

∂x
= −3 in D.

25. Referring to Figure 24, suppose that∮
C2

F · ds = 3π,

∮
C3

F · ds = 4π

Use Green’s Theorem to determine the circulation of F around C1, assuming that
∂F2

∂x
− ∂F1

∂x
= 9 on the shaded region.

C1

C3 C2

5

11

D

FIGURE 24

solution We must calculate
∫
C1

F · ds. We use Green’s Theorem for the region D between the three circles C1, C2,

and C3. Because of orientation, the line integrals
∫
−C2

F · ds = − ∫
C2

F · ds and
∫
−C3

F · ds = − ∫
C3

F · ds must be used
in applying Green’s Theorem. That is,∫

C1

F · ds −
∫
C2

F · ds −
∫
C3

F · ds =
∫∫

D
curl(F) dA

We substitute the given information to obtain∫
C1

F · ds − 3π − 4π =
∫∫

D
9 dA = 9

∫∫
D

1 · dA = 9 Area(D) (1)

The area of D is computed as the difference of areas of discs. That is,

Area(D) = π · 52 − π · 12 − π · 12 = 23π

We substitute in (1) and compute the desired circulation:∫
C1

F · ds − 7π = 9 · 23π

or ∫
C1

F · ds = 214π.

Let F be the vortex vector field

F =
〈 −y

x2 + y2
,

x

x2 + y2

〉

In Section 16.3 we verified that
∫
CR

F · ds = 2π , where CR is the circle of radius R centered at the origin. Prove

that
∮
C

F · ds = 2π for any simple closed curve C whose interior contains the origin (Figure 25). Hint: Apply the

general form of Green’s Theorem to the domain between C and CR , where R is so small that CR is contained in C.

In Exercises 27–30, refer to the Conceptual Insight that discusses the curl, defined by

curlz(F) = ∂F2

∂x
− ∂F1

∂y
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27. For the vector fields (A)–(D) in Figure 26, state whether the curlz at the origin appears to be positive, negative, or
zero.

(C) (D)

(A) (B)

xx

x

y

y

x

y

y

FIGURE 26

solution The vector field (A) does not have spirals, nor is it a “shear flow.” Therefore, the curl appears to be zero.
The vector field (B) rotates in the counterclockwise direction, hence we expect the curl to be positive. The vector field
(C) rotates in a clockwise direction about the origin—we expect the curl to be negative. Finally, in the vector field (D),
the fluid flows straight toward the origin without spiraling. We expect the curl to be zero.

Estimate the circulation of a vector field F around a circle of radius R = 0.1, assuming that curlz(F) takes the
value 4 at the center of the circle.

29. Estimate
∮
C

F · ds, where F =
〈
x + 0.1y2, y − 0.1x2

〉
and C encloses a small region of area 0.25 containing the

point P = (1, 1).

solution Use the following estimation:

F · ds =
∮
C

F1 dx + F2 dy ≈ curlz(F)(P ) · Area(D)

First computing curlF we have:

curlF =
∣∣∣∣∣∣

i j k
∂x ∂y ∂z

x + 0.1y2 y − 0.1x2 0

∣∣∣∣∣∣ = 〈0, 0, −0.2x − 0.2y〉

Thus curlz(F) = −0.2x − 0.2y and curlz(F)(1, 1) = −0.2 − 0.2 = −0.4. Also, we are given the area of the region is
0.25. Hence, we see: ∮

F · ds ≈ (−0.4)(0.25) = −0.10

Let F be the velocity field. Estimate the circulation of F around a circle of radius R = 0.05 with center P , assuming
that curlz(F)(P ) = −3. In which direction would a small paddle placed at P rotate? How fast would it rotate (in
radians per second) if F is expressed in meters per second?

31. Let CR be the circle of radius R centered at the origin. Use Green’s Theorem to find the value of R that maximizes∮
CR

y3 dx + x dy.

solution Using Green’s Theorem we can write:∮
CR

y3 dx + x dy =
∫∫

D
∂F2

∂x
− ∂F1

∂y
dA

=
∫∫

D
1 − 3y2 dA

Then we have the following, using polar coordinates:∮
CR

y3 dx + x dy =
∫∫

D
∂F2

∂x
− ∂F1

∂y
dA

=
∫∫

D
1 − 3y2 dA
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=
∫ 2π

0

∫ R

0
(1 − 3r2 sin2 θ)(r) dr dθ

=
∫ 2π

0

∫ R

0
r − 3r3 sin2 θ dr dθ

=
∫ 2π

0

1

2
r2 − 3

4
r4 sin2 θ

∣∣∣∣R
0

dθ

=
∫ 2π

0

1

2
R2 − 3

8
R4(1 − cos 2θ) dr dθ

=
∫ 2π

0

3R4

8
(cos 2θ) + 1

2
R2 − 3

8
R4 dθ

= 3R4

16
sin 2θ +

(
1

2
R2 − 3

8
R4

)
θ

∣∣∣∣∣
2π

0

= 0 + 2π

(
1

2
R2 − 3

8
R4

)
= π

(
R2 − 3

4
R4

)

Now to maximize this quantity, we need to let f (R) = π(R2 − 3/4R4) and take the first derivative.

f ′(R) = π(2R − 3R3) = 0 ⇒ R = 0, ±√
2/3

This quantity is maximized when R = ±
√

2
3 (that is, R = 0 is a minimum).

Area of a Polygon Green’s Theorem leads to a convenient formula for the area of a polygon.

(a) Let C be the line segment joining (x1, y1) to (x2, y2). Show that

1

2

∫
C

−y dx + x dy = 1

2
(x1y2 − x2y1)

(b) Prove that the area of the polygon with vertices (x1, y1), (x2, y2), . . . , (xn, yn) is equal [where we set
(xn+1, yn+1) = (x1, y1)] to

1

2

n∑
i=1

(xiyi+1 − xi+1yi)

33. Use the result of Exercise 32 to compute the areas of the polygons in Figure 27. Check your result for the area of the
triangle in (A) using geometry.

(A)

(2, 1)

(2, 3)

(5, 1)
x

y

1 2 3 4 5

1

2

3

4

5

(B)

(−1, 1)

(−3, 5)

(5, 3)

(3, 2)

(1, 3)

x

y

1 2 3 4 5

1

2

3

4

5

−1−2−3

FIGURE 27

solution

(a) The vertices of the triangle are

(x1, y1) = (x4, y4) = (2, 1), (x2, y2) = (5, 1), (x3, y3) = (2, 3)

(2, 1)

(2, 3)

(5, 1)
x

y

1 2 3 4 5

1

2

3

4

5

Using the formula obtained in Exercise 28, the area of the triangle is the following sum:

A = 1

2

(
(x1y2 − x2y1) + (x2y3 − x3y2) + (x3y1 − x1y3)

)
= 1

2

(
(2 · 1 − 5 · 1) + (5 · 3 − 2 · 1) + (2 · 1 − 2 · 3)

) = 1

2
(−3 + 13 − 4) = 3

We verify our result using the formula for the area of a triangle:

A = 1

2
bh = 1

2
· (5 − 2) · (3 − 1) = 3
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(b) The vertices of the polygon are

(x1, y1) = (x6, y6) = (−1, 1)

(x2, y2) = (1, 3)

(x3, y3) = (3, 2)

(x4, y4) = (5, 3)

(x5, y5) = (−3, 5)

(−1, 1)

(−3, 5)

(5, 3)

(3, 2)

(1, 3)

x

y

1 2 3 4 5

1

2

3

4

5

−1−2−3

Using the formula in part (a), the area of the polygon is the following sum:

A = 1

2

(
(x1y2 − x2y1) + (x2y3 − x3y2) + (x3y4 − x4y) + (x4y5 − x5y4) + (x5y1 − x1y5)

)
= 1

2

(
(−1 · 3 − 1 · 1) + (1 · 2 − 3 · 3) + (3 · 3 − 5 · 2) + (

5 · 5 − (−3) · 3
) + ( − 3 · 1 − (−1) · 5

))
= 1

2
(−4 − 7 − 1 + 34 + 2) = 12

Exercises 34–39: In Section 16.2, we defined the flux of F across a curve C (Figure 28) as the integral of the normal
component of F along C, and we showed that if c(t) = (x(t), y(t)) is a parametrization of C for a ≤ t ≤ b, then the flux
is equal to ∫ b

a
F(c(t)) · n(t) dt

where n(t) = 〈y′(t), −x′(t)〉.

n

P
F

T

FIGURE 28 The flux of F is the integral of the normal component F · n around the curve.

Show that the flux of F = 〈P, Q〉 across C is equal to
∮
C

P dy − Q dx.
35. Define div(F) = ∂P

∂x
+ ∂Q

∂y
. Use Green’s Theorem to prove that for any simple closed curve C,

Flux across C =
∫∫

D
div(F) dA 12

where D is the region enclosed by C. This is a two-dimensional version of the Divergence Theorem discussed in
Section 17.3.

solution Since F = 〈P, Q〉 and F∗ = 〈−Q, P 〉, we have

div(F) = ∂P

∂x
+ ∂Q

∂y

curl(F∗) = ∂P

∂x
− ∂

∂y
(−Q) = ∂P

∂x
+ ∂Q

∂y

Therefore,

div(F) = curl(F∗) (1)
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Using Exercise 33, the flux of F across C is

flux of F across C =
∫
C

F∗ · ds (2)

Green’s Theorem and (1) imply that∫
C

F∗ · ds =
∫∫

D
curl(F∗) dA =

∫∫
D

div(F) dA (3)

Combining (2) and (3) we have

flux of F across C =
∫∫

D
div(F) dA.

Use Eq. (12) to compute the flux of F =
〈
2x + y3, 3y − x4

〉
across the unit circle.

37. Use Eq. (12) to compute the flux of F = 〈cos y, sin y〉 across the square 0 ≤ x ≤ 2, 0 ≤ y ≤ π
2 .

solution Using the result:

flux =
∫∫

D
div(F) dA

we can compute the divergence:

div(F) = ∂P

∂x
+ ∂Q

∂y
= 0 + cos y

Therefore,

flux =
∫∫

D
div(F) dA

=
∫∫

D
(0 + cos y) dA

=
∫ 2

0

∫ π/2

0
cos y dy dx

= (2 − 0)

(
sin y

∣∣∣∣π/2

0

)
= 2

If v is the velocity field of a fluid, the flux of v across C is equal to the flow rate (amount of fluid flowing across
C in m2/s). Find the flow rate across the circle of radius 2 centered at the origin if div(v) = x2.

39. A buffalo (Figure 29) stampede is described by a velocity vector field F = 〈
xy − y3, x2 + y

〉
km/h in the region D

defined by 2 ≤ x ≤ 3, 2 ≤ y ≤ 3 in units of kilometers (Figure 30). Assuming a density is ρ = 500 buffalo per square
kilometer, use Eq. (12) to determine the net number of buffalo leaving or entering D per minute (equal to ρ times the flux
of F across the boundary of D).

FIGURE 29 Buffalo stampede.

x

y

3

2

2

3

FIGURE 30 The vector field
F =

〈
xy − y3, x2 + y

〉
.

solution The flux of F across the boundary ∂D has units of area per second. We multiply the buffalo density to obtain
the number of buffalo per second crossing the boundary. Using Green’s Theorem:

flux of buffalo =
∫
∂D

500F ds

= 500
∫
∂D

〈
xy − y3, x2 + y

〉
ds

= 500
∫ 3

2

∫ 3

2
div(F) dy dx
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= 500
∫ 3

2

∫ 3

2
(y + 1) dy dx

= 500
∫ 3

2
dx ·

∫ 3

2
(y + 1) dy

= 500(3 − 2)

(
1

2
y2 + y

) ∣∣∣∣3
2

= 500(1)

(
9

2
+ 3 − 2 − 2

)
= 500(3.5)

= 1750 buffalos per second

Further Insights and Challenges
In Exercises 40–43, the Laplace operator � is defined by

�ϕ = ∂2ϕ

∂x2
+ ∂2ϕ

∂y2
13

For any vector field F = 〈F1, F2〉, define the conjugate vector field F∗ = 〈−F2, F1〉.

Show that if F = ∇ϕ, then curlz(F∗) = �ϕ.
41. Let n be the outward-pointing unit normal vector to a simple closed curve C. The normal derivative of a function
ϕ, denoted ∂ϕ

∂n , is the directional derivative Dn(ϕ) = ∇ϕ · n. Prove that∮
C

∂ϕ

∂n
ds =

∫∫
D

�ϕ dA

where D is the domain enclosed by a simple closed curve C. Hint: Let F = ∇ϕ. Show that ∂ϕ
∂n = F∗ · T where T is the

unit tangent vector, and apply Green’s Theorem.

solution In Exercise 34 we showed that for any vector field F, F∗ is a rotation of F by π
2 counterclockwise. The unit

tangent en is a rotation of n by π
2 counterclockwise.

F
qq

n
en

F*

These properties imply that the angle θ between F and n is equal to the angle between F∗ and en, and ‖F‖ = ∥∥F∗∥∥.
Therefore,

F · n = ‖F‖‖n‖ cos θ = ‖F‖ cos θ

F∗ · en = ∥∥F∗∥∥ ‖en‖ cos θ = ‖F‖ cos θ
⇒ F · n = F∗ · en

Now, if F = ∇ϕ, then

∂ϕ

∂n
= ∇ϕ · n = F · n = F∗ · en

By the definition of the vector line integral
∫
C F∗ · ds = ∫

C(F∗ · en) ds. Therefore,∫
C

∂ϕ

∂n
ds =

∫
C
(F∗ · en) ds =

∫
C

F∗ · ds

Using Green’s Theorem and the equality curl(F∗) = �ϕ obtained in Exercise 40, we get∫
C

∂ϕ

∂n
ds =

∫
C

F∗ · ds =
∫∫

D
curl(F∗) dA =

∫∫
D

�ϕ dA.
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Let P = (a, b) and let Cr be the circle of radius r centered at P . The average value of a continuous function ϕ on
Cr is defined as the integral

Iϕ(r) = 1

2π

∫ 2π

0
ϕ(a + r cos θ, b + r sin θ) dθ

(a) Show that

∂ϕ

∂n
(a + r cos θ, b + r sin θ) = ∂ϕ

∂r
(a + r cos θ, b + r sin θ)

(b) Use differentiation under the integral sign to prove that

d

dr
Iϕ(r) = 1

2πr

∫
Cr

∂ϕ

∂n
ds

(c) Use Exercise 41 to conclude that

d

dr
Iϕ(r) = 1

2πr

∫∫
D(r)

�ϕ dA

where D(r) is the interior of Cr .

43. Prove that m(r) ≤ Iϕ(r) ≤ M(r), where m(r) and M(r) are the minimum and maximum values of ϕ on Cr . Then
use the continuity of ϕ to prove that lim

r→0
Iϕ(r) = ϕ(P ).

solution Iϕ(r) is defined by

Iϕ(r) = 1

2π

∫ 2π

0
ϕ(a + r cos θ, b + r sin θ) dθ

The points on Cr have the form (a + r cos θ, b + r sin θ). Therefore, since m(r) and M(r) are the minimum and maximum
values of ϕ on Cr , we have for all 0 ≤ θ ≤ 2π ,

m(r) ≤ ϕ(a + r cos θ, b + r sin θ) ≤ M(r)

Using properties of integrals (Eq. (6) in Section 5.2), we conclude that

2πm(r) ≤
∫ 2π

0
ϕ(a + r cos θ + b + r sin θ) ≤ 2πM(r)

Dividing by 2π we obtain

m(r) ≤ Iϕ(r) ≤ M(r) (1)

Now, since ϕ is continuous and the functions sin θ and cos θ are bounded for all 0 ≤ θ ≤ 2π , the following holds:

lim
r→0

ϕ(a + r cos θ, b + r sin θ) = ϕ

(
lim
r→0

(a + r cos θ, b + r sin θ)

)
= ϕ(a, b)

which means that for ε > 0 there exists δ > 0 so that

|ϕ(a + r cos θ, b + r sin θ) − ϕ(a, b)| < ε

for all 0 ≤ θ ≤ 2π , whenever 0 < r < δ. Hence also

lim
r→0

m(r) = lim
r→0

M(r) = ϕ(a, b) (2)

Combining (1), (2), and the Squeeze Theorem, we obtain the following conclusion:

lim
r→0

Iϕ(r) = ϕ(a, b).

In Exercises 44 and 45, let D be the region bounded by a simple closed curve C. A function ϕ(x, y) on D (whose second-
order partial derivatives exist and are continuous) is called harmonic if �ϕ = 0, where �ϕ is the Laplace operator
defined in Eq. (13).

Use the results of Exercises 42 and 43 to prove the mean-value property of harmonic functions: If ϕ is harmonic,
then Iϕ(r) = ϕ(P ) for all r .

45. Show that f (x, y) = x2 − y2 is harmonic. Verify the mean-value property for f (x, y) directly [expand f (a +
r cos θ, b + r sin θ) as a function of θ and compute Iϕ(r)]. Show that x2 + y2 is not harmonic and does not satisfy the
mean-value property.

solution We show that the function f (x, y) = x2 − y2 is harmonic by showing that �f = ∂2f

∂x2 + ∂2f

∂y2 = 0. We have

∂f

∂x
= 2x,

∂f

∂y
= −2y

∂2f

∂x2
= 2,

∂2f

∂y2
= −2

Hence,

�f = ∂2f

∂x2
+ ∂2f

∂y2
= 2 − 2 = 0

We now verify the mean-value property for f . That is, we show that for all r ,

If (r) = 1

2π

∫ 2π

0
f (a + r cos θ, b + r sin θ) dθ = f (a, b)

We compute the integrand:

f (a + r cos θ, b + r sin θ) = x2 − y2 = (a + r cos θ)2 − (b + r sin θ)2

= a2 + 2ar cos θ + r2 cos2 θ −
(
b2 + 2br sin θ + r2 sin2 θ

)
= a2 − b2 + 2r(a cos θ − b sin θ) + r2 cos 2θ
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We compute the integral:

2πIf (r) =
∫ 2π

0

(
a2 − b2 + 2r(a cos θ − b sin θ) + r2 cos 2θ

)
dθ

= (a2 − b2)θ + 2ar sin θ + 2br cos θ + r2

2
sin 2θ

∣∣∣∣2π

θ=0
= 2π(a2 − b2)

Hence,

If (r) = a2 − b2

However, we have f (a, b) = a2 − b2. Hence, for all r , If (r) = f (a, b), which proves the mean-value property for f .

For g(x, y) = x2 + y2 we have

gxx = 2, gyy = 2, and �g = 2 + 2 = 4 �= 0.

We check the mean value property:

Ig(r) = 1

2π

∫ 2π

0
g(a + r cos θ, b + r sin θ) dθ = 1

2π

∫ 2π

0
(a + r cos θ)2 + (b + r sin θ)2 dθ

= 1

2π

∫ 2π

0
a2 + b2 + 2r(a cos θ + b sin θ) + r2 dθ = a2 + b2 + r2 �= a2 + b2 = ϕ(a, b)

The mean value property does not hold for g.

17.2 Stokes’ Theorem (LT Section 18.2)

Preliminary Questions
1. Indicate with an arrow the boundary orientation of the boundary curves of the surfaces in Figure 14, oriented by the

outward-pointing normal vectors.

(A) (B)

nn

FIGURE 14

solution The indicated orientation is defined so that if the normal vector is moving along the boundary curve, the
surface lies to the left. Since the surfaces are oriented by the outward-pointing normal vectors, the induced orientation is
as shown in the figure:

(A) (B)

nn

2. Let F = curl(A). Which of the following are related by Stokes’ Theorem?

(a) The circulation of A and flux of F.

(b) The circulation of F and flux of A.

solution Stokes’ Theorem states that the circulation of A is equal to the flux of F. The correct answer is (a).

3. What is the definition of a vector potential?

solution A vector field A such that F = curl(A) is a vector potential for F.

4. Which of the following statements is correct?

(a) The flux of curl(A) through every oriented surface is zero.

(b) The flux of curl(A) through every closed, oriented surface is zero.

solution Statement (b) is the correct statement. The flux of curl(F) through an oriented surface is not necessarily zero,
unless the surface is closed.
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5. Which condition on F guarantees that the flux through S1 is equal to the flux through S2 for any two oriented surfaces
S1 and S2 with the same oriented boundary?

solution If F has a vector potential A, then by a corollary of Stokes’ Theorem,∫∫
S

F · ds =
∫
C

A · ds

Therefore, if two oriented surfaces S1 and S2 have the same oriented boundary curve, C, then∫∫
S1

F · ds =
∫
C

A · ds and
∫∫

S2

F · ds =
∫
C

A · ds

Hence, ∫∫
S1

F · ds =
∫∫

S2

F · ds

Exercises
In Exercises 1–4, calculate curl(F).

1. F = 〈
z − y2, x + z3, y + x2〉

solution We have

curl(F) =

∣∣∣∣∣∣∣∣∣∣

i j k

∂

∂x

∂

∂y

∂

∂z

z − y2 x + z3 y + x2

∣∣∣∣∣∣∣∣∣∣
= (1 − 3z2)i − (2x − 1)j + (1 + 2y)k = 〈

1 − 3z2, 1 − 2x, 1 + 2y
〉

F =
〈
y

x
,
y

z
,

z

x

〉3. F = 〈
ey, sin x, cos x

〉
solution We have

curl(F) =

∣∣∣∣∣∣∣∣∣∣

i j k

∂

∂x

∂

∂y

∂

∂z

ey sin x cos x

∣∣∣∣∣∣∣∣∣∣
= 0i − (− sin x)j + (cos x − ey)k = 〈

0, sin x, cos x − ey
〉

F =
〈

x

x2 + y2
,

y

x2 + y2
, 0

〉In Exercises 5–8, verify Stokes’Theorem for the given vector field and surface, oriented with an upward-pointing normal.

5. F = 〈2xy, x, y + z〉, the surface z = 1 − x2 − y2 for x2 + y2 ≤ 1

solution We must show that ∫
C

F · ds =
∫∫

S
curl (F) · dS

−1.0 −0.5 0
10

0.5

1.0

0.5 1.0

x

y

Step 1. Compute the line integral around the boundary curve. The boundary curve C is the unit circle oriented in the
counterclockwise direction. We parametrize C by

γ (t) = (cos t, sin t, 0), 0 ≤ t ≤ 2π

Then,

F (γ (t)) = 〈2 cos t sin t, cos t, sin t〉
γ ′(t) = 〈− sin t, cos t, 0〉

F (γ (t)) · γ ′(t) = 〈2 cos t sin t, cos t, sin t〉 · 〈− sin t, cos t, 0〉 = −2 cos t sin2 t + cos2 t
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We obtain the following integral:∫
C

F ds =
∫ 2π

0

(−2 cos t sin2 t + cos2 t
)
dt = −2 sin3 t

3
+ t

2
+ sin 2t

4

∣∣∣∣2π

0
= π (1)

Step 2. Compute the flux of the curl through the surface. We parametrize the surface by

�(θ, t) = (
t cos θ, t sin θ, 1 − t2), 0 ≤ t ≤ 1, 0 ≤ θ ≤ 2π

We compute the normal vector:

Tθ = ∂�

∂θ
= 〈−t sin θ, t cos θ, 0〉

Tt = ∂�

∂t
= 〈cos θ, sin θ, −2t〉

Tθ × Tt =
∣∣∣∣∣∣

i j k
−t sin θ t cos θ 0

cos θ sin θ −2t

∣∣∣∣∣∣ = (−2t2 cos θ)i − (2t2 sin θ)j − t (sin2 θ + cos2 θ)k

= (−2t2 cos θ)i − (2t2 sin θ)j − tk

Since the normal is always supposed to be pointing upward, the z-coordinate of the normal vector must be positive.
Therefore, the normal vector is

n = 〈
2t2 cos θ, 2t2 sin θ, t

〉
We compute the curl:

curl(F) =

∣∣∣∣∣∣∣∣∣
i j k
∂

∂x

∂

∂y

∂

∂z

2xy x y + z

∣∣∣∣∣∣∣∣∣
= i + (1 − 2x)k = 〈1, 0, 1 − 2x〉

We compute the curl in terms of the parameters:

curl(F) = 〈1, 0, 1 − 2t cos θ〉
Hence,

curl(F) · n = 〈1, 0, 1 − 2t cos θ〉 ·
〈
2t2 cos θ, 2t2 sin θ, t

〉
= 2t2 cos θ + t − 2t2 cos θ = t

The surface integral is thus∫∫
S

curl(F) · dS =
∫ 2π

0

∫ 1

0
t dt dθ = 2π

∫ 1

0
t dt = 2π · t2

2

∣∣∣∣1
0

= π (2)

The values of the integrals in (1) and (2) are equal, as stated in Stokes’ Theorem.

F = 〈yz, 0, x〉, the portion of the plane
x

2
+ y

3
+ z = 1 where x, y, z ≥ 0

7. F = 〈
ey−z, 0, 0

〉
, the square with vertices (1, 0, 1), (1, 1, 1), (0, 1, 1), and (0, 0, 1)

solution
Step 1. Compute the integral around the boundary curve. The boundary consists of four segments C1, C2, C3, and C4
shown in the figure:

C3

C4C1

C2

(1, 0, 1)

(0, 1, 1)

(1, 1, 1)

(0, 0, 1)

z

y

x

S

We parametrize the segments by

C1 : γ1(t) = (t, 0, 1), 0 ≤ t ≤ 1

C2 : γ2(t) = (1, t, 1), 0 ≤ t ≤ 1

C3 : γ3(t) = (1 − t, 1, 1), 0 ≤ t ≤ 1

C4 : γ4(t) = (0, 1 − t, 1), 0 ≤ t ≤ 1
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We compute the following values:

F (γ1(t)) = 〈
ey−z, 0, 0

〉 = 〈
e−1, 0, 0

〉
F (γ2(t)) = 〈

ey−z, 0, 0
〉 = 〈

et−1, 0, 0
〉

F (γ3(t)) = 〈
ey−z, 0, 0

〉 = 〈1, 0, 0〉
F (γ4(t)) = 〈

ey−z, 0, 0
〉 = 〈

e−t−1, 0, 0
〉

Hence,

F (γ1(t)) · γ ′
1(t) =

〈
e−1, 0, 0

〉
· 〈1, 0, 0〉 = e−1

F (γ2(t)) · γ ′
2(t) =

〈
et−1, 0, 0

〉
· 〈0, 1, 0〉 = 0

F (γ3(t)) · γ ′
3(t) = 〈1, 0, 0〉 · 〈−1, 0, 0〉 = −1

F (γ4(t)) · γ ′
4(t) =

〈
e−t−1, 0, 0

〉
· 〈0, −1, 0〉 = 0

We obtain the following integral:

∫
C

F · ds =
4∑

i=1

∫
Ci

F · ds =
∫ 1

0
e−1 dt + 0 +

∫ 1

0
(−1) dt + 0 = e−1 − 1

Step 2. Compute the curl.

curl(F) =

∣∣∣∣∣∣∣∣∣
i j k
∂

∂x

∂

∂y

∂

∂z

ey−z 0 0

∣∣∣∣∣∣∣∣∣
= −ey−z j − ey−z k = 〈

0, −ey−z, −ey−z
〉

Step 3. Compute the flux of the curl through the surface. We parametrize the surface by

�(x, y) = (x, y, 1), 0 ≤ x, y ≤ 1

The upward pointing normal is n = 〈0, 0, 1〉. We express curl(F) in terms of the parameters x and y:

curl(F) (�(x, y)) =
〈
0, −ey−1, −ey−1

〉
Hence,

curl(F) · n =
〈
0, −ey−1, −ey−1

〉
· 〈0, 0, 1〉 = −ey−1

The surface integral is thus

∫∫
S

curl(F) · dS =
∫∫

D
−ey−1 dA =

∫ 1

0

∫ 1

0
−ey−1 dy dx =

∫ 1

0
−ey−1 dy = −ey−1

∣∣∣∣1
0

= −1 + e−1 = e−1 − 1 (1)

We see that the integrals in (1) and (2) are equal.

F =
〈
y, x, x2 + y2

〉
, the upper hemisphere x2 + y2 + z2 = 1, z ≥ 0

In Exercises 9 and 10, calculate curl(F) and then use Stokes’ Theorem to compute the flux of curl(F) through the given
surface as a line integral.

9. F =
〈
ez2 − y, ez3 + x, cos(xz)

〉
, the upper hemisphere x2 + y2 + z2 = 1, z ≥ 0 with outward-pointing normal

solution

Step 1. Compute the curl.

curl(F) =
∣∣∣∣∣∣

i j k
∂x ∂y ∂z

ez2 − y ez3 + x cos(xz)

∣∣∣∣∣∣ =
〈
−3z2ez3

, 2zez3 + z sin(xz), 2
〉
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Step 2. Compute the flux of the curl through the surface. We will use Stokes’ Theorem and compute the line integral
around the boundary curve. The boundary curve is the unit circle oriented in the counterclockwise direction. We use the
parametrization γ (t) = 〈cos t, sin t, 0〉 , 0 ≤ t ≤ 2π . Then

F(γ (t)) · γ ′(t) =
〈
e0 − sin t, e0 + cos t, cos(0)

〉
· 〈− sin t, cos t, 0〉

= 〈1 − sin t, 1 + cos t, 1〉 · 〈− sin t, cos t, 0〉
= − sin t (1 − sin t) + cos t (1 + cos t) + 0

= − sin t + sin2 t + cos t + cos2 t

= 1 − sin t + cos t

The line integral is:

∫
C

F · ds =
∫ 2π

0
(1 − sin t + cos t) dt = t + cos t + sin t

∣∣∣∣2π

0
= 2π

F =
〈
x + y, z2 − 4, x

√
y2 + 1)

〉
, surface of the wedge-shaped box in Figure 15 (bottom included, top excluded)

with outward pointing normal.

11. Let S be the surface of the cylinder (not including the top and bottom) of radius 2 for 1 ≤ z ≤ 6, oriented with
outward-pointing normal (Figure 16).

(a) Indicate with an arrow the orientation of ∂S (the top and bottom circles).

(b) Verify Stokes’ Theorem for S and F = 〈
yz2, 0, 0

〉
.

1

6

z

yx

FIGURE 16

solution

(a) The induced orientation is defined so that as the normal vector travels along the boundary curve, the surface lies to
its left. Therefore, the boundary circles on top and bottom have opposite orientations, which are shown in the figure.

1

6

z

yx

n

C1

C2

(b) We verify Stokes’ Theorem for S and F =
〈
yz2, 0, 0

〉
.

Step 1. Compute the integral around the boundary circles. We use the following parametrizations:

C1 : γ1(t) = (2 cos t, 2 sin t, 6), t from 2π to 0

C2 : γ2(t) = (2 cos t, 2 sin t, 1), t from 0 to 2π

We compute the following values:

F (γ1(t)) =
〈
yz2, 0, 0

〉
= 〈72 sin t, 0, 0〉 ,

γ ′
1(t) = 〈−2 sin t, 2 cos t, 0〉

F (γ1(t)) · γ ′
1(t) = 〈72 sin t, 0, 0〉 · 〈−2 sin t, 2 cos t, 0〉 = −144 sin2 t

F (γ2(t)) =
〈
yz2, 0, 0

〉
= 〈2 sin t, 0, 0〉 ,

γ ′
2(t) = 〈−2 sin t, 2 cos t, 0〉

F (γ2(t)) · γ ′
2(t) = 〈2 sin t, 0, 0〉 · 〈−2 sin t, 2 cos t, 0〉 = −4 sin2 t
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The line integral is thus∫
C

F · ds =
∫
C1

F · ds +
∫
C2

F · ds =
∫ 0

2π
(−144 sin2 t) dt +

∫ 2π

0
(−4 sin2 t) dt

=
∫ 2π

0
140 sin2 t dt = 140

∫ 2π

0

1 − cos 2t

2
dt = 70 · 2π − 70 sin 2t

2

∣∣∣∣2π

0
= 140π

Step 2. Compute the curl

curl(F) =

∣∣∣∣∣∣∣∣∣
i j k
∂

∂x

∂

∂y

∂

∂z

yz2 0 0

∣∣∣∣∣∣∣∣∣
= (2yz)j − z2k =

〈
0, 2yz, −z2

〉

Step 3. Compute the flux of the curl through the surface. We parametrize S by

�(θ, z) = (2 cos θ, 2 sin θ, z), 0 ≤ θ ≤ 2π, 1 ≤ z ≤ 6

In Example 2 in the text, it is shown that the outward pointing normal is

n = 〈2 cos θ, 2 sin θ, 0〉
We compute the dot product:

curl(F) (�(θ, z)) · n =
〈
0, 4z sin θ, −z2

〉
· 〈2 cos θ, 2 sin θ, 0〉 = 8z sin2 θ

We obtain the following integral (and use the integral we computed before):∫∫
S

curl(F) · dS =
∫ 6

1

∫ 2π

0
8z sin2 θ dθ dz =

(∫ 6

1
8z dz

)(∫ 2π

0
sin2 θ dθ

)
= 4z2

∣∣∣∣6
1

· π = 140π

The line integral and the flux have the same value. This verifies Stokes’ Theorem.

Let S be the portion of the plane z = x contained in the half-cylinder of radius R depicted in Figure 17. Use
Stokes’ Theorem to calculate the circulation of F = 〈z, x, y + 2z〉 around the boundary of S (a half-ellipse) in the
counterclockwise direction when viewed from above. Hint: Show that curl(F) is orthogonal to the normal vector to
the plane.

13. Let I be the flux of F = 〈
ey, 2xex2

, z2〉 through the upper hemisphere S of the unit sphere.

(a) Let G = 〈
ey, 2xex2

, 0
〉
. Find a vector field A such that curl(A) = G.

(b) Use Stokes’ Theorem to show that the flux of G through S is zero. Hint: Calculate the circulation of A around ∂S.
(c) Calculate I . Hint: Use (b) to show that I is equal to the flux of

〈
0, 0, z2〉 through S.

solution
(a) We search for a vector field A so that G = curl(A). That is,〈

∂A3

∂y
− ∂A2

∂z
,
∂A1

∂z
− ∂A3

∂x
,
∂A2

∂x
− ∂A1

∂y

〉
=
〈
ey, 2xex2

, 0
〉

We note that the third coordinate of this curl vector must be zero; this can be satisfied if A1 = 0 and A2 = 0. With this in

mind, we let A =
〈
0, 0, ey − ex2

〉
. The vector field A =

〈
0, 0, ey − ex2

〉
satisfies this equality. Indeed,

∂A3

∂y
− ∂A2

∂z
= ey,

∂A1

∂z
− ∂A3

∂x
= 2xex2

,
∂A2

∂x
− ∂A1

∂y
= 0

(b) We found that G = curl(A), where A =
〈
0, 0, ey − ex2

〉
. We compute the flux of G through S. By Stokes’ Theorem,∫∫

S
G · dS =

∫∫
S

curl(A) · dS =
∫
C

A · ds

The boundary C is the circle x2 + y2 = 1, parametrized by

γ (t) = (cos t, sin t, 0), 0 ≤ t ≤ 2π

C

z

y

x
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We compute the following values:

A (γ (t)) =
〈
0, 0, ey − ex2

〉
=
〈
0, 0, esin t − ecos2 t

〉
γ ′(t) = 〈− sin t, cos t, 0〉

A (γ (t)) · γ ′(t) =
〈
0, 0, esin t − ecos2t

〉
· 〈− sin t, cos t, 0〉 = 0

Therefore, ∫
C

A · ds =
∫ 2π

0
0 dt = 0

(c) We rewrite the vector field F =
〈
ey, 2xex2

, z2
〉

as

F =
〈
ey, 2xex2

, z2
〉
=
〈
ey, 2xex2

, 0
〉
+
〈
0, 0, z2

〉
= curl(A) +

〈
0, 0, z2

〉
Therefore, ∫∫

S
F · dS =

∫∫
S

curl(A) · dS +
∫∫

S

〈
0, 0, z2

〉
· dS (1)

In part (b) we showed that the first integral on the right-hand side is zero. Therefore,∫∫
S

F · dS =
∫∫

S

〈
0, 0, z2

〉
· dS (2)

The upper hemisphere is parametrized by

�(θ, φ) = (cos θ sin φ, sin θ sin φ, cos φ), 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π

2
.

with the outward pointing normal

n = sin φ 〈cos θ sin φ, sin θ sin φ, cos φ〉
See Example 4, Section 16.4. We have 〈

0, 0, cos2 φ
〉
· n = sin φ cos3 φ

Therefore, ∫∫
S

〈
0, 0, z2

〉
· dS =

∫ 2π

0

∫ π/2

0
sin φ cos3 φ dφ dθ = 2π

∫ π/2

0
sin φ cos3 φ dφ

= 2π
− cos4 φ

4

∣∣∣∣π/2

0
= −π

2
(0 − 1) = π

2

Combining with (2) we obtain the solution ∫∫
S

F · dS = π

2
.

Let F = 〈0, −z, 1〉. Let S be the spherical cap x2 + y2 + z2 ≤ 1, where z ≥ 1
2 . Evaluate

∫∫
S

F · dS directly as

a surface integral. Then verify that F = curl(A), where A = (0, x, xz) and evaluate the surface integral again using
Stokes’ Theorem.

15. Let A be the vector potential and B the magnetic field of the infinite solenoid of radius R in Example 6. Use Stokes’
Theorem to compute:

(a) The flux of B through a circle in the xy-plane of radius r < R

(b) The circulation of A around the boundary C of a surface lying outside the solenoid

solution
(a) In Example 6 it is shown that B = curl(A), where

A =

⎧⎪⎪⎨
⎪⎪⎩

1

2
R2B

〈
− y

r2
,

x

r2
, 0

〉
if r > R

1

2
B 〈−y, x, 0〉 if r < R

(1)

Therefore, using Stokes’ Theorem, we have (S is the disk of radius r in the xy-plane)∫∫
S

B · dS =
∫∫

S
curl(A) · dS =

∫
∂S

A · ds (2)
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x
r

y

S

We parametrize the circle C = ∂S by c(t) = 〈r cos t, r sin t, 0〉, 0 ≤ t ≤ 2π . Then

c′(t) = 〈−r sin t, r cos t, 0〉
By (1) for r < R,

A (c(t)) = 1

2
B 〈−r sin t, r cos t, 0〉

Hence,

A (c(t)) · c′(t) = 1

2
B 〈−r sin t, r cos t, 0〉 · 〈−r sin t, r cos t, 0〉 = 1

2
B
(
r2 sin2 t + r2 cos2 t

)
= 1

2
r2B

Now, by (2) we get

∫∫
S

B · dS =
∫
∂S

A · dS =
∫ 2π

0

1

2
r2B dt = 1

2
r2B

∫ 2π

0
dt = r2Bπ

(b) Outside the solenoid B is the zero field, hence B = 0 on every domain lying outside the solenoid. Therefore, Stokes’
Theorem implies that ∫

∂S
A · dS =

∫∫
S

curl(A) · dS =
∫∫

S
B · dS =

∫∫
S

0 · dS = 0.

The magnetic field B due to a small current loop (which we place at the origin) is called a magnetic dipole (Fig-
ure 18). Let ρ = (x2 + y2 + z2)1/2. For ρ large, B = curl(A), where

A =
〈
− y

ρ3
,

x

ρ3
, 0

〉

(a) Let C be a horizontal circle of radius R with center (0, 0, c), where c is large. Show that A is tangent to C.

(b) Use Stokes’ Theorem to calculate the flux of B through C.

17. A uniform magnetic field B has constant strength b in the z-direction [that is, B = 〈0, 0, b〉].
(a) Verify that A = 1

2 B × r is a vector potential for B, where r = 〈x, y, 0〉.
(b) Calculate the flux of B through the rectangle with vertices A, B, C, and D in Figure 19.

FIGURE 19

solution

(a) We compute the vector A = 1
2 B × r. Since B = bk and r = xi + yj, we have

A = 1

2
B × r = 1

2
bk × (xi + yj) = 1

2
b(xk × i + yk × j) = 1

2
b(xj − yi) =

〈
−by

2
,
bx

2
, 0

〉

We now show that curl(A) = B. We compute the curl of A:

curl (A) =

∣∣∣∣∣∣∣∣∣∣

i j k
∂

∂x

∂

∂y

∂

∂z

−by

2

bx

2
0

∣∣∣∣∣∣∣∣∣∣
=
〈
0, 0,

b

2
+ b

2

〉
= 〈0, 0, b〉 = B

Therefore, A is a vector potential for B.
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(b) Let S be the rectangle �ABCD and let C be the boundary of S. Since B = Curl(A), we see that B has a vector
potential. It follows, as explained in this section, that the flux of B through rectangle S is equal to the flux of B through
any surface with the same boundary C. Let S ′ be the wedge-shaped box with four sides and open top. Since the boundary
of S ′ is also C, we have ∫∫

S
B · dS =

∫∫
S ′

B · dS

The vector field B points in the k direction, so it has zero flux through the three vertical sides of S ′. On the other hand,
the unit normal vector to the bottom face of S ′ is k, so the normal component of B along the bottom face is equal to b.
We obtain ∫∫

S ′
B · dS =

∫∫
Bottom Face of S ′

b dA

= b(Area of Bottom Face of S ′) = 18b

Let F = 〈−x2y, x, 0
〉
. Referring to Figure 19, let C be the closed path ABCD. Use Stokes’ Theorem to evaluate∫

C
F · ds in two ways. First, regard C as the boundary of the rectangle with vertices A, B, C, and D. Then treat C as

the boundary of the wedge-shaped box with open top.

19. Let F = 〈
y2, 2z + x, 2y2〉. Use Stokes’ Theorem to find a plane with equation ax + by + cz = 0 (where a, b, c are

not all zero) such that
∮
C

F · ds = 0 for every closed C lying in the plane. Hint: Choose a, b, c so that curl(F) lies in the

plane.

solution Since we are interested in
∮
C F · ds, we can also consider

∫∫
curlF · dS, by Stokes’ Theorem. The curl is

〈4y − 2, 0, 1 − 2y〉 and the normal to the plane is n = 〈a, b, c〉. They are orthogonal if

〈4y − 2, 0, 1 − 2y〉 · 〈a, b, c〉 = a(4y − 2) + c(1 − 2y) = 0

which means:

4ay − 2a + c − 2cy = 0 ⇒ (4a − 2c) = 0, (c − 2a) = 0

This yields c = 2a and b is arbitrary.

Let F = 〈−z2, 2zx, 4y − x2〉 and let C be a simple closed curve in the plane x + y + z = 4 that encloses a region

of area 16 (Figure 20). Calculate
∮
C

F · ds, where C is oriented in the counterclockwise direction (when viewed from

above the plane).

21. Let F = 〈
y2, x2, z2〉. Show that ∫

C1

F · ds =
∫
C2

F · ds

for any two closed curves lying on a cylinder whose central axis is the z-axis (Figure 21).

y
x

z

C1

C2

FIGURE 21

solution We denote by S the part of the cylinder for which C1 and C2 are boundary curves. Using Stokes’ Theorem
(notice that C1 and C2 have the same orientations), we have∫

C1

F · ds −
∫
C2

F · ds =
∫∫

S
curl(F) · dS (1)

We compute the curl:

curl(F) =
〈
∂F3

∂y
− ∂F2

∂z
,
∂F1

∂z
− ∂F3

∂x
,
∂F2

∂x
− ∂F1

∂y

〉
= 〈0, 0, 2x − 2y〉

We parametrize S by

�(θ, z) = 〈R cos θ, R sin θ, z〉
where (θ, z) varies in a certain parameter domain D. The outward-pointing normal is

n = 〈R cos θ, R sin θ, 0〉
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We compute curl(F) in terms of the parameters:

curl(F) = 〈0, 0, 2x − 2y〉 = 〈0, 0, 2R cos θ − 2R sin θ〉
We compute the dot product:

curl(F) · n = 2R 〈0, 0, cos θ − sin θ〉 · R 〈cos θ, sin θ, 0〉 = 2R2(0 + 0 + 0) = 0

Combining with (1) gives ∫
C1

F · ds −
∫
C2

F · ds =
∫∫

S
curl(F) · dS =

∫∫
D

0 dθ dr = 0

or ∫
C1

F · ds =
∫
C2

F · ds.

The curl of a vector field F at the origin is v0 = 〈3, 1, 4〉. Estimate the circulation around the small parallelogram
spanned by the vectors A = 〈

0, 1
2 , 1

2

〉
and B = 〈

0, 0, 1
3

〉
.

23. You know two things about a vector field F:
(i) F has a vector potential A (but A is unknown).

(ii) The circulation of A around the unit circle (oriented counterclockwise) is 25.
Determine the flux of F through the surface S in Figure 22, oriented with upward pointing normal.

S

y

x

z

1

Unit circle

FIGURE 22 Surface S whose boundary is the unit circle.

solution Since F has a vector potential—that is, F is the curl of a vector field—the flux of F through a surface depends
only on the boundary curve C. Now, the surface S and the unit disc S1 in the xy-plane share the same boundary C.
Therefore, ∫∫

S
F · dS =

∫∫
S1

F · dS (1)

x

z

1

1

D

We compute the flux of F through S1, using the parametrization

S1 : �(r, θ) = (r cos θ, r sin θ, 0), 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π

n = 〈0, 0, 1〉
By the given information, we have

F (�(r, θ)) = F(r cos θ, r sin θ, 0) = 〈0, 0, 1〉
Hence,

F (�(r, θ)) · n = 〈0, 0, 1〉 · 〈0, 0, 1〉 = 1

We obtain the following integral:∫∫
S1

F · dS =
∫ 2π

0

∫ 1

0
F (�(r, θ)) · n dr dθ =

∫ 2π

0

∫ 1

0
1 dr dθ = 2π

Combining with (1) we obtain ∫∫
S

F · dS = 2π
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Suppose that F has a vector potential and that F(x, y, 0) = k. Find the flux of F through the surface S in Figure 22,
oriented with upward pointing normal.

25. Prove that curl(f a) = ∇f × a, where f is a differentiable function and a is a constant vector.

solution Let us first write a as a constant vector a = 〈a1, a2, a3〉 and f = f (x, y, z). Then consider the following:

curl(f a) = curl(f (x, y, z)〈a1, a2, a3〉) =
∣∣∣∣∣∣

i j k
∂/∂x ∂/∂y ∂/∂z

a1f (x, y, z) a2f (x, y, z) a3f (x, y, z)

∣∣∣∣∣∣
=
〈

∂

∂y
(a3f ) − ∂

∂z
(a2f ), − ∂

∂z
(a1f ) + ∂

∂x
(a3f ),

∂

∂x
(a2f ) − ∂

∂y
(a1f )

〉
= 〈

a3fy − a2fz, a3fx − a1fz, a2fx − a1fy

〉
And now consider the following:

∇f × a = 〈fx, fy, fz〉 × 〈a1, a2, a3〉

=
∣∣∣∣∣∣

i j k
fx fy fz

a1 a2 a3

∣∣∣∣∣∣
= 〈

a3fy − a2fz, a3fx − a1fz, a2fx − a1fy

〉
Since the two expressions above are equal, we conclude

curl(f a) = ∇f × a

Show that curl(F) = 0 if F is radial, meaning that F = f (ρ) 〈x, y, z〉 for some function f (ρ), where ρ =√
x2 + y2 + z2. Hint: It is enough to show that one component of curl(F) is zero, because it will then follow for the

other two components by symmetry.

27. Prove the following Product Rule:

curl(f F) = f curl(F) + ∇f × F

solution We evaluate the curl of f F. Since f F = 〈f F1, f F2, f F3〉, using the Product Rule for scalar functions we
have

curl(f F) =
〈

∂

∂y
(f F3) − ∂

∂z
(f F2),

∂

∂z
(f F1) − ∂

∂x
(f F3),

∂

∂x
(f F2) − ∂

∂y
(f F1)

〉

=
〈
∂f

∂y
F3 + f

∂F3

∂y
− ∂f

∂z
F2 − f

∂F2

∂z
,
∂f

∂z
F1 + f

∂F1

∂z
− ∂f

∂x
F3 − f

∂F3

∂x
,

∂f

∂x
F2 + f

∂F2

∂x
− ∂f

∂y
F1 − f

∂F1

∂y

〉

= f

〈
∂F3

∂y
− ∂F2

∂z
,
∂F1

∂z
− ∂F3

∂x
,
∂F2

∂x
− ∂F1

∂y

〉

+
〈
∂f

∂y
F3 − ∂f

∂z
F2,

∂f

∂z
F1 − ∂f

∂x
F3,

∂f

∂x
F2 − ∂f

∂y
F1

〉
(1)

The vector in the first term is curl(F). We show that the second term is the cross product ∇f × F. We compute the cross
product:

∇f × F =

∣∣∣∣∣∣∣∣∣
i j k

∂f

∂x

∂f

∂y

∂f

∂z

F1 F2 F3

∣∣∣∣∣∣∣∣∣
=
(

∂f

∂y
F3 − ∂f

∂z
F2

)
i −

(
∂f

∂x
F3 − ∂f

∂z
F1

)
j +

(
∂f

∂x
F2 − ∂f

∂y
F1

)
k

=
〈
∂f

∂y
F3 − ∂f

∂z
F2,

∂f

∂z
F1 − ∂f

∂x
F3,

∂f

∂x
F2 − ∂f

∂y
F1

〉
Therefore, (1) gives

curl(f F) = f curl(F) + ∇f × F

Assume that f and g have continuous partial derivatives of order 2. Prove that∮
∂S

f ∇(g) · ds =
∫∫

S
∇(f ) × ∇(g) · ds

29. Verify that B = curl(A) for r > R in the setting of Example 6.

solution As observed in the example,

curl(〈f, g, 0〉) = 〈−gz, fz, gx − fy

〉
and recall r = x2 + y2. For r > R, this yields

curl(A) = 1

2
R2B

〈
0, 0,

∂

∂x
(xr−2) − ∂

∂y
(−yr−2)

〉
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The z-component on the right is also zero:

∂

∂x
(xr−2) + ∂

∂y
(yr−2) = ∂

∂x

(
x

x2 + y2

)
+ ∂

∂y

(
y

x2 + y2

)

= (x2 + y2) − x(2x)

(x2 + y2)2
+ (x2 + y2) − y(2y)

(x2 + y2)2

= 0

Thus, curl(A) = 0 when r > R as required.

Explain carefully why Green’s Theorem is a special case of Stokes’ Theorem.
Further Insights and Challenges
31. In this exercise, we use the notation of the proof of Theorem 1 and prove∮

C
F3(x, y, z)k · ds =

∫∫
S

curl(F3(x, y, z)k) · dS 11

In particular, S is the graph of z = f (x, y) over a domain D, and C is the boundary of S with parametrization
(x(t), y(t), f (x(t), y(t))).

(a) Use the Chain Rule to show that

F3(x, y, z)k · ds = F3(x(t), y(t), f (x(t), y(t))
(
fx(x(t), y(t))x′(t) + fy(x(t), y(t))y′(t)

)
dt

and verify that ∮
C

F3(x, y, z)k · ds =
∮
C0

〈
F3(x, y, z)fx(x, y), F3(x, y, z)fy(x, y)

〉 · ds

where C0 has parametrization (x(t), y(t)).

(b) Apply Green’s Theorem to the line integral over C0 and show that the result is equal to the right-hand side of Eq. (11).

solution Let (x(t), y(t)), a ≤ t ≤ b be a parametrization of the boundary curve C0 of the domain D.

z

y

x

(x, y, f (x, y))

(x, y)

n

C0
D

The boundary curve C of S projects on C0 and has the parametrization

γ (t) = (x(t), y(t), f (x(t), y(t))) , a ≤ t ≤ b

Let

F = 〈0, 0, F3(x, y, z)〉
We must show that ∫

C
F · ds =

∫∫
S

curl(F) · dS (1)

We first compute the surface integral, using the parametrization

S : �(x, y) = (x, y, f (x, y))

The normal vector is

n = ∂�

∂x
× ∂�

∂y
= 〈1, 0, fx(x, y)〉 × 〈

0, 1, fy(x, y)
〉 = (i + fx(x, y)k) × (

j + fy(x, y)k
)

= −fy(x, y)j − fx(x, y)i + k = 〈−fx(x, y),−fy(x, y), 1
〉
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We compute the curl of F:

curl(F) =

∣∣∣∣∣∣∣∣∣
i j k
∂

∂x

∂

∂y

∂

∂z

0 0 F3(x, y, z)

∣∣∣∣∣∣∣∣∣
=
〈
∂F3(x, y, z)

∂y
, −∂F3(x, y, z)

∂x
, 0

〉

Hence,

curl(F) (�(x, y)) · n =
〈
∂F3

∂y
(x, y, f (x, y)) − ∂F3

∂x
(x, y, f (x, y)) , 0

〉
· 〈−fx(x, y),−fy(x, y), 1

〉
= −∂F3 (x, y, f (x, y))

∂y
fx(x, y) + ∂F3 (x, y, f (x, y))

∂x
fy(x, y)

The surface integral is thus∫∫
S

curl(F) · dS =
∫∫

D

(
−∂F3 (x, y, f (x, y))

∂y
fx(x, y) + ∂F3 (x, y, f (x, y))

∂x
fy(x, y)

)
dx dy (2)

We now evaluate the line integral in (1). We have

F
(
γ (t)

) · γ ′(t) =
〈
0, 0, F3

(
x(t), y(t), f

(
x(t), y(t)

))〉 ·
〈
x′(t), y′(t), d

dt
f
(
x(t), y(t)

)〉

= F3

(
x(t), y(t), f

(
x(t), y(t)

)) d

dt
f
(
x(t), y(t)

)
(3)

Using the Chain Rule gives

d

dt
f
(
x(t), y(t)

) = fx

(
x(t), y(t)

)
x′(t) + fy

(
x(t), y(t)

)
y′(t)

Substituting in (3), we conclude that the line integral is∫
C

F · ds =
∫ b

a

(
F3

(
x(t), y(t), f

(
x(t), y(t)

)) ·
(
fx

(
x(t), y(t)

)
x′(t) + fy

(
x(t), y(t)

)
y′(t)

))
dt (4)

We consider the following vector field:

G(x, y) = 〈
F3

(
x, y, f (x, y)

)
fx(x, y), F3

(
x, y, f (x, y)

)
fy(x, y)

〉
Then the integral in (4) is the line integral of the planar vector field G over C0. That is,∫

C
F · ds =

∫
C0

G · ds

Therefore, we may apply Green’s Theorem and write∫
C

F · ds =
∫
C0

G · ds =
∫∫

D

(
∂

∂x

(
F3

(
x, y, f (x, y)

)
fy(x, y)

)
− ∂

∂y

(
F3

(
x, y, f (x, y)

)
fx(x, y)

))
dx dy (5)

We use the Product Rule to evaluate the integrand:

∂F3

∂x
(x, y, f (x, y)) fy(x, y) + F3

(
x, y, f (x, y)

)
fyx(x, y) − ∂F3

∂y

(
x, y, f (x, y)

)
fx(x, y) − F3

(
x, y, f (x, y)

)
fxy(x, y)

= ∂F3

∂x

(
x, y, f (x, y)

)
fy(x, y) − ∂F3

∂y

(
x, y, f (x, y)

)
fx(x, y)

Substituting in (5) gives∫
C

F · ds =
∫∫

D

(
∂F3 (x, y, f (x, y))

∂x
fy(x, y) − ∂F3 (x, y, f (x, y))

∂y
fx(x, y)

)
dx dy (6)

Equations (2) and (6) give the same result, hence∫
C

F · ds =
∫∫

S
curl(F) · ds

for

F = 〈0, 0, F3(x, y, z)〉

Let F be a continuously differentiable vector field in R3, Q a point, and S a plane containing Q with unit normal
vector e. Let Cr be a circle of radius r centered at Q in S, and let Sr be the disk enclosed by Cr . Assume Sr is oriented
with unit normal vector e.

(a) Let m(r) and M(r) be the minimum and maximum values of curl(F(P )) · e for P ∈ Sr Prove that
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17.3 Divergence Theorem (LT Section 18.3)

Preliminary Questions
1. What is the flux of F = 〈1, 0, 0〉 through a closed surface?

solution The divergence of F = 〈1, 0, 0〉 is div(F) = ∂P
∂x

+ ∂Q
∂y

+ ∂R
∂z

= 0, therefore the Divergence Theorem
implies that the flux of F through a closed surface S is∫∫

S
F · dS =

∫∫∫
W

div(F) dV =
∫∫∫

W
0 dV = 0

2. Justify the following statement: The flux of F = 〈
x3, y3, z3〉 through every closed surface is positive.

solution The divergence of F =
〈
x3, y3, z3

〉
is

div(F) = 3x2 + 3y2 + 3z2

Therefore, by the Divergence Theorem, the flux of F through a closed surface S is∫∫
S

F · dS =
∫∫∫

W
(3x2 + 3y2 + 3z2) dV

Since the integrand is positive for all (x, y, z) �= (0, 0, 0), the triple integral, hence also the flux, is positive.

3. Which of the following expressions are meaningful (where F is a vector field and f is a function)? Of those that are
meaningful, which are automatically zero?
(a) div(∇f ) (b) curl(∇f ) (c) ∇curl(f )

(d) div(curl(F)) (e) curl(div(F)) (f) ∇(div(F))

solution
(a) The divergence is defined on vector fields. The gradient is a vector field, hence div(∇ϕ) is defined. It is not automat-
ically zero since for ϕ = x2 + y2 + z2 we have

div(∇ϕ) = div 〈2x, 2y, 2z〉 = 2 + 2 + 2 = 6 �= 0

(b) The curl acts on vector valued functions, and ∇ϕ is such a function. Therefore, curl(∇ϕ) is defined. Since the gradient
field ∇ϕ is conservative, the cross partials of ∇ϕ are equal, or equivalently, curl(∇ϕ) is the zero vector.
(c) The curl is defined on vector fields rather than on scalar functions. Therefore, curl(ϕ) is undefined. Obviously,
∇curl(ϕ) is also undefined.
(d) The curl is defined on the vector field F and the divergence is defined on the vector field curl(F). Therefore the
expression div (curl(F)) is meaningful. We show that this vector is automatically zero:

div (curl (F)) = div

〈
∂F3

∂y
− ∂F2

∂z
,
∂F1

∂z
− ∂F3

∂x
,
∂F2

∂x
− ∂F1

∂y

〉

= ∂

∂x

(
∂F3

∂y
− ∂F2

∂z

)
+ ∂

∂y

(
∂F1

∂z
− ∂F3

∂x

)
+ ∂

∂z

(
∂F2

∂x
− ∂F1

∂y

)

= ∂2F3

∂x∂y
− ∂2F2

∂x∂z
+ ∂2F1

∂y∂z
− ∂2F3

∂y∂x
+ ∂2F2

∂z∂x
− ∂2F1

∂z∂y

=
(

∂2F3

∂x∂y
− ∂2F3

∂y∂x

)
+
(

∂2F2

∂z∂x
− ∂2F2

∂x∂z

)
+
(

∂2F1

∂y∂z
− ∂2F1

∂z∂y

)

= 0 + 0 + 0 = 0

(e) The curl acts on vector valued functions, whereas div(F) is a scalar function. Therefore the expression curl (div(F))

has no meaning.
(f) div(F) is a scalar function, hence ∇(divF) is meaningful. It is not necessarily the zero vector as shown in the following
example:

F =
〈
x2, y2, z2

〉
div (F) = 2x + 2y + 2z

∇(divF) = 〈2, 2, 2〉 �= 〈0, 0, 0〉
4. Which of the following statements is correct (where F is a continuously differentiable vector field defined everywhere)?

(a) The flux of curl(F) through all surfaces is zero.
(b) If F = ∇ϕ, then the flux of F through all surfaces is zero.
(c) The flux of curl(F) through all closed surfaces is zero.
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solution

(a) This statement holds only for conservative fields. If F is not conservative, there exist closed curves such that
∫
C F · ds �=

0, hence by Stokes’ Theorem
∫∫

S curl(F) · dS �= 0.

(b) This statement is false. Consider the unit sphere S in the three-dimensional space and the function ϕ(x, y, z) =
x2 + y2 + z2. Then F = ∇ϕ = 〈2x, 2y, 2z〉 and div (F) = 2 + 2 + 2 = 6. Using the Divergence Theorem, we have (W
is the unit ball in R3)∫∫

S
F · dS =

∫∫∫
W

div(F) dV =
∫∫∫

W
6 dV = 6

∫∫∫
W

dV = 6 Vol(W)

(c) This statement is correct, as stated in the corollary of Stokes’ Theorem in section 17.3.

5. How does the Divergence Theorem imply that the flux of F = 〈
x2, y − ez, y − 2zx

〉
through a closed surface is equal

to the enclosed volume?

solution By the Divergence Theorem, the flux is∫∫
S

F · dS =
∫∫∫

W
div(F) dV =

∫∫∫
W

(2x + 1 − 2x) dV =
∫∫∫

W
1 dV = Volume(W)

Therefore the statement is true.

Exercises
In Exercises 1–4, compute the divergence of the vector field.

1. F = 〈
xy, yz, y2 − x3〉

solution The divergence of F is

div(F) = ∂

∂x
(xy) + ∂

∂y
(yz) + ∂

∂z
(y2 − x3) = y + z + 0 = y + z

xi + yj + zk3. F = 〈
x − 2zx2, z − xy, z2x2〉

solution

div(F) = ∂

∂x
(x − 2zx2) + ∂

∂y
(z − xy) + ∂

∂z
(z2x2) = (1 − 4zx) + (−x) + (2zx2) = 1 − 4zx − x + 2zx2

sin(x + z)i − yexzk
5. Find a constant c for which the velocity field

v = (cx − y)i + (y − z)j + (3x + 4cz)k

of a fluid is incompressible [meaning that div(v) = 0].

solution We compute the divergence of v:

div(v) = ∂

∂x
(cx − y) + ∂

∂y
(y − z) + ∂

∂z
(3x + 4cz) = c + 1 + 4c = 5c + 1

Therefore, div(v) = 0 if 5c + 1 = 0 or c = − 1
5 .

Verify the identity div(curl(F)) = 0 where F = 〈F1, F2, F3〉. Assume that the components Fj have continuous
second-order derivatives.

In Exercises 7–10, verify the Divergence Theorem for the vector field and region.

7. F = 〈z, x, y〉, the box [0, 4] × [0, 2] × [0, 3]
solution Let S be the surface of the box and R the region enclosed by S.

z

y

x

3

2

4
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We first compute the surface integral in the Divergence Theorem:∫∫
S

F · dS =
∫∫∫

R
div(F) dV (1)

We denote by Si , i = 1, . . . , 6, the faces of the box, starting at the face on the xz-plane and moving counterclockwise,
then moving to the bottom and the top. We use parametrizations

S1 : �1(x, z) = (x, 0, z), 0 ≤ x ≤ 4, 0 ≤ z ≤ 3

n = 〈0, −1, 0〉
S2 : �2(y, z) = (0, y, z), 0 ≤ y ≤ 2, 0 ≤ z ≤ 3

n = 〈−1, 0, 0〉
S3 : �3(x, z) = (x, 2, z), 0 ≤ x ≤ 4, 0 ≤ z ≤ 3

n = 〈0, 1, 0〉
S4 : �4(y, z) = (4, y, z), 0 ≤ y ≤ 2, 0 ≤ z ≤ 3

n = 〈1, 0, 0〉
S5 : �5(x, y) = (x, y, 0), 0 ≤ x ≤ 4, 0 ≤ y ≤ 2

n = 〈0, 0, −1〉
S6 : �6(x, y) = (x, y, 3), 0 ≤ x ≤ 4, 0 ≤ y ≤ 2

n = 〈0, 0, 1〉
Then, ∫∫

S1

F · dS =
∫ 3

0

∫ 4

0
F (�1(x, z)) · 〈0, −1, 0〉 dx dz =

∫ 3

0

∫ 4

0
〈z, x, 0〉 · 〈0, −1, 0〉 dx dz

=
∫ 3

0

∫ 4

0
−x dx dz = 3

−x2

2

∣∣∣∣4
0

= −24

∫∫
S2

F · dS =
∫ 3

0

∫ 2

0
F (�2(y, z)) · 〈−1, 0, 0〉 dy dz =

∫ 3

0

∫ 2

0
〈z, 0, y〉 · 〈−1, 0, 0〉 dy dz

=
∫ 3

0

∫ 2

0
−z dy dz = 2 · −z2

2

∣∣∣∣3
0

= −9

∫∫
S3

F · dS =
∫ 3

0

∫ 4

0
F (�3(x, z)) · 〈0, 1, 0〉 dx dz =

∫ 3

0

∫ 4

0
〈z, x, 2〉 · 〈0, 1, 0〉 dx dz

=
∫ 3

0

∫ 4

0
x dx dz = 3 · x2

2

∣∣∣∣4
0

= 24

∫∫
S4

F · dS =
∫ 3

0

∫ 2

0
F (�4(y, z)) · 〈1, 0, 0〉 dy dz =

∫ 3

0

∫ 2

0
〈z, 4, y〉 · 〈1, 0, 0〉 dy dz

=
∫ 3

0

∫ 2

0
z dy dz = 2 · z2

2

∣∣∣∣3
0

= 9

∫∫
S5

F · dS =
∫ 2

0

∫ 4

0
F (�5(x, y)) · 〈0, 0, −1〉 dx dy =

∫ 2

0

∫ 4

0
〈0, x, y〉 · 〈0, 0, −1〉 dx dy

=
∫ 2

0

∫ 4

0
−y dx dy = 4 · −y2

2

∣∣∣∣2
0

= −8

∫∫
S6

F · dS =
∫ 2

0

∫ 4

0
F (�6(x, y)) · n dx dy =

∫ 2

0

∫ 4

0
〈3, x, y〉 · 〈0, 0, 1〉 dx dy

=
∫ 2

0

∫ 4

0
y dx dy = 4 · y2

2

∣∣∣∣2
0

= 8

We add the integrals to obtain the surface integral∫∫
S

F · dS =
6∑

i=1

∫∫
Si

F · dS = −24 − 9 + 24 + 9 − 8 + 8 = 0 (2)
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We now evaluate the triple integral in (1). We compute the divergence of F = 〈z, x, y〉:

div(F) = ∂

∂x
(z) + ∂

∂y
(x) + ∂

∂z
(y) = 0

Hence, ∫∫∫
R

div(F) dV =
∫∫∫

R
0 dV = 0 (3)

The equality of the integrals in (2) and (3) verifies the Divergence Theorem.

F = 〈y, x, z〉, the region x2 + y2 + z2 ≤ 4
9. F = 〈2x, 3z, 3y〉, the region x2 + y2 ≤ 1, 0 ≤ z ≤ 2

solution

z

y

x

2

1

Let S be the surface of the cylinder and R the region enclosed by S. We compute the two sides of the Divergence Theorem:∫∫
S

F · dS =
∫∫∫

R
div(F) dV (1)

We first calculate the surface integral.

Step 1. Integral over the side of the cylinder. The side of the cylinder is parametrized by

�(θ, z) = (cos θ, sin θ, z), 0 ≤ θ ≤ 2π, 0 ≤ z ≤ 2

n = 〈cos θ, sin θ, 0〉
Then,

F (�(θ, z)) · n = 〈2 cos θ, 3z, 3 sin θ〉 · 〈cos θ, sin θ, 0〉 = 2 cos2 θ + 3z sin θ

We obtain the integral

∫∫
side

F · dS =
∫ 2

0

∫ 2π

0

(
2 cos2 θ + 3z sin θ

)
dθ dz = 4

∫ 2π

0
cos2 θ dθ +

(∫ 2

0
3z dz

)(∫ 2π

0
sin θ dθ

)

= 4 ·
(

θ

2
+ sin 2θ

4

∣∣∣∣2π

0

)
+ 0 = 4π

Step 2. Integral over the top of the cylinder. The top of the cylinder is parametrized by

�(x, y) = (x, y, 2)

with parameter domain D =
{
(x, y) : x2 + y2 ≤ 1

}
. The upward pointing normal is

n = Tx × Ty = 〈1, 0, 0〉 × 〈0, 1, 0〉 = i × j = k = 〈0, 0, 1〉
Also,

F (�(x, y)) · n = 〈2x, 6, 3y〉 · 〈0, 0, 1〉 = 3y

Hence, ∫∫
top

F · dS =
∫∫

D
3y dA = 0

The last integral is zero due to symmetry.
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1
x

y

D

Step 3. Integral over the bottom of the cylinder. We parametrize the bottom by

�(x, y) = (x, y, 0), (x, y) ∈ D

The downward pointing normal is n = 〈0, 0, −1〉. Then

F (�(x, y)) · n = 〈2x, 0, 3y〉 · 〈0, 0, −1〉 = −3y

We obtain the following integral, which is zero due to symmetry:∫∫
bottom

F · dS =
∫∫

D
−3y dA = 0

Adding the integrals we get∫∫
S

F · dS =
∫∫

side
F · dS +

∫∫
top

F · dS +
∫∫

bottom
F · dS = 4π + 0 + 0 = 4π (2)

Step 4. Compare with integral of divergence.

div(F) = div 〈2x, 3z, 3y〉 = ∂

∂x
(2x) + ∂

∂y
(3z) + ∂

∂z
(3y) = 2

∫∫∫
R

div (F) dV =
∫∫∫

R
2 dV = 2

∫∫∫
R

dV = 2 Vol(R) = 2 · π · 2 = 4π (3)

The equality of (2) and (3) verifies the Divergence Theorem.

F = 〈x, 0, 0〉, the region x2 + y2 ≤ z ≤ 4In Exercises 11–18, use the Divergence Theorem to evaluate the flux
∫∫

S
F · dS.

11. F =
〈
0, 0, z3/3

〉
, S is the sphere x2 + y2 + z2 = 1.

solution We compute the divergence of F =
〈
0, 0, z3/3

〉
:

divF = ∂

∂x
(0) + ∂

∂y
(0) + ∂

∂z
(z3/3) = z2

Hence, by the Divergence Theorem (W is the unit ball),∫∫
S

F · dS =
∫∫∫

W
div(F) dV =

∫∫∫
W

z2 dV

Computing this integral we see:∫∫∫
W

z2 dV =
∫ 2π

0

∫ π

0

∫ 1

0
ρ2 cos2 φ · ρ2 sin φ dρ dφ dθ

=
∫ 2π

0
dθ ·

∫ π

0
cos2 φ sin φ dφ ·

∫ 1

0
ρ4 dρ

= (2π) ·
(

−cos3 φ

3

∣∣∣∣π
0

)
·
(

ρ5

5

∣∣∣∣1
0

)

= 2π

(
−1

3
(−1 − 1)

)(
1

5

)

= 2π

(
2

3

)(
1

5

)
= 4π

15
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F = 〈y, z, x〉, S is the sphere x2 + y2 + z2 = 1.
13. F = 〈

x3, 0, z3〉, S is the octant of the sphere x2 + y2 + z2 = 4, in the first octant x ≥ 0, y ≥ 0, z ≥ 0.

solution We compute the divergence of F =
〈
x3, 0, z3

〉
:

div(F) = ∂

∂x
(x3) + ∂

∂y
(0) + ∂

∂z
(z3) = 3x2 + 3z2 = 3(x2 + z2)

Using the Divergence Theorem we obtain (W is the region inside the sphere)∫∫
S

F · dS =
∫∫∫

W
div(F) dV =

∫∫∫
W

3(x2 + z2) dV

We convert the integral to spherical coordinates. We have

x2 + z2 = ρ2 cos2 θ sin2 φ + ρ2 cos2 φ = ρ2 cos2 θ sin2 φ + ρ2(1 − sin2 φ)

= −ρ2 sin2 φ(1 − cos2 θ) + ρ2 = −ρ2 sin2 φ sin2 θ + ρ2 = ρ2(1 − sin2 φ sin2 θ)

We obtain the following integral:∫∫
S

F · dS = 3
∫ 2π

0

∫ π/2

0

∫ 2

0
ρ2(1 − sin2 φ sin2 θ) · ρ2 sin φ dρ dφ dθ

= 3
∫ 2π

0

∫ π/2

0

∫ 2

0
ρ4(sin φ − sin3 φ sin2 θ)dρ dφ dθ

= 3
∫ 2π

0

∫ π/2

0

∫ 2

0
ρ4 sin φ dρ dφ dθ − 3

∫ 2π

0

∫ π/2

0

∫ 2

0
ρ4 sin3 φ sin2 θ dρ dφ dθ

= 6π

(∫ π/2

0
sin φ dφ

)(∫ 2

0
ρ4 dρ

)
− 3

(∫ 2π

0
sin2 θ dθ

)(∫ π/2

0
sin3 φ dφ

)(∫ 2

0
ρ4 dρ

)

= 6π

(
− cos φ

∣∣∣∣π/2

φ=0

)(
ρ5

5

∣∣∣∣2
ρ=0

)(
−3

θ

2
− sin 2θ

4

∣∣∣∣2π

θ=0

)
·
(

− sin2 φ cos φ

3
− 2

3
cos φ

∣∣∣∣π/2

φ=0

)(
ρ5

5

∣∣∣∣2
ρ=0

)

= 6π · 32

5
− 3π · 2

3
· 32

5
= 128π

5

F = 〈
ex+y, ex+z, ex+y

〉
, S is the boundary of the unit cube 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1.

15. F = 〈
x, y2, z + y

〉
, S is the boundary of the region contained in the cylinder x2 + y2 = 4 between the planes z = x

and z = 8.

solution Let W be the region enclosed by S.

z

yx

We compute the divergence of F =
〈
x, y2, z + y

〉
:

div(F) = ∂

∂x
(x) + ∂

∂y
(y2) + ∂

∂z
(z + y) = 1 + 2y + 1 = 2 + 2y.

By the Divergence Theorem we have∫∫
S

F · dS =
∫∫∫

W
div(F) dV =

∫∫∫
W

(2 + 2y) dV

We compute the triple integral. Denoting by D the disk x2 + y2 ≤ 4 in the xy-plane, we have

∫∫
S

F · dS =
∫∫

D

∫ 8

x
(2 + 2y) dz dx dy =

∫∫
D

(2 + 2y)z

∣∣∣∣8
z=x

dx dy =
∫∫

D
(2 + 2y)(8 − x) dx dy
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We convert the integral to polar coordinates:∫∫
S

F · dS =
∫ 2π

0

∫ 2

0
(2 + 2r sin θ)(8 − r cos θ)r dr dθ

=
∫ 2π

0

∫ 2

0

(
16r + 2r2(8 sin θ − cos θ) − r3 sin 2θ

)
dr dθ

=
∫ 2π

0
8r2 + 2

3
r3(8 sin θ − cos θ) − r4

4
sin 2θ

∣∣∣∣2
r=0

dθ

=
∫ 2π

0

(
32 + 16

3
(8 sin θ − cos θ) − 4 sin 2θ

)
dθ

= 64π + 128

3

∫ 2π

0
sin θ dθ − 16

3

∫ 2π

0
cos θ dθ −

∫ 2π

0
4 sin 2θ dθ = 64π

F = 〈
x2 − z2, ez2 − cos x, y3〉, S is the boundary of the region bounded by x + 2y + 4z = 12 and the coordinate

planes in the first octant.

17. F = 〈x + y, z, z − x〉, S is the boundary of the region between the paraboloid z = 9 − x2 − y2 and the xy-plane.

solution We compute the divergence of F = 〈x + y, z, z − x〉,

div(F) = ∂

∂x
(x + y) + ∂

∂y
(z) + ∂

∂z
(z − x) = 1 + 0 + 1 = 2.

z

y
3

9

x

Using the Divergence Theorem we have∫∫
S

F · dS =
∫∫∫

W
div(F) dV =

∫∫∫
W

2 dV

We compute the triple integral:∫∫
S

F · dS =
∫∫∫

W
2 dV =

∫∫
D

∫ 9−x2−y2

0
2 dz dx dy =

∫∫
D

2z

∣∣∣∣9−x2−y2

0
dx dy

=
∫∫

W
2(9 − x2 − y2) dx dy

3

x2 + y2 = 9

x

y

D

We convert the integral to polar coordinates:

x = r cos θ, y = r sin θ, 0 ≤ r ≤ 3, 0 ≤ θ ≤ 2π∫∫
S

F · dS =
∫ 2π

0

∫ 3

0
2
(

9 − r2
)

r dr dθ = 4π

∫ 3

0
(9r − r3) dr = 4π

(
9r2

2
− r4

4

∣∣∣∣3
0

)
= 81π

F = 〈
ez2

, 2y + sin(x2z), 4z +
√

x2 + 9y2
〉
, S is the region

x2 + y2 ≤ z ≤ 8 − x2 − y2.

19. Calculate the flux of the vector field F = 2xyi − y2j + k through the surface S in Figure 18. Hint: Apply the
Divergence Theorem to the closed surface consisting of S and the unit disk.

solution From the diagram in the book, S is the surface in question bounded by the unit circle. Let T be the union of
S and the unit disk D. Then T is a closed surface, and we may apply the Divergence Theorem:∫∫

S
F · dS +

∫∫
D

F · dS =
∫∫

T
F · dS =

∫∫∫
W

div(F) · dS
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where W is the region enclosed by T . Now we observe that F =
〈
2xy, −y2, 1

〉
and we compute the divergence of F:

div(F) = ∂

∂x
(2xy) + ∂

∂y
(−y2) + ∂

∂z
(1) = 2y − 2y + 0 = 0

Therefore, the triple integral is zero and we obtain:∫∫
S

F · dS = −
∫∫

D
F · dS (1)

where D is oriented with a downward pointing normal. Let �(r, θ) = (r cos θ, r sin θ, 0) be the parametrization of D

with polar coordinates. Then

F(�(r, θ)) =
〈
2r2 cos θ sin θ, −r2 sin2 θ, 1

〉
Furthermore,

�r(r, θ) = 〈cos θ, sin θ, 0〉 , �θ (r, θ) = 〈−r sin θ, r cos θ, 0〉
and �r × �θ = 〈0, 0, r〉 is an upward pointing normal. Finally,

F · dS = F(�(r, θ)) · (�r × �θ) dr dθ = r dr dθ

The integral on the right in (1) uses a downward pointing normal, so we may drop the minus sign and use the upward-
pointing normal to obtain: ∫∫

S
F · dS =

∫ 2π

0

∫ 1

0
r dr dθ = π

Let S1 be the closed surface consisting of S in Figure 18 together with the unit disk. Find the volume enclosed
by S1, assuming that ∫∫

S1

〈x, 2y, 3z〉 · dS = 72

21. Let S be the half-cylinder x2 + y2 = 1, x ≥ 0, 0 ≤ z ≤ 1. Assume that F is a horizontal vector field (the z-component
is zero) such that F(0, y, z) = zy2i. Let W be the solid region enclosed by S, and assume that∫∫∫

W
div(F) dV = 4

Find the flux of F through the curved side of S.

solution The flux through the top and bottom of the surface are zero. The flux through the flat side (with outward
normal −i) is

−
∫ 1

z=0

∫ 1

y=−1
zy2 dydz = −1

2
(

2

3
) = −1

3

The flux through the curved side is 4 + 1
3 = 13

3 .

Volume as a Surface Integral Let F = 〈x, y, z〉. Prove that if W is a region R3 with a smooth boundary S,
then

Volume(W) = 1

3

∫∫
S

F · dS

23. Use Eq. (10) to calculate the volume of the unit ball as a surface integral over the unit sphere.

solution Let S be the unit sphere and W is the unit ball. By Eq. (10) we have

Volume(W) = 1

3

∫∫
S

F · dS, F = 〈x, y, z〉

To compute the surface integral, we parametrize S by

�(θ, φ) = (cos θ sin φ, sin θ sin φ, cos φ), 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π

n = sin φ 〈cos θ sin φ, sin θ sin φ, cos φ〉
Then

F (�(θ, φ)) · n = 〈cos θ sin φ, sin θ sin φ, cos φ〉 ·
〈
cos θ sin2 φ, sin θ sin2 φ, cos φ sin φ

〉
= cos2 θ sin3 φ + sin2 θ sin3 φ + cos2 φ sin φ = sin3 φ(cos2 θ + sin2 θ) + cos2 φ sin φ

= sin3 φ + cos2 φ sin φ = sin3 φ + (1 − sin2 φ) sin φ = sin φ

We obtain the following integral:

Volume(W) = 1

3

∫ 2π

0

∫ π

0
sin φ dφ dθ = 1

3
· 2π

∫ π

0
sin φ dφ = 2π

3

(
− cos φ

∣∣∣∣π
0

)
= 2π

3
(1 + 1) = 4π

3

Verify that Eq. (10) applied to the box [0, a] × [0, b] × [0, c] yields the volume V = abc.
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25. Let W be the region in Figure 19 bounded by the cylinder x2 + y2 = 4, the plane z = x + 1, and the xy-plane. Use

the Divergence Theorem to compute the flux of F =
〈
z, x, y + z2

〉
through the boundary of W .

x

y

z

FIGURE 19

solution We compute the divergence of F =
〈
z, x, y + z2

〉
:

div(F) = ∂

∂x
(z) + ∂

∂y
(x) + ∂

∂z
(y + z2) = 2z

By the Divergence Theorem we have∫∫
S

F · dS =
∫∫∫

W
div(F) dV =

∫∫∫
W

2 dV

To compute the triple integral, we identify the projection D of the region on the xy-plane. D is the region in the xy plane
enclosed by the circle x2 + y2 = 4 and the line 0 = x + 1 or x = −1. We obtain the following integral:∫∫

S
F · dS =

∫∫∫
W

2z dV =
∫∫

D

∫ x+1

0
2z dz dx dy =

∫∫
D

z2
∣∣∣∣x+1

z=0
dx dy =

∫∫
D

(x + 1)2 dx dy

We compute the double integral as the difference of two integrals: the integral over the disk D2 of radius 2, and the integral
over the part D1 of the disk, shown in the figure.

x

y

3

D1

We obtain ∫∫
S

F · dS =
∫∫

D2

(x + 1)2 dx dy −
∫∫

D1

(x + 1)2 dx dy

x

y

3

D2

We compute the first integral, converting to polar coordinates:∫∫
D2

(x + 1)2 dx dy =
∫ 2π

0

∫ 2

0
(r cos θ + 1)2r dr dθ

=
∫ 2π

0

∫ 2

0
r3 cos2 θ + 2r2 cos θ + r dr dθ
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=
∫ 2π

0

r4

4
cos2 θ + 2

3
r3 cos θ + 1

2
r2
∣∣∣∣2
0
dθ

=
∫ 2π

0
4 cos2 θ + 16

3
cos θ + 2 dθ

=
∫ 2π

0
2 cos 2θ + 16

3
cos θ + 4 dθ

= sin 2θ + 16

3
sin θ + 4θ

∣∣∣∣2π

0
= 8π

We compute the second integral over the upper part of D1. Due to symmetry, this integral is equal to half of the integral
over D1.

x

y

3−1

q

We describe the region in polar coordinates:

2π

3
≤ θ ≤ π,

−1

cos θ
≤ r ≤ 2

Then ∫∫
D1

(x + 1)2 dx dy = 2
∫ π

2π/3

∫ 2

−1/ cos θ
(r cos θ + 1)2r dr dθ

=
∫ π

2π/3

∫ 2

−1/ cos θ
(r3 cos2 θ + 2r2 cos θ + r) dr dθ

=
∫ π

2π/3

r4

4
cos2 θ + 2

3
r3 cos θ + 1

2
r2
∣∣∣∣2
r= −1

cos θ

dθ

= 2
∫ π

2π/3
(4 cos2 θ + 16

3
cos θ + 2) −

(
cos2 θ

4 cos4 θ
− 2 cos θ

3 cos3 θ
+ 1

2 cos2 θ

)
dθ

= 2
∫ π

2π/3
2 cos 2θ + 4 + 16

3
cos θ − 1

4
sec2 θ + 2

3
sec2 θ − 1

2
sec2 θ dθ

= 2
∫ π

2π/3
2 cos 2θ + 4 + 16

3
cos θ − 1

12
sec2 θ dθ

= sin 2θ + 4θ + 16

3
sin θ − 1

12
tan θ

∣∣∣∣π
2π/3

= 2(4π) − 2

(
sin

4π

3
+ 8π

3
+ 16

3
sin

2π

3
− 1

12
tan

2π

3

)

= 8π − 2

(
−

√
3

2
+ 8π

3
+ 16

√
3

6
+

√
3

12

)

= 8π + √
3 − 16π

3
− 16

√
3

3
−

√
3

6

= 8π

3
+ √

3

(
1 − 16

3
− 1

6

)

= 8π

3
− 9

2

√
3
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so we have ∫∫
S

F · dS = 8π −
∫∫

D1

(x + 1)2 dx dy ≈ 8π −
(

8π

3
− 9

2

√
3

)
= 16π

3
+ 9

2

√
3 ≈ 24.550.

Let I =
∫∫

S
F · dS, where

F =
〈

2yz

r2
, −xz

r2
, −xy

r2

〉

(r =
√

x2 + y2 + z2) and S is the boundary of a region W .

(a) Check that F is divergence-free.

(b) Show that I = 0 if S is a sphere centered at the origin. Explain, however, why the Divergence Theorem cannot
be used to prove this.

27. The velocity field of a fluid v (in meters per second) has divergence div(v)(P ) = 3 at the point P = (2, 2, 2).
Estimate the flow rate out of the sphere of radius 0.5 centered at P .

solution

flow rate through the box ≈ div(v)(P ) ·
(

4

3
π(0.5)3

)
= π

2
≈ 1.57 m3/s

A hose feeds into a small screen box of volume 10 cm3 that is suspended in a swimming pool. Water flows across
the surface of the box at a rate of 12 cm3/s. Estimate div(v)(P ), where v is the velocity field of the water in the pool
and P is the center of the box. What are the units of div(v)(P )?

29. The electric field due to a unit electric dipole oriented in the k-direction is E = ∇(z/r3), where r = (x2 + y2 + z2)1/2

(Figure 20). Let er = r−1 〈x, y, z〉.
(a) Show that E = r−3k − 3zr−4er .
(b) Calculate the flux of E through a sphere centered at the origin.
(c) Calculate div(E).

(d) Can we use the Divergence Theorem to compute the flux of E through a sphere centered at the origin?

x

z

FIGURE 20 The dipole vector field restricted to the xz-plane.

solution
(a) We first compute the partial derivatives of r:

∂r

∂x
= 1

2
(x2 + y2 + z2)

−1/2 · 2x = x

r

∂r

∂y
= 1

2
(x2 + y2 + z2)

−1/2 · 2y = y

r

∂r

∂z
= 1

2
(x2 + y2 + z2)

−1/2 · 2z = z

r
(1)

We compute the partial derivatives of z
r3 , using the Chain Rule and the partial derivatives in (1):

∂

∂x

(
z

r3

)
= z

∂

∂x
(r−3) = z · (−3)r−4 ∂r

∂x
= −3z · r−4 x

r
= −3zx

r5 = −3zr−5x

∂

∂y

(
z

r3

)
= z

∂

∂y
(r−3) = z · (−3)r−4 ∂r

∂y
= −3z · r−4 y

r
= −3zr−5y

∂

∂z

(
z

r3

)
= ∂

∂z
(z · r−3) = 1 · r−3 + z · (−3)r−4 ∂r

∂z
= r−3 − 3z · r−4 · z

r
= r−3 − 3z2r−5

Therefore,

E = ∇
(

z

r3

)
= −3zr−5xi − 3zr−5yj + (r−3 − 3z2r−5)k

= r−3k − 3zr−4 · r−1(xi + yj + zk) = r−3k − 3zr−4er

(b) To compute the flux
∫∫

S E · dS we use the parametrization �(θ, φ) = (R cos θ sin φ, R sin θ sin φ, R cos φ), 0 ≤
θ ≤ 2π , 0 ≤ φ ≤ π :

n = R2 sin φer

We compute E (�(θ, φ)) · n. Since r = R on S, we get

E (�(θ, φ)) · n =
(
R−3k − 3zR−4er

)
· R2 sin φer = R−1 sin φk · er − 3zR−2 sin φ

= R−1 sin φk · R−1(xi + yj + zk) − 3zR−2 sin φ

= R−2z sin φ − 3zR−2 sin φ = −2zR−2 sin φ

= −2R cos φ · R−2 sin φ = −R−1 sin 2φ
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Hence, ∫∫
S

E · dS =
∫ 2π

0

∫ π

0
−R−1 sin 2φ dφ dθ = −2π

R

∫ π

0
sin 2φ dφ = π

R
cos 2φ

∣∣∣∣π
φ=0

= 0

(c) We use part (a) to write the vector E componentwise:

E = r−3k − 3zr−4er = r−3k − 3zr−4r−1 〈x, y, z〉 =
〈
−3zr−5x, −3zr−5y, −3z2r−5 + r−3

〉
To find div(E) we compute the following derivatives, using (1) and the laws of differentiation. This gives

∂

∂x
(−3zr−5x) = −3z

∂

∂x
(r−5x) = −3z

(
−5r−6 ∂r

∂x
x + r−5 · 1

)

= −3z
(
−5r−6x

x

r
+ r−5

)
= 3zr−7(5x2 − r2)

Similarly,

∂

∂y
(−3zr−5y) = 3zr−7(5y2 − r2)

and

∂

∂z
(−3z2r−5 + r−3) = −6zr−5 − 3z2(−5)r−6 ∂r

∂z
− 3r−4 ∂r

∂z

= −6zr−5 + 15z2r−6 z

r
− 3r−4 z

r
= 3zr−7(5z2 − 3r2)

Hence,

div(E) = 3zr−7(5x2 − r2 + 5y2 − r2 + 5z2 − 3r2) = 15zr−7(x2 + y2 + z2 − r2)

= 15zr−7(r2 − r2) = 0

(d) Since E is not defined at the origin, which is inside the ball W , we cannot use the Divergence Theorem to compute
the flux of E through the sphere.

Let E be the electric field due to a long, uniformly charged rod of radius R with charge density δ per unit length
(Figure 21). By symmetry, we may assume that E is everywhere perpendicular to the rod and its magnitude E(d)

depends only on the distance d to the rod (strictly speaking, this would hold only if the rod were infinite, but it is
nearly true if the rod is long enough). Show that E(d) = δ/2πε0d for d > R. Hint: Apply Gauss’s Law to a cylinder
of radius R and of unit length with its axis along the rod.

31. Let W be the region between the sphere of radius 4 and the cube of side 1, both centered at the origin. What is the
flux through the boundary S = ∂W of a vector field F whose divergence has the constant value div(F) = −4?

solution Recall,

flux =
∫∫∫

W
div(F)dV

Using this fact we see:

flux =
∫∫∫

W
(−4)dV = −4 · V (W) = (−4)

(
256π

3
− 1

)

Let W be the region between the sphere of radius 3 and the sphere of radius 2, both centered at the origin. Use
the Divergence Theorem to calculate the flux of F = xi through the boundary S = ∂W .

33. Find and prove a Product Rule expressing div(f F) in terms of div(F) and ∇f .

solution Let F = 〈P, Q, R〉. We compute div(f F):

div(f F) = div 〈f P, f Q, f R〉 = ∂

∂x
(f P ) + ∂

∂y
(f Q) + ∂

∂z
(f R)

Applying the product rule for scalar functions we obtain

div(f F) =
(

f
∂P

∂x
+ ∂f

∂x
P

)
+
(

f
∂Q

∂y
+ ∂f

∂y
Q

)
+
(

f
∂R

∂z
+ ∂f

∂z
R

)

= f

(
∂P

∂x
+ ∂Q

∂y
+ ∂R

∂z

)
+ ∂f

∂x
P + ∂f

∂y
Q + ∂f

∂z
R = f div(F) + F · ∇f

We thus proved the following identity:

div(f F) = f div(F) + F · ∇f
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Prove the identity

div(F × G) = curl(F) · G − F · curl(G)

Then prove that the cross product of two irrotational vector fields is incompressible [F is called irrotational if
curl(F) = 0 and incompressible if div(F) = 0].

35. Prove that div(∇f × ∇g) = 0.

solution We compute the cross product:

∇f × ∇g = 〈
fx, fy, fz

〉 × 〈
gx, gy, gz

〉 =
∣∣∣∣∣∣

i j k
fx fy fz

gx gy gz

∣∣∣∣∣∣
= 〈

fygz − fzgy, fzgx − fxgz, fxgy − fygx

〉
We now compute the divergence of this vector. Using the Product Rule for scalar functions and the equality of the mixed
partials, we obtain

div(∇f × ∇g) = ∂

∂x
(fygz − fzgy) + ∂

∂y
(fzgx − fxgz) + ∂

∂z
(fxgy − fygx)

= fyxgz + fygzx − fzxgy − fzgyx + fzygx + fzgxy − fxygz − fxgzy + fxzgy + fxgyz

− fyzgx − fygxz

= (fyx − fxy)gz + (gzx − gxz)fy + (fxz − fzx)gy + (gxy − gyx)fz

+ (fzy − fyz)gx + (gyz − gzy)fx = 0

In Exercises 36–38, � denotes the Laplace operator defined by

�ϕ = ∂2ϕ

∂x2
+ ∂2ϕ

∂y2
+ ∂2ϕ

∂z2

Prove the identity

curl(curl(F)) = ∇(div(F)) − �F

where �F denotes 〈�F1, �F2, �F3〉.

37. A function ϕ satisfying �ϕ = 0 is called harmonic.

(a) Show that �ϕ = div(∇ϕ) for any function ϕ.

(b) Show that ϕ is harmonic if and only if div(∇ϕ) = 0.

(c) Show that if F is the gradient of a harmonic function, then curl(F ) = 0 and div(F ) = 0.

(d) Show that F =
〈
xz, −yz, 1

2 (x2 − y2)
〉

is the gradient of a harmonic function. What is the flux of F through a closed

surface?

solution

(a) We compute the divergence of ∇ϕ:

div(∇ϕ) = div

(〈
∂ϕ

∂x
,
∂ϕ

∂y
,
∂ϕ

∂z

〉)
= ∂2ϕ

∂x2
+ ∂2ϕ

∂y2
+ ∂2ϕ

∂z2
= �ϕ

(b) In part (a) we showed that �ϕ = div(∇ϕ). Therefore �ϕ = 0 if and only if div(∇ϕ) = 0. That is, ϕ is harmonic if
and only if ∇ϕ is divergence free.

(c) We are given that F = ∇ϕ, where �ϕ = 0. In part (b) we showed that

div(F) = div(∇ϕ) = 0

We now show that curl(F) = 0. We have

curl(F) = curl(∇ϕ) = curl
〈
ϕx, ϕy, ϕz

〉 =
∣∣∣∣∣∣∣∣∣

i j k
∂

∂x

∂

∂y

∂

∂z

ϕx ϕy ϕz

∣∣∣∣∣∣∣∣∣
= 〈

ϕzy − ϕyz, ϕxz − ϕzx, ϕyx − ϕxy

〉 = 〈0, 0, 0〉 = 0

The last equality is due to the equality of the mixed partials.

(d) We first show that F =
〈
xz, −yz,

x2−y2

2

〉
is the gradient of a harmonic function. We let ϕ = x2z

2 − y2z
2 such that

F = ∇ϕ. Indeed,

∇ϕ =
〈
∂ϕ

∂x
,
∂ϕ

∂y
,
∂ϕ

∂z

〉
=
〈
xz, −yz,

x2 − y2

2

〉
= F



May 20, 2011

S E C T I O N 17.3 Divergence Theorem (LT SECTION 18.3) 691

We show that ϕ is harmonic, that is, �ϕ = 0. We compute the partial derivatives:

∂ϕ

∂x
= xz ⇒ ∂2ϕ

∂x2
= z

∂ϕ

∂y
= −yz ⇒ ∂2ϕ

∂y2
= −z

∂ϕ

∂z
= x2 − y2

2
⇒ ∂2ϕ

∂z2
= 0

Therefore,

�ϕ = ∂2ϕ

∂x2
+ ∂2ϕ

∂y2
+ ∂2ϕ

∂z2
= z − z + 0 = 0

Since F is the gradient of a harmonic function, we know by part (c) that div(F) = 0. Therefore, by the Divergence
Theorem, the flux of F through a closed surface is zero:∫∫

S
F · dS =

∫∫∫
W

div(F) dV =
∫∫∫

W
0 dV = 0

Let F = rner , where n is any number, r = (x2 + y2 + z2)1/2, and er = r−1 〈x, y, z〉 is the unit radial vector.

(a) Calculate div(F).

(b) Calculate the flux of F through the surface of a sphere of radius R centered at the origin. For which values of n

is this flux independent of R?

(c) Prove that ∇(rn) = n rn−1er .

(d) Use (c) to show that F is conservative for n �= −1. Then show that F = r−1er is also conservative by computing
the gradient of ln r .

(e) What is the value of
∫
C

F · ds, where C is a closed curve that does not pass through the origin?

(f) Find the values of n for which the function ϕ = rn is harmonic.

Further Insights and Challenges
39. Let S be the boundary surface of a region W in R3 and let Denϕ denote the directional derivative of ϕ, where en is
the outward unit normal vector. Let � be the Laplace operator defined earlier.

(a) Use the Divergence Theorem to prove that∫∫
S

Denϕ dS =
∫∫∫

W
�ϕ dV

(b) Show that if ϕ is a harmonic function (defined in Exercise 37), then∫∫
S

Denϕ dS = 0

solution

(a) By the theorem on evaluating directional derivatives, Denϕ = ∇ϕ · en, hence,∫∫
S

Denϕ dS =
∫∫

S
∇ϕ · en dS (1)

By the definition of the vector surface integral, we have∫∫
S

∇ϕ · dS =
∫∫

S
(∇ϕ · en) dS

Combining with (1) gives ∫∫
S

Denϕ dS =
∫∫

S
∇ϕ · dS

We now apply the Divergence Theorem and the identity div(∇ϕ) = �ϕ shown in part (a) of Exercise 27, to write∫∫
S

Denϕ dS =
∫∫

S
∇ϕ · dS =

∫∫∫
W

div(∇ϕ) dV =
∫∫∫

W
�ϕ dV

(b) If ϕ is harmonic, then �ϕ = 0; therefore, by the equality of part (a) we have∫∫
S

Denϕ dS =
∫∫∫

W
�ϕ · dV =

∫∫∫
W

0 dV = 0.

Assume that ϕ is harmonic. Show that div(ϕ∇ϕ) = ‖∇ϕ‖2 and conclude that∫∫
S

ϕDenϕ dS =
∫∫∫

W
‖∇ϕ‖2 dV

41. Let F = 〈P, Q, R〉 be a vector field defined on R3 such that div(F) = 0. Use the following steps to show that F has
a vector potential.

(a) Let A = 〈f, 0, g〉. Show that

curl(A) =
〈
∂g

∂y
,
∂f

∂z
− ∂g

∂x
, −∂f

∂y

〉
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(b) Fix any value y0 and show that if we define

f (x, y, z) = −
∫ y

y0

R(x, t, z) dt + α(x, z)

g(x, y, z) =
∫ y

y0

P(x, t, z) dt + β(x, z)

where α and β are any functions of x and z, then ∂g/∂y = P and −∂f/∂y = R.

(c) It remains for us to show that α and β can be chosen so Q = ∂f/∂z − ∂g/∂x. Verify that the following choice works
(for any choice of z0):

α(x, z) =
∫ z

z0

Q(x, y0, t) dt, β(x, z) = 0

Hint: You will need to use the relation div(F) = 0.

solution
(a) If A = 〈f, 0, g〉, then the curl of A is the following vector field:

curl(A) =

∣∣∣∣∣∣∣∣∣
i j k
∂

∂x

∂

∂y

∂

∂z

f 0 g

∣∣∣∣∣∣∣∣∣
=
(

∂g

∂y
− 0

)
i −

(
∂g

∂x
− ∂f

∂z

)
j +

(
0 − ∂f

∂y

)
k =

〈
∂g

∂y
,
∂f

∂z
− ∂g

∂x
, −∂f

∂y

〉

(b) Using the Fundamental Theorem of Calculus, we have

∂g

∂y
(x, y, z) = ∂

∂y

∫ y

y0

P(x, t, z) dt + ∂

∂y
β(x, z) = P(x, y, z) + 0 = P(x, y, z)

−∂f

∂y
(x, y, z) = ∂

∂y

∫ y

y0

R(x, t, z) dt + ∂

∂y
α(x, z) = R(x, y, z) + 0 = R(x, y, z)

(c) We verify that the functions

α(x, z) =
∫ z

z0

Q(x, y0, t) dt, β(x, z) = 0

satisfy the equality

Q = ∂f

∂z
− ∂g

∂x

We differentiate to obtain

∂f

∂z
− ∂g

∂x
= −

∫ y

y0

Rz(x, t, z) dt + αz(x, z) −
∫ y

y0

Px(x, t, z) dz − βx(x, z)

= −
∫ y

y0

(Px(x, t, z) + Rz(x, t, z)) dt + αz(x, z) (1)

By the Fundamental Theorem of Calculus,

αz(x, z) = ∂

∂z

∫ z

z0

Q(x, y0, t) dt = Q(x, y0, z) (2)

Also, since div(F) = 0, we have

div(F) = Px + Qy + Rz = 0 ⇒ Px + Rz = −Qy (3)

Substituting (2) and (3) in (1) gives

∂f

∂z
− ∂g

∂x
=
∫ y

y0

Qy(x, t, z) dt + Q(x, y0, z) = Q(x, y, z) − Q(x, y0, z) + Q(x, y0, z) = Q(x, y, z)

Parts (a)–(c) prove that F = curl(A), or A is a vector potential for F.

Show that

F = 〈
2y − 1, 3z2, 2xy

〉
has a vector potential and find one.

43. Show that

F = 〈
2yez − xy, y, yz − z

〉
has a vector potential and find one.
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solution As shown in Exercise 41, if F is divergence free, then F has a vector potential. We show that div(F) = 0:

div(F) = ∂

∂x
(2yez − xy) + ∂

∂y
(y) + ∂

∂z
(yz − z) = −y + 1 + y − 1 = 0

We find a vector potential A, using the result in Exercise 41:

A = 〈f, 0, g〉 (1)

Using z0 = 0, we have

f (x, y, z) = −
∫ y

y0

R(x, t, z) dt +
∫ z

0
Q(x, y0, t) dt

g(x, y, z) =
∫ y

y0

P(x, t, z) dt

Hence, P(x, y, z) = 2yez − xy, Q(x, y, z) = y, and R(x, y, z) = yz − z. We choose y0 = 0 and compute the functions
f and g:

f (x, y, z) = −
∫ y

0
(tz − z) dt +

∫ z

0
0 dt = −

(
t2z

2
− zt

) ∣∣∣∣y
t=0

= zy − y2z

2
= z

(
y − y2

2

)

g(x, y, z) =
∫ y

0
(2tez − xt) dt = t2ez − xt2

2

∣∣∣∣y
t=0

= y2ez − xy2

2
= y2

(
ez − x

2

)
Substituting in (1) we obtain

A =
〈
z

(
y − y2

2

)
, 0, y2

(
ez − x

2

)〉

In the text, we observed that although the inverse-square radial vector field F = er

r2
satisfies div(F) = 0, F cannot

have a vector potential on its domain {(x, y, z) �= (0, 0, 0)} because the flux of F through a sphere containing the
origin is nonzero.

(a) Show that the method of Exercise 41 produces a vector potential A such that F = curl(A) on the restricted
domain D consisting of R3 with the y-axis removed.

(b) Show that F also has a vector potential on the domains obtained by removing either the x-axis or the z-axis from
R3.

(c) Does the existence of a vector potential on these restricted domains contradict the fact that the flux of F through
a sphere containing the origin is nonzero?

CHAPTER REVIEW EXERCISES

1. Let F(x, y) = 〈
x + y2, x2 − y

〉
and let C be the unit circle, oriented counterclockwise. Evaluate

∮
C

F · ds directly as

a line integral and using Green’s Theorem.

solution We parametrize the unit circle by c(t) = (cos t, sin t), 0 ≤ t ≤ 2π . Then, c′(t) = 〈− sin t, cos t〉 and

F(c(t)) = (cos t + sin2 t, cos2 t − sin t). We compute the dot product:

F(c(t)) · c′(t) =
〈
cos t + sin2 t, cos2 t − sin t

〉
· 〈− sin t, cos t〉

= (− sin t)(cos t + sin2 t) + cos t (cos2 t − sin t)

= cos3 t − sin3t − 2 sin t cos t

The line integral is thus∫
C

F (c(t)) · c′(t) dt =
∫ 2π

0

(
cos3 t − sin3 t − 2 sin t cos t

)
dt

=
∫ 2π

0
cos3 t dt −

∫ 2π

0
sin3 t dt −

∫ 2π

0
sin 2t dt

= cos2 t sin t

3
+ 2 sin t

3

∣∣∣∣2π

0
+
(

sin2 t cos t

3
+ 2 cos t

3

) ∣∣∣∣2π

0
+ cos 2t

2

∣∣∣∣2π

0
= 0

We now compute the integral using Green’s Theorem. We compute the curl of F. Since P = x + y2 and Q = x2 − y,
we have

∂Q

∂x
− ∂P

∂y
= 2x − 2y

Thus, ∫
C

F · ds =
∫∫

D
(2x − 2y) dx dy
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1
x

y

C

D

We compute the double integral by converting to polar coordinates. We get∫
C

F · ds =
∫ 2π

0

∫ 1

0
(2r cos θ − 2r sin θ)r dr dθ =

∫ 2π

0

∫ 1

0
2r2(cos θ − sin θ) dr dθ

=
(∫ 1

0
2r2 dr

)(∫ 2π

0
(cos θ − sin θ) dθ

)
=
(

2

3
r3
∣∣∣∣1
0

)(
sin θ + cos θ

∣∣∣∣2π

0

)
= 2

3
(1 − 1) = 0

Let ∂R be the boundary of the rectangle in Figure 1 and let ∂R1 and ∂R2 be the boundaries of the two triangles,
all oriented counterclockwise.

(a) Determine
∮
∂R1

F · ds if
∮
∂R

F · ds = 4 and
∮
∂R2

F · ds = −2.

(b) What is the value of
∮
∂R

F ds if ∂R is oriented clockwise?

In Exercises 3–6, use Green’s Theorem to evaluate the line integral around the given closed curve.

3.
∮
C

xy3 dx + x3y dy, where C is the rectangle −1 ≤ x ≤ 2, −2 ≤ y ≤ 3, oriented counterclockwise.

solution

2

3

−2

−1
x

y

C

D

Since P = xy3, Q = x3y the curl of F is
∂Q

∂x
− ∂P

∂y
= 3x2y − 3xy2

By Green’s Theorem we obtain∫
C

xy3 dx + x3y dy =
∫∫

D
(3x2y − 3xy2) dx dy =

∫ 3

−2

∫ 2

−1
(3x2y − 3xy2) dx dy

=
∫ 3

−2
x3y − 3x2y2

2

∣∣∣∣2
x=−1

dy =
∫ 3

−2

(
(8y − 6y2) −

(
−y − 3y2

2

))
dy

=
∫ 3

−2

(
−9y2

2
+ 9y

)
dy = −3y3

2
+ 9y2

2

∣∣∣∣3−2
=
(

−81

2
+ 81

2

)
− (12 + 18) = −30

∮
C
(3x + 5y − cos y) dx + x sin y dy, where C is any closed curve enclosing a region with area 4, oriented coun-

terclockwise.

5.
∮
C

y2 dx − x2 dy, where C consists of the arcs y = x2 and y = √
x, 0 ≤ x ≤ 1, oriented clockwise.

solution We compute the curl of F.

10
x

y

D

C

y = x2

y =    x

We have P = y2 and Q = −x2, hence

∂Q

∂x
− ∂P

∂y
= −2x − 2y
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We now compute the line integral using Green’s Theorem. Since the curve is oriented clockwise, we consider the negative
of the double integrals. We get∫

C
y2 dx − x2 dy = −

∫∫
D

(−2x − 2y) dA = −
∫ 1

0

∫ √
x

x2
(−2x − 2y) dy dx

=
∫ 1

0
2xy + y2

∣∣∣∣
√

x

y=x2
dx =

∫ 1

0

((
2x

√
x + x

) − (2x · x2 + x4)
)

dx

=
∫ 1

0
(−x4 − 2x3 + 2x3/2 + x) dx = −x5

5
− x4

2
+ 4x5/2

5
+ x2

2

∣∣∣∣1
0

= −1

5
− 1

2
+ 4

5
+ 1

2
= 3

5

∮
C

yex dx + xey dy, where C is the triangle with vertices (−1, 0), (0, 4), and (0, 1), oriented counterclockwise.
7. Let c(t) = (

t2(1 − t), t(t − 1)2).
(a) Plot the path c(t) for 0 ≤ t ≤ 1.

(b) Calculate the area A of the region enclosed by c(t) for 0 ≤ t ≤ 1 using the formula A = 1

2

∮
C
(x dy − y dx).

solution
(a) The path c(t) for 0 ≤ t ≤ 1 is shown in the figure:

x

y

0.10

0.1

Note that the path is traced out clockwise as t goes from 0 to 1.
(b) We use the formula for the area enclosed by a closed curve,

A = 1

2

∫
C
(x dy − y dx)

We compute the line integral. Since x = t2(1 − t) and y = t(t − 1)2, we have

dx =
(

2t (1 − t) − t2
)

dt =
(

2t − 3t2
)

dt

dy = (t − 1)2 + t · 2(t − 1) = (t − 1)(3t − 1) dt

Therefore,

x dy − y dx = t2(1 − t) · (t − 1)(3t − 1) dt − t(t − 1)2 · (2t − 3t2) dt = t2(t − 1)2 dt

We obtain the following integral (note that the path must be counterclockwise):

A = 1

2

∫ 0

1
−t2(t − 1)2 dt = 1

2

∫ 1

0
(t4 − 2t3 + t2) dt = 1

2

(
t5

5
− t4

2
+ t3

3

∣∣∣∣1
0

)
= 1

60

In (a)–(d), state whether the equation is an identity (valid for all F or V ). If it is not, provide an example in which
the equation does not hold.

(a) curl(∇V ) = 0 (b) div(∇V ) = 0

(c) div(curl(F)) = 0 (d) ∇(div(F)) = 0

In Exercises 9–12, calculate the curl and divergence of the vector field.

9. F = yi − zk

solution We compute the curl of the vector field,

curl(F) =

∣∣∣∣∣∣∣∣∣
i j k
∂

∂x

∂

∂y

∂

∂z

y 0 −z

∣∣∣∣∣∣∣∣∣
=
(

∂

∂y
(−z) − ∂

∂z
(0)

)
i −

(
∂

∂x
(−z) − ∂

∂z
(y)

)
j +

(
∂(0)

∂x
− ∂(y)

∂y

)
k

= 0i + 0j − 1k = −k
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The divergence of F is

div(F) = ∂

∂x
(y) + ∂

∂y
(0) + ∂

∂z
(−z) = 0 + 0 − 1 = −1.

F = 〈
ex+y, ey+z, xyz

〉11. F = ∇(e−x2−y2−z2
)

solution In Exercise 8 we proved the identity curl(∇ϕ) = 0. Here, ϕ = e−x2−y2−z2
, and we have

curl
(
∇
(
e−x2−y2−z2

))
= 0. To compute div F, we first write F explicitly:

F = ∇
(
e−x2−y2−z2

)
=
〈
−2xe−x2−y2−z2

, −2ye−x2−y2−z2
, −2ze−x2−y2−z2

〉
= 〈P, Q, R〉

div(F) = ∂P

∂x
+ ∂Q

∂y
+ ∂R

∂z

=
(
−2e−x2−y2−z2 + 4x2e−x2−y2−z2

)
+
(
−2e−x2−y2−z2 + 4y2e−x2−y2−z2

)
+
(
−2e−x2−y2−z2 + 4z2e−x2−y2−z2

)
= 2e−x2−y2−z2

(
2(x2 + y2 + z2) − 3

)

er = r−1 〈x, y, z〉 (r =
√

x2 + y2 + z2
)13. Recall that if F1, F2, and F3 are differentiable functions of one variable, then

curl (〈F1(x), F2(y), F3(z)〉) = 0

Use this to calculate the curl of

F = 〈
x2 + y2, ln y + z2, z3 sin(z2)ez3 〉

solution We use the linearity of the curl and the property mentioned in the exercise to compute the curl of F:

curl F = curl
(〈

x2 + y2, ln y + z2, z3 sin
(
z2
)

ez3
〉)

= curl
(〈

x2, ln y, z3 sin(z2)ez3
〉)

+ curl
(〈

y2, z2, 0
〉)

= 0 + curl
〈
y2, z2, 0

〉
=
〈

∂

∂y
(0) − ∂

∂z
z2,

∂

∂z
y2 − ∂

∂x
(0),

∂

∂x
z2 − ∂

∂y
y2
〉

= 〈−2z, 0, −2y〉

Give an example of a nonzero vector field F such that curl(F) = 0 and div(F) = 0.
15. Verify the identities of Exercises 6 and 34 in Section 17.3 for the vector fields F = 〈

xz, yex, yz
〉

and G =〈
z2, xy3, x2y

〉
.

solution We first show div(curl(F)) = 0. Let F = 〈P, Q, R〉 = 〈
xz, yex, yz

〉
. We compute the curl of F:

curl(F) =

∣∣∣∣∣∣∣∣∣
i j k
∂

∂x

∂

∂y

∂

∂z

P Q R

∣∣∣∣∣∣∣∣∣
=
〈
∂R

∂y
− ∂Q

∂z
,
∂P

∂z
− ∂R

∂x
,
∂Q

∂x
− ∂P

∂y

〉

Substituting in the appropriate values for P, Q, R and taking derivatives, we get

curl(F) = 〈
z − 0, x − 0, yex − 0

〉
Thus,

div (curl(F)) = (z)x + (x)y + (yex)z = 0 + 0 + 0 = 0.

Likewise, for G = 〈P, Q, R〉 =
〈
z2, xy3x2y

〉
, we compute the curl of G:

curl(G) =

∣∣∣∣∣∣∣∣∣
i j k
∂

∂x

∂

∂y

∂

∂z

P Q R

∣∣∣∣∣∣∣∣∣
=
〈
∂R

∂y
− ∂Q

∂z
,
∂P

∂z
− ∂R

∂x
,
∂Q

∂x
− ∂P

∂y

〉

Substituting in the appropriate values for P, Q, R and taking derivatives, we get

curl(G) =
〈
x2 − 0, 2z − 2xy, y3 − 0

〉
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Thus,

div (curl(G)) = (x2)x + (2z − 2xy)y + (y3)z = 2x − 2x = 0.

We now work on the second identity. For F = 〈
xz, yex, yz

〉
and G = 〈

z2, xy3, x2y
〉
, it is easy to calculate

F × G = 〈x2y2ex − xy4z, yz3 − x3yz, x2y3z − yz2ex〉
Thus,

div(F × G) = (2xy2ex + x2y2ex − y4z) + (z3 − x3z) + (x2y3 − 2yzex)

On the other hand, from our work above,

curl(F) = 〈
z, x, yex

〉
curl(G) =

〈
x2, 2z − 2xy, y3

〉
So, we calculate

G · curl(F − F) · curl(G) = z2 · z + xy3 · x + x2y · yex − xz · x2 − yex · (2z − 2xy) − yz · y3

= z3 + x2y3 + x2y2ex + 2xy2ex − x3z − 2yzex − y4z

= (2xy2ex + x2y2ex − y4z) + (z3 − x3z) + (x2y3 − 2yzex) = div(F × G)

Suppose that S1 and S2 are surfaces with the same oriented boundary curve C. Which of the following conditions
guarantees that the flux of F through S1 is equal to the flux of F through S2?

(i) F = ∇V for some function V

(ii) F = curl(G) for some vector field G

17. Prove that if F is a gradient vector field, then the flux of curl(F) through a smooth surface S (whether closed or not)
is equal to zero.

solution If F is a gradient vector field, then F is conservative; therefore the line integral of F over any closed curve
is zero. Combining with Stokes’ Theorem yields∫∫

S
curl(F) · dS =

∫
∂S

F · ds = 0

Verify Stokes’ Theorem for F = 〈y, z − x, 0〉 and the surface z = 4 − x2 − y2, z ≥ 0, oriented by outward-
pointing normals.

19. Let F = 〈
z2, x + z, y2〉 and let S be the upper half of the ellipsoid

x2

4
+ y2 + z2 = 1

oriented by outward-pointing normals. Use Stokes’ Theorem to compute
∫∫

S
curl(F) · dS.

solution We compute the curl of F =
〈
z2, x + z, y2

〉
:

curl(F) =

∣∣∣∣∣∣∣∣∣
i j k
∂

∂x

∂

∂y

∂

∂z

z2 x + z y2

∣∣∣∣∣∣∣∣∣
= (2y − 1)i − (0 − 2z)j + (1 − 0)k = 〈2y − 1, 2z, 1〉

Let C denote the boundary of S, that is, the ellipse x2

4 + y2 = 1 in the xy-plane, oriented counterclockwise. Then by
Stoke’s Theorem we have ∫∫

S
curl(F) · dS =

∫
C

F · ds (1)

We parametrize C by

C : r(t) = (2 cos t, sin t, 0), 0 ≤ t ≤ 2π

Then

F (r(t)) · r ′(t) =
〈
0, 2 cos t, sin2 t

〉
· 〈−2 sin t, cos t, 0〉 = 2 cos2 t

Combining with (1) gives

∫∫
S

curl(F) · ds =
∫ 2π

0
2 cos2 t dt = t + sin 2t

2

∣∣∣∣2π

0
= 2π

Use Stokes’ Theorem to evaluate
∮
C
〈
y, z, x

〉 · ds, where C is the curve in Figure 2.
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21. Let S be the side of the cylinder x2 + y2 = 4, 0 ≤ z ≤ 2 (not including the top and bottom of the cylinder). Use
Stokes’ Theorem to compute the flux of F = 〈0, y, −z〉 through S (with outward pointing normal) by finding a vector
potential A such that curl(A) = F.

solution We can write F = curl(A) where A = 〈yz, 0, 0〉. The flux of F through S is equal to the line integral of A

around the oriented boundary which consists of two circles of radius 2 with center on the z-axis (one at height z = 0 and
one at height z = 2).

However, the line integrals of A about both circles are zero. This is clear for the circle at z = 0 because then A = 0,
but it is also true at z = 2 because the vector field A = 〈2y, 0, 0〉 integrates to zero around the circle.

Verify the Divergence Theorem for F = 〈0, 0, z〉 and the region x2 + y2 + z2 = 1.In Exercises 23–26, use the Divergence Theorem to calculate
∫∫

S
F · dS for the given vector field and surface.

23. F = 〈
xy, yz, x2z + z2〉, S is the boundary of the box [0, 1] × [2, 4] × [1, 5].

solution

1 2
4

z

y
x

1

5

We compute the divergence of F =
〈
xy, yz, x2z + z2

〉
:

div(F) = ∂

∂x
xy + ∂

∂y
yz + ∂

∂z
(x2z + z2) = y + z + x2 + 2z = x2 + y + 3z

The Divergence Theorem gives

∫∫
S

〈
xy, yz, x2z + z2

〉
· dS =

∫ 5

1

∫ 4

2

∫ 1

0
(x2 + y + 3z) dx dy dz =

∫ 5

1

∫ 4

2

x3

3
+ (y + 3z)x

∣∣∣∣1
x=0

dy dz

=
∫ 5

1

∫ 4

2

(
1

3
+ y + 3z

)
dy dz =

∫ 5

1

1

3
y + 1

2
y2 + 3zy

∣∣∣∣4
y=2

dz

=
∫ 5

1

((
4

3
+ 16

2
+ 12z

)
−
(

2

3
+ 2 + 6z

))
dz =

∫ 5

1

(
20

3
+ 6z

)
dz

= 20z

3
+ 3z2

2

∣∣∣∣5
1

=
(

75 + 100

3

)
−
(

3 + 20

3

)
= 296

3

F = 〈
xy, yz, x2z + z2〉, S is the boundary of the unit sphere.

25. F = 〈
xyz + xy, 1

2y2(1 − z) + ex, ex2+y2 〉
, S is the boundary of the solid bounded by the cylinder x2 + y2 = 16

and the planes z = 0 and z = y − 4.

solution We compute the divergence of F:

div(F) = ∂

∂x
(xyz + xy) + ∂

∂y

(
y2

2
(1 − z) + ex

)
+ ∂

∂z
(ex2+y2

) = yz + y + y(1 − z) = 2y

Let S denote the surface of the solid W . The Divergence Theorem gives

∫∫
S

F · dS =
∫∫∫

W
div(F) dV =

∫∫∫
W

2y dV =
∫∫

D

∫ 0

y−4
2y dz dx dy

=
∫∫

D
2yz

∣∣∣∣0
z=y−4

dx dy =
∫∫

D
2y (0 − (y − 4)) dx dy =

∫∫
D

(8y − 2y2) dx dy
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We convert the integral to polar coordinates:∫∫
S

F · dS =
∫ 2π

0

∫ 4

0
(8r cos θ − 2r2 cos2 θ)r dr dθ

= 8

(∫ 4

0
r2 dr

)(∫ 2π

0
cos θ dθ

)
−
(∫ 4

0
r3 dr

)(∫ 2π

0
2 cos2 θ dθ

)

= 0 −
(

r4

4

∣∣∣∣4
0

)(
θ + sin 2θ

2

∣∣∣∣2π

0

)
= −44

4
· 2π = −128π

F = 〈
sin(yz),

√
x2 + z4, x cos(x − y)

〉
, S is any smooth closed surface that is the boundary of a region in R3.

27. Find the volume of a region W if∫∫
∂W

〈
x + xy + z, x + 3y − 1

2
y2, 4z

〉
· dS = 16

solution Let F =
〈
x + xy + z, x + 3y − 1

2y2, 4z
〉
. We compute the divergence of F:

div(F) = ∂

∂x
(x + xy + z) + ∂

∂y

(
x + 3y − 1

2
y2
)

+ ∂

∂z
(4z) = 1 + y + 3 − y + 4 = 8

Using the Divergence Theorem and the given information, we obtain

16 =
∫∫

S
F · dS =

∫∫
W

div(F) dV =
∫∫

W
8 dV = 8

∫∫
W

1 dV = 8 Volume (W)

That is,

16 = 8 Volume (W)

or

Volume (W) = 2

Show that the circulation of F = 〈
x2, y2, z(x2 + y2)

〉
around any curve C on the surface of the cone z2 = x2 + y2

is equal to zero (Figure 3).

In Exercises 29–32, let F be a vector field whose curl and divergence at the origin are

curl(F)(0, 0, 0) = 〈2, −1, 4〉 , div(F)(0, 0, 0) = −2

29. Estimate
∮
C

F · ds, where C is the circle of radius 0.03 in the xy-plane centered at the origin.

solution We use the estimation ∫
C

F · ds ≈ (curl(F)(0) · en) Area(R)

z

y

x

en

C

R

The unit normal vector to the disk R is en = k = 〈0, 0, 1〉. The area of the disk is

Area (R) = π · 0.032 = 0.0009π.

Using the given curl at the origin, we have∫
C

F · ds ≈ 〈2, −1, 4〉 · 〈0, 0, 1〉 · 0.0009π = 4 · 0.0009π ≈ 0.0113

Estimate
∮
C

F · ds, where C is the boundary of the square of side 0.03 in the yz-plane centered at the origin. Does

the estimate depend on how the square is oriented within the yz-plane? Might the actual circulation depend on how
it is oriented?

31. Suppose that v is the velocity field of a fluid and imagine placing a small paddle wheel at the origin. Find the equation
of the plane in which the paddle wheel should be placed to make it rotate as quickly as possible.

solution The paddle wheel has the maximum spin when the circulation of the velocity field v around the wheel is
maximum. The maximum circulation occurs when en, and the curl of v at the origin (i.e., the vector 〈2, −1, 4〉) point in
the same direction. Therefore, the plane in which the paddle wheel should be placed is the plane through the origin with
the normal 〈2, −1, 4〉. This plane has the equation, 2x − y + 4z = 0.
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Estimate the flux of F through the box of side 0.5 in Figure 4. Does the result depend on how the box is oriented
relative to the coordinate axes?

33. The velocity vector field of a fluid (in meters per second) is

F = 〈
x2 + y2, 0, z2〉

Let W be the region between the hemisphere

S = {
(x, y, z) : x2 + y2 + z2 = 1, x, y, z ≥ 0

}
and the disk D = {

(x, y, 0) : x2 + y2 ≤ 1
}

in the xy-plane. Recall that the flow rate of a fluid across a surface is equal
to the flux of F through the surface.

(a) Show that the flow rate across D is zero.

(b) Use the Divergence Theorem to show that the flow rate across S, oriented with outward-pointing normal, is equal to∫∫∫
W

div(F) dV . Then compute this triple integral.

solution

(a) To show that no fluid flows across D, we show that the normal component of F at each point on D is zero. At each
point P = (x, y, 0) on the xy-plane,

F(P ) =
〈
x2 + y2, 0, 02

〉
=
〈
x2 + y2, 0, 0

〉
.

Moreover, the unit normal vector to the xy-plane is en = (0, 0, 1). Therefore,

F(P ) · en =
〈
x2 + y2, 0, 0

〉
· 〈0, 0, 1〉 = 0.

Since D is contained in the xy-plane, we conclude that the normal component of F at each point on D is zero. Therefore,
no fluid flows across D.

(b) By the Divergence Theorem and the linearity of the flux we have∫∫
S

F · dS +
∫∫

D
F · dS =

∫∫∫
W

div(F) dV

Since the flux through the disk D is zero, we have∫∫
S

F · dS =
∫∫∫

W
div(F) dV (1)

To compute the triple integral, we first compute div(F):

div(F) = ∂

∂x
(x2 + y2) + ∂

∂y
(0) + ∂

∂z
(z2) = 2x + 2z = 2(x + z).

W

z

y

x

Using spherical coordinates we get∫∫∫
W

div(F) dV = 2
∫ π/2

0

∫ 2π

0

∫ 1

0
(ρ sin φ cos θ + ρ cos φ)ρ2 sin φ dρ dφ

= 2
∫ 1

0
ρ3dρ

((∫ π/2

0
sin2 φ dφ

)(∫ 2π

0
cos θ dθ

)
+ 2π

∫ π/2

0
cos φ sin φ dρ

)

= 1

2

(
0 + π

∫ π/2

0
sin 2φ dφ

)
= π

2

(
−cos 2φ

2

) ∣∣∣∣π/2

0
= −π

4
(−1 − 1) = π

2

Combining with (1) we obtain the flux: ∫∫
S

F · dS = π

2
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The velocity field of a fluid (in meters per second) is

F = (3y − 4)i + e−y(z+1)j + (x2 + y2)k

(a) Estimate the flow rate (in cubic meters per second) through a small surface S around the origin if S encloses a
region of volume 0.01 m3.

(b) Estimate the circulation of F about a circle in the xy-plane of radius r = 0.1 m centered at the origin (oriented
counterclockwise when viewed from above).

(c) Estimate the circulation of F about a circle in the yz-plane of radius r = 0.1 m centered at the origin (oriented
counterclockwise when viewed from the positive x-axis).

35. Let V (x, y) = x + x

x2 + y2
. The vector field F = ∇V (Figure 5) provides a model in the plane of the velocity

field of an incompressible, irrotational fluid flowing past a cylindrical obstacle (in this case, the obstacle is the unit circle
x2 + y2 = 1).
(a) Verify that F is irrotational [by definition, F is irrotational if curl(F) = 0].

x

y

1

3

2

1

−1−2−3
−1

−2

−3

32

FIGURE 5 The vector field ∇V for V (x, y) = x + x

x2 + y2
.

(b) Verify that F is tangent to the unit circle at each point along the unit circle except (1, 0) and (−1, 0) (where F = 0).
(c) What is the circulation of F around the unit circle?
(d) Calculate the line integral of F along the upper and lower halves of the unit circle separately.

solution
(a) In Exercise 8, we proved the identity curl(∇ϕ) = 0. Since F is a gradient vector field, it is irrotational; that is,
curl(F) = 0 for (x, y) �= (0, 0), where F is defined.
(b) We compute F explicitly:

F = ∇ϕ =
〈
∂ϕ

∂x
,
∂ϕ

∂y

〉
=
〈

1 + y2 − x2

(x2 + y2)
2
, − 2xy

(x2 + y2)
2

〉

Now, using x = cos t and y = sin t as a parametrization of the circle, we see that

F =
〈
1 + sin2 t − cos2 t, −2 cos t sin t

〉
=
〈
2 sin2 t, −2 cos t sin t

〉
,

and so

F = 2 sin t 〈sin t, − cos t〉 = 2 sin t 〈y, −x〉 ,

which is clearly perpendicular to the radial vector 〈x, y〉 for the circle.
(c) We use our expression of F from Part (b):

F = ∇ϕ =
〈

1 + y2 − x2

(x2 + y2)
2
, − 2xy

(x2 + y2)
2

〉

Now, F is not defined at the origin and therefore we cannot use Green’s Theorem to compute the line integral along the
unit circle. We thus compute the integral directly, using the parametrization

c(t) = (cos t, sin t), 0 ≤ t ≤ 2π.

x
1

y

C

Then,

F (c(t)) · c′(t) =
〈

1 + sin2t − cos2 t

(cos2 t + sin2 t)
2
, − 2 cos t sin t

(cos2 t + sin2 t)
2

〉
· 〈− sin t, cos t〉

=
〈
1 + sin2 t − cos2 t, −2 cos t, sin t

〉
· 〈− sin t, cos t〉 =

〈
2 sin2 t, −2 cos t sin t

〉
· 〈− sin t, cos t〉

= −2 sin3 t − 2 cos2 t sin t = −2 sin t (sin2 t + cos2 t) = −2 sin t

Hence, ∫
C

F · ds =
∫ 2π

0
−2 sin t dt = 0
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(d) We denote by C1 and C2 the upper and lower halves of the unit circle. Using part (c) we have∫
C1

F · ds +
∫
C2

F · ds = 0 ⇒
∫
C2

F · ds = −
∫
C1

F · ds (1)

x
1

y

C1

C2

To compute the circulation along C1, we compute the integral as in part (c), only that the limits of integration are now
t = 0 and t = π . Using the computations in part (c) we obtain∫

C1

F · ds =
∫ π

0
−2 sin2 t dt = −4

Therefore, by (1), ∫
C2

F · ds = 4.

Figure 6 shows the vector field F = ∇V , where

V (x, y) = ln
(
x2 + (y − 1)2) + ln

(
x2 + (y + 1)2)

which is the velocity field for the flow of a fluid with sources of equal strength at (0, ±1) (note that V is undefined
at these two points). Show that F is both irrotational and incompressible—that is, curlz(F) = 0 and div(F) = 0 [in
computing div(F), treat F as a vector field in R3 with a zero z-component]. Is it necessary to compute curlz(F) to
conclude that it is zero?

37. In Section 17.1, we showed that if C is a simple closed curve, oriented counterclockwise, then the line integral is

Area enclosed by C = 1

2

∮
C

x dy − y dx 1

Suppose that C is a path from P to Q that is not closed but has the property that every line through the origin intersects C
in at most one point, as in Figure 7. Let R be the region enclosed by C and the two radial segments joining P and Q to
the origin. Show that the line integral in Eq. (1) is equal to the area of R. Hint: Show that the line integral of F = 〈−y, x〉
along the two radial segments is zero and apply Green’s Theorem.

x

y

C

R
P

Q

FIGURE 7

solution

x

y

C

R
P

Q

Q

Let F = 〈−y, x〉. Then P = −y and Q = x, and ∂Q
∂x

− ∂P
∂y

= 2. By Green’s Theorem, we have

∫
C

−y dx + x dy +
∫
QO

−y dx + x dy +
∫
OP

−y dx + x dy =
∫∫

R
2 dA = 2

∫∫
R

dA

Denoting by A the area of the region R, we obtain

A = 1

2

∫
C

−y dx + x dy + 1

2

∫
QO

−y dx + x dy + 1

2

∫
OP

−y dx + x dy (1)
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We parametrize the two segments by

QO : c(t) = (t, t tan β)

OP : d(t) = (t, t tan α)
⇒

c′(t) = 〈1, tan β〉
d′(t) = 〈1, tan α〉

Then,

F (c(t)) · c′(t) = 〈−t tan β, t〉 · 〈1, tan β〉 = −t tan β + t tan β = 0

F (d(t)) · d′(t) = 〈−t tan α, t〉 · 〈1, tan α〉 = −t tan α + t tan α = 0

Therefore, ∫
QO

F · ds =
∫
OP

F · ds = 0.

Combining with (1) gives

A = 1

2

∫
C

−y dx + x dy.

Suppose that the curve C in Figure 7 has the polar equation r = f (θ).

(a) Show that c(θ) = (f (θ) cos θ, f (θ) sin θ) is a counterclockwise parametrization of C.

(b) In Section 11.4, we showed that the area of the region R is given by the formula

Area of R = 1

2

∫ β

α
f (θ)2 dθ

Use the result of Exercise 37 to give a new proof of this formula. Hint: Evaluate the line integral in Eq. (1) using
c(θ).

39. Prove the following generalization of Eq. (1). Let C be a simple closed curve in the plane (Figure 8)

S : ax + by + cz + d = 0

Then the area of the region R enclosed by C is equal to

1

2‖n‖
∮
C
(bz − cy) dx + (cx − az) dy + (ay − bx) dz

where n = 〈a, b, c〉 is the normal to S, and C is oriented as the boundary of R (relative to the normal vector n). Hint:
Apply Stokes’ Theorem to F = 〈bz − cy, cx − az, ay − bx〉.

z

y
x

Plane S

C
R

n = 〈a, b, c〉

FIGURE 8

solution By Stokes’ Theorem,∫∫
S

curl(F) · dS =
∫∫

S
(curl(F) · en) dS =

∫
C

F · ds (1)

We compute the curl of F:

curl(F) =

∣∣∣∣∣∣∣∣∣
i j k
∂

∂x

∂

∂y

∂

∂z

bz − cy cx − az ay − bx

∣∣∣∣∣∣∣∣∣
= 2ai + 2bj + 2ck = 2 〈a, b, c〉

The unit normal to the plane ax + by + cz + d = 0 is

en = 〈a, b, c〉√
a2 + b2 + c2

Therefore,

curl(F) · en = 2 〈a, b, c〉 · 1√
a2 + b2 + c2

〈a, b, c〉

= 2√
a2 + b2 + c2

(a2 + b2 + c2) = 2
√

a2 + b2 + c2
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Hence, ∫∫
S

curl(F) · dS =
∫∫

S
curl(F) · en dS =

∫∫
S

2
√

a2 + b2 + c2 dS = 2
√

a2 + b2 + c2
∫∫

S
1 dS (2)

The sign of
∫∫

S 1 dS is determined by the orientation of S. Since the area is a positive value, we have

∣∣∣∣
∫∫

S
1 ds

∣∣∣∣ = Area (S)

Therefore, (2) gives ∣∣∣∣
∫∫

S
curl(F) · dS

∣∣∣∣ = 2
√

a2 + b2 + c2 Area(S)

Combining with (1) we obtain

2
√

a2 + b2 + c2 Area(S) =
∣∣∣∣
∫
C

F · ds

∣∣∣∣
or

Area(S) = 1

2
√

a2 + b2 + c2
= 1

2‖n‖ ·
∣∣∣∣
∫
C
(bz − cy) dx + (cx − az) dy + (ay − bx) dz

∣∣∣∣

Use the result of Exercise 39 to calculate the area of the triangle with vertices (1, 0, 0), (0, 1, 0), and (0, 0, 1) as
a line integral. Verify your result using geometry.

41. Show that G(θ, φ) = (a cos θ sin φ, b sin θ sin φ, c cos φ) is a parametrization of the ellipsoid

(x

a

)2 +
(y

b

)2 +
( z

c

)2 = 1

Then calculate the volume of the ellipsoid as the surface integral of F = 1
3 〈x, y, z〉 (this surface integral is equal to the

volume by the Divergence Theorem).

solution For the given parametrization,

x = a cos θ sin φ, y = b sin θ sin φ, z = c cos φ (1)

We show that it satisfies the equation of the ellipsoid

(x

a

)2 +
(y

b

)2 +
( z

c

)2 =
(

a cos θ sin φ

a

)2
+
(

b sin θ sin φ

b

)2
+
(

c cos φ

c

)2

= cos2 θ sin2 φ + sin2 θ sin2 φ + cos2 φ

= sin2 φ(cos2 θ + sin2 θ) + cos2 φ

= sin2 φ + cos2 φ = 1

Conversely, for each (x, y, z) on the ellipsoid, there exists θ and φ so that (1) holds. Therefore �(θ, φ) parametrizes the
whole ellipsoid. Let W be the interior of the ellipsoid S. Then by Eq. (10):

Volume(W) = 1

3

∫∫
S

F · dS, F = 〈x, y, z〉

We compute the surface integral, using the given parametrization. We first compute the normal vector:

∂�

∂θ
= 〈−a sin θ sin φ, b cos θ sin φ, 0〉

∂�

∂φ
= 〈a cos θ cos φ, b sin θ cos φ, −c sin φ〉

∂�

∂θ
× ∂�

∂φ
= −ab sin2 θ sin φ cos φk − ac sin θ sin2 φj − ab cos2 θ sin φ cos φk − bc cos θ sin2 φi

=
〈
−bc cos θ sin2 φ, −ac sin θ sin2 φ, −ab sin φ cos φ

〉
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Hence, the outward pointing normal is

n =
〈
bc cos θ sin2 φ, ac sin θ sin2 φ, ab sin φ cos φ

〉
F (�(θ, φ)) · n = 〈a cos θ sin φ, b sin θ sin φ, c cos φ〉 ·

〈
bc cos θ sin2 φ, ac sin θ sin2 φ, ab sin φ cos φ

〉
= abc cos2 θ sin3 φ + abc sin2 θ sin3 φ + abc sin φ cos2 φ

= abc sin3 φ(cos2 θ + sin2 θ) + abc sin φ cos2 φ

= abc sin3 φ + abc sin φ cos2 φ = abc sin3 φ + abc sin φ(1 − sin2 φ)

= abc sin φ

We obtain the following integral:

Volume(W) = 1

3

∫∫
S

F · dS = 1

3

∫ 2π

0

∫ π

0
abc sin φ dφ dθ

= 2πabc

3

∫ π

0
sin φ dϕ = 2πabc

3

(
− cos φ

∣∣∣∣π
0

)
= 4πabc

3
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